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Abstract

Under the guidance of Dr. Ivan Blank, I study the obstacle problem with an elliptic
operator in divergence form. First, I give all of the nontrivial details needed to prove a
mean value theorem, which was stated by Caffarelli in the Fermi lectures in 1998. In fact,
in 1963, Littman, Stampacchia, and Weinberger proved a mean value theorem for elliptic
operators in divergence form with bounded measurable coefficients. The formula stated by
Caffarelli is much simpler, but he did not include the proof. Second, I study the obstacle
problem with an elliptic operator in divergence form. I develop all of the basic theory of
existence, uniqueness, optimal regularity, and nondegeneracy of the solutions. These results
allow us to begin the study of the regularity of the free boundary in the case where the

coeflicients are in the space of vanishing mean oscillation (VMO).
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Chapter 1

Introduction

1.1 Notations and Assumptions

We will use the following basic notation throughout our work:

Xp the characteristic function of the set D
D the closure of the set D

oD the boundary of the set D

x (x1,m9, ..., Ty)

x (x1,29,...,2,-1,0)

B, (z) the open ball with radius r centered at the point x
B, B, (0)

Qw)  {w>0}

A(w) {w =0}

FB(w)  0Q(w)NIA(w)



We define the divergence form elliptic operator: (We will use Einstein summation notation
throughout.)

or, in other words, for a function u € W'2?(Q) and f € L*(Q) we say “Lu = f in Q” if for
any ¢ € W,*(Q) we have:

—/Qaij(x)D,;ungzﬁ:/quﬁ. (1.2)

(Notice that with our sign conventions we can have L = A but not L = —A.). We assume
that at each z € By, the matrix A = (a/) is symmetric and strictly and uniformly elliptic,
ie.

A=A" and 0 <M < A<AT, (1.3)

or, in coordinates:
a’ =a’ and 0 < \¢)? < a"6& < AJE)? forall ¢ € R™, €#£0.

Throughout the entire paper, n, A, and A will remain fixed, and so we will omit all depen-
dence on these constants in the statements of our theorems. We will typically work in the
Sobolev spaces and the Holder spaces, and we will follow all of the definitions and conven-
tions found in the book by Gilbarg and Trudinger. (See“T.) To simplify exposition slightly,
for u,v € W?(D) we will say that v = v on 9D if u — v € W,?(D).

1.2 Outline

Based on the ubiquitous nature of the mean value theorem in problems involving the Lapla-
cian, it is clear that an analogous formula for a general divergence form elliptic operator
would necessarily be very useful. In™W, Littman, Stampacchia, and Weinberger stated a

mean value theorem for a general divergence form operator, L. If ;1 is a nonnegative measure



on 2 and u is the solution to:
Lu=p in €
(1.4)
0 on 090,
and G(z,y) is the Green’s function for L on ) then Equation 8.3 in their paper states that

u(y) is equal to
lim i/ w(z)a”(x) Dy, G(x,y) Dy, Gz, y) dz (1.5)

almost everywhere, and this limit is nondecreasing. The pointwise definition of u given by
this equation is necessarily lower semi-continuous. There are a few reasons why this formula
is not as nice as the basic mean value formulas for Laplace’s equation. First, it is a weighted
average and not a simple average. Second, it is not an average over a ball or something
which is even obviously homeomorphic to a ball. Third, it requires knowledge of derivatives
of the Green’s function.

A simpler formula was stated by Caffarelli in®® and“®. That formula provides an in-
creasing family of sets, Dr(xy), which are each comparable to Br and such that for a

supersolution to Lu = 0 the average:

1
e u(z) dx
| Dr(o)| Dr(zo)
is nondecreasing as R — 0. On the other hand, Caffarelli did not provide any details about
showing the existence of an important test function used in the proof of this result, and
showing the existence of this function turns out to be nontrivial. The first part of my
dissertation grew out of an effort to prove rigorously all of the details of the mean value

theorem that Caffarelli asserted in®® and“R.

In order to get the existence of the key test function, one must be able to solve the



variational inequality or obstacle type problem:

DiaiijVR = 5350 (16)

R Xvesor —
where 9,, denotes the Dirac mass at xy. In“R, the book by Kinderlehrer and Stampacchia is
cited (see®9) for the mean value theorem. Although many of the techniques in that book are
used in the current work, an exact theorem to give the existence of a solution to Equation
(1.6) was not found in¥S by myself, my advisor, or by Kinderlehrer. We were also unable
to find a suitable theorem in other standard sources for the obstacle problem. (See® and™t.)
Indeed, we believe that without the nondegeneracy theorem stated in this paper there is a
gap in the proof.

To understand the difficulty inherent in proving a nondegeneracy theorem in the diver-
gence form case it helps to review the proof of nondegeneracy for the Laplacian and/or in
the nondivergence form case. (See® BT and“®.) In those cases good use is made of the
barrier function |z — xo|?. The relevant properties are that this function is nonnegative and
vanishing at xg, it grows quadratically, and most of all, for a nondivergence form elliptic
operator L, there exists a constant v > 0 such that L(|z — z¢|?) > 7. On the other hand,
when L is a divergence form operator with only bounded measurable coefficients, it is clear
that L(|z — x0]?) does not make sense in general.

In section 2.1, we almost get the existence of a solution to a PDE formulation of the
obstacle problem. In section 2.2 we first show the basic quadratic regularity and nonde-
generacy result for our functions which are only “almost” solutions, and then we use these
results to show that our “almost” solutions are true solutions. In section 2.3 we get existence
and uniqueness of solutions of a variational formulation of the obstacle problem, and then
show that the two formulations are equivalent. In section 2.4 we show the existence of a
function which we then use in the sixth section to prove the mean value theorem stated in©®
and“®, and give some corollaries.

The results in this chapter 2 are used in chapter 3 where we establish some weak regular-
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ity results for the free boundary in the case where the coefficients are assumed to belong to
the space of vanishing mean oscillation. We will discuss the space VMO in chapter 3. The
methods rely on stability, flatness, and compactness arguments. In the case where the coef-
ficients are assumed to be Lipschitz continuous, recent work of Focardi, Gelli, and Spadaro
establishes stronger regularity results of the free boundary. The methods of that work have
a more “energetic” flavor: They generalize some important monotonicity formulas, and use
these formulas along with the epiperimetric inequality due to Weiss and a generalization of
FGS‘ )

Rellich and Nécas’ identity to prove their regularity results. (See

In Chapter 3 we study minimizers of

/ a”’ DiuDju (1.7)
By

among v in the Hilbert space W, (B;) which are constrained to lie above a fixed obstacle
NS C’O(El). We assume that our obstacle ¢ < 0 on 0B, and to avoid triviality we will
assume that max e > 0.

If we let Lv := D;a" D;v in the usual weak sense for a divergence form operator and we
consider the case where Ly € L*°(By), then by letting w := u — ¢ and by letting f := — L,
the study of the minimizers above leads us to look at weak solutions of the obstacle-type
problem:

Lw = D;a" Djw = Xwooy/ 1 Bi, (1.8)

where x, denotes the characteristic function of the set S, and where we look for w > 0.
Our motivations for studying this type of problem are primarily theoretical. Indeed, the
obstacle problem is possibly the most fundamental and important free boundary problem,
and it originally motivated the study of variational inequalities. On the other hand, the
obstacle problem has well-established connections to the Stefan problem and the Hele-Shaw

C1

problem. (See® andBX¥M for example.) Furthermore, as observed in™"® the mathematical

modeling of numerous physical and engineering phenomena can lead to elliptic problems



with discontinuous coefficients, and so the current case seems to allow some of the weakest
possible solutions.

Our main result is the following:
1.2.1 Theorem (Free Boundary Regularity). We assume
1. w > 0 satisfies Equation (1.8),
2. a" satisfies Equation (1.5),
3. 0< A< f<A* and
4. a” and f belong to the space of vanishing mean oscillation (VMO).

We let S, denote the set of reqular points of the free boundary within B,., and assume

K CC Sy/2. Then K is a relatively Reifenberg vanishing set.

The definition of Reifenberg vanishing is found at the beginning of section 3.4.

As a corollary of this result we will conclude that blowup limits at regular points will
be rotations and scalings of the function (z;})?. In terms of the fact that this function is
homogeneous of degree 2, it is quite usual to use Weiss’s celebrated monotonicity formula
to prove this type of result. (See".) On the other hand, the weak nature of our equation,
together with the weak W12 convergence to blowup solutions make it difficult to estimate
differences of the values of the Dirichlet integrals which appear in Weiss’s formula. So,
instead of using homogeneity to prove Reifenberg flatness, we will have to prove things in
the opposite direction.

In section 3.1, we introduce and recall some basic results. In section 3.2, we show a
Measure Stability. In section 3.3, we prove the exstence of blowup limits, and establish the
Caffaralli’s Alternative. Then in section 3.4, we provide the Reigenberg Flatness of the free

boundary of our problem and some corollaries.



Chapter 2

The Mean Value Theorem

2.1 The PDE Obstacle Problem with a Gap

We wish to establish the existence of weak solutions to an obstacle type problem, that is,

we want to find a nonnegative function w € W'?(B;) which is a weak solution of:

Lw = X{w>0}f in B;

(2.1)
w=g¢g on 0B;.
In addition to the assumptions in Chapter 1, we assume that
f,a” € L>*(B;) and g€ WY (B)) n L®(B), (2.2)
which satisfy:
0<A<f<A,
(2.3)

g #0on 0By, g > 0.



In this section we will content ourselves to produce a nonnegative function w € W'?(B)

which is a weak solution of:
Lw=h in B

w=g¢g on 0B,

where we know that h is a nonnegative function satisfying:

for x € {w =0}°

0
h(z) = f(x) for z € {w > 0}°

h(z) <A for x € O{w =0} U{w > 0},

(2.4)

(2.5)

where for any set S C IR", we use S° to denote its interior. Thus h agrees with Xwsoy ]

everywhere except possibly the free boundary. (The “gap” mentioned in the title to this

section is the fact that we won’t know that h = x,_,

f a.e. until we show that the free

boundary (that is 0{w = 0} U 9{w > 0}) has measure zero.) We will show that such a w

exists by obtaining it as a limit of functions w, which are solutions to the semilinear PDE:

Lw = ®,(w)f in B

w=g¢g on 0B,

where for s > 0, ®4(z) := ®1(x/s) and ®(x) is a function which satisfies

3. =0forz <0, &y =1forx>1,and

4. @) (z) > 0 for all z.

(2.6)

The function ®, has a derivative which is supported in the interval [0, s] and notice that for

a fixed =, ®4(z) is a nonincreasing function of s.

8



If we let H denote the standard Heaviside function, but make the convention that

H(0) := 0 then we can rewrite the PDE in Equation (2.1) as
Lw=H(w)f
to see that it is formally the limit of the PDEs in Equation (2.6). We also define
O (x) = Dy(x + 5)

so that we will be able to “surround” our solutions to our obstacle problem with solutions
to our semilinear PDEs.

The following theorem seems like it should be stated somewhere, but without further
smoothness assumptions on the a¥ we could not find it within®T,#* or™Y. The proof is a

fairly standard application of the method of continuity, so we will only sketch it.

2.1.1 Theorem (Existence of Solutions to a Semilinear PDE). Given the assumptions

above, for any s € [—1,1] \ {0} there exists a wy that satisfies Equation (2.6).

Proof. We provide only a sketch. Fix s € [—1,1] \ {0}. Let T be the set of ¢t € [0, 1] such

that there is a unique solution to the problem

Lw =td,(w)f in B
(2.7)

w=g¢g on 0B;.

We know immediately that 7" is nonempty by observing that Theorem 8.3 of ST shows us
that 0 € T. Now we need to show that 7" is both open and closed.
As in"WV we let 712 denote the Hilbert space formed as the quotient space W1%(B;)/

W,*(By) and then we define the Hilbert space

H:=Wy*By) @1, (2.8)

9



where W, "*(B;)* denotes the dual space to W,"*(B;). Next we define the nonlinear operator

Lt : W12(By) — H. For a function w € W2?(By), we set

L{(w) = ¢(w) & R(w) (2.9)

where R(w) is simply the restriction from w to its boundary values in 72

¢ € Wy?(By) we let

, and for any

[0 (w)](¢) == / (a”(z)DywD;¢ + 1@, (w) f¢) du . (2.10)

By

In order to show that 7' is open we need the implicit function theorem in Hilbert space.
In order to use that theorem we need to show that the Gateaux derivative of L' is invertible.
The relevent part of that computation is simply the observation that the Gateaux derivative

of £t which we denote by D/*, is invertible. Letting v € W'?(B;) we have

[[Det(w)](qﬁ)} (v) = /B (a7 () DivD; + &, (w) fvg) da . (2.11)

The function d(z) := t®,(w(x))f(x) is a nonnegative bounded function of = and so we

fGT

can apply Theorem 8.3 o again in order to verify that D¢ is invertible. Then by the

discussion above, this fact leads to the openness of T'.
In order to show that T is closed we let ¢, — ¢, and assume that {t,} € T. We let w,

solve

Lw =t,P(w)f in B
(2.12)

w=g¢g on 0B,
and observe that the right hand side of our PDE is bounded by A. Knowing this information
we can use Corollary 8.7 of ™ to conclude ||w,||w1.2(5,) < C, and we can use the theorems

of De Giorgi, Nash, and Moser to conclude that for any r» < 1 we have | ) < C.

‘wnHCO‘(B_T

Elementary functional analysis allows us to conclude that a subsequence of our w, will

10



converge weakly in W'%(B,) and strongly in C%2(B,) to a function @. Using a simple

diagonalization argument we can show that w satisfies

Lw=1t®,(w)f in B
(2.13)

w=g¢g on 0B,

and this fact show us that ¢ € T. m

We will also need the following comparison results:

2.1.2 Proposition (Basic Comparisons). Under the assumptions of the previous theorem
and letting ws denote the solution to Equation (2.0), we have the following comparison

results:
1. s>0 =w, >0,
2.s<0 =>ws>s,
3. t<s = w > ws,
4.t<0<s 2wy <w,+s—t, and
5. For a fizred s € [—1,1] \ {0} the solution, ws is unique.

Proof. All five statements are proved in very similar ways, and their proofs are fairly
standard, but for the convenience of the reader, we will prove the fourth statement. We

assume that it is false, and we let

QO ={w, —w, >s—t}. (2.14)

Obviously wy — w; = s — t on 02~. Next, observe that by the second statement we know

that Q~ is a subset of {w,s > s}. Thus, within Q= we have L(ws —w;) = 1 — ®4(w;) > 0 and

11



so if )7 is not empty, then we contradict the weak maximum principle. n

We are now ready to give our existence theorem for our “problem with the gap.”

2.1.3 Theorem (Existence Theorem). Given the assumptions above, there erists a pair

(w, h) such that w > 0 satisfies Equation (2.4) with an h > 0 which satisfies Equation

(2.5) .

Proof. Using the last proposition, we can find a sequence s, — 0, and a function w such
that (with w, used as an abbreviation for ws, ) we have strong convergence of the w, to

w in C*(B,) for any r < 1 and weak convergence of the w,, to w in W?(By). Elementary

functional analysis allows us to conclude that the functions x ., _, f converge weak-* in

>0}
L>®(B) to a function h which automatically satisfies 0 < h < A. By looking at the equations
satisfied by the w,’s and using the convergences, it then follows very easily that the function
w satisfies Equation (2.4), but it remains to verify that the function h is equal to X{wsoy ]
away from the free boundary.

Since the limit is continuous, the set {w > 0} is already open, and by the uniform con-
vergence of the w,,’s we can say that on any set of the form {w > v} (where v > 0) we will
have ®, (w,) = 1 once n is sufficiently large. Thus we must have h = f on this set. On the

other hand, in the interior of the set {w = 0} we have Vw = 0, and so it is clear that in

that set h =0 a.e. ™

2.2 Regularity, Nondegeneracy, and Closing the Gap

Now we begin with a pair (w, h) like the pair given by Theorem (2.1.3), except that we do
not insist that it have any particular boundary data on dB;. In other words, in this section

w will always satisfy

L(w) =h in By, (2.15)

12



for a function h which satisfies Equation (2.5). In addition we will assume Equations (2.2)
and (2.3) hold. By the end of this section we will know that the set d{w = 0} has Lebesgue

measure zero and so w actually satisfies:

L(w) f in By, (2.16)

= X{w>o

which will allow us to forget about h afterward. Before we eliminate h, we have two main
results: First, w enjoys a parabolic bound from above at any free boundary point, and
second, w has a quadratic nondegenerate growth from such points. It turns out that these

properties are already enough to ensure that the free boundary has measure zero.

2.2.1 Lemma. Assume that w satisfies everything described above, but in addition, assume

that w(0) = 0. Then there exists a C' such that
| w ||z, < C. (2.17)
Proof. Let u solve the following PDE:

Lu=h in Bl
(2.18)

u=20 on 0B .

Then Theorem 8.16 of T gives
| u|Le(m,) < Ch. (2.19)

13



Now, consider the solution to:

Lv=0 in Bl
(2.20)
v=w on 0B;.

Notice that u(x) 4+ v(z) = w(z), and in particular 0 = w(0) = u(0) 4+ v(0). Then by the

Weak Maximum Principle and the Harnack Inequality, we have

sup |v| = supv < Cy inf v < Cyv(0) < Cy(—u(0)) < Cy - Ch. (2.21)
By s Bi)a B2
Therefore
Il [|zee (8,0 < C (2.22)
]

2.2.2 Theorem (Optimal Regularity). If 0 € 0{w > 0}, then for any x € By, we have
w(z) < 4C|z|? (2.23)

where C' is the same constant as in the statement of Lemma (2.2.1).

Proof. By the previous lemma, we know || w ||z(s, ,,) < C. Notice that for any v > 1,

Bi2
- o2

is also a solution to the same type of problem on By, but with a new operator L, and with a
new function f multiplying the characteristic function on the right hand side. On the other

hand, the new operator has the same ellipticity as the old operator, and the new function

14



f has the same bounds that f had. Suppose there exist some point z; € By, such that

w(zy) > 40|z % (2.25)
Then since s+ > 1 and since -2 € 9B1, we have
2|1 | 2|1 | 2
( 1 ) L (@) > € (2.26)
(T = w(z : :
() \2[wa[ )~ 42
which contradicts Lemma (2.2.1). m

Now we turn to the nondegeneracy statement. The first thing we need is a variant of

the following result from™W:

2.2.3 Lemma (Corollary 7.1 of "W). Suppose u is a nonnegative measure supported in C
which we assume is a compact subset of By. Suppose L and L are divergence form elliptic
operators exactly of the type considered in this work, and assume that their constants of

ellipticity are all contained in the interval of positive numbers: [\, A]. If

(2.27)

then there exists a constant K = K(n,C,\,\) such that for all z € C we have

K 'u(x) <

=gl

(x) < Ku(z) .

We need to do away with the restriction that p be supported on a compact subset of
By, but we can restrict our attention to much simpler nonnegative measures. In fact, the

following lemma is good enough for our purposes:

15



2.2.4 Lemma. Assume L and L are taken ezactly as in Lemma (2.2.3), and assume

(2.28)

Then there exists a postive constant Cy = Co(n, A, \) such that for all x € B4 we have

Citw(x) < i(z) < Cow(x) . (2.29)

Proof. Without loss of generality we can assume that L is the Laplacian, and we can also
replace the assumption Lw = Aw = 1 with the assumption Lw = Aw = —1 so that w and

w are positive functions. In fact, w(z) = ©(z) where we define

1—|z]?
O(z) = 27|1| :

It will be convenient to define the following positive universal constants:

0,:= | |VOP and 0y = / 0. (2.30)
B By
Let u solve
Lu = _X{Bl/Q} in B1 (231>
u=0 on 0B

and let v solve

Lv:—1+X{Bl/2} in By (2.52)
v=0 on 0B;.

By the strong maximum principle, both u and v are positive in By, and since w = u + v in

16



By, we have w > u in B;. By Theorem 8.18 of ©T

\N" ]
(z_l) lullzB, ) < Cinfu. (2.33)

By basic facts from the Calculus of Variations, u is characterized as the unique minimizer

of the functional:

Hoir) = | VoA@Vo-2 [ 4. (2.34)

By
when r is taken to be 1/2. (We are letting A(x) be the matrix of coefficients for the operator

L.) Now we observe that for any ¢ > 0, we have

J(tO;1/2) = * V@A(x)V@—Qt/ S

By Bl/2

< t2A0; — 2t6 .

(Recall that #; and 6, are the positive universal constants defined in Equation (2.30) above.)

Now by taking

0
t = —
A6,
we can conclude
92
J(u;1/2) < J(t©;1/2) < —ﬁ = —(C; <0. (2.35)
1

Since

J(u;1/2) > —2/ u=—=2[[ullz1(s,,) »

B1/2
we can conclude that

HUHLl(Bl/z) > /2,

which can be combined with Equation (2.33) to get

inf w > inf u>C (2.36)

By By

17



which is half of what we need.

By Theorem 8.17 of T we know

supw < C(|[wllias, + 1)

By 2

(2.37)

Using the fact that w is the unique minimizer of J(+;1) and reasoning in a fashion almost

identical to what we did above we get:

0> J(w;1)

> A \Vw|2—2/ w
B1

B1

= MIVellZas,) — 2/l

> C’)\||w\|%2(31) —2[|w||z1(my) by Poincaré’s inequality

> OMwl[z25,) — 2(1wllz2s) + 1 Bi)

which forces ||w||2(p,) < Co for some universal Cy. Combining this equation with Equation

(2.37) gives us what we need.

2.2.5 Lemma. Let W satisfy the following
ASLW)<A inB, and W >0,
then there exists a positive constant, C, such that
%I;ITDW > W(0) +Cr? .

Proof. Let u solve

L(u)=0 in B, andu=W on 0B, .

18

(2.38)

(2.39)

(2.40)



Then the Weak Maximum Principle gives:

supu > u(0). (2.41)
0B,
Let v solve
L(v)=L(W) in B, andv=0 on 0B, . (2.42)
Notice that vg(x) := M;;TQ solves
A(vg) =1 in B, andvy=0 on 0B, . (2.43)

By Lemma (2.2.4) above, there exist constants C, Cy, such that Civg(z) < v(z) < Chvp(x)
in B, /4. In particular,

—0(0) = Cag—. (2.44)

By the definitions of u and v, we know W = u + v, therefore by Equations (2.41) and (2.44)

we have
2

Sup W (z) = supu(z) > u(0) = W(0) = v(0) = W(0) + Coz. (2.45)

2.2.6 Lemma. Take w as above, and assume that w(0) =~ > 0. Then w > 0 in a ball By,

where 60 = Coﬁ

Proof. By Theorem (2.2.2), we know that if w(zy) = 0, then
v = w(zo) —w(0)] < Clao|?, (2.46)

which implies |zo] > C\/7. ]
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2.2.7 Lemma (Nondegenerate Increase on a Polygonal Curve). Let w be exactly as above
except that we assume that everything is satisfied in By instead of By. Suppose again that
w(0) =~ > 0, but now we may require y to be sufficiently small. Then there exists a positive

constant, C, such that

supw(x) > C + . (2.47)
By

Proof. We can assume without loss of generality that there exists a y € B;/3 such that

w(y) = 0. Otherwise we can apply the maximum principle along with Lemma (2.2.5) to get:
supw(x) > supw(x) > v+ C, (2.48)

Bi B1/3

and we would already be done.

By Lemmas (2.2.5) and (2.2.6), there exist x; € 0By,, such that
52
w(zy) > w(0) + Cﬁ = (1+Ch)y. (2.49)

For this x; and By, (x1) where §; = Cy/w(z1), Lemma (2.2.6) guarantees the existence of

an xs € 0By, (z1), such that
w(xg) > (1 + CPw(zy) > (14 Ch)*y. (2.50)
Repeating the steps we can get finite sequences {z;} and {0;} with zo = 0 such that
w(z;) > (14 C)y and & = |21 — x| = Con/w(x). (2.51)

Observe that as long as x; € By/3, because of the existence of y € By/3 where w(y) = 0

we know that §; < 2/3, and so z;4 is still in B;. Pick NV to be the smallest number which
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satisfies the following inequality:

i 1
that is )
(1+C1)2 -1
21n {?C;—\ﬁ + 1}
N > -1 (2.53)

111(1 + Cl)

Plugging this into Equation (2.51) gives

1
(1+C1)2 -1
21n 3Co v +1

w(zy) 291+ Ch) B

L 2

_ Y (1+Cl>2 —1 +1
1+ C, 300\/7

= (éo+é1ﬁ)2

Z CQ(]' ‘I"V) y

where the last inequality is guaranteed by the fact that we allow v to be sufficiently small.

2.2.8 Lemma. Take w as above, but assume that 0 € {w > 0}. Then
supw(z) > C. (2.54)

0B

Proof. By applying the maximum principle and the previous lemma this lemma is imme-

diate. -

2.2.9 Theorem (Nondegeneracy). With C' = C(n, X\, A, X\, A) > 0 exactly as in the previous
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lemma, and if 0 €{w > 0}, then for any r < 1 we have

sup w(z) > Cr? . (2.55)

Q?EBT

Proof. Assume there exists some ry < 1, such that

sup w(x) = Cyry < Cro? . (2.56)
J:EB,.O
Notice that for v <1,
w(y)
uy(z) = . (2.57)

is also a solution to the same type of problem with a new operator L and new function h

defined in B;, but the new operator has the same ellipticity as the old operator, and the new

w(rox)

h has the same bounds and properties that » had. Now in particular for u,,(z) = or o We
have for any x € B,
w(rox 1
Upy (T) = ( (; ) < — sup w(r) =0 < C, (2.58)
TO 700 xEBrO
which contradicts the previous lemma. [

2.2.10 Corollary (Free Boundary Has Zero Measure). The Lebesgue measure of the set

o{w = 0}

18 Zero.

Proof. The idea here is to use nondegeneracy together with regularity to show that con-
tained in any ball centered on the free boundary, there has to be a proportional subball

where w is strictly positive. From this fact it follows that the free boundary cannot have

22



any Lebesgue points. Since the argument is essentially identical to the proof within Lemma

5.1 of BT that P has measure zero, we will omit it. [

2.2.11 Remark (Porosity). In fact, more can be said from the same argument. Indeed,
it shows that the free boundary is strongly porous and therefore has a Hausdorff dimen-
sion strictly less than n. (See™ for definitions of porosity and other relevent theorems and

references. )

2.2.12 Corollary (Removing the “Gap”). The existence, uniqueness, reqularity, and non-

degeneracy theorems from this section and the previous section all hold whenever
L(w)=h

18 replaced by

L(w) = X o0 [ -

2.3 Equivalence of the Obstacle Problems

There are two main points to this section. First, we deal with the comparatively simple task
of getting existence, uniqueness, and continuity of certain minimizers to our functionals in
the relevant sets. Second, and more importantly we show that the minimizer is the solution
of an obstacle problem of the type studied in the previous two sections. We start with some
definitions and terminology.

We continue to assume that % is strictly and uniformly elliptic and we keep L defined
exactly as above. We let G(z,y) denote the Green’s function for L for all of IR" and observe

that the existence of GG is guaranteed by the work of Littman, Stampacchia, and Weinberger.

(See™W.)
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Let
Csmr = min G(z,0)
z€OB,

Chigr = max G(z,0)

Gsm,r (l’) = mln{G(m, 0)7 Csm,r}

and observe that Gy, € WY3(By) by results from™ W combined with the Cacciopoli
Energy Estimate. We also know that there is an o € (0,1) such that Gy, € C%*(Byy)
by the De Giorgi-Nash-Moser theorem. (See“T or™' for example.) For M large enough to
guarantee that Gy, (2) := Ggn1(z) = G(x,0) on 0By, we define:

Hyo = {w e WY(By) : w— Gy, € Wy (By) }

and

Kyeg:={weHye : wx) <G(z,0) for all z € By }.

SW

(The existence of such an M follows from™W  and henceforth any constant M will be large

enough so that Gg,1(x) = G(x,0) on 0Byy.)

Define:
0 fort>0

—e %t fort<o0,
J(w,Q) = /(aijDiijw —2R™w) , and
Q

Je(w, Q) == /(aijDiijw —2R7"w +20.(G — w)) .
Q
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2.3.1 Theorem (Existence and Uniqueness).

Let by := inf J(w,By) and

’U)EKM,G

let {.:= inf J(w,By) .

’lUGijyc

Then there exists a unique wy € Ky such that J(wo, By) = Loy, and there exists a unique

we € Hyr i such that J.(we, Byr) = £ .

Proof. Both of these results follow by a straightforward application of the direct method

of the Calculus of Variations. ™

2.3.2 Remark. Notice that we cannot simply minimize either of our functionals on all of
IR" instead of By, as the Green’s function is not integrable at infinity. Indeed, if we replace
By, with IR™ then

bg =4, = —c0
and so there are many technical problems.
2.3.3 Theorem (Continuity). For any € > 0, the function w, is continuous on By .
See Chapter 7 of©.
2.3.4 Lemma. There exists € > 0, C' < 0o, such that wy < C in B..

Proof. Let w minimize J(w, Byy) among functions w € Hyy . Then we have

Set b := Chigy = maxyp,, G(z,0), and let wy, minimize J(w, By) among w € WH2(Byy)
with
w—>be¢e WOLQ(BM>
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Then by the weak maximum principle, we have

Next define ¢(z) by

4n

M?_ 2 R—nMQ
lz)=b+R" (Tm) <b+—— <00

With this definition, we can observe that ¢ satisfies

—-n

Al

, in By; and

¢ =b:=maxG on 0B),.
OBy

(2.59)

Now let @ be b+ B2 By Corollary 7.1 in“W applied to w, — b and ¢ — b, we have

4n

wy <b+ Kl —b) <b+ Ka < .

Chaining everything together gives us

wo < b+ Ka < oo.

2.3.5 Lemma. If 0 < ¢; < €y, then

We, < We,.

Proof. Assume 0 < €; < €5, and assume that

Q= {we, > we,}
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is not empty. Since w,, = w, on OBy, since 2; C By, and since w,, and w,, are continuous
functions, we know that w., = w,, on 0€2;. Then it is clear that among functions with the
same data on 0y, w,, and w,, are minimizers of J,, (-, §2;) and J, (-, {2;) respectively. Since

we will restrict our attention to 2y for the rest of this proof, we will use J.(w) to denote

Je(w, Ql)
Jey(Wey) < Jey (we, ) implies

/ aijDinDjwe2 — 2R "w,, +29.,(G — w,,)
951

§/ a’ Dywe, Djwe, — 2R "we, + 2@, (G — w,) ,
951
and by rearranging this inequality we get

/ (aijDiweszwez - QR_nsz) o / (aijDiwﬁlewq - 2R_nw€1)
Ql Q1

< / 20, (G —w,) — 20, (G — w,,) .
951

Therefore,

J61 (w62) - ‘]61 (wel)

:/ a”’ Djwe, Djwe, — 2R "w,, + 2@, (G — w,,)
951
— / aijDiqujw61 — 2R "w,, + 2P, (G — w,,)
951
< 2/ [(1)62 (G - wﬁl) - (I)GQ(G - sz)}
951

_ Q/Q [@,(G = we,) = (G — w,,)]

<0
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since G — w,, < G —w,, in ; and P, decreases as fast or faster than ®., decreases every-
where. This inequality contradicts the fact that w,, is the minimizer of J,, (w). Therefore,

we, < we, everywhere in 2. m

2.3.6 Lemma. wy < w, for every e > 0.

Proof. Let S := {wy > w} be a nonempty set, let w; := min{wy, w.}, and let wy :=
max{wg, w,}. It follows that w; < G and both w; and ws belong to W2?(By). Since

®, > 0, we know that for any (2 C B); we have

J(w,Q) < J.(w,Q) (2.60)

for any permissible w. We also know that since wy < G we have:

J(wo, Q) = JE(U)(), Q) . (261)

Now we estimate:

Je(wy, Byr) = Je(wy, S) + Je(wy, S°)
= Je(we, §) + Je(wo, 5°)
= Je(we, Bar) — Je(we, S%) + Je(wo, S)
< Je(wa, Byr) — Je(we, S) 4 Je(wo, 5°)
= Je(wo, S) + Je(we, S¢) — Je(we, S¢) + Je(wo, S€)
= Je(wo, S) + Je(wp, S¢)

= Je(wo, BM) .
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Now by combining this inequality with Equations (2.60) and (2.61), we get:

J(wy, Byr) < Je(wy, By) < Je(wo, By) = J(wo, Bar)

but if S is nonempty, then this inequality contradicts the fact that wg is the unique mini-

mizer of J among functions in K. n

Now, since w, decreases as ¢ — 0, and since the w,.’s are bounded from below by wg, there
exists

w = lim w,
e—0

and wy < w.
2.3.7 Lemma. With the definitions as above, w < G almost everywhere.

Proof. This fact is fairly obvious, and the proof is fairly straightforward, so we supply only

a sketch.

Suppose not. Then there exists an o > 0 such that

S:={w—-G>a}

has positive measure. On this set we automatically have w. — G > « . We compute

Je(we, Byr) and send € to zero. We will get J.(w,, Bys) — oo which gives us a contradiction. m

2.3.8 Lemma. w = wy in WY%(By).

29



Proof. Since for any €, w, is the minimizer of J.(w, Bys), we have

J€<w€7 BM) S Je(w(b BM)

S / aijDinDjwo - 2R_"wo + 2(I)€<G - we),
By
and after canceling the terms with ®. we have:
/ aijDiweDjw6 — 2R "w, < / aijDiwoDjwo — 2R "wy.
Bm Bm

Letting € — 0 gives us

However, by Proposition (2.3.7), w is a permissible competitor for the problem infyeg,, ., J(w, Bu),

so we have
Therefore
J(wo, BM) = J(ID, BM),

and then by uniqueness, w = wy. n
Let W solve:

L(w) = =X, B in By

(2.62)
w = Ggp, on 0B; .

The existence of such a W is guaranteed by combining Theorem (2.1.3) with Corollary
(2.2.12). (Signs are reversed, so to be completely precise one must apply the theorems to

the problem solved by G — W)
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2.3.9 Lemma. W < G in By,.

Proof. Let Q@ = {W > G} and v := W — G. Since G is infinite at 0, and since W is
bounded, and both G and W are continuous, we know there exists an ¢ > 0 such that
QN B, = ¢. Then if ) # ¢, then u has a positive maximum in the interior of (2. However,
since L(W) = L(G) = 0 in 2, we would get a contradiction from the weak maximum prin-

ciple. Therefore, we have W < G in B),. n

2.3.10 Lemma. w > W.

Proof. 1t suffices to show w. > W, for any e. Suppose for the sake of obtaining a contradiction
that there exists an € > 0 and a point xg where we. — W has a negative local minimum. So
we(xo) < W(xg) < G(x0). Let Q := {w. < W} and observe that w, = W on 0. Then z is
an interior point of {2 and

L(w,) =—R™ in .

However

LW —w)>-R"+R"=0 in Q. (2.63)

By the weak maximum principle, the minimum can not be attained at an interior point,

and so we have a contradiction. m

2.3.11 Lemma. wg = w = W, and so wg and w are continuous.

Proof. We already showed that wy = @ in lemma (2.3.8). By lemma (2.3.10), in the set
where W = (G, we have

W= =G. (2.64)

Let © := {WW < G}, it suffices to show @w = W in Q. By definition of W, L(W) = —R™"
in Ql-
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Using the fact that wy is the minimizer, the standard argument in the calculus of variations

leads to L(wg) > —R™™. Therefore

£

L(w— W)= Lwo—W) >0 in By. (2.65)

Notice that on 092, W = w = G. By weak maximum principle, we have

Ww=W in Q. (2.66)

Using the last lemma along with our definition of W (see Equation (2.62)) we can now state

the following theorem.

2.3.12 Theorem (The PDE satisfied by wg). The minimizing function wq satisfies the

following boundary value problem:

L(wo) = _X{w0<G}Rin m BM

(2.67)

wo = Gem on 0B .

2.4 Minimizers Become Independent of M

At this point we are no longer interested in the functions from the last section, with the
exception of wy. On the other hand, we now care about the dependence of wy on the radius
of the ball on which it is a minimizer. Accordingly, we reintroduce the dependence of wy
on M, and so we will let wy; be the minimizer of J(w, Byy) within K(M,G), and consider
the behavior as M — oo. As we observed in Remark (2.3.2), it is not possible to start by

minimizing our functional on all of IR", so we have to get the key function, “Vz,” mentioned
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by Caffarelli on page 9 of®® by taking a limit over increasing sets. Note that by Theorem

(2.3.12) we know that wy, satisfies

L(wwm) = =X (6o, 07" in By

(2.68)

wyr = Gom on OBy .

The theorem that we wish to prove in this section is the following:

2.4.1 Theorem (Independence from M). There exists M € IN such that if M; > M for
7 =1,2, then

wy, =Wy,  within By

and

wy, = wy, =G within By \ By -
Furthermore, we can choose M such that M < C(n,\,A) - R.
This Theorem is an immediate consequence of the following Theorem:

2.4.2 Theorem (Boundedness of the Noncontact Set). There exists a constant C' = C(n, A, A)
such that for any M € IR

Proof. First of all, if M < CR, then there is nothing to prove. For all M > 1 the function

W = G — wy, will satisfy:

L(W)=R™ and 0 < W < G in B (2.70)

X{W>0}’

If the conclusion to the theorem is false, then there exists a large M and a large C' such that

o € FB(W) N {BM/2 \ BCR} .
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Let K :=|zo|/3. By Theorem (2.2.9), we can then say that

sup W(z) > CR"K?>CK* "> sup G(z) (2.71)

B (z0) B (z0)

which gives us a contradiction since W < G everywhere. Now note that in order to avoid

the contradiction, we must have
CR"K? < CK*™,

and this leads to
K <CR

which means that |z¢| must be less than C'R. In other words, FB(W) C Bcg. =

At this point, we already know that when M is sufficiently large, the set {G > wy} is
contained in Bogr. Then by uniqueness, the set will stay the same for any bigger M.

Therefore, it makes sense to define wgr to be the solution of
Lw=—-R"x,., nR" (2.72)

among functions w < G with w = G at infinity. Note that we can now obtain the function,

“Vr,” that Caffarelli uses on page 9 of ©>. The relationship is simply:

VR = WR — G. (273)

2.5 The Mean Value Theorem

Finally, we can turn to the Mean Value Theorem.
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2.5.1 Lemma (Ordering of Sets). For any R < S, we have

{wr < G} C {ws < G}.

(2.74)

Proof. Let By be a ball that contains both {wg < G} and {ws < G}. Then by the discussion

in Section 2, we know wg minimizes
/ a’DiwDjw — 2wR™
By

and wg minimizes

/ aijDiijw —2wS™".
By

Let €y CC By be the set {wg > wg}. Then it follows that

/ a” DiwsgDjwg — 2wgS™™ < / a" DiwpDjwr — 2wpS™",
1951

951

which implies

/ a”’ DywsDjwg S/ a” DiwgDjwg + 287" / ws — W)
(951 Q4 Q

</ ]DwRDwR+2R / Wg — WR).
Ql Q1

Therefore, since wg = wg on 0€q, and

Q1

Q1

we contradict the fact that wg is the minimizer of [ a” DywDjw — 2wR™".
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2.5.2 Lemma. There exists a constant ¢ = c¢(n, A\, \) such that
B.r C {G > wgr}.
Proof. By Lemma (2.3.4) we already know that there exists a constant
C=C(n,\A)
such that w;(0) < C. Then it is not hard to show that
[wi ]| o5, ) < C- (2.77)

By "W for any elliptic operator L with given A and A, we have

1 C
- < (G < .
mnq = (‘r) —= ’x|n72

(2.78)

By combining the last two equations it follows that there exists a constant ¢ = ¢(n, A\, A)
such that
B, C {G > wl}.

It remains to show that this inclusion scales correctly.

Let vg := G — wg (so vg = —VRx). Then vy satisfies
Lvg=06—-R"x,,, ., mR". (2.79)

Now observe that by scaling our operator L appropriately, we get an operator L with the
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same ellipticity constants as L, such that
L (R"?vr(Rz)) =6 — X o, (ra)>0) (2.80)

So we have

B. C {x | vn(Rz) > 0} ,

which implies

Bur C {vR(;c) > 0} . (2.81)

Suppose v is a supersolution to

Lv =0,
i.e. Lv < 0. Then for any ¢ > 0, we have

/ vLo < 0. (2.82)
Q

If R < S, then we know that wr > wg, and so the function ¢ = wg — wg is a permissible

test function. We also know:

Lo = R_"X{G>wR} — S‘”X{G>ws}. (2.83)

By observing that v = 1 is both a supersolution and a subsolution and by plugging in our
¢, we arrive at

R{G > wr}| = ST"{G > ws}, (2.84)

37



and this implies

1 1
16 =C [T X ~ @ Ko 5

Now, Equation (2.82) implies

1 1
02/1}[@20{— vV v]. (2.86
0 HG > wri Jigswry  HG > ws} Jigsug) )

Therefore, we have established the following theorem:

2.5.3 Theorem (Mean Value Theorem for Divergence Form Elliptic PDE). Let L be any
divergence form elliptic operator with ellipticity \, A. For any xo € €, there ewists an

increasing family Dg(xo) which satisfies the following:
1. B.r(wo) C Dr(xo) C Beor(wo), with ¢, C' depending only on n, A and A.
2. For any v satisfying Lv > 0 and R < S, we have

o) < !

< V< —— . (2.87)
|Dr(%0)| Jpg (o) |Ds(20)] JDg(ao)

As on pages 9 and 10 of ®, (and as Littman, Stampacchia, and Weinberger already observed

using their own mean value theorem,) we have the following corollary:

2.5.4 Corollary (Semicontinuous Representative). Any supersolution v, has a unique point-

wise defined representative as

1
v(xg) :=lim —— v(x)dx . 2.88
( 0) R10 ’DR(Z'O)‘ Da(zo)] ( ) ( )

This representative is lower semicontinuous:

v(zg) < lim v(z) (2.89)

T—T0
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for any xy in the domain.
We can also show the following analogue of G.C. Evans’ Theorem:

2.5.5 Corollary (Analogue of Evans’ Theorem). Let v be a supersolution to Lv = 0, and
suppose that v restricted to the support of Lv is continuous. Then the representative of v

given by Equation (2.89) is continuous.

Proof. This proof is almost identical to the proof given on pages 10 and 11 of ®® for L = A. m
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Chapter 3

Reifenberg Flatness of Free

Boundaries

3.1 Preliminaries and Basic Results

Define the functionals:

D(u,Q) := /(aijDiuDju), and
Q

D(w, ) == /(aijDiijw +2w) .
Q

For any bounded set 2 C IR" we will minimize these functionals in the following sets,

respectively:

S ={ucW,?(Q) :u>p},
Hop = {w e W"(Q) : w—y¢ e Wy*(Q)}, and
Koy ={wé& Hgy : wx)>0forallzecQ}.

7

When it is clear on which set we are working, we will simply write “D(u)” in place of

“D(u,)” and “S,” in place of “Sg " and so on.
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Probably the most classic version of the obstacle problem involves minimizing D(u, By)
within Sp, , in the case where ¢ = §“. (Here we use 6” to denote the usual Kronecker
delta function so that D(u) simplifies to the usual Dirichlet integral. See®!,“? “4 and®® for
an analysis of this problem.) Indeed, following the same arguments given at the beginning

of ®®, but for the more general a” considered here, we can establish the following theorem:

3.1.1 Theorem (Basic Results). Given an obstacle ¢ € W?(By) which has a trace on
0B, which is negative almost everywhere, there is a unique u € Sp,, which minimizes
D(u, By). Furthermore, u is a bounded supersolution to the problem L(u) = 0. Finally, if ¢
is continuous, then u is almost everywhere equal to a function which is continuous on all of
B .

Proof. For the proof, just follow the beginning of“>. (Here we need the mean value formula

that we proved as Theorem (2.5.3) ) ]

Turning to the regularity questions, we find it convenient to work with the height function
w which is the minimizer of D within Kp, ,,. On the other hand, one can ask if this is really
the same problem as before. In the original problem with the Laplacian (in other words, with
a¥ = ¢%), if the obstacle is twice differentiable, then it makes sense to take its Laplacian.
In the current situation, it is not as simple to characterize the functions ¢, where Ly makes
sense. The obvious route, however, is to simply assume that Ly = —f for a function f
with specified properties. If we assume that Ly = —f, and that f € L*°(By), then the two
problems are completely equivalent.

We are most interested in the obstacle problem where we minimize D within Kp, .
Besides requiring existence and regularity, we need to know that the minimizer, w, satisfies
w >0 and

L(w) = Xjwsoy /10 Bi

w=1 on 0B.

(3.1)

The proof of this fact and many of the related facts follows Chapter 2 very closely, and so
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we will only mention that the proof is carried out with a penalization argument. The details
can be found with only very minor adjustments in Chapter 2. To summarize the relevant

facts we can state the following result:
3.1.2 Theorem (Problem Equivalencies). Let ¢ be an obstacle which satisfies the following:
1. ¢ :=—p >0 on all of 0B;.
2. f:=—Lyp € L*(B).
Finally assume that w = u — @. Then the following are equivalent:
1. w satisfies Equation (3.1).
2. w minimizes D in [N(Bhw.
3. u € Wy?(By) satisfies Lu = “Xpuey -
4. uw minimizes D in Sp, .

Now in order to get to the regularity of the free boundary we need two more basic facts
from Chapter 2. At this point, having proven our theorem about the equivalencies between
the problems, it is worth gathering a collection of assumptions that we will have for the rest

of this work. We will always assume:

L(w) = X (oo, f 1n B1,

a’(z) = o' (x)

0 < MEP? < alee; < AP forall € £0, (3.2)
O0< AN <f<A, and

w >0

and we will frequently assume

0 € d{w > 0}. (3.3)
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Recall the optimal regularity (see Theorem (2.2.2) ) and nondegeneracy (see Theorem

(2.2.9) ) which will give us compactness of quadratic rescalings.

3.2 Measure Stability

Now we begin a measure theoretic study of regularity which will culminate in a measure

theoretic version of the theorem proven by Caffarelli in 1977. (See®!.)
3.2.1 Lemma (Compactness I). Let {al}, {fi}, and {wy} satisfy

1.0 <M <af <AI

IS

Co

. wg >0, Diafchjwk = X{wk>0}fk in By, and 0 € 0{wy, > 0},

E

: HwkHWL?(BQ) <7y < oo and
5. there exists an f (with 0 < \* < f < A*), such that fi, converges to f strongly in I

Then there exists a w € WH2(By) and an f € L>®(By) and a subsequence of {wy} such that

along this subsequence (which we still label with “k”), we have
A. uniform convergence of wy to w, and weak convergence in WhH2,

B. for any ¢ € WOI’Q(Bl)
/ X{wk>0} fk(b — / X{w>0}f¢' (34)
B1 By

Proof. Item A follows by using standard functional analysis combined with De Giorgi-Nash-
Moser theory. Since we can take a subsequence, we can assume without loss of generality
that fi converges to f pointwise almost everywhere. In the interior of both {w > 0} and

w = 0} it is not hard to show that r converges pointwise almost everywhere to
X g y

>0}

X (w0 f (for the interior of {w = 0} one needs to use the nondegeneracy statement), so
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by Lebesgue’s dominated convergence theorem it suffices to prove that d{w = 0} has no
Lebesgue points. The proof of this fact is very similar to the proof of Lemma 5.1 of 2T, but
we include it here for the convenience of the reader.

Let 29 € 0{w = 0} N By, and choose r > 0 such that

Br (ZL'()) C Bl.

Define W (z) := r2w(zg + rz) and Wy(x) := r 2wy (xo + rz). After this change of coordi-

nates, we have 0 € {W = 0}, and so there exists {2} — 0 such that

W (zy) > 0, for all k.

Now fix k£ so z € By, take J large enough such that ¢, 7 > J implies

Wix

[|W; = Wl|pee () < (2 k>, (3.5)
and )
C

W; = Willzem < T (3.6)

where C' = 1% which is the constant from the nondegeneracy statement.
Since W; — W in C®, W;(x;) > 0 and nondegeneracy imply the existence of & € By /s
such that
1 1

W(3) > C (5 _ g)z _ 6340 el (3.7)

Now i > J implies W;(Z) > %. Since W; satisfies a uniform C® estimate, there exists
an 7 > 0 such that W;(y) > g for all y € B;(Z) once ¢ > J. From this we can conclude
Bi(7) C {W, > 0}.

Scaling back to the original functions, we conclude x is not Lebesgue point. Since g

was an arbitrary point of the free boundary there are no Lebesgue points in 0{w > 0}. =
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3.2.2 Lemma (Compactness II). If we assume everything we did in the previous lemma,

and we assume in addition that A = (AY) is a symmetric, constant matriz with
0< M <A<LSAIL

and such that

HCL? — AinLl(Bl) — 0,
then the limiting functions w and f given in the last lemma satisfy:

DiAiijw = X{w>0}f (38)

in By. Furthermore, 0 € 0{w > 0}.

Proof. Since a; — A¥, and there is a uniform L> bound on all of a; and A¥, we have

af — AY in LY(B,) (3.9)
for any ¢ < oo, in particular a} — A¥ in L?. We have for any ¢ € W,*(B,),

/aﬁMMW: (af — AY)(Djwy — Diw)Dj¢
By

B

+/ ay DiwD;¢ + / AY(Djwy, — Diw) D¢
B1 Bl
Since a) — A% in L? and Dywy, — D;w, we have

/Xﬁ—mmmw—mmg¢ﬁa (3.10)
B

/(ﬁDmD@—+ A DywD;é (3.11)
B

B
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and

/ AY(Dywy — Diw)Dj¢ — 0. (3.12)
By

Therefore,

/aﬁgDikaj¢—> AT DawD;. (3.13)
B1

By

Together with Equation (3.4), we proved
D;A"Djw = X{wsoy -
Now in order to show that 0 € 9{w > 0} we observe first that 0 € 0{w, > 0} implies
0 € {w=0}.
Next we suppose there exists rg, such that By,, C {w = 0}. For any k, we have

sup wy(z) > C(rg)? . (3.14)

xGBro

By picking a convergent subsequence we get a contradiction to w = 0 in Bsy,,,. Therefore, we

have 0 € 0{w > 0}. n

3.2.3 Theorem (Measure Stability). Fiz positive constants v, A, A, \*, and A*, and suppose

w satisfies Equation (3.2), and for some constant pn € [N\*, A*], assume that u satisfies

Au=x ./ in B (3.15)

with

w=u, on dBi,
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where we assume in addition that w satisfies

lwllwrzsy <7, and J[wl| oz <7
Then there ezists a modulus of continuity o(€), such that if
la¥ = 69| g2y < 0(0),  and |1f — pllos(m) < 0(€) (3.16)
then

Hw = 0}A{u =0} <e. (3.17)

(We are abusing notation slightly by using p to denote the function which is everywhere

equal to p in By.)

Proof. The proof of Theorem 5.4 of BT can be adapted to the current setting without too
much difficulty, but we include it for the convenience of the reader. Suppose not. Then

there exists ag, wg, fr and uy such that,

—_

ij _ .
- Diag Djwy, = X, -, & In Bu,

k>0}

N

a — 69 in L*(By),

w

. fr = pin LY(By),

Auk = X{u1€>0}[1, in B1

Up = Wy on 0By, and

ot

Mewellwrzs < 70 and gl g, < 7

but [{wr = 0}A{ur = 0}| > €y for some ¢ fixed.

By applying the previous compactness lemmas to an arbitrary subsequence, there exists
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a W and a sub-subsequence such that
Wy, — Weo, in WH(By)

and

Wy = Wee in C°(By)

which implies wy, — wy, in L?(B;). (We will still use “wy” for the sub-subsequence.) Equa-
tion (3.4) is also satisfied with the constant function p in place of f.

By standard comparison results for the obstacle problem (see for example Theorem 2.7a
of ®), there exists u such that

up — u in L®(By). (3.18)

We have for any ¢ € Wol’2(B1),

/ af DiwyDi¢p = | (ay] — 67)(Diwy — Diwee) Db
B,

B

+/ aZjDiwoongb+/ §9(D;wy, — Diws,)Dj.
Bl Bl

Since a) — 6% in L? and D;wy, — Djw.,, we have

/ (aif = 6Y)(Diwg — Dijwes) D = 0, (3.19)
By
| @by~ [ #Dw.Dis (3.20)
By B1
and
/ §"(Dswy — Diweg) D — 0. (3.21)
By
Therefore,
Bl Bl
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By Equation (3.4) with u in place of f, we have

/ X{wk>0}f’f¢ — / X{woo>0},u¢7
Bl Bl

SO Wy satisfies

Ao = X{pooop i 10 Bi.
We notice that by assumption,
= ||X{uk>0} - X{wk>0}||L1(B1)

< HX{uk>O} - X{'Luoo>0}HL1(B1) + |’X{woo>0} - X{wk>0}HL1(B1)

=I1+1.

For I, since

Auk = X{uk>0}’u in Bl

Uy, = W on 0B .

and

AWoo = X (oot 0 By

Woo = U on 0B .

By Theorem 2.7a of B, we have

l|ur — Weo|[Lo(By) < [k — ul[z=(08,) »
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and since up — u in L, we have

|’X{uk>0} - X{woo>0}||L1(Bl) — 0, (328)

by Corollary 4 of 2.
For II, we know that inside {w. > 0}, wy will eventually be positive by the uniform

convergence, s0 X, . there. In the interior of {w. = 0}, wy will eventually

= X{woo >0}

be 0, since otherwise we will violate the nondegeneracy property, and so Xfups0p = X0}

C2 C3

Y Y

there. Finally, since 0{ws, = 0} has finite (n — 1)-dimensional Hausdorff measure (see
or®), we must have |0{ws = 0}| = 0, and therefore II — 0. This convergence to 0 gives

us a contradiction, since 0 < ¢y < I + II. [

3.3 Weak Regularity of the Free Boundary

In this section we establish the existence of blow up limits, and use this result to show a
measure-theoretic version of Caffarelli’s free boundary regularity theorem. We will show the
existence of blowup limits in the case where the a” and the f belong to VMO. We define
VMO to be the subspace of BMO such that if ¢ € BMO and

1
ng(r) == sup

B 9(z) — g5, | dz (3.29)
p<r, yeR" | By B,(y) Betw)

then 7,(r) — 0 as r — 0. For any g € VMO, n,(r) is referred to as the VMO-modulus. For

all conventions regarding VMO we follow T which in turn follows™F5.

3.3.1 Theorem (Existence of Blowup Limits I). Assume w satisfies Equations (3.2) and
(5.3), and assume in addition that a” and f belong to VMO. Define the usual rescaling



Then for any sequence {€,,} | 0, there exists a subsequence, a real number p € [X\*, A*], and

a symmetric matriz A = (AY) with
0< M <A<SAI

such that for all i, j we have

][ a’(x)dw — A% (3.30)

em

and

(x)dx — 1, (3.31)
Ber,

and on any compact set, w,, (x) converges strongly in C* and weakly in W2 to a function

Weo € WE2(IR™), which satisfies:

DIA’L]DJ’U}OO = X{woo>0},u on IRn, (332)

and has 0 in its free boundary.

Proof. This proof is so similar to the proof of Theorem 6.1 of ' that we leave it for an

Appendix. [

3.3.2 Remark (Nonuniqueness of Blowup Limits). Notice that the theorem does not claim
that the blowup limit is unique. In fact, it is relatively easy to produce nonuniqueness even
in the case with a constant right hand side, and it was done in®T for the nondivergence
form case, but that counter-example can be copied almost exactly for the divergence form
case. In the case where the coefficients of L are constant, one can use the counter-example
in® to show nonuniqueness of blowup limits when the right hand side is only assumed to be
continuous.

In fact, let ©(x) = cos(wln|In|z||) + 2. In®T it is shown that © is a VMO function.
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It is easy to verify that ©(z) = 1 when |z| = exp(—exp(2m — 1)), and ©(x) = 3 when
|z| = exp(—exp(2m)). Now define:

Aw, in By/B,
L(w) :=

OAw, in B,.

Where r < 1 is equal to exp(—exp(2mg — 1)) for some large my € IN. It is not hard to show
that when the scales are picked at € = exp(— exp(2m—1)), L is very “close” to A, and when
the scales are picked at € = exp(—exp(2m)), L is very “close” to 3A. (“Close” of course
means close in exactly the sense that we need in order to apply Theorem (3.3.1).) Therefore,
as long as we can choose boundary data that gets us a regular free boundary point at the
origin, we will have different blowup limits according to how we choose our sequence of €’s
going to zero. The details of this process are carried out in®", but are essentially unchanged

in the current setting.

3.3.3 Theorem (Caffarelli’s Alternative in Measure (Weak Form)). Assuming again Equa-

tions (3.2) and (3.3), the limit
M w) N By
lim ——————

3.33
i = (3.33)

exists and must be equal to either 0 or 1/2.

Proof. Here again our proof is almost identical to the proof of Theorem 6.3 of BT, so we

relegate it to an Appendix. [

3.3.4 Definition (Regular and Singular Free Boundary Points). A free boundary point
where A has density equal to 0 is referred to as singular, and a free boundary point where

the density of A is 1/2 is referred to as regular.

The theorem above gives us the alternative, but we do not have any kind of uniformity

to our convergence. Caffarelli stated his original theorem in a much more quantitative (and
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therefore useful) way, and so now we will state and prove a similar stronger version. We
need the stronger version in order to show openness and stability under perturbation of the

regular points of the free boundary.

3.3.5 Theorem (Caffarelli’s Alternative in Measure (Strong Form)). Once again assuming
Equations (3.2) and (3.3), for any € € (0,1/8), there exists an ro € (0,1), and a 7 € (0,1)
such that

if there exists a t < ro such that

[A(w) N By

> €, 3.34
| By | - (3:34)
then for all r < 1t we have
A(w)N B,| _ 1
L S/ R ,
B e €, (3.35)

and in particular, 0 is a reqular point according to our definition. The rq and the T depend

on € and on the a”, but they do not depend on the function w.

3.3.6 Remark (Another version). The theorem above is equivalent to a version using a

modulus of continuity. In that version there is a universal modulus of continuity ¢ such that

A(w) N By 8
AN Bil o (3.36)
| Bil
for any £ implies a uniform convergence of the density of A(w) to 1/2 once B; is scaled to

B;. (Here we mean uniformly among all appropriate w’s.)

Proof. Here again we have a proof which is almost identical to the proof of Theorem 6.5
inBT. On the other hand, in an effort to make things more convenient for the reader, since
we use this theorem quite a bit, we will include the proof here.

We start by assuming that we have a ¢ such that Equation (3.34) holds, and by rescaling

if necessary, we can assume that t = rq. Next, by arguing exactly as in the last theorem,
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by assuming that rq is sufficiently small, and by defining sy := /rg, we can assume without

loss of generality that

7[ la¥(x) — 69| du (3.37)

Bs,
is as small as we like. Now we will follow the argument given for Theorem 4.5 in® very
closely.

Applying our measure stability theorem on the ball By, we have the existence of a

function u which satisfies:

Au=x .40 n By

(3.38)
u=w on 0B,
and so that
{A(uw)AA(w)} N By (3.39)
is small enough to guarantee that
[A(w) NV Bry| _ €
—_— > (3.40)
| Bro| 2
and therefore
m.d.(A(u) N By,) > C(n)ree . (3.41)

Now if rq is sufficiently small, then by Caffarelli’s C** regularity theorem for the obstacle
problem (see“® or®) we conclude that dA(u) is C* in an rZ neighborhood of the origin.
Furthermore, if we rotate coordinates so that FB(u) = {(2/, z,) | z, = g(«’)}, then we have

the following bound (in B,;z):

C(n)
< —Z 42
||g||cl,a — TO (3 )

On the other hand, because of this bound, there exists a v < 1 such that if py := yrg < rg,

then
|A(u)N B

1—e¢
|B '

2

ol

(3.43)

ol
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Now by once again requiring rq to be sufficiently small, we get

[A(w) N B,,| 1
|B—‘p > E — €. (344)
PO

(So you may note that here our requirement on the size of ry will be much smaller than it
was before; we need it small both because of the hypotheses within Caffarelli’s regularity
theorems and because of the need to shrink the LP norm of |a” — 6%/| and the L' norm of
|f — p| in order to use our measure stability theorem.)

Now since % — ¢ is strictly greater than e, we can rescale B, to a ball with a radius close
to 1o, and then repeat. Since we have a little margin for error in our rescaling, after we
repeat this process enough times we will have a small enough radius (which we call 77¢), to

ensure that for all r < 7ry we have

Aw)n B 1
B,] 2

— €.

3.3.7 Corollary (The Set of Regular Points Is Open). Still assuming Equations (3.2) and
(3.3), the set of reqular points of F B(w) is an open subset of F B(w).

Proof. The proof of this corollary is identical to the proof of Corollary 4.8 in® except that
in place of using Theorem 4.5 of® we use Theorem (3.3.5) from this work:

Take rg and 7 as in Theorem 2.4.5. By changing coordinates and rescaling, we can
assume that 0 is a regular point of F'B(w). Since 0 is regular, there exists an s < rq such

that
[A(w) N By

> €, (3.45)
| Bs|
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Now we know that if r < 7s, then

A(w)N B, _ 1
—_——t > - — . 3.46
’Br| — 2 € ( )
Again, since 1/2 — € > ¢, we have some margin for error. If v := ||x¢]| is sufficiently small,
and z € FB(w), then
A(w) N Brs_
| (w) 'Y(‘TO)| > €, (347)
| Bro—(20)|
and therefore for any r < 7(7s — 7) we have
|A(w) N Br(zo)] _ 1
> — — €, 3.48
B C 2 -
Thus, x is a regular point. [

3.3.8 Theorem (Existence of Blowup Limits II). We assume Equation (3.2), and we
assume a and f belong to VMO. We let

Sy :={x € FB(w)N B, : z is a reqular point of FB(w) } (3.49)

and we assume Syj2 # ¢. Let K CC Syjs, let {x,} C K, and let e, | 0.
Then there exists a constant p € [\*, A*], a constant symmetric matriz A = (AY) with
0 <A< A<A, and a strictly increasing sequence of natural numbers {m;} such that the
sequence of functions {w;} defined by
—2

w;(7) 1= € W (T + €m,T) (3.50)

converges strongly in C* (for some a > 0) and weakly in W2 on any compact set to a
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function ws, which satisfies:
D;AY Djwe, = Xjumsoy i on IR™. (3.51)

Furthermore 0 is a reqular point of its free boundary.

Proof. The existence of a function we, > 0 satisfying Equation (3.51) and the convergence
of the w; to wy is carried out in exactly the same way as in the proof of Theorem (3.3.1) .
Showing that 0 is part of the free boundary of w, is also proven exactly as in Theorem
(3.3.1). It remains to show that 0 is a regular point of the free boundary.

For the first part, we observe that since each x,, belongs to the regular part of the free

boundary, we know that there exists an r,, such that

A(w) N By, (Tm)
B

3
> —. 3.52
>3 (352)

Tm

There exists a small p > 0 depending only on the dimension, n, such that if z € B, (z),

then
A('LU) m B”"m ('r)

>
B =

(3.53)

1
1

Now the closure of the set {z,,} is compact, and that set is covered by the open balls in
the set {B,,,, (z)}. By compactness, the set is still covered by a finite number of these balls,

and their radii have a positive minimum, py. So, once €,,, < pg, we know that
(3.54)

for all » which are less than 7 times py. Here 7 is the constant given in the statement of

Theorem (3.3.5). From this we can conclude that 0 must be a regular point of F'B(ws,). m

3.3.9 Remark (Hausdorff Dimension). Exactly as in®T, the arguments above lead to the
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statement that the free boundary is strongly porous and therefore has Hausdorff dimension

strictly less than n. (See®T and see™ for the definition of porosity.)

3.4 Finer Regularity of the Free Boundary

In this section we show finer properties of the free boundary at regular points. Since the

T are easily extended to the current setting, we can have

counter-examples in® and in®
regular free boundary points where the blowup limit is not unique. In spite of this fact,
we show that the regular free boundary points enjoy a flatness property which is based on
Reifenberg flatness. Reifenberg flatness was introduced by Reifenberg in®, and is studied

KTL and T2 for example.) For the

in more detail by Toro and Kenig in several papers. (See
definitions surrounding Reifenberg vanishing sets we follow the conventions in section 6 of 3,

but now we must introduce a notion of sets which are “relatively Reifenberg flat.”

3.4.1 Definition (Reifenberg Flatness). Let S C IR" be a locally compact set, and let
0 > 0. Then S is §— Reifenberg flat if for each compact K C IR", there exists a constant
Rk > 0 such that for every x € K NS and every r € (0, Rg| we have a hyperplane L(z, )

containing x such that
Dy (L(xz,7) N B.(x), SN B,.(x)) <2rd . (3.1)
Here D4, denotes the Hausdorff distance: If A, B C IR", then

Dy (A, B) := max{ supd(a, B) , supd(b,A) } . (3.2)

acA beB

We also define the following quantity, which we call the modulus of flatness, to get a more

quantitative and uniform measure of flatness:

Ok (r) := sup ( sup DrulLiz.p) O Byl2), SﬂBP(m))) : (3.3)

0<p<r \zeSNK 1%
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Finally, we will say that S is a Reifenberg vanishing set, if for any compact K C S

ll_rf(l) Ok(r)=0. (3.4)
3.4.2 Definition (Relatively Reifenberg Flat). Let S C IR™ be a locally compact set, let
K cc S, and let 9 > 0. Then K is relatively é—Reifenberg flat with respect to S if there
exists a constant R > 0 such that for every x € K and every r € (0, R] we have a hyperplane

L(z,r) containing x such that

Dy (L(z,r) N B, (x), SN B,(x)) < 2rf . (3.5)

We also define the modulus of flatness, exactly as above, and then K is relatively Reifenberg

vanishing if the modulus of flatness goes to zero as r approaches 0.

3.4.3 Remark. It is worth noting that the compact set K, plays a very different role in the
two definitions above. In the first case, K allows us to look at bounded sets to get uniform
bounds on the constant Ry which bounds the radius, while in the second case, K s the
set that we want to show is Reifenberg vanishing, but we are allowing all of S when seeing
if we are close to a plane. As a simple example, a point can never be Reifenberg flat, but

viewed as a subset of a plane, it is relatively J-Reifenberg flat.

First we need to show that our measure stability theorem can be used to show uniform
closeness of our solutions to solutions of obstacle problems with constant coefficients and
constant right hand side, as long as we have zoomed in far enough. In particular, we can

say the following:

3.4.4 Theorem (Uniform Closeness Result). We assume Equation (3.2), and we let u > 0
satisfy:

Au= X, ol n B
v (3.6)

u=w on 0B;.
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We also assume that there is a fixed constant B, and an o € (0,1) such that ||w|]ca(§l) <.

For any € > 0, there exists a 6 > 0 such that if
lla"(x) = 67||ea(py <0 and ||f(z) = pllmy <9, (3.7)

then

|lw = ullLoe(By,,) <€ (3-8)

Proof. Some of the ideas in this proof were inspired by ideas of Li and Vogelius who in turn
were following ideas of Caffarelli. (See™ and“®.) Letting A(x) be the matrix determined

by a”(x), we have in B; (using “divergence” notation):

div [A() (Vuw(z) = u(x)))]
= f(T)X ooy, — div[(A(z) — ) Vu(z)] — Au
= F@X ey — WXy — iV [(A(2) = T) V()]
— @) (X = Xewoy ) + Xy (F(@) = ) + div [( = A(x)) V()

= T+ IT + div [I11] .

After fixing g € (n,00), and by shrinking § if necessary, we can use our measure stability
theorem (Theorem (3.2.3)) and a simple interpolation, to ensure that the L%2 norm of I on
By is as small as we like. Using our assumptions and shrinking 4 if necessary, we can make
the L9/2 norm of II on B, as small as we like. (The fourth line of Equation (3.2) supplies
the L> bound needed for the interpolation.)

To control I we need to shrink the ball slightly. First we observe that by De Giorgi-

Nash-Moser theory (see Theorem 8.29 of“T), there exists an o’ € (0, «) such that

lull w5, < C(8,A). (3.9)
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For any fixed s € (0,1/16) we then have
o = ull oy < C(B,A")s" (3.10)

For any ¢ < oo, we can use Calderén-Zygmund Theory to show ||u||y2a(p,_,) < C, and then

by the Sobolev Imbedding Theorem we know |[u||yy 1. < €, and so finally
IVullzes,_,) < C(B, A, s) . (3.11)

Considering the boundary value problem that w — u satisfies within B;_,, we have the
following: By shrinking s we can make the boundary values as small as we like by Equation
(3.10). We already have the L%? norm of I and II as small as we like by making § small.
For III we can use Equation (3.11) to ensure that ||Vu||pe~(p,_,) is under control, and then
shrink ¢ if necessary to ensure that ||A — I||1q(p,) is as small as we like. Applying Theorem

8.16 of ST yields the desired result. [

Now we have a standard corollary for obstacle type problems.

3.4.5 Corollary (Free Boundaries Are Close). Assuming Equation (3.2) again, assuming
u s defined as in the previous theorem, and using Dy as the Hausdorff distance between

sets defined at the beginning of this section, there exists a universal constant C' such that
Dy(FB(w), FB(u)) < Cy/e (3.12)

where € is the number given in Equation (3.8).

Proof. This result is a simple application of the nondegeneracy enjoyed by each function.
Indeed, if there is a point x where one function is positive and a ball B,(x) where the other
function is zero, then nondegeneracy implies that the max of the first function is Cr? on

OB, (z) and this must be smaller than e. m

61



Now we prove the main theorem of this chapter.

3.4.6 Theorem (Free Boundary Regularity). Once again we assume Equation (3.2) and
we assume that a” and f belong to VMO. As in Equation (5.49) we define S, to be the
set of reqular points of the free boundary within B,. Let K CC Sy/5. Then K is relatively

Reifenberg vanishing with respect to Sy s.
Proof. Fixe > 0. We will demonstrate that there is a radius 7 > 0 such that for any x € K,
and any positive r < 7 there is a hyperplane H(r,z) such that

Dy (FB(w) N By (z), H(r,x) N B.(x)) < re. (3.13)

We start by using the compactness of K in almost the same way as in Theorem (3.3.8).

Namely, we know that for every = € K there exists an r, such that

Aw) N B (@)] _ 49
|B,. | =100

(3.14)

Next, there exists a small p > 0 depending only on the dimension, n, such that if y €
B, (x) N FB(w), then
|B,. | ~ 100 °

(3.15)

Now K is compact, and is therefore covered by the open balls in the set { B, (z)}. By
compactness, the set is still covered by a finite number of these balls, and their radii have
a positive minimum, pg. Using Theorem (3.3.5) guarantees that for all < 7pg, and for all

x € K, we have
A@w) 0 B(a)] 48
| B, | — 100

(3.16)

Here 7 is the constant given in the statement of Theorem (3.3.5). Henceforth, the argument

becomes completely independent of whatever point in the free boundary that we wish to
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consider, so we can fix zo € F'B(w), and show flatness at that point. Also, given the VMO-
modulus 7, we can be sure that every quantity that we wish to control below can be shrunk
in a uniform and universal way by shrinking the radius that we are considering.

We consider the situation in B, (z() and after a linear invertible change of coordinates
with eigenvalues bounded away from 0 and oo in a uniform way depending only on ellipticity,
we can assume that the averages of a”/ are 6 and the average of f is u. Then we let u solve

the boundary value problem:

Au = IX a0y in B,(zo) (3.17)

u=w on 0B.(x) .

By the L' closeness of a” to §¥ and f to u which are controlled by the VMO-modulus along
with our measure stability theorem (Theorem (3.2.3)), we can guarantee (by assuming r; is

sufficiently small) that

|A(v) N By, (z0)] S 47

. 3.18
B, 100 (3.18)

Now it follows from Caffarelli’s free boundary regularity theorem (see Theorem 7 of “* or )
that if ry < 7r; where 7y is suitably small, then FB(v) N B,,(z) is uniformly C'' in
B,,(z). We can also assume that F'B(v) has a free boundary point as close to xy as we
like by using the last corollary (and shrinking r; again if needed). Now zooming in on a
uniformly C1® set will flatten it in a uniform way depending only on how much one zooms,
so after zooming in to r3 := 7379, where 73 will only depend on estimating how uniformly
C1 functions flatten out as you zoom in, so we can have F'B(v) N B, (o) within r3-¢/2 of

a plane. Now we invoke Corollary (3.4.5) again to guarantee that F' B(w) is within rs - €/2

of FB(v) and we are done. ]

3.4.7 Remark (Choosing r). It is worth remarking that the r; that work for all of the

estimates in the last proof must be found before finding the function u, and then in Equation

63



(3.17) we can use r = r3.

3.4.8 Remark (Nondivergence Form Case). The Theorem above (and the next corollary)
can be extended without any difficulty to the nondivergence form setting. On the other
hand, in the nondivergence form setting, since the functions will have stronger convergence
to their blowup limits, it is very likely that the Weiss-type Monotonicity formula can be used
to give an easier proof. In the divergence form case, the presence of the Dirichlet integral
within the Weiss-type monotonicity functional coupled with the weak convergence in W2
to the blowup limit makes it difficult to move back and forth from the original function to

its blowup limit.

3.4.9 Corollary (Blowup Classification). Any blowup found in Theorem (5.3.8) must be
homogeneous of degree two, and therefore in the right coordinate system, it willl be a constant

times (x;")2.

Proof. By Theorem (3.4.6) any blowup found in Theorem (3.3.8) will have to be a global
solution to the obstacle problem with a free boundary which is a hyperplane. Then by
applying a combination of the Cauchy-Kowalevski theorem and Holmgren’s uniqueness the-
orem we conclude (after a possible rotation and change of coordinates) that the blowup

limit is C'(z;7)?. ]
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Appendix A

Proof of Theorem 3.3.1

Proof. We define the matrix

Al = ][ r o'l (z)dz, (A.1)

then this matrix also satisfies the elliptic setting. We can take a subsequence of the radii €,
such that each scalar A?n converges to a real number AY. With this subsequence, we also

know:

g |aij(x) — Aii|da7 <n(e,) =0, (A.2)

where 7 is just taken to be the maximum of all of the VMO moduli for each of the a*s and

by the triangle inequality this lead to

7{3 a7 (&) — A |dz — 0. (A.3)

Now we observe that if a”"(z) := a”(e,z) then the rescaled function w, := w,, satifies the
equation:

][ a7 (z) — AY|dx < n(e,) — 0. (A.4)
B

So Lemma 3.2.1 gives us exactly what we need. [
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Appendix B

Proof of Theorem 3.3.3

Proof. We will suppose that

A B
limn sup 2@ 0 Br|

>0 (B.1)
10 |B7’|

and show that in this case the limit exists and is equal to 1/2. It follows immediately from

this assumption that there exists a sequence {¢,} — 0 such that(for some § > 0) we have

Aw,,) N B
| (w‘ejg)lf’” il (B.2)

for all n. We can extract a subsequence, and guarantee the existence of a symmetric positive

definite matrix AY which satified the elliptic setting., and a w,, € W2P(IR"), such that if

loc

a¥"(z) := a"(e,, ), then

][ a”(x)dx — AY, (B.3)
Bern
][ f(x)dzs — (B.4)
Be'm
and
D;AY Djw,, = Xfwosop i o0 R” (B.5)
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and 0 is in F'B(wy ). Furthermore, we will have w,, converging to ws, in both W*? and C'
on every compact set.

Now we diagonalize the matrix AY, and then we dilate the individual coordinates so
that in the new coordinate system we have AY = §%,

Now we let u,, denote the solution to

Au,, = X {503 H in B
(B.6)

Uy = Wy, on 0B .

Applying our measure stability to w, and w, we can make |A(u,)AA(w,)| as small as we

like for n sufficiently large. In particular, we now have:

[Alwn) N By

)
S0 B.7

Since w, converges uniformly to w,, on every compact set, it follows that wu, converges

uniformly to w., on 0B;, and now we have

[A(wes) N B g (B.8)

>
| By

We can invoke the Ch* at regular points to guarantee that w., at the origin, and this implies
that
[Alwse) N By |

1
lim ——2 " >~ B.9
o | B, | 2 (B9)

Now it remains to do two things. First we need to pass this result from w,, back to our
subsequence of radii for w, but second we will need to show that we get the same limit along

any sequence of radii converging to zero. The first step is a consequence of combining our
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measure stability with Corollary 4 of [C2]. Indead, for any r > 0,

_ IA(w,) N By A ws) N Br|)
lim ( - = 0. (B.10)
nroo | B | By |
On the other hand, by our rescaling, this equation becomes
. |A(w) N Bire )| |A(wso) N Br’)
lim ( = — =0, (B.11)
n—eo | B(ren)| | B |
which implies that
A(w) N B 1
lim M@ 0 Been| _ 1 (B.12)
n—oo |B(T€n)| 2

Finally, we wish to be able to replace re, with r in previous equation. Suppose that we have

a different sequence of radii converging to zero(which we call s;) such that

Aw)N B, 1

7] 7 (B.13)

At this point we are led to a contradiction in one of two ways. If the limit above does not
equal zero, then we can get convergence to a global solution with properties which contradict
the Caffarelli Alternative. On the other hand, if the limit does equal zero, then we use the

continuity of the function:
[A(w) N B,

5 (B.14)

g(r) ==

to get an interlacing sequence of radii which we can call s and which converge to zero such

that g(s;) = 1/4, and then we proceed as in the first case. ]

71



	Title Page
	Abstract
	Table of Contents
	Acknowledgements
	Introduction
	Notations and Assumptions
	Outline

	The Mean Value Theorem
	The PDE Obstacle Problem with a Gap
	Regularity, Nondegeneracy, and Closing the Gap
	Equivalence of the Obstacle Problems
	Minimizers Become Independent of M
	The Mean Value Theorem

	Reifenberg Flatness of Free Boundaries
	Preliminaries and Basic Results
	Measure Stability
	Weak Regularity of the Free Boundary
	Finer Regularity of the Free Boundary

	Bibliography
	Proof of Theorem 3.3.1
	Proof of Theorem 3.3.3



