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Abstract

Under the guidance of Dr. Ivan Blank, I study the obstacle problem with an elliptic

operator in divergence form. First, I give all of the nontrivial details needed to prove a

mean value theorem, which was stated by Caffarelli in the Fermi lectures in 1998. In fact,

in 1963, Littman, Stampacchia, and Weinberger proved a mean value theorem for elliptic

operators in divergence form with bounded measurable coefficients. The formula stated by

Caffarelli is much simpler, but he did not include the proof. Second, I study the obstacle

problem with an elliptic operator in divergence form. I develop all of the basic theory of

existence, uniqueness, optimal regularity, and nondegeneracy of the solutions. These results

allow us to begin the study of the regularity of the free boundary in the case where the

coefficients are in the space of vanishing mean oscillation (VMO).
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Chapter 1

Introduction

1.1 Notations and Assumptions

We will use the following basic notation throughout our work:

χ
D

the characteristic function of the set D

D the closure of the set D

∂D the boundary of the set D

x (x1, x2, . . . , xn)

x′ (x1, x2, . . . , xn−1, 0)

Br(x) the open ball with radius r centered at the point x

Br Br(0)

Ω(w) {w > 0}

Λ(w) {w = 0}

FB(w) ∂Ω(w) ∩ ∂Λ(w)
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We define the divergence form elliptic operator: (We will use Einstein summation notation

throughout.)

L : = Dj a
ij(x)Di , (1.1)

or, in other words, for a function u ∈ W 1,2(Ω) and f ∈ L2(Ω) we say “Lu = f in Ω” if for

any φ ∈ W 1,2
0 (Ω) we have:

−
∫

Ω

aij(x)DiuDjφ =

∫
Ω

fφ . (1.2)

(Notice that with our sign conventions we can have L = ∆ but not L = −∆.). We assume

that at each x ∈ B1, the matrix A = (aij) is symmetric and strictly and uniformly elliptic,

i.e.

A ≡ AT and 0 < λI ≤ A ≤ ΛI , (1.3)

or, in coordinates:

aij ≡ aji and 0 < λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for all ξ ∈ IRn, ξ 6= 0 .

Throughout the entire paper, n, λ, and Λ will remain fixed, and so we will omit all depen-

dence on these constants in the statements of our theorems. We will typically work in the

Sobolev spaces and the Hölder spaces, and we will follow all of the definitions and conven-

tions found in the book by Gilbarg and Trudinger. (SeeGT.) To simplify exposition slightly,

for u, v ∈ W 1,2(D) we will say that u = v on ∂D if u− v ∈ W 1,2
0 (D).

1.2 Outline

Based on the ubiquitous nature of the mean value theorem in problems involving the Lapla-

cian, it is clear that an analogous formula for a general divergence form elliptic operator

would necessarily be very useful. InLSW, Littman, Stampacchia, and Weinberger stated a

mean value theorem for a general divergence form operator, L. If µ is a nonnegative measure
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on Ω and u is the solution to:

Lu = µ in Ω

0 on ∂Ω ,

(1.4)

and G(x, y) is the Green’s function for L on Ω then Equation 8.3 in their paper states that

u(y) is equal to

lim
a→∞

1

2a

∫
a≤G≤3a

u(x)aij(x)DxiG(x, y)DxjG(x, y) dx (1.5)

almost everywhere, and this limit is nondecreasing. The pointwise definition of u given by

this equation is necessarily lower semi-continuous. There are a few reasons why this formula

is not as nice as the basic mean value formulas for Laplace’s equation. First, it is a weighted

average and not a simple average. Second, it is not an average over a ball or something

which is even obviously homeomorphic to a ball. Third, it requires knowledge of derivatives

of the Green’s function.

A simpler formula was stated by Caffarelli inC5 andCR. That formula provides an in-

creasing family of sets, DR(x0), which are each comparable to BR and such that for a

supersolution to Lu = 0 the average:

1

|DR(x0)|

∫
DR(x0)

u(x) dx

is nondecreasing as R→ 0. On the other hand, Caffarelli did not provide any details about

showing the existence of an important test function used in the proof of this result, and

showing the existence of this function turns out to be nontrivial. The first part of my

dissertation grew out of an effort to prove rigorously all of the details of the mean value

theorem that Caffarelli asserted inC5 andCR.

In order to get the existence of the key test function, one must be able to solve the
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variational inequality or obstacle type problem:

Dia
ijDjVR =

1

Rn
χ{VR>0} − δx0 (1.6)

where δx0 denotes the Dirac mass at x0. InCR, the book by Kinderlehrer and Stampacchia is

cited (seeKS) for the mean value theorem. Although many of the techniques in that book are

used in the current work, an exact theorem to give the existence of a solution to Equation

(1.6) was not found inKS by myself, my advisor, or by Kinderlehrer. We were also unable

to find a suitable theorem in other standard sources for the obstacle problem. (SeeF andR.)

Indeed, we believe that without the nondegeneracy theorem stated in this paper there is a

gap in the proof.

To understand the difficulty inherent in proving a nondegeneracy theorem in the diver-

gence form case it helps to review the proof of nondegeneracy for the Laplacian and/or in

the nondivergence form case. (SeeB,BT, andC5.) In those cases good use is made of the

barrier function |x− x0|2. The relevant properties are that this function is nonnegative and

vanishing at x0, it grows quadratically, and most of all, for a nondivergence form elliptic

operator L, there exists a constant γ > 0 such that L(|x − x0|2) ≥ γ. On the other hand,

when L is a divergence form operator with only bounded measurable coefficients, it is clear

that L(|x− x0|2) does not make sense in general.

In section 2.1, we almost get the existence of a solution to a PDE formulation of the

obstacle problem. In section 2.2 we first show the basic quadratic regularity and nonde-

generacy result for our functions which are only “almost” solutions, and then we use these

results to show that our “almost” solutions are true solutions. In section 2.3 we get existence

and uniqueness of solutions of a variational formulation of the obstacle problem, and then

show that the two formulations are equivalent. In section 2.4 we show the existence of a

function which we then use in the sixth section to prove the mean value theorem stated inC5

andCR, and give some corollaries.

The results in this chapter 2 are used in chapter 3 where we establish some weak regular-
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ity results for the free boundary in the case where the coefficients are assumed to belong to

the space of vanishing mean oscillation. We will discuss the space VMO in chapter 3. The

methods rely on stability, flatness, and compactness arguments. In the case where the coef-

ficients are assumed to be Lipschitz continuous, recent work of Focardi, Gelli, and Spadaro

establishes stronger regularity results of the free boundary. The methods of that work have

a more “energetic” flavor: They generalize some important monotonicity formulas, and use

these formulas along with the epiperimetric inequality due to Weiss and a generalization of

Rellich and Něcas’ identity to prove their regularity results. (SeeFGS.)

In Chapter 3 we study minimizers of

∫
B1

aijDiuDju (1.7)

among u in the Hilbert space W 1,2
0 (B1) which are constrained to lie above a fixed obstacle

ϕ ∈ C0(B1). We assume that our obstacle ϕ < 0 on ∂B1, and to avoid triviality we will

assume that maxϕ > 0.

If we let Lv := Dia
ijDjv in the usual weak sense for a divergence form operator and we

consider the case where Lϕ ∈ L∞(B1), then by letting w := u−ϕ and by letting f := −Lϕ,

the study of the minimizers above leads us to look at weak solutions of the obstacle-type

problem:

Lw := Dia
ijDjw = χ{w>0}f in B1 , (1.8)

where χ
S

denotes the characteristic function of the set S, and where we look for w ≥ 0.

Our motivations for studying this type of problem are primarily theoretical. Indeed, the

obstacle problem is possibly the most fundamental and important free boundary problem,

and it originally motivated the study of variational inequalities. On the other hand, the

obstacle problem has well-established connections to the Stefan problem and the Hele-Shaw

problem. (SeeC1 andBKM for example.) Furthermore, as observed inMPS the mathematical

modeling of numerous physical and engineering phenomena can lead to elliptic problems
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with discontinuous coefficients, and so the current case seems to allow some of the weakest

possible solutions.

Our main result is the following:

1.2.1 Theorem (Free Boundary Regularity). We assume

1. w ≥ 0 satisfies Equation (1.8),

2. aij satisfies Equation (1.3),

3. 0 < λ∗ ≤ f ≤ Λ∗, and

4. aij and f belong to the space of vanishing mean oscillation (VMO).

We let Sr denote the set of regular points of the free boundary within Br, and assume

K ⊂⊂ S1/2. Then K is a relatively Reifenberg vanishing set.

The definition of Reifenberg vanishing is found at the beginning of section 3.4.

As a corollary of this result we will conclude that blowup limits at regular points will

be rotations and scalings of the function (x+
n )2. In terms of the fact that this function is

homogeneous of degree 2, it is quite usual to use Weiss’s celebrated monotonicity formula

to prove this type of result. (SeeW.) On the other hand, the weak nature of our equation,

together with the weak W 1,2 convergence to blowup solutions make it difficult to estimate

differences of the values of the Dirichlet integrals which appear in Weiss’s formula. So,

instead of using homogeneity to prove Reifenberg flatness, we will have to prove things in

the opposite direction.

In section 3.1, we introduce and recall some basic results. In section 3.2, we show a

Measure Stability. In section 3.3, we prove the exstence of blowup limits, and establish the

Caffaralli’s Alternative. Then in section 3.4, we provide the Reigenberg Flatness of the free

boundary of our problem and some corollaries.
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Chapter 2

The Mean Value Theorem

2.1 The PDE Obstacle Problem with a Gap

We wish to establish the existence of weak solutions to an obstacle type problem, that is,

we want to find a nonnegative function w ∈ W 1,2(B1) which is a weak solution of:

Lw = χ{w>0}f in B1

w = g on ∂B1 .

(2.1)

In addition to the assumptions in Chapter 1, we assume that

f, aij ∈ L∞(B1) and g ∈ W 1,2(B1) ∩ L∞(B1), (2.2)

which satisfy:

0 < λ̄ ≤ f ≤ Λ̄ ,

g ≡/ 0 on ∂B1, g ≥ 0.
(2.3)

7



In this section we will content ourselves to produce a nonnegative function w ∈ W 1,2(B1)

which is a weak solution of:

Lw = h in B1

w = g on ∂B1 ,

(2.4)

where we know that h is a nonnegative function satisfying:

h(x) = 0 for x ∈ {w = 0}o

h(x) = f(x) for x ∈ {w > 0}o

h(x) ≤ Λ̄ for x ∈ ∂{w = 0} ∪ ∂{w > 0} ,

(2.5)

where for any set S ⊂ IRn, we use So to denote its interior. Thus h agrees with χ{w>0}f

everywhere except possibly the free boundary. (The “gap” mentioned in the title to this

section is the fact that we won’t know that h = χ{w>0}f a.e. until we show that the free

boundary (that is ∂{w = 0} ∪ ∂{w > 0}) has measure zero.) We will show that such a w

exists by obtaining it as a limit of functions ws which are solutions to the semilinear PDE:

Lw = Φs(w)f in B1

w = g on ∂B1 ,

(2.6)

where for s > 0, Φs(x) := Φ1(x/s) and Φ1(x) is a function which satisfies

1. Φ1 ∈ C∞(IR) ,

2. 0 ≤ Φ1 ≤ 1 ,

3. Φ1 ≡ 0 for x < 0, Φ1 ≡ 1 for x > 1, and

4. Φ′1(x) ≥ 0 for all x.

The function Φs has a derivative which is supported in the interval [0, s] and notice that for

a fixed x, Φs(x) is a nonincreasing function of s.
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If we let H denote the standard Heaviside function, but make the convention that

H(0) := 0 then we can rewrite the PDE in Equation (2.1) as

Lw = H(w)f

to see that it is formally the limit of the PDEs in Equation (2.6). We also define

Φ−s(x) := Φs(x+ s)

so that we will be able to “surround” our solutions to our obstacle problem with solutions

to our semilinear PDEs.

The following theorem seems like it should be stated somewhere, but without further

smoothness assumptions on the aij we could not find it withinGT,HL, orLU. The proof is a

fairly standard application of the method of continuity, so we will only sketch it.

2.1.1 Theorem (Existence of Solutions to a Semilinear PDE). Given the assumptions

above, for any s ∈ [−1, 1] \ {0} there exists a ws that satisfies Equation (2.6).

Proof. We provide only a sketch. Fix s ∈ [−1, 1] \ {0}. Let T be the set of t ∈ [0, 1] such

that there is a unique solution to the problem

Lw = tΦs(w)f in B1

w = g on ∂B1 .

(2.7)

We know immediately that T is nonempty by observing that Theorem 8.3 ofGT shows us

that 0 ∈ T. Now we need to show that T is both open and closed.

As inLSW we let τ 1,2 denote the Hilbert space formed as the quotient space W 1,2(B1)/

W 1,2
0 (B1) and then we define the Hilbert space

H := W 1,2
0 (B1)∗ ⊕ τ 1,2 , (2.8)
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where W 1,2
0 (B1)∗ denotes the dual space to W 1,2

0 (B1). Next we define the nonlinear operator

Lt : W 1,2(B1)→ H. For a function w ∈ W 1,2(B1), we set

Lt(w) = `t(w)⊕R(w) , (2.9)

where R(w) is simply the restriction from w to its boundary values in τ 1,2, and for any

φ ∈ W 1,2
0 (B1) we let

[`t(w)](φ) :=

∫
B1

(
aij(x)DiwDjφ+ tΦs(w)fφ

)
dx . (2.10)

In order to show that T is open we need the implicit function theorem in Hilbert space.

In order to use that theorem we need to show that the Gateaux derivative of Lt is invertible.

The relevent part of that computation is simply the observation that the Gateaux derivative

of `t, which we denote by D`t, is invertible. Letting v ∈ W 1,2(B1) we have

[
[D`t(w)](φ)

]
(v) =

∫
B1

(
aij(x)DivDjφ+ tΦ′s(w)fvφ

)
dx . (2.11)

The function d(x) := tΦ′s(w(x))f(x) is a nonnegative bounded function of x and so we

can apply Theorem 8.3 ofGT again in order to verify that D`t is invertible. Then by the

discussion above, this fact leads to the openness of T .

In order to show that T is closed we let tn → t̃, and assume that {tn} ⊂ T. We let wn

solve

Lw = tnΦs(w)f in B1

w = g on ∂B1 ,

(2.12)

and observe that the right hand side of our PDE is bounded by Λ̄. Knowing this information

we can use Corollary 8.7 ofGT to conclude ||wn||W 1,2(B1) ≤ C, and we can use the theorems

of De Giorgi, Nash, and Moser to conclude that for any r < 1 we have ||wn||Cα(Br)
≤ C.

Elementary functional analysis allows us to conclude that a subsequence of our wn will
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converge weakly in W 1,2(Br) and strongly in Cα/2(Br) to a function w̃. Using a simple

diagonalization argument we can show that w̃ satisfies

Lw = t̃Φs(w)f in B1

w = g on ∂B1 ,

(2.13)

and this fact show us that t̃ ∈ T.

We will also need the following comparison results:

2.1.2 Proposition (Basic Comparisons). Under the assumptions of the previous theorem

and letting ws denote the solution to Equation ( 2.6) , we have the following comparison

results:

1. s > 0 ⇒ ws ≥ 0 ,

2. s < 0 ⇒ ws ≥ s ,

3. t < s ⇒ wt ≥ ws ,

4. t < 0 < s ⇒ ws ≤ wt + s− t , and

5. For a fixed s ∈ [−1, 1] \ {0} the solution, ws is unique.

Proof. All five statements are proved in very similar ways, and their proofs are fairly

standard, but for the convenience of the reader, we will prove the fourth statement. We

assume that it is false, and we let

Ω− := {ws − wt > s− t} . (2.14)

Obviously ws − wt = s − t on ∂Ω−. Next, observe that by the second statement we know

that Ω− is a subset of {ws > s}. Thus, within Ω− we have L(ws−wt) = 1−Φt(wt) ≥ 0 and
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so if Ω− is not empty, then we contradict the weak maximum principle.

We are now ready to give our existence theorem for our “problem with the gap.”

2.1.3 Theorem (Existence Theorem). Given the assumptions above, there exists a pair

(w, h) such that w ≥ 0 satisfies Equation (2.4) with an h ≥ 0 which satisfies Equation

(2.5) .

Proof. Using the last proposition, we can find a sequence sn → 0, and a function w such

that (with wn used as an abbreviation for wsn) we have strong convergence of the wn to

w in Cα(Br) for any r < 1 and weak convergence of the wn to w in W 1,2(B1). Elementary

functional analysis allows us to conclude that the functions χ{wn>0}f converge weak-∗ in

L∞(B1) to a function h which automatically satisfies 0 ≤ h ≤ Λ̄. By looking at the equations

satisfied by the wn’s and using the convergences, it then follows very easily that the function

w satisfies Equation (2.4), but it remains to verify that the function h is equal to χ{w>0}f

away from the free boundary.

Since the limit is continuous, the set {w > 0} is already open, and by the uniform con-

vergence of the wn’s we can say that on any set of the form {w > γ} (where γ > 0) we will

have Φsn(wn) ≡ 1 once n is sufficiently large. Thus we must have h = f on this set. On the

other hand, in the interior of the set {w = 0} we have ∇w ≡ 0, and so it is clear that in

that set h ≡ 0 a.e.

2.2 Regularity, Nondegeneracy, and Closing the Gap

Now we begin with a pair (w, h) like the pair given by Theorem (2.1.3), except that we do

not insist that it have any particular boundary data on ∂B1. In other words, in this section

w will always satisfy

L(w) = h in B1, (2.15)
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for a function h which satisfies Equation (2.5). In addition we will assume Equations (2.2)

and (2.3) hold. By the end of this section we will know that the set ∂{w = 0} has Lebesgue

measure zero and so w actually satisfies:

L(w) = χ{w>0}f in B1, (2.16)

which will allow us to forget about h afterward. Before we eliminate h, we have two main

results: First, w enjoys a parabolic bound from above at any free boundary point, and

second, w has a quadratic nondegenerate growth from such points. It turns out that these

properties are already enough to ensure that the free boundary has measure zero.

2.2.1 Lemma. Assume that w satisfies everything described above, but in addition, assume

that w(0) = 0. Then there exists a C̃ such that

‖ w ‖L∞(B1/2) ≤ C̃. (2.17)

Proof. Let u solve the following PDE:


Lu = h in B1

u = 0 on ∂B1 .

(2.18)

Then Theorem 8.16 ofGT gives

‖ u ‖L∞(B1) ≤ C1. (2.19)

13



Now, consider the solution to:


Lv = 0 in B1

v = w on ∂B1 .

(2.20)

Notice that u(x) + v(x) = w(x), and in particular 0 = w(0) = u(0) + v(0). Then by the

Weak Maximum Principle and the Harnack Inequality, we have

sup
B1/2

|v| = sup
B1/2

v ≤ C2 inf
B1/2

v ≤ C2v(0) ≤ C2(−u(0)) ≤ C2 · C1. (2.21)

Therefore

‖ w ‖L∞(B1/2)≤ C (2.22)

2.2.2 Theorem (Optimal Regularity). If 0 ∈ ∂{w > 0}, then for any x ∈ B1/2 we have

w(x) ≤ 4C̃|x|2 (2.23)

where C̃ is the same constant as in the statement of Lemma (2.2.1).

Proof. By the previous lemma, we know ‖ w ‖L∞(B1/2) ≤ C̃. Notice that for any γ > 1,

uγ(x) := γ2w

(
x

γ

)
(2.24)

is also a solution to the same type of problem on B1, but with a new operator L̃, and with a

new function f̃ multiplying the characteristic function on the right hand side. On the other

hand, the new operator has the same ellipticity as the old operator, and the new function

14



f̃ has the same bounds that f had. Suppose there exist some point x1 ∈ B1/2 such that

w(x1) > 4C̃|x1|2. (2.25)

Then since 1
2|x1| > 1 and since x1

2|x1| ∈ ∂B 1
2
, we have

u( 1
2|x1|

)( x1

2|x1|

)
=

1

4|x1|2
w(x1) > C̃ , (2.26)

which contradicts Lemma (2.2.1).

Now we turn to the nondegeneracy statement. The first thing we need is a variant of

the following result fromLSW:

2.2.3 Lemma (Corollary 7.1 ofLSW). Suppose µ is a nonnegative measure supported in C

which we assume is a compact subset of B1. Suppose L and L̃ are divergence form elliptic

operators exactly of the type considered in this work, and assume that their constants of

ellipticity are all contained in the interval of positive numbers: [λ̄, Λ̄]. If

Lu = L̃ũ = µ in B1

u = ũ = 0 on ∂B1 ,

(2.27)

then there exists a constant K = K(n,C, λ̄, Λ̄) such that for all x ∈ C we have

K−1u(x) ≤ ũ(x) ≤ Ku(x) .

We need to do away with the restriction that µ be supported on a compact subset of

B1, but we can restrict our attention to much simpler nonnegative measures. In fact, the

following lemma is good enough for our purposes:

15



2.2.4 Lemma. Assume L and L̃ are taken exactly as in Lemma (2.2.3) , and assume

Lw = L̃w̃ = 1 in B1

w = w̃ = 0 on ∂B1 .

(2.28)

Then there exists a postive constant C0 = C0(n, λ̄, Λ̄) such that for all x ∈ B1/4 we have

C−1
0 w(x) ≤ w̃(x) ≤ C0w(x) . (2.29)

Proof. Without loss of generality we can assume that L̃ is the Laplacian, and we can also

replace the assumption Lw = ∆w̃ = 1 with the assumption Lw = ∆w̃ = −1 so that w and

w̃ are positive functions. In fact, w̃(x) = Θ(x) where we define

Θ(x) :=
1− |x|2

2n
.

It will be convenient to define the following positive universal constants:

θ1 :=

∫
B1

|∇Θ|2 and θ2 :=

∫
B1/2

Θ . (2.30)

Let u solve

Lu = −χ{B1/2}
in B1

u = 0 on ∂B1

(2.31)

and let v solve

Lv = −1 + χ{B1/2}
in B1

v = 0 on ∂B1 .

(2.32)

By the strong maximum principle, both u and v are positive in B1, and since w = u+ v in
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B1, we have w > u in B1. By Theorem 8.18 ofGT

(
1

4

)−n
||u||L1(B1/2) ≤ C inf

B1/4

u . (2.33)

By basic facts from the Calculus of Variations, u is characterized as the unique minimizer

of the functional:

J(φ; r) :=

∫
B1

∇φA(x)∇φ− 2

∫
Br

φ , (2.34)

when r is taken to be 1/2. (We are letting A(x) be the matrix of coefficients for the operator

L.) Now we observe that for any t > 0, we have

J(tΘ; 1/2) = t2
∫
B1

∇ΘA(x)∇Θ− 2t

∫
B1/2

Θ

≤ t2Λθ1 − 2tθ2 .

(Recall that θ1 and θ2 are the positive universal constants defined in Equation (2.30) above.)

Now by taking

t :=
θ2

Λθ1

we can conclude

J(u; 1/2) ≤ J(tΘ; 1/2) ≤ − θ2
2

Λθ1

=: −C1 < 0 . (2.35)

Since

J(u; 1/2) ≥ −2

∫
B1/2

u = −2||u||L1(B1/2) ,

we can conclude that

||u||L1(B1/2) ≥ C1/2 ,

which can be combined with Equation (2.33) to get

inf
B1/4

w ≥ inf
B1/4

u ≥ C (2.36)
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which is half of what we need.

By Theorem 8.17 ofGT we know

sup
B1/2

w ≤ C(||w||L2(B1) + 1) . (2.37)

Using the fact that w is the unique minimizer of J(·; 1) and reasoning in a fashion almost

identical to what we did above we get:

0 ≥ J(w; 1)

≥ λ

∫
B1

|∇w|2 − 2

∫
B1

w

= λ||∇w||2L2(B1) − 2||w||L1(B1)

≥ Cλ||w||2L2(B1) − 2||w||L1(B1) by Poincaré’s inequality

≥ Cλ||w||2L2(B1) − 2(||w||L2(B1) + |B1|)

which forces ||w||L2(B1) ≤ C0 for some universal C0. Combining this equation with Equation

(2.37) gives us what we need.

2.2.5 Lemma. Let W satisfy the following

λ̄ ≤ L(W ) ≤ Λ̄ in Br and W ≥ 0 , (2.38)

then there exists a positive constant, C, such that

sup
∂Br

W ≥ W (0) + Cr2 . (2.39)

Proof. Let u solve

L(u) = 0 in Br and u = W on ∂Br . (2.40)
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Then the Weak Maximum Principle gives:

sup
∂Br

u ≥ u(0). (2.41)

Let v solve

L(v) = L(W ) in Br and v = 0 on ∂Br . (2.42)

Notice that v0(x) := |x|2−r2
2n

solves

∆(v0) = 1 in Br and v0 = 0 on ∂Br . (2.43)

By Lemma (2.2.4) above, there exist constants C1, C2, such that C1v0(x) ≤ v(x) ≤ C2v0(x)

in Br/4. In particular,

− v(0) ≥ C2
r2

2n
. (2.44)

By the definitions of u and v, we know W = u+ v, therefore by Equations (2.41) and (2.44)

we have

sup
∂Br

W (x) = sup
∂Br

u(x) ≥ u(0) = W (0)− v(0) ≥ W (0) + C2
r2

2n
. (2.45)

2.2.6 Lemma. Take w as above, and assume that w(0) = γ > 0. Then w > 0 in a ball Bδ0

where δ0 = C0
√
γ

Proof. By Theorem (2.2.2), we know that if w(x0) = 0, then

γ = |w(x0)− w(0)| ≤ C|x0|2, (2.46)

which implies |x0| ≥ C
√
γ.
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2.2.7 Lemma (Nondegenerate Increase on a Polygonal Curve). Let w be exactly as above

except that we assume that everything is satisfied in B2 instead of B1. Suppose again that

w(0) = γ > 0, but now we may require γ to be sufficiently small. Then there exists a positive

constant, C, such that

sup
B1

w(x) ≥ C + γ. (2.47)

Proof. We can assume without loss of generality that there exists a y ∈ B1/3 such that

w(y) = 0. Otherwise we can apply the maximum principle along with Lemma (2.2.5) to get:

sup
B1

w(x) ≥ sup
B1/3

w(x) ≥ γ + C, (2.48)

and we would already be done.

By Lemmas (2.2.5) and (2.2.6), there exist x1 ∈ ∂Bδ0 , such that

w(x1) ≥ w(0) + C
δ2

0

2n
= (1 + C1)γ. (2.49)

For this x1 and Bδ1(x1) where δ1 = C0

√
w(x1), Lemma (2.2.6) guarantees the existence of

an x2 ∈ ∂Bδ1(x1), such that

w(x2) ≥ (1 + C1)w(x1) ≥ (1 + C1)2γ. (2.50)

Repeating the steps we can get finite sequences {xi} and {δi} with x0 = 0 such that

w(xi) ≥ (1 + C1)iγ and δi = |xi+1 − xi| = C0

√
w(xi). (2.51)

Observe that as long as xi ∈ B1/3, because of the existence of y ∈ B1/3 where w(y) = 0

we know that δi ≤ 2/3, and so xi+1 is still in B1. Pick N to be the smallest number which
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satisfies the following inequality:

ΣN
i=0δi = ΣN

i=0C0
√
γ(1 + C1)

i
2 ≥ 1

3
, (2.52)

that is

N ≥
2 ln

[
(1+C1)

1
2−1

3C0
√
γ

+ 1

]
ln(1 + C1)

− 1. (2.53)

Plugging this into Equation (2.51) gives

w(xN) ≥ γ(1 + C1)

2 ln

 (1+C1)
1
2−1

3C0
√
γ

+1


ln(1+C1)

−1

=
γ

1 + C1

(
(1 + C1)

1
2 − 1

3C0
√
γ

+ 1

)2

= (C̃0 + C̃1
√
γ)2

≥ C2(1 + γ) ,

where the last inequality is guaranteed by the fact that we allow γ to be sufficiently small.

2.2.8 Lemma. Take w as above, but assume that 0 ∈ {w > 0}. Then

sup
∂B1

w(x) ≥ C. (2.54)

Proof. By applying the maximum principle and the previous lemma this lemma is imme-

diate.

2.2.9 Theorem (Nondegeneracy). With C = C(n, λ,Λ, λ̄, Λ̄) > 0 exactly as in the previous
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lemma, and if 0 ∈{w > 0}, then for any r ≤ 1 we have

sup
x∈Br

w(x) ≥ Cr2 . (2.55)

Proof. Assume there exists some r0 ≤ 1, such that

sup
x∈Br0

w(x) = C1r
2
0 < Cr0

2 . (2.56)

Notice that for γ ≤ 1,

uγ(x) :=
w(γx)

γ2
(2.57)

is also a solution to the same type of problem with a new operator L̃ and new function h̃

defined in B1, but the new operator has the same ellipticity as the old operator, and the new

h̃ has the same bounds and properties that h had. Now in particular for ur0(x) = w(r0x)
r02

, we

have for any x ∈ B1

ur0(x) =
w(r0x)

r0
2
≤ 1

r2
0

sup
x∈Br0

w(x) = C1 < C , (2.58)

which contradicts the previous lemma.

2.2.10 Corollary (Free Boundary Has Zero Measure). The Lebesgue measure of the set

∂{w = 0}

is zero.

Proof. The idea here is to use nondegeneracy together with regularity to show that con-

tained in any ball centered on the free boundary, there has to be a proportional subball

where w is strictly positive. From this fact it follows that the free boundary cannot have
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any Lebesgue points. Since the argument is essentially identical to the proof within Lemma

5.1 ofBT that P has measure zero, we will omit it.

2.2.11 Remark (Porosity). In fact, more can be said from the same argument. Indeed,

it shows that the free boundary is strongly porous and therefore has a Hausdorff dimen-

sion strictly less than n. (SeeM for definitions of porosity and other relevent theorems and

references.)

2.2.12 Corollary (Removing the “Gap”). The existence, uniqueness, regularity, and non-

degeneracy theorems from this section and the previous section all hold whenever

L(w) = h

is replaced by

L(w) = χ{w>0}f .

2.3 Equivalence of the Obstacle Problems

There are two main points to this section. First, we deal with the comparatively simple task

of getting existence, uniqueness, and continuity of certain minimizers to our functionals in

the relevant sets. Second, and more importantly we show that the minimizer is the solution

of an obstacle problem of the type studied in the previous two sections. We start with some

definitions and terminology.

We continue to assume that aij is strictly and uniformly elliptic and we keep L defined

exactly as above. We let G(x, y) denote the Green’s function for L for all of IRn and observe

that the existence of G is guaranteed by the work of Littman, Stampacchia, and Weinberger.

(SeeLSW.)
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Let

Csm,r := min
x∈∂Br

G(x, 0)

Cbig,r := max
x∈∂Br

G(x, 0)

Gsm,r(x) := min{G(x, 0), Csm,r}

and observe that Gsm,r ∈ W 1,2(BM) by results fromLSW combined with the Cacciopoli

Energy Estimate. We also know that there is an α ∈ (0, 1) such that Gsm,r ∈ C0,α(BM)

by the De Giorgi-Nash-Moser theorem. (SeeGT orHL for example.) For M large enough to

guarantee that Gsm(x) := Gsm,1(x) ≡ G(x, 0) on ∂BM , we define:

HM,G := {w ∈ W 1,2(BM) : w −Gsm ∈ W 1,2
0 (BM) }

and

KM,G := { w ∈ HM,G : w(x) ≤ G(x, 0) for all x ∈ BM }.

(The existence of such an M follows fromLSW, and henceforth any constant M will be large

enough so that Gsm,1(x) ≡ G(x, 0) on ∂BM .)

Define:

Φε(t) :=


0 for t ≥ 0

−ε−1t for t ≤ 0 ,

J(w,Ω) :=

∫
Ω

(aijDiwDjw − 2R−nw) , and

Jε(w,Ω) :=

∫
Ω

(aijDiwDjw − 2R−nw + 2Φε(G− w)) .
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2.3.1 Theorem (Existence and Uniqueness).

Let `0 := inf
w∈KM,G

J(w,BM) and

let `ε := inf
w∈HM,G

Jε(w,BM) .

Then there exists a unique w0 ∈ KM,G such that J(w0, BM) = `0, and there exists a unique

wε ∈ HM,G such that Jε(wε, BM) = `ε .

Proof. Both of these results follow by a straightforward application of the direct method

of the Calculus of Variations.

2.3.2 Remark. Notice that we cannot simply minimize either of our functionals on all of

IRn instead of BM as the Green’s function is not integrable at infinity. Indeed, if we replace

BM with IRn then

`0 = `ε = −∞

and so there are many technical problems.

2.3.3 Theorem (Continuity). For any ε > 0, the function wε is continuous on BM .

See Chapter 7 ofG.

2.3.4 Lemma. There exists ε > 0, C <∞, such that w0 ≤ C in Bε.

Proof. Let w̄ minimize J(w,BM) among functions w ∈ HM,G. Then we have

w0 ≤ w̄.

Set b := Cbig,M = max∂BM G(x, 0), and let wb minimize J(w,BM) among w ∈ W 1,2(BM)

with

w − b ∈ W 1,2
0 (BM).
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Then by the weak maximum principle, we have

w̄ ≤ wb.

Next define `(x) by

`(x) := b+R−n
(
M2 − |x|2

4n

)
≤ b+

R−nM2

4n
<∞. (2.59)

With this definition, we can observe that ` satisfies

∆` = −R
−n

2
, in BM and

` ≡ b := max
∂BM

G on ∂BM .

Now let α̃ be b+ R−nM2

4n
. By Corollary 7.1 inLSW applied to wb − b and `− b, we have

wb ≤ b+K(`− b) ≤ b+Kα̃ <∞.

Chaining everything together gives us

w0 ≤ b+Kα̃ <∞.

2.3.5 Lemma. If 0 < ε1 ≤ ε2, then

wε1 ≤ wε2 .

Proof. Assume 0 < ε1 ≤ ε2, and assume that

Ω1 := {wε1 > wε2}
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is not empty. Since wε1 = wε2 on ∂BM , since Ω1 ⊂ BM , and since wε1 and wε2 are continuous

functions, we know that wε1 = wε2 on ∂Ω1. Then it is clear that among functions with the

same data on ∂Ω1, wε1 and wε2 are minimizers of Jε1(·,Ω1) and Jε2(·,Ω1) respectively. Since

we will restrict our attention to Ω1 for the rest of this proof, we will use Jε(w) to denote

Jε(w,Ω1).

Jε2(wε2) ≤ Jε2(wε1) implies

∫
Ω1

aijDiwε2Djwε2 − 2R−nwε2 + 2Φε2(G− wε2)

≤
∫

Ω1

aijDiwε1Djwε1 − 2R−nwε1 + 2Φε2(G− wε1) ,

and by rearranging this inequality we get

∫
Ω1

(aijDiwε2Djwε2 − 2R−nwε2)−
∫

Ω1

(aijDiwε1Djwε1 − 2R−nwε1)

≤
∫

Ω1

2Φε2(G− wε1)− 2Φε2(G− wε2) .

Therefore,

Jε1(wε2)− Jε1(wε1)

=

∫
Ω1

aijDiwε2Djwε2 − 2R−nwε2 + 2Φε1(G− wε2)

−
∫

Ω1

aijDiwε1Djwε1 − 2R−nwε1 + 2Φε1(G− wε1)

≤ 2

∫
Ω1

[
Φε2(G− wε1)− Φε2(G− wε2)

]
− 2

∫
Ω1

[
Φε1(G− wε1)− Φε1(G− wε2)

]
< 0

27



since G− wε1 < G− wε2 in Ω1 and Φε1 decreases as fast or faster than Φε2 decreases every-

where. This inequality contradicts the fact that wε1 is the minimizer of Jε1(w). Therefore,

wε1 ≤ wε2 everywhere in Ω.

2.3.6 Lemma. w0 ≤ wε for every ε > 0.

Proof. Let S := {w0 > wε} be a nonempty set, let w1 := min{w0, wε}, and let w2 :=

max{w0, wε}. It follows that w1 ≤ G and both w1 and w2 belong to W 1,2(BM). Since

Φε ≥ 0, we know that for any Ω ⊂ BM we have

J(w,Ω) ≤ Jε(w,Ω) (2.60)

for any permissible w. We also know that since w0 ≤ G we have:

J(w0,Ω) = Jε(w0,Ω) . (2.61)

Now we estimate:

Jε(w1, BM) = Jε(w1, S) + Jε(w1, S
c)

= Jε(wε, S) + Jε(w0, S
c)

= Jε(wε, BM)− Jε(wε, Sc) + Jε(w0, S
c)

≤ Jε(w2, BM)− Jε(wε, Sc) + Jε(w0, S
c)

= Jε(w0, S) + Jε(wε, S
c)− Jε(wε, Sc) + Jε(w0, S

c)

= Jε(w0, S) + Jε(w0, S
c)

= Jε(w0, BM) .
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Now by combining this inequality with Equations (2.60) and (2.61), we get:

J(w1, BM) ≤ Jε(w1, BM) ≤ Jε(w0, BM) = J(w0, BM) ,

but if S is nonempty, then this inequality contradicts the fact that w0 is the unique mini-

mizer of J among functions in KM,G.

Now, since wε decreases as ε→ 0, and since the wε’s are bounded from below by w0, there

exists

w̃ = lim
ε→0

wε

and w0 ≤ w̃.

2.3.7 Lemma. With the definitions as above, w̃ ≤ G almost everywhere.

Proof. This fact is fairly obvious, and the proof is fairly straightforward, so we supply only

a sketch.

Suppose not. Then there exists an α > 0 such that

S̃ := {w̃ −G ≥ α}

has positive measure. On this set we automatically have wε − G ≥ α . We compute

Jε(wε, BM) and send ε to zero. We will get Jε(wε, BM)→∞ which gives us a contradiction.

2.3.8 Lemma. w̃ = w0 in W 1,2(BM).
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Proof. Since for any ε, wε is the minimizer of Jε(w,BM), we have

Jε(wε, BM) ≤ Jε(w0, BM)

≤
∫
BM

aijDiw0Djw0 − 2R−nw0 + 2Φε(G− wε),

and after canceling the terms with Φε we have:

∫
BM

aijDiwεDjwε − 2R−nwε ≤
∫
BM

aijDiw0Djw0 − 2R−nw0.

Letting ε→ 0 gives us

J(w̃, BM) ≤ J(w0, BM) .

However, by Proposition (2.3.7), w̃ is a permissible competitor for the problem infw∈KM,G J(w,BM),

so we have

J(w0, BM) ≤ J(w̃, BM).

Therefore

J(w0, BM) = J(w̃, BM),

and then by uniqueness, w̃ = w0.

Let W solve: 
L(w) = −χ{w<G}R−n in BM

w = Gsm on ∂BM .

(2.62)

The existence of such a W is guaranteed by combining Theorem (2.1.3) with Corollary

(2.2.12). (Signs are reversed, so to be completely precise one must apply the theorems to

the problem solved by G−W.)
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2.3.9 Lemma. W ≤ G in BM .

Proof. Let Ω = {W > G} and u := W − G. Since G is infinite at 0, and since W is

bounded, and both G and W are continuous, we know there exists an ε > 0 such that

Ω ∩ Bε = φ. Then if Ω 6= φ, then u has a positive maximum in the interior of Ω. However,

since L(W ) = L(G) = 0 in Ω, we would get a contradiction from the weak maximum prin-

ciple. Therefore, we have W ≤ G in BM .

2.3.10 Lemma. w̃ ≥ W .

Proof. It suffices to show wε ≥ W, for any ε. Suppose for the sake of obtaining a contradiction

that there exists an ε > 0 and a point x0 where wε −W has a negative local minimum. So

wε(x0) < W (x0) ≤ G(x0). Let Ω := {wε < W} and observe that wε = W on ∂Ω. Then x0 is

an interior point of Ω and

L(wε) = −R−n in Ω.

However

L(W − wε) ≥ −R−n +R−n = 0 in Ω. (2.63)

By the weak maximum principle, the minimum can not be attained at an interior point,

and so we have a contradiction.

2.3.11 Lemma. w0 = w̃ = W, and so w0 and w̃ are continuous.

Proof. We already showed that w0 = w̃ in lemma (2.3.8). By lemma (2.3.10), in the set

where W = G, we have

W = w̃ = G. (2.64)

Let Ω1 := {W < G}, it suffices to show w̃ = W in Ω1. By definition of W , L(W ) = −R−n

in Ω1.

31



Using the fact that w0 is the minimizer, the standard argument in the calculus of variations

leads to L(w0) ≥ −R−n. Therefore

L(w̃ −W ) = L(w0 −W ) ≥ 0 in BM . (2.65)

Notice that on ∂Ω1, W = w̃ = G. By weak maximum principle, we have

w̃ = W in Ω1. (2.66)

Using the last lemma along with our definition of W (see Equation (2.62)) we can now state

the following theorem.

2.3.12 Theorem (The PDE satisfied by w0). The minimizing function w0 satisfies the

following boundary value problem:


L(w0) = −χ{w0<G}

R−n in BM

w0 = Gsm on ∂BM .

(2.67)

2.4 Minimizers Become Independent of M

At this point we are no longer interested in the functions from the last section, with the

exception of w0. On the other hand, we now care about the dependence of w0 on the radius

of the ball on which it is a minimizer. Accordingly, we reintroduce the dependence of w0

on M, and so we will let wM be the minimizer of J(w,BM) within K(M,G), and consider

the behavior as M → ∞. As we observed in Remark (2.3.2), it is not possible to start by

minimizing our functional on all of IRn, so we have to get the key function, “VR,” mentioned
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by Caffarelli on page 9 ofC5 by taking a limit over increasing sets. Note that by Theorem

(2.3.12) we know that wM satisfies


L(wM) = −χ{G>wM}R

−n in BM

wM = Gsm on ∂BM .

(2.68)

The theorem that we wish to prove in this section is the following:

2.4.1 Theorem (Independence from M). There exists M ∈ IN such that if Mj > M for

j = 1, 2, then

wM1 ≡ wM2 within BM

and

wM1 ≡ wM2 ≡ G within BM+1 \BM .

Furthermore, we can choose M such that M < C(n, λ,Λ) ·R.

This Theorem is an immediate consequence of the following Theorem:

2.4.2 Theorem (Boundedness of the Noncontact Set). There exists a constant C = C(n, λ,Λ)

such that for any M ∈ IR

{wM 6= G} ⊂ BCR . (2.69)

Proof. First of all, if M ≤ CR, then there is nothing to prove. For all M > 1 the function

W := G− wM will satisfy:

L(W ) = R−nχ{W>0} , and 0 ≤ W ≤ G in Bc
1. (2.70)

If the conclusion to the theorem is false, then there exists a large M and a large C such that

x0 ∈ FB(W ) ∩ {BM/2 \BCR} .
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Let K := |x0|/3. By Theorem (2.2.9), we can then say that

sup
BK(x0)

W (x) ≥ CR−nK2 > CK2−n ≥ sup
BK(x0)

G(x) (2.71)

which gives us a contradiction since W ≤ G everywhere. Now note that in order to avoid

the contradiction, we must have

CR−nK2 ≤ CK2−n ,

and this leads to

K ≤ CR

which means that |x0| must be less than CR. In other words, FB(W ) ⊂ BCR.

At this point, we already know that when M is sufficiently large, the set {G > wM} is

contained in BCR. Then by uniqueness, the set will stay the same for any bigger M .

Therefore, it makes sense to define wR to be the solution of

Lw = −R−nχ{w<G} in IRn (2.72)

among functions w ≤ G with w = G at infinity. Note that we can now obtain the function,

“VR,” that Caffarelli uses on page 9 ofC5. The relationship is simply:

VR = wR −G . (2.73)

2.5 The Mean Value Theorem

Finally, we can turn to the Mean Value Theorem.
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2.5.1 Lemma (Ordering of Sets). For any R < S, we have

{wR < G} ⊂ {wS < G}. (2.74)

Proof. LetBM be a ball that contains both {wR < G} and {wS < G}. Then by the discussion

in Section 2, we know wR minimizes

∫
BM

aijDiwDjw − 2wR−n

and wS minimizes ∫
BM

aijDiwDjw − 2wS−n.

Let Ω1 ⊂⊂ BM be the set {wS > wR}. Then it follows that

∫
Ω1

aijDiwSDjwS − 2wSS
−n ≤

∫
Ω1

aijDiwRDjwR − 2wRS
−n, (2.75)

which implies

∫
Ω1

aijDiwSDjwS ≤
∫

Ω1

aijDiwRDjwR + 2S−n
∫

Ω1

(wS − wR)

<

∫
Ω1

aijDiwRDjwR + 2R−n
∫

Ω1

(wS − wR).

Therefore, since wS ≡ wR on ∂Ω1, and

∫
Ω1

aijDiwSDjwS − 2wSR
−n <

∫
Ω1

aijDiwRDjwR − 2wRR
−n, (2.76)

we contradict the fact that wR is the minimizer of
∫
aijDiwDjw − 2wR−n.
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2.5.2 Lemma. There exists a constant c = c(n, λ,Λ) such that

BcR ⊂ {G > wR}.

Proof. By Lemma (2.3.4) we already know that there exists a constant

C = C(n, λ,Λ)

such that w1(0) ≤ C. Then it is not hard to show that

‖w1‖L∞(B1/2) ≤ C̃. (2.77)

ByLSW for any elliptic operator L with given λ and Λ, we have

c1

|x|n−2
≤ G(x) ≤ c2

|x|n−2
. (2.78)

By combining the last two equations it follows that there exists a constant c = c(n, λ,Λ)

such that

Bc ⊂ {G > w1}.

It remains to show that this inclusion scales correctly.

Let vR := G− wR (so vR = −VR). Then vR satisfies

LvR = δ −R−nχ{vR>0} in IRn . (2.79)

Now observe that by scaling our operator L appropriately, we get an operator L̃ with the
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same ellipticity constants as L, such that

L̃
(
Rn−2vR(Rx)

)
= δ − χ{v

R
(Rx)>0} . (2.80)

So we have

Bc ⊂
{
x vR(Rx) > 0

}
,

which implies

BcR ⊂
{
vR(x) > 0

}
. (2.81)

Suppose v is a supersolution to

Lv = 0,

i.e. Lv ≤ 0. Then for any φ ≥ 0, we have

∫
Ω

vLφ ≤ 0. (2.82)

If R < S, then we know that wR ≥ wS, and so the function φ = wR − wS is a permissible

test function. We also know:

Lφ = R−nχ{G>wR} − S
−nχ{G>wS} . (2.83)

By observing that v ≡ 1 is both a supersolution and a subsolution and by plugging in our

φ, we arrive at

R−n|{G > wR}| = S−n|{G > wS}|, (2.84)
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and this implies

Lφ = C

[
1

|{G > wR}|
χ{G>wR} −

1

|{G > wS}|
χ{G>wS}

]
. (2.85)

Now, Equation (2.82) implies

0 ≥
∫

Ω

vLφ = C

[
1

|{G > wR}|

∫
{G>wR}

v − 1

|{G > wS}|

∫
{G>wS}

v

]
. (2.86)

Therefore, we have established the following theorem:

2.5.3 Theorem (Mean Value Theorem for Divergence Form Elliptic PDE). Let L be any

divergence form elliptic operator with ellipticity λ, Λ. For any x0 ∈ Ω, there exists an

increasing family DR(x0) which satisfies the following:

1. BcR(x0) ⊂ DR(x0) ⊂ BCR(x0), with c, C depending only on n, λ and Λ.

2. For any v satisfying Lv ≥ 0 and R < S, we have

v(x0) ≤ 1

|DR(x0)|

∫
|DR(x0)|

v ≤ 1

|DS(x0)|

∫
DS(x0)

v. (2.87)

As on pages 9 and 10 ofC5, (and as Littman, Stampacchia, and Weinberger already observed

using their own mean value theorem,) we have the following corollary:

2.5.4 Corollary (Semicontinuous Representative). Any supersolution v, has a unique point-

wise defined representative as

v(x0) := lim
R↓0

1

|DR(x0)|

∫
|DR(x0)|

v(x)dx . (2.88)

This representative is lower semicontinuous:

v(x0) ≤ lim
x→x0

v(x) (2.89)
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for any x0 in the domain.

We can also show the following analogue of G.C. Evans’ Theorem:

2.5.5 Corollary (Analogue of Evans’ Theorem). Let v be a supersolution to Lv = 0, and

suppose that v restricted to the support of Lv is continuous. Then the representative of v

given by Equation (2.89) is continuous.

Proof. This proof is almost identical to the proof given on pages 10 and 11 ofC5 for L = ∆.
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Chapter 3

Reifenberg Flatness of Free

Boundaries

3.1 Preliminaries and Basic Results

Define the functionals:

D(u,Ω) :=

∫
Ω

(aijDiuDju) , and

D̃(w,Ω) :=

∫
Ω

(aijDiwDjw + 2w) .

For any bounded set Ω ⊂ IRn we will minimize these functionals in the following sets,

respectively:

SΩ,ϕ := {u ∈ W 1,2
0 (Ω) : u ≥ ϕ } ,

H̃Ω,ψ := {w ∈ W 1,2(Ω) : w − ψ ∈ W 1,2
0 (Ω) } , and

K̃Ω,ψ := { w ∈ HΩ,ψ : w(x) ≥ 0 for all x ∈ Ω }.

When it is clear on which set we are working, we will simply write “D(u)” in place of

“D(u,Ω)” and “Sϕ” in place of “SΩ,ϕ” and so on.
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Probably the most classic version of the obstacle problem involves minimizing D(u,B1)

within SB1,ϕ in the case where aij = δij. (Here we use δij to denote the usual Kronecker

delta function so that D(u) simplifies to the usual Dirichlet integral. SeeC1,C2,C4, andC5 for

an analysis of this problem.) Indeed, following the same arguments given at the beginning

ofC5, but for the more general aij considered here, we can establish the following theorem:

3.1.1 Theorem (Basic Results). Given an obstacle ϕ ∈ W 1,2(B1) which has a trace on

∂B1 which is negative almost everywhere, there is a unique u ∈ SB1,ϕ which minimizes

D(u,B1). Furthermore, u is a bounded supersolution to the problem L(u) = 0. Finally, if ϕ

is continuous, then u is almost everywhere equal to a function which is continuous on all of

B1 .

Proof. For the proof, just follow the beginning ofC5. (Here we need the mean value formula

that we proved as Theorem (2.5.3) )

Turning to the regularity questions, we find it convenient to work with the height function

w which is the minimizer of D̃ within K̃B1,ψ. On the other hand, one can ask if this is really

the same problem as before. In the original problem with the Laplacian (in other words, with

aij = δij), if the obstacle is twice differentiable, then it makes sense to take its Laplacian.

In the current situation, it is not as simple to characterize the functions ϕ, where Lϕ makes

sense. The obvious route, however, is to simply assume that Lϕ = −f for a function f

with specified properties. If we assume that Lϕ = −f, and that f ∈ L∞(B1), then the two

problems are completely equivalent.

We are most interested in the obstacle problem where we minimize D̃ within K̃B1,ψ.

Besides requiring existence and regularity, we need to know that the minimizer, w, satisfies

w ≥ 0 and

L(w) = χ{w>0}f in B1

w = ψ on ∂B1 .

(3.1)

The proof of this fact and many of the related facts follows Chapter 2 very closely, and so
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we will only mention that the proof is carried out with a penalization argument. The details

can be found with only very minor adjustments in Chapter 2. To summarize the relevant

facts we can state the following result:

3.1.2 Theorem (Problem Equivalencies). Let ϕ be an obstacle which satisfies the following:

1. ψ := −ϕ > 0 on all of ∂B1.

2. f := −Lϕ ∈ L∞(B1).

Finally assume that w = u− ϕ. Then the following are equivalent:

1. w satisfies Equation (3.1).

2. w minimizes D̃ in K̃B1,ψ.

3. u ∈ W 1,2
0 (B1) satisfies Lu = −χ{u=ϕ}f.

4. u minimizes D in SB1,ψ.

Now in order to get to the regularity of the free boundary we need two more basic facts

from Chapter 2. At this point, having proven our theorem about the equivalencies between

the problems, it is worth gathering a collection of assumptions that we will have for the rest

of this work. We will always assume:

L(w) = χ{w>0}f in B1 ,

aij(x) ≡ aji(x) ,

0 < λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for all ξ 6= 0 ,

0 < λ∗ ≤ f ≤ Λ∗ , and

w ≥ 0

(3.2)

and we will frequently assume

0 ∈ ∂{w > 0}. (3.3)
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Recall the optimal regularity (see Theorem (2.2.2) ) and nondegeneracy (see Theorem

(2.2.9) ) which will give us compactness of quadratic rescalings.

3.2 Measure Stability

Now we begin a measure theoretic study of regularity which will culminate in a measure

theoretic version of the theorem proven by Caffarelli in 1977. (SeeC1.)

3.2.1 Lemma (Compactness I). Let {aijk }, {fk}, and {wk} satisfy

1. 0 < λI ≤ aijk ≤ ΛI,

2. 0 < λ∗ ≤ fk ≤ Λ∗,

3. wk ≥ 0, Dia
ij
kDjwk = χ{wk>0}fk in B2, and 0 ∈ ∂{wk > 0},

4. ||wk||W 1,2(B2) ≤ γ <∞ and

5. there exists an f (with 0 < λ∗ ≤ f ≤ Λ∗), such that fk converges to f strongly in L1.

Then there exists a w ∈ W 1,2(B1) and an f ∈ L∞(B1) and a subsequence of {wk} such that

along this subsequence (which we still label with “k”), we have

A. uniform convergence of wk to w, and weak convergence in W 1,2,

B. for any φ ∈ W 1,2
0 (B1) ∫

B1

χ{wk>0}fkφ→
∫
B1

χ{w>0}fφ. (3.4)

Proof. Item A follows by using standard functional analysis combined with De Giorgi-Nash-

Moser theory. Since we can take a subsequence, we can assume without loss of generality

that fk converges to f pointwise almost everywhere. In the interior of both {w > 0} and

{w = 0} it is not hard to show that χ{wk>0}fk converges pointwise almost everywhere to

χ{w>0}f (for the interior of {w = 0} one needs to use the nondegeneracy statement), so
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by Lebesgue’s dominated convergence theorem it suffices to prove that ∂{w = 0} has no

Lebesgue points. The proof of this fact is very similar to the proof of Lemma 5.1 ofBT, but

we include it here for the convenience of the reader.

Let x0 ∈ ∂{w = 0} ∩B1, and choose r > 0 such that

Br(x0) ⊂ B1.

Define W (x) := r−2w(x0 + rx) and Wk(x) := r−2wk(x0 + rx). After this change of coordi-

nates, we have 0 ∈ ∂{W = 0}, and so there exists {xk} → 0 such that

W (xk) > 0, for all k.

Now fix k so xk ∈ B1/8, take J large enough such that i, j ≥ J implies

||Wj −W ||L∞(B1) ≤
W (xk)

2
, (3.5)

and

||Wi −Wj||L∞(B1) ≤
C̃

10
(3.6)

where C̃ = C
10

which is the constant from the nondegeneracy statement.

Since Wj → W in Cα, WJ(xk) > 0 and nondegeneracy imply the existence of x̃ ∈ B1/2

such that

WJ(x̃) ≥ C

(
1

2
− 1

8

)2

=
9

64
C > C̃. (3.7)

Now i ≥ J implies Wi(x̃) ≥ 9C̃
10

. Since Wi satisfies a uniform Cα estimate, there exists

an r̃ > 0 such that Wi(y) ≥ C̃
2

for all y ∈ Br̃(x̃) once i ≥ J . From this we can conclude

Br̃(x̃) ⊂ {W∞ > 0}.

Scaling back to the original functions, we conclude x0 is not Lebesgue point. Since x0

was an arbitrary point of the free boundary there are no Lebesgue points in ∂{w > 0}.
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3.2.2 Lemma (Compactness II). If we assume everything we did in the previous lemma,

and we assume in addition that A = (Aij) is a symmetric, constant matrix with

0 < λI ≤ A ≤ ΛI,

and such that

||aijk − A
ij||L1(B1) → 0,

then the limiting functions w and f given in the last lemma satisfy:

DiA
ijDjw = χ{w>0}f (3.8)

in B1. Furthermore, 0 ∈ ∂{w > 0}.

Proof. Since aijk → Aij, and there is a uniform L∞ bound on all of aijk and Aij, we have

aijk → Aij in Lq(B1) (3.9)

for any q <∞, in particular aijk → Aij in L2. We have for any φ ∈ W 1,2
0 (B1),

∫
B1

aijkDiwkDjφ =

∫
B1

(aijk − A
ij)(Diwk −Diw)Djφ

+

∫
B1

aijkDiwDjφ+

∫
B1

Aij(Diwk −Diw)Djφ

Since aijk → Aij in L2 and Diwk ⇀ Diw, we have

∫
B1

(aijk − A
ij)(Diwk −Diw)Djφ→ 0, (3.10)

∫
B1

aijkDiwDjφ→
∫
B1

AijDiwDjφ (3.11)
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and ∫
B1

Aij(Diwk −Diw)Djφ→ 0. (3.12)

Therefore, ∫
B1

aijkDiwkDjφ→
∫
B1

AijDiwDjφ. (3.13)

Together with Equation (3.4), we proved

DiA
ijDjw = χ{w>0}f.

Now in order to show that 0 ∈ ∂{w > 0} we observe first that 0 ∈ ∂{wk > 0} implies

0 ∈ {w = 0}.

Next we suppose there exists r0, such that B2r0 ⊂ {w = 0}. For any k, we have

sup
x∈Br0

wk(x) ≥ C(r0)2 . (3.14)

By picking a convergent subsequence we get a contradiction to w = 0 in B2r0 . Therefore, we

have 0 ∈ ∂{w > 0}.

3.2.3 Theorem (Measure Stability). Fix positive constants γ, λ,Λ, λ∗, and Λ∗, and suppose

w satisfies Equation (3.2), and for some constant µ ∈ [λ∗,Λ∗], assume that u satisfies

∆u = χ{u>0}µ in B1 (3.15)

with

w = u, on ∂B1,
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where we assume in addition that w satisfies

||w||W 1,2(B1) ≤ γ, and ||w||
Cα(B1)

≤ γ.

Then there exists a modulus of continuity σ(ε), such that if

||aij − δij||L2(B1) < σ(ε), and ||f − µ||L1(B1) < σ(ε) (3.16)

then

|{w = 0}∆{u = 0}| < ε. (3.17)

(We are abusing notation slightly by using µ to denote the function which is everywhere

equal to µ in B1.)

Proof. The proof of Theorem 5.4 ofBT can be adapted to the current setting without too

much difficulty, but we include it for the convenience of the reader. Suppose not. Then

there exists aijk , wk, fk and uk such that,

1. Dia
ij
kDjwk = χ{wk>0}fk in B1,

2. aijk → δij in L2(B1),

3. fk → µ in L1(B1),

4.


∆uk = χ{uk>0}µ in B1

uk = wk on ∂B1, and

5. ||wk||W 1,2(B1) ≤ γ, and ||wk||Cα(B1)
≤ γ.

but |{wk = 0}∆{uk = 0}| ≥ ε0 for some ε0 fixed.

By applying the previous compactness lemmas to an arbitrary subsequence, there exists
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a w∞ and a sub-subsequence such that

wk ⇀ w∞, in W 1,2(B1)

and

wk → w∞ in C0(B1)

which implies wk → w∞ in L2(B1). (We will still use “wk” for the sub-subsequence.) Equa-

tion (3.4) is also satisfied with the constant function µ in place of f.

By standard comparison results for the obstacle problem (see for example Theorem 2.7a

ofB), there exists u such that

uk → u in L∞(B1). (3.18)

We have for any φ ∈ W 1,2
0 (B1),

∫
B1

aijkDiwkDjφ =

∫
B1

(aijk − δ
ij)(Diwk −Diw∞)Djφ

+

∫
B1

aijkDiw∞Djφ+

∫
B1

δij(Diwk −Diw∞)Djφ.

Since aijk → δij in L2 and Diwk ⇀ Diw∞, we have

∫
B1

(aijk − δ
ij)(Diwk −Diw∞)Djφ→ 0, (3.19)

∫
B1

aijkDiw∞Djφ→
∫
B1

δijDiw∞Djφ (3.20)

and ∫
B1

δij(Diwk −Diw∞)Djφ→ 0. (3.21)

Therefore, ∫
B1

aijkDiwkDjφ→
∫
B1

δijDiw∞Djφ. (3.22)
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By Equation (3.4) with µ in place of f, we have

∫
B1

χ{wk>0}fkφ→
∫
B1

χ{w∞>0}µφ, (3.23)

so w∞ satisfies

∆w∞ = χ{w∞>0}µ in B1. (3.24)

We notice that by assumption,

0 < ε0 ≤ |{wk = 0}∆{uk = 0}|

= ||χ{uk>0} − χ{wk>0}||L1(B1)

≤ ||χ{uk>0} − χ{w∞>0}||L1(B1) + ||χ{w∞>0} − χ{wk>0}||L1(B1)

= I + II .

For I, since 
∆uk = χ{uk>0}µ in B1

uk = wk on ∂B1 .

(3.25)

and 
∆w∞ = χ{w∞>0}µ in B1

w∞ = u on ∂B1 .

(3.26)

By Theorem 2.7a ofB, we have

||uk − w∞||L∞(B1) ≤ ||uk − u||L∞(∂B1) , (3.27)
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and since uk → u in L∞, we have

||χ{uk>0} − χ{w∞>0}||L1(B1) → 0, (3.28)

by Corollary 4 ofC2.

For II, we know that inside {w∞ > 0}, wk will eventually be positive by the uniform

convergence, so χ{uk>0} = χ{w∞>0} there. In the interior of {w∞ = 0}, wk will eventually

be 0, since otherwise we will violate the nondegeneracy property, and so χ{uk>0} = χ{w∞>0}

there. Finally, since ∂{w∞ = 0} has finite (n−1)-dimensional Hausdorff measure (seeC2,C3,

orC5), we must have |∂{w∞ = 0}| = 0, and therefore II → 0. This convergence to 0 gives

us a contradiction, since 0 < ε0 ≤ I + II.

3.3 Weak Regularity of the Free Boundary

In this section we establish the existence of blow up limits, and use this result to show a

measure-theoretic version of Caffarelli’s free boundary regularity theorem. We will show the

existence of blowup limits in the case where the aij and the f belong to VMO. We define

VMO to be the subspace of BMO such that if g ∈ BMO and

ηg(r) := sup
ρ≤r, y∈IRn

1

|Bρ|

∫
Bρ(y)

|g(x)− g
Bρ(y)
| dx , (3.29)

then ηg(r)→ 0 as r → 0. For any g ∈ VMO, ηg(r) is referred to as the VMO-modulus. For

all conventions regarding VMO we followBT which in turn followsMPS.

3.3.1 Theorem (Existence of Blowup Limits I). Assume w satisfies Equations (3.2) and

(3.3), and assume in addition that aij and f belong to VMO. Define the usual rescaling

wε(x) := ε−2w(εx).
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Then for any sequence {εm} ↓ 0, there exists a subsequence, a real number µ ∈ [λ∗,Λ∗], and

a symmetric matrix A = (Aij) with

0 < λI ≤ A ≤ ΛI

such that for all i, j we have ∫
Bεm

aij(x)dx→ Aij (3.30)

and ∫
Bεm

f(x)dx→ µ , (3.31)

and on any compact set, wεm(x) converges strongly in Cα and weakly in W 1,2 to a function

w∞ ∈ W 1,2
loc (IRn), which satisfies:

DiA
ijDjw∞ = χ{w∞>0}µ on IRn, (3.32)

and has 0 in its free boundary.

Proof. This proof is so similar to the proof of Theorem 6.1 ofBT that we leave it for an

Appendix.

3.3.2 Remark (Nonuniqueness of Blowup Limits). Notice that the theorem does not claim

that the blowup limit is unique. In fact, it is relatively easy to produce nonuniqueness even

in the case with a constant right hand side, and it was done inBT for the nondivergence

form case, but that counter-example can be copied almost exactly for the divergence form

case. In the case where the coefficients of L are constant, one can use the counter-example

inB to show nonuniqueness of blowup limits when the right hand side is only assumed to be

continuous.

In fact, let Θ(x) = cos(π ln | ln |x||) + 2. InBT it is shown that Θ is a VMO function.
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It is easy to verify that Θ(x) = 1 when |x| = exp(− exp(2m − 1)), and Θ(x) = 3 when

|x| = exp(− exp(2m)). Now define:

L(w) :=


∆w, in B1/Br

Θ∆w, in Br.

Where r < 1 is equal to exp(− exp(2m0− 1)) for some large m0 ∈ IN. It is not hard to show

that when the scales are picked at ε = exp(− exp(2m−1)), L is very “close” to ∆, and when

the scales are picked at ε = exp(− exp(2m)), L is very “close” to 3∆. (“Close” of course

means close in exactly the sense that we need in order to apply Theorem (3.3.1).) Therefore,

as long as we can choose boundary data that gets us a regular free boundary point at the

origin, we will have different blowup limits according to how we choose our sequence of ε’s

going to zero. The details of this process are carried out inBT, but are essentially unchanged

in the current setting.

3.3.3 Theorem (Caffarelli’s Alternative in Measure (Weak Form)). Assuming again Equa-

tions (3.2) and (3.3), the limit

lim
r↓0

|Λ(w) ∩Br|
|Br|

(3.33)

exists and must be equal to either 0 or 1/2.

Proof. Here again our proof is almost identical to the proof of Theorem 6.3 ofBT, so we

relegate it to an Appendix.

3.3.4 Definition (Regular and Singular Free Boundary Points). A free boundary point

where Λ has density equal to 0 is referred to as singular, and a free boundary point where

the density of Λ is 1/2 is referred to as regular.

The theorem above gives us the alternative, but we do not have any kind of uniformity

to our convergence. Caffarelli stated his original theorem in a much more quantitative (and
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therefore useful) way, and so now we will state and prove a similar stronger version. We

need the stronger version in order to show openness and stability under perturbation of the

regular points of the free boundary.

3.3.5 Theorem (Caffarelli’s Alternative in Measure (Strong Form)). Once again assuming

Equations (3.2) and (3.3), for any ε ∈ (0, 1/8), there exists an r0 ∈ (0, 1), and a τ ∈ (0, 1)

such that

if there exists a t ≤ r0 such that

|Λ(w) ∩Bt|
|Bt|

≥ ε , (3.34)

then for all r ≤ τt we have

|Λ(w) ∩Br|
|Br|

≥ 1

2
− ε , (3.35)

and in particular, 0 is a regular point according to our definition. The r0 and the τ depend

on ε and on the aij, but they do not depend on the function w.

3.3.6 Remark (Another version). The theorem above is equivalent to a version using a

modulus of continuity. In that version there is a universal modulus of continuity σ such that

|Λ(w) ∩Bt̃|
|Bt̃|

≥ σ(t̃) (3.36)

for any t̃ implies a uniform convergence of the density of Λ(w) to 1/2 once Bt̃ is scaled to

B1. (Here we mean uniformly among all appropriate w’s.)

Proof. Here again we have a proof which is almost identical to the proof of Theorem 6.5

inBT. On the other hand, in an effort to make things more convenient for the reader, since

we use this theorem quite a bit, we will include the proof here.

We start by assuming that we have a t such that Equation (3.34) holds, and by rescaling

if necessary, we can assume that t = r0. Next, by arguing exactly as in the last theorem,
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by assuming that r0 is sufficiently small, and by defining s0 :=
√
r0, we can assume without

loss of generality that ∫
Bs0

∣∣aij(x)− δij
∣∣ dx (3.37)

is as small as we like. Now we will follow the argument given for Theorem 4.5 inB very

closely.

Applying our measure stability theorem on the ball Bs0 we have the existence of a

function u which satisfies:

∆u = χ{u>0}µ in Bs0

u ≡ w on ∂Bs0 ,

(3.38)

and so that

|{Λ(u)∆Λ(w)} ∩Br0| (3.39)

is small enough to guarantee that

|Λ(u) ∩Br0|
|Br0|

≥ ε

2
, (3.40)

and therefore

m.d.(Λ(u) ∩Br0) ≥ C(n)r0ε . (3.41)

Now if r0 is sufficiently small, then by Caffarelli’s C1,α regularity theorem for the obstacle

problem (seeC4 orC5) we conclude that ∂Λ(u) is C1,α in an r2
0 neighborhood of the origin.

Furthermore, if we rotate coordinates so that FB(u) = {(x′, xn) | xn = g(x′)}, then we have

the following bound (in Br20
):

||g||
C1,α ≤

C(n)

r0

. (3.42)

On the other hand, because of this bound, there exists a γ < 1 such that if ρ0 := γr0 < r0,

then
|Λ(u) ∩Bρ0|
|Bρ0|

>
1− ε

2
. (3.43)
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Now by once again requiring r0 to be sufficiently small, we get

|Λ(w) ∩Bρ0|
|Bρ0|

>
1

2
− ε . (3.44)

(So you may note that here our requirement on the size of r0 will be much smaller than it

was before; we need it small both because of the hypotheses within Caffarelli’s regularity

theorems and because of the need to shrink the Lp norm of |aij − δij| and the L1 norm of

|f − µ| in order to use our measure stability theorem.)

Now since 1
2
− ε is strictly greater than ε, we can rescale Bρ0 to a ball with a radius close

to r0, and then repeat. Since we have a little margin for error in our rescaling, after we

repeat this process enough times we will have a small enough radius (which we call τr0), to

ensure that for all r ≤ τr0 we have

|Λ(w) ∩Br|
|Br|

>
1

2
− ε .

3.3.7 Corollary (The Set of Regular Points Is Open). Still assuming Equations (3.2) and

(3.3), the set of regular points of FB(w) is an open subset of FB(w).

Proof. The proof of this corollary is identical to the proof of Corollary 4.8 inB except that

in place of using Theorem 4.5 ofB we use Theorem (3.3.5) from this work:

Take r0 and τ as in Theorem 2.4.5. By changing coordinates and rescaling, we can

assume that 0 is a regular point of FB(w). Since 0 is regular, there exists an s ≤ r0 such

that
|Λ(w) ∩Bs|
|Bs|

> ε, (3.45)
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Now we know that if r ≤ τs, then

|Λ(w) ∩Br|
|Br|

≥ 1

2
− ε. (3.46)

Again, since 1/2− ε > ε, we have some margin for error. If γ := ||x0|| is sufficiently small,

and x ∈ FB(w), then
|Λ(w) ∩Bτs−γ(x0)|
|Bτs−γ(x0)|

> ε, (3.47)

and therefore for any r ≤ τ(τs− γ) we have

|Λ(w) ∩Br(x0)|
|Br(x0)|

≥ 1

2
− ε, (3.48)

Thus, x0 is a regular point.

3.3.8 Theorem (Existence of Blowup Limits II). We assume Equation ( 3.2) , and we

assume aij and f belong to VMO. We let

Sr := {x ∈ FB(w) ∩Br : x is a regular point of FB(w) } (3.49)

and we assume S1/2 6= φ. Let K ⊂⊂ S1/2, let {xm} ⊂ K, and let εm ↓ 0.

Then there exists a constant µ ∈ [λ∗,Λ∗], a constant symmetric matrix A = (Aij) with

0 < λ ≤ A ≤ Λ, and a strictly increasing sequence of natural numbers {mj} such that the

sequence of functions {wj} defined by

wj(x) := ε−2
mj
w(xmj + εmjx) (3.50)

converges strongly in Cα (for some α > 0) and weakly in W 1,2 on any compact set to a
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function w∞ which satisfies:

DiA
ijDjw∞ = χ{u∞>0}µ on IRn . (3.51)

Furthermore 0 is a regular point of its free boundary.

Proof. The existence of a function w∞ ≥ 0 satisfying Equation (3.51) and the convergence

of the wj to w∞ is carried out in exactly the same way as in the proof of Theorem (3.3.1) .

Showing that 0 is part of the free boundary of w∞ is also proven exactly as in Theorem

(3.3.1). It remains to show that 0 is a regular point of the free boundary.

For the first part, we observe that since each xm belongs to the regular part of the free

boundary, we know that there exists an rm such that

Λ(w) ∩Brm(xm)

Brm

≥ 3

8
. (3.52)

There exists a small ρ > 0 depending only on the dimension, n, such that if x ∈ Bρrm(xm),

then
Λ(w) ∩Brm(x)

Brm

≥ 1

4
. (3.53)

Now the closure of the set {xm} is compact, and that set is covered by the open balls in

the set {Bρrm(x)}. By compactness, the set is still covered by a finite number of these balls,

and their radii have a positive minimum, ρ0. So, once εmj < ρ0, we know that

Λ(wj) ∩Br

Br

≥ 1

4
, (3.54)

for all r which are less than τ times ρ0. Here τ is the constant given in the statement of

Theorem (3.3.5). From this we can conclude that 0 must be a regular point of FB(w∞).

3.3.9 Remark (Hausdorff Dimension). Exactly as inBT, the arguments above lead to the
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statement that the free boundary is strongly porous and therefore has Hausdorff dimension

strictly less than n. (SeeBT and seeM for the definition of porosity.)

3.4 Finer Regularity of the Free Boundary

In this section we show finer properties of the free boundary at regular points. Since the

counter-examples inB and inBT are easily extended to the current setting, we can have

regular free boundary points where the blowup limit is not unique. In spite of this fact,

we show that the regular free boundary points enjoy a flatness property which is based on

Reifenberg flatness. Reifenberg flatness was introduced by Reifenberg inR, and is studied

in more detail by Toro and Kenig in several papers. (SeeKT1 andKT2 for example.) For the

definitions surrounding Reifenberg vanishing sets we follow the conventions in section 6 ofB,

but now we must introduce a notion of sets which are “relatively Reifenberg flat.”

3.4.1 Definition (Reifenberg Flatness). Let S ⊂ IRn be a locally compact set, and let

δ > 0. Then S is δ−Reifenberg flat if for each compact K ⊂ IRn, there exists a constant

RK > 0 such that for every x ∈ K ∩ S and every r ∈ (0, RK ] we have a hyperplane L(x, r)

containing x such that

DH(L(x, r) ∩Br(x), S ∩Br(x)) ≤ 2rδ . (3.1)

Here DH denotes the Hausdorff distance: If A, B ⊂ IRn, then

DH(A,B) := max{ sup
a∈A

d(a,B) , sup
b∈B

d(b, A) } . (3.2)

We also define the following quantity, which we call the modulus of flatness, to get a more

quantitative and uniform measure of flatness:

θK(r) := sup
0<ρ≤r

(
sup

x∈S∩K

DH(L(x, ρ) ∩Bρ(x), S ∩Bρ(x))

ρ

)
. (3.3)
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Finally, we will say that S is a Reifenberg vanishing set, if for any compact K ⊂ S

lim
r→0

θK(r) = 0 . (3.4)

3.4.2 Definition (Relatively Reifenberg Flat). Let S ⊂ IRn be a locally compact set, let

K ⊂⊂ S, and let δ > 0. Then K is relatively δ−Reifenberg flat with respect to S if there

exists a constant R > 0 such that for every x ∈ K and every r ∈ (0, R] we have a hyperplane

L(x, r) containing x such that

DH(L(x, r) ∩Br(x), S ∩Br(x)) ≤ 2rδ . (3.5)

We also define the modulus of flatness, exactly as above, and then K is relatively Reifenberg

vanishing if the modulus of flatness goes to zero as r approaches 0.

3.4.3 Remark. It is worth noting that the compact set K, plays a very different role in the

two definitions above. In the first case, K allows us to look at bounded sets to get uniform

bounds on the constant RK which bounds the radius, while in the second case, K is the

set that we want to show is Reifenberg vanishing, but we are allowing all of S when seeing

if we are close to a plane. As a simple example, a point can never be Reifenberg flat, but

viewed as a subset of a plane, it is relatively δ-Reifenberg flat.

First we need to show that our measure stability theorem can be used to show uniform

closeness of our solutions to solutions of obstacle problems with constant coefficients and

constant right hand side, as long as we have zoomed in far enough. In particular, we can

say the following:

3.4.4 Theorem (Uniform Closeness Result). We assume Equation (3.2), and we let u ≥ 0

satisfy:

∆u = χ{u>0}µ in B1

u ≡ w on ∂B1 .

(3.6)
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We also assume that there is a fixed constant β, and an α ∈ (0, 1) such that ||w||
Cα(B1)

≤ β.

For any ε > 0, there exists a δ > 0 such that if

||aij(x)− δij||L1(B1) < δ and ||f(x)− µ||L1(B1) < δ , (3.7)

then

||w − u||L∞(B3/4) < ε . (3.8)

Proof. Some of the ideas in this proof were inspired by ideas of Li and Vogelius who in turn

were following ideas of Caffarelli. (SeeLV andC3.) Letting A(x) be the matrix determined

by aij(x), we have in B1 (using “divergence” notation):

div [A(x) (∇[w(x)− u(x)])]

= f(x)χ{w>0} − div [(A(x)− I)∇u(x)]−∆u

= f(x)χ{w>0} − µχ{u>0} − div [(A(x)− I)∇u(x)]

= f(x)
(
χ{w>0} − χ{u>0}

)
+ χ{u>0} (f(x)− µ) + div [(I − A(x))∇u(x)]

= I + II + div [III] .

After fixing q ∈ (n,∞), and by shrinking δ if necessary, we can use our measure stability

theorem (Theorem (3.2.3)) and a simple interpolation, to ensure that the Lq/2 norm of I on

B1 is as small as we like. Using our assumptions and shrinking δ if necessary, we can make

the Lq/2 norm of II on B1 as small as we like. (The fourth line of Equation (3.2) supplies

the L∞ bound needed for the interpolation.)

To control III we need to shrink the ball slightly. First we observe that by De Giorgi-

Nash-Moser theory (see Theorem 8.29 ofGT), there exists an α′ ∈ (0, α) such that

||u||
Cα′ (B1)

≤ C(β,Λ∗) . (3.9)
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For any fixed s ∈ (0, 1/16) we then have

||w − u||L∞(∂B1−s) ≤ C(β,Λ∗)sα
′
. (3.10)

For any q̃ <∞, we can use Calderón-Zygmund Theory to show ||u||W 2,q̃(B1−s) ≤ C, and then

by the Sobolev Imbedding Theorem we know ||u||W 1,α(B1−s)
≤ C, and so finally

||∇u||L∞(B1−s) ≤ C(β,Λ, s) . (3.11)

Considering the boundary value problem that w − u satisfies within B1−s, we have the

following: By shrinking s we can make the boundary values as small as we like by Equation

(3.10). We already have the Lq/2 norm of I and II as small as we like by making δ small.

For III we can use Equation (3.11) to ensure that ||∇u||L∞(B1−s) is under control, and then

shrink δ if necessary to ensure that ||A− I||Lq(B1) is as small as we like. Applying Theorem

8.16 ofGT yields the desired result.

Now we have a standard corollary for obstacle type problems.

3.4.5 Corollary (Free Boundaries Are Close). Assuming Equation (3.2) again, assuming

u is defined as in the previous theorem, and using DH as the Hausdorff distance between

sets defined at the beginning of this section, there exists a universal constant C such that

DH(FB(w), FB(u)) ≤ C
√
ε (3.12)

where ε is the number given in Equation (3.8).

Proof. This result is a simple application of the nondegeneracy enjoyed by each function.

Indeed, if there is a point x where one function is positive and a ball Br(x) where the other

function is zero, then nondegeneracy implies that the max of the first function is Cr2 on

∂Br(x) and this must be smaller than ε.
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Now we prove the main theorem of this chapter.

3.4.6 Theorem (Free Boundary Regularity). Once again we assume Equation (3.2) and

we assume that aij and f belong to VMO. As in Equation (3.49) we define Sr to be the

set of regular points of the free boundary within Br. Let K ⊂⊂ S1/2. Then K is relatively

Reifenberg vanishing with respect to S1/2.

Proof. Fixε > 0. We will demonstrate that there is a radius r̃ > 0 such that for any x ∈ K,

and any positive r < r̃ there is a hyperplane H(r, x) such that

DH(FB(w) ∩Br(x), H(r, x) ∩Br(x)) ≤ rε . (3.13)

We start by using the compactness of K in almost the same way as in Theorem (3.3.8).

Namely, we know that for every x ∈ K there exists an rx such that

|Λ(w) ∩Brx(x)|
|Brx|

≥ 49

100
. (3.14)

Next, there exists a small ρ > 0 depending only on the dimension, n, such that if y ∈

Bρrx(x) ∩ FB(w), then
|Λ(w) ∩Brx(y)|

|Brx|
≥ 48

100
. (3.15)

Now K is compact, and is therefore covered by the open balls in the set {Bρrx(x)}. By

compactness, the set is still covered by a finite number of these balls, and their radii have

a positive minimum, ρ0. Using Theorem (3.3.5) guarantees that for all r < τρ0, and for all

x ∈ K, we have
|Λ(w) ∩Br(x)|

|Br|
≥ 48

100
. (3.16)

Here τ is the constant given in the statement of Theorem (3.3.5). Henceforth, the argument

becomes completely independent of whatever point in the free boundary that we wish to
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consider, so we can fix x0 ∈ FB(w), and show flatness at that point. Also, given the VMO-

modulus η, we can be sure that every quantity that we wish to control below can be shrunk

in a uniform and universal way by shrinking the radius that we are considering.

We consider the situation in Br(x0) and after a linear invertible change of coordinates

with eigenvalues bounded away from 0 and∞ in a uniform way depending only on ellipticity,

we can assume that the averages of aij are δij and the average of f is µ. Then we let u solve

the boundary value problem:

∆u = µχ{u>0} in Br(x0)

u = w on ∂Br(x0) .

(3.17)

By the L1 closeness of aij to δij and f to µ which are controlled by the VMO-modulus along

with our measure stability theorem (Theorem (3.2.3)), we can guarantee (by assuming r1 is

sufficiently small) that
|Λ(v) ∩Br1(x0)|

|Br1|
≥ 47

100
. (3.18)

Now it follows from Caffarelli’s free boundary regularity theorem (see Theorem 7 ofC4 orC5)

that if r2 ≤ τ2r1 where τ2 is suitably small, then FB(v) ∩ Br2(x0) is uniformly C1,α in

Br2(x0). We can also assume that FB(v) has a free boundary point as close to x0 as we

like by using the last corollary (and shrinking r1 again if needed). Now zooming in on a

uniformly C1,α set will flatten it in a uniform way depending only on how much one zooms,

so after zooming in to r3 := τ3r2, where τ3 will only depend on estimating how uniformly

C1,α functions flatten out as you zoom in, so we can have FB(v)∩Br3(x0) within r3 · ε/2 of

a plane. Now we invoke Corollary (3.4.5) again to guarantee that FB(w) is within r3 · ε/2

of FB(v) and we are done.

3.4.7 Remark (Choosing r). It is worth remarking that the rj that work for all of the

estimates in the last proof must be found before finding the function u, and then in Equation
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(3.17) we can use r = r3.

3.4.8 Remark (Nondivergence Form Case). The Theorem above (and the next corollary)

can be extended without any difficulty to the nondivergence form setting. On the other

hand, in the nondivergence form setting, since the functions will have stronger convergence

to their blowup limits, it is very likely that the Weiss-type Monotonicity formula can be used

to give an easier proof. In the divergence form case, the presence of the Dirichlet integral

within the Weiss-type monotonicity functional coupled with the weak convergence in W 1,2

to the blowup limit makes it difficult to move back and forth from the original function to

its blowup limit.

3.4.9 Corollary (Blowup Classification). Any blowup found in Theorem (3.3.8) must be

homogeneous of degree two, and therefore in the right coordinate system, it willl be a constant

times (x+
n )2.

Proof. By Theorem (3.4.6) any blowup found in Theorem (3.3.8) will have to be a global

solution to the obstacle problem with a free boundary which is a hyperplane. Then by

applying a combination of the Cauchy-Kowalevski theorem and Holmgren’s uniqueness the-

orem we conclude (after a possible rotation and change of coordinates) that the blowup

limit is C(x+
n )2.
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Appendix A

Proof of Theorem 3.3.1

Proof. We define the matrix

Aijr :=

∫
Br

aij(x)dx, (A.1)

then this matrix also satisfies the elliptic setting. We can take a subsequence of the radii εn

such that each scalar Aijεn converges to a real number Aij. With this subsequence, we also

know: ∫
Bεn

|aij(x)− Aijεn|dx ≤ η(εn)→ 0, (A.2)

where η is just taken to be the maximum of all of the VMO moduli for each of the aijs and

by the triangle inequality this lead to

∫
Bεn

|aij(x)− Aij|dx→ 0. (A.3)

Now we observe that if aij,n(x) := aij(εnx) then the rescaled function wn := wεn satifies the

equation: ∫
B1

|aij,n(x)− Aij|dx ≤ η(εn)→ 0. (A.4)

So Lemma 3.2.1 gives us exactly what we need.
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Appendix B

Proof of Theorem 3.3.3

Proof. We will suppose that

lim sup
r↓0

|Λ(w) ∩Br|
|Br|

> 0 (B.1)

and show that in this case the limit exists and is equal to 1/2. It follows immediately from

this assumption that there exists a sequence {εn} → 0 such that(for some δ > 0) we have

|Λ(wεn) ∩B1|
|B1|

> δ (B.2)

for all n. We can extract a subsequence, and guarantee the existence of a symmetric positive

definite matrix Aij which satified the elliptic setting., and a w∞ ∈ W 2,p
loc (IRn), such that if

aij,n(x) := aij(εn, x), then ∫
Bεm

aij(x)dx→ Aij, (B.3)

∫
Bεm

f(x)dx→ µ , (B.4)

and

DiA
ijDjw∞ = χ{w∞>0}µ on IRn (B.5)
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and 0 is in FB(w∞). Furthermore, we will have wn converging to w∞ in both W 2,p and C1,α

on every compact set.

Now we diagonalize the matrix Aij, and then we dilate the individual coordinates so

that in the new coordinate system we have Aij = δij.

Now we let un denote the solution to


∆un = χ{un>0}µ in B1

un = wn on ∂B1 .

(B.6)

Applying our measure stability to un and wn we can make |Λ(un)∆Λ(wn)| as small as we

like for n sufficiently large. In particular, we now have:

|Λ(wn) ∩B1|
|B1|

>
δ

2
(B.7)

Since wn converges uniformly to w∞ on every compact set, it follows that un converges

uniformly to w∞ on ∂B1, and now we have

|Λ(w∞) ∩B1|
|B1|

>
δ

2
(B.8)

We can invoke the C1,α at regular points to guarantee that w∞ at the origin, and this implies

that

lim
r↓0

|Λ(w∞) ∩Br|
|Br|

>
1

2
. (B.9)

Now it remains to do two things. First we need to pass this result from w∞ back to our

subsequence of radii for w, but second we will need to show that we get the same limit along

any sequence of radii converging to zero. The first step is a consequence of combining our
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measure stability with Corollary 4 of [C2]. Indead, for any r > 0,

lim
n→∞

(
|Λ(wn) ∩Br|
|Br|

− |Λ(w∞) ∩Br|
|Br|

)
= 0. (B.10)

On the other hand, by our rescaling, this equation becomes

lim
n→∞

(
|Λ(w) ∩B(rεn)|
|B(rεn)|

− |Λ(w∞) ∩Br|
|Br|

)
= 0, (B.11)

which implies that

lim
n→∞

|Λ(w) ∩B(rεn)|
|B(rεn)|

=
1

2
. (B.12)

Finally, we wish to be able to replace rεn with r in previous equation. Suppose that we have

a different sequence of radii converging to zero(which we call sk) such that

|Λ(w) ∩Bsk |
|Bsk |

6= 1

2
(B.13)

At this point we are led to a contradiction in one of two ways. If the limit above does not

equal zero, then we can get convergence to a global solution with properties which contradict

the Caffarelli Alternative. On the other hand, if the limit does equal zero, then we use the

continuity of the function:

g(r) :=
|Λ(w) ∩Br|
|Br|

(B.14)

to get an interlacing sequence of radii which we can call s̃k and which converge to zero such

that g(sk) = 1/4, and then we proceed as in the first case.
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