

MULTI-MODAL EXPRESSION RECOGNITION

by

SRIVARDAN CHANDRAPATI

B. Tech., Dr Babasaheb Ambedkar Technological University, 2005

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Mechanical and Nuclear Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Approved by:

Major Professor
Dr Akira Tokuhiro

Copyright

SRIVARDHAN CHANDRAPATI

2008

Abstract

Robots will eventually become common everyday items. However before this becomes a

reality, robots would need to learn be socially interactive. Since humans communicate much

more information through expression than through actual spoken words, expression recognition

is an important aspect in the development of social robots. Automatic recognition of emotional

expressions has a number of potential applications other than just social robots. It can be used in

systems that make sure the operator is alert at all times, or it can be used for psycho-analysis or

cognitive studies. Emotional expressions are not always deliberate and can also occur without the

person being aware of them. Recognizing these involuntary expressions provide an insight into

the persons thought, state of mind and could be used as indicators for a hidden intent. In this

research we developed an initial multi-modal emotion recognition system using cues from

emotional expressions in face and voice. This is achieved by extracting features from each of the

modalities using signal processing techniques, and then classifying these features with the help

of artificial neural networks. The features extracted from the face are the eyes, eyebrows, mouth

and nose; this is done using image processing techniques such as seeded region growing

algorithm, particle swarm optimization and general properties of the feature being extracted. In

contrast features of interest in speech are pitch, formant frequencies and mel spectrum along with

some statistical properties such as mean and median and also the rate of change of these

properties. These features are extracted using techniques such as Fourier transform and linear

predictive coding. We have developed a toolbox that can read an audio and/or video file and

perform emotion recognition on the face in the video and speech in the audio channel. The

features extracted from the face and voices are independently classified into emotions using two

separate feed forward type of artificial neural networks. This toolbox then presents the output of

the artificial neural networks from one/both the modalities on a synchronized time scale. Some

interesting results from this research is consistent misclassification of facial expressions between

two databases, suggesting a cultural basis for this confusion. Addition of voice component has

been shown to partially help in better classification.

 iv

Table of Contents

List of Figures..viii

List of Tables..x

Acknowledgements..xi

Dedication ..xii

CHAPTER 1 - INTRODUCTION...1

CHAPTER 2 - FACIAL EXPRESSION RECOGNITON (FER)...4

FACE DATABASE ..6

Japanese Female Facial Expression Database (JAFFE)..6

MMI Database ..7

FEATURE POINT EXTRACTION FROM SNAPSHOTS ...8

Face Region Separation...9

Feature Point Location ..12

Particle Swarm Optimization...12

Cost Functions...14

Other Techniques used ..15

Results of Feature Point Extraction..16

Construction of Vector ..17

FEATURE POINT TRACKING IN VIDEOS...19

NEURAL NETWORKS FOR CLASSIFICATION...20

Training of ANN...25

Testing of ANN...27

RESULTS of FER ..27

Training on JAFFE and Testing on JAFFE ..27

Training on JAFFE and Testing on MMI...28

Training on MMI and Testing on JAFFE...31

Testing on Elderly Faces ...32

ANALYSIS of FER ..34

CHAPTER 3 - EMOTION RECOGNITION IN SPEECH ..38

 v

SPEECH DATABASE..38

SPEECH PROCESSING...41

Spectrogram..41

Word Separation ...43

Mel Frequency Spectrum...44

Formant Extraction using LPC ..46

Speech Generation in Humans...46

Filter Designing using Linear Predictive Coding (LPC) ...50

Formant Extraction..52

CLASSIFICATION OF EXPRESSION..52

Input Vector used with ANN ...52

Training, Validation and testing sets..53

Results and Discussion..53

CHAPTER 4 - MULTI-MODAL EXPRESSION RECOGNITION...56

MULTIMODAL FUSION ..57

Signal level ...57

Feature level..57

Decision or Conceptual level ...58

EMOTION RECOGNTION TOOLBOX ..59

Instruction Manual ..59

TESTING and ANALYSIS...63

CHAPTER 5 - Conclusion ..67

References And Bibliography ...72

Appendix A - MATLAB Code..78

Filename : integrate.m...78

Filename : mmread.m ...86

Filename : distanceDiffVector.m...94

Filename : distanceDirVector1.m..94

Filename : setAudio.m ..98

Filename : featureExtraction.m ...104

Filename : computeSpectrum.m..107

 vi

Filename : wordSeperation.m..109

Filename : melfiltermatrix.m...110

Filename : freq2mel.m ..113

Filename : mel2freq.m ..113

Filename : Peak.m...114

Filename : computeFormant.m..115

Filename : loglimit.m..118

Filename : computeMelSpectrum.m..119

Filename : setVideo.m ..120

Filename : getFaceRegion.m...158

Filename : checkBackground.m ..161

Filename : seedPixel.m ...162

Filename : check3.m ...163

Filename : testFrame.m...164

Filename : Pso2_eye.m ...172

Filename : cost_function7subReg.m..177

Filename : getRightEyeCorners.m...182

Fielname : Pso_eyebrow.m ...184

Filename : cost_functionEyebrow.m ...188

Filename : getRightEyebrowCorner.m ..191

Filename : getLeftEyeCorners.m...193

Filename : getLeftEyebrowCorner.m ..195

Filename : Pso2_mouth_left.m..197

Filename : cost_functionMouthL2.m...203

Filename : Pso2_mouth_right.m..205

Filename : mouth_fix.m ..211

Filename : getMouthLipsCoordinates.m..214

Filename : Pso_nose.m..216

Filename : cost_functionNose.m ...221

Filename : getNoseCorners.m ...224

Filename : run2.m...227

 vii

Filename : Pso2_eye_run.m ..237

Filename : getRightEyeCorners2.m...241

Filename : Pso_eyebrow_run2.m ..243

Filename : getLeftEyeCorners2.m...249

Filename : Pso2_mouth_left_run.m...251

Filename : Pso2_mouth_right_run.m...257

Filename : cost_functionMouthR2.m ..264

Filename : Pso_nose_run_vector.m...267

Appendix B - Facial Action Coding System..272

Appendix C - Neural Network as a Useful Tool for Real-Time Facial Expression Recogntion 279

Appendix D - Defense Presentation...290

 viii

List of Figures

Figure 1.1 Temporal Characteristics of Emotional Categories [14]..1

Figure 2.1 Setup used to photograph facial expression for JAFFE database.................................7

Figure 2.2 Example of facial expression form JAFFE database ...7

Figure 2.3 Example of facial expression images from MMI database ..8

Figure 2.4 Seed Pixel Neighbor configuration; (a) 8 neighbor (b) 4 neighbor10

Figure 2.5 Blur Image and Edges on Image..10

Figure 2.6 Original Image and Edges on Image..11

Figure 2.7 Background Separation ...11

Figure 2.8 Face Region ..12

Figure 2.9 Left Mouth Corner Template...15

Figure 2.10 Eye Corner Estimation ..15

Figure 2.11 Eyebrow Corner Estimation ..16

Figure 2.12 Upper and Lower Lip Estimation...16

Figure 2.13 Feature Points ...17

Figure 2.14 Feature Mask...18

Figure 2.15 Evolution of Facial Expressions Over Time...19

Figure 2.16 Biological Neuron ..20

Figure 2.17 Basic Component of Artificial Neural Network..21

Figure 2.18 Identity Function..22

Figure 2.19 Step Function ...22

Figure 2.20 Sigmoid Function (α = 1) ...23

Figure 2.21 Hyper-Tangent Function (α = 1)...23

Figure 2.22 Recurrent Network...24

Figure 2.23 Three Layered Feed-Forward Network [63] ...25

Figure 2.24 Normalizing Expression Recognition in Video Sequences......................................30

Figure 2.25 Examples of Images of the Elderly Gentleman ...32

Figure 2.26 Expression Recognition in Elderly Faces..33

 ix

Figure 2.27 Comparing Anger and Disgust Expressions..36

Figure 2.28 Comparing Surprise and Fear Expressions..37

Figure 3.1 Photograph during recording in anechoic chamber at TU-Berlin. [7]39

Figure 3.2 Recognition rate for various emotions in database [7]...40

Figure 3.3 A Spectrogram...41

Figure 3.4 Power plot with word separation ..44

Figure 3.5 Mel frequency Scale...45

Figure 3.6 Mel frequency filterbank [58]...45

Figure 3.7 Mel frequency filter bank as a matrix ...46

Figure 3.8 Schematic of the Human Speech Production System ..47

Figure 3.9 Linear Speech Production Model..48

Figure 3.10 Speech Feature Extraction [48]...53

Figure 3.11 Emotion Recognition in Speech..54

Figure 4.1 Ideal Emotion Recognition System...56

Figure 4.2 Multimodal fusion at Signal level...57

Figure 4.3 Multimodal fusion at Feature level ...58

Figure 4.4 Multimodal fusion at Decision level ...58

Figure 4.5 Selecting a Media File..59

Figure 4.6 Reading a media file...60

Figure 4.7 Audio Toolbox...61

Figure 4.8 Video Toolbox ...62

Figure 4.9 Emotion Recognition Toolbox ...63

Figure 4.10 Comparing Multi-Modal Results for Disgust and Anger ...66

Figure B.1 Anatomy of Facial Muscles ...272

 x

List of Tables

Table 2.1 True Positive rate for ANN trained and tested on JAFFE database.............................27

Table 2.2 True Positive rate for ANN trained on JAFFE and tested on MMI database...............29

Table 2.3 True Positive rate for ANN trained on MMI and tested on JAFFE database...............31

Table 2.4 Confusion Matrix for ANN trained on JAFFE and tested on MMI database...............35

Table 2.5 Confusion Matrix for ANN trained on MMI and tested on JAFFE database...............36

Table 3.1 Sentences in speech database [7] ...40

Table 3.2 Confusion Matrix for Emotion recognition in Voice ..54

Table 3.3 Recognition Rate for Emotions in Voice..55

Table B.1 Facial Action Coding System..273

 xi

Acknowledgements

I take this opportunity to firstly thank my major professor Dr. Akira Tokuhiro for his

continuous support and guidance through these two years, without which I would have not been

able to complete this research.

I would also like to thank Dr. Dale Schinstock, Associate Professor, Mechanical and

Nuclear Engineering and Dr. David Gustafson, Professor, Computing and Information Sciences

for agreeing to be on my committee and helping me with my research whenever I needed their

assistance.

I thank the members of the IDEAS lab and fellow graduate students for being really

awesome friends and making it a fun and challenging place to work and learn, and always

pushing the bar higher in the spirit of healthy competition.

I grateful to the faculty and staff at the Department of Mechanical and Nuclear

Engineering for assisting me in their own capacities. Also to all the other members of the K-State

family who make working at K-State so much easier.

I am greatly obliged to the K-State Center on Aging and its director Dr Gayle Doll, Dr.

William Dunn, Department of Mechanical and Nuclear Engineering at K-State and M2

Technologies for their financial support during the course of this research.

I would like to thank Ms. Victoria Bañales, who volunteered to provide us with some

video clips of herself, so that we could perform some preliminary tests on the system we

developed.

Last but not the least, to family and friends for being very supportive and have made

these two years I spent in Manhattan fun-filled and very memorable.

 xii

Dedication

I dedicate this thesis to my parents and sister to whom I owe my success.

 1

CHAPTER 1 - INTRODUCTION

Robot as defined by Kaplan “is an object that possesses the following three properties: It

is a Physical object, it functions in an Autonomous and Situated manner”. By situated manner he

means that the physical and social environment perceived by the robot has a direct influence on it

[32]. A lot of research has gone into integrating the robot with its physical environment. With the

various sensors, such as proximity sensors, accelerometers and strain gauges, the physical

integration of the robot and environment is incrementally becoming a reality. However robots

today are still limited mostly to industrial applications or as toys for the technically inclined. To

make robots more universally acceptable so that they can coexist with human in the same

environment their ability to interact socially or at least understand the social environment is

important. In face to face human interaction, facial expressions carry approximately, 55%, and

voice intonations, 38%, of the message, while only 7% percent of the message is carried by the

actual words [45]. Therefore for robots to be socially acceptable they need to be able to

recognize emotions revealed by facial expressions and voiced intonations.

Research has shown that human expressions are short lived emotional states and the

changes in expressions are indicators to the subjective feeling and action tendencies towards the

current issues. For example if an assistive feeding robot sees that a person has a look of disgust

seeing a particular entrée it could refrain from feeding it. Other emotional states can last from a

few seconds such as expressions to attitude lasting minutes, moods sometimes lasting for weeks

or months, emotional disorders lasting for years and traits lasting a lifetime (Figure 1.1).

Figure 1.1 Temporal Characteristics of Emotional Categories [14]

 2

Emotions are a group of processes involving five different components, comprising of

subjective feeling, cognition, motor expression, action tendencies and neurological processes

[17]. Traditional research in emotion detection consists of stimulating the subjective feeling or

cognition of the subject (person). For example, showing graphic images to induce changes in

motor expression and neurological processes from an apriori state. Along with the general

curiosity about human nature, this research was also directed towards detection of deception

[23].

 Humans have tried to detect deception and/or intent to deceive for many years. For

example in western Africa people suspected of a crime were made to pass a bird's egg from one

nest to another and if they broke it they were considered guilty. In ancient China a suspect was

made to hold a handful of rice in their mouth during the prosecutor's speech, and if there was any

rice left at the end of the speech then he/she was declared guilty. All these methods were meant

to be indicators of anxiety that accompanies the telling of lies and/or trying to deceive in varying

degrees. The African method was a measure of how nervous the subject was when confronted

the truth; the Chinese method relied on the idea that the mouth went dry during times of

emotional anxiety [60].

Today law enforcement, security, intelligence and other related agencies rely on an age

old technology developed in 1931 called the polygraph test to determine truthful/deceitful

accounts. The polygraph test measures various physiological states of the subject namely blood

pressure, heart rate and skin conductivity in response to a series of carefully controlled questions.

The results of this test are largely based on the skill of the test supervisor [60]. The US Supreme

Court has left it to individual jurisdictions whether to accept polygraphs as admissible evidence,

and in 2007 it was admitted in 19 states at the discretion of the trial judge and with stipulations.

In most European jurisdictions it is not used by the police force, as they do not consider them to

be reliable.

Research on deception detection using cues from expression of emotion [67] [23] and

advances in computing technology and processing speed make it possible to consider an

automated deception detection system. Before we can build a system to successfully detect

deception, we have to first build a robust automated expression recognition system that can

recognize emotions from various modalities such that information from one “channel” can be

verified and validated by another, and also to accommodate “failure” of one channel by another.

 3

In this research we make an effort to build a multi-modal emotion recognition system

using cues from facial expression recognition and voiced characteristics, that until recently were

left to the judgment of the person conducting the polygraph test. We anticipate that an automated

emotion recognition system would facilitate the development of human computer interaction. In

fact applications such as monitoring operator efficiency in critical situations or developing first

generation social robots are near-term goals [61]. Our task is thus to recognize the six basic

expressions (happiness, anger, disgust, fear, surprise and sadness) that are common in the human

experience [19]. All other expressions are learned from the environment [15].

The objectives of this research are as follows:

• To build a digital facial expression recognition system

• Build a system for recognition of emotions in digitally recorded voice

• Integrate the two into a multi-modal emotion recognition system

• Build an user friendly interface for the multi-modal emotion recognition system

This thesis is divided into 3 parts. In the Chapter 2 we will discuss facial expression

recognition. We will firstly discuss the databases used, and then talk about feature extraction

from the images and formation of feature mask. After which we will briefly discuss the basics of

artificial neural networks, and their training and testing. Then we discuss the results and analysis

of the same. We then proceed to expression recognition in speech (Chapter 3) where we will first

talk about the database used. After which we will discuss word separation using spectrogram and

power plot. After which we will see how to concert from frequency scale to mel scale and

compute mel energy. We will now have a look at the human speech production system, draw

analogies to a source filter model and filter design using linear predictive coding. Once we are

done designing a vocal tract filter using linear predictive coding, we then extract formats from

the speech signal. After which we build a feature vector of expression classification in speech.

We will then discuss results from expression recognition in speech before having a look at

multimodal emotion recognition. In the third part (Chapter 4) we will study the various levels of

multimodal fusion, and see how to use the emotion recognition toolbox we develop. After which

we discuss how to classify expressions using the multimodal data.

 4

CHAPTER 2 - FACIAL EXPRESSION RECOGNITON (FER)

Verbal communication is voluntary and controlled by the speaker, but this conveys only a

portion of the full meaning of the message. Along with verbal communication there is also a

significant amount of information that is conveyed through non-verbal channels such as facial

expressions (approximately 50 percent of the effect of the message), while vocal intonations

contain some 40 percent of the effect [45]. Being able to develop a system to recognize these

expressions automatically would facilitate human computer interaction. That is in effect, better

understand the needs of the person interacting with the computer. This improved man-machine

communication would also make it easier for people with disabilities to use computers. There

has been some research with focus many on facial expression recognition and others that are

more specific, such as tracking the eyeball [38] or a whistling user interface [65].

It is self-evident that humans have very well developed communication skills, and thus

developing an automated system to demonstrate all that a person can do, is a challenge in

computational intelligence. One of these skills that we take for granted is the ability to recognize

facial expressions. The range of human expressions and the cognitive states to which the

expression is attached is large [28]. Hence it is not surprising that even for one expression, say a

smile linked to a state of happiness, that every person has a slightly different way of expressing

this emotion. An automated expression recognition system must be able to accommodate these

variations. Additionally, there is evidence of differences for selected emotions (fear and surprise)

amongst different ethnic groups and cultures [21]. While others, like happiness (smile) appear to

be largely universal. However, as humans are able to distinguish between basic

expressions/emotions (anger, disgust, happy and sad) irrespective of ethnicity and culture [21], it

is reasonable to assert that there exists a common functional modality for many expressions.

Discovering this modality and developing a tool to accurately extract an inherent “pattern” from

an expression is the key to building flexible and robust facial expression recognition software.

Gladwell [27] described a face reader as a, “professional person who has a gifted ability

to pick up voluntary or involuntary facial expressions occurring within a very short time”. With

humans one has to consider the question of degree of truthful intent. By using a digital camera to

 5

record the changes/changing expressions we want to be sure that we have a system that is

reliable and accurate [29].

In fact Ekman [24] has reported that a ‘true’ smile can be held longer in time than a

‘forced’ smile. In fact herein lies one of the difficult challenges/issues in facial expression

recognition and emotion.

Facial expression recognition systems can be classified into two categories: static

recognition which classifies expressions in snapshots or individual frames of a video, and

dynamic recognition that works on video sequences as a whole. The principal methods of static

recognition are wavelet transformation, neural network based classification and principal

component analysis. These methods are capable of analyzing only one frame at a time. The

dynamic methods work by extracting the changes in the video, such as changing intensity within

a particular region of the video or movement of features in the video, to achieve expression

recognition. Two important methods of extracting these dynamics are optical flow models and

hidden Markov models [71].

Another way to classify various automated facial expression recognition systems is via

their method, namely a geometric feature based approach, and a holistic template matching

method. In the geometric feature based approach a set of key feature points are located and the

geometric relation of these points with each other is used to classify the expression. In contrast,

the holistic template matching technique consists of a template of desired feature points

superimposed on the image of interest and then deformed so as to match the image. The

deformation of the template is then used to classify the image. A notable detailed survey of the

various methods is that given by Fasel and Luettin [25] and also by Pantic and Rothkrantz [50].

However, as the number of feature points correlates to facial details, most of the reported

approaches are computationally intensive and thus less than applicable in a real time

environment. An exception perhaps is that developed by Littlewort et al. [40]. Considerable

computing is needed for detailed image processing and feature point extraction. If an expression

recognition system is to be deployed in the field it needs to perform its analysis in real time or

quasi-real time.

Our objective has been to reduce the amount of computation required (relative to above)

for the image preprocessing and create an input vector for an artificial neural network capable of

recognizing facial expressions in real time with a relative accuracy in recognition, while leaving

 6

more computational capacity to process speech for emotion recognition. There are a number of

challenges involved in making the processing quicker; firstly we cannot extract a large number

of facial feature points to form a dense grid for tracking subtle changes. Instead we search for the

most distinguishable points on the face that can consistently be tracked spatiotemporally. We

also exercise the option to limit the search for feature points if an initial “pass” does not easily

reveal them. Thus, relative to facial expression recognition reported above, we expect at the

onset, a lower overall accuracy in facial expression recognition due to the lower dimensionality

of the vector representing the expression. This also presents a tougher learning task for the

artificial neural network since there is inherently more noise in the data. Even with all these

challenges, lower accuracy and more noise in the data, we believe that adding the voice

component will maintain lower computation load yet contribute to near real time emotion

recognition.

FACE DATABASE
Databases are usually collected in a controlled environment and hence suitable for

development of a system before the system is tested in the field. Working with standard

databases also gives us an opportunity to directly compare our results with those obtained by

other researchers. Further a pre-coded database (facial expression and emotion), standardizes

characterization or labeling such that it sidesteps subjective labeling.

Japanese Female Facial Expression Database (JAFFE)
The Japanese female facial expression database (JAFFE) was compiled by Lyons et. al.

[41]. This database consists of a total of 219 images of 10 Japanese female subjects six basic

expressions of angry, disgust, fear, happy, sad and surprise [20], and a neutral face.

Each of the subjects took their own pictures using a set up as shown in the Figure 2.1.

The setup consisted of a semi-reflective plastic mirror placed in front of a camera, the subjects

took their photographs while looking in this mirror. Tungsten lights were used to evenly

illuminate the faces of the subjects. The camera was placed in a dark box so as to reduce back

reflection in the semi-reflective mirror. The images were digitized using a flat bed scanner, after

being printed in monochrome.

 7

Figure 2.1 Setup used to photograph facial expression for JAFFE database

Figure 2.2 Example of facial expression form JAFFE database

The images were then rated for degree of each component of the expression by another

group of 92 Japanese females. The rating group was divided into four subgroups; the first group

of 31 was asked to rate 108 images for 6 basic expressions, while the second group of 31 was

asked to rate the remaining 111 images. The third group and fourth group of 15 subjects each,

were not shown the fear images and asked to rate the images for five expressions. Here, similar

to the first two groups, the images shown to the third and fourth groups were also mutually

exclusive.

MMI Database
Pantic et al. developed and compiled the MMI face database to address the lack of

availability of an easily accessible standard database for researchers in the fields of facial

expression recognition. The database consists in excess of 1500 still and video image sequences

of various expressions in both frontal and profile view. The videos in this database are shot at a

 8

standard rate of 24 frames per sec with the length of the video varying from 40 to 520 frames.

These videos were shot in a under consistent lighting form two high intensity lamps which was

diffused using reflective umbrellas. The subjects of the database were asked to display a number

of different action units both individually and in combination with other action units. The

complete database was then action unit coded [52], according to the facial action coding system

(FACS) attributed to Ekman and Friesen [19] [22].

The facial action coding system is a technique developed to recognize and score action

units. Action units represent facial muscular activity that momentarily changes the facial

expression. Each expression is a combination of a number of action units that occur

simultaneously. Tracking these changes in action units can be used for expression recognition,

but will only add to computation since these changes are minute and would require a thorough

preprocessing of the image. Appendix B contains several reference images of the facial actions

units.

Figure 2.3 Example of facial expression images from MMI database

FEATURE POINT EXTRACTION FROM SNAPSHOTS
It is at the preprocessing stage when extracting the feature points that we significantly

differ from Littlewort et al. Littlewort et al. began with 48 X 48 pixel images to obtain 92,160

possible features using 5 spatial and 8 orientations of the gabor filter across the image. The

feature set was reduced by first extracting the best feature set for each emotion independently,

the various feature sets were put together into a 538 dimensional vector [39].

We are looking at a computationally lighter system. Hence based on Bassili's work, we

chose instead to locate selected points on the face. Bassili in experimentally recorded video of

actors expressing various emotions, with their faces painted black and placed about 100 white

markers on the face. These videos were then shown to other people, such that only the white

markers were visible. With this experiment he showed that people could recognize emotions by

 9

just looking at the movement in the cluster of points without the complete facial image. The

mean accuracy of recognition of emotions reported by Bassili based on feature point motion was

33.33%, ranging from 75% for happy to 6% for fear. A chi square test was performed for

statistical significance and the results were found to be significant compared to a random guess

[5]. While the recognition rate is not high it does demonstrate that even with a “sparse” image

the emotion can be recognized for select expressions and linked emotions. We extract 17 feature

points that could be automatically extracted from the face, as shown by Chennamsetty in his

M.S. thesis [12]. An assumption we make while extracting the feature points is that the image if

of the frontal face and approximately centered in the frame. As a first generation system we

decided to not to take into consideration out of plane rotation of the head. While an out of plane

rotation provides us with a profile view of the person, it drastically reduces the number of feature

points that can be extracted. It does give us a few additional more points such as the ears and the

chin, but these points would be more important for identification purposes, than for expression

recognition. Since one of the applications that this system of this system is in deception

detection, the video recording will be in a controlled environment where frontal face images can

be obtained.

Face Region Separation
Face region separation is the first step in processing the image, which eventually leads to

feature point location and then emotion recognition. In this stage the face is separated from the

background of the image, so that at a later stage we can limit our search to the face region. The

face region separation is achieved using a seeded region growing algorithm. The seeded region

algorithm was first proposed by Adams and Bischof in 1994 [1]. We chose this method for its

simplicity in implementation, and ability to accurately separate the complete face region, without

including the background. This method begins with selection of the initial seeds such that they

are located are in the area of interest. We then begin with one of these seeds and test its

neighboring pixels to see if the following threshold condition is satisfied. It is described by,

TII s <−

where, Is is the intensity of the seed pixel, I is the intensity of the pixel under consideration, and

T is the threshold intensity. In case a neighboring pixel satisfies the criteria it is added to the set

of seed pixels and acts like a seed pixel in the next iteration. We do this until either none of the

 10

seeds have a neighboring pixel that satisfies the criteria or we reach the borders of the image.

There are two commonly used sets of neighbors, firstly the eight neighbor scheme where all the

eight neighbors are considered, and secondly the four neighbor scheme where we look at only

the pixels to the immediate right, left, top and bottom, and not at the diagonal pixels.

Figure 2.4 Seed Pixel Neighbor configuration; (a) 8 neighbor (b) 4 neighbor

(a) (b)

Before we begin with the actual seeded pixel growing we have to first preprocess the

image. Preprocessing begins with first scaling the image such that we use the full range of the

gray scale, i.e. [0 255]. We then blur the image, using a Gabor filter, to get rid of the soft edges

(Fig 2.5), because at the next stage when we use an edge detector, it is very sensitive to soft

edges (Fig 2.6) and thus picks up a lot of edges. We use the canny edge detection algorithm

[61][9] for this purpose; this is an inbuilt function in Matlab.

Figure 2.5 Blur Image and Edges on Image

 11

Figure 2.6 Original Image and Edges on Image

Once we have the edges, we subtract them from the original image so as to make all the

edges black in the original image. This creates a gradient in the image and prevents the region

from growing across the edge. However, this could grow around the edge if the regions are

actually connected. Once we have done this we first use the seeded region growing to locate as

much of the background as we can by using seed pixels at each of the four corners of the image

and then painting the background black on the original image (Figure 2.7). This step helps when

we do the seeded region growing for the face, since if the region attempts to grow outside the

face, it will be limited by the black background and not grow to encompass the whole image.

Figure 2.7 Background Separation

Now that we have an image where we have painted the background black and the edges

more clearly delineated, we can go ahead and use the seeded region growing algorithm over the

face region to locate the face in the image. For the region growing algorithm at this stage we

select five seed pixels such they form a cross about the center of the image. These seeded regions

are grown to get the final face region. However, in case the seeded regions grow out-of-bounds

of the image then the algorithm is rerun after lowering the threshold and reinitializing the seeds,

either until a region completely within the bounds of the image is found or the seeds do not grow

at all. If such a region is found then it is considered to be the face. If the seeds do not grow or

 12

after a number of repeated iterations still grow beyond the image then it returns an error

declaring that face could not be detected.

Figure 2.8 Face Region

Feature Point Location
Once we have the face region located, we divide it into sub-regions. We then use various

search mechanisms to locate the feature points. We primarily divide the face region into four

quadrants, and locate the one most easily distinguishable point in each of the four quadrants i.e.

two eyes and the two corners of the mouth. These key feature points are extracted using the

particle swarm optimization technique, explained below. After we locate these key feature points

we locate the rest of the points using the key feature as the reference. These features are

extracted using the properties of the respective features, i.e. location with respect to the key

features and intensity gradient

Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm was developed in 1995 by Kennedy and

Eberhart, for solving optimization problems of continuous non-linear functions. It is mainly been

inspired by the artificial life and social psychology of flocking birds or schooling fish [33].

In this method the population members called “particles” are flown through the solution space.

Upon initialization the particles are randomly located in the solution space and assigned random

velocities. At each iteration the particle's velocities is so adjusted that it has a weighted

acceleration, towards its previous best position and towards the global best [34]. The best

position is decided by a function called the ‘cost function’ or a ‘fitness function’; this could be

the function of the solution space if looking for a maxima or a minima, or some other function

 13

that defines the characteristics of the optimal solution (in this case the characteristics of the

feature). For example for the eye the cost function is defined so as to look for a dark region

(eyeball), with lighter regions on the left and right (cornea) and another darker region (eyebrow)

above the pixel being investigated. We define similar cost functions for each of the key features.

These iterations are then continued until all the particles converge upon the optimal solution. The

algorithm can be better understood using the pseudo code below [34].

Loop

 For i=1 to number of particles

 If)()(ii pGxG 
> then do

 For d = 1 to dimensions

 idid xp =

 Next d

 End do

 g = i

 For j = indexes of neighbors

 if)()(gj pGpG 
> then g = j

 Next j

 For d = 1 to number of dimensions

))1(())1(()1()(21 −−+−−+−= txptxptvtv idgdidididid ρρ

),(maxmax vvvid +−∈

)()1()(tvtxtx ididid +−=

 Next d

 Next i

Until criterion

 14

Cost Functions

Cost function also known as fitness function, is what defines an optimal solution. It could

be any continuous function, designed such that it reaches a maximum at the optimal solution.

The cost functions that we used for various features are described below.

Eye: The cost function of the eye is a sum of four terms.

 DCBAyxG +++=),(

 A = Sum of Variance across rows + Sum of Variance across columns

B = Sum of intensities above and below the particle minus two times the intensity

at the particle; if the average intensity below the particle is more than that

on the particle

OR

 = -800

C = 255 minus mean intensity about the particle

D = -800; if the particle is beyond the region boundaries for the eye

OR

 = 0

Eyebrow: The cost function for the eyebrow is 255 minus the average intensity of the

image around the particle. It is the PSO algorithm that makes sure that the particle does

not go out of the region of interest, which in this case was in the region above the eyes. A

pixel with an intensity of 0 represents a black pixel and one with 255 represents a white

pixel. When we define the function above we are looking at the dark region above the

eye, which is the eyebrow. We need to look at the average of the region because

otherwise we could make a mistake by picking a stray black pixel, and an eyebrow is

surely thicker than a single pixel.

Mouth: The cost function for the left mouth corner can be represented by the template

shown in Figure 2.9. If the mean intensity of area (a) is more than the threshold and the

mean intensity of area (b) is less than the threshold than the cost function is the difference

in intensity between these two areas, i.e. a darker right side and a brighter left side. There

is also a bonus if the difference in intensity between areas (c) and (d) and (e) and (f) is

greater than 50. This works on the understanding that the lips are darker than the rest of

the cheeks, and for the left corner the lips are to its right. The lips also get narrow as they

 15

move towards the corner and hence the bonus. A mirror image of this template can be

used for the right corner of the mouth.

Figure 2.9 Left Mouth Corner Template

Nose: The cost function for the nose is a sum of two terms. The first term compares the

intensity at the particle to those on the lower left and right of the particle; this is based on

the concept that the tip of the nose is always brighter than the nostrils. While the second

term ensures that the nose is close to the center of the face region, therefore a point closer

to the center of the face would have higher fitness compared to that of a particle away

from the center.

Other Techniques used

The eye corners are located next after the eyes are located using the PSO. The eye

corners are located using a threshold to convert the region around the eye into a monochrome

image (Figure 2.10) and then looking for the largest contagious block of white pixels. This is

based on the observation that in most cases within a small region around the eyes the eyelashes

are the only continuous dark object and they begin and end at either corner of the eye. Further

the threshold for converting to monochrome is calculated based on the mean intensity of the

image around the eye. The first and last columns of this cropped image are than scanned to find

the corners of the eye.

Figure 2.10 Eye Corner Estimation

 16

The eyebrow corners are located using a technique similar to that used for locating the

eye corners, except that the search is performed in the region around the eyebrow. This is

because the eyebrow is also a continuous feature and can easily be separated using a threshold

(Figure 2.11).

Figure 2.11 Eyebrow Corner Estimation

A very similar technique is used to locate the upper and lower lips. The threshold is

decided based on the whole region around the mouth while the actual search is performed only

midway between the two lip corners. This is because in the mouth is symmetric and the relative

position of the lips is always in between the mouth corners. For example in Figure 2.12 the

topmost and the bottommost white pixel in the center column will be picked as the upper and

lower lips respectively.

Figure 2.12 Upper and Lower Lip Estimation

Results of Feature Point Extraction
Using the methods described above we locate seventeen feature points in all, as follows:

eyes, eye corners, eyebrows, eyebrow corner, mouth corners, upper and lower lip, nose and

nostrils. While extracting these features, we relied upon thresholds. These were initially some

arbitrary numbers we identified by trial and error, but upon further trials we came to realize that

the thresholds were not universal, and had to be customized to the lighting conditions, color of

the eyes, skin color and hair color. Therefore we devised a graphical user interface which gives

the user some flexibility with respect to the thresholds while not straying too far away from the

 17

optimal values we found. All of these thresholds are based upon the mean intensity of the image

around the desired feature.

We see that a location of each feature depends upon the previous. The eyes are the first

feature we locate, but the accuracy of location of eye depends upon the identification of the face

in the image. If we get this wrong, we would deploy the particles for the PSO in the wrong

region and see a cascade effect of these errors at all points. Hence the location of the face is as

important as location of the feature points. Just in case the face region separation algorithm does

not work as expected, the GUI also has a manual face region selection option. This saves time on

occasion when we are dealing with a small number of images with different lighting conditions.

Figure 2.13 Feature Points

Construction of Vector
At this point we have located the seventeen feature points on the image (Figure 2.13). We

need to figure out a way to input this vector into an artificial neural network for classification.

Since a backpropagation neural network only accepts vectors as inputs and not a series of vectors

we had to find a way to convert the coordinates of the feature points into a vector. In our initial

attempts we tried forming a vector by simply putting the entire x and y coordinates one after

another to form a column vector. However, this had a number of drawbacks, and was not suitable

for classification of emotion.

 18

Since the coordinates are just a set of numbers representing the location of points on the

image, they would change with the location of the face in the image. This could be solved by

using one of the feature points as the reference. However we then face a problem of scaling,

since the distance of each point from the other would change not just based on the expression as

we would like it to, but also on the size of the face in the image. For example the features would

be closer to each other if the picture is taken from a distance and further apart if it is a close-up

image. To offset the effects of zoom in the image we would have to normalize the feature points

extracted. We solve this by scaling the coordinates of the feature points such that the distance

between the two eyes is equal to one, this is similar to what other researchers [4] [26] [13] have

used for normalization. By doing so we would scale each image to the same size while still

allowing for the movement of features on the face.

The elements of the vectors were still numbers representing points on the image, but did

not represent the physical relation between various feature points within a given feature or

among features. Hence this would not classify the expression satisfactorily. We then began

testing vectors that consisted of distances between various features, angles subtended by them,

polar representations, difference vectors and various combinations of these. We eventually built

a vector that consisted of a combination of distances, angles and difference vectors. The mask

formed by the final vector is shown in Figure 2.14.

Figure 2.14 Feature Mask

 19

FEATURE POINT TRACKING IN VIDEOS
Facial expressions when seen over time evolve from the onset of expression to the apex,

when the expression is at its peak, and then the offset (Figure 2.15). One phase instance of an

expression is the complete cycle from onset to offset of expression, in this method we classify

the whole phase as an expression. This method has of classification has not been used because it

is difficult to say when exactly has the expression has begun or ended, and to be able to locate

the beginning and end of an expression we would need to classify each frame to look for

deviation from a neutral face. Classifying each frame in a video for facial expression is called the

frame instance type of classification. The frame instance type classification when plotted

temporally can show the onset and offset of the expression [30].

Figure 2.15 Evolution of Facial Expressions Over Time

We use the frame instance wherein at each frame we recalculate the feature points and

the vector for each frame. In this stage while computing the feature points for each frame, we no

longer locate the face region again for each frame. As a video camera normally captures video at

30 frames per sec the changes from one frame to the next in an unedited video are usually not

significant. Hence we deploy the PSO for the feature points within a small region surrounding

the corresponding feature point in the previous frame. We construct the vector for input to the

artificial neural network by taking the difference of the vectors for the image under consideration

and a neutral frame of the sequence. By default the first frame of the sequence is considered the

neutral fame, because most of the databases consist of clips with the expression beginning with a

neutral face, going to apex and back. But the GUI does have a provision to select any other frame

as a neutral frame in case the clip began with a different expression.

 20

NEURAL NETWORKS FOR CLASSIFICATION
Machine learning methods are algorithms that allow computers to learn and extract rules

and patterns from large data sets. These techniques are usually employed in areas where it if

difficult to define a set of rules but large amount of data along with its correlated expected results

are available. For example in area like robot locomotion, speech recognition, object recognition,

datamining and stock market analysis to name a few. Our problem of facial expression

recognition has similar properties, where it is difficult to have a set of rules for expression

recognition and we have a database of labeled images of facial expression. Hence we use one

such technique known as artificial neural networks for classification of facial expressions.

Initial interest in the area of artificial neural networks was sparked in 1943 after

McCulloch and Pitts introduced the concept of simplified neurons [35]. A neuron in its

biological sense is the basic unit of the brain. It typically consists of four parts, namely:

dendrites, the synapse, the cell body/soma and the axons. Dendrites act the antennae for the

neuron, receiving signal from the surrounding neurons and passing the signal to the cell body

(Figure 2.16). Once the sum of the signals received at the cell body crosses a threshold, the cell

fires a signal to its surrounding neurons through its axons [36].

Figure 2.16 Biological Neuron

The primary unit of an artificial neural network is called a ‘neuron’ similar to its

biological counterpart. These function similar to the biological neuron, by receiving inputs from

 21

the neighboring neurons or external inputs, for input layer; and passing it onto the next layer or

the output.

Figure 2.17 Basic Component of Artificial Neural Network

Some of the defining aspects of a neuron are: the weights (w) for each of its inputs (j), its

bias (θ), and its output transfer function (Ƒ) or the activation function as seen in Figure 2.17. The

weights define the importance of each of the input to that neuron. The bias also known as offset

acts as the threshold for the neuron. The activation function defines the output characteristics of

the neuron, they are usually non-linear. Some common activation functions are explained below.

a. Identity Function: This is also known as the linear transfer function. It passes the

inputs as it is to the next layer. At times it is also programmed to saturate the output

of the neuron to [0, 1] (Figure 2.18a) or [-1, 1] (Figure 2.18b).








=

1

0
)(xxF

1
10

0

≥
<<

≤

x
x

x
 OR







−
=

1

1
)(xxF

1
11

1

≥
<<−

≤

x
x

x

 22

Figure 2.18 Identity Function

(a) between [0,1] (b) between [-1,+1]

b. Step Function: This function has outputs of either 0 or 1 (Figure 2.19a), or either -1 or

+1 (Figure 2.19b).





=
0
1

)(xF
0
0

≤
>

x
x

 OR



−

=
1

1
)(xF

0
0

<
≥

x
x

Figure 2.19 Step Function

(a) between [0,1] (b) between [-1,+1]

c. Sigmoid Function: This is the most preferred transfer function because of its smooth

and bounded nature (Figure 2.20). It also has a simple first derivative. This gave the

neuron an advantage of scaling the output from the neuron to anything between 0 and

1 in a continuous manner.

 23

 xe
xF

α−+
=

1
1)(

 where α is a constant.

Figure 2.20 Sigmoid Function (α = 1)

d. Hyper-tangent Function: This is similar to the sigmoid function (Figure 2.21).

 x

x

e
exF α

α

+
−

=
−

1
1)(

Figure 2.21 Hyper-Tangent Function (α = 1)

These weights and the biases are initiated to some small random number, and then

modified using learning rules so as to learn the trends present in the training data.

An artificial neural network is then formed by placing a number of such neurons in

parallel to form a layer, and then having a number of such layers connected either in series or

 24

parallel or both. A neural network is defined by the number of neurons in each layer, the number

of layers, their type of connection between layers and the output transfer function used by the

neurons in each layer. The networks can be classified into two categories based on the how the

neurons are interconnected, namely recurrent and non-recurrent networks. Recurrent networks

(Figure 2.22) have connections from their outputs to their inputs and are best used for time

varying data or prediction purposes, where data information from previous instances is useful. In

non-recurrent networks there is no feedback from the output of the network to its inputs, example

a feed-forward network (Figure 2.23). These kinds of networks are more appropriate for

applications where each set of inputs has a different solution and is not linked to the results

obtained in the previous iteration, for example object recognition or character recognition. We

used a feed-forward type of neural network for our purposes in this research, since the JAFFE

database consisted of only snapshots and not continuous video with temporal information.

Figure 2.22 Recurrent Network

 25

Figure 2.23 Three Layered Feed-Forward Network [63]

Training of ANN
We use the backpropagation training for the neural network. This is a widely and most

commonly used method for training of ANN. It was first introduced by Paul Werbos in his PhD

dissertation at Harvard in 1974, as “dynamic feedback”. Backpropagation effectively is an

efficient method to calculate derivatives of large and complex systems represented by smaller

subsystems that are defined by differentiable functions. Hence its use is not limited to ANN, but

to a number of other fields such as pattern recognition, dynamic modeling, control of systems

over time, fluid dynamic modeling, etc… [69]. Since backpropagation can only be used on

systems defined by differentiable function, we cannot use step function as the transfer function

for the neuron. But a sigmoid function approaches a step function as α→∞, and can be used

instead.

Backpropagation actually stands for ‘backpropagation of errors’ and is exactly what is

done during the training of the ANN. The mean squared error is computed at each iteration and

then the weights of the network adjusted such that the error is minimized. Since the only

variables in the network are the weights that can be changed to make the error low, and all the

nodes of the network have a continuous and differentiable activation function, we can say that

the error is essentially a continuous and differentiable function of weights, E = F(w1, w2, …, wl),

and training a problem of minimization.

To begin with training we would need a training set consisting of p ordered pairs of n and

m dimensional vectors {(x1, t1), (x2, t2), …, (xp, tp)}, where n is the dimension of the input vector

 26

and m the dimension of the output vector. Here xi would be a sample input pattern and ti the

corresponding output, also know as target. The error formula for the network would then be

 ∑
=

−=
p

i
ii toE

1

2)(
2
1

where, oi is the actual output of the network as opposed to ti which is the desired output.

We can then minimize error, E, using gradient descent to compute the new weights. Gradient

descent is an optimization algorithm, used to find the local minima of the function by moving in

the direction of the negative slope i.e. towards the local downhill [68]. For this we have to

calculate the gradient given by,

 







∂
∂

∂
∂

∂
∂

=∇
lw

E
w
E

w
EE ,...,,

21

Weights are then updated using the increment

i

i w
Ew

∂
∂

−=∆ γ

i

iiii w
Ewwww

∂
∂

−=∆+= γ for i=1, 2,…, l

where, γ is the learning rate [55].

 Since the backpropagation algorithm is so famous, a number of variants of it have been

developed. One of the most famous and commonly used variant is “Gradient Descent with

Momentum”, a method that we have used in training our ANN. This method has the advantage

of not getting stuck at local minima early on in the training by making the weight increment in

the Nth iteration dependent on the (N-1)th iteration.

)1()(−∆−
∂
∂

−=∆ Nw
w
ENw i

i
i ηγ

where, η is a constant known as the momentum [46]. This is similar to letting a roller coaster go

free after taking it to the top, the momentum of the train takes it through the up and downs in the

ride, finally bringing it to rest at the lowest point. In a similar way the using the method of

gradient descent with momentum, helps the errors move through the local minima in search of

the global minima. As it approaches the global minima, the error might oscillate a little before

finally coming to rest at the global minima.

 27

Testing of ANN
Each database was divided into two main sections, the training and the testing group. The

groups we so divided that the training set was bigger than the testing, while the testing set had

diversity in emotions and subjects. This was usually accomplished by leaving the subject with

the most diverse range if images out of the training set. That way the ANN had a whole array of

expression on a number of different subjects to train on. But then we would also have a face that

the network has never seen before and also a range of expressions, that way we can test

performance on both unseen faces and also on each expression. For example in the JAFFE

database we used nine subjects for training and one for testing, similarly in the MMI database

subject 39 was used for testing while the other seventeen subjects were used for training. We

also tested the ANN on different databases, so in that case the one face that formed a testing set

for the original database was used as a baseline to compare performance of the ANN on other

databases.

RESULTS of FER

Training on JAFFE and Testing on JAFFE
We first present our results of training the ANN on the JAFFE database and testing it on

the JAFFE database. We present these results first, because we anticipate that testing the ANN

on non-JAFFE images would potentially yield either misclassification of facial expressions or a

strong indication of the goodness of a minimal feature point set that we used per facial

expression. In fact, this baseline should yield expectedly good results. The following results were

achieved by using ANN with one hidden layer containing 30 neurons. We trained 10 different

networks and then averaged the results.

Table 2.1 True Positive rate for ANN trained and tested on JAFFE database

TP Angry Disgust Fear Happy Sad Surprise

58.43% 57.33% 42.00% 50.89% 74.71% 44.22% 90.00%

 28

As shown in Table 2.1, the average, overall accuracy of the trained ANN was 58.43%,

but ranges from a low of 42% for “disgust” to as high of 90% for “surprise”. This average figure

of merit (FOM) may seem low when compared to higher figures reported by other studies

ranging from 65% to 95% [51]. However, we emphasize the limited number of feature points

extracted per facial expression in contrast to these studies. In fact, other studies when tested with

images beyond its training database show a comparable true positive rate of 60% [39]. Thus, in

the task of classifying six different expressions, we conditionally accepted this figure of merit.

This figure is consistent with the drop in accuracy of facial expression recognition by human

subjects [5]. Also Table 2.1 shows accuracies for each expression. From the results above we can

clearly see that our methodology is suited for classifying facial expressions with clear movement

of feature points, i.e. “happy” and “surprise” relative to the neutral FE. We assert that these

expressions are well-suited for the ANN to learn and classify. On the other hand, facial

expressions such as “angry, disgust, fear and sad” are “weakly” characterized by our descriptor

and therefore not as well-suited for the ANN to learn. In fact the occurrence of weakly

characterized expression suggests a need for a second biometric and/or other means of secondary

validation.

Training on JAFFE and Testing on MMI
It is impractical to assume that we will always have associated training dataset available

for a FE which we want to analyze. Therefore to evaluate the ability of our ANN-based

application to recognize facial expressions on unseen (external) faces, we first trained the ANN

with the JAFFE database and then test it on images taken from the MMI database. In fact, not

only are the training and test sets different, they also span ethnic and cultural characteristics.

Thus, again using the same ANN, we averaged the results of 10 networks. Validation based early

stopping was used while training the ANN. Under normal circumstances training of an ANN

continues until either a preset number of iterations/epochs are completed, or the error on the

training set attains a level reaches below a threshold. While using a validation based early

stopping, a portion of the complete database is assigned to the validation set. After every epoch

the ANN is tested using the validation set and its error computed. Any increase in error in the

validation set stops further training. In this case we used a sample of the MMI database as the

 29

validation set so as to improve performance. This also prevents the ANN from overfitting, which

is when the ANN begins to memorize the training set rather than identifying a pattern.

Table 2.2 True Positive rate for ANN trained on JAFFE and tested on MMI database

TP Angry Disgust Fear Happy Sad Surprise

55.96% 57.38% 17.22% 13.05% 90.80% 50.24% 92.00%

Table 2.2 shows that the average accuracy achieved on a different database was 55.96%,

which is comparable to the accuracy we achieved using the JAFFE database. This is also

comparable to the methods developed by Littlewort et al. who reported 93% recognition of facial

expression on their training; however, this FOM dropped to ~60% when tested on a different

database [39].

One can again see that “surprise” and “happy” facial expressions consistently produce

higher figures of merit and support the view that these facial expressions are easiest to train on

and classify. Interestingly, the ANN is some 15% better at recognizing the happy expression in

the MMI than in JAFFE on which it was trained. Though limited, we learned through our own

facial expressions database development that subjects from some ethnicities and cultures (here

Asians) do not express a sense of “happy” with the same “intensity” as from other backgrounds.

However, the vectoral descriptor appears to be consistent for both JAFFE and MMI. We can also

see that “angry” and “sad” facial expressions are still relatively difficult for the ANN to classify;

that is, the descriptor for these MMI expressions is not particularly distinct. Interestingly the true

positive rates for “disgust” and “fear” exhibited a significant decrease relative to Table 2.1. In

fact, in the case of “fear”, the rate is worse than that achieved by random guess. So overall the

performance of the ANN trained on the JAFFE and tested on the MMI database appears to be

consistent for ‘angry’, ‘happy’, ‘sad’, and ‘surprise’ expressions and (provisionally) suspect for

‘disgust’ and ‘fear’, relative to Table 2.1.

The phase instance classification rate of video sequences can be improved using the

method to be described. If we define the amplitude of an FE as the averaged displacement of all

(extracted) feature points on a FE relative to their positions on a reference neutral FE, we

observe that this amplitude increases as the FE appears on the face, reaches a relative maximum

as the FE is held in time and subsequently, decreases as the FE dissipates or transitions to

 30

another FE. Logically when the amplitude is small at the onset and end of the sequence, the

calculated vectoral descriptor is not definitive and as expected, presents itself as a weak (and

difficult) test example for the ANN. However, the amplitude increases the calculated descriptor

and becomes more definitive (thus characterizing the particular FE). Here, those examples near

the peak amplitude associated with a FE are more likely to be correctly classified.

Using this characterization of the spatiotemporal facial dynamics we plot the response of

our ANN for all six expressions over the video sequence and in addition, normalize the response

for each frame relative to the maximum amplitude. This normalization not only elucidated the

peak amplitude but importantly relative to the six normalized FEs. Thus in Figure 2.24, we see

the change in amplitude over time for a given FE. Starting from a neutral FE, a peak develops

and then subsides for some FEs (Figure. 2.24a, “happy”) while large amplitudes are attained only

at the start and end for other FEs (Figure. 2.24b). Here Figure. 2.24a depicts the raw response

whereas Figure 2.24c shows the (maximum) normalized amplitude for a given FE. From tracking

the FEs of MMI subjects, we first see similarities and differences among the six FEs. Note that

there are FEs with larger amplitude at the start/end of the video (“Su, Fe, Sa”). Surprise, though

similar in trend (amplitude) to “sad”, has a vectoral descriptor that distinguishes it in training and

testing across the JAFFE and MMI database. On the other hand, for “sad” and “fear”, the

vectoral descriptor is less definitive and seemingly more specific to the training and testing

database.

Figure 2.24 Normalizing Expression Recognition in Video Sequences

(a) Amplitude of expression

 31

(b) Raw response of ANN

(c) Normalized response of ANN

Training on MMI and Testing on JAFFE
We then also tried training an ANN with the MMI database and testing it with the JAFFE

database. The results for this combination of training and test set are shown in the table below.

Table 2.3 True Positive rate for ANN trained on MMI and tested on JAFFE database

TP Angry Disgust Fear Happy Sad Surprise

52.09% 45.11% 31.73% 39.27% 88.97% 51.67% 57.22%

From Table above we see the overall recognition rate of training on one database and

testing on another does not depend on what combination of training and testing databases we use.

 32

But upon closer inspection we will see that training on the MMI database and testing on the

JAFFE has significant differences as compared to the reverse. We observe the recognition rate

for surprise has dropped drastically from 92.00% in the previous case to 57.22% at present.

However at the same time we also observe that the two expressions of ‘disgust’ and ‘fear’ that

saw a drastic drop in recognition in the previous case are recognized much better now. There is a

change from 17.22% to 31.73% for disgust and 13.05% to 39.27% for fear. These results are

comparable to those obtained when ANN was trained and tested on the JAFFE database. We will

take a closer look at these discrepancies in the section to follow.

Testing on Elderly Faces
Some testing was performed on the images of the elderly gentleman (Figure 2.25)

available in the MMI database. While trying to process these images we had trouble locating the

eyebrows, because the eyebrows were essentially white and hence blended very well with the

skin color of the gentleman. Hence we decided to go ahead with expression recognition without

locating the eyebrows. But as expected this induced problems. Since the eyebrows were

eliminated, so were any features that were calculated based on the eyebrows. This bought down

the size of the input vector from 38 features to 27 features. To compensate for this we used

Gabor wavelets with six different orientations in the regions around the eye and the mouth. A

new neural network was generated to classify the images using this newly developed feature set.

Figure 2.25 Examples of Images of the Elderly Gentleman

(a) Happy (b) Sad (c) Disgust (d) Surprise

The database contained images of the elderly gentleman for only four emotions, namely

happy, sad, disgust and surprise. We could only process happy, sad and disgust because surprise

 33

consisted of large head movements; this caused problems in feature point location. Results from

the other three expressions are presented in the Figure 2.26 below.

Figure 2.26 Expression Recognition in Elderly Faces

(a) Happy

(b) Sad

 34

(c) Disgust

From the above plots we can see that in this method happy (light blue line, no 4) is hard

to detect. The happy expression always has very low recognition, even when the face was

actually supposed to be happy (Figure 2.26a). However the present approach shows promise with

more difficult to detect expressions such as sad (purple line, no 5) and disgust (green line, no 2).

In fact for the sad expression (Figure 2.26 b) we can see that it is recognized very well. Even

disgust has a very strong signature compared to the previous networks we had developed.

This study on elderly gentleman was performed on behalf of the Center on Aging at

Kansas State University. Any further discussion is limited to the original study. Although the

study of elderly people is of interest, the small amount of data available prevents us from any

significant study. However, our method is independent of age.

ANALYSIS of FER
Our descriptor works best with expressions in which there is clear and distinct movement

of feature points with reference to their neutral position, i.e. happy and surprise, while the more

subtle expressions seem to be difficult to classify. We know that our choice to locate fewer

feature points prevents us from capturing the subtleties in face required to classify the rest of the

expressions satisfactorily. This also introduces a chance of increased noise in the data feed to the

ANN. But this is a compromise we were ready to make to make the system light on computation

and also with the idea that once this system is deployed in the field the images are not going to

 35

be very sharp, and these feature points are those that can be extracted even on low resolution

images.

From the results we just saw, one thing that is apparent is that the happy and surprise

expressions have been recognized most consistently, followed by anger and sad, whereas the

recognition rate for fear and disgust has been poor. These results we see above for testing and

training on the same JAFFE is not comparable to high recognition rates ranging from 65% to

98% published by other researchers [50], but if we look the recognition rates when some of these

systems have been tested on a different from their training database these accuracies are in close

comparison at 60% [39].

Upon closer inspection of the results we see that there are patterns in the

misclassification. Here a confusion matrix is a great way of looking at the performance of the

ANN. It also gives us an insight on the classification pattern. It is a matrix whose rows represent

the true expression of the image/video, and its columns the actual results of classification. The

values along the diagonal of the matrix represent the number of correct classifications.

Table 2.4 Confusion Matrix for ANN trained on JAFFE and tested on MMI database

True\Classif. An Di Fe Ha Sa Su

An 30 5 5 0 2 0

Di 26* 6 1 0 2 1

Fe 0 4 2 1 8 31*

Ha 0 1 2 44 2 1

Sa 3 6 3 0 23 6

Su 0 0 0 0 3 47

 36

Table 2.5 Confusion Matrix for ANN trained on MMI and tested on JAFFE database

True/Classif. An Di Fe Ha Sa Su

An 51 29* 1 3 6 0

Di 19 38 4 1 25 0

Fe 19 14 40 7 14 2

Ha 4 0 1 82 0 0

Sa 24 8 13 4 39 2

Su 1 3 27* 3 1 55

Let us take a look at rows two and three of Table 2.4; these represent those images that

were supposed to be disgust and fear. These were the two expressions that had the worst

recognition rate when we had trained the ANN on JAFFE database and tested it on the MMI

database. We see for disgust that a large portion of the images that were misclassified were

marked as anger (*) (Figure 2.27), and similarly for fear it is surprise (*) (Figure 2.28). These are

expression pairs that look very alike and we could argue that the descriptor is not capable of

differentiating between these pairs of expressions. But in that case we should have an equal

misclassification of ‘anger’ as ‘disgust’ and ‘surprise’ as ‘fear’, this we see is not the case.

Figure 2.27 Comparing Anger and Disgust Expressions

Anger

Disgust

 37

Figure 2.28 Comparing Surprise and Fear Expressions

Surprise

Fear

Now we shift our focus to Table 2.5 which represents a system that is trained on MMI

and tested on JAFFE. We see a similar pattern with misclassification but in the reverse order, i.e.

a significant number of angry and surprise images are classified disgust and fear respectively.

Even with this configuration we see that misclassification in the reverse order is not as

significant. There is some misclassification of ‘disgust’ as ‘angry’ but a greater number is

misclassified as ‘sad’. Similarly there is misclassification of ‘fear’ as ‘anger’, ‘disgust’ and ‘sad’

but not ‘surprise’. This leads us to the partial conclusion that the ANN is able to see a pattern

even for disgust and fear, and suggests that it is not a problem with the descriptor or the training

of the ANN, but rather a more fundamental difference between the two databases. The basic

difference between the two databases is the cultural and ethnicity of the subjects. This leads us to

at least a partial conclusion that there is indeed some difference in how people from different

backgrounds express themselves. The confusion between the ‘fear’ and ‘surprise’ among groups

from different cultural groups was also shown by Ekman in his experiment with an isolated tribe

in Papua New Guinea, and later by Heider when he repeated a similar experiment in Indonesia

[21]. This is not only corroborates with previous results [70] [44] and consistent with human

experience, but perhaps for the first time, this has been revealed by digital means. So although

some facial expressions, such as ‘happy’ and ‘surprise’, are understood all over the world (and

across cultures and ethnicities), some others may depend on cultural and ethnic factors.

 38

CHAPTER 3 - EMOTION RECOGNITION IN SPEECH

Speech is the primary form of communication used by humans. Along with the linguistic

content of speech, the way a word is said is equally important. The tone of the speech contains

cues to the emotional state of the person speaking, and we as humans naturally recognize these

emotions. When translating using speech recognition systems, emotions are only noise that

degrades the performance of the speech recognition systems. This prevents us from using

computers to transcribe emotional speech in conversation [57]. Hence if the emotions in speech

could be recognized and subtracted from the speech it could improve speech recognition

systems. Usually emotions are consciously expressed to complement and emphasize the

linguistic content of speech. At other times the emotions contradict the meaning of the words

used, usually when trying to conceal ones feelings [47].

Each emotion has particular way in which it affects speech and it is these changing

properties that we use as cues to emotion present in the speech [3].

• Anger: Is characterized by higher pitch, pitch range, mean energy and increased rate of

articulation.

• Fear: Is similar to angry, with higher pitch, pitch range and high frequency energy levels,

and also quicker speech.

• Sad: Is characterized by lower pitch, pitch range and mean energy and lower articulation

rate.

• Happy: has higher mean pitch, mean energy and pitch variability.

Speech parameters used commonly for classification of emotions are pitch, formants, mel

frequency cepstral coefficients and energy levels.

SPEECH DATABASE
The database we used to develop our system for emotion recognition in speech is in

German language, it was developed by Burkhardt. F., et al, at the Technical University at Berlin

[7]. The database contains sentences portraying emotions of neutral, anger, fear, joy, sadness,

disgust and boredom. These sentences are spoken by 10 subjects, 5 male and 5 female, selected

 39

from a larger group of 40 people. Each one of the 40 members was asked to record one sentence

per emotion. These recordings were then evaluated by a group of experts for naturalness and

reconcilability of the emotion, and the final group of 10 was selected to record all the possible

combinations of sentences and emotions. The recordings took place in an anechoic chamber at

the Technical University at Berlin. The samples were originally recorded at 48 kHz. The final

database available contains samples at 16 kHz, these were obtained by re-sampling the 48kHz

signal.

Figure 3.1 Photograph during recording in anechoic chamber at TU-Berlin. [7]

The database consists of 10 sentences in all. These sentences were chosen such that they

could be used in every-day conversation and also contained as many vowels as possible. During

the recording sessions the actors were asked to visualize past situations in which they had felt

such emotions. The sentences used are in the Table 3.1 below. These recording were then

presented to 20 subjects who had to recognize the emotional state of the speaker and the

 40

naturalness in of the emotion. The final database then consisted of the only those sentences

whose recognition rate was better than 80% and naturalness better than 60%. This finally

produced a database of 500 sentences out of the 800 sentences that were recorded.

Figure 3.2 Recognition rate for various emotions in database [7]

Table 3.1 Sentences in speech database [7]

Code Text (German) English Translation

a01 Der Lappen liegt auf dem Eisschrank. The tablecloth is lying on the fridge.

a02 Das will sie am Mittwoch abgeben. She will hand it in on Wednesday.

a04 Heute abend könnte ich es ihm sagen. Tonight I could tell him.

a05
Das schwarze Stück Papier befindet sich da oben

neben dem Holzstück.

The black sheet of paper is located up

there besides the piece of timber.

a07 In sieben Stunden wird es soweit sein. In seven hours it will be.

b01
Was sind denn das für Tüten, die da unter dem

Tisch stehen?

What about the bags standing there

under the table?

 41

b02
Sie haben es gerade hochgetragen und jetzt gehen

sie wieder runter.

They just carried it upstairs and now

they are going down again.

b03
An den Wochenenden bin ich jetzt immer nach

Hause gefahren und habe Agnes besucht.

Currently at the weekends I always

went home and saw Agnes.

b09
Ich will das eben wegbringen und dann mit Karl

was trinken gehen.

I will just discard this and then go for a

drink with Karl.

b10
Die wird auf dem Platz sein, wo wir sie immer

hinlegen.

It will be in the place where we always

store it.

SPEECH PROCESSING
Significant amount of energy in a speech signal is contained in the region 0 to 5kHz [59].

Hence should also contain the most significant amount of emotional information, this is why we

concentrate on this range of frequencies, and also reduce the amount of computational power

required for processing the same The various methods that we use to extract the emotional

information from the speech signal are spectrogram, mel-frequency spectrum and linear

predictive coding, which we will discuss in detail in following sections.

Spectrogram
The magnitude of a short term Fourier transform, when plotted is called a spectrogram. It

is a plot with time on the X-axis and frequency on the Y-axis with the darkness representing the

magnitude of the frequency band at that time. This is an important tool in speech processing.

Figure 3.3 A Spectrogram

 42

The first step in plotting a spectrogram is calculating the short term Fourier transform of

the speech signal. Computing the Fourier transform over short intervals of time enables us to

capture the dynamic changes in the speech signal. Typically these parameters are estimated every

10ms, so as to obtain a smooth tracking of parameters. These short pieces of signal is cut out

from the complete signal by multiplying the speech signal s(k) with a windowing function, w(k),

to get a segmented speech signal vm(k). We use the Hamming window, which is the most

commonly used windowing function.







−≠

−=







−
−=

1,...,00

1,..,0
1

2cos46.054.0)(
nk

nk
n

k
kw

π

where, n is the length of the time window in number of samples. The window usually represents

16ms to 25ms. A wider window would have better frequency resolution but bad time

localization, while a narrow window is better for time localization but has bad frequency

resolution.

Segment of the speech signal obtained by multiplication of the original signal with the

Hamming window, is given by





−++≠
−++=−

=
1,...,1,0
1,...,1,)(*)(

)(
nmmmk
nmmmkmkwks

kvm

where, m is the beginning sample of the time signal and m+n-1 the ending sample. The value of

m is incremented such that there is a 10ms shift in the time signal.

 Window length is important to audio processing. Longer vowels can be processed using

windows up to 100ms wide, while some short burst of sounds need windows 5 to 10ms long.

Since it is not possible to know before hand what kind of sounds are going to be generated,

window length of 16ms to 25ms is generally used as a compromise. The time window is shifted

10ms for each set of parameters, it is possible to analyze the whole length of the signal [18]. The

shift being smaller than the window length causes an overlap in the signals of consecutive sets of

parameters. The overlapping samples assist in smoother temporal tracking of parameters.

 Assuming the speech signal was a continuous time signal s(t), its Fourier transform would be

given by,

 dtetsS tjωω −∞

∞−∫=)()(

The discrete time Fourier transform of a signal of length N would then be given by,

 43

 ∑
−

=

−=
1

0
)()(

N

k

kjdt eksS θθ ℜ∈θ

Uniform sampling of frequency axis, θ over [0, 2π] gives us the sampling points of

N

ii π
θ

2)(= 10 −≤≤ Ni

Moving from a continuous frequency to discrete frequency bands we get the discrete Fourier

Transform, different from discrete time Fourier transform.

 ∑
−

=

−

=
1

0

2

)()(
N

k

N
ikj

d eksiS
π

 10 −≤≤ Ni

Now, if we computed the discrete time Fourier transform for each window of time, which is

computed as described above, the short term Fourier transform would be given by

 ∑
∞

−∞=

−=
k

kj
m ekvmS θθ)(),(Ν∈ℜ∈ m,θ

Substituting θ with θ(i) from above,

 ∑
−

=

−

=
1

0

2

)(),(
N

k

N
ikj

m ekvimS
π

 10,0 −≤≤≤ Nki

Once we have computed the short term Fourier transform across the whole signal using a

moving window, we get an array of complex numbers. The image produced by the magnitude of

the complex values as the darkness, m indicating the frame number in time, and i representing

the center frequencies of the different frequency bands [18].

Word Separation
Now that we know how to plot the spectrogram, we can go ahead and compute the

discrete power spectrum from the complex spectrum we computed previously. This power

spectrum is the sum of the energies across all frequencies at a given time. This is done by adding

up the absolute values, representing energy levels at each frequency, of the spectrogram at a

given time.

 ∑=
i

imSmP),()(

We then use this power threshold method similar to that used in [31] and [48]. In this

method we compare the power to a predetermined threshold. Increase in speech power above the

threshold mark the beginning of an utterance/word, and when the speech power drops below the

 44

threshold it is the end of the utterance. This method has a problem however, since fluctuations in

the power of the signal could cause the method to classify them as words. We thus require that

there be a minimum number of frames below the threshold before and after, we call this a pause,

to classify a part of a signal as a word. The results of this method are shown in Figure 3.4. There

is another advantage of this, sometimes the word is uttered making the segment very short and

unusable for emotion classification, so by putting two words uttered in quick succession we

could successfully classify emotion in the segment.

Figure 3.4 Power plot with word separation

Mel Frequency Spectrum
The frequency response for the human ear is non-linear, with higher resolution at lower

frequencies and lower resolution as the frequency increases. Perception experiments have shown

the human ear does not recognize the frequencies as continuous but rather divides it into several

groups, with the center frequencies of the band following the mel-scale. Mel-scale was proposed

by Stevens, Volkmann and Newmann in 1937, it is the scale of pitches judged by listeners to be

equal in distance from one pitch to another. Its reference point is defined by equating a 1000 Hz

tone, 40dB above the listener’s threshold to with a pitch of 1000 mels [66].

 





 +=

Hz
fff mel 700

1log2595)(

 45

Figure 3.5 Mel frequency Scale

The bandwidth at each of these frequencies increases with frequency, but the frequency

distribution within the band is assumed to be linearly distributed. This is done by using a triangle

shaped window function, with the peak at the center frequency of the given band and the upper

and lower boundaries at the center frequencies of the upper and lower frequency bands

respectively as shown in Figure 3.6 [53]. Figure 3.7 is a representation of the mel frequency filter

matrix as a plot, where the Y axis represents the channel of the filter, X axis the fast Fourier

transform index of the frequencies in Hz, and the darkness of the multiplication factor of the

filter window for the particular frequency.

Figure 3.6 Mel frequency filterbank [58]

 46

Figure 3.7 Mel frequency filter bank as a matrix

Mel Frequency spectrum is similar to a regular spectrogram, just that the frequency bands

on the Y-axis are defined by the mel-scale explained above. It can be computed by multiplying

the filter matrix with the spectrum of the lower half frequencies of the regular spectrum. These

are the frequencies usually until 4000Hz that contain the most energy and information that the

human ear perceives. We will use the energies in the mel-spectrum later while forming input

vectors for the ANN, used for classification.

Formant Extraction using LPC

Speech Generation in Humans

Humans produce speech as they push the air out of the lungs through the articulators.

‘Articulators’ is a term used to describe all moving organs that assist in speech production. The

major articulators are the tongue and the lips, while the larynx and the velum are considered

secondary articulators. Refer Figure 3.8 for to aid in understanding of the structure of the human

speech production system.

 47

Speech generated by the humans can be classified into two main categories, namely

voiced and unvoiced. Voiced speech is periodic and produced in the larynx when the vocal cords

obstruct the flow of air from the lungs. The vocal cords modulate the airflow to create the sound

variations. However it is the vocal tract that is the most important. The vocal tract is a term used

to group the pharyngeal and oral cavities as one. It begins at the output of the vocal cords and

ends at the lips. It produces different sounds by modifying the temporal and spectral distribution

of power in the waves initiated at the glottis.

Figure 3.8 Schematic of the Human Speech Production System

 48

Human perception of speech is based on those frequencies that are strong, i.e. have more

power. Hence the vocal tract is often described in terms of its resonant frequencies, also known

as formants. These resonances are because of the poles of the vocal tract transfer function.

Theses formants are written as Fi; where i stands for the formant number e.g. F1, F2,…,Fn.

Usually there are four formant in the 0 to 4000Hz range of human speech. Movement in the

articulators changes the shape of the vocal tract and hence the frequency response [18].

The nasal cavity also know as nasal tract, is another part of the speech production system.

It begins at the velum and ends with the nose, and is associated with generation of nasal sounds.

The velum is a trap door like mechanism at the back of the mouth and separates the nasal and the

vocal tracts. During normal speech it is usually pushed up and prevents air from entering the

nasal cavity. This can be lowered to acoustically couple the vocal and the nasal tracts to produce

nasal sounds [62].

Figure 3.9 Linear Speech Production Model

Now that we have seen how humans produce speech, we need to represent this as a

source-filter model to draw analogies to digital filters. We can then use the much studied and

proved techniques in digital filtering to for formant extraction. In this model we would have two

sources; first an impulse train with period P for voiced sound and second would be random noise

having a flat spectrum for unvoiced sounds. These sources together are represented as e(t), this

signal is then modulated through a series of models to output the final acoustic pressure

 49

waveform. The source e(t) is passed through the glottal model, vocal tract model and the lip

radiation model sequentially to produce the final output waveform. A schematic of the model is

shown in Figure 3.9. The Glottal model converts the input signal e(t) to glottal volume velocity

waveform ug(t) which is then passed to the vocal tract model, this acts is a resonator amplifying

certain frequencies known as formants. The volume velocity waveform at the lips ul(t) is

converted to acoustic pressure waves by the lip radiation model.

The model in Figure 3.9 can be described by the following equation in Z-transform

)()()()()(zLzVzGzEzS =

where, E(z) is the Z-transformed form of e(n), a train of impulses spaced by pitch period P=iT

where i is a positive integer and T is usually set to 1.

 i
n

in

z
zzE −

∞

=

−

−
== ∑ 1

)(
0

σ
σ

for |z|>1 the glottal model G(z) is of the form

()211

1)(
−−

=
ze

zG
cT

the lip radiation model L(z) is given by

 11)(−−= zzL

and an all pole vocal tract model V(z) with K formants is given by

[]∏

=

−−−− +−
= K

i

Tc
i

Tc zezTbe
zV

ii

1

221)cos(21

1)(

The ith formant frequency is given by

π2
i

i
bF =

and its bandwidth by

π2
i

i
cB =

The three models can be put together as

 50

 ()
[]







 +−Π−

−
=

−−−−

=

−−

−

221

1

21

1

)cos(21)1(

1)()()(
zezTbeze

zzLzVzG
Tc

i
Tc

K

i

cT ii

This model simplifies to one similar to that of the vocal tract only, since cT is usually very small,

much less than unity and hence as e-cT is approaches unity the glottal model [G(z)] and the lip

radiation model [L(z)] cancel each other out. This can be further simplified into an all pole

synthesis model given by [42]

)(

1)()(
zA

zEzS =

Where A(z) is defined by

 1)(0
0

== ∑
=

− azazA
M

i

i
i

 ∑
=

−+=
M

i

i
i zazA

1
1)(

)()()(

1)(
zLzVzG

zA ≈

The only condition being M ≥ 2K+1.

Filter Designing using Linear Predictive Coding (LPC)

A mathematical theory for calculation of best filters and predictors was developed in the

later 1940s by Norman Weiner. This was used by Weiner during World War II so as to aim at

moving targets, such as aircrafts. Around the year 1967 Atal B. S., then a PhD student with the

Polytechnic Institute of Brooklyn, developed the Linear predictive coding (originally called

Adaptive Predictive Coding) for speech compression [2].

Linear prediction defined in simple terms is predicting the current time domain sample

ŝ(n) by using a linear combination of past time domain samples, s(n-1), s(n-2), …, s(n-m).

 ∑
=

−−=≈
M

i
i insansns

1
][][̂][

The LPC coefficients can then be used to represent the sequence of the signal s[n].

 Let error, ∑∑
==

−=−+=−=
M

i
i

M

i
i insainsansnsnsne

01
][][][][̂][][

 where, a0 = 1.

 51

 Taking z-transform of the above equation, we get

)()(1)()()()(
11

zAzSzazSzzSazSzE
M

i

i
i

M

i

i
i =








+=+= ∑∑

=

−

=

−

 where, ∑∑
=

−

=

− =−=
M

i

i
i

M

i

i
i zazazA

01
1)(

 which can also be written as the synthesis model as

)(

1)()(
zA

zEzS =

 and the analysis model as

)()()(zAzSzE =

The LPC coefficients, a1, a2, …, am, which are parameters of the filter A(z) are determined from

the speech signal s[n] by the methods of least squares [18].

The filter A(z) is called an inverse filter since it is an all zero filter, where as 1/A(z) is an

all pole filter and also known as the synthesis model [42].

 Inverse filtering is a technique used for de-convolution of the signal, and to obtain the

original signal from the final output. In our case since we start with white noise to synthesis

speech, an inverse filter would convert the input signal into white noise or a constant. An inverse

filter with infinite poles (M→∞) would theoretically predict the exact inverse of the input

spectrum. But in practice an infinite number of poles are unrealistic. A filter with a finite number

of poles cannot span the whole input signal and thus can only be designed to approximate the

inverse of the signal characteristics. Markel J. D. in 1972 showed that with a properly chosen M

it is possible to predict the inverse of the gross spectral structure i.e. the formant behavior.

 The input samples to the inverse filter are first windowed using a Hamming window. This

reduces the effect of the leading and trailing zeros of a rectangular window function. These zeros

can often completely disguise the 2nd and/or 3rd formants. Since it is the formats that we are

interested in, we have to segment streams of input signal.

 The roots of the polynomial which are possible candidates for formant parameters are of

narrow enough bandwidth that the useful information can be obtained from the frequency

domain representation of the inverse filter. Peak picking of the inverse filter spectra, in general

gives correct results 90% of the time [39][43].

 52

Formant Extraction

Formants are computed as the roots of the polynomial defined by the LPC coefficients.

We could also plot the polynomial and pick the peaks in the plot, these are frequencies at which

the gain of the filter is maximum. Kishore S. P. et al. in their paper have shown that the

difference between the spectrum of two linear prediction filters of the same signal emphasize

formants, or pole frequencies of the filter. In fact, the closer the orders of two linear prediction

filters are the emphasis is more uniform across the spectrum. But this method also has a

drawback, if the lower ordered filter is already an overfit, i.e. when the characteristic formants

have been modeled and any additional poles are being used to model the noise, than the

difference will also boost the noisy peaks [54]. This is taken care of by selecting an optimal order

for the filter which is a function of sampling frequency, and is given by

 γ+= sFM where γ = 4 or 5 and Fs is in kHz

All the above computation is only meant for a small segment of a signal. But since the

speech signal is much longer and contains continuously changing formants, we would have to

divide the longer speech signal into smaller segments; that is, segments that can be satisfactorily

be modeled using linear prediction. Nominal length of the segment 20 to 35 ms [43].

CLASSIFICATION OF EXPRESSION
Unlike in facial expression recognition where each frame is classified, here a word is

classified as a whole, similar to a phase instance. Again unlike the face where we can compute

all the parameters at each frame, we cannot compute all the parameters in the unvoiced parts of

the signal and hence classification is only possible for the voiced parts of the signal.

Input Vector used with ANN
The input vector to the ANN represents a word as a whole and not each frame. It consists

of mean and median of formants, mel-energy levels, rate of change of formants and mel-energy;

word speed, ratio of voiced and unvoiced speech, time length of word and average energy per

word. The mel-energy for each of the formant is computed as the total energy of the band whose

center frequency is closest to the frequency of the respective formant. These parameters are first

computed along the whole length of the word, after which the signal is divided into five

segments, like in Figure 3.10, and then mean and the median are computed for each segment, the

 53

rest of the parameters such as ratio of voiced to unvoiced segment in the signal, number of words

spoken per second, time length of the word and average energy per word are constant across the

whole word. Features selected were the most commonly used parameters in literature [37] [3]

[14] [48], and then some trials were conducted to arrive at the final feature set.

Figure 3.10 Speech Feature Extraction [48]

Training, Validation and testing sets
The speech database consisted of recordings form 10 subjects in all, 5 male and 5 female.

We divided these recordings into three sets for training, testing and validation. The training set

consists of 6 subjects while the validation and testing set consists of 2 subjects each. Each of

these sets has an equal ratio of male and female speakers.

Results and Discussion
The classification of expression in voice is done on a word to word basis, and not

continuously over time like in facial expression recognition.

The Figure below is a result from emotion recognition for a sentence that is supposed to

be classified as an angry sentence. From the results above we see the two words in the middle of

the sentence are classified correctly as angry, while the first and last word are classified as

boredom and disgust. This is what we would expect when some one speaks naturally, not all

words carry the same emotion in tone and meaning, and there are always some words that would

emphasize a particular emotion in the sentence. But this works as a drawback while trying to put

 54

numbers to the accuracy of recognition, since all words in the sentence are expected to be

classified as angry.

Figure 3.11 Emotion Recognition in Speech

The results for classification of emotion in voice are presented below. Overall accuracy

of this mode of emotion classification is 43% over all seven expressions. Emotion classification

in voice seems to work best for the more subtle expressions such as anger, sad, neutral, boredom

and disgust. Happy and fear being the worst expression at 0% and 3% accuracy respectively.

Table 3.2 Confusion Matrix for Emotion recognition in Voice

True\Classified An Bo Di Fe Ha Sa Ne

An 48 1 4 0 1 2 3

Bo 10 19 10 0 1 7 5

Di 12 2 9 1 0 3 4

Fe 10 7 2 1 0 4 4

Ha 14 0 3 0 0 1 0

Sa 4 7 2 2 0 23 1

Ne 2 13 2 1 0 6 18

 55

Table 3.3 Recognition Rate for Emotions in Voice

TP An Bo Di Fe Ha Sa Ne

43.87 81.40 36.54 29.03 3.57 0.00 58.97 42.86

 56

CHAPTER 4 - MULTI-MODAL EXPRESSION RECOGNITION

Emotion recognition from facial and voiced expressions processed separately is a step

towards facilitating human computer interaction (HCI). Integrating these two modalities is a

further step towards a more human like functional interaction. Bimodal systems have already

proved themselves in the area of speech recognition, e.g. cues from lip movement have been

used to improve the accuracy of speech recognition in noisy environments [56].

 An ideal emotion recognition system would be one that takes in to account signal from

various modalities such as facial expressions, vocal expressions, body gestures and physiological

reactions. These modalities provide signals that complement each other. Usually humans tend to

neglect the physiological signals since they are not easy to sense at all times. For example, a

person’s heart rate can only be detected by being in physical contact with the subject; which in

HCI terms would mean the subject will have to be “wired” [51]. Therefore an expert system that

can recognize emotions from face, voice and body gestures can be used in a wider variety of

environments; that is, the biometric is captured non-invasively.

Figure 4.1 Ideal Emotion Recognition System

 57

The way humans integrate information from the various modalities is one of the biggest

challenges in developing a human computer intelligent interaction. Human interpretation of the

information available from these modalities depends on the context of the situation and

(intelligent) decision-making and depends on which modality to trust at a given point in time.

For example, while some one is talking research has shown that vocal cues are more reliable

when the facial expression appears just before or after the sentence [10].

MULTIMODAL FUSION
Computer fusion of information from the various modalities can be performed at one of

the three levels as follows:

Signal level

In this method the signals are fused before extracting features required by the decision

maker. This can only be used on signals of the same type, for example on two or more voice

signals. This method is not a feasible fusion of signals from different modalities because of the

very difference in nature of signals. Instead this method can improve estimates using multiple

sensors for a single modality, like an array of microphones [49]. Also in a noisy environment we

can record the noise separately and subtract this signal from the original signal to obtain clean

sounds.

Figure 4.2 Multimodal fusion at Signal level

Feature level

Here features extracted from each of the modalities are fused before being passed to the

decision maker. This is the fusion method used by humans while combining information from

various modalities [51]. The input signals to the decision maker have to be (time) synchronized.

 58

This is a challenge in itself since in multimodal expression recognition not all signals are present

at the same point in time, but could be spaced out in time. For example we might see a smile on

the face just before or after we hear a happy tone, but while talking this smile would not be

discernable due to the movement of the jaw and lips. This kind of fusion is usually achieved

using hidden Markov models or time biased neural networks.

Figure 4.3 Multimodal fusion at Feature level

Decision or Conceptual level

Here, different modalities are independently analyzed for the emotions present in them.

The decision from these modalities is then combined using either apriori rules or machine

learning techniques. In this technique, it is possible to develop each of the modality separately

before finally putting together the various decisions.

Figure 4.4 Multimodal fusion at Decision level

As mentioned earlier, processing multimodal information would require time

synchronized data, i.e. video footage containing both audio and video. Absence of a readily

 59

available audio/video database is one of the main hindrances in the current effort. The few

studies [11] [16] [8] [10] [15] that have been made in this direction of multimodal emotion

recognition are based on small databases collected by the research teams themselves. Even fewer

of these use information fusion at the feature level. Decision level fusion of multimodal

information is preferred by most researchers. With a larger amount of research on uni-modal

emotion recognition and large databases available for each of these modalities, it is easier to

develop the systems independently before focusing on time synchronization. If an audio/video

database is available, it can be used as a testbed for each of the modalities and also as training

and testing database for the multimodal system.

EMOTION RECOGNTION TOOLBOX
We developed a tool to integrate the emotion recognition systems based on facial and

voiced expressions, explained in Chapter 2 and Chapter 3. This tool can recognize emotions in

audio, video or combined audio/video tracks. In the audio/video mode, the audio and video

signatures are independently presented on a same timescale. A lack of a free and easily available

audio/video emotion contained database has prevented us from automating the multimodal

decision making process.

Instruction Manual
With respect to navigating through the ‘toolbox’, we first select the audio and/or video

file by either entering the whole path for the file or selecting the file after clicking on the

‘Browse’ button.

Figure 4.5 Selecting a Media File

 60

The tool reads the file using the ‘mmread’ function written by Richert [64]. The mmread

function imports the data from the media file into the workspace as individual structures both

audio and video. Along with the data from the file these structures also contain details about the

data, such as total time of the file, sampling frequency for audio, number of channels and height

and width of the video frame. Depending on the contents of the ‘Audio Setting’ and ‘Video

Setting’ buttons are enabled, which are used to activate the audio and video toolboxes.

Figure 4.6 Reading a media file

Features from the audio and video are then extracted using the respective toolboxes.

These toolboxes open in new windows upon clicking on the audio or video setting buttons. The

audio toolbox performs word separation using energy levels and then computes a feature vector

compatible with the ANN used for emotion recognition in speech, as explained in Chapter 3.

Since people talk with varying speeds, the toolbox contains parameters to customize the feature

extraction. This toolbox can be used to set the threshold levels as percentage of maximum energy

in the speech signal. The energy level below this threshold is considered to be background noise

or unspeeched (unspoken) segments of the signal. The user can also change the length of the

pause between two words. A ‘pause’ is the minimum number of samples for which the energy

 61

has to be below the threshold so as to consider the segment of signal as a separate

word/utterance.

Figure 4.7 Audio Toolbox

The video toolbox is used to locate feature points for each frame in the video sequence.

There are some sliders to adjust threshold for various parameters and features such as

background, lighting, eyes, eye corners, eyebrows, eyebrow corners, lip, lip corners, nose and

nostrils. The background and lighting thresholds are used for the automatic face region extraction

algorithm, while the rest of the thresholds are used during extraction of the respective feature

points. The user also has an option to switch to manual mode for either face region extraction

and/or feature extraction. The ‘Set Neutral’ button selects the present frame as the neutral image,

this is later used as a reference while creating the feature vector. By default the first frame is

taken as the neutral frame. There also are some additional features to rotate images, crop the

frames such that the face of the subject is in the center and resized to 256 x 256 pixels. The

shaded window over the image of the face (Figure 4.8) represents the final cropped image. The

 62

user can use the slider in the frame panel to scroll through all the frames and make sure that the

selection is correct. After the video is cropped and resized to the correct size, the ‘Test Frame’

button is enabled. This gives the user a chance to either test the threshold setting selected, or to

manually select feature points for the any one frame and use automatic extraction for subsequent

frames. Once the user is satisfied with the feature points extracted in the test frame, the test video

button then locates features of the whole video sequence. The ‘Save Setting’ button then passes

the information for the extracted feature points to the main window where the emotions are

recognized.

Figure 4.8 Video Toolbox

Once the information from all the available modalities is available, the ‘Recognize

Emotion’ button is enabled (Figure 4.9). This button loads the neural networks for face and voice

emotion recognition, and analyzes the available features for emotions. In the voice domain

emotions are recognized at word or utterance level, while the expression in faces is recognized

for each frame.

 63

Figure 4.9 Emotion Recognition Toolbox

TESTING and ANALYSIS
Testing of the multi-modal system was unfortunately limited because of lack of any

freely available multi-modal databases. For purposes of consistency with the audio database

testing of the system should be in German. With the help of a German speaking volunteer (to

whom we are very thankful) we were able to record the same phrase with facial and voiced

expressions. From this we have been able to perform some preliminary tests. For reasons to be

determined all of the recorded data from this user was classified as either 'anger', 'boredom' or

'disgust' by our system. Since boredom was not a part of the training database of the facial

expression recognition system and could be recognized only in voiced expression, we were not

able to completely test the system for it. However the classification of anger and disgust helped

test the system to see if the addition of emotion recognition in speech enhanced the recognition

of expressions displayed by the face. If one recalls, one of the problems encountered with the

facial expression recognition system was that it misclassified disgust as anger and fear as

surprise.

 64

While interpreting results from the multi-modal toolbox, we rely more on the results of

the facial expression recognition system and use the voiced emotion recognition system to

supplement the information. It is thus not the primary decision maker or modality for emotion

recognition. This is because of lack of extensive testing of the voiced emotion recognition

system and better recognition rates achieved by the facial expression recognition system. Results

from voiced emotion recognition can facilitate the process when the user has to make decisions

pertaining to the confused emotion (anger-disgust pair and surprise-fear pair). At present we are

only able use these results to make a distinction between anger-disgust and not between surprise-

fear. Here again the German speech database used for training the emotion recognition system

did not contain expressions of surprise and even though it contained fear, fear was one of the

least recognized emotion in voice.

Figure 4.10 below compares results from the multimodal toolbox for disgust and anger

expressions. Looking at the results we observe that the best time to observe an emotion in just

before an utterance. Since an utterance will change the shape of the mouth and hence move the

mouth’s feature points, it is not reliable to read the expression from the facial expression

recognition system when the word is actually being pronounced. In the result for disgust

expressed emotion of sentence ‘a02’ we observe that the facial expression recognition system

shows a slight trace of disgust just before the second word. In fact the word is classified as

disgust by the voiced emotion recognition system; thus reinforcing the conclusion that the

expression is disgust. Also the consistent classification of all the words as disgust points towards

the fact. We can observe a similar scenario at the third word in the identification of disgust for

sentence ‘a04’. In an unbiased opinion for the sentence a04 of disgust, I would classify the first

word as surprise based on the facial expression recognition, and the second as anger based on the

voiced emotion recognition since, the facial expression recognition is inconclusive for the second

word. While with sentence b10 I would classify any individual word as angry based on results

from facial expression recognition, but asked for an opinion based on the whole segment, I

would classify it as disgust because of the consistency of expression in voice, better recognition

rate of disgust in voice over face and knowledge about the anger-disgust confusion.

Further for angry expressions, we see that anger is very prominent in the facial

expression recognition system especially before the utterance of the word and when corroborated

by recognition of anger in speech, leads us to conclude that the utterance is an angry one. It

 65

seems possible to at least improve the classification of the expression recognition process while

simultaneously reduce the ‘anger-disgust’ confusion when emotion recognition is limited to

facial expressions.

 66

Figure 4.10 Comparing Multi-Modal Results for Disgust and Anger

Sentence Disgust Anger

A02

A04

b10

 67

CHAPTER 5 - Conclusion

This research is directed towards developing a multi-modal emotion recognition system.

This system was developed because of the general interest of the researchers in the area of

robotics, specifically social robots. In the future when robots will begin co-existing with humans

in the same environment they will have to learn to be socially interactive, and emotion

recognition is the key skill since humans communicate only 7% through spoken words, while the

remaining 93% communication is through emotional expression in face and voice. Another

interesting area where such a system will be handy is in law enforcement for detection of intent

to deceive. This relies on the fact that emotions expressions are not completely voluntary and can

be used to gain an insight into the person’s actual feelings.

In order to achieve our goals of building an emotion recognition system we firstly build

systems to recognize emotions in face and voice separately. Emotion recognition in face was in

three stages, namely face region estimation using seeded region growing algorithm, feature point

extraction using particle swarm optimization techniques and lastly facial expression

classification using feed forward artificial neural networks. While feature extraction in voice was

done using techniques such as Fourier transforms and linear predictive coding, they were

classified using feed forward artificial neural networks. These two systems were then put

together into a user friendly multi-modal expression recognition toolbox, by synchronizing the

systems based on the time scale. All the programming for the purpose was in Matlab.

Some conclusions we can draw from the research above are

• Expression recognition using both facial and voice expressions helps solve the

issue of confusion and frequent misclassification among some expression pairs,

particularly anger and disgust.

• Surprise and happy are the most accurately recognized facial expressions, while

disgust and fear are the least accurately recognized.

• There are clues that people from Asian cultures express some emotions differently

when compared those from European cultures. Hence the emotions pairs of anger-

disgust and surprise-fear are the misclassified often when a neural network is

trained on one database and tested on another.

 68

• Emotions of “happy” and “fear” are difficult to recognize in voice.

• Since time dependent machine learning techniques allow for extraction of

temporal information they are better suited for emotion recognition in voice, as

against the feed forwards networks that have been used.

• Use of time dependent systems also allow for complete multi-modal fusion of

emotional information from voice and face.

The facial expression recognition system developed was trained on the JAFFE database,

consisting of images of Japanese females. The testing was performed on MMI database,

consisting of a mix of males and females of European background. This system recognizes

emotions in faces with an accuracy of about 55% over 6 emotions (anger, disgust, fear, happy,

sad and surprise), across the noted cultures. The expression “surprise” was the easiest to classify

with about 92% accuracy even on a database on which the system had not been trained. This was

followed by “happy” at 90% accuracy, “anger” at 57%, “sad” at 50% and, “fear” and “disgust” at

17% and 13% respectively. Upon closer inspection of the results of expression recognition we

realize that 70% of fear was misclassified as surprise and 87% of disgust misclassified as anger.

We suspected these to be because of cultural differences. While performing some trial recordings

of emotional expressions in the lab, we realized that perhaps those of Asian origin were less

expressive when compared to those from the USA or Europe. To test this hypothesis we trained

another neural network using the same methodology used the first time, except this time it was

trained using the MMI and tested using the JAFFE. As we suspected this time 74% of anger that

was misclassified was classified as disgust and 77% of misclassified fear was classified as

surprise. This is the exact opposite of previous scenario. The misclassification of fear as surprise

was 3.57% this time as opposed to 87% previously and disgust as anger was 38% down from

70%. Hence leading us to believe that there are indeed some cultural differences. However with

the small amount of data available and the facial expression system designed to optimize

computational load by extracting only 17 feature points, this cannot be said with absolute

conviction. Further research aimed at studying cultural differences in facial expressions, would

be needed to either prove or disprove this finding. Such a research would not be limited by

computing power and hence could be studied using more sophisticated image processing

techniques which can extract subtle details from the image.

 69

We then developed an initial system to recognize emotions in speech. However were not

able to test it as extensively as we could test the face, predominantly because of the lack of a

freely available emotionally labeled speech database. The one database that we had used to

develop the system was in German. It consisted of recordings from 10 subjects of which we used

6 subjects for training, 2 subjects for validation and 2 subjects for testing. Our system could

recognize emotions in voice with 40% accuracy across 7 emotions (anger, boredom, disgust,

fear, happy, sad and neutral). Happy and Fear were the worst recognized at 0% and 3%

respectively. This is corroborates previous findings where happy and fear have been difficult to

recognize [6]. The more subtle expressions such as anger, sad and disgust were recognized with

higher accuracy when compared to facial expression recognition.

We then developed the multi-modal toolbox, which can take either an audio or video file

as an input, classify emotions present in each of the modalities and display them on a

synchronized time-scale. Having the information on a synchronism time scale helps the user

recognize and compare emotions in face and voice, expressed at the same time. Complete testing

of this was not possible, because of lack of databases, except for a small set of video provided by

a volunteer. The volunteer voiced the phrases in German with the noted emotion and

corresponding expressions. However as English is Germanic language and spoken under

culturally similar conditions, we see this database as valid. Unfortunately most of the speech data

from the volunteer was either classified as anger, boredom or disgust, preventing any further

extensive multimodal testing. We took this opportunity to check if the addition of the voice data

would help with the anger-disgust confusion present while testing facial expression database.

Some tests were performed only on the anger and disgust expressions recordings, and the result

of combining both the modalities appears to be encouraging. We were able to recognize trends in

the combined data pointing towards either one of the two disgust or angry expressions. Any

indication of disgust in the facial expression need not be very prominent, just before a word

along with the emotion being classified as disgust in the speech can be used to classify the

segment of data as disgust. Disgust can also be recognized by its prominent presence in speech

across a number of consecutive words. Anger is characterized by its strong presence in facial

expressions, especially before a word and is present in short bursts in speech. These results hold

promise of better recognition accuracy with a multimodal system.

 70

Some of these results above might be biased by my personal opinion, and knowledge of

results expected. A complete unbiased estimation of recognition rates would only be possible

when complete multi-modal fusion is achieved. As long as the system is open ended, leaving

final judgment to the user, a fair way to perform such an analysis would be to first get a group of

people label the multi-modal information for emotion. Then process this information through a

recognition system such as ours and get a second group of people (those who have not seen the

videos previously) to interpret the results after receiving some basic training on interpreting the

results.

The main limitation with achieving complete multi-modal fusion is the lack of a freely

available and emotionally labeled standard multi-modal database. Such a database is to be built

by recording on video, a group of subjects expressing emotions while a second group of blinded

subjects classify these recordings. Any clip that is consistently classified correctly will then be

included in the database. So as to use the database for future research with out of plane rotation,

the video should be recorded simultaneously with multiple cameras. This database should

preferably be in English so as to making it easier to find test subjects in the predominantly

English speaking research communities. Such a database would also provide a level ground for

measuring performances of systems developed by various researchers.

Another technical aspect that prevents complete fusion in our case is the difference in the

classification methods used for the two modalities. Facial expression recognition was classified

using frame instance, where complete temporal data is available for each emotion. Emotions in

voice were classified using phase instance, each word was classified as a particular emotion.

Feature level fusion is possible if emotion recognition in voice is also performed on frame to

frame basis so as to obtain temporal information. Another advantage of a frame-by-frame

technique in speech is that information in not lost due to averaging, unlike our present approach

where the word is divided into a fixed number of segments and information averaged over each

segment. The information had to be averaged over each segment because a feed forward neural

network cannot accept input vectors of varying length or use a stream of vectors. Time

dependent machine learning techniques such as time delayed neural network or hidden Markov

models are capable of accepting a stream of input vectors, and hence reduce the effects of

averaging. Feed-forward neural networks were selected for the purpose of the research since they

were suitable to the first task at hand, which was emotion recognition on snapshots. This method

 71

could be extended to a video since the basic concepts were the same for both snapshots and

videos. In case of videos all that had to be done was split it into individual frames and treat each

one of them as separate snapshot. We initially continued using feed forward networks for voice

too because of the previously gained expertise in the area. At the time we did not foresee this

problem with getting temporal information in speech and obtaining frame by frame information

of emotions in speech. This was realized only towards the end of this research after the emotion

recognition system in speech was developed and while building the multimodal toolbox.

On a parting note some suggestions for future work in this direction would be to take up

development of a multi-modal database with utmost importance. Further use of time-dependent

machine learning techniques for emotion extraction in voice, because these can extract temporal

information of emotions in voice and assist in multi-modal fusion. Matlab is an excellent tool for

prototyping with its easy handling of matrices and inbuilt toolboxes for image processing, signal

processing and neural networks, but not the most efficient in terms of processing speed. For

being able to run this system in real time it will have to be reprogrammed in a more efficient

language such a C/C++.

 72

References And Bibliography

1. Adams, R., Bischof, L., 1994, "Seeded Region Growing", IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 16, No. 6, June 1994

2. Atal, B.S., "The history of linear prediction", Signal Processing Magazine, IEEE , vol.23,

no.2, pp.154-161, March 2006

3. Banse, R. and Scherer, K. R., 1996, "Acoustic Profiles in Vocal Emotion Expression",

Journal of Personality and Social Psychology, vol. 70, no. 3, pp. 614-636

4. Bartlett, M.S., Littlewort, G.C., Frank, M.G., Lainscsek,C., Fasel, I. and Movellan, J.R.,

2006, “Automatic Recognition of Facial Actions in Spontaneous Expressions”, Journal

of Multimedia, vol. 1, no. 6, September 2006

5. Bassili, N. J., 1978, "Facial Motion in perception of faces and of Emotional Expressions",

Journal of Experimental Psychology: Human Perception and Performance, Vol. 4, No. 3,

pp. 373-379.

6. Bo, X., Ling, C., Gen-Cai, C., Chun, C., 2005, “EmoEars: An Emotion Recognition

System for Mandarin Speech”, Computational Intelligence and Security, Lecture Notes in

Computer Science, Springer Berlin, vol. 3801/2005, pp. 941-948

7. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. and Weiss, B., "A Database of

German Emotional Speech", Proc. of Interspeech 2005, Lissabon, Portugal

8. Busso, C., Deng, Z., Yildirim, S., Bulut, M., Lee, C. M., Kazemzadeh, A., Lee, S.,

Neumann, U., and Narayanan, S., "Analysis of emotion recognition using facial

expressions, speech and multimodal information", In Proceedings of the 6th international

Conference on Multimodal interfaces (State College, PA, USA, October 13 - 15, 2004).

ICMI '04. ACM, New York, NY, 205-211

9. Canny, J., 1986, "A Computational Approach to Edge Detection", IEEE Transactions on

Pattern Analysis and Machine Intelligence,vol. PAMI-8, no. 6, pp. 679-698

10. Chen, L.S. and Huang, T.S., "Emotional expressions in audiovisual human computer

interaction", Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International

Conference on , vol.1, no., pp.423-426 vol.1, 2000

 73

11. Chen, L.S., Huang, T.S., Miyasato, T. and Nakatsu, R., "Multimodal human

emotion/expression recognition," Automatic Face and Gesture Recognition, 1998. Proc.

Third IEEE International Conference on , vol., no., pp.366-371, 14-16 Apr 1998

12. Chennamsetty, N. K, "Development of automatic facial expression recognition system

using Gabor wavelets and learning vector quantization networks", M.S. Mechanical

Engineering Thesis, University of Missouri, Rolla, 2005

13. Chibelushi, C.C. and Bourel, F., "Facial Expression Recognition: A Brief Tutorial

Overview”, In CVonline: On-Line Compendium of Computer Vision. R. Fisher (Ed.),

January 2003. URL: http://www.dai.ed.ac.uk/cgi-bin/rbf/CVONLINE

14. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W. and

Taylor, J.G., "Emotion recognition in human-computer interaction", Signal Processing

Magazine, IEEE , vol.18, no.1, pp.32-80, Jan 2001

15. Datcu, D. and Rothkrantz, L., "Multimodal Web based system for human emotion

recognition", Proceedings ISC2007, pp. 91-98, EUROSIS-ETI, June 2007.

16. De Silva, L.C. and Pei Chi Ng, "Bimodal emotion recognition," Automatic Face and

Gesture Recognition, 2000. Proc. Fourth IEEE International Conference on , vol., no.,

pp.332-335, 2000

17. de Sousa, R., "Emotion", The Stanford Encyclopedia of Philosophy (Summer 2007

Edition), Edward N. Zalta (ed.). URL: http://plato.stanford.edu/entries/emotion

18. Deng, L. and O’Shaunghnessy, D., "Speech Processing: A Dynamic and Optimization

Oriented Approach", Marcel Dekker Inc, 2003

19. Ekman, P. and Friesen, W. V., "Facial Action Coding System", Palo Alto: Consulting

Psychologist Press, 1978.

20. Ekman, P. and Friesen, W. V., "Unmasking the Face. A guide to recognizing emotions

from facial clues", Palo Alto: Consulting Psychologists Press, 1975.

21. Ekman, P., "Emotions Revealed", Times Books, 2003

22. Ekman, P., Friesen, W. V. and Hager, J. C., "Facial Action Coding System", Salt Lake

City: A Human Face, 2002.

23. Ekman, P., O'Sullivan, M., Friesen, W.V., and Scherer, K.R., 1991, "Face, voice and

body in detecting deception", Journal of Nonverbal Behavior, vol. 15, pp. 125-135

24. Ekman, P., "Telling Lies", W. W. Norton and Company Inc., New York, 2001

http://www.dai.ed.ac.uk/cgi-bin/rbf/CVONLINE
http://plato.stanford.edu/entries/emotion

 74

25. Fasel, B. and Luettin, J., 2003, "Automatic Facial Expression Analysis: A Survey",

Pattern Recognition, Vol. 36, pp. 259-275.

26. Gao, Y., Leung, M.K.H., Hui, S. C. and Tananda, M.W., 2003, "Facial expression

recognition from line-based caricatures", IEEE Transactions on Systems, Man and

Cybernetics, Part A, vol. 33, no. 3, pp. 407-412, May 2003

27. Gladwell, M., "The Naked Face: Can you read people’s face just by looking at them",

The New Yorker Magazine, vol. August, No. 5, pp 38-49, 2002

28. Greengrass. M., 2002, “Emotion and cognition work together in the brain”, Moniter on

Psychology, vol. 33, no. 6, June 2002. URL:

http://www.apa.org/monitor/jun02/emotion.html (05/12/2008)

29. Haisong, G., Qiang, J., "An automated face reader for fatigue detection", Automatic Face

and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on ,

pp. 111-116, 17-19 May 2004

30. Haisong, G., Qiang, J., "An automated face reader for fatigue detection", Automatic Face

and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on ,

pp. 111-116, 17-19 May 2004

31. Hammal, Z., Bozkurt, B., Couvreur, L., Unay, D., Caplier, A. and Dutoit, T., 2005,

"Passive versus active: vocal classification system", Proc. EUSIPCO, European Signal

Processing Conference, Antalya (Turkey)

32. Kaplan, F., 2005, "Everyday robotics: robots as everyday objects", in Proc. of the 2005

Joint Conference on Smart Objects and Ambient intelligence: innovative Context-Aware

Services: Usages and Technologies (Grenoble, France, October 12 - 14, 2005). sOc-

EUSAI '05, vol. 121. ACM, New York, NY, 59-64

33. Kennedy, J. and Eberhart, R., "Particle Swarm Optimization", Neural Networks, 1995.

Proc., IEEE Intl. Conf. on , vol. 4, no., pp.1942-1948, Nov/Dec 1995

34. Kennedy, J., Eberhart, R. and Shi, Y., "Swarm Intelligence", Morgan Kaufmann

Publishers, San Francisco, CA, 2001

35. Krose, B., and van der Smagt, P., "An Introduction to neural networks", Univ. of

Amsterdam, 1996

36. Kulkarni, D. A., Computer Vision and Fuzzy-Neural Systems, Prentice Hall, 2001

http://www.apa.org/monitor/jun02/emotion.html

 75

37. Lee, M. C. and Narayanan, S.S., 2005, "Toward detecting emotions in spoken dialogs",

IEEE Transactions on Speech and Audio Processing, vol.13, no.2, pp. 293-303, March

2005

38. Lin, C. S., Chen, H. T., Lin, C. H., Yeh, M. S., Lin, S. L., 2005, “Polar Coordinate

Mapping Method for an Improved Infrard Eye Tracking System”, Biomedical

Engineering – Applicaition, Basis & Communication, vol. 17, no. 3, pp. 141-146, June

2005

39. Littlewort, G., Bartlett, M., Fasel, I., Susskind, J. and Movellan, J., 2006, "Dynamics of

facial expression extracted automatically from video", Image and Vision Computing,

Vol. 24, No. 6, pp. 615-625.

40. Littlewort, G., Stewart, M., Fasel, I., Chenu, J. and Movellan, J., 2003, "Analysis of

Machine Learning Methods for Real-Time Recognition of Facial Expression from

Video", Technical Report, Machine Perception Laboratory, Institute for Neural

Computation, University of California, San Diego.

41. Lyons, M. J., Akamatsu, S., Kamachi, M. and Gyoba, J., 1998, "Coding Facial

Expressions with Gabor Wavelets", Proceedings, Third IEEE International Conference on

Automatic Face and Gesture Recognition, Nara Japan, IEEE Computer Society, pp. 200-

205.

42. Markel, J. D. and Gray, A. H. Jr., "Linear Prediction of Speech", Springer-Verlag, Berlin

Heidelberg, 1976

43. Markel, J., "Digital inverse filtering-a new tool for formant trajectory estimation," Audio

and Electroacoustics, IEEE Transactions on , vol.20, no.2, pp. 129-137, Jun 1972

44. Marsh, A. A., Elfenbein, H. A., and Ambady, N., 2003 "Nonverbal 'accents': Cultural

differences in facial expressions of emotion", Psychological Science, vol. 14, pp. 373-376

45. Mehrabian, A., 1968, "Communication without Words", Psychology Today, Vol. 2, No.

4, pp. 53-56.

46. Mitclell, T. M., "Machine Learning", McGraw Hill, 1997

47. Nicholson, J., Takahashi, K. and Nakatsu, R., "Emotion Recogntion in Speech", Neural

computing and applications, vol 9, pp. 290-296, Springer-Verlag London, 2000

 76

48. Nicholson. J., Takahashi. K., Nakatsu. R., "Emotion recognition in speech using neural

networks", Neural Computing and Applications, vol. 9, issue 4, pp. 290-296 Springer-

Verlag, London, 2000

49. Paleari, M. and Lisetti, C. L., "Toward multimodal fusion of affective cues", in Proc. of

the 1st ACM international Workshop on Human-Centered Multimedia (Santa Barbara,

California, USA, October 27 - 27, 2006). HCM '06. ACM, New York, NY, 99-108.

50. Pantic, M. and Rothkrantz, L. J. M., 2003, "Automatic Analysis of Facial Expressions:

The State of the Art", IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 22, No. 12, pp. 1424-1455.

51. Pantic, M. and Rothkrantz, L.J.M., "Toward an affect-sensitive multimodal human-

computer interaction", Proceedings of the IEEE , vol.91, no.9, pp. 1370-1390, Sept. 2003

52. Pantic, M., Valstar, M. F., Rademaker, R. and Maat, L., 2005, "Web-based Database for

Facial Expression Analysis", Proceedings IEEE International Conference on Multimedia

and Expo, Amsterdam, The Netherlands.

53. Plannerer, B., "Introduction to Speech Recognition", 28 March 2005. URL:

http://www.speech-recognition.de/pdf/introSR.pdf

54. Prahallad, K., Varanasi, S., Veluru, R., Krishna, M. B. and Roy, D. S., "Significance of

Formants from Difference Spectrum for Speaker Identification", in Proceedings of

Interspeech, Pittsburgh,2006

55. Rojas, R., "Neural Networks: A Systematic Introduction", New York:Springer-Verlag,

1996

56. Sebe, N., Cohen, I., Gevers, Th. and Huang, T. S., "Multimodal approaches for emotion

recognition: a survey (Invited Paper)", SPIE, Internet Imaging, San Jose, 2005

57. Theologos, A., Stelios, B. and Ioannis. D, 2006, "Automatic Recognition of Emotionally

Coloured Speech", Proceeding of world academy of science, engineering and technology,

vol. 12, March 2006

58. URL:

http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/frontend/frequencywa

rp/MelFrequencyFilterBank.html (05/12/2008)

59. URL: http://cnx.org/content/m0049/latest/#spectrogram (05/12/2008)

60. URL: http://en.wikipedia.org/wiki/Polygraph (05/12/2008)

http://www.speech-recognition.de/pdf/introSR.pdf
http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/frontend/frequencywa
http://cnx.org/content/m0049/latest/#spectrogram
http://en.wikipedia.org/wiki/Polygraph

 77

61. URL: http://gundam.cs.yale.edu/TheLab.htm (05/12/2008)

62. URL: http://ispl.korea.ac.kr/~wikim/research/speech.html (05/12/2008)

63. URL: http://scien.stanford.edu/class/ee368/projects2000/project2/img2.gif (05/12/2008)

64. URL:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&obje

ctType=FILE (05/12/2008)

65. URL: http://www.oatsoft.org/Software/whistling-user-interface (05/12/2008)

66. URL: http://www.sfu.ca/sonic-studio/handbook/Mel.html (05/12/2008)

67. Vrij, A., Edward, K., Roberts, K. P., and Bull, R., 2000, "Detecting deceit via analysis of

verbal and nonverbal behavior", Journal of Nonverbal Behavior, vol. 24, no. 4, pp. 239-

263

68. Weisstein, E. W., "Method of Steepest Descent", From MathWorld--A Wolfram Web

Resource. URL: http://mathworld.wolfram.com/MethodofSteepestDescent.html

(05/12/2008)

69. Werbos, P. J., "Roots of Backpropagation: From ordered Derivatives to neural networks

and political forecasting", John-Wiley & Sons Inc., 1994

70. Yrizarry N., Matsumoto D. and Wilson-Cohn C., 1998, “American-Japenese Differences

in Multiscalar Intensity Rating of Universal Facial Expression of Emotion”, Motivation

and Emotion, vol. 22, no. 4, Springer Netherlands, December 1998.

71. Zhan, Y. Z., Ye, J. F., Niu, D. J. and Cao, P., "Facial expression recognition based on

Gabor wavelet transformation and elastic templates matching," Image and Graphics,

2004. Proceedings. Third International Conference on , pp. 254-257, 18-20 Dec. 2004

http://gundam.cs.yale.edu/TheLab.htm
http://ispl.korea.ac.kr/~wikim/research/speech.html
http://scien.stanford.edu/class/ee368/projects2000/project2/img2.gif
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&obje
http://www.oatsoft.org/Software/whistling-user-interface
http://www.sfu.ca/sonic-studio/handbook/Mel.html
http://mathworld.wolfram.com/MethodofSteepestDescent.html

 78

Appendix A - MATLAB Code

Filename : integrate.m
This is the code that controls the main window in the graphical user interface.

function varargout = integrate(varargin)
% INTEGRATE M-file for integrate.fig
% INTEGRATE, by itself, creates a new INTEGRATE or raises the existing
% singleton*.
%
% H = INTEGRATE returns the handle to a new INTEGRATE or the handle to
% the existing singleton*.
%
% INTEGRATE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in INTEGRATE.M with the given input arguments.
%
% INTEGRATE('Property','Value',...) creates a new INTEGRATE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before integrate_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to integrate_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help integrate

% Last Modified by GUIDE v2.5 31-Mar-2008 15:58:41

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @integrate_OpeningFcn, ...
 'gui_OutputFcn', @integrate_OutputFcn, ...
 'gui_LayoutFcn', [] , ...

 79

 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before integrate is made visible.
function integrate_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to integrate (see VARARGIN)

% Choose default command line output for integrate
handles.output = hObject;

handles.audioSet = [];
handles.videoSet = [];
handles.audio = [];
handles.video = [];
% Update handles structure
guidata(hObject, handles);

set(handles.recognizeEmo, 'Enable', 'off');

% UIWAIT makes integrate wait for user response (see UIRESUME)
% uiwait(handles.figure1);
axes(handles.audioSignal);
imshow('logo.jpg');
axes(handles.speechEmo);
imshow('logo.jpg');
axes(handles.faceEmo);
imshow('logo.jpg');
axes(handles.face);

 80

imshow('logo.jpg');

% --- Outputs from this function are returned to the command line.
function varargout = integrate_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function fileName_Callback(hObject, eventdata, handles)
% hObject handle to fileName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of fileName as text
% str2double(get(hObject,'String')) returns contents of fileName as a

double
% global audio;
% global video;
% global audioSet;
 fileName = get(hObject, 'String');
 [handles.video handles.audio] = mmread(fileName);
% % sets audio setting button on if media file contains audio
 set(handles.recognizeEmo, 'Enable', 'off');
 set(handles.setAudio, 'Enable', 'off');
 if(isempty(handles.audio) == 0)
 set(handles.setAudio, 'Enable', 'on');
 handles.audioSet = [];
% set(handles.recognizeEmo, 'Enable', 'on');
% handles.audioSet.freq = handles.audio.rate;
% handles.audioSet.pause = 8;
% handles.audioSet.silence = 0.1;
 end
% % sets video setting button on if media file contains video
 set(handles.setVideo, 'Enable', 'off');
 if(isempty(handles.video) == 0)
 set(handles.setVideo, 'Enable', 'on');

 81

 handles.videoSet = [];
 axes(handles.face);
 imshow(handles.video.frames(1).cdata)
 end
 guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function fileName_CreateFcn(hObject, eventdata, handles)
% hObject handle to fileName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in setAudio.
function setAudio_Callback(hObject, eventdata, handles)
% hObject handle to setAudio (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% global audio;
% global audioSet;
setAudio(handles.audio);
handles.audioSet = evalin('base', 'audioSet');
guidata(hObject, handles);
if (isempty(handles.video) || isempty(handles.videoSet) == 0)
 set(handles.recognizeEmo, 'Enable', 'on');
end

% --- Executes on button press in setVideo.
function setVideo_Callback(hObject, eventdata, handles)
% hObject handle to setVideo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setVideo(handles.video);
handles.videoset = evalin('base', 'videoSet');
guidata(hObject, handles);
set(handles.recognizeEmo, 'Enable', 'on');

 82

if (isempty(handles.audio) || isempty(handles.audioSet) == 0)
 set(handles.recognizeEmo, 'Enable', 'on');
end
% --- Executes on button press in browse.
function browse_Callback(hObject, eventdata, handles)
% hObject handle to browse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[FN PN] = uigetfile('*.*', 'Select Media File');
set(handles.fileName, 'String', strcat(PN,FN));
fileName_Callback(handles.fileName, [], handles);

% --- Executes on button press in recognizeEmo.
function recognizeEmo_Callback(hObject, eventdata, handles)
% hObject handle to recognizeEmo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.audioSignal);
imshow('logo.jpg');
axes(handles.speechEmo);
imshow('logo.jpg');
set(handles.audioLeg, 'Visible', 'off');
axes(handles.faceEmo);
imshow('logo.jpg');
set(handles.videoLeg, 'Visible', 'off');
axes(handles.face);
imshow('logo.jpg');

if strcmp(get(handles.setAudio, 'Enable'), 'on')
try
 handles.audioSet = evalin('base', 'audioSet');
catch
% Just to eliminate a crash in case of an error.
end

% Plotting word seperation
 axes(handles.audioSignal);
 plot((0:length(handles.audioSet.features.fullSpec)-

1)*handles.audioSet.totTime/(length(handles.audioSet.features.fullSpec)-1),
handles.audioSet.features.fullSpec, 'r', 'LineWidth', 2);

 83

 hold on;
 plot(handles.audioSignal, (0:length(handles.audioSet.features.word)-

1)*handles.audioSet.totTime/(length(handles.audioSet.features.word)-1),
handles.audioSet.features.word, 'g', 'LineWidth', 2);

 axis([0 handles.audioSet.totTime -Inf
max(handles.audioSet.features.fullSpec)*1.1]);

 hold off;

 if(size(handles.audioSet.features.F,1) < 166)
 errordlg('Words are too short for classification', 'Feature Length

Error')
 axes(handles.speechEmo), title('Words are too short to be classified');
 elseif (size(handles.audioSet.features.F,1) > 166)
 handles.audioSet.features.F = handles.audioSet.features.F(1:166,:);
 end

 if(size(handles.audioSet.features.F,1) == 166)
 % Doing Emotion recogniton in speech
 load('VEnet.mat');
 ANNvoice = network2;
 netOP = sim(ANNvoice, handles.audioSet.features.F);

 SpeechEmo.Emo = [];
 M = max(netOP);
 for i = 1:size(netOP,2)
 SpeechEmo.Emo = [SpeechEmo.Emo, find(netOP(:,i) == M(1,i), 1)];
 end

 SpeechEmo.time = handles.audioSet.features.time;

 A = [SpeechEmo.Emo; SpeechEmo.Emo];

 axes(handles.speechEmo)
 for i = 1:length(SpeechEmo.Emo)
 plot(SpeechEmo.time(:,i), A(:,i), 'LineWidth', 5);
 axis([0 length(handles.audio.data)/handles.audioSet.freq 0 8]);
 title('Emotion in Speech');
 hold on;
 end
 grid on;
 hold off;
 set(handles.audioLeg, 'Visible', 'on');

 84

 end
end

if strcmp(get(handles.setVideo, 'Enable'), 'on')
% % Video emotion recognition
 try
 handles.videoSet = evalin('base', 'videoSet');
 catch
% just to eliminate a crash
 end

 if (isempty(handles.videoSet) == 0 &&

isempty(handles.videoSet.featurePoints) == 0)
 load('FEnet.mat');
 FEnet = network1;
 axes(handles.face);
 imshow(handles.videoSet.neutralImage);
 dist_Vec_Ne =

distanceDirVector1(handles.videoSet.featurePoints{handles.videoSet.neutral});
 window = 5;
 A = [];
 op = [];
 for i = 1:handles.video.nrFramesTotal
 dist_Vec = distanceDirVector1(handles.videoSet.featurePoints{i});
 dist_Change_Vec = distanceDiffVector(dist_Vec_Ne, dist_Vec);
 A = [A dist_Change_Vec];
 if (i > window)
 A(:,1) = [];
 end
 ip = mean(A,2);
 op = [op sim(FEnet, ip)];
 end

 timeScale = (1:length(op))*handles.video.times(end)/length(op);
 axes(handles.faceEmo);
 for i = 1:6
 plot(timeScale, op(i,:)+i, 'LineWidth', 1.5);
 drawnow;
 axis([0 handles.video.times(end) 0 8]);
 hold all;
 end

 85

 grid on;
 hold off;
 set(handles.videoLeg, 'Visible', 'on');
 end
end
guidata(hObject, handles);

 86

Filename : mmread.m
This is used to read the media file. It reads the file and stores data from the audio and

video channel separately into data structures in the Matlab workspace. This is written by Micah

Richert.

URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028

function [video, audio] = mmread(filename, frames, time, disableVideo,

disableAudio, matlabCommand, trySeeking)
% function [video, audio] = mmread(filename, frames, time, disableVideo,

disableAudio, matlabCommand)
% mmread reads virtually any media file. If Windows Media Play can play
% it, so should mmread, this includes URLs. It uses the Window's DirectX
% infrastructure to render the media, so other OSs are out of luck.
%
% INPUT
% filename input file to read (mpg, avi, wmv, asf, wav, mp3, gif, jpg,

...)
% frames specifies which video frames to capture, default [] for all or
% to specify time
% time [startTime stopTime], default [] for all
% disableVideo disables ALL video capturing, to save memory or time
% disableAudio disables ALL audio capturing, to save memory or time
% matlabCommand Do not return the video structure, but call the function
% specified by matlabCommand. The function definition must
% match that of processFrame.m. See processFrame.m for more
% information.
% trySeeking [true] set to false to disable this if when using time
% ranges or frames, and between subsequent reads the data
% doesn't match.
%
% OUTPUT
% video is a struct with the following fields:
% width width of the video frames
% height height of the video frames
% rate the frame rate of the video, if it can't be determined
% it will be 1.
% nrFramesTotal the total number of frames in the movie regardless of
% how many were captured. Unfortunately, this can not
% always be determined. If it is negative then it

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028

 87

% is an estimate based upon the duration and rate
% (normally accurate to within .1%). It can be 0,
% in which case it could not be determined at all. If it
% is a possitive number then it should always be accurate.
% totalDuration the total length of the video in seconds.
% frames a struct array with the following fields:
% cdata [height X width X 3] uint8 matricies
% colormap always empty
% times the corresponding time stamps for the frames (in

milliseconds)
%
% audio is a struct with the following fields:
% nrChannels the number of channels in the audio stream (1 or 2)
% rate sampling rate of the audio, ex. 44100. If it can't be
% determined then it will be 1.
% bits bit depth of the samples (8 or 16)
% data the real data of the whole audio stream. This can be
% played using wavplay. If time ranges are specified,
% the length of the data may not correspond to the total
% time. This normally happens with movies. The issue is
% that the start of the audio stream is generally counted
% at the END of the first frame. So, time is shifted by
% 1/framerate.
% nrFramesTotal Audio comes in packets or frames when captured, the
% division of the audio into frames may or may not make
% sense.
% totalDuration the total length of the audio in seconds.
% frames cell array of uint8s. Probably not of great use.
% times the corresponding time stamps for the frames (in

milliseconds)
%
% If there is no video or audio stream the corresponding structure will be
% empty.
%
% Specifying frames does not effect audio capturing. If you want only a
% subsection of the audio use the 3rd parameter "time". Specifying time
% effects both audio and video. Time is specified in seconds (subsecond
% resolution is supported with fractional numbers ex. 1.125), starting at 0.
% Time is defined as startTime (inclusive) to stopTime (exclusive), or
% using set notation [startTime stopTime).
%
% If there are multiple video or audio streams, then the structure will be

 88

% of length > 1. For example: audio(1).data and audio(2).data.
%
% Images work, however the frames must be specified. For some reason
% DirectShow doesn't ever stop when "playing" an image. So to deal with
% this, I added support so that the processing stops once the last
% specified frame is captured instead of waiting until the media completes.
%
% EXAMPLES
% [video, audio] = mmread('chimes.wav'); % read whole wav file
% wavplay(audio.data,audio.rate);
%
% video = mmread('mymovie.mpg'); % read whole movie
% movie(video.frames);
%
% video = mmread('mymovie.mpg',1:10); %get only the first 10 frames
%
% video = mmread('mymovie.mpg',[],[0 3.5]); %read the first 3.5 seconds of the

video
%
% [video, audio] = mmread('chimes.wav',[],[0 0.25]); %read the first 0.25

seconds of the wav
% [video, audio] = mmread('chimes.wav',[],[0.25 0.5]); %read 0.25 to 0.5

seconds of the wav, there is no overlap with the previous example.
%
% video = mmread('mymovie.mpg',[],[],false,true); %read all frames, disable

audio
%
% % read a movie directly from a URL
% video = mmread('http://www.nature.com/neuro/journal/v9/n4/extref/nn1660-

S8.avi');
%
% mmread('mymovie.mpg',[],[],false,false,'processFrame'); %Use inline

processing for all frames in a movie using the function processFrame.m
%
% Written by Micah Richert
%

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&objectTy
pe=FILE

if nargin < 7
 trySeeking = true;
 if nargin < 6

http://www.nature.com/neuro/journal/v9/n4/extref/nn1660
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&objectTy

 89

 matlabCommand = '';
 if nargin < 5
 disableAudio = false;
 if nargin < 4
 disableVideo = false;
 if nargin < 3
 time = [];
 if nargin < 2
 frames = [];
 end
 end
 end
 end
 end
end

try
 mexDDGrab('buildGraph',filename);
 if (isempty(time))
 mexDDGrab('setFrames',frames);
 else
 if (numel(time) ~= 2)
 error('time must be a vector of length 2: [startTime stopTime]');
 end
 mexDDGrab('setTime',time(1),time(2));
 end
 if (disableVideo)
 mexDDGrab('disableVideo');
 end;
 if (disableAudio | nargout < 2)
 mexDDGrab('disableAudio');
 end;
 mexDDGrab('setMatlabCommand',matlabCommand);

 mexDDGrab('setTrySeeking',double(trySeeking));

 try
 mexDDGrab('doCapture');
 catch
 err = lasterror;
 if (~strcmp(err.identifier,'processFrame:STOP'))
 rethrow(err);

 90

 end
 end

 [nrVideoStreams, nrAudioStreams] = mexDDGrab('getCaptureInfo');

 video = struct('width',{},'height',{},'nrFramesTotal',{},'frames',{});
 audio =

struct('nrChannels',{},'rate',{},'bits',{},'nrFramesTotal',{},'data',{},'frames',{});

 warned = false;

 % we can only get the video frames if we don't process a matlabCommand
 if strcmp(matlabCommand,'')
 % loop through getting all of the video data from each stream
 for i=1:nrVideoStreams
 [width, height, rate, nrFramesCaptured, nrFramesTotal,

totalDuration] = mexDDGrab('getVideoInfo',i-1);
 video(i).width = width;
 video(i).height = height;
 video(i).rate = rate;
 video(i).nrFramesTotal = nrFramesTotal;
 video(i).totalDuration = totalDuration;
 video(i).frames =

struct('cdata',cell(1,nrFramesCaptured),'colormap',cell(1,nrFramesCaptured));

 if (nrFramesTotal > 0 && any(frames > nrFramesTotal))
 warning('mmread:general',['Frame(s) '

num2str(frames(frames>nrFramesTotal)) ' exceed the number of frames in the movie.']);
 end

 scanline = ceil(width*3/4)*4; % the scanline size must be a

multiple of 4.

 for f=1:nrFramesCaptured
 [data, time] = mexDDGrab('getVideoFrame',i-1,f-1);

 if (numel(data) ~= scanline*height)
 if (numel(data) > 3*width*height)
 if (~warned)
 warning('mmread:general','dimensions do not match

data size. Guessing badly...');
 warned = true;

 91

 end
 scanline = width*3;
 data = data(1:3*width*height);
 else
 if (f == 1)
 error('dimensions do not match data size. Too

little data.');
 else
 warning(['dimensions do not match data size. Too

little data for ' num2str(f) 'th frame.']);
 continue;
 end
 end
 end

 % if there is any extra scanline data, remove it
 data = reshape(data,scanline,height);
 data = data(1:3*width,:);

 % the data ordering is wrong for matlab images, so permute it
 tmp = permute(reshape(data, 3, width, height),[3 2 1]);
 % the images are also upside down and colors were backwards.
 video(i).frames(f).cdata = tmp(end:-1:1,:,3:-1:1);
 video(i).times(f) = time;
 end

 % if frames are specified then make sure that the order is the same
 if (~isempty(frames) && nrFramesCaptured > 0)
 [uniqueFrames, dummy, frameOrder] = unique(frames);
 if (length(uniqueFrames) > nrFramesCaptured)
 warning('mmread:general','Not all frames specified were

captured. Returning what was captured, but order may be different than specified.');
 remainingFrames =

frames(frames<=uniqueFrames(nrFramesCaptured));
 [dummy, dummy, frameOrder] = unique(remainingFrames);
 end

 video(i).frames = video(i).frames(frameOrder);
 video(i).times = video(i).times(frameOrder);
 end
 end
 end

 92

 % loop through getting all of the audio data from each stream
 for i=1:nrAudioStreams
 [nrChannels, rate, bits, nrFramesCaptured, nrFramesTotal, subtype,

totalDuration] = mexDDGrab('getAudioInfo',i-1);
 audio(i).nrChannels = nrChannels;
 audio(i).rate = rate;
 audio(i).bits = bits;
 audio(i).nrFramesTotal = nrFramesTotal;
 audio(i).totalDuration = totalDuration;
 audio(i).frames = cell(1,nrFramesCaptured);
 for f=1:nrFramesCaptured
 [data, time] = mexDDGrab('getAudioFrame',i-1,f-1);
 audio(i).frames{f} = data;
 audio(i).times(f) = time;
 end
 % combine the data across frames
 d = double(cat(1,audio(i).frames{:}));

 % rescale the data so that it is between -1.0 and 1.0
 if (subtype==0)
 %PCM formated data...
 switch (bits)
 case {4, 8}
 d = (d-2^(bits-1))/2^(bits-1);
 case {16, 24, 32}
 d = d/2^(bits-1);
 end
 elseif (subtype==1)
 if (bits == 32)
 %IEEE FLOAT formated data...
 if (max(d) > 1 | min(d) < -1)
 % there are two float formats one that is already -1 to 1
 % and the there is between -2^15 to 2^15
 d = d / 2^15;
 end
 else
 warning('Audio data format not recognized/supported, it

probably is going to be useless.');
 end
 else

 93

 warning('Audio data format not recognized/supported, it probably is
going to be useless.');

 end

 % reshape the data so that it is nrChannels x Samples. This should be

the same output as wavread.
 audio(i).data = reshape(d,nrChannels,length(d)/nrChannels)';
 end

 mexDDGrab('cleanUp');
catch
 err = lasterror;
 mexDDGrab('cleanUp');
 if strfind(err.message,'combination')
 disp('The ''No combination of intermediate filters could be found to

make the connection'' error');
 disp('means that no appropriate codec could be found. Mpg2 files seem

to be the worst. ');
 disp('Installing ffdshow (www.free-codecs.com/FFDShow_download.htm)

often fixes this problem. ');
 end
 rethrow(err);
end

http://www.free-codecs.com/FFDShow_download.htm

 94

Filename : distanceDiffVector.m
It computes the vector difference between its inputs, Vec1 and Vec2.

function dist_change_vec = distanceDiffVector(Vec1, Vec2)

dist_change_vec = Vec2 - Vec1;

Filename : distanceDirVector1.m
This function builds the 44 dimentional feature mask from the coordinated of the

seventeen feature points.

function [dist_vec] = distanceDirVector1(Vec)

% get all the feature points
right_eye = Vec(1,:);
right_eye_in_corner = Vec(2,:);
right_eye_out_corner = Vec(3,:);
right_eyebrow = Vec(4,:);
right_eyebrow_corner = Vec(5,:);
left_eye = Vec(6,:);
left_eye_in_corner = Vec(7,:);
left_eye_out_corner = Vec(8,:);
left_eyebrow = Vec(9,:);
left_eyebrow_corner = Vec(10,:);
mouth_corner_left = Vec(11,:);
mouth_corner_right = Vec(12,:);
mouth_lip_upper = Vec(13,:);
mouth_lip_lower = Vec(14,:);
nose = Vec(15,:);
nose_left(1:2) = Vec(16,:);
nose_right(1:2) = Vec(17,:);

%normalizing value - distance between left and right eye outter corners
normalize = distance(left_eye_out_corner, right_eye_out_corner);

% without normalizing
V_mouth_width = distance(mouth_corner_left, mouth_corner_right);

 95

V_mouth_height = distance(mouth_lip_upper, mouth_lip_lower);

V_mouth_nose_left = distance(mouth_corner_left, nose);
V_mouth_nose_right = distance(mouth_corner_right, nose);

V_lip_nose = distance(mouth_lip_upper, nose);

V_eyebrow_eye_inner_left = distance(left_eye_in_corner, left_eyebrow_corner);
V_eyebrow_eye_inner_right = distance(right_eye_in_corner,

right_eyebrow_corner);
V_eyebrow_eye_left = distance(left_eye, left_eyebrow);
V_eyebrow_eye_right = distance(right_eye, right_eyebrow);

V_eye_angle_left = angle(left_eye_out_corner, left_eye, left_eye_in_corner);
V_eye_angle_right = angle(right_eye_out_corner, right_eye,

right_eye_in_corner);

V_eyebrow_corners = distance(left_eyebrow_corner, right_eyebrow_corner);
V_eye_corners = distance(left_eye_in_corner, right_eye_in_corner);

V_eyebrow_angle_left = angle2points(left_eyebrow, left_eyebrow_corner, 1);
V_eyebrow_angle_right = angle2points(right_eyebrow, right_eyebrow_corner, 2);

V_mouth_eyes_left = distance(mouth_corner_left, left_eye);
V_mouth_eyes_right = distance(mouth_corner_right, right_eye);

V_mouth_lip_lower_left = distance(mouth_corner_left, mouth_lip_lower);
V_mouth_lip_lower_right = distance(mouth_corner_right, mouth_lip_lower);
V_mouth_lip_upper_left = distance(mouth_corner_left, mouth_lip_upper);
V_mouth_lip_upper_right = distance(mouth_corner_right, mouth_lip_upper);

V_nose_left = distance(nose_left, nose);
V_nose_right = distance(nose_right, nose);

V_nose_eye_left = distance(nose, left_eye);
V_nose_eye_right = distance(nose, right_eye);

V_mouth_eye_corner_left = distance(mouth_corner_left, left_eye_out_corner);
V_mouth_eye_corner_right = distance(mouth_corner_right, right_eye_out_corner);

V_eye_out_eyebrow_left = distance(left_eye_out_corner, left_eyebrow);
V_eye_out_eyebrow_right = distance(right_eye_out_corner, right_eyebrow);

 96

V_mouth_angle_lower = angle(mouth_corner_left, mouth_lip_lower,

mouth_corner_right);
V_mouth_angle_upper = angle(mouth_corner_right, mouth_lip_upper,

mouth_corner_left);

V_nose_angle = angle(mouth_corner_left, nose, mouth_corner_right);

V_mouth_left_nose_vec = (nose - mouth_corner_left)';
V_mouth_right_nose_vec = (nose - mouth_corner_right)';

V_eyebrow_left_vec = (left_eyebrow_corner - left_eyebrow)';
V_eyebrow_right_vec = (right_eyebrow_corner - right_eyebrow)';

V_mouth_eyes_left_vec = (left_eye - mouth_corner_left)';
V_mouth_eyes_right_vec = (right_eye - mouth_corner_right)';

% vector containing all the vectors descibing the face
dist_vec = [V_mouth_width; V_mouth_height; V_mouth_nose_left;

V_mouth_nose_right; V_lip_nose; V_eyebrow_eye_inner_left; V_eyebrow_eye_inner_right;
V_eyebrow_eye_left; V_eyebrow_eye_right; V_eye_angle_left; V_eye_angle_right;
V_eyebrow_corners; V_eye_corners; V_eyebrow_angle_left; V_eyebrow_angle_right;
V_mouth_eyes_left; V_mouth_eyes_right; V_mouth_lip_lower_left;
V_mouth_lip_lower_right; V_mouth_lip_upper_left; V_mouth_lip_upper_right; V_nose_left;
V_nose_right; V_nose_eye_left; V_nose_eye_right; V_mouth_eye_corner_left;
V_mouth_eye_corner_right; V_eye_out_eyebrow_left; V_eye_out_eyebrow_right;
V_mouth_angle_lower; V_mouth_angle_upper; V_nose_angle; V_mouth_left_nose_vec;
V_mouth_right_nose_vec; V_eyebrow_left_vec; V_eyebrow_right_vec;
V_mouth_eyes_left_vec; V_mouth_eyes_right_vec];

%///

function a = distance(point_a, point_b)
% calculates the distance between two points in 2D

a = sqrt(power((point_a(1,1) - point_b(1,1)),2) + power((point_a(1,2) -

point_b(1,2)),2));
%///

function a = angle(point_a, point_b, point_c)
% finds the angle created by 3 points

Pi = 4*atan(1);

 97

vec1 = [(point_a(1,1) - point_b(1,1)) (point_a(1,2) - point_b(1,2))];
vec2 = [(point_c(1,1) - point_b(1,1)) (point_c(1,2) - point_b(1,2))];
scalar = [vec1(1) * vec2(1) + vec1(2) * vec2(2)];
length_vec1 = sqrt(power(vec1(1),2) + power(vec1(2),2));
length_vec2 = sqrt(power(vec2(1),2) + power(vec2(2),2));

a = acos(scalar/(length_vec1 * length_vec2));
%///

function a = angle2points(point_a, point_b, side)

Pi = 4*atan(1);

vec1 = [(point_a(1,1) - point_b(1,1)) (point_a(1,2) - point_b(1,2))];
if side == 1
 vec2 = [0 (-10)];
else
 vec2 = [0 10];
end
scalar = [vec1(1) * vec2(1) + vec1(2) * vec2(2)];
length_vec1 = sqrt(power(vec1(1),2) + power(vec1(2),2));
length_vec2 = sqrt(power(vec2(1),2) + power(vec2(2),2));

a = acos(scalar/(length_vec1 * length_vec2));
%///

 98

Filename : setAudio.m
This controls the audio toolbox that pops up upon clicking on the “Audio Setting” button.

It separates words and extracts features based on the setting feed by the user. It then passes this

data back to integrate.m.

function varargout = setAudio(varargin)
% SETAUDIO M-file for setAudio.fig
% SETAUDIO, by itself, creates a new SETAUDIO or raises the existing
% singleton*.
%
% H = SETAUDIO returns the handle to a new SETAUDIO or the handle to
% the existing singleton*.
%
% SETAUDIO('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SETAUDIO.M with the given input arguments.
%
% SETAUDIO('Property','Value',...) creates a new SETAUDIO or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before setAudio_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to setAudio_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help setAudio

% Last Modified by GUIDE v2.5 16-Jan-2008 12:47:51

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @setAudio_OpeningFcn, ...
 'gui_OutputFcn', @setAudio_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);

 99

if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before setAudio is made visible.
function setAudio_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to setAudio (see VARARGIN)

% Choose default command line output for setAudio
 handles.output = hObject;

% UIWAIT makes setAudio wait for user response (see UIRESUME)
% uiwait(handles.figure1);

 handles.okclicked = false;
 handles.data = mean(varargin{1}.data,2);
 handles.totTime = varargin{1}.totalDuration;

 handles.dFreq = varargin{1}.rate;
 handles.freq = handles.dFreq;
 dFreqButton_Callback(handles.dFreqButton, [], handles)

 handles.dSilence = 0.1;
 handles.silence = handles.dSilence;
 dSilenceButton_Callback(handles.dSilenceButton, [], handles)

 handles.dPause = 8;
 handles.pause = handles.dPause;
 dPauseButton_Callback(handles.dPauseButton, [], handles)

 100

% Update handles structure
 guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout = setAudio_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 op.freq = handles.dFreq;
 op.silence = handles.dSilence;
 op.pause = handles.dPause;
 op.features = [];
 op.totTime = handles.totTime;

 assignin('base', 'audioSet', op);

% Get default command line output from handles structure
 varargout{1} = handles.output;

function eFreq_Callback(hObject, eventdata, handles)
% hObject handle to eFreq (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eFreq as text
% str2double(get(hObject,'String')) returns contents of eFreq as a

double

 handles.freq = str2double(get(hObject,'String'));
 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function eFreq_CreateFcn(hObject, eventdata, handles)
% hObject handle to eFreq (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

 101

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eSilence_Callback(hObject, eventdata, handles)
% hObject handle to eSilence (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eSilence as text
% str2double(get(hObject,'String')) returns contents of eSilence as a

double

 handles.silence = str2double(get(hObject,'String'));
 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function eSilence_CreateFcn(hObject, eventdata, handles)
% hObject handle to eSilence (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function ePause_Callback(hObject, eventdata, handles)
% hObject handle to ePause (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ePause as text

 102

% str2double(get(hObject,'String')) returns contents of ePause as a
double

 handles.pause = str2double(get(hObject,'String'));
 guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function ePause_CreateFcn(hObject, eventdata, handles)
% hObject handle to ePause (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in dFreqButton.
function dFreqButton_Callback(hObject, eventdata, handles)
% hObject handle to dFreqButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 set(handles.eFreq, 'String', num2str(handles.dFreq));
 eFreq_Callback(handles.eFreq, [], handles);

% --- Executes on button press in dSilenceButton.
function dSilenceButton_Callback(hObject, eventdata, handles)
% hObject handle to dSilenceButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 set(handles.eSilence, 'String', num2str(handles.dSilence));
 eSilence_Callback(handles.eSilence, [], handles);

% --- Executes on button press in dPauseButton.
function dPauseButton_Callback(hObject, eventdata, handles)
% hObject handle to dPauseButton (see GCBO)

 103

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 set(handles.ePause, 'String', num2str(handles.dPause));
 ePause_Callback(handles.ePause, [], handles);

% --- Executes on button press in testButton.
function testButton_Callback(hObject, eventdata, handles)
% hObject handle to testButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 handles.features = featureExtraction(handles.data, handles.freq,

handles.silence, handles.pause);
 axes(handles.audioSignal);
 plot((0:length(handles.data)-1)*handles.totTime/(length(handles.data)-1),

mean(handles.data,2), 'b');
 axes(handles.audioWord);
 plot((0:length(handles.features.fullSpec)-

1)*handles.totTime/(length(handles.features.fullSpec)-1), handles.features.fullSpec,
'r', 'LineWidth', 2);

 hold on;
 plot((0:length(handles.features.word)-

1)*handles.totTime/(length(handles.features.word)-1), handles.features.word, 'g',
'LineWidth', 2);

 hold off;
 guidata(hObject,handles);

% --- Executes on button press in okButton.
function okButton_Callback(hObject, eventdata, handles)
% hObject handle to okButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 op.freq = handles.freq;
 op.silence = handles.silence;
 op.pause = handles.pause;
 op.features = handles.features;
 op.totTime = handles.totTime;
 assignin('base', 'audioSet', op);
 close(handles.figure1);

 104

Filename : featureExtraction.m
This function extracts the features from a segment of word. It takes the ra signal from a

word segment as its input and extracts formants, mel-energy, their rate of change, and their mean

and median.

% Parameter extraction for voice emotion recogniton
% Srivardhan C, Kansas State University, Sept 2007.
% Input audio data and frequency. To be used while emotion recogniton
function [features] = featureExtraction(y, Fs, silence, pause)

% Resampling at 8000Hz
y = resample(y, 8000, Fs);
Fs = 8000;
tic

% Computing spectrum for energy levels.
fullSpec = zeros(1,size(y));
overlapEnd = floor((Fs-256)/(Fs/100));
nFFT = 256;
for i = 1 : Fs/2: size(y)-Fs
 spectrum = computeSpectrum(nFFT, Fs/100, y(i:i+Fs));
 if(i==1)
 fullSpec = spectrum.e;
 end
 fullSpec = [fullSpec spectrum.e(overlapEnd-49:overlapEnd)];
end

% Word seperation if energy level is less than a preset limit for more than

0.08 sec
silenceLevel = silence*max(fullSpec); %Setting silence at 5% of Peak
wordPause = pause; % 30 milliseconds is the pause that seperates 2 words

[wordIndex, word] = wordSeperation(fullSpec, wordPause, silenceLevel);

% Index for words on original Signal
wordIndexOriginal = round(wordIndex .* length(y)/length(fullSpec));
features.word = word;
features.fullSpec = fullSpec;

 105

% Linear Predictive Coding vocal tract filter for each word
AvgEnergyWord = zeros(1,length(wordIndex)/2);
PeakEnergyWord = zeros(1,length(wordIndex)/2);
j = 0;
voiced = 0;
totPeaks = 0;
[melMat fCenters] = melFilterMatrix(Fs,256,22);
for i = 1:length(wordIndexOriginal)/2
 sample = y(wordIndexOriginal(2*i-1):wordIndexOriginal(2*i));
 voiced = voiced + (wordIndexOriginal(2*i) - wordIndexOriginal(2*i-1));
 totPeaks = totPeaks + length(Peak(fullSpec(wordIndex(2*i-

1):wordIndex(2*i))));
 if(length(sample) > 600)
 j = j+1;
 Formant(j) = computeFormant(sample, Fs, 4, melMat, fCenters);
 AvgEnergyWord(j) = mean(fullSpec(wordIndex(2*i-1):wordIndex(2*i)));
 PeakEnergyWord(j) = max(fullSpec(wordIndex(2*i-1):wordIndex(2*i)));
 timeStamp(:,j) = [wordIndexOriginal(2*i-1) wordIndexOriginal(2*i)]' /

Fs;
 end
end

% % % % % % % % % % % % % % % % % %
% % UTTERANCE LEVEL PARAMETERS % %
% % % % % % % % % % % % % % % % % %

% Calculating Words Spoken Per Sec
WordPerSec = (length(wordIndex)/2)/(length(y)/Fs); % Words Per Sec

% Calculating ratio of voiced to unvoiced speech
unvoiced = (length(y) - voiced)/length(y);
voiced = voiced/length(y);

% Average Energy Over Utterance
AvgEnergyUtterance = mean(AvgEnergyWord);

% Building Feature Vector
features.F = []; features.time = [];
for i = 1:j
 try
 if(sum(isnan(Formant(i).features)) == 0)

 106

 features.F = [features.F [Formant(i).features; unvoiced; voiced;
AvgEnergyUtterance; WordPerSec]];

 features.time = [features.time timeStamp(:,i)];
 end
 catch
 end
end
toc

 107

Filename : computeSpectrum.m
This function computes the spectrum using fast Fourier transform, and also computes the

energy levels as a sum of energies at various frequency bands.

URL : http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function SPEC = computeSpectrum (fftLength,winShift,s)
% --
% compute spectrum from time signal
%
% Returns power spectrum (|X(f)|^2) in
% matrix SPEC.X(coefficientIndex,frameIndex) .
% No energy normalization is performed.
% The signal energy (sum of power spectrum coefficients)
% is returned in vector SPEC.e(frameIndex)
%
% parameters:
% fftLength: length of FFT
% winShift: window shift [number of samples]
% s: vector of time samples
%
% last update 18.1.04
% http://www.speech-recognition.de/matlab-examples.html
% modified Srivardhan, Kansas State University
% --

% compute local variables
nofSamples = size(s);
maxFFTIdx = fftLength/2;

% compute time window
win = hamming(fftLength);

% compute matrix X(fftIndex,timeFrameIndex) short term spectra

k = 1;
for m = 1:winShift:nofSamples-fftLength

 spec = fft((win.*s(m:m+fftLength-1)) ,fftLength);
 %use only lower half of fft coefficients

http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

 108

 SPEC.X(:,k) = (abs(spec(1:maxFFTIdx))).^2;
 %compute energy
 SPEC.e(k) = sum(SPEC.X(:,k));

 k = k+1;
end

 109

Filename : wordSeperation.m
This function separates words in the signal using the energy levels calculated by

computeSpectrum.m and the word pause and threshold setting from the audio toolbox.

function [wordIndex, word] = wordSeperation(Spec, Pause, Silence)

% Srivardhan C, Kansas State University
% Inputs are
% Spec = energy spectrum
% Pause = Time in milliSec that seperates 2 words
% Silence = The energy level below which it is considered unvoiced
% Outputs are
% wordIndex = index of begning and ending of each segment of voiced
% data in the spectrum vector. [begin1 end1 begin2 ...]
% word = vector the same size as spectrum, with 0s for unvoiced
% segment and 1s for voiced segment

SpecNorm = zeros(1, size(Spec,2));
SpecNorm(Spec > Silence) = 1;

word = zeros(1,size(SpecNorm,2));
i = find(SpecNorm, 1);
wordIndex = i;
while i <= length(SpecNorm)-Pause
 if sum(SpecNorm(i : i + Pause)) < 0.075*Pause
 wordIndex = [wordIndex , i + 1];
 i = find(SpecNorm(i+1 : end), 1) + i;
 wordIndex = [wordIndex , i];
 else
 word(i) = 1;
 i = i + 1;
 end
end

if wordIndex(end) ~= (find(SpecNorm,1,'last')+1)
 wordIndex = [wordIndex, find(SpecNorm,1,'last')];
 word(wordIndex(end-1):wordIndex(end)) = 1;
end

word= word * max(Spec);

 110

Filename : melfiltermatrix.m
This function computes the mel frequency filter matrix that is used to comvert the

spectrogram into a mel spectrum. The center frequencies of the channels follow the mel scale,

while the frequency distribution is linear. The bandwidth increases with frequencies.

URL : http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function [W, fcenters] = melFilterMatrix(fs, N, nofChannels)
% --
% melFilterMatrix(fs, N, nofChannels):
% compute mel filter coefficients
%
% returns: Matrix (channelIndex, FFTIndex)
% of mel filter coefficients.
%
% parameters:
% fs: Sampling rate [Hz], eg., 8000
% N: FFT length, eg., 256
% nofChannels: Number of mel channels, eg., 22
%
% last update: 13.1.04
% http://www.speech-recognition.de/matlab-examples.html
% --

%for test, use these parameters
%parameters
%fs = 8000;
%N = 256;
%nofChannels = 22;

%compute resolution etc.
df = fs/N; %frequency resolution
Nmax = N/2; %Nyquist frequency index
fmax = fs/2; %Nyquist frequency
melmax = freq2mel(fmax); %maximum mel frequency

%mel frequency increment generating 'nofChannels' filters
melinc = melmax / (nofChannels + 1);

%vector of center frequencies on mel scale
melcenters = (1:nofChannels) .* melinc;

http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

 111

%vector of center frequencies [Hz]
fcenters = mel2freq(melcenters);

%compute bandwidths
%startfreq = [0 , fcenters(1:(nofChannels-1))];
%endfreq = [fcenters(2:nofChannels) , fmax];
%bandwidth = endfreq - startfreq ;

%quantize into FFT indices
indexcenter = round(fcenters ./df);

%compute resulting frequencies
%fftfreq = indexcenter.*df;

%compute resulting error
%diff = fcenters - fftfreq;

%compute startfrequency, stopfrequency and bandwidth in indices
indexstart = [1 , indexcenter(1:nofChannels-1)];
indexstop = [indexcenter(2:nofChannels),Nmax];
%idxbw = (indexstop - indexstart)+1;
%FFTbandwidth = idxbw.*df;

%compute matrix of triangle-shaped filter coefficients
W = zeros(nofChannels,Nmax);
for c = 1:nofChannels
 %left ramp
 increment = 1.0/(indexcenter(c) - indexstart(c));
 for i = indexstart(c):indexcenter(c)
 W(c,i) = (i - indexstart(c))*increment;
 end %i
 %right ramp
 decrement = 1.0/(indexstop(c) - indexcenter(c));
 for i = indexcenter(c):indexstop(c)
 W(c,i) = 1.0 - ((i - indexcenter(c))*decrement);
 end %i
end %c

%normalize melfilter matrix
for j = 1:nofChannels

 112

 W(j,:) = W(j,:)/ sum(W(j,:)) ;
end

 113

Filename : freq2mel.m
This converts the from the hertz frequency scale to mel scale

URL: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function m = freq2mel (f)
% compute mel value from frequency f
% http://www.speech-recognition.de/matlab-examples.html

m = 2595 * log10(1 + f./700);

Filename : mel2freq.m
This converts from mel scale to hertz frequency scale.

URL: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function f = mel2freq (m)
% compute frequency from mel value
% http://www.speech-recognition.de/matlab-examples.html

f = 700*((10.^(m ./2595)) -1);

http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

 114

Filename : Peak.m
This function picks peaks by comparing the sample with its previous and next sample. If

the previous sample is less than or equal to the sample and the next sample is less then it is

recognized as a peak.

function [Peak] = peak(ip)
% Srivardhan C, Kansas State University, 2007
% this function returns indices of local maxima in vector
% ip has to be a vector and not a matrix

Peak = [];
for k = 2:length(ip)-1
 if(ip(k-1) <= ip(k) && ip(k+1) < ip(k))
 Peak = [Peak, k];
 end
end

 115

Filename : computeFormant.m
This compute the formants and mel energy along the given segment of signal. Formant

extraction is done using the linear predivtive coding.

function [Formant] = computeFormant(y, Fs, num, melMat, fCenters)
% Srivardhan C, Kansas State University, 2007
% Computes Formant frequencies, median valus for formant freq
% Inputs - 1. y = Voiced portion of Speech
% 2. Fs = Sampling Frequency
% 3. num = number of formants desiered
% 4. melMat = Mel Matrix for computing mel Spectrum

% Sampling window length
N = Fs*32/1000;

if length(y) < N
 N = length(y)-1;
end

% Hamming Window
ham = hamming(N+1);

Step = Fs * 5/1000;

% Number of poles of filter
M = 5 + Fs/1000;

% Number of windows in given sample
noWin = (length(y)-N);

Formant.freq = [];
Formant.Spec = [];
Formant.pitch = [];
for i = 1:Step:noWin
 try
% Pitch Extraction using AutoCorrelation
% http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect10.html
 CoeffP = xcorr(y(i:i+N),'coeff');
 pitchP = peak(CoeffP);
 Pitch = 8000/(pitchP(find(pitchP>257,1,'first'))-257);

http://www.phon.ucl.ac.uk/courses/spsci/matlab/lect10.html

 116

 Formant.pitch = [Formant.pitch, Pitch];

% Method described in 'FORMANT EXTRACTION USING DIFFERENCE SPECTRUM',
% S.P.Kishore et.al. ,
 Coeff1 = lpc(y(i:i+N).*ham, M);
 Coeff2 = lpc(y(i:i+N).*ham, M+1);

 [h1,f]=freqz(1,Coeff1,512,Fs);
 [h2,f]=freqz(1,Coeff2,512,Fs);

 Gain1 = 20*log10(abs(h1)+eps);
 Gain2 = 20*log10(abs(h2)+eps);
 GainDiff = Gain2-Gain1;
 P = peak(GainDiff);
 formant = zeros(M,1);
 formant(1:length(P),1) = P' .* (Fs/(2*length(GainDiff))); % Convert

from index to Hz
 Formant.freq = [Formant.freq , formant(1:num)]; % convert to Hz and

sort

 [Spec,Freq,Time] = spectrogram(y(i:i+N),N,N-Step,formant(1:num),Fs);
 Formant.Spec = [Formant.Spec, abs(Spec)];
 catch
 display('Error Computing Formant');
 end
end

% Compute mel Spectrum
MEL = computeMelSpectrum(melMat,Step,y);

%normalize energy of mel spectra
%take log value
epsilon = 10e-5;
for k = 1:size(MEL.M,2);
 for c = 1:size(MEL.M,1)
 %normalize energy
 MEL.M(c,k) = MEL.M(c,k)/MEL.e(k);
 %take log energy
 MEL.M(c,k) = loglimit(MEL.M(c,k),epsilon);
 end %for c
end %for k

 117

% Number of peaks in the segment
Formant.noPeaks = length(P);

% time of word segment
Formant.time = length(y)/Fs;

% Picking Mel band energies for formants
for i = 1:size(Formant.freq, 2)
 for j = 1:num
% Absolute Diff between Center frequency and Formant
 absDiff = abs(fCenters - Formant.freq(j,i));
% Index of min difference
 MelInd = find (absDiff == min(absDiff));
% Energy from mel band for formant freq
 Formant.MEL.M(j,i) = MEL.M(MelInd, i);
 end
end

Formant.diffFreq = [Formant.freq(:,2:end) - Formant.freq(:,1:end-1)

zeros(num,1)];
Formant.diffMel = [Formant.MEL.M(:,2:end) - Formant.MEL.M(:,1:end-1)

zeros(num,1)];

% Dividing a word into 5 parts
s = floor((size(Formant.freq,2))/5);
Formant.features = [];
for l = 1:s:(size(Formant.freq,2)-s)
 A = [mean(Formant.freq(:,l:l+s),2); ...
 median(Formant.freq(:,l:l+s),2); ...
 mean(Formant.MEL.M(:,l:l+s),2); ...
 median(Formant.MEL.M(:,l:l+s),2); ...
 mean(Formant.diffFreq(:,l:l+s),2); ...
 median(Formant.diffFreq(:,l:l+s),2); ...
 mean(Formant.diffMel(:,l:l+s),2); ...
 median(Formant.diffMel(:,l:l+s),2)];
 Formant.features = [Formant.features; A];
end
Formant.features = [Formant.features; Formant.time; Formant.noPeaks];

 118

Filename : loglimit.m
It computes the log if the signal is above a threshold, or else returns the log of the lower

limit.

URL: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function y = loglimit(x,limit)
% return log(x) or log(limit) if x < limit
% http://www.speech-recognition.de/matlab-examples.html

if (x < limit)
 y = log(limit);
else
 y = log(x);
end;

http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

 119

Filename : computeMelSpectrum.m
This computes the mel spectrum by multiplying the spectrum obtained using

computeSpectrum.m with the mel frequency filter matrix obtained from melFilterMatrix.m.

URL: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function MEL = computeMelSpectrum (W,winShift,s)
% --
% computeMelSpectrum (W,winShift,s)
% compute mel spectrum from time signal
%
% Returns mel spectral coefficients in
% matrix MEL.M(coefficientIndex,frameIndex).
% No energy normalization is performed.
% Signal energy
% is copied from SPEC.e
% ('computeSpectrum') to vector MEL.e(frameIndex).
%
% parameters:
% W: matrix(channelIndex,FFTIndex) of mel filter coefficients
% winShift: window shift [number of samples]
% s: vector of time samples
%
% last update 18.1.04
% http://www.speech-recognition.de/matlab-examples.html
% --

% compute local variables
[nofChannels,maxFFTIdx] = size(W);
fftLength = maxFFTIdx * 2;

% compute matrix X(fftIndex,timeFrameIndex) short term spectra
SPEC = computeSpectrum(fftLength,winShift,s);

% apply mel filter to spectra

MEL.M = W * SPEC.X;

%copy energy vector
MEL.e = SPEC.e;

http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

 120

Filename : setVideo.m
Controls the video setting toolbox, and all its functions.

function varargout = setVideo(varargin)
% SETVIDEO M-file for setVideo.fig
% SETVIDEO, by itself, creates a new SETVIDEO or raises the existing
% singleton*.
%
% H = SETVIDEO returns the handle to a new SETVIDEO or the handle to
% the existing singleton*.
%
% SETVIDEO('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SETVIDEO.M with the given input arguments.
%
% SETVIDEO('Property','Value',...) creates a new SETVIDEO or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before setVideo_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to setVideo_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help setVideo

% Last Modified by GUIDE v2.5 23-Jan-2008 17:49:30

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @setVideo_OpeningFcn, ...
 'gui_OutputFcn', @setVideo_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

 121

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before setVideo is made visible.
function setVideo_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to setVideo (see VARARGIN)

% Choose default command line output for setVideo
handles.output = hObject;

handles.neutral = 1;
handles.frameNo = 1;
handles.lastFrame = varargin{1}.nrFramesTotal;
for i = 1 :handles.lastFrame
 handles.frames{i} = rgb2gray(varargin{1}.frames(i).cdata);
 handles.originalFrames{i} = rgb2gray(varargin{1}.frames(i).cdata);
end
handles.time = varargin{1}.times;
handles.neutralImage = handles.frames{handles.neutral};

% updating thresholds
handles.thresh.background = get(handles.sBackground, 'Value');
handles.thresh.lighting = get(handles.sLighting, 'Value');
handles.thresh.eye = get(handles.sThreshEye, 'Value');
handles.thresh.eyebrow = get(handles.sThreshEyebrow, 'Value');
handles.thresh.lips = get(handles.sThreshLips, 'Value');
handles.thresh.lipcorner = get(handles.sThreshLipcorner, 'Value');
handles.thresh.nose = get(handles.sThreshNose, 'Value');
handles.thresh.nosetril = get(handles.sThreshNosetril, 'Value');
handles.thresh.eyeOut = get(handles.sThreshEyeOut, 'Value');
handles.thresh.eyeIn = get(handles.sThreshEyeIn, 'Value');
handles.thresh.ebCorner = get(handles.sThreshEBcorner, 'Value');

 122

handles.pointsManual = 1;
handles.manualFace = 1;

% Update handles structure
guidata(hObject, handles);

% Setting Frame Panel
set(handles.sFrame, 'Max', handles.lastFrame);
set(handles.sFrame, 'Value', 1);
set(handles.sFrame, 'SliderStep', [0.99/handles.lastFrame, ...
 9.9/handles.lastFrame]);
set(handles.eframeNo, 'String', num2str(handles.frameNo));
set(handles.etime, 'String', num2str(handles.time(handles.frameNo)));
% Setting Crop Panel
resetCrop(handles)
% Showing the image
showFace(handles)
% Setting Height and Width values.
set(handles.eWidth, 'String',

num2str(size(handles.frames{handles.frameNo},2)));
set(handles.eHeight, 'String',

num2str(size(handles.frames{handles.frameNo},1)));
% Setting points selection to manual
rPointsManual_Callback(handles.rPointsManual, [], handles);
% Setting Face region selection to manual
rFaceManual_Callback(handles.rFaceManual, [], handles);
% Setting Rotate Panel
rotate0_Callback(handles.rotate0, [], handles);

% UIWAIT makes setVideo wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = setVideo_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

 123

varargout{1} = handles.output;

op.thresh = handles.thresh;
op.featurePoints = [];
op.neutral = handles.neutral;
op.neutralImage = handles.neutralImage;
assignin('base', 'videoSet', op);

% --- Executes on slider movement.
function sFrame_Callback(hObject, eventdata, handles)
% hObject handle to sFrame (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
handles.frameNo = ceil(get(hObject,'Value'));
set(handles.eframeNo, 'String', num2str(handles.frameNo));
set(handles.etime, 'String', num2str(handles.time(handles.frameNo)));
% Showing the image
showFace(handles)
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sFrame_CreateFcn(hObject, eventdata, handles)
% hObject handle to sFrame (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on button press in testFrameButton.
function testFrameButton_Callback(hObject, eventdata, handles)
% hObject handle to testFrameButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.face);

 124

handles.manualFace
if handles.manualFace
 imshow(handles.frames{handles.frameNo});
 tl = round(ginput(1));
 tr = round(ginput(1));
 bl = round(ginput(1));
 Rmin = tl(2);
 Rmax = bl(2);
 Cmin = tl(1);
 Cmax = tr(1);
 handles.faceCoord = [Rmin, Rmax, Cmin, Cmax];

else
 J = getFaceRegion(handles.frames{handles.frameNo},

handles.thresh.lighting, handles.thresh.background);
 L = bwlabel(J);
 stats=regionprops(L,'BoundingBox');
 k=[stats.BoundingBox];
 stats=regionprops(L,'Area');
 a = [stats.Area];
 display(a);
 %Separating was unsuccesfull if no region was found or if area of found
 %region is less than 1000 pixels
 if (isempty(a) || a < 1000)
 display('Unable to locate face region.');
 imshow(J);
 else
 Rmin=round(k(2));
 Rmax=round(k(2)+k(4));
 Cmin=round(k(1));
 Cmax=round(k(1)+k(3));
 handles.faceCoord = [Rmin, Rmax, Cmin, Cmax];
 end
end

%visualisation of the selected face region in the face Region subimage
ImagePoints = handles.frames{handles.frameNo};
ImagePoints(Rmin, Cmin:Cmax) = 256;
ImagePoints(Rmax, Cmin:Cmax) = 256;
ImagePoints(Rmin:Rmax, Cmin) = 256;
ImagePoints(Rmin:Rmax, Cmax) = 256;
imshow(ImagePoints);

 125

if(handles.pointsManual)
 % manual input to points
 imshow(ImagePoints);

 % right eye
 in = round(ginput(1));
 feature_points(1,1) = in(2);
 feature_points(1,2) = in(1);
 ImagePoints(feature_points(1,1) - 5 : feature_points(1,1) + 5 ,

feature_points(1,2)) = 256;
 ImagePoints(feature_points(1,1), feature_points(1,2) - 5 :

feature_points(1,2) + 5) = 256;
 imshow(ImagePoints);

 %right eye inner corner
 in = round(ginput(1));
 feature_points(2,1) = in(2);
 feature_points(2,2) = in(1);
 ImagePoints(feature_points(2,1) - 5 : feature_points(2,1) + 5 ,

feature_points(2,2)) = 256;
 ImagePoints(feature_points(2,1), feature_points(2,2) - 5 :

feature_points(2,2) + 5) = 256;
 imshow(ImagePoints);

 %right eye outer corner
 in = round(ginput(1));
 feature_points(3,1) = in(2);
 feature_points(3,2) = in(1);
 ImagePoints(feature_points(3,1) - 5 : feature_points(3,1) + 5 ,

feature_points(3,2)) = 256;
 ImagePoints(feature_points(3,1), feature_points(3,2) - 5 :

feature_points(3,2) + 5) = 256;
 imshow(ImagePoints);

 %right eyebrow
 in = round(ginput(1));
 feature_points(4,1) = in(2);
 feature_points(4,2) = in(1);
 ImagePoints(feature_points(4,1) - 5 : feature_points(4,1) + 5 ,

feature_points(4,2)) = 256;

 126

 ImagePoints(feature_points(4,1), feature_points(4,2) - 5 :
feature_points(4,2) + 5) = 256;

 imshow(ImagePoints);

 %right eyebrow corner
 in = round(ginput(1));
 feature_points(5,1) = in(2);
 feature_points(5,2) = in(1);
 ImagePoints(feature_points(5,1) - 5 : feature_points(5,1) + 5 ,

feature_points(5,2)) = 256;
 ImagePoints(feature_points(5,1), feature_points(5,2) - 5 :

feature_points(5,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye
 in = round(ginput(1));
 feature_points(6,1) = in(2);
 feature_points(6,2) = in(1);
 ImagePoints(feature_points(6,1) - 5 : feature_points(6,1) + 5 ,

feature_points(6,2)) = 256;
 ImagePoints(feature_points(6,1), feature_points(6,2) - 5 :

feature_points(6,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye inner corner
 in = round(ginput(1));
 feature_points(7,1) = in(2);
 feature_points(7,2) = in(1);
 ImagePoints(feature_points(7,1) - 5 : feature_points(7,1) + 5 ,

feature_points(7,2)) = 256;
 ImagePoints(feature_points(7,1), feature_points(7,2) - 5 :

feature_points(7,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye outer corner
 in = round(ginput(1));
 feature_points(8,1) = in(2);
 feature_points(8,2) = in(1);
 ImagePoints(feature_points(8,1) - 5 : feature_points(8,1) + 5 ,

feature_points(8,2)) = 256;
 ImagePoints(feature_points(8,1), feature_points(8,2) - 5 :

feature_points(8,2) + 5) = 256;

 127

 imshow(ImagePoints);

 %left eyebrow
 in = round(ginput(1));
 feature_points(9,1) = in(2);
 feature_points(9,2) = in(1);
 ImagePoints(feature_points(9,1) - 5 : feature_points(9,1) + 5 ,

feature_points(9,2)) = 256;
 ImagePoints(feature_points(9,1), feature_points(9,2) - 5 :

feature_points(9,2) + 5) = 256;
 imshow(ImagePoints);

 %left eyebrow corner
 in = round(ginput(1));
 feature_points(10,1) = in(2);
 feature_points(10,2) = in(1);
 ImagePoints(feature_points(10,1) - 5 : feature_points(10,1) + 5 ,

feature_points(10,2)) = 256;
 ImagePoints(feature_points(10,1), feature_points(10,2) - 5 :

feature_points(10,2) + 5) = 256;
 imshow(ImagePoints);

 %left mouth corner
 in = round(ginput(1));
 feature_points(11,1) = in(2);
 feature_points(11,2) = in(1);
 ImagePoints(feature_points(11,1) - 5 : feature_points(11,1) + 5 ,

feature_points(11,2)) = 256;
 ImagePoints(feature_points(11,1), feature_points(11,2) - 5 :

feature_points(11,2) + 5) = 256;
 imshow(ImagePoints);

 %rightmouth corner
 in = round(ginput(1));
 feature_points(12,1) = in(2);
 feature_points(12,2) = in(1);
 ImagePoints(feature_points(12,1) - 5 : feature_points(12,1) + 5 ,

feature_points(12,2)) = 256;
 ImagePoints(feature_points(12,1), feature_points(12,2) - 5 :

feature_points(12,2) + 5) = 256;
 imshow(ImagePoints);

 128

 %upper lip
 in = round(ginput(1));
 feature_points(13,1) = in(2);
 feature_points(13,2) = in(1);
 ImagePoints(feature_points(13,1) - 5 : feature_points(13,1) + 5 ,

feature_points(13,2)) = 256;
 ImagePoints(feature_points(13,1), feature_points(13,2) - 5 :

feature_points(13,2) + 5) = 256;
 imshow(ImagePoints);

 %lower lip
 in = round(ginput(1));
 feature_points(14,1) = in(2);
 feature_points(14,2) = in(1);
 ImagePoints(feature_points(14,1) - 5 : feature_points(14,1) + 5 ,

feature_points(14,2)) = 256;
 ImagePoints(feature_points(14,1), feature_points(14,2) - 5 :

feature_points(14,2) + 5) = 256;
 imshow(ImagePoints);

 % nose
 in = round(ginput(1));
 feature_points(15,1) = in(2);
 feature_points(15,2) = in(1);
 ImagePoints(feature_points(15,1) - 5 : feature_points(15,1) + 5 ,

feature_points(15,2)) = 256;
 ImagePoints(feature_points(15,1), feature_points(15,2) - 5 :

feature_points(15,2) + 5) = 256;
 imshow(ImagePoints);

 %nose corner left
 in = round(ginput(1));
 feature_points(16,1) = in(2);
 feature_points(16,2) = in(1);
 ImagePoints(feature_points(16,1) - 5 : feature_points(16,1) + 5 ,

feature_points(16,2)) = 256;
 ImagePoints(feature_points(16,1), feature_points(16,2) - 5 :

feature_points(16,2) + 5) = 256;
 imshow(ImagePoints);

 %nose corner right
 in = round(ginput(1));

 129

 feature_points(17,1) = in(2);
 feature_points(17,2) = in(1);
 ImagePoints(feature_points(17,1) - 5 : feature_points(17,1) + 5 ,

feature_points(17,2)) = 256;
 ImagePoints(feature_points(17,1), feature_points(17,2) - 5 :

feature_points(17,2) + 5) = 256;
 imshow(ImagePoints);

 %visualize the selected points on the image
 ImagePoints = handles.frames{handles.frameNo};

 handles.points{handles.frameNo} = feature_points;

 if(handles.frameNo == handles.neutral)
 handles.neutralImage = ImagePoints;
 end
else
 [ImagePoints, handles.featurePoints{handles.frameNo}] =

testFrame(handles.frames{handles.frameNo}, handles.faceCoord, handles.thresh);

 if(handles.frameNo == handles.neutral)
 handles.neutralImage = ImagePoints;
 end
% handles.frames{handles.frameNo} = ImagePoints;
end
axes(handles.face), imshow(ImagePoints), drawnow;
set(handles.testVideoButton, 'Enable', 'on');
guidata(hObject,handles);

% --- Executes on button press in setNeutralButton.
function setNeutralButton_Callback(hObject, eventdata, handles)
% hObject handle to setNeutralButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.neutral = ceil(get(handles.sFrame, 'Value'));
guidata(hObject, handles);

function eframeNo_Callback(hObject, eventdata, handles)
% hObject handle to eframeNo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 130

% Hints: get(hObject,'String') returns contents of eframeNo as text
% str2double(get(hObject,'String')) returns contents of eframeNo as a

double
handles.frameNo = ceil(str2double(get(hObject,'String')));
if (handles.frameNo < 1)
 handles.frameNo = 1;
 set(handles.eframeNo, 'String', num2str(handles.frameNo));
elseif (handles.frameNo > handles.lastFrame)
 handles.frameNo = handles.lastFrame;
 set(handles.eframeNo, 'String', num2str(handles.frameNo));
end
set(handles.sFrame, 'Value', handles.frameNo);
set(handles.etime, 'String', num2str(handles.time(handles.frameNo)));
% Showing the image
showFace(handles)
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function eframeNo_CreateFcn(hObject, eventdata, handles)
% hObject handle to eframeNo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function etime_Callback(hObject, eventdata, handles)
% hObject handle to etime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of etime as text
% str2double(get(hObject,'String')) returns contents of etime as a

double

 131

% --- Executes during object creation, after setting all properties.
function etime_CreateFcn(hObject, eventdata, handles)
% hObject handle to etime (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in cCrop.
function cCrop_Callback(hObject, eventdata, handles)
% hObject handle to cCrop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of cCrop
if get(hObject,'Value')
 set(handles.eCropX, 'Enable', 'on');
 set(handles.eCropY, 'Enable', 'on');
 set(handles.eCropW, 'Enable', 'on');
 set(handles.cropButton, 'Enable', 'on');
else
 set(handles.eCropX, 'Enable', 'off');
 set(handles.eCropY, 'Enable', 'off');
 set(handles.eCropW, 'Enable', 'off');
 set(handles.cropButton, 'Enable', 'off');
end

function eCropX_Callback(hObject, eventdata, handles)
% hObject handle to eCropX (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eCropX as text

 132

% str2double(get(hObject,'String')) returns contents of eCropX as a
double

if(str2double(get(hObject,'String')) < 1)
 set(hObject, 'String', num2str(1));
elseif

(str2double(get(hObject,'String'))+str2double(get(handles.eCropW,'String')) >
str2double(get(handles.eWidth,'String')))

 set(hObject, 'String', num2str(str2double(get(handles.eWidth,'String')) -
str2double(get(handles.eCropW,'String'))));

end
showFace(handles);

% --- Executes during object creation, after setting all properties.
function eCropX_CreateFcn(hObject, eventdata, handles)
% hObject handle to eCropX (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eCropY_Callback(hObject, eventdata, handles)
% hObject handle to eCropY (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eCropY as text
% str2double(get(hObject,'String')) returns contents of eCropY as a

double
if(str2double(get(hObject,'String')) < 1)
 set(hObject, 'String', num2str(1));
elseif

(str2double(get(hObject,'String'))+str2double(get(handles.eCropW,'String')) >
str2double(get(handles.eHeight,'String')))

 set(hObject, 'String', num2str(str2double(get(handles.eHeight,'String')) -
str2double(get(handles.eCropW,'String'))));

 133

end
showFace(handles);

% --- Executes during object creation, after setting all properties.
function eCropY_CreateFcn(hObject, eventdata, handles)
% hObject handle to eCropY (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eCropW_Callback(hObject, eventdata, handles)
% hObject handle to eCropW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eCropW as text
% str2double(get(hObject,'String')) returns contents of eCropW as a

double
if(str2double(get(hObject,'String')) >=

(str2double(get(handles.eHeight,'String'))- str2double(get(handles.eCropY,'String')))
|| str2double(get(hObject,'String')) >= (str2double(get(handles.eWidth,'String'))-
str2double(get(handles.eCropX,'String'))))

 set(hObject,'String',
num2str(min((str2double(get(handles.eHeight,'String'))-
str2double(get(handles.eCropY,'String'))), (str2double(get(handles.eWidth,'String'))-
str2double(get(handles.eCropX,'String'))))));

end
showFace(handles);

% --- Executes during object creation, after setting all properties.
function eCropW_CreateFcn(hObject, eventdata, handles)
% hObject handle to eCropW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

 134

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in cropButton.
function cropButton_Callback(hObject, eventdata, handles)
% hObject handle to cropButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
for i = 1:handles.lastFrame
 xCrop = str2double(get(handles.eCropX, 'String'));
 yCrop = str2double(get(handles.eCropY, 'String'));
 wCrop = str2double(get(handles.eCropW, 'String'));
 oHeight = str2double(get(handles.eHeight, 'String'));
 handles.frames{i} = handles.frames{i}((oHeight+1-yCrop-wCrop):(oHeight-

yCrop), xCrop:(xCrop+wCrop));
end
resetCrop(handles);
showFace(handles);
guidata(hObject, handles);

% --- Executes on button press in rotate0.
function rotate0_Callback(hObject, eventdata, handles)
% hObject handle to rotate0 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rotate0
if get(hObject,'Value')
 handles.frames = handles.originalFrames;
end
resetCrop(handles);
showFace(handles);
guidata(hObject, handles);

% --- Executes on button press in rotate90.
function rotate90_Callback(hObject, eventdata, handles)
% hObject handle to rotate90 (see GCBO)

 135

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rotate90
if get(hObject,'Value')
 for i = 1:handles.lastFrame
 handles.frames{i} = imrotate(handles.originalFrames{i}, 90);
 end
end
resetCrop(handles);
showFace(handles)
guidata(hObject, handles);

% --- Executes on button press in rotate180.
function rotate180_Callback(hObject, eventdata, handles)
% hObject handle to rotate180 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rotate180
if get(hObject,'Value')
 for i = 1:handles.lastFrame
 handles.frames{i} = imrotate(handles.originalFrames{i}, 180);
 end
end
resetCrop(handles);
showFace(handles);
guidata(hObject, handles);

% --- Executes on button press in rotate270.
function rotate270_Callback(hObject, eventdata, handles)
% hObject handle to rotate270 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rotate270
if get(hObject,'Value')
 for i = 1:handles.lastFrame
 handles.frames{i} = imrotate(handles.originalFrames{i}, 270);
 end
end
resetCrop(handles);

 136

showFace(handles);
guidata(hObject, handles);

function eWidth_Callback(hObject, eventdata, handles)
% hObject handle to eWidth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eWidth as text
% str2double(get(hObject,'String')) returns contents of eWidth as a

double

% --- Executes during object creation, after setting all properties.
function eWidth_CreateFcn(hObject, eventdata, handles)
% hObject handle to eWidth (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eHeight_Callback(hObject, eventdata, handles)
% hObject handle to eHeight (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eHeight as text
% str2double(get(hObject,'String')) returns contents of eHeight as a

double

% --- Executes during object creation, after setting all properties.
function eHeight_CreateFcn(hObject, eventdata, handles)

 137

% hObject handle to eHeight (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in resizeButton.
function resizeButton_Callback(hObject, eventdata, handles)
% hObject handle to resizeButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
dlg = 0;
if (str2double(get(handles.eHeight, 'String')) ~=

str2double(get(handles.eWidth, 'String')))
 dlg = questdlg('Are you sure you want to RESIZE? Height and Width are not

equal. Image might get distorted', 'Size Mismatch', 'Yes', 'No', 'No');
end

if strcmp(dlg,'Yes')
 for i = 1:handles.lastFrame
 handles.frames{i} = imresize(handles.frames{i}, [256,256]);
 end
 resetCrop(handles);
 set(handles.testFrameButton, 'Enable', 'on');
end
guidata(hObject, handles);
showFace(handles);

% --- Executes on button press in rFaceManual.
function rFaceManual_Callback(hObject, eventdata, handles)
% hObject handle to rFaceManual (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 138

% Hint: get(hObject,'Value') returns toggle state of rFaceManual
handles.manualFace = 1;
guidata(hObject, handles);
set(handles.sBackground, 'Enable', 'off');
set(handles.sLighting, 'Enable', 'off');

% --- Executes on button press in rFaceAuto.
function rFaceAuto_Callback(hObject, eventdata, handles)
% hObject handle to rFaceAuto (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rFaceAuto
handles.manualFace = 0;
set(handles.sBackground, 'Enable', 'on');
set(handles.sLighting, 'Enable', 'on');
guidata(hObject, handles);

% --- Executes on button press in rPointsManual.
function rPointsManual_Callback(hObject, eventdata, handles)
% hObject handle to rPointsManual (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rPointsManual
% Turning off threshold setting
set(handles.sThreshEye, 'Enable', 'off');
set(handles.eThreshEye, 'Enable', 'off');
set(handles.sThreshEyebrow, 'Enable', 'off');
set(handles.eThreshEyebrow, 'Enable', 'off');
set(handles.sThreshLips, 'Enable', 'off');
set(handles.eThreshLips, 'Enable', 'off');
set(handles.sThreshLipcorner, 'Enable', 'off');
set(handles.eThreshLipcorner, 'Enable', 'off');
set(handles.sThreshNose, 'Enable', 'off');
set(handles.eThreshNose, 'Enable', 'off');
set(handles.sThreshNosetril, 'Enable', 'off');
set(handles.eThreshNosetril, 'Enable', 'off');
set(handles.sThreshEyeOut, 'Enable', 'off');
set(handles.eThreshEyeOut, 'Enable', 'off');

 139

set(handles.sThreshEyeIn, 'Enable', 'off');
set(handles.eThreshEyeIn, 'Enable', 'off');
set(handles.sThreshEBcorner, 'Enable', 'off');
set(handles.eThreshEBcorner, 'Enable', 'off');

handles.pointsManual = 1;
guidata(hObject, handles);

% --- Executes on button press in rPointsAuto.
function rPointsAuto_Callback(hObject, eventdata, handles)
% hObject handle to rPointsAuto (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of rPointsAuto
set(handles.sThreshEye, 'Enable', 'on');
set(handles.eThreshEye, 'Enable', 'inactive');
set(handles.sThreshEyebrow, 'Enable', 'on');
set(handles.eThreshEyebrow, 'Enable', 'inactive');
set(handles.sThreshLips, 'Enable', 'on');
set(handles.eThreshLips, 'Enable', 'inactive');
set(handles.sThreshLipcorner, 'Enable', 'on');
set(handles.eThreshLipcorner, 'Enable', 'inactive');
set(handles.sThreshNose, 'Enable', 'on');
set(handles.eThreshNose, 'Enable', 'inactive');
set(handles.sThreshNosetril, 'Enable', 'on');
set(handles.eThreshNosetril, 'Enable', 'inactive');
set(handles.sThreshEyeOut, 'Enable', 'on');
set(handles.eThreshEyeOut, 'Enable', 'inactive');
set(handles.sThreshEyeIn, 'Enable', 'on');
set(handles.eThreshEyeIn, 'Enable', 'inactive');
set(handles.sThreshEBcorner, 'Enable', 'on');
set(handles.eThreshEBcorner, 'Enable', 'inactive');

handles.pointsManual = 0;
guidata(hObject, handles);

function showFace(handles)
% Cropiing Image
if get(handles.cCrop, 'Value')

 140

 xCrop = str2double(get(handles.eCropX, 'String'));
 yCrop = str2double(get(handles.eCropY, 'String'));
 wCrop = str2double(get(handles.eCropW, 'String'));
 oHeight = str2double(get(handles.eHeight, 'String'));
 handles.frames{handles.frameNo}((oHeight+1-yCrop-wCrop):(oHeight-yCrop),

xCrop:(xCrop+wCrop)) = ...
 handles.frames{handles.frameNo}((oHeight+1-yCrop-wCrop):(oHeight-

yCrop), xCrop:(xCrop+wCrop))/2;
end
% Showing the image
axes(handles.face);
imshow(handles.frames{handles.frameNo});
% Setting Height and Width values.
set(handles.eWidth, 'String',

num2str(size(handles.frames{handles.frameNo},2)));
set(handles.eHeight, 'String',

num2str(size(handles.frames{handles.frameNo},1)));

function resetCrop(handles)
set(handles.testFrameButton, 'Enable', 'off');
set(handles.testVideoButton, 'Enable', 'off');
% Setting Crop Panel
set(handles.eCropX, 'String', num2str(1));
set(handles.eCropY, 'String', num2str(1));
set(handles.eCropW, 'String', num2str(0));
set(handles.cCrop, 'Value', 0);
cCrop_Callback(handles.cCrop, [], handles);

% --- Executes on button press in testVideoButton.
function testVideoButton_Callback(hObject, eventdata, handles)
% hObject handle to testVideoButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
offset.EBL = handles.points{handles.frameNo}(6,2) -

handles.points{handles.frameNo}(9,2);
offset.EBR = handles.points{handles.frameNo}(1,2) -

handles.points{handles.frameNo}(4,2);
axes(handles.face);
if handles.pointsManual
 for i = 1:handles.lastFrame
 %visualize the selected points on the image

 141

 ImagePoints = handles.frames{i};

 imshow(ImagePoints);
 % right eye
 in = round(ginput(1));
 feature_points(1,1) = in(2);
 feature_points(1,2) = in(1);
 ImagePoints(feature_points(1,1) - 5 : feature_points(1,1) + 5 ,

feature_points(1,2)) = 256;
 ImagePoints(feature_points(1,1), feature_points(1,2) - 5 :

feature_points(1,2) + 5) = 256;
 imshow(ImagePoints);

 %right eye inner corner
 in = round(ginput(1));
 feature_points(2,1) = in(2);
 feature_points(2,2) = in(1);
 ImagePoints(feature_points(2,1) - 5 : feature_points(2,1) + 5 ,

feature_points(2,2)) = 256;
 ImagePoints(feature_points(2,1), feature_points(2,2) - 5 :

feature_points(2,2) + 5) = 256;
 imshow(ImagePoints);

 %right eye outer corner
 in = round(ginput(1));
 feature_points(3,1) = in(2);
 feature_points(3,2) = in(1);
 ImagePoints(feature_points(3,1) - 5 : feature_points(3,1) + 5 ,

feature_points(3,2)) = 256;
 ImagePoints(feature_points(3,1), feature_points(3,2) - 5 :

feature_points(3,2) + 5) = 256;
 imshow(ImagePoints);

 %right eyebrow
 in = round(ginput(1));
 feature_points(4,1) = in(2);
 feature_points(4,2) = in(1);
 ImagePoints(feature_points(4,1) - 5 : feature_points(4,1) + 5 ,

feature_points(4,2)) = 256;
 ImagePoints(feature_points(4,1), feature_points(4,2) - 5 :

feature_points(4,2) + 5) = 256;
 imshow(ImagePoints);

 142

 %right eyebrow corner
 in = round(ginput(1));
 feature_points(5,1) = in(2);
 feature_points(5,2) = in(1);
 ImagePoints(feature_points(5,1) - 5 : feature_points(5,1) + 5 ,

feature_points(5,2)) = 256;
 ImagePoints(feature_points(5,1), feature_points(5,2) - 5 :

feature_points(5,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye
 in = round(ginput(1));
 feature_points(6,1) = in(2);
 feature_points(6,2) = in(1);
 ImagePoints(feature_points(6,1) - 5 : feature_points(6,1) + 5 ,

feature_points(6,2)) = 256;
 ImagePoints(feature_points(6,1), feature_points(6,2) - 5 :

feature_points(6,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye inner corner
 in = round(ginput(1));
 feature_points(7,1) = in(2);
 feature_points(7,2) = in(1);
 ImagePoints(feature_points(7,1) - 5 : feature_points(7,1) + 5 ,

feature_points(7,2)) = 256;
 ImagePoints(feature_points(7,1), feature_points(7,2) - 5 :

feature_points(7,2) + 5) = 256;
 imshow(ImagePoints);

 %left eye outer corner
 in = round(ginput(1));
 feature_points(8,1) = in(2);
 feature_points(8,2) = in(1);
 ImagePoints(feature_points(8,1) - 5 : feature_points(8,1) + 5 ,

feature_points(8,2)) = 256;
 ImagePoints(feature_points(8,1), feature_points(8,2) - 5 :

feature_points(8,2) + 5) = 256;
 imshow(ImagePoints);

 %left eyebrow

 143

 in = round(ginput(1));
 feature_points(9,1) = in(2);
 feature_points(9,2) = in(1);
 ImagePoints(feature_points(9,1) - 5 : feature_points(9,1) + 5 ,

feature_points(9,2)) = 256;
 ImagePoints(feature_points(9,1), feature_points(9,2) - 5 :

feature_points(9,2) + 5) = 256;
 imshow(ImagePoints);

 %left eyebrow corner
 in = round(ginput(1));
 feature_points(10,1) = in(2);
 feature_points(10,2) = in(1);
 ImagePoints(feature_points(10,1) - 5 : feature_points(10,1) + 5 ,

feature_points(10,2)) = 256;
 ImagePoints(feature_points(10,1), feature_points(10,2) - 5 :

feature_points(10,2) + 5) = 256;
 imshow(ImagePoints);

 %left mouth corner
 in = round(ginput(1));
 feature_points(11,1) = in(2);
 feature_points(11,2) = in(1);
 ImagePoints(feature_points(11,1) - 5 : feature_points(11,1) + 5 ,

feature_points(11,2)) = 256;
 ImagePoints(feature_points(11,1), feature_points(11,2) - 5 :

feature_points(11,2) + 5) = 256;
 imshow(ImagePoints);

 %rightmouth corner
 in = round(ginput(1));
 feature_points(12,1) = in(2);
 feature_points(12,2) = in(1);
 ImagePoints(feature_points(12,1) - 5 : feature_points(12,1) + 5 ,

feature_points(12,2)) = 256;
 ImagePoints(feature_points(12,1), feature_points(12,2) - 5 :

feature_points(12,2) + 5) = 256;
 imshow(ImagePoints);

 %upper lip
 in = round(ginput(1));
 feature_points(13,1) = in(2);

 144

 feature_points(13,2) = in(1);
 ImagePoints(feature_points(13,1) - 5 : feature_points(13,1) + 5 ,

feature_points(13,2)) = 256;
 ImagePoints(feature_points(13,1), feature_points(13,2) - 5 :

feature_points(13,2) + 5) = 256;
 imshow(ImagePoints);

 %lower lip
 in = round(ginput(1));
 feature_points(14,1) = in(2);
 feature_points(14,2) = in(1);
 ImagePoints(feature_points(14,1) - 5 : feature_points(14,1) + 5 ,

feature_points(14,2)) = 256;
 ImagePoints(feature_points(14,1), feature_points(14,2) - 5 :

feature_points(14,2) + 5) = 256;
 imshow(ImagePoints);

 % nose
 in = round(ginput(1));
 feature_points(15,1) = in(2);
 feature_points(15,2) = in(1);
 ImagePoints(feature_points(15,1) - 5 : feature_points(15,1) + 5 ,

feature_points(15,2)) = 256;
 ImagePoints(feature_points(15,1), feature_points(15,2) - 5 :

feature_points(15,2) + 5) = 256;
 imshow(ImagePoints);

 %nose corner left
 in = round(ginput(1));
 feature_points(16,1) = in(2);
 feature_points(16,2) = in(1);
 ImagePoints(feature_points(16,1) - 5 : feature_points(16,1) + 5 ,

feature_points(16,2)) = 256;
 ImagePoints(feature_points(16,1), feature_points(16,2) - 5 :

feature_points(16,2) + 5) = 256;
 imshow(ImagePoints);

 %nose corner right
 in = round(ginput(1));
 feature_points(17,1) = in(2);
 feature_points(17,2) = in(1);

 145

 ImagePoints(feature_points(17,1) - 5 : feature_points(17,1) + 5 ,
feature_points(17,2)) = 256;

 ImagePoints(feature_points(17,1), feature_points(17,2) - 5 :
feature_points(17,2) + 5) = 256;

 imshow(ImagePoints);

 handles.points{i} = feature_points;
 set(handles.sFrame, 'Value', i);

 if(i == handles.neutral)
 handles.neutralImage = ImagePoints;
 end
 end
else
 for i = handles.frameNo-1:-1:1
 set(handles.sFrame, 'Value', i);
 sFrame_Callback(handles.sFrame, [], handles);
 [ImagePoints test_op_reg handles.points{i}] = run2(handles.frames{i},

handles.faceCoord, handles.points(i+1), handles.thresh, offset);
 imshow(ImagePoints), drawnow;
 if(i == handles.neutral)
 handles.neutralImage = ImagePoints;
 end
 end
 for i = handles.frameNo+1:handles.lastFrame
 set(handles.sFrame, 'Value', i);
 sFrame_Callback(handles.sFrame, [], handles);
 [ImagePoints test_op_reg handles.points{i}] = run2(handles.frames{i},

handles.faceCoord, handles.points(i-1), handles.thresh, offset);
 imshow(ImagePoints), drawnow;
 if(i == handles.neutral)
 handles.neutralImage = ImagePoints;
 end
 end
end
guidata(hObject, handles);

% --- Executes on button press in saveSetButton.
function saveSetButton_Callback(hObject, eventdata, handles)
% hObject handle to saveSetButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 146

op.thresh = handles.thresh;
op.featurePoints = handles.points;
op.neutral = handles.neutral;
op.neutralImage = handles.neutralImage;
assignin('base', 'videoSet', op);
close(handles.figure1);

% --- Executes on slider movement.
function sBackground_Callback(hObject, eventdata, handles)
% hObject handle to sBackground (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
handles.thresh.background = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sBackground_CreateFcn(hObject, eventdata, handles)
% hObject handle to sBackground (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on slider movement.
function sLighting_Callback(hObject, eventdata, handles)
% hObject handle to sLighting (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
handles.thresh.lighting = get(hObject,'Value');
guidata(hObject, handles);

 147

% --- Executes during object creation, after setting all properties.
function sLighting_CreateFcn(hObject, eventdata, handles)
% hObject handle to sLighting (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on slider movement.
function sThreshEye_Callback(hObject, eventdata, handles)
% hObject handle to sThreshEye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshEye, 'String', num2str(get(hObject, 'Value')));
handles.thresh.eye = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshEye_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshEye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on slider movement.
function sThreshEyebrow_Callback(hObject, eventdata, handles)
% hObject handle to sThreshEyebrow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

 148

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshEyebrow, 'String', num2str(get(hObject, 'Value')));
handles.thresh.eyebrow = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshEyebrow_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshEyebrow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function eThreshEye_Callback(hObject, eventdata, handles)
% hObject handle to eThreshEye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshEye as text
% str2double(get(hObject,'String')) returns contents of eThreshEye as a

double

% --- Executes during object creation, after setting all properties.
function eThreshEye_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshEye (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 149

 set(hObject,'BackgroundColor','white');
end

function eThreshEyebrow_Callback(hObject, eventdata, handles)
% hObject handle to eThreshEyebrow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshEyebrow as text
% str2double(get(hObject,'String')) returns contents of eThreshEyebrow

as a double

% --- Executes during object creation, after setting all properties.
function eThreshEyebrow_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshEyebrow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function sThreshLipcorner_Callback(hObject, eventdata, handles)
% hObject handle to sThreshLipcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshLipcorner, 'String', num2str(get(hObject, 'Value')));
handles.thresh.lipcorner = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.

 150

function sThreshLipcorner_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshLipcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on slider movement.
function sThreshLips_Callback(hObject, eventdata, handles)
% hObject handle to sThreshLips (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshLips, 'String', num2str(get(hObject, 'Value')));
handles.thresh.lips = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshLips_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshLips (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function eThreshLips_Callback(hObject, eventdata, handles)
% hObject handle to eThreshLips (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 151

% Hints: get(hObject,'String') returns contents of eThreshLips as text
% str2double(get(hObject,'String')) returns contents of eThreshLips as a

double

% --- Executes during object creation, after setting all properties.
function eThreshLips_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshLips (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eThreshLipcorner_Callback(hObject, eventdata, handles)
% hObject handle to eThreshLipcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshLipcorner as text
% str2double(get(hObject,'String')) returns contents of eThreshLipcorner

as a double

% --- Executes during object creation, after setting all properties.
function eThreshLipcorner_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshLipcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');

 152

end

% --- Executes on slider movement.
function sThreshNose_Callback(hObject, eventdata, handles)
% hObject handle to sThreshNose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshNose, 'String', num2str(get(hObject, 'Value')));
handles.thresh.nose = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshNose_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshNose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --- Executes on slider movement.
function sThreshNosetril_Callback(hObject, eventdata, handles)
% hObject handle to sThreshNosetril (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshNosetril, 'String', num2str(get(hObject, 'Value')));
handles.thresh.nosetril = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshNosetril_CreateFcn(hObject, eventdata, handles)

 153

% hObject handle to sThreshNosetril (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function eThreshNosetril_Callback(hObject, eventdata, handles)
% hObject handle to eThreshNosetril (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshNosetril as text
% str2double(get(hObject,'String')) returns contents of eThreshNosetril

as a double

% --- Executes during object creation, after setting all properties.
function eThreshNosetril_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshNosetril (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function eThreshNose_Callback(hObject, eventdata, handles)
% hObject handle to eThreshNose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 154

% Hints: get(hObject,'String') returns contents of eThreshNose as text
% str2double(get(hObject,'String')) returns contents of eThreshNose as a

double

% --- Executes during object creation, after setting all properties.
function eThreshNose_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshNose (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function sThreshEyeIn_Callback(hObject, eventdata, handles)
% hObject handle to sThreshEyeIn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshEyeIn, 'String', num2str(get(hObject, 'Value')));
handles.thresh.eyeIn = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshEyeIn_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshEyeIn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

 155

function eThreshEyeIn_Callback(hObject, eventdata, handles)
% hObject handle to eThreshEyeIn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshEyeIn as text
% str2double(get(hObject,'String')) returns contents of eThreshEyeIn as

a double

% --- Executes during object creation, after setting all properties.
function eThreshEyeIn_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshEyeIn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function sThreshEyeOut_Callback(hObject, eventdata, handles)
% hObject handle to sThreshEyeOut (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshEyeOut, 'String', num2str(get(hObject, 'Value')));
handles.thresh.eyeOut = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshEyeOut_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshEyeOut (see GCBO)

 156

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function eThreshEyeOut_Callback(hObject, eventdata, handles)
% hObject handle to eThreshEyeOut (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshEyeOut as text
% str2double(get(hObject,'String')) returns contents of eThreshEyeOut as

a double

% --- Executes during object creation, after setting all properties.
function eThreshEyeOut_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshEyeOut (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on slider movement.
function sThreshEBcorner_Callback(hObject, eventdata, handles)
% hObject handle to sThreshEBcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

 157

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
set(handles.eThreshEBcorner, 'String', num2str(get(hObject, 'Value')));
handles.thresh.ebCorner = get(hObject,'Value');
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sThreshEBcorner_CreateFcn(hObject, eventdata, handles)
% hObject handle to sThreshEBcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function eThreshEBcorner_Callback(hObject, eventdata, handles)
% hObject handle to eThreshEBcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of eThreshEBcorner as text
% str2double(get(hObject,'String')) returns contents of eThreshEBcorner

as a double

% --- Executes during object creation, after setting all properties.
function eThreshEBcorner_CreateFcn(hObject, eventdata, handles)
% hObject handle to eThreshEBcorner (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

 158

Filename : getFaceRegion.m
Extracts the face region using the seeded region growing algorithm.

function Im = getFaceRegion(I, thresh_light, thresh_bg)

%Making image blured with gabor filter.
[G,I1] = gaborfilter1(I,4,4,0,pi/4);
BW=edge(I1,'canny');
I=double(imadjust(I,stretchlim(I),[]));
% using canny edge detector to find edges
I=I-BW*255;
Bg = zeros(size(I));

% choosing 4 seed pixels background separation by seed region growing
% algorithm
g1=[20 20];
g2=[20 240];
g3=[150 20];
g4=[150 240];
splBack = [g1(1) g1(2); g2(1) g2(2); g3(1) g3(2); g4(1) g4(2)];
fcheckBack = @checkBackground;
display('Separating the background');
while splBack ~=zeros(size(splBack))
 [Bg,splBack]=feval(fcheckBack,splBack,I,Bg, thresh_light ,thresh_bg);
end

% substituing background with black color in the origanal image
 for xcord = 1:256
 for ycord = 1:256
 I(xcord, ycord) = I(xcord, ycord) * ~Bg(xcord, ycord);
 end
 end
Im = zeros(size(I));

%choosing 3 seed pixels
g1=[128 128];
g3=[160 128];
g4=[96 160];
g5=[96 128];
g6=[96 96];

 159

% arbtarily choosen co-ordinate on the forehead
spl = [g1; g3; g4; g5; g6];
% refining coordinates
spl = feval(@seedPixel, spl, I, 150);
% finished choosing seed pixels.

fcheck=@check3;% function handle
threshold = thresh_light*30;
First = zeros(size(I));
wrong = 0;
wrongFirst = 0;
spl = [g1(1) g1(2); g2(1) g2(2); g3(1) g3(2)]; % co-ordinate on the fore head
while spl ~=zeros(size(spl))
 [Im,spl,wrong] = feval(fcheck,spl,I,Im,threshold);
 if (wrong == 1)
 wrongFirst = 1;
 end
end

if wrongFirst == 1
 wrong = 0;
 First = Im;
 Im = zeros(size(I));
 spl = [g1(1) g1(2); g2(1) g2(2); g3(1) g3(2)]; % co-ordinate on the fore

head
 while spl ~=zeros(size(spl))
 [Im,spl,wrong] = feval(fcheck,spl,I,Im,threshold);
 if wrong == 1
 display('Lowering threshold...');
 Im = zeros(size(I));
 spl = [g1(1) g1(2); g2(1) g2(2); g3(1) g3(2)]; % co-ordinate on the

fore head
 threshold = threshold - 1;
 end
 end
 for xcord = 210:255
 for ycord = 1:255
 if Im(xcord, ycord) == 0 && First(xcord, ycord) == 1
 First(xcord, ycord) = 0;
 end
 end
 end

 160

else
 First = Im;
end
imshow(First,[]);
Im = First;

 161

Filename : checkBackground.m
Separates the background using seeded region growing algorithm.

function [J,newspl] = checkBackground(spl,I,J, thresh_light, thresh_bg)

newspl=[];
thresh_neighbor = thresh_light * 80;
thresh_diff = thresh_bg;
for i=1:size(spl,1)
 current_posn=spl(i,:);
 N=neighbor(current_posn);
 % if all neighborhood pixels follow the condition put it in the spl
 for j=1:8
 if N(j,1) < 256 && (N(j,1) > 0) && N(j,2) < 256 && N(j,2) > 0
 if (abs(I(N(j,1),N(j,2))-I(spl(i,1),spl(i,2)))<=thresh_diff) ...
 && J(N(j,1),N(j,2))==0 && I(N(j,1),N(j,2)) > thresh_neighbor
 newspl(size(newspl,1)+1,:)=N(j,:); % add to the spl
 J(N(j,1),N(j,2))=1;
 end
 end
 end
end

function N=neighbor(S)

r=S(1,1);
c=S(1,2);
N=[r-1 c-1;r-1 c;r-1 c+1;r c-1;r c+1;r+1 c-1;r+1 c;r+1 c+1];

 162

Filename : seedPixel.m
Initializes the seed pixels for the seeded region growing algorithm.

function spl = seedPixel(spl, Image, thresh)
% Method for choosing seed pixels.
%looking for pixels within a 10 pixel window around some arbitarily
%chossen pixels with good chances of being located in the forehead and
%intensity less than 150. A maximum of 20 iterations are done to pick the
%pixel or else the original pixel is picked. But this seel pixel would
%most probably eliminated in the first cycle because its neighbourhood
%seems to be dark upon random searching.

for i = 1:size(spl,1)
 bad = 0;
 while (Image(spl(i,1), spl(i,2)) >= thresh & bad < 20)
 spl(i,1) = spl(i,1) + round(10*rand(1));
 if spl(i,1) <= 0; spl(i,1) = spl(i,1)+10; end;
 if spl(i,1) >= 255; spl(i,1) = spl(i,1)-10; end;
 spl(i,2) = spl(i,2) + round(10*rand(1));
 if spl(i,2) <= 0; spl(i,2) = spl(i,2)+10; end;
 if spl(i,2) >= 255; spl(i,2) = spl(i,2)-10; end;
 bad = bad + 1;
 end
end

 163

Filename : check3.m
Compares the seed pixel with its neighbors to check if they can be included in the region.

function [J,newspl,wrong] = check3(spl,I,J,thresh)

newspl=[];
wrong = 0;
wrongLocal = 0;
for i=1:size(spl,1)
 current_posn=spl(i,:);
 N=neighbor(current_posn);

 % if all neighborhood pixels follow the condition put it in the spl
 for j=1:6
 if N(j,1) < 1 || N(j,1) > 250 || N(j,2) < 1 || N(j,2) > 250
 wrongLocal = 1;
 else
 if abs(I(N(j,1),N(j,2))-I(spl(i,1),spl(i,2))) <= thresh &&

J(N(j,1),N(j,2))==0 && I(N(j,1),N(j,2)) > 20

 newspl(size(newspl,1)+1,:)=N(j,:); % add to the spl
 J(N(j,1),N(j,2))=1;
 end
 end
 if (wrongLocal == 1)
 wrong = 1;
 wrongLocal = 0;
 end
 end
end

function N=neighbor(S)

r=S(1,1);
c=S(1,2);
N=[r-1 c-1;r-1 c;r-1 c+1;r c-1;r c+1;r+1 c];

 164

Filename : testFrame.m
This runs the feace separation and feature extraction algorithms upon the present frame.

function [Image_Points feature_points] = testFrame(Image, faceCoord, thresh)

load 'MouthTF.mat';

Image1 = Image;
Image2 = Image;
Image_Points = Image;

Rmin = faceCoord(1);
Rmax = faceCoord(2);
Cmin = faceCoord(3);
Cmax = faceCoord(4);

deltaRow = Rmax - Rmin;
deltaCol = Cmax - Cmin;

%Aproximate Left eye region
EyeLRmin = Rmin;
EyeLRmax = Rmin + round(deltaRow / 2);
EyeLCmin = Cmin;
EyeLCmax = Cmin + round(deltaCol / 2);

%Aproximate right eye region
EyeRRmin = Rmin;
EyeRRmax = Rmin + round(deltaRow / 2);
EyeRCmin = Cmin + round(deltaCol / 2);
EyeRCmax = Cmax;

%Aproximate left mouth half region
MouthLeftRmin = Rmin + round(deltaRow / 2);
MouthLeftRmax = Rmax;
MouthLeftCmin = Cmin;
MouthLeftCmax = Cmin + round(deltaCol / 2);

%Aproximate left mouth half region
MouthRightRmin = Rmin + round(deltaRow / 2);
MouthRightRmax = Rmax;

 165

MouthRightCmin = Cmin + round(deltaCol / 2);
MouthRightCmax = Cmax;

width = Cmax - Cmin;

dt = floor((Cmax - Cmin) / 4);

% check if the template can get out of the image while looking for the eye
if EyeRRmin < (dt / 2)
 EyeRRmin = round(dt / 2) + 1;
end
if EyeRCmax > (255 - (dt / 2))
 EyeRCmax = 255 - round(dt / 2) + 1;
end;

% Finding Right eye
 border = Cmax - round(deltaCol / 8);
 display('finding right eye cordinates......');
 right_eye = Pso2_eye(EyeRRmin,EyeRRmax,EyeRCmin,EyeRCmax,Image,width,1,

border, thresh.eye, thresh.lighting);

 Image_Points(right_eye(1), (right_eye(2) - 5): (right_eye(2) + 5)) = 256;
 Image_Points((right_eye(1) - 5): (right_eye(1) + 5), right_eye(2)) = 256;

 % call function to extract the coordinates of corners of the right eye
 display('finding right eye corners cordinates......');
 right_eye_corners = getRightEyeCorners(right_eye,Image2,dt, thresh.eyeIn);
 right_eye_in_corner = [right_eye_corners(1) right_eye_corners(2)];
 right_eye_out_corner = [right_eye_corners(3) right_eye_corners(4)];

% Visualising Right Eye
Image_Points(right_eye(1), (right_eye(2) - 5): (right_eye(2) + 5)) = 256;
Image_Points((right_eye(1) - 5): (right_eye(1) + 5), right_eye(2)) = 256;
Image_Points(right_eye_in_corner(1), (right_eye_in_corner(2) - 5):

(right_eye_in_corner(2) + 5))=256;
Image_Points((right_eye_in_corner(1) - 5): (right_eye_in_corner(1) + 5),

right_eye_in_corner(2))=256;
Image_Points(right_eye_out_corner(1), (right_eye_out_corner(2) - 5):

(right_eye_out_corner(2) + 5))=256;
Image_Points((right_eye_out_corner(1) - 5): (right_eye_out_corner(1) + 5),

right_eye_out_corner(2))=256;

 166

%extracting right eyebrow region coordinates
EyebrowRRmin = right_eye(1) - floor(1.5 * dt);
EyebrowRRmax = right_eye(1) - floor(0.45 * dt);
EyebrowRCmin = right_eye(2) - floor(dt/4);
EyebrowRCmax = right_eye(2) + floor(dt/2);

% check if the eyebrow template can get out of the image when searching
% for the eyebrow
if EyebrowRRmin < round(dt/2)
 EyebrowRRmin = round(dt/2) + 1;
end

% Finding Right eyebrow
 display('finding right eyebrow cordinates......');
 right_eyebrow =

Pso_eyebrow(EyebrowRRmin,EyebrowRRmax,EyebrowRCmin,EyebrowRCmax,Image,width);

 % call a function to extract the coordinates of the inner corner of the
 % right eyebrow
 display('finding right eyebrow inner corner cordinates......');
 right_eyebrow_corner = getRightEyebrowCorner(right_eyebrow,Image2,dt,

thresh.ebCorner);

% Visualizing Right Eyebrow
Image_Points(right_eyebrow(1), (right_eyebrow(2) - 5): (right_eyebrow(2) +

5))=256;
Image_Points((right_eyebrow(1) - 5): (right_eyebrow(1) + 5),

right_eyebrow(2))=256;
Image_Points(right_eyebrow_corner(1), (right_eyebrow_corner(2) - 5):

(right_eyebrow_corner(2) + 5))=256;
Image_Points((right_eyebrow_corner(1) - 5): (right_eyebrow_corner(1) + 5),

right_eyebrow_corner(2))=256;

% check if the template can get out of the image while looking for the eye
if EyeLRmin < (dt / 2)
 EyeLRmin = round(dt / 2) + 1;
end
if EyeLCmin > (dt / 2)
 EyeLCmin = round(dt / 2) + 1;
end;

 167

% Finding Left Eye
 border = Cmin + round(deltaCol / 8);
 display('finding left eye cordinates......');
 left_eye =

Pso2_eye(EyeLRmin,EyeLRmax,EyeLCmin,EyeLCmax,Image,width,0,border, thresh.eye,
thresh.lighting);

 % call function to extract the coordinates of corners of the left eye
 display('finding left eye corners cordinates......');
 left_eye_corners = getLeftEyeCorners(left_eye,Image2,dt,thresh.eyeIn);
 left_eye_in_corner = [left_eye_corners(1) left_eye_corners(2)];
 left_eye_out_corner = [left_eye_corners(3) left_eye_corners(4)];

% Visualizing Left Eye
Image_Points(left_eye(1), (left_eye(2) - 5): (left_eye(2) + 5))=256;
Image_Points((left_eye(1) - 5): (left_eye(1) + 5), left_eye(2))=256;
Image_Points(left_eye_in_corner(1), (left_eye_in_corner(2) - 5):

(left_eye_in_corner(2) + 5))=256;
Image_Points((left_eye_in_corner(1) - 5): (left_eye_in_corner(1) + 5),

left_eye_in_corner(2))=256;

Image_Points(left_eye_out_corner(1), (left_eye_out_corner(2) - 5):

(left_eye_out_corner(2) + 5))=256;
Image_Points((left_eye_out_corner(1) - 5): (left_eye_out_corner(1) + 5),

left_eye_out_corner(2))=256;

%extracting left eyebrow region coordinates
EyebrowLRmin = left_eye(1) - floor(1.5 * dt);
EyebrowLRmax = left_eye(1) - floor(0.45 * dt);
EyebrowLCmin = left_eye(2) - floor(dt/2);
EyebrowLCmax = left_eye(2) + floor(dt/4);

% check if the eyebrow template can get out of the image when searching
% for the eyebrow
if EyebrowLRmin < round(dt/2)
 EyebrowLRmin = round(dt/2) + 1;
end

% Finding Left Eyebrow
 display('finding left eyebrow cordinates......');

 168

 left_eyebrow =
Pso_eyebrow(EyebrowLRmin,EyebrowLRmax,EyebrowLCmin,EyebrowLCmax,Image,width);

 display('finding left eyebrow inner corner cordinates......');
 left_eyebrow_corner =

getLeftEyebrowCorner(left_eyebrow,Image2,dt,thresh.ebCorner);

% Vizualising Left Eyebrow
Image_Points(left_eyebrow_corner(1), (left_eyebrow_corner(2) - 5):

(left_eyebrow_corner(2) + 5))=256;
Image_Points((left_eyebrow_corner(1) - 5): (left_eyebrow_corner(1) + 5),

left_eyebrow_corner(2))=256;

Image_Points(left_eyebrow(1), (left_eyebrow(2) - 5): (left_eyebrow(2) +

5))=256;
Image_Points((left_eyebrow(1) - 5): (left_eyebrow(1) + 5),

left_eyebrow(2))=256;

% Finding left corner of mouth
 center = left_eye(2);

 % check if the template for mouth corner can get out of the image.

 if MouthLeftRmax > (255 - dt/2)
 MouthLeftRmax = round(255 - dt/2) + 1;
 end

 display('finding left mouth cordinates......');
 mouth_left =

Pso2_mouth_left(MouthLeftRmin,MouthLeftRmax,MouthLeftCmin,MouthLeftCmax,Image,center,
thresh.lips);

 mouth_corner_left = mouth_left(1:2);

% Finding Right Corner of Mouth
 center = right_eye(2);

 % check if the template for mouth corner can get out of the image.
 if MouthRightRmax > (255 - dt/2)
 MouthRightRmax = round(255 - dt/2) + 1;
 end

 169

 display('finding right mouth cordinates......');
 mouth_right =

Pso2_mouth_right(MouthRightRmin,MouthRightRmax,MouthRightCmin,MouthRightCmax,Image,cen
ter);

 mouth_corner_right = mouth_right(1:2);

% Checking if the mouth is located right
 vector = [(mouth_corner_right(1) - mouth_corner_left(1))

(mouth_corner_right(2) - mouth_corner_left(2))]';
 Y = sim(net,vector);
 if Y == [1;0]
 display('Mouth corners located successfully.');
 else
 display('Mouth corners were NOT located successfully.');
 display('Fixing it...');
 mvec = mouth_fix(mouth_left,mouth_right,net);
 mouth_corner_left = mvec(1:2);
 mouth_corner_right = mvec(3:4);
 end
% Visualizing mouth corners
 Image_Points(mouth_corner_left(1), (mouth_corner_left(2) - 5):

(mouth_corner_left(2) + 5))=256;
 Image_Points((mouth_corner_left(1) - 5): (mouth_corner_left(1) + 5),

mouth_corner_left(2))=256;

 Image_Points(mouth_corner_right(1), (mouth_corner_right(2) - 5):

(mouth_corner_right(2) + 5))=256;
 Image_Points((mouth_corner_right(1) - 5): (mouth_corner_right(1) + 5),

mouth_corner_right(2))=256;

% call a function to extract the upper and lower lip mid point coordinates
% Locating upper and lower lip
 display('finding mouth lips cordinates......');
 mouth_Lips =

getMouthLipsCoordinates(Image1,mouth_corner_left,mouth_corner_right,dt,thresh.lips);

 % extracted coordinates of the midpoint of the upper lip
 mouth_lip_upper = [mouth_Lips(1) mouth_Lips(2)];
 mouth_lip_lower = [mouth_Lips(3) mouth_Lips(4)];

% Visualising Upper and lower Lip

 170

Image_Points(mouth_lip_upper(1), (mouth_lip_upper(2) - 5): (mouth_lip_upper(2)
+ 5))=256;

Image_Points((mouth_lip_upper(1) - 5): (mouth_lip_upper(1) + 5),
mouth_lip_upper(2))=256;

Image_Points(mouth_lip_lower(1), (mouth_lip_lower(2) - 5): (mouth_lip_lower(2)

+ 5))=256;
Image_Points((mouth_lip_lower(1) - 5): (mouth_lip_lower(1) + 5),

mouth_lip_lower(2))=256;

% check whether the upper lip was located right - must be above the corners
% of mouth

midpoint = floor((mouth_corner_left(1) + mouth_corner_right(1)) / 2);

if (mouth_lip_upper(1) < midpoint)
 upper_lip = mouth_lip_upper(1);
else
 %display('Mouth upper lip was not located successfully.');
 upper_lip = midpoint - floor(dt / 2);
end

% Locating nose
 NoseRmin = upper_lip - floor(1.5 * dt);
 NoseRmax = upper_lip - floor(dt / 4);
 NoseCmin = mouth_lip_upper(2) - floor(0.75 * dt);
 NoseCmax = mouth_lip_upper(2) + floor(0.75 * dt);

 display('finding nose cordinates......');
 nose =

Pso_nose(NoseRmin,NoseRmax,NoseCmin,NoseCmax,Image2,width,thresh.nose);

 Image_Points(nose(1), (nose(2) - 5): (nose(2) + 5))=256;
 Image_Points((nose(1) - 5): (nose(1) + 5),nose(2))=256;

 display('finding nostril cordinates......');
 nose_corners = getNoseCorners(nose,Image2,dt,thresh.nosetril);

% Visualising nose coordinates
Image_Points(nose(1), (nose(2) - 5): (nose(2) + 5))=256;
Image_Points((nose(1) - 5): (nose(1) + 5),nose(2))=256;

 171

Image_Points(nose_corners(1), (nose_corners(2) - 5): (nose_corners(2) +
5))=256;

Image_Points((nose_corners(1) - 5): (nose_corners(1) + 5),nose_corners(2)
)=256;

Image_Points(nose_corners(3), (nose_corners(4) - 5): (nose_corners(4) +

5))=256;
Image_Points((nose_corners(3) - 5): (nose_corners(3) + 5),nose_corners(4)

)=256;

% vector with coordinates of all feature points
feature_points = [right_eye; right_eye_in_corner; right_eye_out_corner;

right_eyebrow; right_eyebrow_corner;...
 left_eye; left_eye_in_corner; left_eye_out_corner;

left_eyebrow; left_eyebrow_corner;...
 mouth_corner_left; mouth_corner_right; mouth_lip_upper;

mouth_lip_lower;...
 nose; nose_corners(1:2); nose_corners(3:4)];

 172

Filename : Pso2_eye.m
This is the particle swarm optimization algorithm used to locate the eye.

function [VeryBest M]=Pso2_eye(Rmin,Rmax,Cmin,Cmax,I,width, side,border,

thresh_eye, thresh_light)

n = 5; % number of particles
group = 3; % number of groups

Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
MaxFit = [0 0 0];
MaxCord = [0 0 0 0 0 0];
best_response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;
dt = floor(width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.
deltaR3 = round((Rmax - Rmin) / 3);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);
deltaC = Cmax - Cmin;

% initializing particles in all groups
for g = 0:(group - 1)

 173

 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((Rmin + 2*deltaR3)+ deltaR3*rand(1))

round((Cmin + deltaC4) + (2 * deltaC4)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_function7subReg(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,side,border, thresh_eye, thresh_light);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
end

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22
 %Compute particles new position and velocities

 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit(g+1) > 0)
 %In each group
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe
st(1)- particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

 174

 particle(partInd).vel(2)= wi*particle(partInd).vel(2) +
c1*rand(1) * (particle(partInd).Pbest(2) -particle(partInd).posn(2))+
c2*rand(1)*(Gbest(2*g+2) - particle(partInd).posn(2));

 particle(partInd).posn(1)= round(particle(partInd).posn(1) +
particle(partInd).vel(1));

 particle(partInd).posn(2)= round(particle(partInd).posn(2) +
particle(partInd).vel(2));

 %checking if the solution lies within domain
 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)

> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax
 % setting position to previous P-best
 particle(partInd).posn = particle(partInd).Pbest;
 % setting velocity to max
 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];
 end

 %Calculating the function response for each particle with new
 %positions
 particle(partInd).func_response = cost_function7subReg(I,

particle(partInd).posn(1), particle(partInd).posn(2), dt, side, border, thresh_eye,
thresh_light);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end

 particle(partInd).func_resp_prev =

particle(partInd).func_response;

 end
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 % Gbest is a global best of all times
 % display(particle(best(g+1)).func_response);
 if particle(best(g+1)).func_response > GbestFit(g+1)

 175

 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 best_response(g+1) = particle(best(g+1)).func_response;
 if (best_response(g+1) < MaxFit(g+1))
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 end

 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((Rmin + 2*deltaR3)+

deltaR3*rand(1)) round((Cmin + deltaC4) + (2 * deltaC4)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_function7subReg(I,particle(partInd).posn(1),parti
cle(partInd).posn(2),dt,side,border, thresh_eye, thresh_light);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end
 else
 % if we didn't find a positive fittness value before the
 % fifth iteration that the region for deployment is
 % extended.
 % it helps in the cases, when the face region is not
 % located well
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn = [round((Rmin + deltaR2)+

deltaR2*rand(1)) round(Cmin + deltaC*rand(1))];
 particle(partInd).vel = [round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(partInd).Pbest = particle(partInd).posn;

 176

 particle(partInd).func_response = cost_function7subReg(I,
particle(partInd).posn(1), particle(partInd).posn(2), dt, side, border, thresh_eye,
thresh_light);

 particle(partInd).func_resp_prev =
particle(partInd).func_response;

 end
 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
 t=1;
 thresh_list=[];
 end % all particles updated...

 %...recording co-ordinates for display
 itr = itr+1;
 %display(best_response);
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end
% choose the best point
 very_best_ones = find(GbestFit == max(GbestFit));
 very_best = very_best_ones(1);
 VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);

 177

Filename : cost_function7subReg.m
This is the cost function used to locate the eyes.

function y = cost_function7subReg(I,r,c,dtIn,side,border, thresh_eye,

thresh_light)
% new cost function for mouth
%8:09 pm 12/26/04

global Im;
Im = I;
global dt;
dt = dtIn;
global de;
de = floor(dt/8);
rt1 = r + floor(dt/4);
ct1 = c;
rt2 = rt1 + de;
ct2 = c;
rt3 = rt2 + de;
ct3 = c;
rt4 = rt3 + de;
ct4 = c;

y = Cm(r,c) + CcPack1(r,c,rt1,ct1,rt2,ct2,rt3,ct3,rt4,ct4, thresh_eye,

thresh_light) + CMean(r,c) + Cout(r, c, side, border);
%///

function a = Cm(r,c)
global Im;
global dt;
Kc=0.2;
I1=double(Im((r-floor(dt/2)) : (r+ floor(dt/2)), (c-floor(dt/2)) : (c+

floor(dt/2))));
var1=sum(std(I1));
var2=sum(std(I1'));
a=Kc*(var1+var2);
%///

function a = CMean(r,c)
global Im;

 178

global dt;
I1=double(Im((r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/6) : c +

floor(dt/6)));
a = 255 - mean2(I1);
%///

function c=U(x)
% Unit step function..........
if x >=0
 c=1;
else
 c=0;
end
%///

function a = CcPack(r,c,rt1,ct1,rt2,ct2,rt3,ct3,rt4,ct4, thresh_eye,

thresh_light)
global Im;
K = 50;
if (U(double(Im(rt1,ct1)) - double(Im(r,c)) - K) * U(double(Im(rt2,ct2)) -

double(Im(r,c)) - K) * U(double(Im(rt3,ct3)) - double(Im(r,c)) - K) *
U(double(Im(rt4,ct4)) - double(Im(r,c)) - K))== 1

 a = Cc(r,c, thresh_eye, thresh_light);
else
 a = -800;
end

function a = CcPack1(r,c,rt1,ct1,rt2,ct2,rt3,ct3,rt4,ct4, thresh_eye,

thresh_light)
global Im;
global dt;
K = 50;

% Mean intensities of subregions that we will compare with the center
% region to determine whether it is eyebrow or not. We are loking at the
% region below the center point and then on the region to the lower left
% and lower rigth - it is because of the inner corner of eyebrow.

uc = mean2(Im(r - floor(dt/15):r + floor(dt/15), c - floor(dt/15): c +

floor(dt/15)));
ul1 = mean2(Im(rt1 - floor(dt/10):rt1 + floor(dt/10),...
 ct1 - floor(dt/3) - floor(dt/10): ct1 - floor(dt/3) + floor(dt/10)));

 179

uc1 = mean2(Im(rt1 - floor(dt/10):rt1 + floor(dt/10), ct1 - floor(dt/10): ct1 +
floor(dt/10)));

ur1 = mean2(Im(rt1 - floor(dt/10):rt1 + floor(dt/10),...
 ct1 + floor(dt/3) - floor(dt/10): ct1 + floor(dt/3) + floor(dt/10)));
ul2 = mean2(Im(rt2 - floor(dt/10):rt2 + floor(dt/10),...
 ct2 - floor(dt/3) - floor(dt/10): ct2 + floor(dt/3) + floor(dt/10)));
uc2 = mean2(Im(rt2 - floor(dt/10):rt2 + floor(dt/10), ct2 - floor(dt/10): ct2 +

floor(dt/10)));
ur2 = mean2(Im(rt2 - floor(dt/10):rt2 + floor(dt/10),...
 ct2 + floor(dt/3) - floor(dt/10): ct2 + floor(dt/3) + floor(dt/10)));
ul3 = mean2(Im(rt3 - floor(dt/10):rt3 + floor(dt/10),...
 ct3 - floor(dt/3) - floor(dt/10): ct3 - floor(dt/3) + floor(dt/10)));
uc3 = mean2(Im(rt3 - floor(dt/10):rt3 + floor(dt/10), ct3 - floor(dt/10): ct3 +

floor(dt/10)));
ur3 = mean2(Im(rt3 - floor(dt/10):rt3 + floor(dt/10),...
 ct3 + floor(dt/3) - floor(dt/10): ct3 + floor(dt/3) + floor(dt/10)));
ul4 = mean2(Im(rt4 - floor(dt/10):rt4 + floor(dt/10),...
 ct4 - floor(dt/3) - floor(dt/10): ct4 - floor(dt/3) + floor(dt/10)));
uc4 = mean2(Im(rt4 - floor(dt/10):rt4 + floor(dt/10), ct4 - floor(dt/10): ct4 +

floor(dt/10)));
ur4 = mean2(Im(rt4 - floor(dt/10):rt4 + floor(dt/10),...
 ct4 + floor(dt/3) - floor(dt/10): ct4 + floor(dt/3) + floor(dt/10)));

check1 = 0;
check2 = 0;
check3 = 0;
check4 = 0;

if (U(ul1 - uc - K) * U(uc1 - uc - K) * U(ur1 - uc - K) == 1)
 check1 = 1;
end
if (U(ul2 - uc - K) * U(uc2 - uc - K) * U(ur2 - uc - K) == 1)
 check2 = 1;
end
if (U(ul3 - uc - K) * U(uc3 - uc - K) * U(ur3 - uc - K) == 1)
 check3 = 1;
end
if (U(ul4 - uc - K) * U(uc4 - uc - K) * U(ur4 - uc - K) == 1)
 check4 = 1;
end

if check1*check2*check3*check4 == 1

 180

 a = Cc(r,c, thresh_eye, thresh_light);
else
 a = -800;
end
%///

function a=Cc(r,c,thresh_eye, thresh_light)
global dt;
global Im;
Kc=0;
a=0;
I1=Im((r - floor(dt/2)) : (r + floor(dt/2)), (c - floor(dt/2)) : (c +

floor(dt/2)));
 % arbitrary constant
uu=mean2(Im((r- floor(dt/2)):(r- floor(dt/4)),(c-floor(dt/2)):(c+

floor(dt/2))));
uc=mean2(Im((r- floor(dt/10)):(r+ floor(dt/10)),(c- floor(dt/10)):(c+

floor(dt/10))));
ul=mean2(Im((r+ floor(dt/4)):(r+ floor(dt/2)),(c- floor(dt/2)):(c+

floor(dt/2))));

% intensity of midpoint less than 50
% we need to change this dynamically based on the output of the slider,
% need to make it lower for brighter eyes, or more for darker eyes
% if uc<=50
if uc <= thresh_eye
 Kc=1.2*(50-uc);
end
% lower edge region darker than 128
% we need to change this based on lighting conditions.
% increase for bad lighting and decrease for good lighting.
% if ul<=128
if ul<=(64/thresh_light)
 a=a-200;
end
% upper edge region darker than 128
% we need to change this based on lighting conditions.
% increase for bad lighting and decrease for good lighting.
% if uu<=128
if uu<=(64/thresh_light)
 a=a-200;
end

 181

% difernce in midpoint and upper point intensities is less than 50
% if uu-uc <50
if uu-uc < 50 %thresh_eye
 a=a-200;
end
% difernce in midpoint and lower point intensities is less than 50
% if ul-uc <50
if ul-uc < 50 %thresh_eye
 a=a-200;
end

a=a+Kc+uu+ul-2*uc;
%///
function a = Cout(r, c, side, border)
% function discriminating points outside of the eye subregion (it is
% supposed to prevent the algorithm from chosing hair when they are included
% in the face region)

a = 0;
if side == 0
 if c < border
 a = -800;
 end
else
 if c > border
 a = -800;
 end
end

 182

Filename : getRightEyeCorners.m
This extracts the eye corners of the right eye based upon the location of the eye.

function right_eye_corners = getRightEyeCorners(right_eye,Image,dt,

thresh_eyeInner)

EyeRegionRRmin = right_eye(1) - floor(dt/5);
EyeRegionRRmax = right_eye(1) + floor(dt/4);
EyeRegionRCmin = right_eye(2) - floor(dt / 2);
EyeRegionRCmax = right_eye(2) + floor(2 * (dt/3));

%estimated eye region
Image_Eye = Image(EyeRegionRRmin : EyeRegionRRmax, EyeRegionRCmin :

EyeRegionRCmax);

% convert the right eye region into binary image with the threshold set
% to the 1/2 of the mean intensity of whole region
level = mean2(Image_Eye) / 255;
level = (0.8 * level) * thresh_eyeInner;
Image_Eye_BW = im2bw(Image_Eye,level);

% invert the colors
Image_Ones = ones(size(Image_Eye));
Image_Eye_BW = Image_Ones - Image_Eye_BW;

% get a bounding box around the thresholded area
statsE = regionprops(Image_Eye_BW,'BoundingBox');
cordEye = [statsE.BoundingBox];

% get a region aroud the inner corner of the right eyebrow
Image_Eye_Corner_In_BW = Image_Eye_BW(1 : (EyeRegionRRmax - EyeRegionRRmin),

ceil(cordEye(1)) : ceil(cordEye(1) + 1));

Eye_Corner_In_Stat = bwlabel(Image_Eye_Corner_In_BW);
statsEIC = regionprops(Eye_Corner_In_Stat,'BoundingBox');
cordEyeInCorner = [statsEIC.BoundingBox];

% get a region aroud the outter corner of the right eye
Image_Eye_Corner_Out_BW = Image_Eye_BW(1 : (EyeRegionRRmax - EyeRegionRRmin),

floor(cordEye(1) + cordEye(3) -1) : floor(cordEye(1) + cordEye(3)));

 183

Eye_Corner_Out_Stat = bwlabel(Image_Eye_Corner_Out_BW);
statsEOC = regionprops(Eye_Corner_Out_Stat,'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned
%and an error is reported
if numel(cordEyeOutCorner) == 0
 cordEyeOutCorner = [0 (right_eye(2) - EyeRegionRRmin) + round(dt / 4) 0 0];
 display('Outer corner of the right eye was not located right...');
end

if numel(cordEyeInCorner) == 0
 cordEyeInCorner = [0 (right_eye(2) - EyeRegionRRmin) - round(dt / 4) 0 0];
 display('Inner corner of the right eye was not located right...');
end

right_eye_corners = [floor(EyeRegionRRmin + cordEyeInCorner(2) +

cordEyeInCorner(4) / 2) floor(EyeRegionRCmin + cordEye(1))...
 floor(EyeRegionRRmin + cordEyeOutCorner(2) + cordEyeOutCorner(4) /

2) floor(EyeRegionRCmin + cordEye(1) + cordEye(3))];

 184

Fielname : Pso_eyebrow.m
This is the particle swarm optimization algorithm used to locate the eyebrow.

function [Gbest M]=Pso_eyebrow(Rmin,Rmax,Cmin,Cmax,I,width)
% PSO algorithm for extracting the eyebrow coordinates

n=5;%no of particles
Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];
GbestFit = 0;
MaxFit = 0;
MaxCord = [0 0];
wi = 0.8; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold=400;
dt = floor(width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

% initialising particles for PSO.
for i=1:n
 particle(i).posn=[round(Rmin + deltaR*rand(1)) round(Cmin +

deltaC*rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1)) round(Vmin+(Vmax-

Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

 185

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 particle(i).func_resp_prev=particle(i).func_response;
end % finished initializing

% Finding initial best values
bestfind = find([particle.func_response] == max([particle.func_response]));
best = bestfind(1);
Gbest=particle(best).posn;
GbestFit = particle(best).func_response;

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22

 %Compute particles new position and velocities
 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit > 0)
 for i=1:n

particle(i).vel(1)=wi*particle(i).vel(1)+c1*rand(1)*(particle(i).Pbest(1)-
particle(i).posn(1)) + c2*rand(1)*(Gbest(1)-particle(i).posn(1));

particle(i).vel(2)=wi*particle(i).vel(2)+c1*rand(1)*(particle(i).Pbest(2)-
particle(i).posn(2)) + c2*rand(1)*(Gbest(2)-particle(i).posn(2));

 % set new position
 particle(i).posn(1)=round(particle(i).posn(1)+particle(i).vel(1));
 particle(i).posn(2)=round(particle(i).posn(2)+particle(i).vel(2));

 %checking if the solution lies within domain
 if particle(i).posn(1) < Rmin || particle(i).posn(1) > Rmax ||

particle(i).posn(2) < Cmin || particle(i).posn(2) > Cmax
 particle(i).posn=particle(i).Pbest; % setting position to

previous P-best
 particle(i).vel=[rand(1)*Vmax rand(1)*Vmax]; %

setting velocity to max
 end

 186

 %Calculating the function response for each particle with new
 %positions

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 %checking and updating Pbest
 if particle(i).func_response > particle(i).func_resp_prev
 particle(i).Pbest=particle(i).posn;
 end

 particle(i).func_resp_prev = particle(i).func_response;

 end

 V=[particle.func_response];
 best_ones=find(V==max(V));
 best=best_ones(1);

 %Gbest is a global best of all times
 %display(particle(best).func_response);
 if particle(best).func_response > GbestFit
 Gbest = particle(best).Pbest;
 GbestFit = particle(best).func_response;
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for i=1:n
 particle(i).posn=[round((Rmin + deltaR2)+ deltaR2*rand(1))

round(Cmin + deltaC*rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 particle(i).func_resp_prev=particle(i).func_response;
 end
 else
 % if we didn't find a positive fittness value before the
 % fifth iteration that the region for deployment is

 187

 % extended.
 % it helps in the cases, when the face region is not
 % located well
 for i=1:n
 particle(i).posn=[round(Rmin + deltaR*rand(1)) round(Cmin +

deltaC*rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 particle(i).func_resp_prev=particle(i).func_response;
 end
 end
 bestfind = find([particle.func_response] ==

max([particle.func_response]));
 best = bestfind(1);
 Gbest=particle(best).posn;
 GbestFit = particle(best).func_response;
 MaxCord = Gbest;
 best_response=particle(best).func_response;
 MaxFit = best_response;
 t=1;
 end % all particles updated...

 % 2 - based on the mean value of func_response of all particles
 if mean([particle.func_response]) >= 1100;%threshold;
 ind = 1;
 end

 %...recording co-ordinates for display
 itr = itr+1;
 if itr == 20
 ind = 1;
 end
end

if itr == 22
 Gbest = MaxCord;
end

 188

Filename : cost_functionEyebrow.m
This is the cost function that is used to locate the eyebrow.

function y = cost_functionEyebrow(I,r,c,dtIn)
% new cost function for Eyebrow
%8:09 pm 12/26/04

global Im;
Im = I;
global dt;
dt = dtIn;
global de;
de = floor(dt/8);

% global variables that defines the border of the template
% they are checked and eventually reset to desired values, so that
% the template doesn't go out from the image

global ri; global rx; global ci; global cx;

y = CMean(r,c);
%///

function a = Cm(r,c)
global Im;
global dt;
global ri;
global rx;
global ci;
global cx;
Kc=0.2;

ri = r - floor(dt/2);
if ri < 1
 ri = 1;
end

rx = r + floor(dt/2);
if rx > 255
 rx = 255;

 189

end

ci = c - floor(dt/2);
if ci < 1
 ci = 1;
end

cx = c + floor(dt/2);
if cx > 255
 cx = 255;
end

I1 = double(Im(ri : rx, ci : cx));
var1=sum(std(I1));
var2=sum(std(I1'));
a=Kc*(var1+var2);
%///

function a = CMean(r,c)
global Im;
global dt;
I1=double(Im((r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/3) : c +

floor(dt/3)));
a = 255 - mean2(I1);
%///

function c=U(x)
% Unit step function..........
if x >=0
 c=1;
else
 c=0;
end
%///

function a=Cc(r,c)

global dt;
global Im;
global ri;
global rx;
global ci;

 190

global cx;
Kc=0;
a=0;
I1=Im(ri : rx, ci : cx);
 % arbitrary constant
uu=mean2(Im(ri:(r- floor(dt/4)), ci:cx));
uc=mean2(Im((r- floor(dt/10)):(r+ floor(dt/10)),(c- floor(dt/10)):(c+

floor(dt/10))));
ul=mean2(Im((r+ floor(dt/4)):(r+ floor(dt/2)),ci:cx));

% intensity of midpoint less than 50
if uc<=thresh_eb
 Kc=1.2*(50-uc);
else
 a = a -500;
end
% lower edge region darker than 128
if ul<=(256*thresh_light)
 a=a-200;
end
% upper edge region darker than 128
if uu<=(256*thresh_light)
 a=a-200;
end
% difernce in midpoint and upper point intensities is less than 50
if uu-uc <(100-thresh_eb)
 a=a-200;
end
% difernce in midpoint and lower point intensities is less than 50
if ul-uc < (100-thresh_eb)
 a=a-200;
end

a=a+Kc+uu+ul-2*uc;
%///

function a = CPos(r,c)
% function saying the the higher the region is, the better.

 a = 300 - 2 * r;

 191

Filename : getRightEyebrowCorner.m
This locates the inner corner of the right eyebrow.

function right_eyebrow_corner = getRightEyebrowCorner(right_eyebrow,Image,dt,

thresh_ebCorner)

EBCornerRRmin = right_eyebrow(1) - floor(dt/4);
EBCornerRRmax = right_eyebrow(1) + floor(dt/3);
EBCornerRCmin = right_eyebrow(2) - dt;
EBCornerRCmax = right_eyebrow(2);

Image_Eyebrow = Image(EBCornerRRmin : EBCornerRRmax, EBCornerRCmin :

EBCornerRCmax);

% convert the right eyebrow region into binary image with the threshold set
% to the 1/2 of the mean intensity of whole region
level = mean2(Image_Eyebrow) / 255;
level = (level / 2) * thresh_ebCorner;
Image_Eyebrow_BW = im2bw(Image_Eyebrow,level);

% invert the colors
Image_Ones = ones(size(Image_Eyebrow));
Image_Eyebrow_BW = Image_Ones - Image_Eyebrow_BW;

% get a bounding box around the thresholded area
statsEB = regionprops(Image_Eyebrow_BW,'BoundingBox');
cordEyebrow = [statsEB.BoundingBox];

if numel(cordEyebrow) == 0
 display('Unable to locate the right eyebrow')
 right_eyebrow_corner = [right_eyebrow(1) + round(dt/8) right_eyebrow(2) -

round(dt/4)];
else
 % get a region aroud the inner corner of the right eyebrow\

 % check so that matrix index does not exceeds the matrix dimension

 if cordEyebrow(1) > (EBCornerRCmax - EBCornerRCmin)
 Image_Eyebrow_Corner_BW = Image_Eyebrow_BW(1 : (EBCornerRRmax -

EBCornerRRmin - 1), ceil(cordEyebrow(1) - 1) : ceil(cordEyebrow(1)));

 192

 else
 Image_Eyebrow_Corner_BW = Image_Eyebrow_BW(1 : (EBCornerRRmax -

EBCornerRRmin - 1), ceil(cordEyebrow(1)) : ceil(cordEyebrow(1) + 1));
 end

 statsEBC = regionprops(Image_Eyebrow_Corner_BW,'BoundingBox');
 cordEyebrowCorner = [statsEBC.BoundingBox];

 if (numel(cordEyebrowCorner) == 0)
 display('Unable to locate the right eyebrow corner');
 right_eyebrow_corner = [right_eyebrow(1) + round(dt/8) right_eyebrow(2)

- round(dt/4)];
 else

 right_eyebrow_corner = [floor(EBCornerRRmin + cordEyebrowCorner(2)

+ cordEyebrowCorner(4) / 2) floor(EBCornerRCmin + cordEyebrow(1))];
 end
end

 193

Filename : getLeftEyeCorners.m
This locates the corners of the left eye.

function left_eye_corners = getLeftEyeCorners(left_eye,Image,dt,

thresh_eyeInner)

load 'threshold.mat';

EyeRegionLRmin = left_eye(1) - floor(dt/5);
EyeRegionLRmax = left_eye(1) + floor(dt/4);
EyeRegionLCmin = left_eye(2) - floor(2 * (dt/3));
EyeRegionLCmax = left_eye(2) + floor(dt / 2);

Image_Eye = Image(EyeRegionLRmin : EyeRegionLRmax, EyeRegionLCmin :

EyeRegionLCmax);

% convert the left eye region into binary image with the threshold set
% to the mean intensity of whole region
level = mean2(Image_Eye) / 255;
level = (0.8 * level) * thresh_eyeInner;
Image_Eye_BW = im2bw(Image_Eye,level);

% invert the colors
Image_Ones = ones(size(Image_Eye));
Image_Eye_BW = Image_Ones - Image_Eye_BW;

% get a bounding box around the thresholded area
statsE = regionprops(Image_Eye_BW,'BoundingBox');
cordEye = [statsE.BoundingBox];

% get a region aroud the inner corner of the left eye
Image_Eye_Corner_In_BW = Image_Eye_BW(1 : (EyeRegionLRmax - EyeRegionLRmin),

floor(cordEye(1) + cordEye(3) - 1) : floor(cordEye(1)) + cordEye(3));

Eye_Corner_In_Stat = bwlabel(Image_Eye_Corner_In_BW);
statsEIC = regionprops(Eye_Corner_In_Stat,'BoundingBox');
cordEyeInCorner = [statsEIC.BoundingBox];

% get a region aroud the outter corner of the left eye

 194

Image_Eye_Corner_Out_BW = Image_Eye_BW(1 : (EyeRegionLRmax - EyeRegionLRmin),
ceil(cordEye(1)) : ceil(cordEye(1) + 1));

Eye_Corner_Out_Stat = bwlabel(Image_Eye_Corner_Out_BW);
statsEOC = regionprops(Eye_Corner_Out_Stat,'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned
%and an error is reported

if numel(cordEyeOutCorner) == 0
 cordEyeOutCorner = [0 left_eye(2) - round(dt / 4) 0 0];
 display('Outer corner of the left eye was not located right...');
end

if numel(cordEyeInCorner) == 0
 cordEyeInCorner = [0 left_eye(2) + round(dt / 4) 0 0];
 display('Inner corner of the left eye was not located right...');
end

left_eye_corners = [floor(EyeRegionLRmin + cordEyeInCorner(2) +

cordEyeInCorner(4) / 2) floor(EyeRegionLCmin + cordEye(1) + cordEye(3))
floor(EyeRegionLRmin + cordEyeOutCorner(2) + cordEyeOutCorner(4) / 2)
floor(EyeRegionLCmin + cordEye(1))];

 195

Filename : getLeftEyebrowCorner.m
This locates the inner corner of the left eyebrow.

function left_eyebrow_corner =

getLeftEyebrowCorner(left_eyebrow,Image,dt,thresh_ebCorner)

EBCornerLRmin = left_eyebrow(1) - floor(dt/4);
EBCornerLRmax = left_eyebrow(1) + floor(dt/3);
EBCornerLCmin = left_eyebrow(2);
EBCornerLCmax = left_eyebrow(2) + dt;

Image_Eyebrow = Image(EBCornerLRmin : EBCornerLRmax, EBCornerLCmin :

EBCornerLCmax);

% convert the right eyebrow region into binary image with the threshold set
% to the 1/2 of the mean intensity of whole region
level = mean2(Image_Eyebrow) / 255;
level = (level / 2) * thresh_ebCorner;
Image_Eyebrow_BW = im2bw(Image_Eyebrow,level);

% invert the colors
Image_Ones = ones(size(Image_Eyebrow));
Image_Eyebrow_BW = Image_Ones - Image_Eyebrow_BW;

% get a bounding box around the thresholded area
statsEB = regionprops(Image_Eyebrow_BW,'BoundingBox');
cordEyebrow = [statsEB.BoundingBox];

if (numel(cordEyebrow) == 0)
 display('Unable to locate the Left eyebrow corner (1)');
 left_eyebrow_corner = [left_eyebrow(1) + round(dt/8) left_eyebrow(2) +

round(dt/4)];
else

 % get a region aroud the inner corner of the right eyebrow
 left = floor(cordEyebrow(1) + cordEyebrow(3) - 1);
 right = floor(cordEyebrow(1) + cordEyebrow(3));

 Image_Eyebrow_Corner_BW = Image_Eyebrow_BW(1 : (EBCornerLRmax -

EBCornerLRmin), left : right);

 196

 statsEBC = regionprops(Image_Eyebrow_Corner_BW,'BoundingBox');
 cordEyebrowCorner = [statsEBC.BoundingBox];

 if (numel(cordEyebrowCorner) == 0)
 display('Unable to locate the Left eyebrow corner (2)');
 left_eyebrow_corner = [left_eyebrow(1) + round(dt/8) left_eyebrow(2) +

round(dt/4)];
 display(cordEyebrow(1));
 display(cordEyebrow(3));
 else

 left_eyebrow_corner = [floor(EBCornerLRmin + cordEyebrowCorner(2) +

cordEyebrowCorner(4) / 2) floor(EBCornerLCmin + cordEyebrow(3))];
 end
end

 197

Filename : Pso2_mouth_left.m
This is the particle swarm optimization algorithm used to locate the left corner of the

mouth.

function [VeryBest M]=Pso2_mouth_left(Rmin,Rmax,Cmin,Cmax,I,center, thresh_lip)

n = 5; % number of particles
group = 3; % number of groups
Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
MaxFit = [0 0 0];
MaxCord = [0 0 0 0 0 0];
best_response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;
dt = floor((Cmax - Cmin)/2);
meanInt = mean2(I(Rmin:Rmax,Cmin:Cmax));

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

 198

% initializing particles in all groups
for g = 0:(group - 1)
 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((Rmin + deltaR4)+ deltaR2*rand(1))

round((Cmin + deltaC3) + (2*deltaC3)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge of the

image,
 % so that the lower edge of the template would get out of the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh_lip);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
end

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22
 %Compute particles new position and velocities

 199

 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit(g+1) > 0)
 %In each group
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe
st(1) - particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

particle(partInd).vel(2)=wi*particle(partInd).vel(2)+c1*rand(1)*(particle(partInd).Pbe
st(2) - particle(partInd).posn(2))+ c2*rand(1)*(Gbest(2*g + 2)-
particle(partInd).posn(2));

particle(partInd).posn(1)=round(particle(partInd).posn(1)+particle(partInd).vel(1));

particle(partInd).posn(2)=round(particle(partInd).posn(2)+particle(partInd).vel(2));

 % check if the particle isn't too close to the lower edge of

the image,
 % so that the lower edge of the template would get out of the

bounds.
 % this check might be together with the following check of

particle
 % position
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 %checking if the solution lies within domain
 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)

> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax
 particle(partInd).posn = particle(partInd).Pbest; %

setting position to previous P-best
 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];

% setting velocity to max
 end

 %Calculating the function response for each particle with new

 200

 %positions

particle(partInd).func_response=cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh_lip);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end

 particle(partInd).func_resp_prev =

particle(partInd).func_response;

 end
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 %Gbest is a global best of all times
 if particle(best(g+1)).func_response > GbestFit(g+1)
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 best_response(g+1) = particle(best(g+1)).func_response;
 if (best_response(g+1) < MaxFit(g+1))
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((Rmin + deltaR4)+

deltaR2*rand(1)) round((Cmin + deltaC3) + (2*deltaC3)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 201

 % check if the particle isn't too close to the lower edge
of the image,

 % so that the lower edge of the template would get out of
the bounds.

 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh_lip);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end
 else
 % if we didn't find a positive fittness value before the
 % fifth iteration that the region for deployment is
 % extended.
 % it helps in the cases, when the face region is not
 % located well
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn=[round(Rmin + deltaR*rand(1))

round((Cmin + deltaC3) + (2*deltaC3)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,
 % so that the lower edge of the template would get out of

the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end
 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh_lip);

 202

 particle(partInd).func_resp_prev =
particle(partInd).func_response;

 end
 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
 t=1;
 thresh_list=[];

 end % all particles updated...

 %...recording co-ordinates for display

 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end
% choose the best point
 very_best_ones = find(GbestFit == max(GbestFit));
 very_best = very_best_ones(1);
 VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);
GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
 very_best_ones = find(GbestFit == max(GbestFit));
 very_best = very_best_ones(1);
 VeryBest = [VeryBest Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2)];
 GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
VeryBest = [VeryBest Gbest];

 203

Filename : cost_functionMouthL2.m
This is the cost function used to locate the left corner of the mouth.

function y = cost_functionMouthL2(I,r,c,dtIn,center,meanInt, thresh_lip)
% cost function for looking for left corner point of mouth
%8:09 pm 12/26/04

global Im;
Im = I;
global dt;
dt = dtIn;

y = CMouth(r,c,meanInt, thresh_lip);% + CMouthTemplate(r,c,meanInt);

% function calculating the mean intensity of all points within the template
function a = CMean(r,c)
global Im;
global dt;
I1=double(Im(r - floor(dt / 15) : r + floor(dt / 15), c - floor(dt / 7) :

c));

a = (255 - mean2(I1));

function a = CMouth(r,c,meanInt, thresh_lip)
global Im;
global dt;

a = 0;

I1 = double(Im((r - floor(dt / 10) : r + floor(dt / 10)), c : c +

floor(dt/2)));
I2 = double(Im((r - floor(dt / 10) : r + floor(dt / 10)), c - floor(dt/4) :

c));
I3 = double(Im((r - floor(dt / 3) : r - floor(dt / 15)), c : c + floor(dt /

7)));
I4 = double(Im((r + floor(dt / 15) : r + floor(dt / 3)), c : c + floor(dt /

7)));
I6 = double(Im((r - floor(dt / 15) : r + floor(dt / 15)), c : c +

floor(dt/10)));

 204

I7 = double(Im((r - floor(dt / 15) : r + floor(dt / 15)), c - floor(dt/10):
c));

meanI1 = mean2(I1);
meanI2 = mean2(I2);
meanI3 = mean2(I3);
meanI4 = mean2(I4);
meanIc = CMean(r,c);
meanI6 = mean2(I6);
meanI7 = mean2(I7);
b = CMouthTemplate(r,c,meanInt);

if (meanI1 < 0.8 * meanInt * thresh_lip) && (meanI2 > 0.8 * meanInt *

thresh_lip)
 a = a + meanI2 - meanI1;
 a = a + meanIc;
 a = a + (meanI7 - meanI6);
 if ((meanI3 - meanIc) > 50) && ((meanI4 - meanIc) > 50)
 a = a + 100;
 end;
else
 a = a - 200;
end
%///

function a = CMouthTemplate(r,c,meanInt)
% function trying to calcute if the region is really mouth. Calculates the
% avarage intensity of rectangular template

global Im;
global dt;

I1 = double(Im((r - floor(dt/6) : r + floor(dt/2)), c : c + dt));

a = mean2(I1);
%///

function a = CPos(r,c,center)
% function evaluating if the given point lies under the eye

a = (-2) * abs(center - c);

 205

Filename : Pso2_mouth_right.m
This is the particle swarm optimization algorithm used to locate the right corner of the

mouth.

function [VeryBest M]=Pso2_mouth_right(Rmin,Rmax,Cmin,Cmax,I,center)

n = 5; % number of particles
group = 3; % number of groups
Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
MaxFit = [0 0 0];
MaxCord = [0 0 0 0 0 0];
best_response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;
dt = floor((Cmax - Cmin)/2);
meanInt = mean2(I(Rmin:Rmax,Cmin:Cmax));

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

 206

% initializing particles in all groups
for g = 0:(group - 1)
 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((Rmin + deltaR4)+ deltaR2*rand(1))

round(Cmin + (2*deltaC3)*rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge of the

image,
 % so that the lower edge of the template would get out of the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
end

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22

 %Compute particles new position and velocities

 % if GbestFit > 0 compute new position and velocities - algorithm

 207

 % is converging.
 if (GbestFit(g+1) > 0)
 %In each group
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe
st(1)...

 - particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

particle(partInd).vel(2)=wi*particle(partInd).vel(2)+c1*rand(1)*(particle(partInd).Pbe
st(2) - particle(partInd).posn(2))+ c2*rand(1)*(Gbest(2*g + 2)-
particle(partInd).posn(2));

particle(partInd).posn(1)=round(particle(partInd).posn(1)+particle(partInd).vel(1));

particle(partInd).posn(2)=round(particle(partInd).posn(2)+particle(partInd).vel(2));

 % check if the particle isn't too close to the lower edge of

the image,
 % so that the lower edge of the template would get out of the

bounds.
 % this check might be together with the following check of

particle
 % position
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 %checking if the solution lies within domain
 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)

> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax
 particle(partInd).posn = particle(partInd).Pbest; %

setting position to previous P-best
 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];

% setting velocity to max
 end

 %Calculating the function response for each particle with new

 208

 %positions

particle(partInd).func_response=cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end

 particle(partInd).func_resp_prev =

particle(partInd).func_response;

 end
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 % Gbest is a global best of all times
 % display(particle(best(g+1)).func_response);
 if particle(best(g+1)).func_response > GbestFit(g+1)
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 best_response(g+1) = particle(best(g+1)).func_response;
 if (best_response(g+1) < MaxFit(g+1))
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 end

 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

 particle(partInd).posn=[round((Rmin + deltaR4)+

deltaR2*rand(1)) round(Cmin + (2*deltaC3)*rand(1))];

 209

 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))
round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,
 % so that the lower edge of the template would get out of

the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end
 else
 % if we didn't find a positive fittness value before the
 % 5th iteration that the region for deployment is
 % extended.
 % it helps in the cases, when the face region is not
 % located well
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

 particle(partInd).posn = [round(Rmin + deltaR*rand(1))

round(Cmin + (2*deltaC3)*rand(1))];
 particle(partInd).vel = [round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,
 % so that the lower edge of the template would get out of

the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 210

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthR2(I,particle(partInd).posn(1),particle(partInd).posn(2),dt,center,m
eanInt);

 particle(partInd).func_resp_prev =
particle(partInd).func_response;

 end
 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
 t=1;
 thresh_list=[];
 end % all particles updated...

 %...recording co-ordinates for display
 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end
% choose the best point
very_best_ones = find(GbestFit == max(GbestFit));
 very_best = very_best_ones(1);
 VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);
GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
 very_best_ones = find(GbestFit == max(GbestFit));
 very_best = very_best_ones(1);
 VeryBest = [VeryBest Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2)];
 GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
VeryBest = [VeryBest Gbest];

 211

Filename : mouth_fix.m
This used a neural network to check if the right and the left corner of the mouth are

located correctly, or else it reloacates the mouth corners to a more appropriate solution.

function a = mouth_fix(ml,mr,net)
% function looking at all found mouth coordinates and trying to decide
% which pair is the right one

% mr2 - ml1
vector = [(mr(3) - ml(1)) (mr(4) - ml(2))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
 display('1');
 a = [ml(1) ml(2) mr(3) mr(4)];
else
 %mr1 - ml2
 vector = [(mr(1) - ml(3)) (mr(2) - ml(4))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('2');
 a = [ml(3) ml(4) mr(1) mr(2)];
 else
 %mr3 - ml1
 vector = [(mr(5) - ml(1)) (mr(6) - ml(2))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('3');
 a = [ml(1) ml(2) mr(5) mr(6)];
 else
 %mr1 - ml3
 vector = [(mr(1) - ml(5)) (mr(2) - ml(6))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('4');
 a = [ml(5) ml(6) mr(1) mr(2)];
 else

 212

 %mr2 - ml2
 vector = [(mr(3) - ml(3)) (mr(4) - ml(4))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('5');
 a = [ml(3) ml(4) mr(3) mr(4)];
 else
 %mr3 - ml2
 vector = [(mr(5) - ml(3)) (mr(6) - ml(4))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('6');
 a = [ml(3) ml(4) mr(5) mr(6)];
 else
 %mr2 - ml3
 vector = [(mr(3) - ml(5)) (mr(4) - ml(6))];
 vector = vector';
 Y = sim(net,vector);
 if Y == [1;0]
 display('7');
 a = [ml(5) ml(6) mr(3) mr(4)];
 else
 display('Unable to fix the mouth points.');
 a = [ml(1) ml(2) mr(1) mr(2)];
 display(a);
 end
 end
 end
 end
 end
 end
end

% check if the choosen point lies within the matric dimension of the image
% this is important for the program not throw an error when the mouth is no
% located right, so that it keeps running and does not stop

if a(1) > 251
 a(1) = 250;
end

 213

if a(3) > 251
 a(3) = 250;
end

 214

Filename : getMouthLipsCoordinates.m
This locates the upper and lower lips.

function mouth_lips =

getMouthLipsCoordinates(Image1,mouth_corner_left,mouth_corner_right,dt,thresh_lips)

dif = floor(2 * (dt/3));
mid = mouth_corner_left(2) + floor((mouth_corner_right(2) -

mouth_corner_left(2)) / 2);

% Separet the estimated mouth region
Image_Mouth_Mean = Image1(mouth_corner_left(1) - floor(dt/3) :

mouth_corner_left(1) + dif, mouth_corner_left(2) : mouth_corner_right(2));

Image_Mouth = Image1(mouth_corner_left(1) - floor(dt/3) : mouth_corner_left(1)

+ dif, mid - floor(dt/10) : mid + floor(dt/10));

% convert mouth region into binary image with the threshold set to the 2/3
% of the mean intensity of whole region
level = mean2(Image_Mouth_Mean) / 255;
level = 0.8 * level * thresh_lips;
Image_Mouth_BW = im2bw(Image_Mouth,level);

% invert the colors
Image_Ones = ones(size(Image_Mouth));
Image_Mouth_BW = Image_Ones - Image_Mouth_BW;

% get a bounding box around the thresholded area
statsM = regionprops(Image_Mouth_BW,'BoundingBox');
cordMouth = [statsM.BoundingBox];

if numel(cordMouth) == 0
 display('Mouth lips were not located right. Setting default values...');
 default = ((mouth_corner_right(1) - mouth_corner_left(1)) / 2);
 cordMouth = [0 default 0 0];
end

%exrtact the corner points of mouth region
MouthRmin = mouth_corner_left(1) - floor(dt/3) + round(cordMouth(2));

 215

MouthRmax = mouth_corner_left(1) - floor(dt/3) +
round(cordMouth(2)+cordMouth(4));

% extracted coordinates of the midpoint of the lips
mouth_lips = [MouthRmin mouth_corner_left(2) + floor((mouth_corner_right(2) -

mouth_corner_left(2)) / 2) MouthRmax mouth_corner_left(2) +
floor((mouth_corner_right(2) - mouth_corner_left(2)) / 2)];

 216

Filename : Pso_nose.m
This is the particle swarm optimization algorithm used to locate the nose.

function [Gbest M] = Pso_nose(Rmin,Rmax,Cmin,Cmax,I,width, thresh_nose)

% PSO algorithm for extracting the nose midpoint coordinates

n=10;%no of particles
Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];
GbestFit = 0;
MaxFit = 0;
MaxCord = [0 0];
wi = 0.8; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold=400;
dt = floor(width/4);
center = Rmin + (Rmax - Rmin)/2.0;

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the nose is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaR4 = round((Rmax - Rmin) / 4);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

for i=1:n
 particle(i).posn=[round((Rmin + deltaR4)+ deltaR2*rand(1)) round((Cmin +

deltaC4) + deltaC2*rand(1))];

 217

 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1)) round(Vmin+(Vmax-
Vmin)*rand(1))];

 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 particle(i).func_resp_prev=particle(i).func_response;
end

% initiating values
bestfind = find([particle.func_response] == max([particle.func_response]));
best = bestfind(1);
Gbest=particle(best).posn;
GbestFit = particle(best).func_response;
MaxCord = Gbest;
best_response=particle(best).func_response;
MaxFit = best_response;

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22

 %Compute particles new position and velocities
 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit > 0)
 for i=1:n
 %set new velocities

particle(i).vel(1)=wi*particle(i).vel(1)+c1*rand(1)*(particle(i).Pbest(1)-
particle(i).posn(1))+ c2*rand(1)*(Gbest(1)-particle(i).posn(1));

particle(i).vel(2)=wi*particle(i).vel(2)+c1*rand(1)*(particle(i).Pbest(2)-
particle(i).posn(2))+ c2*rand(1)*(Gbest(2)-particle(i).posn(2));

 % set new position
 particle(i).posn(1)=round(particle(i).posn(1)+particle(i).vel(1));
 particle(i).posn(2)=round(particle(i).posn(2)+particle(i).vel(2));

 %checking if the solution lies within domain

 218

 if particle(i).posn(1) <Rmin || particle(i).posn(1) > Rmax ||
particle(i).posn(2) <Cmin || particle(i).posn(2) > Cmax

 particle(i).posn=particle(i).Pbest; % setting position to
previous P-best

 particle(i).vel=[rand(1)*Vmax rand(1)*Vmax]; %
setting velocity to max

 end
 %Calculating the function response for each particle with new
 %positions

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 %checking and updating Pbest
 if particle(i).func_response > particle(i).func_resp_prev
 particle(i).Pbest=particle(i).posn;
 end

 particle(i).func_resp_prev = particle(i).func_response;

 end
 V=[particle.func_response];
 best_ones=find(V==max(V));
 best=best_ones(1);

 %Gbest is a global best of all times
 %display(particle(best).func_response);
 if particle(best).func_response > GbestFit
 Gbest = particle(best).Pbest;
 GbestFit = particle(best).func_response;
 end
 best_response=particle(best).func_response;
 if (best_response < MaxFit)
 MaxCord = Gbest;
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for i=1:n
 particle(i).posn=[round((Rmin + deltaR4)+ deltaR2*rand(1))

round((Cmin + deltaC4) + deltaC2*rand(1))];

 219

 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))
round(Vmin+(Vmax-Vmin)*rand(1))];

 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 particle(i).func_resp_prev=particle(i).func_response;
 end
 else
 % if we didn't find a positive fittness value before the
 % fifth iteration that the region for deployment is
 % extended.
 % it helps in the cases, when the face region is not
 % located properly

 for i=1:n
 particle(i).posn=[round(Rmin + deltaR*rand(1)) round(Cmin +

deltaC*rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 particle(i).func_resp_prev=particle(i).func_response;
 end
 end
 best=max_position([particle.func_response]);
 Gbest=particle(best).posn;
 GbestFit = particle(best).func_response;
 MaxCord = Gbest;
 best_response=particle(best).func_response;
 MaxFit = best_response;
 t=1;
 thresh_list=[];

 end % all particles updated...

 % 2 - based on the mean value of func_response of all particles
 if mean([particle.func_response]) >= 1100;%threshold;
 ind = 1;
 end

 220

 %...recording co-ordinates for display

 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end

if itr == 22
 Gbest = MaxCord;
end

 221

Filename : cost_functionNose.m
This the cost function used to compute the fitness of the particle in the swarm looking for

the nose.

function y = cost_functionNose(I ,r ,c ,dtIn ,center, thresh_nose)
global Im;
Im = I;
global dt;
dt = dtIn;
global de;
de = floor(dt/8);
rt1 = r + floor(dt/2);
ct1 = c;
rt2 = rt1 + de;
ct2 = c;
rt3 = rt2 + de;
ct3 = c;
rt4 = rt3 + de;
ct4 = c;
K = 50;

y = Cc(r,c, thresh_nose) + CPos(r,center);
%///

function a = Cm(r,c)
global Im;
global dt;
Kc=0.2;
I1=double(Im((r-floor(dt/2)) : (r+ floor(dt/2)), (c-floor(dt/2)) : (c+

floor(dt/2))));
var1=sum(std(I1));
var2=sum(std(I1'));
a=Kc*(var1+var2);
%///

function a = CMean(r,c)
global Im;
global dt;
I1=double(Im((r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/6) : c +

floor(dt/6)));

 222

a = mean2(I1);
%///

function c=U(x)
% Unit step function..........
if x >=0
 c=1;
else
 c=0;
end
%///

function a=Cc(r,c, thresh_nose)
global dt;
global Im;
Kc=0;
a=0;

%mean intensity central area
uc = mean2(Im((r- floor(dt/10)):(r+ floor(dt/10)),(c- floor(dt/10)):(c+

floor(dt/10))));

%mean intensity of the region to the left
ul = mean2(Im(r : (r + floor(dt/4)),(c - floor(dt/2)):(c - floor(dt/4))));

%mean intensity of the region to the right
ur = mean2(Im(r : (r + floor(dt/4)),(c + floor(dt/4)):(c + floor(dt/2))));

% intensity of midpoint more than 200
if uc >= thresh_nose
 Kc=1.2*(uc - 200);
end
% left region brighter than 150
if ul >= (thresh_nose*0.75)
 a = a - 200;
end
% right region brighter than 150
if ur >= (thresh_nose*0.75)
 a = a - 200;
end
% difernce between midpoint and left region intensities is less than 50
if uc - ul < (0.25*thresh_nose)

 223

 a=a-200;
end
% difernce between midpoint and right point intensities is less than 50
if uc - ur < (0.25*thresh_nose)
 a=a-200;
end

a = Kc - ur - ul + 2*uc;
%///

function a = CPos(r,center)
% function saying the the higher the region is, the better.

a = 200 - 3 * abs(center - r);
%///

 224

Filename : getNoseCorners.m
This locates the nosetrils based upon the coordinates of the nose.

function nose_corners = getNoseCorners(nose,Image,dt,thresh_nostrils)

NoseCornerRmin = nose(1);
NoseCornerRmax = nose(1) + floor(dt/2);
NoseCornerCmin = nose(2) - floor(0.5 * dt);
NoseCornerCmax = nose(2) + floor(0.5 * dt);

% extract nose corners

deltaNose2 = floor((NoseCornerCmax - NoseCornerCmin) / 2);

Image_Nose_Left = Image(NoseCornerRmin : NoseCornerRmax, NoseCornerCmin :

NoseCornerCmin + deltaNose2);

% convert the left nose region into binary image with the threshold set
% to the 1/3 of the mean intensity of whole region
level = mean2(Image_Nose_Left) / 255;
level = (level / 3) * thresh_nostrils;
Image_NoseL_BW = im2bw(Image_Nose_Left,level);

% invert the colors
Image_Ones = ones(size(Image_Nose_Left));
Image_NoseL_BW = Image_Ones - Image_NoseL_BW;

% get a bounding box around the thresholded area
NoseL_Stat = bwlabel(Image_NoseL_BW);
statsNL = regionprops(NoseL_Stat,'BoundingBox');
cordNoseL = [statsNL.BoundingBox];

Image_Nose_Right = Image(NoseCornerRmin : NoseCornerRmax, NoseCornerCmin +

deltaNose2 : NoseCornerCmax);

% convert the l nose region into binary image with the threshold set
% to the 1/4 of the mean intensity of whole region
level = mean2(Image_Nose_Right) / 255;
level = (level / 3) * thresh_nostrils;
Image_NoseR_BW = im2bw(Image_Nose_Right,level);

 225

% invert the colors
Image_Ones = ones(size(Image_Nose_Right));
Image_NoseR_BW = Image_Ones - Image_NoseR_BW;

% get a bounding box around the thresholded area
NoseR_Stat = bwlabel(Image_NoseR_BW);
statsNR = regionprops(NoseR_Stat,'BoundingBox');
cordNoseR = [statsNR.BoundingBox];

if (numel(statsNR) == 0)
else
 offsetR = numel(statsNR) - 1;
end

% check if the nostrils were located right.
% 1) both of them were not found => use default values
% 2) one them was located ok => us the offset from the midpoint of the good
% one to estimate the other one.

left_ok = 1;
right_ok = 1;

if numel(cordNoseL) == 0
 cordNoseL = [((nose(2) - floor(dt/3)) - NoseCornerCmin) ((nose(1) +

floor(dt/4)) - NoseCornerRmin) 2 1];
 left_ok = 0;
end
if numel(cordNoseR) == 0
 cordNoseR = [((nose(2) + floor(dt/3)) - deltaNose2 - NoseCornerCmin)

((nose(1) + floor(dt/4)) - NoseCornerRmin) 1 1];
 offsetR = 0;
 right_ok = 0;
end

nose_corners = [floor(NoseCornerRmin + cordNoseL(2) + cordNoseL(4) / 2)

floor(NoseCornerCmin + cordNoseL(1)) floor(NoseCornerRmin + cordNoseR((4 * offsetR) +
2) + cordNoseR((4 * offsetR) + 4) / 2) floor(NoseCornerCmin + deltaNose2 +
cordNoseR((4 * offsetR) + 1) + cordNoseR((4 * offsetR) + 3))];

if (left_ok == 0) && (right_ok == 1)
 nose_corners(1) = nose_corners(3);

 226

 nose_corners(2) = nose(2) - (nose_corners(4) - nose(2));
 display('Left nostril was NOT located right. Estimated.');
end

if (left_ok == 1) && (right_ok == 0)
 nose_corners(3) = nose_corners(1);
 nose_corners(4) = nose(2) + (nose(2) - nose_corners(2));
 display('Right nostril was NOT located right. Estimated.');
end

if (left_ok == 0) && (right_ok == 0)
 display('Both nostrils were NOT located right. Just guess.');
end

 227

Filename : run2.m
This runs the feature location algorithm on the whole video sequence. It uses the features

from the previous frame as a reference for the next frame and does not locate the face in every

frame. This executed when “Test Video” button on the video toolbox is clicked.

function [Image_Points Image_Regions feature_points] = run2(Image, faceCoord,

feature_points, thresh, offset)

load 'MouthTF.mat';

feature_points = cell2mat(feature_points);

Image1 = Image;
Image2 = Image;
Image_Points = Image;

Rmin = faceCoord(1);
Rmax = faceCoord(2);
Cmin = faceCoord(3);
Cmax = faceCoord(4);
deltaRow = Rmax - Rmin;
deltaCol = Cmax - Cmin;

%Aproximate Left eye region
EyeLRmin = Rmin;
EyeLRmax = Rmin + round(deltaRow / 2);
EyeLCmin = Cmin;
EyeLCmax = Cmin + round(deltaCol / 2);

%Aproximate right eye region
EyeRRmin = Rmin;
EyeRRmax = Rmin + round(deltaRow / 2);
EyeRCmin = Cmin + round(deltaCol / 2);
EyeRCmax = Cmax;

%Aproximate left mouth half region
MouthLeftRmin = Rmin + round(deltaRow / 2);
MouthLeftRmax = Rmax;
MouthLeftCmin = Cmin;

 228

MouthLeftCmax = Cmin + round(deltaCol / 2);

%Aproximate left mouth half region
MouthRightRmin = Rmin + round(deltaRow / 2);
MouthRightRmax = Rmax;
MouthRightCmin = Cmin + round(deltaCol / 2);
MouthRightCmax = Cmax;

width = Cmax - Cmin;
dt = floor((Cmax - Cmin) / 4);

% check if the template can get out of the image while looking for the eye
if EyeRRmin < (dt / 2)
 EyeRRmin = round(dt / 2) + 1;
end

if EyeRCmax > (255 - (dt / 2))
 EyeRCmax = 255 - round(dt / 2) + 1;
end;

border = Cmax - round(deltaCol / 8);
display('finding right eye cordinates......');
right_eye = Pso2_eye_run(EyeRRmin,EyeRRmax,EyeRCmin,EyeRCmax,Image,width,1,

border, feature_points(1,:), thresh);

Image_Points(right_eye(1), (right_eye(2) - 5): (right_eye(2) + 5)) = 256;
Image_Points((right_eye(1) - 5): (right_eye(1) + 5), right_eye(2)) = 256;

% check if the right eyebrow is getting closer to the right eye, if yes then

lower
% the region where we are looking for the inner corner of the right eye.
% => this should prevent the algorithm from locating the inner corner of

eyebrows
% instead of the inner corner of eyes.

threshold_Eb2E = (3*dt/4);
right_eb_low = 0;

if (feature_points(1,1) - feature_points(4,1)) < threshold_Eb2E
 right_eb_low = 1;
 display('Right eyebrow lowered.');
end

 229

% call function to extract the coordinates of corners of the right eye
display('finding right eye corners cordinates......');
right_eye_corners = getRightEyeCorners2(right_eye,Image2,dt,

right_eb_low,thresh.eyeIn);

right_eye_in_corner = [right_eye_corners(1) right_eye_corners(2)];
right_eye_out_corner = [right_eye_corners(3) right_eye_corners(4)];

Image_Points(right_eye_in_corner(1), (right_eye_in_corner(2) - 5):

(right_eye_in_corner(2) + 5))=256;
Image_Points((right_eye_in_corner(1) - 5): (right_eye_in_corner(1) + 5),

right_eye_in_corner(2))=256;

Image_Points(right_eye_out_corner(1), (right_eye_out_corner(2) - 5):

(right_eye_out_corner(2) + 5))=256;
Image_Points((right_eye_out_corner(1) - 5): (right_eye_out_corner(1) + 5),

right_eye_out_corner(2))=256;

%extracting right eyebrow region coordinates
EyebrowRRmin = right_eye(1) - floor(1.5 * dt);
EyebrowRRmax = right_eye(1) - floor(0.45 * dt);
EyebrowRCmin = right_eye(2) - floor(dt/4);
EyebrowRCmax = right_eye(2) + floor(dt/2);

% check if the eyebrow template can get out of the image when searching
% for the eyebrow
if EyebrowRRmin < round(dt/2)
 EyebrowRRmin = round(dt/2) + 1;
end

display('finding right eyebrow cordinates......');
right_eyebrow = Pso_eyebrow_run2(EyebrowRRmin, EyebrowRRmax, EyebrowRCmin,

EyebrowRCmax, Image, width, feature_points(4,:), right_eye, 1, offset);

Image_Points(right_eyebrow(1), (right_eyebrow(2) - 5): (right_eyebrow(2) +

5))=256;
Image_Points((right_eyebrow(1) - 5): (right_eyebrow(1) + 5),

right_eyebrow(2))=256;

% call a function to extract the coordinates of the inner corner of the

 230

% right eyebrow

display('finding right eyebrow inner corner cordinates......');
right_eyebrow_corner =

getRightEyebrowCorner(right_eyebrow,Image2,dt,thresh.ebCorner);

Image_Points(right_eyebrow_corner(1), (right_eyebrow_corner(2) - 5):

(right_eyebrow_corner(2) + 5))=256;
Image_Points((right_eyebrow_corner(1) - 5): (right_eyebrow_corner(1) + 5),

right_eyebrow_corner(2))=256;

% check if the template can get out of the image while looking for the eye

if EyeLRmin < (dt / 2)
 EyeLRmin = round(dt / 2) + 1;
end

if EyeLCmin > (dt / 2)
 EyeLCmin = round(dt / 2) + 1;
end;

border = Cmin + round(deltaCol / 8);
display('finding left eye cordinates......');
left_eye =

Pso2_eye_run(EyeLRmin,EyeLRmax,EyeLCmin,EyeLCmax,Image,width,0,border,
feature_points(6,:), thresh);

Image_Points(left_eye(1), (left_eye(2) - 5): (left_eye(2) + 5))=256;
Image_Points((left_eye(1) - 5): (left_eye(1) + 5), left_eye(2))=256;

% check if the right eyebrow is getting closer to the right eye, if yes then

lower
% the region where we are looking for the inner corner of the right eye.
% => this should prevent the algorithm from locating the inner corner of

eyebrows
% instead of the inner corner of eyes.

threshold_Eb2E = (3*dt/4);
left_eb_low = 0;

if (feature_points(6,1) - feature_points(9,1)) < threshold_Eb2E
 left_eb_low = 1;

 231

 display('Left eyebrow lowered.');
end

% call function to extract the coordinates of corners of the left eye

display('finding left eye corners cordinates......');
left_eye_corners = getLeftEyeCorners2(left_eye,Image2,dt,left_eb_low,

thresh.eyeIn);

left_eye_in_corner = [left_eye_corners(1) left_eye_corners(2)];
left_eye_out_corner = [left_eye_corners(3) left_eye_corners(4)];

Image_Points(left_eye_in_corner(1), (left_eye_in_corner(2) - 5):

(left_eye_in_corner(2) + 5))=256;
Image_Points((left_eye_in_corner(1) - 5): (left_eye_in_corner(1) + 5),

left_eye_in_corner(2))=256;

Image_Points(left_eye_out_corner(1), (left_eye_out_corner(2) - 5):

(left_eye_out_corner(2) + 5))=256;
Image_Points((left_eye_out_corner(1) - 5): (left_eye_out_corner(1) + 5),

left_eye_out_corner(2))=256;

%extracting left eyebrow region coordinates
EyebrowLRmin = left_eye(1) - floor(1.5 * dt);
EyebrowLRmax = left_eye(1) - floor(0.45 * dt);
EyebrowLCmin = left_eye(2) - floor(dt/2);
EyebrowLCmax = left_eye(2) + floor(dt/4);

% check if the eyebrow template can get out of the image when searching
% for the eyebrow
if EyebrowLRmin < round(dt/2)
 EyebrowLRimn = round(dt/2) + 1;
end

display('finding left eyebrow cordinates......');
left_eyebrow = Pso_eyebrow_run2(EyebrowLRmin,EyebrowLRmax,EyebrowLCmin,

EyebrowLCmax, Image, width, feature_points(9,:), left_eye,0, offset);

display('finding left eyebrow inner corner cordinates......');
left_eyebrow_corner =

getLeftEyebrowCorner(left_eyebrow,Image2,dt,thresh.ebCorner);

 232

Image_Points(left_eyebrow_corner(1), (left_eyebrow_corner(2) - 5):

(left_eyebrow_corner(2) + 5))=256;
Image_Points((left_eyebrow_corner(1) - 5): (left_eyebrow_corner(1) + 5),

left_eyebrow_corner(2))=256;

Image_Points(left_eyebrow(1), (left_eyebrow(2) - 5): (left_eyebrow(2) +

5))=256;
Image_Points((left_eyebrow(1) - 5): (left_eyebrow(1) + 5),

left_eyebrow(2))=256;

center = left_eye(2);

% check if the template for mouth corner can get out of the image.
if MouthLeftRmax > (255 - dt/2)
 MouthLeftRmax = round(255 - dt/2) + 1;
end

display('finding left mouth cordinates......');
mouth_left = Pso2_mouth_left_run(MouthLeftRmin, MouthLeftRmax, MouthLeftCmin,

MouthLeftCmax, Image, center,feature_points(11,:), thresh);

mouth_corner_left = mouth_left(1:2);

center = right_eye(2);

% check if the template for mouth corner can get out of the image.
if MouthRightRmax > (255 - dt/2)
 MouthRightRmax = round(255 - dt/2) + 1;
end

display('finding right mouth cordinates......');
mouth_right = Pso2_mouth_right_run(MouthRightRmin, MouthRightRmax,

MouthRightCmin, MouthRightCmax, Image, center,feature_points(12,:));

mouth_corner_right = mouth_right(1:2);
vector = [(mouth_corner_right(1) - mouth_corner_left(1)) (mouth_corner_right(2)

- mouth_corner_left(2))]';

% using neural network to analyze if the mouth corners were located right
% if not, then we look at other combinations of the rest of the located
% mouth corner points

 233

Y = sim(net,vector);

if Y == [1;0]
 display('Mouth corners located successfully.');

 Image_Points(mouth_corner_left(1), (mouth_corner_left(2) - 5):

(mouth_corner_left(2) + 5)) = 256;
 Image_Points((mouth_corner_left(1) - 5): (mouth_corner_left(1) + 5),

mouth_corner_left(2)) = 256;

 Image_Points(mouth_corner_right(1), (mouth_corner_right(2) - 5):

(mouth_corner_right(2) + 5)) = 256;
 Image_Points((mouth_corner_right(1) - 5): (mouth_corner_right(1) + 5),

mouth_corner_right(2)) = 256;

else
 display('Mouth corners were NOT located successfully.');
 display('Fixing it...');
 mvec = mouth_fix(mouth_left,mouth_right,net);
 mouth_corner_left = mvec(1:2);
 mouth_corner_right = mvec(3:4);

 Image_Points(mouth_corner_left(1), (mouth_corner_left(2) - 5):

(mouth_corner_left(2) + 5)) = 256;
 Image_Points((mouth_corner_left(1) - 5): (mouth_corner_left(1) + 5),

mouth_corner_left(2)) = 256;

 Image_Points(mouth_corner_right(1), (mouth_corner_right(2) - 5):

(mouth_corner_right(2) + 5)) = 256;
 Image_Points((mouth_corner_right(1) - 5): (mouth_corner_right(1) + 5),

mouth_corner_right(2)) = 256;
end

display('finding mouth lips cordinates......');
mouth_Lips =

getMouthLipsCoordinates(Image1,mouth_corner_left,mouth_corner_right,dt,thresh.lips);

% extracted coordinates of the midpoint of the upper lip
mouth_lip_upper = [mouth_Lips(1) mouth_Lips(2)];
mouth_lip_lower = [mouth_Lips(3) mouth_Lips(4)];

 234

Image_Points(mouth_lip_upper(1), (mouth_lip_upper(2) - 5): (mouth_lip_upper(2)
+ 5))=256;

Image_Points((mouth_lip_upper(1) - 5): (mouth_lip_upper(1) + 5),
mouth_lip_upper(2))=256;

Image_Points(mouth_lip_lower(1), (mouth_lip_lower(2) - 5): (mouth_lip_lower(2)

+ 5))=256;
Image_Points((mouth_lip_lower(1) - 5): (mouth_lip_lower(1) + 5),

mouth_lip_lower(2))=256;

%extracting the nose region coordinates

% check whether the upper lip was located right - must be above the corners
% of mouth

midpoint = floor((mouth_corner_left(1) + mouth_corner_right(1)) / 2);

if (mouth_lip_upper(1) < midpoint)
 upper_lip = mouth_lip_upper(1);
else
 display('Mouth upper lip was not located successfully.');
 upper_lip = midpoint - floor(dt / 2);
end

% extract vector of the eye movement and use it for navigating the nose PSO

eye_move_now = mean([left_eye(1),right_eye(1)]);
eye_move_prev = mean([feature_points(1,1),feature_points(6,1)]);

eye_move_vector = round(eye_move_prev - eye_move_now);

NoseRmin = upper_lip - floor(1.5 * dt);
NoseRmax = upper_lip - floor(dt / 4);
NoseCmin = mouth_lip_upper(2) - floor(0.75 * dt);
NoseCmax = mouth_lip_upper(2) + floor(0.75 * dt);

display('finding nose cordinates......');
nose =

Pso_nose_run_vector(NoseRmin,NoseRmax,NoseCmin,NoseCmax,Image2,width,feature_points(15
,:),eye_move_vector, thresh.nose);

Image_Points(nose(1), (nose(2) - 5): (nose(2) + 5))=256;

 235

Image_Points((nose(1) - 5): (nose(1) + 5),nose(2))=256;

display('finding nostril cordinates......');
nose_corners = getNoseCorners(nose,Image2,dt,thresh.nosetril);

Image_Points(nose_corners(1), (nose_corners(2) - 5): (nose_corners(2) +

5))=256;
Image_Points((nose_corners(1) - 5): (nose_corners(1) +

5),nose_corners(2))=256;

Image_Points(nose_corners(3), (nose_corners(4) - 5): (nose_corners(4) +

5))=256;
Image_Points((nose_corners(3) - 5): (nose_corners(3) +

5),nose_corners(4))=256;

Image_Regions = Image_Points;

% visualization of the feature regions
Image_Regions(Rmin, Cmin:Cmax) = 256;
Image_Regions(Rmax, Cmin:Cmax) = 256;
Image_Regions(Rmin:Rmax, Cmin) = 256;
Image_Regions(Rmin:Rmax, Cmax) = 256;
Image_Regions(Rmin + round(deltaRow / 2), Cmin:Cmax) = 256;
Image_Regions(Rmin:Rmax, Cmin + round(deltaCol / 2)) = 256;

%left eye subregion
Image_Regions(Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +

round(deltaCol / 8)) = 256;
Image_Regions(Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +

3*round(deltaCol / 8)) = 256;
Image_Regions(Rmin + round(deltaRow / 3), Cmin + round(deltaCol / 8) : Cmin +

3*round(deltaCol / 8)) = 256;

%right eye subregion
Image_Regions(Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +

5*round(deltaCol / 8)) = 256;
Image_Regions(Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +

7*round(deltaCol / 8)) = 256;
Image_Regions(Rmin + round(deltaRow / 3), Cmin + 5*round(deltaCol / 8) : Cmin +

7*round(deltaCol / 8)) = 256;

%left mouth subregion

 236

Image_Regions(Rmin + 5*round(deltaRow / 8) : Rmin + 7*round(deltaRow / 8), Cmin
+ round(deltaCol / 6)) = 256;

Image_Regions(Rmin + 5*round(deltaRow / 8), Cmin + round(deltaCol / 6): Cmin +
round(deltaCol / 2)) = 256;

Image_Regions(Rmin + 7*round(deltaRow / 8), Cmin + round(deltaCol / 6): Cmin +
round(deltaCol / 2)) = 256;

%right mouth subregion
Image_Regions(Rmin + 5*round(deltaRow / 8) : Rmin + 7*round(deltaRow / 8), Cmin

+ 5*round(deltaCol / 6)) = 256;
Image_Regions(Rmin + 5*round(deltaRow / 8), Cmin + round(deltaCol / 2): Cmin +

5*round(deltaCol / 6)) = 256;
Image_Regions(Rmin + 7*round(deltaRow / 8), Cmin + round(deltaCol / 2): Cmin +

5*round(deltaCol / 6)) = 256;

% vector with coordinates of all feature points
feature_points = [right_eye; right_eye_in_corner; right_eye_out_corner;

right_eyebrow; right_eyebrow_corner; left_eye; left_eye_in_corner;
left_eye_out_corner; left_eyebrow; left_eyebrow_corner; mouth_corner_left;
mouth_corner_right; mouth_lip_upper; mouth_lip_lower; nose; nose_corners(1:2);
nose_corners(3:4)];

end

 237

Filename : Pso2_eye_run.m
This is the particle swarm optimization algorithm used to locate the eyes while testing the

whole video sequence.

function [VeryBest]=Pso2_eye_run(Rmin,Rmax,Cmin,Cmax,I,width, side,border,

prev_eye, thresh)

n = 10; % number of particles
group = 1; % number of groups
% particle = zeros(8, n*group);
Vmax= 5; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;
dt = floor(width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR3 = round((Rmax - Rmin) / 3);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);
deltaC = Cmax - Cmin;

deltaRunR = 5; % round(dt/5);
deltaRunC = 5; % round(dt/8);

% initializing particles in all groups

 238

for g = 0:(group - 1)
 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((prev_eye(1) - deltaRunR) + 2*deltaRunR

* rand(1)) round((prev_eye(2) - deltaRunC) + 2*deltaRunC * rand(1))];
 particle(partInd).vel = [round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_function7subReg(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,side,border, thresh.eye, thresh.lighting);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
end

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22
 %Compute particles new position and velocities

 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 for g = 0:(group-1)
 if (GbestFit(g+1) > 0)
 %In each group

 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe

 239

st(1) - particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

particle(partInd).vel(2)=wi*particle(partInd).vel(2)+c1*rand(1)*(particle(partInd).Pbe
st(2) - particle(partInd).posn(2))+ c2*rand(1)*(Gbest(2*g + 2)-
particle(partInd).posn(2));

particle(partInd).posn(1)=round(particle(partInd).posn(1)+particle(partInd).vel(1));

particle(partInd).posn(2)=round(particle(partInd).posn(2)+particle(partInd).vel(2));

 %checking if the solution lies within domain
 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)

> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax
 particle(partInd).posn = particle(partInd).Pbest; %

setting position to previous P-best
 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];

% setting velocity to max
 end

 %Calculating the function response for each particle with new
 %positions

particle(partInd).func_response=cost_function7subReg(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,side, border, thresh.eye, thresh.lighting);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end
 particle(partInd).func_resp_prev =

particle(partInd).func_response;
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 % Gbest is a global best of all times
 % display(particle(best(g+1)).func_response);

 240

 if particle(best(g+1)).func_response > GbestFit(g+1)
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 22)

 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((prev_eye(1) - deltaRunR) +

2*deltaRunR * rand(1)) round((prev_eye(2) - deltaRunC) + 2*deltaRunC * rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_function7subReg(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,side,border, thresh.eye, thresh.lighting);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 thresh_list=[];
 end % all particles updated...
 end
 %...recording co-ordinates for display

 itr = itr+1;
end
% choose the best point
 very_best_ones = find(GbestFit == max(GbestFit(1:group)));
 very_best = very_best_ones(1);
 VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);

 241

Filename : getRightEyeCorners2.m
This extracts the corner coordinates of the eyes while testing the complete video

sequence.

function right_eye_corners =

getRightEyeCorners2(right_eye,Image,dt,right_eb_low,thresh_eyeInner)

if right_eb_low == 0
 EyeRegionRRmin = right_eye(1) - floor(dt/5);
else
 EyeRegionRRmin = right_eye(1);
end
EyeRegionRRmax = right_eye(1) + floor(dt/4);
EyeRegionRCmin = right_eye(2) - floor(dt / 2);
EyeRegionRCmax = right_eye(2) + floor(2 * (dt/3));

%estimated eye region
Image_Eye = Image(EyeRegionRRmin : EyeRegionRRmax, EyeRegionRCmin :

EyeRegionRCmax);

% convert the right eye region into binary image with the threshold set
% to the 1/2 of the mean intensity of whole region
level = mean2(Image_Eye) / 255;
level = (0.8 * level) * thresh_eyeInner;
Image_Eye_BW = im2bw(Image_Eye,level);

% invert the colors
Image_Ones = ones(size(Image_Eye));
Image_Eye_BW = Image_Ones - Image_Eye_BW;

% get a bounding box around the thresholded area
statsE = regionprops(Image_Eye_BW,'BoundingBox');
cordEye = [statsE.BoundingBox];

% get a region aroud the inner corner of the right eyebrow
Image_Eye_Corner_In_BW = Image_Eye_BW(1 : (EyeRegionRRmax - EyeRegionRRmin),

ceil(cordEye(1)) : ceil(cordEye(1) + 1));

Eye_Corner_In_Stat = bwlabel(Image_Eye_Corner_In_BW);
statsEIC = regionprops(Eye_Corner_In_Stat,'BoundingBox');
cordEyeInCorner = [statsEIC.BoundingBox];

 242

% get a region aroud the outter corner of the right eye
Image_Eye_Corner_Out_BW = Image_Eye_BW(1 : (EyeRegionRRmax - EyeRegionRRmin),

floor(cordEye(1) + cordEye(3) -1) : floor(cordEye(1) + cordEye(3)));

Eye_Corner_Out_Stat = bwlabel(Image_Eye_Corner_Out_BW);
statsEOC = regionprops(Eye_Corner_Out_Stat,'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned
%and an error is reported

if numel(cordEyeOutCorner) == 0
 cordEyeOutCorner = [0 (right_eye(2) - EyeRegionRRmin) + round(dt / 4) 0 0];
 display('Outer corner of the right eye was not located right...');
end

if numel(cordEyeInCorner) == 0
 cordEyeInCorner = [0 (right_eye(2) - EyeRegionRRmin) - round(dt / 4) 0 0];
 display('Inner corner of the right eye was not located right...');
end

right_eye_corners = [floor(EyeRegionRRmin + cordEyeInCorner(2) +

cordEyeInCorner(4) / 2) floor(EyeRegionRCmin + cordEye(1)) floor(EyeRegionRRmin +
cordEyeOutCorner(2) + cordEyeOutCorner(4) / 2) floor(EyeRegionRCmin + cordEye(1) +
cordEye(3))];

 243

Filename : Pso_eyebrow_run2.m
This is the particle swarm optimization algorithm used to locate the eyebrow while

testing the whole video sequence.

 function [Gbest M]=Pso_eyebrow_run2(Rmin, Rmax, Cmin, Cmax, I, width,

prev_eyebrow, eye,side, offset)
% PSO algorithm for extracting the eyebrow coordinates
% variation of PSO_eyebrow_run, it looks for the eye only in a tiny region
% which is always at the same ofset from the eye as was at the test image

n=10;%no of particles
Vmax= 5; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];
GbestFit = 0;
MaxFit = 0;
MaxCord = [0 0];
wi = 0.8; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold=400;
dt = floor(width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

deltaRun = 10;

% get coordinates of the expected eyebrow region
if side == 0
 midP = eye(2) - offset.EBL;

 244

else
 midP = eye(2) - offset.EBR;
end

% get coordinates of the lower border of the eyebrow region. This should
% prevent the PSO looking for eyebrow get confused by the eye, when
% eyebrows are lowered close to the eyes

lowerEdge = eye(1) - round(dt/3);

if abs(prev_eyebrow(2) - midP) > (dt/2)
 prev_eyebrow(1) = eye(1) - round(dt/2);
 display('prev_eyebrow was not used');
end

% check if the previous eyebrow does not lie too close to the current eye.
% if this true, then it is likely that there was a big movement of the
% eyebrow or of the whole head. Therefore we will estimate the position of
% the eyebrow and won't use the value of the previous eyebrow (it probably
% lies within the current eye region)

if (prev_eyebrow(1) > lowerEdge)
 eyeBR = lowerEdge - round(dt/3);
 display('Too big movement of eye was detected. Eyebrow moved upwards.');
else
 eyeBR = prev_eyebrow(1);
end

for i=1:n
 posR = (eyeBR - deltaRun) + 2*deltaRun * rand(1);
 if posR > lowerEdge
 posR = lowerEdge - round(dt/5);
 end
 particle(i).posn=[round(posR) round((midP - 1) + rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1)) round(Vmin+(Vmax-

Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 particle(i).func_resp_prev=particle(i).func_response;
end

 245

% initiating values
bestfind = find([particle.func_response] == max([particle.func_response]));
best = bestfind(1);
Gbest=particle(best).posn;
GbestFit = particle(best).func_response;
MaxCord = Gbest;
best_response=particle(best).func_response;
MaxFit = best_response;

itr=1;
t=1;
converge = 1;
thresh_list=[];

while ind == 0 && itr < 22

 %Compute particles new position and velocities
 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit > 0)
 for i=1:n

particle(i).vel(1)=wi*particle(i).vel(1)+c1*rand(1)*(particle(i).Pbest(1)-
particle(i).posn(1)) + c2*rand(1)*(Gbest(1)-particle(i).posn(1));

 particle(i).vel(2)=wi*particle(i).vel(2) +
c1*rand(1)*(particle(i).Pbest(2) - particle(i).posn(2)) + c2*rand(1)*(Gbest(2)-
particle(i).posn(2));

 % set new position
 % if possible move only in the column around the expected
 % eyebrow point
 particle(i).posn(1) =

round(particle(i).posn(1)+particle(i).vel(1));

 if converge == 1
 particle(i).posn(2) = midP;
 else

particle(i).posn(2)=round(particle(i).posn(2)+particle(i).vel(2));
 end

 246

 %checking if the solution lies within domain
 if particle(i).posn(1) < Rmin || particle(i).posn(1) > Rmax ||

particle(i).posn(2) < Cmin || particle(i).posn(2) > Cmax
 particle(i).posn=particle(i).Pbest; % setting position to

previous P-best
 particle(i).vel=[rand(1)*Vmax rand(1)*Vmax]; %

setting velocity to max
 end
 %Calculating the function response for each particle with new
 %positions

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 %checking and updating Pbest
 if particle(i).func_response > particle(i).func_resp_prev
 particle(i).Pbest=particle(i).posn;
 end

 particle(i).func_resp_prev = particle(i).func_response;

 end

 V=[particle.func_response];
 best_ones=find(V==max(V));
 best=best_ones(1);

 %Gbest is a global best of all times
 %display(particle(best).func_response);
 if particle(best).func_response > GbestFit
 Gbest = particle(best).Pbest;
 GbestFit = particle(best).func_response;
 end
 best_response=particle(best).func_response;
 if (best_response < MaxFit)
 MaxCord = Gbest;
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 22)
 for i=1:n
 posR = (eyeBR - deltaRun) + 2*deltaRun * rand(1);

 247

 if posR > lowerEdge
 posR = lowerEdge;
 end
 particle(i).posn=[round(posR) round((midP - 1) + rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionEyebrow(I,particle(i).posn(1),particle(i).posn(
2),dt);

 particle(i).func_resp_prev=particle(i).func_response;
 end
 end
 bestfind = find([particle.func_response] ==

max([particle.func_response]));
 best = bestfind(1);
 Gbest=particle(best).posn;
 GbestFit = particle(best).func_response;
 MaxCord = Gbest;
 best_response=particle(best).func_response;
 MaxFit = best_response;
 t=1;
 thresh_list=[];
 end % all particles updated...

 % 2 - based on the mean value of func_response of all particles
 if mean([particle.func_response]) >= 1100;%threshold;
 ind = 1;
 end

 %...recording co-ordinates for display
 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end

if converge == 0
 display ('Did not converged. Region enlarged');
else
 display('Eyebrow was located at the defined offset');

 248

end

if itr == 22
 Gbest = MaxCord;
end

 249

Filename : getLeftEyeCorners2.m
This locates the corners of left eye while testing the complete video sequence.

function left_eye_corners =

getLeftEyeCorners2(left_eye,Image,dt,left_eb_low,thresh_eyeInner)

if left_eb_low == 0
 EyeRegionLRmin = left_eye(1) - floor(dt/5);
else
 EyeRegionLRmin = left_eye(1);
end
EyeRegionLRmax = left_eye(1) + floor(dt/4);
EyeRegionLCmin = left_eye(2) - floor(2 * (dt/3));
EyeRegionLCmax = left_eye(2) + floor(dt / 2);

Image_Eye = Image(EyeRegionLRmin : EyeRegionLRmax, EyeRegionLCmin :

EyeRegionLCmax);

% convert the left eye region into binary image with the threshold set
% to the mean intensity of whole region
level = mean2(Image_Eye) / 255;
level = (0.8 * level) * thresh_eyeInner;
Image_Eye_BW = im2bw(Image_Eye,level);

% invert the colors
Image_Ones = ones(size(Image_Eye));
Image_Eye_BW = Image_Ones - Image_Eye_BW;

% get a bounding box around the thresholded area
statsE = regionprops(Image_Eye_BW,'BoundingBox');
cordEye = [statsE.BoundingBox];

% get a region aroud the inner corner of the left eye
Image_Eye_Corner_In_BW = Image_Eye_BW(1 : (EyeRegionLRmax - EyeRegionLRmin),

floor(cordEye(1) + cordEye(3) - 1) : floor(cordEye(1)) + cordEye(3));

Eye_Corner_In_Stat = bwlabel(Image_Eye_Corner_In_BW);
statsEIC = regionprops(Eye_Corner_In_Stat,'BoundingBox');
cordEyeInCorner = [statsEIC.BoundingBox];

 250

% get a region aroud the outter corner of the left eye
Image_Eye_Corner_Out_BW = Image_Eye_BW(1 : (EyeRegionLRmax - EyeRegionLRmin),

ceil(cordEye(1)) : ceil(cordEye(1) + 1));

Eye_Corner_Out_Stat = bwlabel(Image_Eye_Corner_Out_BW);
statsEOC = regionprops(Eye_Corner_Out_Stat,'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned
%and an error is reported

if numel(cordEyeOutCorner) == 0
 cordEyeOutCorner = [0 left_eye(2) - round(dt / 4) 0 0];
 display('Outer corner of the left eye was not located right...');
end

if numel(cordEyeInCorner) == 0
 cordEyeInCorner = [0 left_eye(2) + round(dt / 4) 0 0];
 display('Inner corner of the left eye was not located right...');
end

left_eye_corners = [floor(EyeRegionLRmin + cordEyeInCorner(2) +

cordEyeInCorner(4) / 2) floor(EyeRegionLCmin + cordEye(1) + cordEye(3))
floor(EyeRegionLRmin + cordEyeOutCorner(2) + cordEyeOutCorner(4) / 2)
floor(EyeRegionLCmin + cordEye(1))];

 251

Filename : Pso2_mouth_left_run.m
This is the particle swarm optimization algorithm used to locate the left corner of the

mouth while testing the whole video sequence.

function [VeryBest]=Pso2_mouth_left_run(Rmin, Rmax, Cmin, Cmax, I, center,

prev_left_mouth, thresh)

n = 10; % number of particles
group = 3; % number of groups
% particle = zeros(8, n*group);
Vmax= 8; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
MaxFit = [0 0 0];
MaxCord = [0 0 0 0 0 0];
best_response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;

Rmin = prev_left_mouth(1) - 20;
Rmax = prev_left_mouth(1) + 20;
Cmin = prev_left_mouth(2) - 20;
Cmax = prev_left_mouth(2) + 20;

dt = floor((Cmax - Cmin)/2);
meanInt = mean2(I(Rmin:Rmax,Cmin:Cmax));

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

 252

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

deltaRun = 5; % round(dt/4);

% initializing particles in all groups
for g = 0:(group - 1)
 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((prev_left_mouth(1) - deltaRun) +

2*deltaRun * rand(1)) round((prev_left_mouth(2) - deltaRun) + 2*deltaRun * rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge of the

image,
 % so that the lower edge of the template would get out of the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh.lips);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
end

 253

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22
 %Compute particles new position and velocities

 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit(g+1) > 0)
 %In each group
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe
st(1) - particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

particle(partInd).vel(2)=wi*particle(partInd).vel(2)+c1*rand(1)*(particle(partInd).Pbe
st(2) - particle(partInd).posn(2))+ c2*rand(1)*(Gbest(2*g + 2)-
particle(partInd).posn(2));

particle(partInd).posn(1)=round(particle(partInd).posn(1)+particle(partInd).vel(1));

particle(partInd).posn(2)=round(particle(partInd).posn(2)+particle(partInd).vel(2));

 % check if the particle isn't too close to the lower edge of

the image,
 % so that the lower edge of the template would get out of the

bounds.
 % this check might be together with the following check of

particle
 % position
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 %checking if the solution lies within domain

 254

 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)
> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax

 particle(partInd).posn = particle(partInd).Pbest; %
setting position to previous P-best

 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];
% setting velocity to max

 end

 %Calculating the function response for each particle with new
 %positions

particle(partInd).func_response=cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh.lips);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end

 particle(partInd).func_resp_prev =

particle(partInd).func_response;

 end
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 %Gbest is a global best of all times
 if particle(best(g+1)).func_response > GbestFit(g+1)
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 best_response(g+1) = particle(best(g+1)).func_response;
 if (best_response(g+1) < MaxFit(g+1))
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds

 255

 if (itr < 22)
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((prev_left_mouth(1) -

deltaRun) + 2*deltaRun * rand(1)) round((prev_left_mouth(2) - deltaRun) + 2*deltaRun *
rand(1))];

 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))
round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,
 % so that the lower edge of the template would get out of

the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_functionMouthL2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt, thresh.lips);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
 t=1;
 thresh_list=[];

 end % all particles updated...

 %...recording co-ordinates for display

 256

 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end
% choose the best point
very_best_ones = find(GbestFit == max(GbestFit));
very_best = very_best_ones(1);
VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);
GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
very_best_ones = find(GbestFit == max(GbestFit));
very_best = very_best_ones(1);
VeryBest = [VeryBest Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2)];
GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
VeryBest = [VeryBest Gbest];

 257

Filename : Pso2_mouth_right_run.m
This is the particle swarm optimization algorithm used to locate the eyes while testing the

whole video sequence.

function [VeryBest M]=Pso2_mouth_right_run(Rmin, Rmax, Cmin, Cmax, I, center,

prev_right_mouth)

n = 10; % number of particles
group = 3; % number of groups
Vmax= 8; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0];
GbestFit = [0 0 0];
MaxFit = [0 0 0];
MaxCord = [0 0 0 0 0 0];
best_response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold = 400;
dt = floor((Cmax - Cmin)/2);
meanInt = mean2(I(Rmin:Rmax,Cmin:Cmax));

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

 258

deltaRun = round(dt/4);

% initializing particles in all groups
for g = 0:(group - 1)
 for i = 1:n
 partInd = g*n + i;
 particle(partInd).posn=[round((prev_right_mouth(1) - deltaRun) +

2*deltaRun * rand(1)) round((prev_right_mouth(2) - deltaRun) + 2*deltaRun * rand(1))];
 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge of the

image,
 % so that the lower edge of the template would get out of the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

 particle(partInd).func_resp_prev = particle(partInd).func_response;
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
end

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22

 259

 %Compute particles new position and velocities

 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.
 if (GbestFit(g+1) > 0)
 %In each group
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

particle(partInd).vel(1)=wi*particle(partInd).vel(1)+c1*rand(1)*(particle(partInd).Pbe
st(1) - particle(partInd).posn(1))+ c2*rand(1)*(Gbest(2*g + 1)-
particle(partInd).posn(1));

particle(partInd).vel(2)=wi*particle(partInd).vel(2)+c1*rand(1)*(particle(partInd).Pbe
st(2) - particle(partInd).posn(2))+ c2*rand(1)*(Gbest(2*g + 2)-
particle(partInd).posn(2));

particle(partInd).posn(1)=round(particle(partInd).posn(1)+particle(partInd).vel(1));

particle(partInd).posn(2)=round(particle(partInd).posn(2)+particle(partInd).vel(2));

 % check if the particle isn't too close to the lower edge of

the image,
 % so that the lower edge of the template would get out of the

bounds.
 % this check might be together with the following check of

particle
 % position
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 %checking if the solution lies within domain
 if particle(partInd).posn(1) <Rmin || particle(partInd).posn(1)

> Rmax || particle(partInd).posn(2) <Cmin || particle(partInd).posn(2) > Cmax
 particle(partInd).posn = particle(partInd).Pbest; %

setting position to previous P-best
 particle(partInd).vel=[rand(1)*Vmax rand(1)*Vmax];

% setting velocity to max
 end

 260

 %Calculating the function response for each particle with new
 %positions

particle(partInd).func_response=cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

 %checking and updating Pbest
 if particle(partInd).func_response >

particle(partInd).func_resp_prev
 particle(partInd).Pbest = particle(partInd).posn;
 end

 particle(partInd).func_resp_prev =

particle(partInd).func_response;

 end
 end

 V = [particle((g*n + 1):(g*n + n)).func_response];
 best_ones = find(V == max(V));
 best(g+1) = g*n + best_ones(1);

 % Gbest is a global best of all times
 % display(particle(best(g+1)).func_response);
 if particle(best(g+1)).func_response > GbestFit(g+1)
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).Pbest;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 end
 best_response(g+1) = particle(best(g+1)).func_response;
 if (best_response(g+1) < MaxFit(g+1))
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 end

 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 5)
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

 261

 particle(partInd).posn=[round((prev_right_mouth(1) -
deltaRun) + 2*deltaRun * rand(1)) round((prev_right_mouth(2) - deltaRun) + 2*deltaRun
* rand(1))];

 particle(partInd).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,
 % so that the lower edge of the template would get out of

the bounds.
 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest=particle(partInd).posn;

particle(partInd).func_response=cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

particle(partInd).func_resp_prev=particle(partInd).func_response;

 end
 end
 else
 % if we didn't find a positive fittness value before the
 % 5th iteration that the region for deployment is
 % extended.
 % it helps in the cases, when the face region is not
 % located well
 for g = 0:(group-1)
 for i=1:n
 partInd = g*n + i;

 particle(partInd).posn=[round((prev_right_mouth(1) -

2*deltaRun) + 4*deltaRun * rand(1)) round((prev_right_mouth(2) - 2*deltaRun) +
4*deltaRun * rand(1))];

 particle(partInd).vel = [round(Vmin+(Vmax-Vmin)*rand(1))
round(Vmin+(Vmax-Vmin)*rand(1))];

 % check if the particle isn't too close to the lower edge

of the image,

 262

 % so that the lower edge of the template would get out of
the bounds.

 if particle(partInd).posn(1) > (255 - (round(dt / 2)))
 particle(partInd).posn(1) = 255 - (round(dt / 2));
 end

 particle(partInd).Pbest = particle(partInd).posn;
 particle(partInd).func_response =

cost_functionMouthR2(I,particle(partInd).posn(1),
particle(partInd).posn(2),dt,center,meanInt);

 particle(partInd).func_resp_prev =
particle(partInd).func_response;

 end
 end
 end

 bestfind = find([particle((g*n + 1):(g*n + n)).func_response] ==

max([particle((g*n + 1):(g*n + n)).func_response]));
 best(g+1) = g*n + bestfind(1);
 Gbest((2*g + 1):(2*g + 2)) = particle(best(g+1)).posn;
 GbestFit(g+1) = particle(best(g+1)).func_response;
 MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
 best_response(g+1) = particle(best(g+1)).func_response;
 MaxFit(g+1) = best_response(g+1);
 t=1;
 thresh_list=[];

 end % all particles updated...

 %...recording co-ordinates for display

 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end
% choose the best point
very_best_ones = find(GbestFit == max(GbestFit));
very_best = very_best_ones(1);
VeryBest = Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2);

 263

GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
very_best_ones = find(GbestFit == max(GbestFit));
very_best = very_best_ones(1);
VeryBest = [VeryBest Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2)];
GbestFit(very_best) = [];
Gbest(2*(very_best - 1) + 1: 2*(very_best - 1) + 2) = [];
VeryBest = [VeryBest Gbest];

 264

Filename : cost_functionMouthR2.m
This is the cost function used to locate the right corner of the mouth while testing the

whole video sequence.

function y = cost_functionMouthR2(I,r,c,dtIn,center,meanInt)
% cost function for looking for the right corner point of mouth

global Im;
Im = I;
global dt;
dt = dtIn;

K = 50;

y = CMouth(r,c,meanInt);
%///

function a = CMean(r,c)
% function calculating the mean intensity of all points within the template

global Im;
global dt;
I1=double(Im(r - floor(dt / 15) : r + floor(dt / 15), c - floor(dt / 7) :

c));
a = (255 - mean2(I1));
%///

function a = CMouth(r,c,meanInt)
global Im;
global dt;
a = 0;
I1 = double(Im((r - floor(dt / 10) : r + floor(dt / 10)), c - floor(dt/2) :

c));
I2 = double(Im((r - floor(dt / 10) : r + floor(dt / 10)), c : c +

floor(dt/4)));
I3 = double(Im((r - floor(dt / 3) : r - floor(dt / 15)), c - floor(dt / 7) :

c));
I4 = double(Im((r + floor(dt / 15) : r + floor(dt / 3)), c - floor(dt / 7) :

c));

 265

I5 = double(Im((r - floor(dt / 4) : r + floor(dt / 4)), c : c + floor(dt /
5)));

I6 = double(Im((r - floor(dt / 15) : r + floor(dt / 15)), c - floor(dt/10) :
c));

I7 = double(Im((r - floor(dt / 15) : r + floor(dt / 15)), c : c +
floor(dt/10)));

meanI1 = mean2(I1);
meanI2 = mean2(I2);
meanI3 = mean2(I3);
meanI4 = mean2(I4);
meanIc = CMean(r,c);
meanI5 = mean2(I5);
meanI6 = mean2(I6);
meanI7 = mean2(I7);

b = CMouthTemplate(r,c,meanInt);

if (meanI1 < 0.8 * meanInt * thresh_lip) && (meanI2 > 0.8 * meanInt *

thresh_lip)
 a = a + (meanI2 - meanI1);
 a = a + meanIc;
 a = a + (meanI7 - meanI6);
 if ((meanI3 - meanIc) > 50) && ((meanI4 - meanIc) > 50)
 a = a + 100;
 end;
else
 a = a - 200;
end
%///

function a = CMouthTemplate(r,c,meanInt)
% function trying to calcute if the region is really mouth. Calculates the
% avarage intensity of rectangular template

global Im;
global dt;

I1 = double(Im((r - floor(dt/6) : r + floor(dt/2)), c - dt : c));

a = mean2(I1);
%///

 266

function a = CPos(r,c,center)
% function evaluating if the given point lies under the eye

a = (-2) * abs(center - c);
%///

 267

Filename : Pso_nose_run_vector.m
This is the particle swarm optimization algorithm used to locate the nose while testing the

whole video sequence.

function [Gbest M] = Pso_nose_run_vector(Rmin,Rmax,Cmin,Cmax,I,width,

prev_nose, eye_move_vector, thresh_nose)

% PSO algorithm for extracting the nose midpoint coordinates

n=5;%no of particles
Vmax= 5; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];
GbestFit = 0;
MaxFit = 0;
MaxCord = [0 0];

wi = 0.8; %inertial weight
c1=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best_values=[];
threshold=400;
dt = floor(width/4);
center = Rmin + (Rmax - Rmin)/2.0;

%initialising particles with random velocities and setting
%Pbest to the initial posiion
%Deploying the particles into an region where the nose is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaR4 = round((Rmax - Rmin) / 4);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;

deltaRun = 5;

 268

nose_moved = prev_nose(1) - eye_move_vector;

% new borders of the nose region based on the vector of eye movement

Rmin = nose_moved - round(dt/4);
Rmax = nose_moved - round(dt/4);

Cmin = prev_nose(2) - round(dt/4);
Cmax = prev_nose(2) - round(dt/4);

for i=1:n
 particle(i).posn=[round((nose_moved - deltaRun) + 2*deltaRun * rand(1))

round((prev_nose(2) - deltaRun) + 2*deltaRun * rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1)) round(Vmin+(Vmax-

Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 particle(i).func_resp_prev=particle(i).func_response;
 % I(particle(i).posn(1),particle(i).posn(2))=250;
end

% initiating values
bestfind = find([particle.func_response] == max([particle.func_response]));
best = bestfind(1);
Gbest=particle(best).posn;
GbestFit = particle(best).func_response;
MaxCord = Gbest;
best_response=particle(best).func_response;
MaxFit = best_response;

itr=1;
t=1;
thresh_list=[];

while ind == 0 && itr < 22

 %Compute particles new position and velocities
 % if GbestFit > 0 compute new position and velocities - algorithm
 % is converging.

 269

 if (GbestFit > 0)
 for i=1:n
 % set new velocities

particle(i).vel(1)=wi*particle(i).vel(1)+c1*rand(1)*(particle(i).Pbest(1)-
particle(i).posn(1))+ c2*rand(1)*(Gbest(1)-particle(i).posn(1));

particle(i).vel(2)=wi*particle(i).vel(2)+c1*rand(1)*(particle(i).Pbest(2)-
particle(i).posn(2))+ c2*rand(1)*(Gbest(2)-particle(i).posn(2));

 % set new position
 particle(i).posn(1)=round(particle(i).posn(1)+particle(i).vel(1));
 particle(i).posn(2)=round(particle(i).posn(2)+particle(i).vel(2));

 % checking if the solution lies within domain

 if particle(i).posn(1) <Rmin || particle(i).posn(1) > Rmax ||

particle(i).posn(2) <Cmin || particle(i).posn(2) > Cmax
 particle(i).posn=particle(i).Pbest; % setting position to

previous P-best
 particle(i).vel=[rand(1)*Vmax rand(1)*Vmax]; %

setting velocity to max
 end

 % Calculating the function response for each particle with new
 % positions

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center, thresh_nose);

 %checking and updating Pbest
 if particle(i).func_response > particle(i).func_resp_prev
 particle(i).Pbest=particle(i).posn;
 end

 particle(i).func_resp_prev = particle(i).func_response;

 end
 V=[particle.func_response];
 best_ones=find(V==max(V));
 best=best_ones(1);

 270

 %Gbest is a global best of all times
 %display(particle(best).func_response);
 if particle(best).func_response > GbestFit
 Gbest = particle(best).Pbest;
 GbestFit = particle(best).func_response;
 end
 best_response=particle(best).func_response;
 if (best_response < MaxFit)
 MaxCord = Gbest;
 end
 else
 % if is not > 0 than deploy te particles again in new random
 % positions and with new random speeds
 if (itr < 22)
 for i=1:n
 particle(i).posn=[round((nose_moved - deltaRun) + 2*deltaRun

* rand(1)) round((prev_nose(2) - deltaRun) + 2*deltaRun * rand(1))];
 particle(i).vel=[round(Vmin+(Vmax-Vmin)*rand(1))

round(Vmin+(Vmax-Vmin)*rand(1))];
 particle(i).Pbest=particle(i).posn;

particle(i).func_response=cost_functionNose(I,particle(i).posn(1),particle(i).posn(2),
dt,center);

 particle(i).func_resp_prev=particle(i).func_response;
 end

 end
 best=max_position([particle.func_response]);
 Gbest=particle(best).posn;
 GbestFit = particle(best).func_response;
 MaxCord = Gbest;
 best_response=particle(best).func_response;
 MaxFit = best_response;
 t=1;
 thresh_list=[];

 end % all particles updated...

 % 2 - based on the mean value of func_response of all particles
 if mean([particle.func_response]) >= 1100;%threshold;
 ind = 1;
 end

 271

 %...recording co-ordinates for display

 itr = itr+1;
 thresh_list=[thresh_list best_response];
 if itr == 20
 ind = 1;
 end
end

if itr == 22
 Gbest = MaxCord;
End

 272

Appendix B - Facial Action Coding System

Figure B.1 Anatomy of Facial Muscles

 273

Table B.1 Facial Action Coding System

Source URL: http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm (05/09/2008)

AU Description Facial muscle Example image

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer
Corrugator supercilii,

Depressor supercilii

5 Upper Lid Raiser
Levator

palpebrae superioris

6 Cheek Raiser
Orbicularis oculi, pars

orbitalis

7 Lid Tightener
Orbicularis oculi, pars

palpebralis

9 Nose Wrinkler
Levator labii

superioris alaquae nasi

10 Upper Lip Raiser Levator labii superioris

http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm

 274

11 Nasolabial Deepener Zygomaticus minor

12 Lip Corner Puller Zygomaticus major

13 Cheek Puffer
Levator anguli oris

(a.k.a. Caninus)

14 Dimpler Buccinator

15 Lip Corner Depressor
Depressor anguli

oris (a.k.a. Triangularis)

16 Lower Lip Depressor
Depressor labii

inferioris

17 Chin Raiser Mentalis

 275

18 Lip Puckerer

Incisivii labii

superioris and Incisivii

labii inferioris

20 Lip stretcher Risorius w/ platysma

22 Lip Funneler Orbicularis oris

23 Lip Tightener Orbicularis oris

24 Lip Pressor Orbicularis oris

25 Lips part

Depressor labii

inferioris or relaxation

of Mentalis, or

Orbicularis oris

26 Jaw Drop

Masseter, relaxed

Temporalis and internal

Pterygoid

 276

27 Mouth Stretch Pterygoids, Digastric

28 Lip Suck Orbicularis oris

41 Lid droop
Relaxation of Levator

palpebrae superioris

42 Slit Orbicularis oculi

43 Eyes Closed

Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis

44 Squint
Orbicularis oculi, pars

palpebralis

45 Blink

Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis

46 Wink

Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis

 277

51 Head turn left

52 Head turn right

53 Head up

54 Head down

55 Head tilt left

56 Head tilt right

57 Head forward

 278

58 Head back

61 Eyes turn left

62 Eyes turn right

63 Eyes up

64 Eyes down

 279

Appendix C - Neural Network as a Useful Tool for Real-Time Facial

Expression Recogntion

Linda O., Chandrapati S., Tokuhiro A., 2007, “Neural Network as a Useful Tool for

Real-Time Facial Expression Recogntion”, Proccedings of 17th Conference on Artificial Neural

Networks in Engineering, St Louis, USA, Nov 2007.

 280

 281

 282

 283

 284

 285

 286

 287

 288

 289

 290

Appendix D - Defense Presentation

2nd May, 2008

8:30 AM

Mechanical and Nuclear Engineering Conference Room

3056 Rathbone Hall

Kansas State University, Manhattan

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

 326

 327

 328

 329

 330

 331

 332

 333

 334

 335

 336

	Copyright
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	CHAPTER 1 - INTRODUCTION
	CHAPTER 2 - FACIAL EXPRESSION RECOGNITON (FER)
	FACE DATABASE
	FEATURE POINT EXTRACTION FROM SNAPSHOTS
	FEATURE POINT TRACKING IN VIDEOS
	NEURAL NETWORKS FOR CLASSIFICATION
	RESULTS of FER
	ANALYSIS of FER

	CHAPTER 3 - EMOTION RECOGNITION IN SPEECH
	SPEECH DATABASE
	SPEECH PROCESSING
	CLASSIFICATION OF EXPRESSION

	CHAPTER 4 - MULTI-MODAL EXPRESSION RECOGNITION
	MULTIMODAL FUSION
	EMOTION RECOGNTION TOOLBOX
	TESTING and ANALYSIS

	CHAPTER 5 - Conclusion
	References And Bibliography
	Filename : integrate.m
	Filename : mmread.m
	Filename : distanceDiffVector.m
	Filename : distanceDirVector1.m
	Filename : setAudio.m
	Filename : featureExtraction.m
	Filename : computeSpectrum.m
	Filename : wordSeperation.m
	Filename : melfiltermatrix.m
	Filename : freq2mel.m
	Filename : mel2freq.m
	Filename : Peak.m
	Filename : computeFormant.m
	Filename : loglimit.m
	Filename : computeMelSpectrum.m
	Filename : setVideo.m
	Filename : getFaceRegion.m
	Filename : checkBackground.m
	Filename : seedPixel.m
	Filename : check3.m
	Filename : testFrame.m
	Filename : Pso2_eye.m
	Filename : cost_function7subReg.m
	Filename : getRightEyeCorners.m
	Fielname : Pso_eyebrow.m
	Filename : cost_functionEyebrow.m
	Filename : getRightEyebrowCorner.m
	Filename : getLeftEyeCorners.m
	Filename : getLeftEyebrowCorner.m
	Filename : Pso2_mouth_left.m
	Filename : cost_functionMouthL2.m
	Filename : Pso2_mouth_right.m
	Filename : mouth_fix.m
	Filename : getMouthLipsCoordinates.m
	Filename : Pso_nose.m
	Filename : cost_functionNose.m
	Filename : getNoseCorners.m
	Filename : run2.m
	Filename : Pso2_eye_run.m
	Filename : getRightEyeCorners2.m
	Filename : Pso_eyebrow_run2.m
	Filename : getLeftEyeCorners2.m
	Filename : Pso2_mouth_left_run.m
	Filename : Pso2_mouth_right_run.m
	Filename : cost_functionMouthR2.m
	Filename : Pso_nose_run_vector.m

	Appendix A - MATLAB Code
	Appendix B - Facial Action Coding System
	Appendix C - Neural Network as a Useful Tool for Real-Time Facial Expression Recogntion
	Appendix D - Defense Presentation

