A MASTER"S DEGREE COURSE OF STUDY DATABASE

by

GEORGE RICHARD HUGHES

B.A., Kansas University, 1973

M.A., University of Regina, 1974

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas
1979

Approved by:




5Vc.QﬁL

oy

AGGT
.RY
1179
HE
c.2

TABLE OF CONTENTS

List Of FIgures . « « « ¢ o ¢ o ¢ s ¢ s o s s o s o s «

Part 1I.

Part 1II.

Part III.

Part 1IV.

Part V.

Introduction e o o 5 8 o 8 e s o e e o = &
L.l HiStOrY . ¢« o o ¢ o o« o o o a s s s o =
1.2 Preliminary Guidelines . . « « + « « &
1,3 Controlling PurposSe . . « « o o s « + s
Specification Requirements . « « « ¢ ¢ « o «
2,1 Listing of requirements . . . . .+ . . .

2,2 Relatijonships Between System Components

Description of Functions e & o o o s s s @

3.1 User Operations

L]
L]
.
L ]
-
L]
L ]
L]
»
L]
L ]

3.2 The Database . . ¢ « ¢ « » s s ¢ o o =
3.3 Program GPAlL . . . ¢ + ¢ o o o » o o
3.4 Program CHECK . ¢ « ¢ o o s o o s o s &«
3.5 Program Check2 . . « « ¢ o ¢ « o s o @
3.6 Program CLASSES . ¢« « s o ¢ o« « s o s «

3.7 hxt '11'. L ] L] - L] L [ ] - L] - L] . . . -

The Interface . + « « ¢ o ¢ ¢ s & s o s o @

Smm ry - * - L - L) . L] - - - - - - L L] L] -
5 - 1 Anal Y’ 1' L L] - - L - * - . L] L L] - . L

5.2 Concluding RemarksS . o ¢ « o s + o« o =«

Bibliogrlphy * e 8 ® 8 & e 8 8 ® 2 8 " e &

Appendix A -~ User’s Guide . . + « « o s » =«

ii

iv

11

11

12

19

21

23

24

25

26

30

30

31

33

34



iii

Appendix B = Supervisory Manual . . . . . . . 36

Appendix C = Functional Specifications . . . 44



FIGURE

2,1 System Component Ralations

3.1 Database Definition of COURSE

B.l Procedure for Gaining Access to COURSE
C.l Ssource Code for Program GPAl .,

C.2 Source Code for Program CHECK

C.3 Source Code for Program CHECKZ ,

C.4 Directory for Text Files

List of Figures

-

*

iv

10

14

38

51

54

58

63



CHAPTER I

INTRODUCTION

1.1 History

There has been an ongoing effort in this University to
automate certain student records. The college of Home
Economics has developed a program which will verify what
Bachelor’s degree course requirements are being met by their
ma jor students. This program helps faculty members advise
students in planning course loads for future semesters.
This program was implemented using PL/l, with no provisions
made for any sort of database management system (DBMS). [4]

Although several Home Economics departments at other
institutions have expressed interest in duplicating this
implementation, it suffers from being used in the batch mode
only. Additionally, this program does not lend itself
easily to modification, and given frequent curricula changes
at both the departmental and College levels, this is a
serious complaint.

Voelz and Garland (8) designed a prototype system
using a DBMS that would contain University-wide academic
records. This implementation wutilized the Integrated Data
Base Management System (IDMS) [2] , and was an adequate
starting point. The commitment to a DBMS was important
because the data can be described, stored, and manipulated

independently of different users. Voelz and Garland’s



2

design proved to be too large, expensive, and wide ranging
for any Computer Science Department applications.

In 1976, Long (4] constructed an IDMS database that
extended upon the concepts of Voelz and Garland’s scheme.
Long was commissioned to make an economical system which
would act as a counselling aid for the Computer Science
faculty. Other requirements to be met by this database
included Bachelor of Science requirements, major course
requirements in Computer Science, some personal information
on the student, and courses completed and/or currently

enrcolled in. This program also used the batch mode on an

IBM 370 mainframe,

1,2 Preliminary Guidelines

The evolution of computer programs that automate both
academic record keeping and student advising procedures
continues. During discussions last Fall, the need was
expressed for a prototype system which would go beyond the
efforts mentioned above. The major contraints upon this
system were:

1., the system must be available to interactive

displiy terminal users

2., the DBMS must provide independence and security

3. the system would advise and help Master s students

in Computer Science

4, the prototype must be cost effective



3
These constraints necessitated using the Department’s
Interdata 8/32 minicomputer, and a conversational DBMS
system INFO32 [3] , as the hardware and software support,
respectively, for this project. The choice of the 8/32
reflected the cost constraint, as the overall database would
be cheaper to operate on this machine campared with an
implementation on the Kansas State Computing Center’s Itel
AS=5, The smaller machine had the added benefits of
terminal display mode, and convenient access for Computer
Science students,
Other reasons for choosing the Interdata mini were that
the Department would like to encourage the use of the 8/32
by out of town users via telephone links. Furthurmore, the
Department has a continuing research interest in database
applications for minicomputers over distributed networks.
INFO32 is a software product of Henco, Inc. {31.
Primarily a business oriented system, INF032 uses English
keywords as language command instructions for data entry and
update, query formulation, and report writing. INFO32 was
selected as the DBMS because it works well in a terminal
display environment, was available on the 8/32, and lent
jtself easily to a frontend interface [5] . This interface
will provide much of the data security and independence, as
it masks the user from the actual INFO32 database. It will

be discussed at a later time in this report.



1.3 Controlling Purpose

The controlling purpose of this report is to show the
design and implementation of this Master s degree database
prototype project. We have already looked at the background
of previous attempts in this area, and the renewed interest
in providing new informational services to prospective and
enrolled graduate students across the state.

In Section 1I, we will describe the specific
requirements that this project will ¢try ¢to fulfill. 1In
Section III, the database design will be discussed, and the
assertions that can be made about the various data items,
Other program parts within INF032 that manipulate this
database will also be described in this section.

We will outline the general data independence gqualities
that the backend interface between the user and the database
will support. A summary of this report will be presented,
as will a look at future directions for this type of work.
Finally, the appendices document the user and supervisory
manuals needed to modify or keep this implementation

functioning.



CHAPTER I1

SPECIFICATION REQUIREMENTS

2.1 Listing of Requirements

The impact of the initial constraints was felt mostly in
the selection of physical devices and software packages.
These constraints did not really effect the design or
logical organization of the fledgling project. Section II
will be an amplification of the overall purposes of the
project, and a complete statement of specifications that
will be realized in this implementation.

This project will be comprised of up~to-date, but
un-official academic and personal facts about Master’s
students in Computer Science. Several different purposes
are suggested by the specifications that follow. The first
purpose is informational. Sstudents can choose to view
reports about admission requirements, equivalent experience
in this discipline needed at the outset of graduate work, or
other matters relating to the Master’s program in Computer
Science at Kansas State University.

Secondly, this implementation will securely store
courses completed or enrolled in for individual students.
The credit hours and grade received for each course, and the

gsemester when the class was taken can alsc be entered into



the database. The student may, on demand, request that his
grade point average be calculated, or have his list of
courses evaluated for degree requirement satisfaction.

The third purpose of this project is to duplicate
certain Departmental personal files. Faculty members can be
spared the tedium of shuffling through file folders when
checking on the progress of a graduate student.

These three purposes helped to shape the following
required specifications:

1. Interactive capability for Manhattan, and out

lying users
l.a. access informational text files
l.b. one academic record stored in the database
per user
l.b.1, user can create this record
l.b.2. user can update items in this record
1.b.3. user can read through parts of this
created record
2. Database Administrator
2.a. purges inactive records
2.b. supervises the maintenance of the system
2,c. modifies the system due to necessary
changes
3. Interface that will monitor communication
between the user and the INFO032 database

J.a. controls user creation, updating, and

reading



3.b.

controls user access to informational text
files

provides some type checking on data
provides for data independence and

security

Individual Student records

4.a.
4.b.

4.c.

4.4.

name, address, etc.

city where enrolled

means of financial support (only important
if the student is a Computer Science
Department employee)

courses taken or currently enrolled in
4.4.1. course number

4.d.2. letter grade

4.4.3. credit hours

4.d.4. semester of enrollment

Queries allowed on the database record

5.a.

5.b.

S5.e.

5.4.

grade point average calculation

student’s position with regards to the

30 graduate credit hour minimum

‘Cc’ and ‘D° credit hour deficiency
curriculum checks for required courses
5.d.1. core curriculum classes

5.4d.2. upper level class

5.d.3. graduate seminar

Information

Department admission requirements



6.b. Department MS requirements

6.c. Bachelor of Science equivalent experience
one should have, or undergraduate
classes to be made up upon acceptance into
this Master’s program

6.d. current and following semester schedules

6.e. Kansas State Computer Science faculty
biographical sketches

6.f. courses acceptable for MS degree credit
6.£.1. pre-requisites
6.f.2. content of courses
6.£.3., credit hours for the course

7. No concurrent use of the database, at least for

the time being

2.2 Relationships Between System Components

At this point, it would be best to explain the

interrelationships between all the different parts of the

system that will implement these specifications.

The MTM operating system in the Interdata 8/32 oversees

and supervises any communication between the component

parts. Its task is to provide the environment by which

these parts can utilize the minicomputer’s resources.

The DBMS, INF032, controls all messages regarding the

database itself. The INFO32 system only allows qualified



users making legal gqueries to manipulate any part of the
database.

This underscores the fact that the Fortran interface’s
[6] main job is the interception and interpretation of
commun ications between a terminal user, INFO32, and
ultimately, the INFO32 database COURSE. The interface lets
the user choose from a limited set of options. The messages
outlining these options are sent to the user, the user
chooses a particular task, and the interface executes the
necessary steps to carry out that task.

The interface, in this way, receives and gives messages
to both the DBMS and the student user. The text files are
chosen individually by the student, the interface learns of
the choice, and then extracts for display the correct file.

Fin:lly, the student user can only send messages
directly to the interface, while receiving information from
the DBMS programs, the text files, and the monitoring
interface. The supervisory user can use the database by
circumventing the interface, and dealing directly with
INFO32. On the systems level, the supervisor can maintain
and create any text files.

A graphical representation of the system components can

be seen in Figure 2.1.



10

asvd

vivd i

d3asn
INIANLS

T'Z 3uno14

53714 [— ,MU/
1X31 > <

¢ L
IOVA¥ILNI
»l
SWeda
ZE04NI

W3LSAS ON11lvid3ddo

d3asn
AdOSTAY3dNS




1l

CHAPTER III

Description of Functions

The next step is to put flesh on the skeleton of
existing requirement specifications and constraints. This
chapter contains a description of the logical organization
of various program segments. The tasks involved here are
either the database itself, or command stream programs
within the INFO032 file directory which can act upon the
currently selected student record.

The latter type of program includes GPAl, CHECK, CHECK2,
and CLASSES. The more detailed functional specifications on

these tasks will appear in the Appendix.

3.1 User Operations

There are four primary operations that a user, with the
interface’s help, can make on the database COURSE. A new
student can enter the suggested personal information into
his own record. Secondly, a continuing student can make
updates on selected database items, by either changing the
original entries, or entering information ¢that is new, as
would be the case after a completed semester.

At any point in the interactive session, the user can

choose to view his database record in its entirety.



12

Finally, the wuser c¢an request operations that gquery his
record for curriculum checks and grade point average. These

user operations suggest the following definitions for the

database.

3.2 The Database

The database’s chief feature is the reproduction and
automation of a graduate student”s Departmental file. To
this end, many of the data items are fairly straight
forward, such as first, last, and middle names; and street,
city, state, and zip code for composing addresses. Although
ZIP is not yet used for any calculations, it was thought
that an integer and not a character representation would be
advisable. We don”t want to confuse the Postal Service with
any “ABCDE’ zip codes.

The database now consists of 82 separate data items or
data fields, which amount to a total of 373 bytes. As can
be seen from Figure 3.1, more than two thirds (or 56) of
these data fields consist of the record keeping apparatus
for storing 14 different courses, grades, credit hours, and
semester of enrollment.

The association of each CLASS-xx, GRADE-xx, HOURS=xx,
and ENROL-xx is made by the last two character places on
these data item names. For example, CLASS-09 is associated

with GRADE=09, and with HOURS-09, and so on. The choice of



13

14 different courses was an arbitrary decision based on the
fact that most graduate classes are three credit hour
courses. Since most graduate candidates do not greatly
exceed the 30 credit hour requirement , 14 classes should be
sufficient for this amount of course work.

Approximately 45% of the database storage requirements
are needed because INFO32 does not have any dynamic allo-
cation feature, and so these 56 static fields must always be
in place. An array implementation with looping would have
definitely shortened the command stream programs, which for
the most part, manipulate these fields of classroom
achievement.

To complete the discussion of the 14 repetitive class
instances, data items CLASS~0l through CLASS=14 were chosen
to be of type integer, with a range of 1 to 999999, The
reason for integer typing for this item was that logical
comparisons like ‘greater than’ or “equal to”’ were needed in

determining if degree course requirements had been met.



Database Definition of COURSE

ITEM=~NAME

LAST

FIRST

MIDDLE

SSN

STREET

CITY

STATE

ZIP

TELEPHONE
WHERE=-ENROLLED
FULL-TIME
START-OF~PROGRAM
MASTERS~EXAM
DATE-MS=EXAM
ORALS=PASSED
DATE-OF=ORALS
DEGREE=SOUGHT
SUPPORT-CLASS
SUPPORT=START
SUPPORT=SOURCE
SUPPORT=TENTH
ADVISOR
MAJOR=-PROF
GPA
TOTAL-HOURS
TOTAL-CREDITS
CLASS=01
GRADE-01
HOURS=-01
ENROL=-01
CLASS-14
GRADE-14
HOURS=-14
ENROL-14

TYPE

Character
Character
Character
Character
Character
Character
Character
Integer
Character
Character
Character
Date
Character
Date
Character
Date
Character
Character
Date
Character
Integer
Character
Character
Numeric
Integer
Integer
Integer
Character
Integer
Character

Integer
Character
Integer
Character

LENGTH

N e
o oo wun

N -
W

TN YRT
N o

[0, B -]

-

B et oy ) DO = Lo g N ) QO e QO et OO

o -

Figure 3.1

14

POSITION

16
26
36
45
65
80
B2
87
99
111
112
120
121
129
130
138
141
146
154
loe4
167
182
197
201
203
206
212
213
214

362
368
369
370

to

to
to

to
to

to
to
to
to
to
to
to
to
to
to

to
to

to
to

to
to

to
to

to
to

to
to

to
to

to

to
to
to
to

15
25

44
64

79

86

98
110
111
119
120
128
129

137
140

145
153

163
166

181
196

200
202

205
211

212
213

217

367
368
369
373



15

Six integer digits were wused, as a course like C. S.
720 must be designated as its full course number-- 286720--
because 720 is not a unique identifier. Any other depart-
ment might have a 720 course number, so consequently all six
digits are present.

Items GRADE~0l1 to GRADE~1l4 were set to be ocne byte
character variables, 8o that the wusual alphabetic marks
could be recorded. This GRADE-xx series is not without its
problems, as any other letter can inadvertantly be entered.
In the cases of °“I° for incomplete, or "W’ for withdraw,
this incorrect data entry seems at least plausible.

Since the DBMS and interface do not check for this type

of error in data validity, the command stream programs

rd rd

generally treat courses with grades of anything but “A°,

- -

B°, “C°, or “D° as courses that have yet to be completed.
Maybe by being informed that a course he is sure he has
completed has not been taken, a student will be moved to
recheck the grade entry for this course.

HOURS=01 to HOURS~14 are all one digit integer variables

that contain the credit hours for that particular course.

It would have been a small matter to check these values for
accuracy, as most classes are worth three credit hours. But
since there is a curriculum change being considered whereby
emphas is courses like C. S. 700 are expanded to four credit
hours, this testing was not done.

ENROL-01 through ENROL-14 jdentify the semester in which

a class was taken. A four character shorthand code is the



16
suggested valid entry, as Fall 1978 becomes °‘FA78°.
Similarly, “SP” for Spring and “SU° for Summer are the other
acceptable combinations for the first two data places. The
last two places are just the last two digits for that year.
No verification is done with this field, as entries like
“"W1° for Winter, or several Intersession terms that defy
classification are certainly possible for the database
user.,

The perscnal information like name and address is not
too controversial. Telephone, the items that comprise the
address, and last name are updatable, as people move, and in
a sometimes related action, change their last name.

Having the SSN, or social security number, as a length
nine character string item in this database could be the
source for data being compromised, and could even cause
legal headaches. The initial design of this database used
the SSN as the key by which a wuser would identify his
existing record. The fallacy in using SSN as the key to
selecting this database record is that (especially at a
school like Kansas State where social security numbers are
also student identification numbers) a social security
number can often become public knowledge.

An unscrupulous person could then jeopardize a database
record containing the SSN that he had somehow obtained. The
response to this serious problem was to have the interface
generate and display a five character hash key based on an

individual ‘s social security number upon record creation.



17

All subsequent referals to this record would only be allowed
by the entering of this hash key at the beginning of the
conversation. There is great room for improvement in the
area of protecting this data.

The WHERE<-ENROLLED variable was included so that
Manhattan, Leavenworth, Wichita, or Kansas City students
could be differientiated. Full time status is a simple one
character ‘Y’ or “N° entry, with presumably more Department
attention being given to full time students.

In the case of FULL-TIME, as well as the other one
character items MASTERS-EXAM and ORALS~PASSED, the “Y’ or
“N° type checking is done at data entry by the interface.
An “N° response to these last two items will cause the
interface to branch around DATE-MS—~EXAM and DATE-OF-ORALS,
respectively. To wit: if one hasn't passed the crals exam,
there isn“t much point in asking when that exam tocok place.

INFO32 does make provisions for date types. All dates
are checked for wvalidity by this system, with the format
being MM/DD/YY, or 6/27/79, This will be the only practical
type checking for dates because of the problem encountered
when this prototype reaches the twenty—-first century. The
answer would be to wutilize INFO32°s 10 character date
types. As for now, the saving of two bytes on each date is
justification enough for this definition.

The DATE-MS=EXAM and the START-OF-PROGRAM dates can be
used for gauging the degree progress of a student whose

graduate Computer Science career has been done exclusively



18

at Kansas State. A transfer student could distort the
credibility of these two items by entering accurate dates of
his accomplishments at other schools.

The DEGREE=SOUGHT item could be helpful in segregating
Master’s students, and PhD hopefuls, The advisor and
MAJOR-PROF categories could possibly be redundant. But in
the case of a student having a different advisor and major
professor, this difference will be noted.

The SUPPORT- serjes of data items are primarily intended
for use by the Department head. The SUPPORT=SOURCE,
SUPPORT= CLASS, and SUPPORT-TENTH items can be used for
bookkeeping, accounting summaries per source of funding, or
even performance evaluation of SUPPORT-CLASS types like
“G.T.A” or “G.R.A".

Finally, no type checking is done on TOTAL-HOURS, GPA,
or TOTAL-CREDITS, other than the usual integer versus
character checking INFO32 always does.

The GPAl program will figure a new value for TOTAL-
HOURS, TOTAL-CREDITS, and GPA, and return the new value to
the student’s tuple. A final note on GPA and real numbers:
INFO32 must count the decimal point as a digit place. 1In
order to get the familar grade point form of x.xx, GPA had
to be defined as a number of length 4, with two decimal
digits.

In summation, the COURSE database 1is a static entity
containing 82 different data items. It contains no links,

as would be the case in a network model, and consists of one



19

schema and one subschema, This database is one big
collection of these different data items and relationships.
An individual’s record represents the academic and personal
facts of one student, keyed upon by social security number,
and protected by the hash key password.

This design decision of making one database with many
records was necessary because INFO32 doesn’t provide for
making duplicate database copies off of a model database
definition for every different user. INFO0O32 does not allow
any concurrent operations, so the database can now be

accessed by only one user at a time,

3.3 Program GPAl

Program GPAl is a command stream program embedded in the
INFO32 DBMS. It is a sequential program using IF statements
in processing the selected database record for grade point
average, total grade credits, and total credit hours.
Additionally, the credit hours of grades “C° and “D°, and
the relationship of total credits of that user to the 30
graduate credit hour requirement will be computed. It is
the job of the interface to select just that record of the
database that is relevant to the current user of GPAl’'s
functions.

The GPAl section will only keep a running total of total
credit hours and total grade credits for these courses at

least at the 600 level in Computer Science. The C. S. 891



20

intensive course for non—major graduate students is the lone
exception to this rule.

These two running totals will only be made on a course

-, L

Cc , 'D‘, or P

whose GRADE~xx is explicitly an “A°, “B", F°.
In the last case, hours of “F° must be added to total credit
hours temporarily for grade point calculations, but left out
of total credit hours when that variable is subtracted from

the magic number of 30. 1f F° credit hours were not
subtracted at this point, the user with any “F° marks would
get a distorted picture of how close to graduation he might
be.

Thus the GPA data is 1limited to completed graduate
courses in Computer Science at Kansas State. This differs
from the official admissions and record computation by only
graduate courses completed in other departments. This might
seem to be a trivial matter, since at most six credit hours
can be taken outside of the Computer Science curriculum.

I did not see any easy way in INFO32 to account for
these possible credits from other departments. INFO32 has
no character string functions with which acceptable graduate
courses could be excised for GPAl°s attention. So I choose
to eliminate from GPAl’s consideration any classes which did
not conform to the domain of Computer Science graduate
courses, because of the awkward nature of type integer for
CLASS=xx that would adversely affect performance, and
because of the absence of character string manipulation in

INFO32 that could have been helpful.



21

Also unrescolved is the problem of accepting for credit
courses completed at other institutions. The Kansas State
Graduate Office is, of course, the final arbitrar in these
matters, so perhaps database users of this type should be
instructed to write that office. As it stands now, there is
no allowance for accurately idinterpretting course numbers
from other schools that may gain entry in a student’s tuple,
although these transfer credits will not be included in
GPAl“s processing.

On the subject of lower grades, a successful Master’s
candidate must have at least three times the number of
credit hours of “A° or “B° hours, as he has in credit hours
of ‘C” or “D°. GPAl will make known this deficiency due to
too many “C° or °“D° hours. A warning message will be
displayed by GPAl in the event that a student’s grades are
lacking in this way.

Other display messages given by this program are the
grade point average itself, and how many credits remain for
graduation for that person. GPA, TOTAL-CREDITS, and
TOTAL-HOURS are all returned back in wupdated form to the
student’s record in COURSE. A more detailed presentation,
and a source code listing of each of these programs can be

found in the Appendix.

3.4 Program CHECK

The CHECK command stream program has responsibility in



22

testing a user’s list of classes for completion of the major
emphasis courses in Computer Science. The four emphasis
courses are C.S5. 640, Introduction to Software Engineering;
C.S. 700, Translator Design I; C.S. 720, Operating Systems
II; and C.S. 760 or C.S5. 761, Database Management Systems.

This program was divided with the other curriculum
checking program CHECKZ2, because with only IF statements at
my disposal, the program was getting rather long. To
provide some degree of modularization, and improve response
time, CHECK2 will test for completion of the graduate
seminar, as well as the upper level graduate class
requirements.

CHECK can take advantage of the fact that courses will
be entered by the interface beginning with CLASS=01l, and
will proceed in order to CLASS-14, This allows for a
nesting arrangement of IF statements which test for any
numerical value while walking through the sequence of
CLASS~xx items,

In other words, if three classes have been entered, the
IF test for CLASS=04 will fail, control will “drop out”, and
no other CLASS=-xx items will be evaluated. In very
unscientific testing, it was observed that this nesting
approach was found to cut response time for this program by
about half, as compared to evaluating all 14 CLASS-xx fields
whether they need to be tested or not.

After the CHECK process determines that a CLASS=xx item

is active, it next examines the GRADE-xx value in the same



23

level of association, and determines if a passing mark has
been recorded. No assumptions about completion of a class
are made about either classes currently enrolled in, or
incomplete classes,.

Once there is an active c¢lass with a passing grade, it
is then a matter of testing that class for each of the
required emphasis courses. If there is a match under these
circumstances, a counter is incremented in the appropriate
fashion for that course. The logical details of this
operation are spelled out in the Appendix.

After evaluating as many classes as are active, CHECK
will output a message to the student describing exactly what
emphasis classes he has completed, and what emphasis classes

remain to be finished.

3.5 Program CHECK2

Program CHECKZ2 is similar in form to CHECK. A nesting
strategy is again employed that only tests those CLASS~-xx
items that contain values. A passing grade in an active
course is also demanded before any further tests are made.
The courses of interest to this program are the graduate
seminar, C.S. 897, and a dozen or so courses that have C.S.
graduate courses as pre-requisites.

The courses in this latter group that do satisfy the
upper level requirement are C.S. 725, Computer Networks:

C.S5. 750, Advanced Computer Architecture Experiments; C.S.



24
765, Systems Analysis for Business; and C.S. 785, Numerical
Solution of Partial Differiential Equations. Any course
numbered between C.S. 800 and C.S., 960, with the exception
of Cc.S5. 891, Cc.S. 898, and C.S. 899, will also complete this
requirement.

CHECK2 will report to the user’s terminal whether he has
completed or not completed both of these requirements. A
nice feature that wasn’t included in the database, would be
to have additional one character fields in COURSE for
seminar-passed and upper~level-passed. The CHECK program
could then have returned a “Y or °‘N° value back to the
student’s record. This feature could help faculty members

in making quick graduation checks.

3.6 Program CLASSES

CLASSES is a program uzed exclusively by the interface.
Its job is to determine how many CLASS~xx items are being
used by the currently selected record. This information is
returned to the calling interface, which then knows what was
the last CLASS-xx field in which an entry was made. The
interface can then entertain any user requests for wupdating
additional courses, and enter these additional updates in

the proper sequential order.



25

3.7 Text Files

Temporary files were c¢reated under the general EDIT
facilities of the 8/32 gsystem on the same user disk as the
COURSE database and the interface. The temporary files were
then transferred with the SCRIPT option to permanent text
files. The text files had the limitation of having line
lengths of 60 characters, with 20 lines per file. The
purpose of this was to make many sSmall text files, each of
which would fill one display terminal when called for.

Text files include a description of and pre-requisites
needed for each graduate course in Computer Science,
Departmental admission requirements, Master’'s degree
requirements in Computer Science, provisional under-
graduate courses that one should be exposed to before
beginning a Master’s program, classes offered for the
present and following semester, and short sketches showing
the research interests of the Computer Science faculty.

The text files provide the user with helpful infor-
mation for getting acquainted with what the Master’s program
has to offer, getting enrolled at Kansas State, or learning
all the milestones that graduation demands. Certainly a
more imaginative paging system, in conjunction with the
interface, would provide the student user with more

beneficial information in an easier to use format.



26

Chapter IV

The Interface

The interface is a Fortran program that monitors the
messages and sits between the user, and the COURSE data-
base, the INF0O32 command stream programs, and the text
files. This interface was developed by Master, and for
details see Reference[6]). My purpose in discussing her work
is to show how the interface came into being, what the
interface gives to the system in terms of data inde-
pendence, and a brief description of what the interface is.

In preliminary discussions of requirements for this
system, one of the foremost requirements was that there
would be two entirely different modes of operation. The
user mode is composed of various individuals who would
choose to exercise some or all of the options available to
them. A user would only have access to his own record in
the database.

Counterpoised to the various students whose choice of
options and frequency of use is random, is the supervisory
mode. The frequency of use for this mode may have a random
quality to it, as professors would be allowed to browse
through any records. Additionally, the Department head
would be in charge of purging out=-of-date student files,
entering financial support data for graduate student

employees, and making any modifications or changes to this



27

system,

The primary difference between these two modes is the
extent of knowledge about the database layout. One user can
see only a small portion, while the supervisor has access to
all of the database and its supporting programs. This
interface helps the DBMS in insulating the user’s view from
the physical representation of data.

The advantages in providing this data independence is
that the database administrator has more flexibility in
rearranging the database. The wuser is now unaware of the
physical organization and logical relationships within the
data. This is justifiable on the grounds that the
organizational relationships would be of no proper use to
him,

The interface also furnishes security, an issue not
unlike that of data independence. Early on it became
apparent that INFO32 could not duplicate a database
definition, so that each new user c¢ould not be given their
own small database. Given that there would be just one
large database with many records, security for COURSE had to
be improved. [7]

The social security number is gtill the wunique
identifier for each record. As explained earlier, a hash
key password is generated by the interface upon creation of
a database record, and displayed only once to the person.
This student must repeat this hash key in every access

operation that follows. This method is similar to



28
protection offered accounts in electronic fund transactions
at some banks. [1]

At the macro level, the INFO32 system allows for a four
character password that can be placed on data items within a
database. The entirety of COURSE is protected by a password
at the zero control level, with all data items being hidden
at this level. Perhaps this is adequate data security for a
prototype course of study database.

Master’s interface [6] supplies added data inde-
pendence and security. Its primary mode of operation is the
interception of commands from the user’s console, the
interpretation of this c¢ommand, and the submission of a
message to the INFO3< UBMS based on this command. Any error
messages like “invalid data’ originating in INFO32 would be
passed directly to the user’s terminal. Because of the
interpretting functions, this interface could be thought of
as a small, but specialized compiler.

A normal interaction would start by the student being
signed on to the account number containing this system on
the Interdata mini. The user would then be confronted with
a display at his terminal which would list the options open
to him. The interface would prompt for an answer to these
choices, and would next execute the option of the student’s
reply. This approach to monitoring interactions and
providing options is known as menu selection.

The student can usually complete the phase he is in by

responding with a “STOP”°., This will return control to the



29

original menu, with a new choice of options now possible
being presented.

The interface shields the user not only from how the
database and text files were organized, but also from any of
the conversational instructions in the INF0O32 repertoire.
In this manner, the interface fulfills the original purposes
of this project. The student can only use database and the
the informational files, while the supervisor has control
over how this system is physically and 1logically put

together.



30

Chapter V

Summary

= | Analysis

My overall impression of this project is a favorable
one, I was exposed to all elements of a database, INFO32,
Because of the necessity for the interface, many of the
English language commands that make INFO32 attractive to
novice users in a business environment were not fully
utilized. There was also an 8/32 system problem that
prevented the use of the report generation feature.

My complaints concerning INF032 centered around its
inflexibility. The static allocation of data items 1limited
much of the database design. The impact of static
allocation was felt in the programming of the command stream
programs. These programs had no looping action, or
subroutine calls available to them,

The burden of programming these programs fell on IF
statements. This was tedious work, and in terms of
measuring program complexity, nested IF statements rank as a
big contributor. 1 didn“t 1like the editing features of
INFO32 when changing parts of the command stream programs.

The logical operator CN, meaning contains, would have
been useful in several set operations. From my experience,

the CN operator could only be used with one constant, thus



31

reducing this operator to that of equality.

My last complaint involving INF032 concerned the DEFINE
command, which creats a new database., Everything is fine as
long as you do not miss a keystroke. Instead of correcting
the mistake, one must define the database anew,

This project provided me with good experience in work=
ing in all phases of an operation. 1 was exposed to elicit-
ing requirements, designing and implementing these require-
ments, interacting and working with another team member, and
of course, documenting all stages of this process,

This prototype database c¢could undoubtedly be expanded.
Future directions that might prove to be fruitful are the
development of a monitor that would allow concurrent users
of this database, the development a Bachelor’s degree course
of study, and the addition of the Computer Science Master’s
applicant”’s files as a subschema to COURSE.

As noted earlier, the text files could be expanded so
that they supply new or more comprehensive information.
Improvement of this prototype could also be done in the
areas of data security, type checking, report generation,
and the resolving of the course numbers for transfer credits

from other schools.

5.2 Concluding Remarks

The purpose of this report has been to describe the

process by which a database is developed. This process



32
started as an idea of extending upon previous attempts at
automating or producing “paperless’ student file records at
Kansas State. Chapter One amounted to citing these recent
prototype systems, and expressing the present need for
enhancing these attempts.

Chapter Two was a listing of exactly what the sSystem was
going to accomplish given the original idea. The
specification requirements for this prototype were then
explicitly stated.

Chapters Three and Four explained how these specifi-
cation requirements were going to be actualized. The
rationale behind the definition of the most important items
in the database was presented, as were descriptions of what
tasks the various command stream programs in INFO32 were to
perform.

Chapter Four showed the perspective of the backend
interface between the student user and the database. The
interface’s responsibilities and functions were also
explained at this time.

This report was an effort to describe the design and
implementation of a database as it was shaped from the first
estimates to its final form. As such, it is hoped that this
documentation will provide the starting point for future

improvements to this pro ject.



33

BIBLIOGRAPHY

Bender, Mark G., EFTS Electric Funds Transfer Systems,
Kennikat Press: New York, 1975,

Data Manipulation Language Programmer’s Reference
Guide, Release 3.1, Cullinane Corporation, Boston,

Mass., April 1975,

INFO32 User s Manual
Henco, Inc., Wellesley, Mass., 1977,

Long, Harvey A., Implementation of a Prototvpe Data Base

for Advising Computer Science Students,
a Master’s Report, Department of Computer Science,

Kansas State University, Manhattan, Kansas.

Maryanski, Fred, Northsworthy, K. A., and Northsworth,
K. E., System Architecture For Distributed

Dgtgbgsgs ’
Technical Report TR CS 78-15, Computer

Science Department, Kansas State University,
Manhattan, Kansas, 1978,

Master, Hilla, Master’s Report,
Department of Computer Science, Kansas University,
Lawrence, Kansas. (in preparation)

Tsichritzis, D, C., and Lochovsky, F. H.,

Data Base Management Systems,
Academic Press: New York, 1977,

Voelz, James H., and Garland, Robert L,,
Prototype of a Database Management System For
Academic records Utilizing the Integrated Database
Management System, a Master s Report, Department
of Computer Science, Kansas State University,
Manhattan, Kansas, 1975,



APPENDIX A

USER’S GUIDE

34



35

To use the Master’s degree database prototype, one needs
to be signed on to the account number which contains this
system, which for the moment is account number 13. Then in
response to a prompt, the user inputs “INFO", and the
backend interface will then assume control.

For interactive users who do not wish to travel to
Fairchild Hall on the K-State campus, this system can be
called up by dialing 913-537-8456,

The input command steps to gain access to the database

can be seen in the following example.

*SIGNON USERNAME, 13, PASSWORD

*INFO

Username and password are supplied by the user



APPENDIX B

SUPERVISORY MANUAL

36



37

Using the COURSE Database
The supervisor first needs to make an “end run” around
the interface’s control over the database and INFO32
programs. To do this, the supervisor needs to sign on to
this account in the normal manner. The next prompt requires

an input for the system 2 disk, followed by the entry of

L4 L4

INFO .

You must then break out of what would normally be an
“INFO32° entry, and pause that task. You then want to get
on the user 6 disk and continue your task. You now need to
type “INFTST " (which is Master’s renaming of INFO032) in
response to the “greater than” or “>° prompt.

For this interchange listing, look at Figure B.l on the

following page.



Procedure for Gaining Access to COURSE

*V s¥s2
*INFO
= INFO32/R01
=~ENTER USER NAME>=> hit break key
*PA
*TASK PAUSED
*V USR6
*COo

>INFTST

Figure B.1l

38



39

You will now be able to make wuse of any of the regular

INFO32 jinstructions. You will also be able to access any of

the database records, provided that you know the current
password that protects COURSE.

To end the session, you need to type in “QUIT" when vyou

see an “ENTER COMMAND>-=>" prompting. This will take you

L4

back to the “ENTER USER NAME>-> level, which is a
comparable level to the “INFTST  entry. Now type in 'STOP”,
and you can sign off.

For example==-

ENTER COMMAND>-=>QUIT
ENTER USERNAME>-=>STOP

* SIGNOFF



40

Password Changing

Passwords on an INFO32 database can be any combination
of letters or characters up to four characters in length.
Protection Keys give security at the zero or control level,
as well as levels one, two, and three. COURSE now has a
password on it at the control level, which has precedence
over the other three levels,

To change this or any other password, you must first
select the database, supply the current password, and use
the PROTECT command followed by the new password(s). The
passwords should be inputted in order, with the first being
the 0 level, the second password protecting items at level
1, etc. Since all items in COURSE are hidden at the control

level, all other levels of passwords seem superfluous.

ENTER COMMAND>=3>SEL COURSE
ENTER PASSWORD>=>WWWW
6 RECORD(S). SELECTED

ENTER COMMAND>=>PROTECT YYYY



41

Purging Old Records

There should be a time when some records in COURSE
become obsolete. Students could transfer, drop out, or
graduate., To remove a record from a database, you must
first select or reselect until you are dealing with just
that obsolete file. When you are sure that this is the
correct student record, you need to enter “PURGE" 1in
response to the enter command suggestion.

INFO32 will reply with—--

THIS COMMAND WILL DELETE ALL SELECTED RECORDS,

DO YOU WISH TO CONTINUE (Y OR N) 2>

A “Y" keystroke will take care of the rest.



Query Examples in INFO032

To set up COURSE as the current database,

general format to work with:

SELECT database-name [FUR logical expression]

which could translate to this—=-

SEL COURSE

And the next prompt will demand that
correct password that covers this database.
To choose student Smith’s record, you

COURSE, enter the password, and then enter

RESELECT FOR LAST EQ SMITH

This is equivalent to saying

you have

42

this

you input the

could

select



43

SEL COURSE FOR LAST EQ SMITH

At this point, INF032 will come back with how many
records have been selected. There might be several Smith’s,

so the answer from INFO0O32 could be

4 RECORD(sS) SELECTED

You should then do a reselect for “FIRST EQ JIM®, and
that should get the record you want. To browse through Jim
Smith’s file, just type in LIST, and all 82 items will be
displayed.

You could select by SSN, since it is the unique key to
this database. The 1logical expression would be something
like select for “SSN EQ 515151515°, Other logical operators
are NE, LE, GT, CN ({contains) and NC (not containing).
These last two operators were a disappointment, as they
seemed to only work with one operand on each side of the
operator, thus reducing its effectiveness.

To get all the students whose grade point averages are

below 3.0, and who are employed as GTA's, you would input

SEL COURSE FOR GPA LT 3

RESEL FOR SUPPORT-CLASS EQ G.T.A



APPENDIX C

FUNCTIONAL SPECIFICATIONS

44



45

The Database COURSE

To change any of the database definitions for any of the
items in COURSE, you must first erase COURSE by selecting
it, and providing the proper password. This is a serious
matter, as it involves wiping out all records contained in
the database. This inflexibility in INFO032°s database
definition features suggests that only non~trivial changes
should be considered for COURSE, unless you could save these

records and reconstruct them in the new COURSE.

ENTER COMMAND>-> SEL COURSE
ENTER PASSWORD>=> password

ENTER COMMAND>=> ERASE COURSE

This will completely take out COURSE from the user disk.
You can also do a DELETE instruction using COURSE’S internal
name, but COURSE will remain on the wuser’s INFO32
directory.

Now that you have destroyed the database, you should now
use the DEFINE command to create COURSE with the changes you
want, You have to supply the name, size, type, and number
of decimal places if any, to every item name.

Protection can either be done at program creation by

entering the control level password immediately after the



46

database name:

DEFINE COURSE WWWW

You can get the same effect by using the PROTECT command,

after selecting COURSE.

PROTECT WWWW

All 82 data items were hidden at the 0 control level in
the tedious process of using the HIDE command. You have to

input

ENTER COMMAND>=> HIDE jitemname

and then input a 0 after the prompt for

PROTECTION LEVEL>-=> 0



47

INFO32 Command Stream Programs

Command stream programs in INFO32 are seguential
programs which are composed of three parts. These parts are
like a pre=processor~- Section One, a processor=—~ Section
Two, and a pos t-processor~— Section Three.

The interface will select the database record of the
terminal user for use by the c¢command stream program, and
could be thought of as playing the role of Section ONe. 1
used Section Two exclusively for these programs, as this was
the only section of the three that allowed IF statements.

Program Section Two will contain all initializations
necessary, the program steps comprised T mainly of IF
statements that carry out the functions mentioned in Chapter
I1I, and displays the calculations back to the user. So
really, no post=processor is needed for our purposes.

To execute a command stream program, you need to select
all or part of a database’s records. The “enter command’
prompt should be answered by a “RUN program name’ reply.

To alter any of these programs, you need to again select

a database. Next type in

PROGRAM program=name



in response to the request

48

for a command prompt. If the

program does not exist, you can enter whatever program lines

you want for all three

creating new programs,

sections.

This is the method of

In modifying an existing program, INFO32 will display
the entire program line by 1line, and then give the user a
prompt of “>° . The user has the choice of deleting lines
by typing in the 1line number with a return key strike; or
modifying existing lines by entering the line number with
the changes, plus return; or inserting new lines by
proceeding the new lines with unique line numbers that fall
at the numerical point in the program where they are
needed.

This editing must be done

from low line number forward

in the program, as there is no provision for backing up the
text from where you have editted; except by entering
‘PROGRAM~program name’, watching the program being

displayed,

and starting your editing anew.



49

Program GPAl
Program GPAl will calculate total grade credits, total

credit hours, grade point average, and the total number of

- rd

C’ and ‘D’ credit hours. IF-ENDIF groupings allow GPAl to
check the CLASS~Xx item to see if its in the range of 286600
to 286999-= the Computer Science graduate courses. If this
course is not 286891, the GRADE-xx item will be examined,
and $NUMl set accordingly.

INFO32 lets the programmer use temporary floating point
variables that run by name from S$NUMl to $SNUM20. I used
$NUM1l as the variable which helped translate letter grades
into comparable grade credits. Thus, for an A", $NUMl was
assigned a 4, a “B° would make it a 3, and so on.

$NUMl was reset to a value of 0 after each CLASS—xx, by
saying “CALC $NUMl = 07, This was done sa that a 0 value
would not have to be assigned to $NUMl for each “F°, and
because I wanted the TOTAL-CREDITS and TOTAL-HOURS
incremented only upon a new value that represented a new
class with possibly a new grade,

In other words, $NUMl is set to 0 after each class, and
the class must be a Computer Science graduate course with a
grade that will change this variable to a value that is
greater than zero. In this way, total credits and hours are
only increased under these circumstances.

TOTAL-HOURS will be increased by any HOURS=xx which has
a GRADE-xx of “F°. $NUM3 also keeps a running total of the

F° hours in order that they can be subtracted from



50

TOTAL~HOURS after the GPA has been figured. $NUM2 keeps a

running total on the number of “C”° and “D° credit hours, so
that possible problems in this area can be discovered.

$NUM7 is the variable for total credit hours without the

‘C” and ‘D° hours. $NUM8 stores a value which is 3 times

L4

the ‘C” and “D° hour figure, and is compared to $NUM7 for
the C-D deficiency. $NUM1LO0 is a temporary field used in
subtracting TOTAL-HOURS from the 30 needed for graduation.

The nesting of IF statements in INFO32 can reach up to a
level of 25, and in these programs, a level of 14 is
attained. The “IF CLASS-xx GT 0° statement is used as the
basic weapon for nesting. The premise is that all classes
will be entered in sequential order from 1 to 14, so those
classes with no entries will have a value of 0, As
explained earlijer, if you do not have any class entries
after CLASS=04, you needn’t check any other classes
whatsoever.

This program wound up with 14 ENDIF’S at the last of
Section Two, as they closed up the IF"S checking on CLASS—xx
entries. I think you will get the idea of GPAl by Figure
C.l, which lists the initializations, the CLASS-01 segment,
and the displays made at the end. Notice that the zero

divide is not a possibility in calculating the grade point

average.



Source Code for Program GPAl

10000 PROGRAM SECTION ONE
20000 PROGRAM SECTION TWO
20010 CALC SNUMl = 0

20020 CALC SNUM2 = 0

20030 cALC SNuM3 = 0

20040 CALC TOTAL-HOURS = 0
20050 CALC TOTAL-CREDITS = 0
20060 IF CLASS-01 GT 0

20070 IF CLAsSs-01 GT 286600
20080 IF CLASS-01 LT 286999

20090 IF CLASS=0l1 NE 286891

20100 IF GRADE-01 EQ A

20110 CALC SNUM1 = 4

20120 ENDIF

20130 IF GRADE=-0l EQ B

20140 CALC S$SNUM1l = 3

20150 ENDIF

20160 IF GRADE-0l1 EQ C

20170 CALC $NUMLl = 2

20180 CALC $NUM2 = $NUM2 + HOURS=-01

20190 ENDIF

20200 IF GRADE-0l EQ D

26210 CALC SNUM1l = 1

20220 CALC $NUM2 = $NUM2 + HOURS-01

20230 ENDIF

20240 IF GRADE-0l1 EQ F

20250 CALC $NUM3 = $NUM3 + HOURS-01

20260 CALC TOTAL-HOURS = TOTAL-HOURS + HOURS-01

20270 ENDIF

20280 IF $NUMl GT O

20290 CALC TOTAL-HOURS = TOTAL-HOURS + HOURS-01

20300 CALC TOTAL-CREDITS = TOTAL-CREDITS + HOURS-0l1 *
S$NUMl

20310 ENDIF

20320 ENDIF

20330 ENDIF
20340 ENDIF

Figure C.1



52
And this approach continues through the other 13 classes.
After all the classes are checked, this program segment

will be at the end of the GPAl to print the information.

24530 IF TOTAL-HOURS GT 0

24540 CALC GPA = TOTAL-CREDITS / TOTAL-HOURS

24550 ENDIF

24560 DISPLAY YOUR GPA IS “,GPA

24570 CALC TOTAL-HOURS = TOTAL-HOURS - $NUM3

24580 CALC $NUM10 = 30 - TOTAL-HOURS

24590 IF $NUM1O GT O

24600 DISPLAY “YOU HAVE °,$NUM1l0, GRADUATE HOURS LEFT’
24610 ENDIF

24620 DISPLAY °“YOU HAVE COMPLETED °,TOTAL-HOURS,  HOURS OF~
24630 DISPLAY “C.S. GRADUATE WORK’

24640 CALC S$NUM7 = TOTAL-HOURS = S$NUM2

24650 CALC $NUM8 = SNUM2 * 3

24660 IF $NUM8 GT SNUM7

24670 DISPLAY “TOO MANY LOW GRADES”

24680 DISPLAY ‘FOR EVERY HOUR OF C OR D YOU HAVE’
24690 DISPLAY “YOU MUST HAVE 3 TIMES THAT AMOUNT’
24700 DISPLAY “IN A OR B HOURS TO GRADUATE!”

24710 ENDIF

30000 PROGRAM SECTION THREE

-

Figure C.l (continued)



53

Program CHECK

CHECK will examine a student’s 1list of classes for
completion of the major emphasis courses. The nesting
arrangement is similar to that of GPAl, as the first
CLASS=xx with a value of 0 breaks the chain. CHECK does not
worry about whether a class 1is a Computer Science graduate
class, per se, This eliminates the three IF tests that
control for the range of these courses in each CLASS—-xx in
GPAl,

CHECK does look at whether the class had a legitimate
grade, and if this was so, $NUM3 is assigned a value of 1.
(SNUM3 is again reset to 0 following each CLASS=-xx). Next,
explicit IF statements check the current CLASS-xx for
equality with 286640, 286700, 286720, and 286760 or 286761,

The latter two classes will cause $NUML to be increased
by 1000, The 286640 class means that one will be added to
$NUM1l, 286700 will add 10 to $NUM1l, and a class of 286720
adds 100 to this wvariable.

There will be 16 combinations of $NUM1l depending upon
what mix of classes a student has completed. After all the
classes have been evaluated, there are 16 IF groupings which
test for, and then display the appropriate message in
regards to the major course emphasis requirement. These
combinations are not unlike that of binary 0 to 15, as $NUMIL

is compared to a value like 1110, Figure C.2 follows.



10000
20000
20010
20020
20030
20040
20050
20060
20070
20080
20090
20100
20110
20120
20130
20140
20150
20160
20170
20180
20190
20200
20210
20220
20230
20240
20250
20260
20270
20280
20290
20300
20310
20320

Source Code for Program CHECK

PROGRAM SECTION ONE
PROGRAM SECTION TWO
CALC S$NUML = 0
CALC SNUM3 = 0
IF CLASS-01 GT 286600
IF GRADE-01 EQ A
CALC S$NUM3 = 1
ENDIF
IF GRADE-0l1 EQ B
CALC SNUM3 = 1
ENDIF
IF GRADE-01l EQ C
CALC SNUM3 =1
ENDIF
ENDIF
IF GRADE-01 EQ D
CALC $NUM3 =1
ENDIF
IF $NUM3 EQ 1
IF CLASS=-01 EQ 286640
CALC SNUM1 = $NUMLI + 1
ENDIF
IF CLASS=01 EQ 286700
CALC $NUML = SNUM1 + 10
ENDIF
IF CLASS=-01 EQ 286720
CALC $NUM1 = SNUM1 + 100
ENDIF
IF CLASS-01 GT 286759
IF CLASS=-01 LT 286762
CALC $NUML = §$NUM1l + 1000
ENDIF
ENDIF
ENDIF

Figure C.2

54



55

There will be 16 tests made on the wvariable $NUML,

The displays tell the user what major emphasis classes

he has taken,

24360
24370
24380
24390
24400
24410
24420
24430

IF $NUM1
DISPLAY
DISPLAy
DISPLAY
DISPLAY
DISPLAY
DISPLAY

ENDIF

and which ones remain.

EQ 0

“YOU HAVE NOT COMPLETED ANY OF THE FOUR’
“REQUIRED CLASSES’
“YOU NEED: C.S. 640 INTRO TO SOFTWARE ENGI.’

L4

-

C.S. 700 TRANS. DESIGN I°
C.S. 720 OPER. SYSTEMS II1~
Cc.S. 761 D,B. MAN. SYSTEMS’

There will be 15 other displays similar to this one.

Figure C.2 {continued)



56

Program CHECK2

Program CHECK2 wuses the nesting based on CLASS=-xx
entries in looking for completion of the upper level class
requirement and the graduate seminar. $NUMl is reset to 0

after every nesting level, as it is the variable that will

- , ,

be changed to 1 if a GRADE-xx is “A°, “B°, ‘¢, or D",

A grade such as this allows admittance to a series of IF
statements which will change §$NUM2 ¢to 1 in the event that
the class is either 286725, 286750, 286765, or 286785,

Any class between C.S. 800 and C.S. 960 will cause $NUM4
to be bumped by 1, but any <c¢lass that is also between C.S.
891 and C.S. 899 is an exception to this general rule, and
will not meet this requirement. This latter condition will
cause $NUM3 to be increased by 1. Only if SNUM3 is less
than SNUM4 will the upper 1level requirement be met by this
route.

An instance of C.S. 897, the graduate seminar, will
cause SNUM5 to be increased to a value of 1. Displays are
made to the user based on the values these temporary
variables took on during this program. A SNUM2 value of 1
means that the upper level requirement has definitely been
completed, while a wvalue of 0 could still mean that the
requirement could have been met by the 800 or 900 level

classes. S$SNUM3 must be less than S$NUM4 for this requirement

to be met by those classes. A §$NUM5 value of 1 means that



the graduate seminar has been finished.

Figure C.3 gives a picture of CHECK2,

57



Source Code for Program CHECK2

10000 PROGRAM SECTION ONE
20000 PROGRAM SECTION TWO
20010 CALC S$NuUMl = 0

20020 CALC $NuUM2 = 0
20030 CALC $NUM3 = 0
20040 caLC SNUM4 = O
20050 CALC $NUM5 = 0

20060 IF cLAss=-0l GT 0

20070 IF GRADE~0l EQ A

20080 CALC SNUML = 1

20090 ENDIF

20100 IF GRADE-0l EQ B

20110 CALC $NUM1l = 1

20120 ENDIF

20130 1IF GRADE~01l EQ C

20140 CALC $NUML =1

20150 ENDIF

20160 IF GRADE~01 EQ D

20170 CALC $NUMLl =1

20180 ENDIF

20190 IF SNUML EQ 1

20200 IF CLASS-01 EQ 286725
20210 CALC $NUM2 = 1

20220 ENDIF

20230 IF CLASS=01 EQ 286750
20240 CALC $NUM2 =1

20250 ENDIF

20260 IF CLASS-01 EQ 286765
20270 CALC $NUM2 =1

20280 ENDIF

20290 IF CLASS-01 EQ 286785
20300 CALC S$NUMZ2 = 1

20310 ENDIF

20320 IF CLAsSs~-01 EQ 286897
20330 CALC SNUM5 = 1

20340 ENDIF

20350 IF CLASsS-01 GE 286800

20360 IF CLASS=0l1 LE 286960
20370 CALC $NUM4 = $NUM4 + 1
20380 ENDIF

20390 IF CLASS-01 GT 286890
20400 IF CLASS=01 LT 286900
20410 CALC $NUM3 = $NUM3 + 1
20420 ENDIF

20430 ENDIF

20440 ENDIF
20450 ENDIF
20460 ENDIF
Figure C.3

58



After evaluating all 14 classes if necessary, and

amounting to almost 600 lines of code, CHECKZ then

Figure C.3 (continued)

59

makes displays according to this segment:

25930 IF $NUM2 EQ 1

25940 DISPLAY “YOU HAVE COMPLETED THE UPPER LEVEL’

25950 DISPLAY “REQUIREMENT’

25960 ENDIF

25970 1IF $NUM2 EQ 0

25980 1IF S$NUM3 GE S$SNUM4

25990 DISPLAY “YOU HAVE YET TO COMPLETE THE’

26000 DISPLAY °“LEVEL CLASS REQUIREMENT’

26010 ENDIF

26020 ENDIF

26030 IF $NUMZ2 EQ O

26040 IF $NUM3 LT $NUM4

26050 DISPLAY “YOU HAVE COMPLETED THE UPPER LEVEL
REQUIREMENT"

26060 ENDIF

26070 ENDIF

26080 IF S$NUMS EQ 1

26090 DISPLAY °“YOU HAVE COMPLETED THE GRADUATE

SEMINAR”

26100 ENDIF

26110 IF S$SNUMS EQ 0

26120 DISPLAY “YOU HAVE YET TO COMPLETE THE GRADUATE

SEMINAR"

26130 ENDIF

30000 PROGRAM SECTION THREE



60

Establ ishing Text Files

The text files were first created by requesting system
space with the allocate command. Seven files were
established from TEXTO0l through TEXT07. An example of this

command is:

*AL TEXTOl,XXX,IN,80

Temporary files were needed to contain the textual
information with embedded SCRIPT commands. These SCRIPT
instructions allowed for the formatting of the words into
the size of a display screen-- approximately 20, 60
character length lines., This command creates the temporary

script files:

*PEDIT ,RUDEOL.txt

After the temporary files were complete, this file was

transferred to the permanent text file via the SCRIPT option



61

like this

*SCRIPT RUDELll, TEXTO03, XXX

To modify the existing TEXTxx series of files, you need

to do a PEDIT instruction on the temporary file=-

*PEDIT RUDEl2

And then make the changes that are warranted.
Next, script this modified file back to the permanent file

that RUDELl2 is associated with.

*SCRIPT RUDEL 2, TEXTO04.XXX

The current and next semester class offering files will
definitely need to be maintained. One suggestion is to
script the temporary file for the next semester over to the
permanent file of the current semester when a change is

needed.



62

*SCRIPT RUDELS5,TEXTO05.XXX

What you need to do next is to establish a script
temporary file with the new next semester class listings,
and script it to the TEXTO06 file. The EXTRACT option is
handy for browsing through these permanent files. Any new
files should be created in the described manner, and then
adjustments made in the interface [6] that will both offer
this choice to the wuser, and display the new text file on

demand.

Here is the directory of permanent and script files.



Directory for Text Files

FILE NAME DESCRIPTION SCRIPTED TO
RUDEO1 Course Numbers CS 640 to CS 662 TEXTO1
RUDE 02 Course Numbers CS 665 to CS 690 TEXTO1
RUDEO3 Course Numbers CS 700 to Cs 725 TEXTO1
RUDEO4 Course Numbers CS 730 to Cs 761 TEXTO1
RUDEOS5 Course Numbers CS 765 to CS 798 TEXTOL
RUDEO6 Course Numbers CS 800 to Cs 840 TEXTO1
RUDEO7 Course Numbers CS 870 to Cs 899 TEXTO1
RUDE 08 Course Numbers CS 900 to Cs 920 TEXTOL
RUDE?9 Course Numbers CS 926 to CS 960 TEXTO01
RUDE10 Department Admission Requirements TEXTO02
RUDELll Dept. MS Degree Requirements TEXTO03
RUDE1l2 BS Equivalent Experience needed TEXTO04
RUDEL3 Current Classes Offered TEXTO05
RUDEL4 KSU CS Faculty part 1 TEXTO7
RUDE1S Next Semester Classes Of fered TEXTO06
RUDElé6 KSU CS5 Faculty part 2 TEXTO07

Figure C.d



A MASTER"S DEGREE COURSE OF STUDY DATABASE

by

GECRGE RICHARD HUGHES

B.A., Kansas University, 1973

M.A., University of Regina, 1974

AN ABSTRACT OF A MASTER”S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1979



This report will describe the implementation of a
database wusing the conversational data language system
INFO32. This database will be comprised of up-to-date, but
unofficial, academic and personal facts about master’s
students in Computer Science.

This on=line implementation is designed to serve several
different purposes. The first purpose is in ©providing
information, as students can choose to view reports about
various aspects of the Computer Science Master s program at
Kansas State.

Secondly, this implementation will securely store
courses completed or enrolled in for individual students.
The credit hours and the grade received== if any== for each
course, and the semester when the course was taken can also
be entered. The student may on demand, request that this
grade point average be calculated, or have his list of
courses evaluated for degree requirement satisfaction.

The third purpose of this implementation is to duplicate
certain Departmental personal files. Faculty members can be
spared the tedium of shuffling through personal files when
checking on the praogress of a graduate student.

Thege three purposes imply two different modes of users.
The first mode of wuser will be the graduate student
interested in either entering personal data, or reviewing
aspects of the Master s program. The individual student has
responsibility for entering his personal data. This type of

user will be 1limited by an interface program, written by



Master, which monitors communication between the student
user, and just his own records contained in the INFO32
database.

The supervisory mode will be used by the Department
head, or his designate. Activities of this mode include the
perusal of all student records, the request for statistical
summaries of types of support for graduate students, and the
purging of old (graduated) student files.

In conclusion, this database will be used interactively

both in Manhattan, and from off campus locations. The
prototype will be a counselling and informational aid to

prospective Master's candidates.



