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Abstract

Robots will eventually become common everyday items. However before this becomes a
reality, robots would need to learn be socially interactive. Since humans communicate much
more information through expression than through actual spoken words, expression recognition
IS an important aspect in the development of social robots. Automatic recognition of emotional
expressions has a number of potential applications other than just social robots. It can be used in
systems that make sure the operator is alert a all times, or it can be used for psycho-analysis or
cognitive studies. Emotional expressions are not always deliberate and can also occur without the
person being aware of them. Recognizing these involuntary expressions provide an insight into
the persons thought, state of mind and could be used as indicators for a hidden intent. In this
research we developed an initial multi-modal emotion recognition system using cues from
emotional expressions in face and voice. Thisis achieved by extracting features from each of the
modalities using signal processing techniques, and then classifying these features with the help
of artificial neural networks. The features extracted from the face are the eyes, eyebrows, mouth
and nose; this is done using image processing techniques such as seeded region growing
algorithm, particle swarm optimization and general properties of the feature being extracted. In
contrast features of interest in speech are pitch, formant frequencies and mel spectrum along with
some statistical properties such as mean and median and also the rate of change of these
properties. These features are extracted using techniques such as Fourier transform and linear
predictive coding. We have developed a toolbox that can read an audio and/or video file and
perform emotion recognition on the face in the video and speech in the audio channel. The
features extracted from the face and voices are independently classified into emotions using two
separate feed forward type of artificial neural networks. This toolbox then presents the output of
the artificial neural networks from one/both the modalities on a synchronized time scale. Some
interesting results from this research is consistent misclassification of facial expressions between
two databases, suggesting a cultural basis for this confusion. Addition of voice component has

been shown to partially help in better classification.
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CHAPTER 1-INTRODUCTION

Robot as defined by Kaplan “is an object that possesses the following three properties: It
is a Physical object, it functions in an Autonomous and Situated manner” . By sSituated manner he
means that the physical and social environment perceived by the robot has a direct influence on it
[32]. A lot of research has gone into integrating the robot with its physical environment. With the
various sensors, such as proximity sensors, accelerometers and strain gauges, the physical
integration of the robot and environment is incrementally becoming a reality. However robots
today are still limited mostly to industrial applications or as toys for the technically inclined. To
make robots more universally acceptable so that they can coexist with human in the same
environment their ability to interact socially or at least understand the social environment is
important. In face to face human interaction, facial expressions carry approximately, 55%, and
voice intonations, 38%, of the message, while only 7% percent of the message is carried by the
actual words [45]. Therefore for robots to be socially acceptable they need to be able to
recognize emotions revealed by facial expressions and voiced intonations.

Research has shown that human expressions are short lived emotional states and the
changes in expressions are indicators to the subjective feeling and action tendencies towards the
current issues. For example if an assistive feeding robot sees that a person has a look of disgust
seeing a particular entrée it could refrain from feeding it. Other emotional states can last from a
few seconds such as expressions to attitude lasting minutes, moods sometimes lasting for weeks
or months, emotional disorders lasting for years and traits lasting a lifetime (Figure 1.1).

Figure 1.1 Temporal Characteristics of Emotional Categories[14]
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Emotions are a group of processes involving five different components, comprising of
subjective feeling, cognition, motor expression, action tendencies and neurological processes
[17]. Traditional research in emotion detection consists of stimulating the subjective feeling or
cognition of the subject (person). For example, showing graphic images to induce changes in
motor expression and neurological processes from an apriori state. Along with the general
curiosity about human nature, this research was also directed towards detection of deception
[23].

Humans have tried to detect deception and/or intent to deceive for many years. For
example in western Africa people suspected of a crime were made to pass a bird's egg from one
nest to another and if they broke it they were considered guilty. In ancient China a suspect was
made to hold a handful of rice in their mouth during the prosecutor's speech, and if there was any
rice left at the end of the speech then he/she was declared guilty. All these methods were meant
to be indicators of anxiety that accompanies the telling of lies and/or trying to deceive in varying
degrees. The African method was a measure of how nervous the subject was when confronted
the truth; the Chinese method relied on the idea that the mouth went dry during times of
emotional anxiety [60].

Today law enforcement, security, intelligence and other related agencies rely on an age
old technology developed in 1931 called the polygraph test to determine truthful/deceitful
accounts. The polygraph test measures various physiological states of the subject namely blood
pressure, heart rate and skin conductivity in response to a series of carefully controlled questions.
The results of thistest are largely based on the skill of the test supervisor [60]. The US Supreme
Court has left it to individual jurisdictions whether to accept polygraphs as admissible evidence,
and in 2007 it was admitted in 19 states a the discretion of the trial judge and with stipulations.
In most European jurisdictions it is not used by the police force, as they do not consider them to
be reliable.

Research on deception detection using cues from expression of emotion [67] [23] and
advances in computing technology and processing speed make it possible to consider an
automated deception detection system. Before we can build a system to successfully detect
deception, we have to first build a robust automated expression recognition system that can
recognize emotions from various modalities such that information from one “channel” can be

verified and validated by another, and also to accommodate “failure” of one channel by another.



In this research we make an effort to build a multi-modal emotion recognition system
using cues from facial expression recognition and voiced characteristics, that until recently were
left to the judgment of the person conducting the polygraph test. We anticipate that an automated
emotion recognition system would facilitate the development of human computer interaction. In
fact applications such as monitoring operator efficiency in critical situations or developing first
generation social robots are near-term goals [61]. Our task is thus to recognize the six basic
expressions (happiness, anger, disgust, fear, surprise and sadness) that are common in the human
experience [19]. All other expressions are learned from the environment [15].

The objectives of this research are as follows:

To build adigital facial expression recognition system

Build a system for recognition of emotions in digitally recorded voice

Integrate the two into a multi-modal emotion recognition system

Build an user friendly interface for the multi-modal emotion recognition system

This thesis is divided into 3 parts. In the Chapter 2 we will discuss facial expression
recognition. We will firstly discuss the databases used, and then talk about feature extraction
from the images and formation of feature mask. After which we will briefly discuss the basics of
artificial neural networks, and their training and testing. Then we discuss the results and analysis
of the same. We then proceed to expression recognition in speech (Chapter 3) where we will first
talk about the database used. After which we will discuss word separation using spectrogram and
power plot. After which we will see how to concert from frequency scale to mel scale and
compute mel energy. We will now have a look at the human speech production system, draw
analogies to a source filter model and filter design using linear predictive coding. Once we are
done designing a vocal tract filter using linear predictive coding, we then extract formats from
the speech signal. After which we build a feature vector of expression classification in speech.
We will then discuss results from expression recognition in speech before having a look at
multimodal emotion recognition. In the third part (Chapter 4) we will study the various levels of
multimodal fusion, and see how to use the emotion recognition toolbox we develop. After which
we discuss how to classify expressions using the multimodal data.



CHAPTER 2 - FACIAL EXPRESSION RECOGNITON (FER)

Verbal communication is voluntary and controlled by the speaker, but this conveys only a
portion of the full meaning of the message. Along with verbal communication there is also a
significant amount of information that is conveyed through non-verbal channels such as facial
expressions (approximately 50 percent of the effect of the message), while vocal intonations
contain some 40 percent of the effect [45]. Being able to develop a system to recognize these
expressions automatically would facilitate human computer interaction. That is in effect, better
understand the needs of the person interacting with the computer. This improved man-machine
communication would also make it easier for people with disabilities to use computers. There
has been some research with focus many on facial expression recognition and others that are
more specific, such as tracking the eyeball [38] or awhistling user interface [65].

It is self-evident that humans have very well developed communication skills, and thus
developing an automated system to demonstrate all that a person can do, is a challenge in
computational intelligence. One of these skills that we take for granted is the ability to recognize
facial expressions. The range of human expressions and the cognitive states to which the
expression is attached is large [28]. Hence it is not surprising that even for one expression, say a
smile linked to a state of happiness, that every person has a slightly different way of expressing
this emotion. An automated expression recognition system must be able to accommodate these
variations. Additionally, there is evidence of differences for selected emotions (fear and surprise)
amongst different ethnic groups and cultures [21]. While others, like happiness (smile) appear to
be largely universal. However, as humans are able to distinguish between basic
expressions/emotions (anger, disgust, happy and sad) irrespective of ethnicity and culture [21], it
IS reasonable to assert that there exists a common functional modality for many expressions.
Discovering this modality and developing a tool to accurately extract an inherent “pattern” from
an expression is the key to building flexible and robust facial expression recognition software.

Gladwell [27] described a face reader as a, “professional person who has a gifted ability
to pick up voluntary or involuntary facial expressions occurring within a very short time”. With

humans one hasto consider the question of degree of truthful intent. By using a digital camerato



record the changes/changing expressions we want to be sure that we have a system that is
reliable and accurate [29].

In fact Ekman [24] has reported that a ‘true’ smile can be held longer in time than a
‘forced’” smile. In fact herein lies one of the difficult challenges/issues in facial expression
recognition and emotion.

Facial expression recognition systems can be classified into two categories. static
recognition which classifies expressions in snapshots or individual frames of a video, and
dynamic recognition that works on video sequences as a whole. The principal methods of static
recognition are wavelet transformation, neural network based classification and principal
component analysis. These methods are capable of analyzing only one frame at a time. The
dynamic methods work by extracting the changes in the video, such as changing intensity within
a particular region of the video or movement of features in the video, to achieve expression
recognition. Two important methods of extracting these dynamics are optical flow models and
hidden Markov models[71].

Another way to classify various automated facial expression recognition systems is via
their method, namely a geometric feature based approach, and a holistic template matching
method. In the geometric feature based approach a set of key feature points are located and the
geometric relation of these points with each other is used to classify the expression. In contrast,
the holistic template matching technique consists of a template of desired feature points
superimposed on the image of interest and then deformed so as to match the image. The
deformation of the template is then used to classify the image. A notable detailed survey of the
various methods is that given by Fasel and Luettin [25] and also by Pantic and Rothkrantz [50].
However, as the number of feature points correlates to facial details, most of the reported
approaches are computationally intensive and thus less than applicable in a real time
environment. An exception perhaps is that developed by Littlewort et al. [40]. Considerable
computing is needed for detailed image processing and feature point extraction. If an expression
recognition system is to be deployed in the field it needs to perform its analysis in real time or
quasi-real time.

Our objective has been to reduce the amount of computation required (relative to above)
for the image preprocessing and create an input vector for an artificial neural network capable of

recognizing facial expressions in real time with a relative accuracy in recognition, while leaving



more computational capacity to process speech for emotion recognition. There are a number of
challenges involved in making the processing quicker; firstly we cannot extract a large number
of facial feature points to form a dense grid for tracking subtle changes. Instead we search for the
most distinguishable points on the face that can consistently be tracked spatiotemporally. We
also exercise the option to limit the search for feature points if an initial “pass’ does not easily
reveal them. Thus, relative to facial expression recognition reported above, we expect at the
onset, a lower overall accuracy in facial expression recognition due to the lower dimensionality
of the vector representing the expression. This also presents a tougher learning task for the
artificial neural network since there is inherently more noise in the data. Even with all these
challenges, lower accuracy and more noise in the data, we believe that adding the voice
component will maintain lower computation load yet contribute to near real time emotion

recognition.

FACE DATABASE

Databases are usually collected in a controlled environment and hence suitable for
development of a system before the system is tested in the field. Working with standard
databases also gives us an opportunity to directly compare our results with those obtained by
other researchers. Further a pre-coded database (facial expression and emotion), standardizes
characterization or labeling such that it sidesteps subjective labeling.

Japanese Female Facial Expression Database (JAFFE)

The Japanese female facial expression database (JAFFE) was compiled by Lyons et. al.
[41]. This database consists of a total of 219 images of 10 Japanese female subjects six basic
expressions of angry, disgust, fear, happy, sad and surprise [20], and a neutral face.

Each of the subjects took their own pictures using a set up as shown in the Figure 2.1.
The setup consisted of a semi-reflective plastic mirror placed in front of a camera, the subjects
took their photographs while looking in this mirror. Tungsten lights were used to evenly
illuminate the faces of the subjects. The camera was placed in a dark box so as to reduce back
reflection in the semi-reflective mirror. The images were digitized using a flat bed scanner, after
being printed in monochrome.



Figure 2.1 Setup used to photograph facial expression for JAFFE database
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ILLUSTRATION: André Plante

The images were then rated for degree of each component of the expression by another
group of 92 Japanese females. The rating group was divided into four subgroups; the first group
of 31 was asked to rate 108 images for 6 basic expressions, while the second group of 31 was
asked to rate the remaining 111 images. The third group and fourth group of 15 subjects each,
were not shown the fear images and asked to rate the images for five expressions. Here, similar
to the first two groups, the images shown to the third and fourth groups were also mutually

exclusive.

MMI Database
Pantic et a. developed and compiled the MMI face database to address the lack of
availability of an easily accessible standard database for researchers in the fields of facial
expression recognition. The database consists in excess of 1500 still and video image sequences
of various expressions in both frontal and profile view. The videos in this database are shot at a




standard rate of 24 frames per sec with the length of the video varying from 40 to 520 frames.
These videos were shot in a under consistent lighting form two high intensity lamps which was
diffused using reflective umbrellas. The subjects of the database were asked to display a number
of different action units both individually and in combination with other action units. The
complete database was then action unit coded [52], according to the facial action coding system
(FACY) attributed to Ekman and Friesen [19] [22].

The facial action coding system is a technique developed to recognize and score action
units. Action units represent facial muscular activity that momentarily changes the facial
expression. Each expression is a combination of a number of action units that occur
simultaneously. Tracking these changes in action units can be used for expression recognition,
but will only add to computation since these changes are minute and would require a thorough
preprocessing of the image. Appendix B contains several reference images of the facial actions

units.

Figure 2.3 Example of facial expression images from MM database

FEATURE POINT EXTRACTION FROM SNAPSHOTS

It is at the preprocessing stage when extracting the feature points that we significantly
differ from Littlewort et al. Littlewort et a. began with 48 X 48 pixel images to obtain 92,160
possible features using 5 spatial and 8 orientations of the gabor filter across the image. The
feature set was reduced by first extracting the best feature set for each emotion independently,
the various feature sets were put together into a 538 dimensional vector [39].

We are looking at a computationally lighter system. Hence based on Bassili's work, we
chose instead to locate selected points on the face. Bassili in experimentally recorded video of
actors expressing various emotions, with their faces painted black and placed about 100 white
markers on the face. These videos were then shown to other people, such that only the white
markers were visible. With this experiment he showed that people could recognize emotions by



just looking at the movement in the cluster of points without the complete facial image. The
mean accuracy of recognition of emotions reported by Bassili based on feature point motion was
33.33%, ranging from 75% for happy to 6% for fear. A chi square test was performed for
statistical significance and the results were found to be significant compared to a random guess
[5]. While the recognition rate is not high it does demonstrate that even with a “sparse” image
the emotion can be recognized for select expressions and linked emotions. We extract 17 feature
points that could be automatically extracted from the face, as shown by Chennamsetty in his
M.S. thesis [12]. An assumption we make while extracting the feature points is that the image if
of the frontal face and approximately centered in the frame. As a first generation system we
decided to not to take into consideration out of plane rotation of the head. While an out of plane
rotation provides us with a profile view of the person, it drastically reduces the number of feature
points that can be extracted. It does give us a few additional more points such as the ears and the
chin, but these points would be more important for identification purposes, than for expression
recognition. Since one of the applications that this system of this system is in deception
detection, the video recording will be in a controlled environment where frontal face images can
be obtained.

Face Region Separation

Face region separation is the first step in processing the image, which eventually leads to
feature point location and then emotion recognition. In this stage the face is separated from the
background of the image, so that a a later stage we can limit our search to the face region. The
face region separation is achieved using a seeded region growing algorithm. The seeded region
algorithm was first proposed by Adams and Bischof in 1994 [1]. We chose this method for its
simplicity in implementation, and ability to accurately separate the complete face region, without
including the background. This method begins with selection of the initial seeds such that they
are located are in the area of interest. We then begin with one of these seeds and test its
neighboring pixelsto see if the following threshold condition is satisfied. It is described by,

I -1|<T

where, [; is the intensity of the seed pixel, 7 is the intensity of the pixel under consideration, and
T is the threshold intensity. In case a neighboring pixel satisfies the criteria it is added to the set
of seed pixels and acts like a seed pixel in the next iteration. We do this until either none of the



seeds have a neighboring pixel that satisfies the criteria or we reach the borders of the image.
There are two commonly used sets of neighbors, firstly the eight neighbor scheme where all the
eight neighbors are considered, and secondly the four neighbor scheme where we look at only
the pixels to the immediate right, left, top and bottom, and not at the diagonal pixels.

Figure 2.4 Seed Pixel Neighbor configuration; (a) 8 neighbor (b) 4 neighbor

(@) (b)

Before we begin with the actual seeded pixel growing we have to first preprocess the
image. Preprocessing begins with first scaling the image such that we use the full range of the
gray scale, i.e. [0 255]. We then blur the image, using a Gabor filter, to get rid of the soft edges
(Fig 2.5), because at the next stage when we use an edge detector, it is very sensitive to soft
edges (Fig 2.6) and thus picks up a lot of edges. We use the canny edge detection algorithm
[61][9] for this purpose; thisis an inbuilt function in Matlab.

Figure 2.5 Blur Image and Edges on Image
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Figure 2.6 Original Image and Edges on Image

Once we have the edges, we subtract them from the original image so as to make all the
edges black in the original image. This creates a gradient in the image and prevents the region
from growing across the edge. However, this could grow around the edge if the regions are
actually connected. Once we have done this we first use the seeded region growing to locate as
much of the background as we can by using seed pixels at each of the four corners of the image
and then painting the background black on the original image (Figure 2.7). This step helps when
we do the seeded region growing for the face, since if the region attempts to grow outside the

face, it will be limited by the black background and not grow to encompass the whole image.

Figure 2.7 Background Separation

Now that we have an image where we have painted the background black and the edges
more clearly delineated, we can go ahead and use the seeded region growing algorithm over the
face region to locate the face in the image. For the region growing algorithm at this stage we
select five seed pixels such they form a cross about the center of the image. These seeded regions
are grown to get the final face region. However, in case the seeded regions grow out-of-bounds
of the image then the algorithm is rerun after lowering the threshold and reinitializing the seeds,
either until aregion completely within the bounds of the image is found or the seeds do not grow
at al. If such aregion is found then it is considered to be the face. If the seeds do not grow or
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after a number of repeated iterations still grow beyond the image then it returns an error
declaring that face could not be detected.

Figure 2.8 Face Region

Feature Point Location

Once we have the face region located, we divide it into sub-regions. We then use various
search mechanisms to locate the feature points. We primarily divide the face region into four
guadrants, and locate the one most easily distinguishable point in each of the four quadrantsi.e.
two eyes and the two corners of the mouth. These key feature points are extracted using the
particle swarm optimization technigque, explained below. After we locate these key feature points
we locate the rest of the points using the key feature as the reference. These features are
extracted using the properties of the respective features, i.e. location with respect to the key

features and intensity gradient

Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm was developed in 1995 by Kennedy and
Eberhart, for solving optimization problems of continuous non-linear functions. It is mainly been
inspired by the artificial life and social psychology of flocking birds or schooling fish [33].
In this method the population members called “particles” are flown through the solution space.
Upon initialization the particles are randomly located in the solution space and assigned random
velocities. At each iteration the particle's velocities is so adjusted that it has a weighted
acceleration, towards its previous best position and towards the global best [34]. The best
position is decided by a function called the ‘cost function’ or a ‘fitness function’; this could be

the function of the solution space if looking for a maxima or a minima, or some other function
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that defines the characteristics of the optimal solution (in this case the characteristics of the
feature). For example for the eye the cost function is defined so as to look for a dark region
(eyeball), with lighter regions on the left and right (cornea) and another darker region (eyebrow)
above the pixel being investigated. We define similar cost functions for each of the key features.
These iterations are then continued until all the particles converge upon the optimal solution. The

algorithm can be better understood using the pseudo code below [34].

Loop

For i=1 to number of particles
If G(x,) > G(p,) then do
For d = 1 to dimensions
Py = Xia
Next d
End do

g=1i
Forj = indexes of neighbors

if G(p;)>G(p,) theng =j

Next j

For d = I to number of dimensions

V(@) =v, - +r,(py - x,@-D)+r 2(pgd - x, (- 1)

~

Via I (_ Y max ’+Vmax)
x, () =x,0-D+v,()
Next d

Next i

Until criterion
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Cost Functions
Cost function also known as fitness function, is what defines an optimal solution. It could
be any continuous function, designed such that it reaches a maximum at the optimal solution.
The cost functions that we used for various features are described below.
Eye: The cogt function of the eye is a sum of four terms.
G(x,y)=A+B+C+D
A = Sum of Variance across rows + Sum of Variance across columns
B = Sum of intensities above and below the particle minus two times the intensity
at the particle; if the average intensity below the particle is more than that
on the particle
OR
=-800
C = 255 minus mean intensity about the particle
D = -800; if the particle is beyond the region boundaries for the eye
OR
=0
Eyebrow: The cost function for the eyebrow is 255 minus the average intensity of the
image around the particle. It is the PSO algorithm that makes sure that the particle does
not go out of the region of interest, which in this case was in the region above the eyes. A
pixel with an intensity of O represents a black pixel and one with 255 represents a white
pixel. When we define the function above we are looking at the dark region above the
eye, which is the eyebrow. We need to look at the average of the region because
otherwise we could make a mistake by picking a stray black pixel, and an eyebrow is
surely thicker than a single pixel.
Mouth: The cost function for the left mouth corner can be represented by the template
shown in Figure 2.9. If the mean intensity of area (a) is more than the threshold and the
mean intensity of area (b) is less than the threshold than the cost function is the difference
in intensity between these two areas, i.e. adarker right side and a brighter left side. There
is also a bonus if the difference in intensity between areas (c) and (d) and (e) and (f) is
greater than 50. This works on the understanding that the lips are darker than the rest of
the cheeks, and for the left corner the lips are to itsright. The lips also get narrow as they
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move towards the corner and hence the bonus. A mirror image of this template can be
used for the right corner of the mouth.
Figure 2.9 Left Mouth Corner Template

d

Nose: The cost function for the nose is a sum of two terms. The first term compares the
intensity at the particle to those on the lower left and right of the particle; thisis based on
the concept that the tip of the nose is always brighter than the nostrils. While the second
term ensures that the nose is close to the center of the face region, therefore a point closer
to the center of the face would have higher fitness compared to that of a particle away

from the center.

Other Techniques used

The eye corners are located next after the eyes are located using the PSO. The eye
corners are located using a threshold to convert the region around the eye into a monochrome
image (Figure 2.10) and then looking for the largest contagious block of white pixels. This is
based on the observation that in most cases within a small region around the eyes the eyelashes
are the only continuous dark object and they begin and end at either corner of the eye. Further
the threshold for converting to monochrome is calculated based on the mean intensity of the
image around the eye. The first and last columns of this cropped image are than scanned to find
the corners of the eye.

Figure 2.10 Eye Corner Estimation
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The eyebrow corners are located using a technique similar to that used for locating the
eye corners, except that the search is performed in the region around the eyebrow. This is
because the eyebrow is also a continuous feature and can easily be separated using a threshold
(Figure 2.11).

Figure2.11 Eyebrow Corner Estimation

-~ B

A very similar technique is used to locate the upper and lower lips. The threshold is

decided based on the whole region around the mouth while the actual search is performed only
midway between the two lip corners. This is because in the mouth is symmetric and the relative
position of the lips is always in between the mouth corners. For example in Figure 2.12 the
topmost and the bottommost white pixel in the center column will be picked as the upper and

lower lips respectively.

Figure2.12 Upper and Lower Lip Estimation

Results of Feature Point Extraction

Using the methods described above we locate seventeen feature points in al, as follows:
eyes, eye corners, eyebrows, eyebrow corner, mouth corners, upper and lower lip, nose and
nostrils. While extracting these features, we relied upon thresholds. These were initially some
arbitrary numbers we identified by trial and error, but upon further trials we came to realize that
the thresholds were not universal, and had to be customized to the lighting conditions, color of
the eyes, skin color and hair color. Therefore we devised a graphical user interface which gives
the user some flexibility with respect to the thresholds while not straying too far away from the
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optimal values we found. All of these thresholds are based upon the mean intensity of the image
around the desired feature.

We see that a location of each feature depends upon the previous. The eyes are the first
feature we locate, but the accuracy of location of eye depends upon the identification of the face
in the image. If we get this wrong, we would deploy the particles for the PSO in the wrong
region and see a cascade effect of these errors at all points. Hence the location of the face is as
important as location of the feature points. Just in case the face region separation algorithm does
not work as expected, the GUI also has a manual face region selection option. This savestime on
occasion when we are dealing with a small number of images with different lighting conditions.

Figure 2.13 Feature Points

Construction of Vector
At this point we have located the seventeen feature points on the image (Figure 2.13). We
need to figure out a way to input this vector into an artificial neural network for classification.
Since a backpropagation neural network only accepts vectors as inputs and not a series of vectors
we had to find a way to convert the coordinates of the feature points into a vector. In our initial
attempts we tried forming a vector by simply putting the entire x and y coordinates one after
another to form a column vector. However, this had a number of drawbacks, and was not suitable

for classification of emotion.
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Since the coordinates are just a set of numbers representing the location of points on the
image, they would change with the location of the face in the image. This could be solved by
using one of the feature points as the reference. However we then face a problem of scaling,
since the distance of each point from the other would change not just based on the expression as
we would like it to, but also on the size of the face in the image. For example the features would
be closer to each other if the picture is taken from a distance and further apart if it is a close-up
image. To offset the effects of zoom in the image we would have to normalize the feature points
extracted. We solve this by scaling the coordinates of the feature points such that the distance
between the two eyes is equal to one, this is similar to what other researchers [4] [26] [13] have
used for normalization. By doing so we would scale each image to the same size while till
allowing for the movement of features on the face.

The elements of the vectors were still numbers representing points on the image, but did
not represent the physical relation between various feature points within a given feature or
among features. Hence this would not classify the expression satisfactorily. We then began
testing vectors that consisted of distances between various features, angles subtended by them,
polar representations, difference vectors and various combinations of these. We eventually built
a vector that consisted of a combination of distances, angles and difference vectors. The mask
formed by the final vector is shown in Figure 2.14.

Figure2.14 Feature Mask
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FEATURE POINT TRACKING IN VIDEOS

Facial expressions when seen over time evolve from the onset of expression to the apex,
when the expression is at its peak, and then the offset (Figure 2.15). One phase instance of an
expression is the complete cycle from onset to offset of expression, in this method we classify
the whole phase as an expression. This method has of classification has not been used because it
is difficult to say when exactly has the expression has begun or ended, and to be able to locate
the beginning and end of an expression we would need to classify each frame to look for
deviation from a neutral face. Classifying each frame in a video for facial expression is called the
frame instance type of classification. The frame instance type classification when plotted
temporally can show the onset and offset of the expression [30].

Figure 2.15 Evolution of Facial Expressions Over Time
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We use the frame instance wherein at each frame we recalculate the feature points and
the vector for each frame. In this stage while computing the feature points for each frame, we no
longer locate the face region again for each frame. As avideo camera normally captures video at
30 frames per sec the changes from one frame to the next in an unedited video are usually not
significant. Hence we deploy the PSO for the feature points within a small region surrounding
the corresponding feature point in the previous frame. We construct the vector for input to the
artificial neural network by taking the difference of the vectors for the image under consideration
and a neutral frame of the sequence. By default the first frame of the sequence is considered the
neutral fame, because most of the databases consist of clips with the expression beginning with a
neutral face, going to apex and back. But the GUI does have a provision to select any other frame
asaneutral frame in case the clip began with a different expression.
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NEURAL NETWORKSFOR CLASSIFICATION

Machine learning methods are algorithms that allow computers to learn and extract rules
and patterns from large data sets. These techniques are usually employed in areas where it if
difficult to define a set of rules but large amount of dataalong with its correlated expected results
are available. For example in area like robot locomotion, speech recognition, object recognition,
datamining and stock market analysis to name a few. Our problem of facial expression
recognition has similar properties, where it is difficult to have a set of rules for expression
recognition and we have a database of labeled images of facial expression. Hence we use one
such technique known as artificial neural networks for classification of facial expressions.

Initial interest in the area of artificial neural networks was sparked in 1943 after
McCulloch and Pitts introduced the concept of simplified neurons [35]. A neuron in its
biological sense is the basic unit of the brain. It typically consists of four parts, namely:
dendrites, the synapse, the cell body/soma and the axons. Dendrites act the antennae for the
neuron, receiving signal from the surrounding neurons and passing the signal to the cell body
(Figure 2.16). Once the sum of the signals received at the cell body crosses a threshold, the cell

firesasignal to its surrounding neurons through its axons [ 36].

Figure 2.16 Biological Neuron

Axan

Dendrite

The primary unit of an artificial neural network is called a ‘neuron’ similar to its

biological counterpart. These function similar to the biological neuron, by receiving inputs from
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the neighboring neurons or external inputs, for input layer; and passing it onto the next layer or

the output.
Figure 2.17 Basic Component of Artificial Neural Network
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Some of the defining aspects of a neuron are: the weights (w) for each of its inputs (j), its
bias (0), and its output transfer function (F) or the activation function as seen in Figure 2.17. The

i

weights define the importance of each of the input to that neuron. The bias also known as offset
acts as the threshold for the neuron. The activation function defines the output characteristics of

the neuron, they are usually non-linear. Some common activation functions are explained below.

a. ldentity Function: This is also known as the linear transfer function. It passes the
inputs as it is to the next layer. At timesit is also programmed to saturate the output
of the neuronto [0, 1] (Figure 2.184) or [-1, 1] (Figure 2.18b).

j0 x£0 -1 x£1
F(x)=:’x O<x<1 ORF(x)=:’x -1<x<1
11 x31 1 x31
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Figure 2.18 Identity Function

e
(a) between [0,1] (b) between [-1,+1]

b. Step Function: This function has outputs of either O or 1 (Figure 2.19a), or either -1 or
+1 (Figure 2.19b).

F()—‘I’l x>0 ORF()—‘I’l x30
Y Tlox£0 Y71 x<0

Figure 2.19 Step Function

() between [0,1] (b) between [-1,+1]

c. Sigmoid Function: This is the most preferred transfer function because of its smooth
and bounded nature (Figure 2.20). It also has a simple first derivative. This gave the
neuron an advantage of scaling the output from the neuron to anything between 0 and

1 in a continuous manner.
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1+e®

F(x) =

where o is a constant.

Figure 2.20 Sigmoid Function (o = 1)

d. Hyper-tangent Function: Thisis similar to the sigmoid function (Figure 2.21).

1- ™
1+e*

F(x) =

Figure 2.21 Hyper-Tangent Function (o = 1)

These weights and the biases are initiated to some small random number, and then
modified using learning rules so as to learn the trends present in the training data.

An artificial neural network is then formed by placing a number of such neurons in
parallel to form a layer, and then having a number of such layers connected either in series or
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parallel or both. A neural network is defined by the number of neurons in each layer, the number
of layers, their type of connection between layers and the output transfer function used by the
neurons in each layer. The networks can be classified into two categories based on the how the
neurons are interconnected, namely recurrent and non-recurrent networks. Recurrent networks
(Figure 2.22) have connections from their outputs to their inputs and are best used for time
varying data or prediction purposes, where data information from previous instances is useful. In
non-recurrent networksthere is no feedback from the output of the network to itsinputs, example
a feed-forward network (Figure 2.23). These kinds of networks are more appropriate for
applications where each set of inputs has a different solution and is not linked to the results
obtained in the previous iteration, for example object recognition or character recognition. We
used a feed-forward type of neural network for our purposes in this research, since the JAFFE

database consisted of only snapshots and not continuous video with temporal information.

Figure 2.22 Recurrent Networ k
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Figure 2.23 Three Layered Feed-Forward Network [63]
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Training of ANN

We use the backpropagation training for the neural network. This is a widely and most
commonly used method for training of ANN. It was first introduced by Paul Werbos in his PhD
dissertation at Harvard in 1974, as “dynamic feedback”. Backpropagation effectively is an
efficient method to calculate derivatives of large and complex systems represented by smaller
subsystems that are defined by differentiable functions. Hence its use is not limited to ANN, but
to a number of other fields such as pattern recognition, dynamic modeling, control of systems
over time, fluid dynamic modeling, etc... [69]. Since backpropagation can only be used on
systems defined by differentiable function, we cannot use step function as the transfer function
for the neuron. But a sigmoid function approaches a step function as a—o0, and can be used
instead.

Backpropagation actually stands for ‘backpropagation of errors and is exactly what is
done during the training of the ANN. The mean squared error is computed at each iteration and
then the weights of the network adjusted such that the error is minimized. Since the only
variables in the network are the weights that can be changed to make the error low, and al the
nodes of the network have a continuous and differentiable activation function, we can say that
the error is essentially a continuous and differentiable function of weights, £ = F(w;, ws, ..., wy),
and training a problem of minimization.

To begin with training we would need a training set consisting of p ordered pairs of » and
m dimensional vectors {(x;, t1), (x2, t2), ..., (x,, tp)}, Where n is the dimension of the input vector
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and m the dimension of the output vector. Here x; would be a sample input pattern and ¢ the
corresponding output, also know astarget. The error formula for the network would then be

E %é(o[ %
where, o; is the actual output of the network as opposed to ¢; which is the desired outpui.
We can then minimize error, E, using gradient descent to compute the new weights. Gradient
descent is an optimization algorithm, used to find the local minima of the function by moving in
the direction of the negative slope i.e. towards the local downhill [68]. For this we have to
calculate the gradient given by,
&E  E 1E 0O
§'nw1"nw2 S E
Weights are then updated using the increment

1E

Dw, =-g——
FOg,

NE =

w, =w +Dw =w, - gﬂ—E fori=1,2,...,1
fiw,

where, y isthe learning rate [55].

Since the backpropagation algorithm is so famous, a number of variants of it have been
developed. One of the most famous and commonly used variant is “Gradient Descent with
Momentum”, a method that we have used in training our ANN. This method has the advantage
of not getting stuck at local minima early on in the training by making the weight increment in
the N iteration dependent on the (N-1)" iteration.

D (N) = - g& - hDw, (N - 1)
fiw,

1

where, 1 is a constant known as the momentum [46]. This is similar to letting a roller coaster go
free after taking it to the top, the momentum of the train takes it through the up and downs in the
ride, finally bringing it to rest a the lowest point. In a similar way the using the method of
gradient descent with momentum, helps the errors move through the local minima in search of
the global minima. As it approaches the global minima, the error might oscillate a little before

finally coming to rest at the global minima.
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Testing of ANN

Each database was divided into two main sections, the training and the testing group. The
groups we so divided that the training set was bigger than the testing, while the testing set had
diversity in emotions and subjects. This was usually accomplished by leaving the subject with
the most diverse range if images out of the training set. That way the ANN had a whole array of
expression on a number of different subjects to train on. But then we would also have a face that
the network has never seen before and also a range of expressions, that way we can test
performance on both unseen faces and also on each expression. For example in the JAFFE
database we used nine subjects for training and one for testing, similarly in the MMI database
subject 39 was used for testing while the other seventeen subjects were used for training. We
also tested the ANN on different databases, so in that case the one face that formed a testing set
for the original database was used as a baseline to compare performance of the ANN on other
databases.

RESULTSof FER

Training on JAFFE and Testing on JAFFE

We first present our results of training the ANN on the JAFFE database and testing it on
the JAFFE database. We present these results first, because we anticipate that testing the ANN
on non-JAFFE images would potentially yield either misclassification of facial expressions or a
strong indication of the goodness of a minimal feature point set that we used per facial
expression. In fact, this baseline should yield expectedly good results. The following results were
achieved by using ANN with one hidden layer containing 30 neurons. We trained 10 different
networks and then averaged the results.

Table 2.1 True Positiverate for ANN trained and tested on JAFFE database

TP Angry Disgust Fear Happy Sad Surprise

58.43% 57.33% 42.00% 50.89% 74.71% 44.22% 90.00%
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As shown in Table 2.1, the average, overall accuracy of the trained ANN was 58.43%,
but ranges from a low of 42% for “disgust” to as high of 90% for “surprise”. This average figure
of merit (FOM) may seem low when compared to higher figures reported by other studies
ranging from 65% to 95% [51]. However, we emphasize the limited number of feature points
extracted per facial expression in contrast to these studies. In fact, other studies when tested with
images beyond its training database show a comparable true positive rate of 60% [39]. Thus, in
the task of classifying six different expressions, we conditionally accepted this figure of merit.
This figure is consistent with the drop in accuracy of facial expression recognition by human
subjects [5]. Also Table 2.1 shows accuracies for each expression. From the results above we can
clearly see that our methodology is suited for classifying facial expressions with clear movement
of feature points, i.e. “happy” and “surprise” relative to the neutral FE. We assert that these
expressions are well-suited for the ANN to learn and classify. On the other hand, facial
expressions such as “angry, disgust, fear and sad” are “weakly” characterized by our descriptor
and therefore not as well-suited for the ANN to learn. In fact the occurrence of weakly
characterized expression suggests a need for a second biometric and/or other means of secondary
validation.

Training on JAFFE and Testing on MM1

It is impractical to assume that we will always have associated training dataset available
for a FE which we want to analyze. Therefore to evaluate the ability of our ANN-based
application to recognize facial expressions on unseen (external) faces, we first trained the ANN
with the JAFFE database and then test it on images taken from the MMI database. In fact, not
only are the training and test sets different, they also span ethnic and cultural characteristics.
Thus, again using the same ANN, we averaged the results of 10 networks. Validation based early
stopping was used while training the ANN. Under normal circumstances training of an ANN
continues until either a preset number of iterations/epochs are completed, or the error on the
training set attains a level reaches below a threshold. While using a validation based early
stopping, a portion of the complete database is assigned to the validation set. After every epoch
the ANN is tested using the validation set and its error computed. Any increase in error in the
validation set stops further training. In this case we used a sample of the MMI database as the
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validation set so as to improve performance. This also preventsthe ANN from overfitting, which
iswhen the ANN begins to memorize the training set rather than identifying a pattern.

Table 2.2 True Positiverate for ANN trained on JAFFE and tested on MM | database

TP Angry Disgust Fear Happy Sad Surprise

55.96% 57.38% 17.22% 13.05% 90.80% 50.24% 92.00%

Table 2.2 shows that the average accuracy achieved on a different database was 55.96%,
which is comparable to the accuracy we achieved using the JAFFE database. This is also
comparable to the methods developed by Littlewort et a. who reported 93% recognition of facial
expression on their training; however, this FOM dropped to ~60% when tested on a different
database [39].

One can again see that “surprise” and “happy” facial expressions consistently produce
higher figures of merit and support the view that these facial expressions are easiest to train on
and classify. Interestingly, the ANN is some 15% better a recognizing the happy expression in
the MMI than in JAFFE on which it was trained. Though limited, we learned through our own
facial expressions database development that subjects from some ethnicities and cultures (here
Asians) do not express a sense of “happy” with the same “intensity” as from other backgrounds.
However, the vectoral descriptor appears to be consistent for both JAFFE and MMI. We can also
see that “angry” and “sad” facial expressions are still relatively difficult for the ANN to classify;
that is, the descriptor for these MMI expressions is not particularly distinct. Interestingly the true
positive rates for “disgust” and “fear” exhibited a significant decrease relative to Table 2.1. In
fact, in the case of “fear”, the rate is worse than that achieved by random guess. So overall the
performance of the ANN trained on the JAFFE and tested on the MMI database appears to be
consistent for ‘angry’, ‘happy’, ‘sad’, and ‘surprise’ expressions and (provisionally) suspect for
‘disgust’ and ‘fear’, relative to Table 2.1.

The phase instance classification rate of video sequences can be improved using the
method to be described. If we define the amplitude of an FE as the averaged displacement of all
(extracted) feature points on a FE relative to their positions on a reference neutral FE, we
observe that this amplitude increases as the FE appears on the face, reaches a relative maximum

as the FE is held in time and subsequently, decreases as the FE dissipates or transitions to
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another FE. Logically when the amplitude is small at the onset and end of the sequence, the
calculated vectora descriptor is not definitive and as expected, presents itself as a weak (and
difficult) test example for the ANN. However, the amplitude increases the calculated descriptor
and becomes more definitive (thus characterizing the particular FE). Here, those examples near
the peak amplitude associated with a FE are more likely to be correctly classified.

Using this characterization of the spatiotemporal facial dynamics we plot the response of
our ANN for all six expressions over the video sequence and in addition, normalize the response
for each frame relative to the maximum amplitude. This normalization not only elucidated the
peak amplitude but importantly relative to the six normalized FEs. Thus in Figure 2.24, we see
the change in amplitude over time for a given FE. Starting from a neutral FE, a peak develops
and then subsides for some FEs (Figure. 2.24a, “happy”) while large amplitudes are attained only
at the start and end for other FEs (Figure. 2.24b). Here Figure. 2.24a depicts the raw response
whereas Figure 2.24c¢ shows the (maximum) normalized amplitude for a given FE. From tracking
the FEs of MMI subjects, we first see similarities and differences among the six FEs. Note that
there are FEs with larger amplitude at the start/end of the video (“Su, Fe, Sa’). Surprise, though
similar in trend (amplitude) to “sad”, has a vectora descriptor that distinguishes it in training and
testing across the JAFFE and MMI database. On the other hand, for “sad” and “fear”, the
vectoral descriptor is less definitive and seemingly more specific to the training and testing
database.

Figure 2.24 Normalizing Expression Recognition in Video Sequences
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Training on MMI and Testing on JAFFE

We then also tried training an ANN with the MMI database and testing it with the JAFFE
database. The results for this combination of training and test set are shown in the table below.

Table 2.3 True Positiverate for ANN trained on MM and tested on JAFFE database

TP

Angry

Disgust Fear Happy

Sad

Surprise

52.09%

45.11%

31.73% 39.27% 88.97%

51.67%

57.22%

From Table above we see the overall recognition rate of training on one database and

testing on another does not depend on what combination of training and testing databases we use.
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But upon closer inspection we will see that training on the MMI database and testing on the
JAFFE has significant differences as compared to the reverse. We observe the recognition rate
for surprise has dropped drastically from 92.00% in the previous case to 57.22% a present.
However at the same time we also observe that the two expressions of ‘disgust’ and ‘fear’ that
saw adrastic drop in recognition in the previous case are recognized much better now. Thereisa
change from 17.22% to 31.73% for disgust and 13.05% to 39.27% for fear. These results are
comparable to those obtained when ANN was trained and tested on the JAFFE database. We will
take acloser look at these discrepancies in the section to follow.

Testing on Elderly Faces

Some testing was performed on the images of the elderly gentleman (Figure 2.25)
available in the MMI database. While trying to process these images we had trouble locating the
eyebrows, because the eyebrows were essentially white and hence blended very well with the
skin color of the gentleman. Hence we decided to go ahead with expression recognition without
locating the eyebrows. But as expected this induced problems. Since the eyebrows were
eliminated, so were any features that were calculated based on the eyebrows. This bought down
the size of the input vector from 38 features to 27 features. To compensate for this we used
Gabor wavelets with six different orientations in the regions around the eye and the mouth. A
new neural network was generated to classify the images using this newly developed feature set.

Figure 2.25 Examples of Images of the Elderly Gentleman

() Happy (b) Sad (c) Disgust (d) Surprise

The database contained images of the elderly gentleman for only four emotions, namely
happy, sad, disgust and surprise. We could only process happy, sad and disgust because surprise
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consisted of large head movements; this caused problems in feature point location. Results from
the other three expressions are presented in the Figure 2.26 below.

Figure 2.26 Expression Recognition in Elderly Faces
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(c) Disgust

From the above plots we can see that in this method happy (light blue line, no 4) is hard
to detect. The happy expression always has very low recognition, even when the face was
actually supposed to be happy (Figure 2.26a). However the present approach shows promise with
more difficult to detect expressions such as sad (purple line, no 5) and disgust (green line, no 2).
In fact for the sad expression (Figure 2.26 b) we can see that it is recognized very well. Even
disgust has a very strong signature compared to the previous networks we had developed.

This study on elderly gentleman was performed on behalf of the Center on Aging at
Kansas State University. Any further discussion is limited to the original study. Although the
study of elderly people is of interest, the small amount of data available prevents us from any
significant study. However, our method is independent of age.

ANALYSISof FER

Our descriptor works best with expressions in which there is clear and distinct movement
of feature points with reference to their neutral position, i.e. happy and surprise, while the more
subtle expressions seem to be difficult to classify. We know that our choice to locate fewer
feature points prevents us from capturing the subtleties in face required to classify the rest of the
expressions satisfactorily. This also introduces a chance of increased noise in the data feed to the
ANN. But thisis a compromise we were ready to make to make the system light on computation
and also with the idea that once this system is deployed in the field the images are not going to
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be very sharp, and these feature points are those that can be extracted even on low resolution
images.

From the results we just saw, one thing that is apparent is that the happy and surprise
expressions have been recognized most consistently, followed by anger and sad, whereas the
recognition rate for fear and disgust has been poor. These results we see above for testing and
training on the same JAFFE is not comparable to high recognition rates ranging from 65% to
98% published by other researchers [50], but if we look the recognition rates when some of these
systems have been tested on a different from their training database these accuracies are in close
comparison at 60% [39].

Upon closer ingpection of the results we see that there are patterns in the
misclassification. Here a confusion matrix is a great way of looking at the performance of the
ANN. It aso gives us an insight on the classification pattern. It is a matrix whose rows represent
the true expression of the image/video, and its columns the actual results of classification. The

values along the diagonal of the matrix represent the number of correct classifications.

Table 2.4 Confusion Matrix for ANN trained on JAFFE and tested on MM | database

True\Classif. An Di Fe Ha Sa Su
An 30 5 5 0 2 0
Di 26* 6 1 0 2 1
Fe 0 4 2 1 8 31*
Ha 0 1 2 44 2 1
Sa 3 6 3 0 23 6
Su 0 0 0 0 3 47
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Table 2.5 Confusion Matrix for ANN trained on MM and tested on JAFFE database

True/Classif. An Di Fe Ha Sa Su
An 51 29* 3 6 0
Di 19 38 4 1 25 0
Fe 19 14 40 7 14 2
Ha 4 1 82 0 0
Sa 24 13 39 2
Su 1 27* 1 55

Let ustake a look a rows two and three of Table 2.4; these represent those images that
were supposed to be disgust and fear. These were the two expressions that had the worst
recognition rate when we had trained the ANN on JAFFE database and tested it on the MMI
database. We see for disgust that a large portion of the images that were misclassified were
marked as anger (*) (Figure 2.27), and similarly for fear it issurprise (*) (Figure 2.28). These are
expression pairs that look very alike and we could argue that the descriptor is not capable of
differentiating between these pairs of expressions. But in that case we should have an equal
misclassification of ‘anger’ as‘disgust’ and ‘surprise’ as ‘fear’, thiswe see is not the case.

Figure 2.27 Comparing Anger and Disgust Expressions
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Figure 2.28 Comparing Surprise and Fear Expressions

Now we shift our focus to Table 2.5 which represents a system that is trained on MMI
and tested on JAFFE. We see a similar pattern with misclassification but in the reverse order, i.e.
a significant number of angry and surprise images are classified disgust and fear respectively.
Even with this configuration we see that misclassification in the reverse order is not as
significant. There is some misclassification of ‘disgust’ as ‘angry’ but a greater number is
misclassified as ‘sad’. Similarly there is misclassification of ‘fear’ as ‘anger’, ‘disgust’ and * sad’
but not ‘surprise’. This leads us to the partial conclusion that the ANN is able to see a pattern
even for disgust and fear, and suggests that it is not a problem with the descriptor or the training
of the ANN, but rather a more fundamental difference between the two databases. The basic
difference between the two databases is the cultural and ethnicity of the subjects. This leads usto
at least a partial conclusion that there is indeed some difference in how people from different
backgrounds express themselves. The confusion between the ‘fear’ and ‘surprise’ among groups
from different cultural groups was also shown by Ekman in his experiment with an isolated tribe
in Papua New Guinea, and later by Heider when he repeated a similar experiment in Indonesia
[21]. This is not only corroborates with previous results [70] [44] and consistent with human
experience, but perhaps for the first time, this has been revealed by digital means. So although
some facial expressions, such as ‘happy’ and ‘surprise’, are understood all over the world (and

across cultures and ethnicities), some others may depend on cultural and ethnic factors.
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CHAPTER 3-EMOTION RECOGNITION IN SPEECH

Speech is the primary form of communication used by humans. Along with the linguistic
content of speech, the way a word is said is equally important. The tone of the speech contains
cues to the emotional state of the person speaking, and we as humans naturally recognize these
emotions. When translating using speech recognition systems, emotions are only noise that
degrades the performance of the speech recognition systems. This prevents us from using
computers to transcribe emotional speech in conversation [57]. Hence if the emotions in speech
could be recognized and subtracted from the speech it could improve speech recognition
systems. Usually emotions are consciously expressed to complement and emphasize the
linguistic content of speech. At other times the emotions contradict the meaning of the words
used, usually when trying to conceal ones feelings [47].

Each emotion has particular way in which it affects speech and it is these changing
properties that we use as cues to emotion present in the speech [3].

Anger: |s characterized by higher pitch, pitch range, mean energy and increased rate of

articulation.

Fear: Is similar to angry, with higher pitch, pitch range and high frequency energy levels,

and also quicker speech.

Sad: |s characterized by lower pitch, pitch range and mean energy and lower articulation

rate.

Happy: has higher mean pitch, mean energy and pitch variability.

Speech parameters used commonly for classification of emotions are pitch, formants, mel
frequency cepstral coefficients and energy levels.

SPEECH DATABASE
The database we used to develop our system for emotion recognition in speech is in
German language, it was developed by Burkhardt. F., et al, at the Technical University at Berlin
[7]. The database contains sentences portraying emotions of neutral, anger, fear, joy, sadness,
disgust and boredom. These sentences are spoken by 10 subjects, 5 male and 5 female, selected
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from a larger group of 40 people. Each one of the 40 members was asked to record one sentence
per emotion. These recordings were then evaluated by a group of experts for naturalness and
reconcilability of the emotion, and the final group of 10 was selected to record all the possible
combinations of sentences and emotions. The recordings took place in an anechoic chamber at
the Technical University at Berlin. The samples were originally recorded at 48 kHz. The final
database available contains samples at 16 kHz, these were obtained by re-sampling the 48kHz
signal.

Figure 3.1 Photograph during recording in anechoic chamber at TU-Berlin. [7]
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The database consists of 10 sentences in all. These sentences were chosen such that they
could be used in every-day conversation and also contained as many vowels as possible. During
the recording sessions the actors were asked to visualize past situations in which they had felt
such emotions. The sentences used are in the Table 3.1 below. These recording were then

presented to 20 subjects who had to recognize the emotional state of the speaker and the
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naturalness in of the emotion. The final database then consisted of the only those sentences

whose recognition rate was better than 80% and naturalness better than 60%. This finally

produced a database of 500 sentences out of the 800 sentences that were recorded.

Figure 3.2 Recognition rate for various emotionsin database [7]
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Table 3.1 Sentencesin speech database [7]

Code
a0l

a02

a05

a07

b01

Text (German)
Der Lappen liegt auf dem Eisschrank.
Das will sie am Mittwoch abgeben.
Heute abend konnte ich es ihm sagen.

Das schwarze Stuck Papier befindet sich da oben
neben dem Holzstlick.

In sieben Stunden wird es soweit sein.

Was sind denn das fir Tuten, die da unter dem
Tisch stehen?

English Translation

The tablecloth is lying on the fridge.

She will hand it in on Wednesday.

Tonight | could tell him.

The black sheet of paper is located up
there besides the piece of timber.

In seven hours it will be.

What about the bags standing there
under the table?
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b02

b03

b09

b10

Sie haben es gerade hochgetragen und jetzt gehen

sie wieder runter.

An den Wochenenden bin ich jetzt immer nach

Hause gefahren und habe Agnes besucht.

Ich will das eben wegbringen und dann mit Karl

was trinken gehen.

Die wird auf dem Platz sein, wo wir sie immer

hinlegen.

They just carried it upstairs and now
they are going down again.

Currently at the weekends | always

went home and saw Agnes.

| will just discard this and then go for a
drink with Karl.

It will be in the place where we always
store it.

SPEECH PROCESSING

Significant amount of energy in a speech signal is contained in the region 0 to 5kHz [59].

Hence should also contain the most significant amount of emotional information, this is why we

concentrate on this range of frequencies, and also reduce the amount of computational power

required for processing the same The various methods that we use to extract the emotional

information from the speech signal are spectrogram, mel-frequency spectrum and linear

predictive coding, which we will discuss in detail in following sections.

Spectrogram

The magnitude of a short term Fourier transform, when plotted is called a spectrogram. It

is a plot with time on the X-axis and frequency on the Y -axis with the darkness representing the

magnitude of the frequency band at that time. This is an important tool in speech processing.

Figure 3.3 A Spectrogram
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The first step in plotting a spectrogram is calculating the short term Fourier transform of
the speech signal. Computing the Fourier transform over short intervals of time enables us to
capture the dynamic changes in the speech signal. Typically these parameters are estimated every
10ms, so as to obtain a smooth tracking of parameters. These short pieces of signal is cut out
from the complete signal by multiplying the speech signal s(k) with a windowing function, w(k),
to get a segmented speech signal v, (k). We use the Hamming window, which is the most
commonly used windowing function.

10.54- 04600850 (=0..,n-1

W(k):_l_ en-1lg
1 0 k*0,..,n-1

where, n is the length of the time window in number of samples. The window usually represents
16ms to 25ms. A wider window would have better frequency resolution but bad time
localization, while a narrow window is better for time localization but has bad frequency
resolution.

Segment of the speech signal obtained by multiplication of the original signal with the
Hamming window, is given by
is(k)*wk-m) k=mm+1...m+n-1
vm(k)=%’ 0 k' mm+1..m+n-1
where, m is the beginning sample of the time signal and m+n-1 the ending sample. The value of
m isincremented such that there isa 10ms shift in the time signal.

Window length is important to audio processing. Longer vowels can be processed using
windows up to 100ms wide, while some short burst of sounds need windows 5 to 10ms long.
Since it is not possible to know before hand what kind of sounds are going to be generated,
window length of 16ms to 25ms is generally used as a compromise. The time window is shifted
10ms for each set of parameters, it is possible to analyze the whole length of the signal [18]. The
shift being smaller than the window length causes an overlap in the signals of consecutive sets of
parameters. The overlapping samples assist in smoother temporal tracking of parameters.

Assuming the speech signal was a continuous time signal s(z), its Fourier transform would be

given by,
S(W) = §, s(0e ™ dr

The discrete time Fourier transform of a signal of length NV would then be given by,
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Moving from a continuous frequency to discrete frequency bands we get the discrete Fourier
Transform, different from discrete time Fourier transform.

N-1 - J2pik
S‘G)=a stk)e ¥ O£iEN-1

k=0

Now, if we computed the discrete time Fourier transform for each window of time, which is
computed as described above, the short term Fourier transform would be given by

¥
S(ma)= v, (e’ gl A, ml N
=-¥

k=

Substituting € with (i) from above,
- j2pik

N-1
Smi)=8 v, (ke ¥ OEi, OEKEN-1
k=0

Once we have computed the short term Fourier transform across the whole signal using a
moving window, we get an array of complex numbers. The image produced by the magnitude of
the complex values as the darkness, m indicating the frame number in time, and i representing
the center frequencies of the different frequency bands [18].

Word Separation
Now that we know how to plot the spectrogram, we can go ahead and compute the
discrete power spectrum from the complex spectrum we computed previously. This power
spectrum is the sum of the energies across all frequencies at a given time. This is done by adding
up the absolute values, representing energy levels at each frequency, of the spectrogram at a

given time.

P(m) = é’_l |S(m, )|

We then use this power threshold method similar to that used in [31] and [48]. In this
method we compare the power to a predetermined threshold. Increase in speech power above the
threshold mark the beginning of an utterance/word, and when the speech power drops below the
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threshold it isthe end of the utterance. This method has a problem however, since fluctuations in
the power of the signal could cause the method to classify them as words. We thus require that
there be a minimum number of frames below the threshold before and after, we call this a pause,
to classify a part of asignal as aword. The results of this method are shown in Figure 3.4. There
is another advantage of this, sometimes the word is uttered making the segment very short and
unusable for emotion classification, so by putting two words uttered in quick succession we
could successfully classify emotion in the segment.

Figure 3.4 Power plot with word separation
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Mel Frequency Spectrum

The frequency response for the human ear is non-linear, with higher resolution at lower
frequencies and lower resolution as the frequency increases. Perception experiments have shown
the human ear does not recognize the frequencies as continuous but rather divides it into several
groups, with the center frequencies of the band following the mel-scale. Mel-scale was proposed
by Stevens, Volkmann and Newmann in 1937, it is the scale of pitches judged by listenersto be
egual in distance from one pitch to another. Its reference point is defined by equating a 1000 Hz
tone, 40dB above the listener’ s threshold to with a pitch of 1000 mels[66].

foa(f) = 2595|og€'i
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Figure 3.5 Mel frequency Scale
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The bandwidth at each of these frequencies increases with frequency, but the frequency
distribution within the band is assumed to be linearly distributed. This is done by using atriangle
shaped window function, with the peak at the center frequency of the given band and the upper
and lower boundaries at the center frequencies of the upper and lower frequency bands
respectively as shown in Figure 3.6 [53]. Figure 3.7 is a representation of the mel frequency filter
matrix as a plot, where the Y axis represents the channel of the filter, X axis the fast Fourier
transform index of the frequencies in Hz, and the darkness of the multiplication factor of the
filter window for the particular frequency.

Figure 3.6 Ml frequency filterbank [58]
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Figure 3.7 M e frequency filter bank asa matrix
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Mel Freguency spectrum is similar to aregular spectrogram, just that the frequency bands
on the Y-axis are defined by the mel-scale explained above. It can be computed by multiplying
the filter matrix with the spectrum of the lower half frequencies of the regular spectrum. These
are the frequencies usually until 4000Hz that contain the most energy and information that the
human ear perceives. We will use the energies in the mel-spectrum later while forming input

vectors for the ANN, used for classification.
Formant Extraction using LPC

Speech Generation in Humans

Humans produce speech as they push the air out of the lungs through the articulators.
‘Articulators is aterm used to describe all moving organs that assist in speech production. The
major articulators are the tongue and the lips, while the larynx and the velum are considered
secondary articulators. Refer Figure 3.8 for to aid in understanding of the structure of the human

speech production system.
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Speech generated by the humans can be classified into two main categories, namely
voiced and unvoiced. Voiced speech is periodic and produced in the larynx when the vocal cords
obstruct the flow of air from the lungs. The vocal cords modulate the airflow to create the sound
variations. However it isthe vocal tract that is the most important. The vocal tract is aterm used
to group the pharyngeal and oral cavities as one. It begins at the output of the vocal cords and
ends at the lips. It produces different sounds by modifying the temporal and spectral distribution
of power in the waves initiated at the glottis.

Figure 3.8 Schematic of the Human Speech Production System

-_\I\:\I .\_\\
'\'\.‘ ‘.'.
Hard palate "-I 1
\ I
Saft palate \ | A
{weim) . .__-" - !l' :_T;-..__ !
il -"ji. \'\."-‘. ——— M asal cavicy
= — 2 kA L
_f_':"'" II ._15"- LY
- 'IL\*)_(r"'t_" Pl .__I : :~!'._.
} - — il - walri
| [ “""—-‘:":L--'h‘_ i 1 -_____.. s ks
| i -
Pharyngeal J!;__b:-;'i w4 Lip
- - S S — L . -
ey T —
caviy |I . I--C‘-CL 'f? .. - I"'||_L'|.I.'
i form l'_.I'. .-.I| | o,
M ——— ) i | o p— gt T
Laryn S ST .
| f - T e Teeth
Esanhs s ————7" _*I."k""_,-" { e
FHE PR BN . Cral (or buceal) cavity
s LA .
i’

L \\ ~ Faw

|
A
FAN "
AR Y — Tracheca

s
D NN,
", 17 ,
RV )
[ _p L ! — Lung
| & o~ [ Py | —_— h
1 1 1l —
| | II| b "-\. . H I
5 b 'I [
| &l | [
o ~
i | [ [
] | A
— —_— _|
— = [aphragm
-"'TE-- o
- I

a7



Human perception of speech is based on those frequencies that are strong, i.e. have more
power. Hence the vocal tract is often described in terms of its resonant frequencies, also known
as formants. These resonances are because of the poles of the vocal tract transfer function.
Theses formants are written as Fi; where i stands for the formant number e.g. Fi, F2,...,Fn.
Usually there are four formant in the O to 4000Hz range of human speech. Movement in the
articulators changes the shape of the vocal tract and hence the frequency response [18].

The nasal cavity also know as nasal tract, is another part of the speech production system.
It begins at the velum and ends with the nose, and is associated with generation of nasal sounds.
The velum is atrap door like mechanism at the back of the mouth and separates the nasal and the
vocal tracts. During normal speech it is usually pushed up and prevents air from entering the
nasal cavity. This can be lowered to acoustically couple the vocal and the nasal tractsto produce
nasal sounds [62].

Figure 3.9 Linear Speech Production M odel
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Now that we have seen how humans produce speech, we need to represent this as a
source-filter model to draw analogies to digital filters. We can then use the much studied and
proved techniques in digital filtering to for formant extraction. In this model we would have two
sources, first an impulse train with period P for voiced sound and second would be random noise
having a flat spectrum for unvoiced sounds. These sources together are represented ase(t), this

signal is then modulated through a series of models to output the final acoustic pressure
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waveform. The source e(?) is passed through the glottal model, vocal tract model and the lip
radiation model sequentially to produce the final output waveform. A schematic of the model is
shown in Figure 3.9. The Glottal model converts the input signal e(z) to glottal volume velocity
waveform ue(z) which is then passed to the vocal tract model, this acts is a resonator amplifying
certain frequencies known as formants. The volume velocity waveform at the lips w,z) is
converted to acoustic pressure waves by the lip radiation model.

The model in Figure 3.9 can be described by the following equation in Z-transform

S(z) = E(z)G(2)V () L(2)
where, E(z) isthe Z-transformed form of e(n), atrain of impulses spaced by pitch period P=iT
where i isapositive integer and 7' is usually set to 1.

¥
E(Z)ISéz'i"Z —
n=0 1-z

for |z|>1 the glottal model G(z) is of the form
1
(1_ ecTZ—l)z

the lip radiation model L(z) is given by

G(z) =

L(z)=1-z"!
and an all pole vocal tract model V(z) with K formants is given by
1

V()=
O [1- 2¢ " cog(b,T)z " +e 272

i=1

The i formant frequency is given by

and its bandwidth by

B[:i
2p

The three models can be put together as
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This model simplifiesto one similar to that of the vocal tract only, since ¢T isusually very small,
much less than unity and hence as e is approaches unity the glottal model [G(z)] and the lip
radiation model [L(z)] cancel each other out. This can be further simplified into an all pole
synthesis model given by [42]

1
A(2)

S(z) = E(2)
Where A(z) is defined by

M
A(z) = é a,z' a,=1

A(z) =1+ éM az’
oL
G(2)V (2)L(2)

The only condition being M > 2K+1.

A(z2)

Filter Designing using Linear Predictive Coding (LPC)

A mathematical theory for calculation of best filters and predictors was developed in the
later 1940s by Norman Weiner. This was used by Weiner during World War Il so asto am at
moving targets, such as aircrafts. Around the year 1967 Ata B. S., then a PhD student with the
Polytechnic Institute of Brooklyn, developed the Linear predictive coding (originally called
Adaptive Predictive Coding) for speech compression [2].

Linear prediction defined in simple terms is predicting the current time domain sample
§(n) by using a linear combination of past time domain samples, s(n-1), s(n-2), ..., s(n-m).

8
s[n] » s[n] =- Q a,s[n- i]
i
The LPC coefficients can then be used to represent the sequence of the signal s/n/.
8 8
Let error, e[n] =s[n]- s[n]=s[n]l+Q a,s[n-il=Q a,s[n- i
i=1 i=0

where, ay = 1.
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Taking z-transform of the above equation, we get

EG)=S()+8 a,5C)=" =S 9+ 8 a 3= S(2)46)
i=1 e i=1 u

& - :
where, A(z)=1-qaz'=Qaz"
i=1 i=0
which can also be written asthe synthesis model as

1

S(2) = E(2) 1)

and the analysis model as
E(z) = 8(2)A(2)
The LPC coefficients, a,, ay, ..., a,, Which are parameters of the filter A(z) are determined from
the speech signal s/n/ by the methods of least squares[18].
The filter A(z) is called an inverse filter since it is an all zero filter, where as 1/4(z) is an
all pole filter and also known as the synthesis model [42].

Inverse filtering is a technique used for de-convolution of the signal, and to obtain the
original signal from the final output. In our case since we start with white noise to synthesis
speech, an inverse filter would convert the input signal into white noise or a constant. An inverse
filter with infinite poles (M—x) would theoretically predict the exact inverse of the input
spectrum. But in practice an infinite number of poles are unrealistic. A filter with a finite number
of poles cannot span the whole input signal and thus can only be designed to approximate the
inverse of the signal characteristics. Markel J. D. in 1972 showed that with a properly chosen M
it is possible to predict the inverse of the gross spectral structurei.e. the formant behavior.

The input samples to the inverse filter are first windowed using a Hamming window. This
reduces the effect of the leading and trailing zeros of arectangular window function. These zeros
can often completely disguise the 2" and/or 3™ formants. Since it is the formats that we are
interested in, we have to segment streams of input signal.

The roots of the polynomial which are possible candidates for formant parameters are of
narrow enough bandwidth that the useful information can be obtained from the frequency
domain representation of the inverse filter. Peak picking of the inverse filter spectra, in general
gives correct results 90% of the time [39][43].
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Formant Extraction

Formants are computed as the roots of the polynomial defined by the LPC coefficients.
We could also plot the polynomial and pick the peaks in the plot, these are frequencies at which
the gain of the filter is maximum. Kishore S. P. e a. in their paper have shown that the
difference between the spectrum of two linear prediction filters of the same signal emphasize
formants, or pole frequencies of the filter. In fact, the closer the orders of two linear prediction
filters are the emphasis is more uniform across the spectrum. But this method also has a
drawback, if the lower ordered filter is already an overfit, i.e. when the characteristic formants
have been modeled and any additional poles are being used to model the noise, than the
difference will also boost the noisy peaks [54]. This istaken care of by selecting an optimal order
for the filter which is a function of sampling frequency, and is given by

M =F +g wherey=4or5andFsisinkHz

All the above computation is only meant for a small segment of a signal. But since the
speech signal is much longer and contains continuously changing formants, we would have to
divide the longer speech signal into smaller segments; that is, segments that can be satisfactorily
be modeled using linear prediction. Nominal length of the segment 20 to 35 ms[43].

CLASSIFICATION OF EXPRESSION

Unlike in facial expression recognition where each frame is classified, here a word is
classified as a whole, similar to a phase instance. Again unlike the face where we can compute
all the parameters at each frame, we cannot compute all the parameters in the unvoiced parts of
the signal and hence classification is only possible for the voiced parts of the signal.

Input Vector used with ANN

The input vector to the ANN represents aword as a whole and not each frame. It consists
of mean and median of formants, mel-energy levels, rate of change of formants and mel-energy;
word speed, ratio of voiced and unvoiced speech, time length of word and average energy per
word. The mel-energy for each of the formant is computed as the total energy of the band whose
center frequency is closest to the frequency of the respective formant. These parameters are first
computed along the whole length of the word, after which the signal is divided into five
segments, like in Figure 3.10, and then mean and the median are computed for each segment, the
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rest of the parameters such as ratio of voiced to unvoiced segment in the signal, number of words
spoken per second, time length of the word and average energy per word are constant across the
whole word. Features selected were the most commonly used parameters in literature [37] [3]
[14] [48], and then some trials were conducted to arrive at the final feature set.

Figure 3.10 Speech Feature Extraction [48]
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Training, Validation and testing sets
The speech database consisted of recordings form 10 subjectsin all, 5 male and 5 female.
We divided these recordings into three sets for training, testing and validation. The training set
consists of 6 subjects while the validation and testing set consists of 2 subjects each. Each of
these sets has an equal ratio of male and female speakers.

Results and Discussion

The classification of expression in voice is done on a word to word basis, and not
continuously over time like in facial expression recognition.

The Figure below is a result from emotion recognition for a sentence that is supposed to
be classified as an angry sentence. From the results above we see the two words in the middle of
the sentence are classified correctly as angry, while the first and last word are classified as
boredom and disgust. This is what we would expect when some one speaks naturally, not all
words carry the same emotion in tone and meaning, and there are always some words that would

emphasize a particular emotion in the sentence. But this works as a drawback while trying to put
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numbers to the accuracy of recognition, since all words in the sentence are expected to be
classified as angry.

Figure 3.11 Emotion Recognition in Speech
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The results for classification of emotion in voice are presented below. Overall accuracy

of this mode of emotion classification is 43% over all seven expressions. Emotion classification

in voice seems to work best for the more subtle expressions such as anger, sad, neutral, boredom

and disgust. Happy and fear being the worst expression at 0% and 3% accuracy respectively.

Table 3.2 Confusion Matrix for Emotion recognition in Voice

True\Classified An Bo Di Fe Ha Sa Ne
An 48 1 4 0 1 2 3
Bo 10 19 10 0 1 7 5
Di 12 2 9 1 0 3 4
Fe 10 2 1 0 4 4
Ha 14 0 3 0 0 1 0
Sa 4 7 2 2 0 23 1
Ne 13 2 1 0 6 18




Table 3.3 Recognition Rate for Emotionsin Voice

TP

An

Bo

Di

Fe

Ha

Ne

43.87

81.40

36.54

29.03

3.57

0.00

58.97

42.86
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CHAPTER 4-MULTI-MODAL EXPRESSION RECOGNITION

Emotion recognition from facial and voiced expressions processed separately is a step
towards facilitating human computer interaction (HCI). Integrating these two modalities is a
further step towards a more human like functional interaction. Bimodal systems have already
proved themselves in the area of speech recognition, e.g. cues from lip movement have been
used to improve the accuracy of speech recognition in noisy environments [56].

An ideal emotion recognition system would be one that takes in to account signal from
various modalities such as facial expressions, vocal expressions, body gestures and physiological
reactions. These modalities provide signals that complement each other. Usually humans tend to
neglect the physiological signals since they are not easy to sense at all times. For example, a
person’s heart rate can only be detected by being in physical contact with the subject; which in
HCI terms would mean the subject will have to be “wired” [51]. Therefore an expert system that
can recognize emotions from face, voice and body gestures can be used in a wider variety of
environments; that is, the biometric is captured non-invasively.

Figure 4.1 Ideal Emotion Recognition System
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The way humans integrate information from the various modalities is one of the biggest
challenges in developing a human computer intelligent interaction. Human interpretation of the
information available from these modalities depends on the context of the situation and
(intelligent) decision-making and depends on which modality to trust a a given point in time.
For example, while some one is talking research has shown that vocal cues are more reliable
when the facial expression appears just before or after the sentence [10].

MULTIMODAL FUSION

Computer fusion of information from the various modalities can be performed at one of
the three levels as follows:

Signal level

In this method the signals are fused before extracting features required by the decision
maker. This can only be used on signals of the same type, for example on two or more voice
signals. This method is not a feasible fusion of signals from different modalities because of the
very difference in nature of signals. Instead this method can improve estimates using multiple
sensors for a single modality, like an array of microphones [49]. Also in a noisy environment we
can record the noise separately and subtract this signal from the original signal to obtain clean
sounds.

Figure 4.2 Multimodal fusion at Signal level
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Here features extracted from each of the modalities are fused before being passed to the
decision maker. This is the fusion method used by humans while combining information from

various modalities [51]. The input signals to the decision maker have to be (time) synchronized.
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Thisisachallenge in itself since in multimodal expression recognition not all signals are present

at the same point in time, but could be spaced out in time. For example we might see a smile on
the face just before or after we hear a happy tone, but while talking this smile would not be
discernable due to the movement of the jaw and lips. This kind of fusion is usually achieved
using hidden Markov models or time biased neural networks.

Figure 4.3 Multimodal fusion at Feature level
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Here, different modalities are independently analyzed for the emotions present in them.
The decision from these modalities is then combined using either apriori rules or machine

learning techniques. In this technique, it is possible to develop each of the modality separately
before finally putting together the various decisions.

Figure 4.4 Multimodal fusion at Decision level
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As mentioned earlier, processing multimodal

information would

require time

synchronized data, i.e. video footage containing both audio and video. Absence of a readily
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available audio/video database is one of the main hindrances in the current effort. The few
studies [11] [16] [8] [10] [15] that have been made in this direction of multimodal emotion
recognition are based on small databases collected by the research teams themselves. Even fewer
of these use information fusion at the feature level. Decision level fusion of multimodal
information is preferred by most researchers. With a larger amount of research on uni-modal
emotion recognition and large databases available for each of these modalities, it is easier to
develop the systems independently before focusing on time synchronization. If an audio/video
database is available, it can be used as a testbed for each of the modalities and also as training
and testing database for the multimodal system.

EMOTION RECOGNTION TOOLBOX

We developed a tool to integrate the emotion recognition systems based on facial and
voiced expressions, explained in Chapter 2 and Chapter 3. This tool can recognize emotions in
audio, video or combined audio/video tracks. In the audio/video mode, the audio and video
signatures are independently presented on a same timescale. A lack of a free and easily available
audio/video emotion contained database has prevented us from automating the multimodal
decision making process.

Instruction Manual
With respect to navigating through the ‘toolbox’, we first select the audio and/or video
file by either entering the whole path for the file or selecting the file after clicking on the
‘Browse’ button.

Figure 4.5 Selecting a M edia File
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The tool reads the file using the *mmread’ function written by Richert [64]. The mmread
function imports the data from the media file into the workspace as individual structures both
audio and video. Along with the data from the file these structures also contain details about the
data, such astotal time of the file, sampling frequency for audio, number of channelsand height
and width of the video frame. Depending on the contents of the ‘Audio Setting’ and ‘Video
Setting’ buttons are enabled, which are used to activate the audio and video toolboxes.

Figure 4.6 Reading a media file
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Features from the audio and video are then extracted using the respective toolboxes.
These toolboxes open in new windows upon clicking on the audio or video setting buttons. The
audio toolbox performs word separation using energy levels and then computes a feature vector
compatible with the ANN used for emotion recognition in speech, as explained in Chapter 3.
Since people talk with varying speeds, the toolbox contains parameters to customize the feature
extraction. This toolbox can be used to set the threshold levels as percentage of maximum energy
in the speech signal. The energy level below this threshold is considered to be background noise
or unspeeched (unspoken) segments of the signal. The user can also change the length of the
pause between two words. A ‘pause’ is the minimum number of samples for which the energy
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has to be below the threshold so as to consider the segment of signal as a separate

word/utterance.

Figure 4.7 Audio Toolbox
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The video toolbox is used to locate feature points for each frame in the video sequence.
There are some dliders to adjust threshold for various parameters and features such as
background, lighting, eyes, eye corners, eyebrows, eyebrow corners, lip, lip corners, nose and
nostrils. The background and lighting thresholds are used for the automatic face region extraction
algorithm, while the rest of the thresholds are used during extraction of the respective feature
points. The user also has an option to switch to manual mode for either face region extraction
and/or feature extraction. The ‘Set Neutral’ button selects the present frame as the neutral image,
this is later used as a reference while creating the feature vector. By default the first frame is
taken as the neutral frame. There also are some additional features to rotate images, crop the
frames such that the face of the subject is in the center and resized to 256 x 256 pixels. The
shaded window over the image of the face (Figure 4.8) represents the final cropped image. The
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user can use the glider in the frame panel to scroll through all the frames and make sure that the
selection is correct. After the video is cropped and resized to the correct size, the ‘Test Frame’
button is enabled. This gives the user a chance to either test the threshold setting selected, or to
manually select feature points for the any one frame and use automatic extraction for subsequent
frames. Once the user is satisfied with the feature points extracted in the test frame, the test video
button then locates features of the whole video sequence. The *Save Setting’ button then passes
the information for the extracted feature points to the main window where the emotions are

recognized.

Figure 4.8 Video Toolbox
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Once the information from all the available modalities is available, the ‘Recognize
Emotion’ button is enabled (Figure 4.9). This button loads the neural networks for face and voice
emotion recognition, and analyzes the available features for emotions. In the voice domain
emotions are recognized at word or utterance level, while the expression in faces is recognized

for each frame.
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Figure 4.9 Emotion Recognition Toolbox
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TESTING and ANALYSIS

Testing of the multi-modal system was unfortunately limited because of lack of any
freely available multi-modal databases. For purposes of consistency with the audio database
testing of the system should be in German. With the help of a German speaking volunteer (to
whom we are very thankful) we were able to record the same phrase with facial and voiced
expressions. From this we have been able to perform some preliminary tests. For reasons to be
determined all of the recorded data from this user was classified as either ‘anger’, 'boredom’ or
'disgust’ by our system. Since boredom was not a part of the training database of the facial
expression recognition system and could be recognized only in voiced expression, we were not
able to completely test the system for it. However the classification of anger and disgust helped
test the system to see if the addition of emotion recognition in speech enhanced the recognition
of expressions displayed by the face. If one recalls, one of the problems encountered with the
facial expression recognition system was that it misclassified disgust as anger and fear as

surprise.
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While interpreting results from the multi-modal toolbox, we rely more on the results of
the facial expression recognition system and use the voiced emotion recognition system to
supplement the information. It is thus not the primary decision maker or modality for emotion
recognition. This is because of lack of extensive testing of the voiced emotion recognition
system and better recognition rates achieved by the facial expression recognition system. Results
from voiced emotion recognition can facilitate the process when the user has to make decisions
pertaining to the confused emotion (anger-disgust pair and surprise-fear pair). At present we are
only able use these results to make a distinction between anger-disgust and not between surprise-
fear. Here again the German speech database used for training the emotion recognition system
did not contain expressions of surprise and even though it contained fear, fear was one of the
least recognized emotion in voice.

Figure 4.10 below compares results from the multimodal toolbox for disgust and anger
expressions. Looking at the results we observe that the best time to observe an emotion in just
before an utterance. Since an utterance will change the shape of the mouth and hence move the
mouth’s feature points, it is not reliable to read the expression from the facial expression
recognition system when the word is actually being pronounced. In the result for disgust
expressed emotion of sentence ‘al2’ we observe that the facial expression recognition system
shows a glight trace of disgust just before the second word. In fact the word is classified as
disgust by the voiced emotion recognition system; thus reinforcing the conclusion that the
expression is disgust. Also the consistent classification of all the words as disgust points towards
the fact. We can observe a similar scenario at the third word in the identification of disgust for
sentence ‘ad4’. In an unbiased opinion for the sentence ad4 of disgust, | would classify the first
word as surprise based on the facial expression recognition, and the second as anger based on the
voiced emotion recognition since, the facial expression recognition is inconclusive for the second
word. While with sentence b10 | would classify any individual word as angry based on results
from facial expression recognition, but asked for an opinion based on the whole segment, |
would classify it as disgust because of the consistency of expression in voice, better recognition
rate of disgust in voice over face and knowledge about the anger-disgust confusion.

Further for angry expressions, we see that anger is very prominent in the facial
expression recognition system especially before the utterance of the word and when corroborated
by recognition of anger in speech, leads us to conclude that the utterance is an angry one. It
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seems possible to at least improve the classification of the expression recognition process while
simultaneously reduce the ‘anger-disgust’ confusion when emotion recognition is limited to
facial expressions.
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Figure 4.10 Comparing M ulti-M odal Results for Disgust and Anger
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CHAPTER 5 - Conclusion

This research is directed towards developing a multi-modal emotion recognition system.
This system was developed because of the general interest of the researchers in the area of
robotics, specifically social robots. In the future when robots will begin co-existing with humans
in the same environment they will have to learn to be socially interactive, and emotion
recognition is the key skill since humans communicate only 7% through spoken words, while the
remaining 93% communication is through emotional expression in face and voice. Another
interesting area where such a system will be handy is in law enforcement for detection of intent
to deceive. Thisrelies on the fact that emotions expressions are not completely voluntary and can
be used to gain an insight into the person’s actual feelings.

In order to achieve our goals of building an emotion recognition system we firstly build
systems to recognize emotions in face and voice separately. Emotion recognition in face was in
three stages, namely face region estimation using seeded region growing algorithm, feature point
extraction using particle swarm optimization techniques and lastly facial expression
classification using feed forward artificial neural networks. While feature extraction in voice was
done using techniques such as Fourier transforms and linear predictive coding, they were
classified using feed forward artificial neural networks. These two systems were then put
together into a user friendly multi-modal expression recognition toolbox, by synchronizing the
systems based on the time scale. All the programming for the purpose was in Matlab.

Some conclusions we can draw from the research above are

Expression recognition using both facial and voice expressions helps solve the
issue of confusion and frequent misclassification among some expression pairs,
particularly anger and disgust.

Surprise and happy are the most accurately recognized facial expressions, while
disgust and fear arethe least accurately recognized.

There are cluesthat people from Asian cultures express some emotions differently
when compared those from European cultures. Hence the emotions pairs of anger-
disgust and surprise-fear are the misclassified often when a neural network is
trained on one database and tested on another.
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Emotions of “happy” and “fear” are difficult to recognize in voice.

Since time dependent machine learning techniques allow for extraction of
temporal information they are better suited for emotion recognition in voice, as
against the feed forwards networks that have been used.

Use of time dependent systems also allow for complete multi-modal fusion of

emotional information from voice and face.

The facial expression recognition system developed was trained on the JAFFE database,
consisting of images of Japanese females. The testing was performed on MMI database,
consisting of a mix of males and females of European background. This system recognizes
emotions in faces with an accuracy of about 55% over 6 emotions (anger, disgust, fear, happy,
sad and surprise), across the noted cultures. The expression “surprise” was the easiest to classify
with about 92% accuracy even on a database on which the system had not been trained. This was
followed by “happy” at 90% accuracy, “anger” at 57%, “sad” at 50% and, “fear” and “disgust” at
17% and 13% respectively. Upon closer inspection of the results of expression recognition we
realize that 70% of fear was misclassified as surprise and 87% of disgust misclassified as anger.
We suspected these to be because of cultural differences. While performing some trial recordings
of emotional expressions in the lab, we realized that perhaps those of Asian origin were less
expressive when compared to those from the USA or Europe. To tes this hypothesis we trained
another neural network using the same methodology used the first time, except this time it was
trained using the MMI and tested using the JAFFE. As we suspected this time 74% of anger that
was misclassified was classified as disgust and 77% of misclassified fear was classified as
surprise. This is the exact opposite of previous scenario. The misclassification of fear as surprise
was 3.57% this time as opposed to 87% previously and disgust as anger was 38% down from
70%. Hence leading us to believe that there are indeed some cultural differences. However with
the small amount of data available and the facial expression system designed to optimize
computational load by extracting only 17 feature points, this cannot be said with absolute
conviction. Further research aimed at studying cultural differences in facial expressions, would
be needed to either prove or disprove this finding. Such a research would not be limited by
computing power and hence could be studied using more sophisticated image processing

techniques which can extract subtle details from the image.
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We then developed an initial system to recognize emotions in speech. However were not
able to test it as extensively as we could test the face, predominantly because of the lack of a
freely available emotionally labeled speech database. The one database that we had used to
develop the system was in German. It consisted of recordings from 10 subjects of which we used
6 subjects for training, 2 subjects for validation and 2 subjects for testing. Our system could
recognize emotions in voice with 40% accuracy across 7 emotions (anger, boredom, disgust,
fear, happy, sad and neutral). Happy and Fear were the worst recognized at 0% and 3%
respectively. This is corroborates previous findings where happy and fear have been difficult to
recognize [6]. The more subtle expressions such as anger, sad and disgust were recognized with
higher accuracy when compared to facial expression recognition.

We then developed the multi-modal toolbox, which can take either an audio or video file
as an input, classify emotions present in each of the modalities and display them on a
synchronized time-scale. Having the information on a synchronism time scale helps the user
recognize and compare emotions in face and voice, expressed at the same time. Complete testing
of thiswas not possible, because of lack of databases, except for asmall set of video provided by
a volunteer. The volunteer voiced the phrases in German with the noted emotion and
corresponding expressions. However as English is Germanic language and spoken under
culturally similar conditions, we see this database as valid. Unfortunately most of the speech data
from the volunteer was either classified as anger, boredom or disgust, preventing any further
extensive multimodal testing. We took this opportunity to check if the addition of the voice data
would help with the anger-disgust confusion present while testing facial expression database.
Some tests were performed only on the anger and disgust expressions recordings, and the result
of combining both the modalities appears to be encouraging. We were able to recognize trends in
the combined data pointing towards either one of the two disgust or angry expressions. Any
indication of disgust in the facial expression need not be very prominent, just before a word
along with the emotion being classified as disgust in the speech can be used to classify the
segment of data as disgust. Disgust can also be recognized by its prominent presence in speech
across a number of consecutive words. Anger is characterized by its strong presence in facial
expressions, especially before aword and is present in short bursts in speech. These results hold
promise of better recognition accuracy with a multimodal system.
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Some of these results above might be biased by my personal opinion, and knowledge of
results expected. A complete unbiased estimation of recognition rates would only be possible
when complete multi-modal fusion is achieved. As long as the system is open ended, leaving
final judgment to the user, a fair way to perform such an analysis would be to first get a group of
people label the multi-modal information for emotion. Then process this information through a
recognition system such as ours and get a second group of people (those who have not seen the
videos previously) to interpret the results after receiving some basic training on interpreting the
results.

The main limitation with achieving complete multi-modal fusion is the lack of a freely
available and emotionally labeled standard multi-modal database. Such a database is to be built
by recording on video, a group of subjects expressing emotions while a second group of blinded
subjects classify these recordings. Any clip that is consistently classified correctly will then be
included in the database. So as to use the database for future research with out of plane rotation,
the video should be recorded smultaneously with multiple cameras. This database should
preferably be in English so as to making it easier to find test subjects in the predominantly
English speaking research communities. Such a database would also provide a level ground for
measuring performances of systems developed by various researchers.

Another technical aspect that prevents complete fusion in our case is the difference in the
classification methods used for the two modalities. Facial expression recognition was classified
using frame instance, where complete temporal data is available for each emotion. Emotions in
voice were classified using phase instance, each word was classified as a particular emotion.
Feature level fusion is possible if emotion recognition in voice is also performed on frame to
frame basis so as to obtain temporal information. Another advantage of a frame-by-frame
technique in speech is that information in not lost due to averaging, unlike our present approach
where the word is divided into a fixed number of segments and information averaged over each
segment. The information had to be averaged over each segment because a feed forward neural
network cannot accept input vectors of varying length or use a stream of vectors. Time
dependent machine learning techniques such as time delayed neural network or hidden Markov
models are capable of accepting a stream of input vectors, and hence reduce the effects of
averaging. Feed-forward neural networks were selected for the purpose of the research since they
were suitable to the first task at hand, which was emotion recognition on snapshots. This method
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could be extended to a video since the basic concepts were the same for both snapshots and
videos. In case of videos all that had to be done was split it into individual frames and treat each
one of them as separate snapshot. We initially continued using feed forward networks for voice
too because of the previously gained expertise in the area. At the time we did not foresee this
problem with getting temporal information in speech and obtaining frame by frame information
of emotions in speech. This was realized only towards the end of this research after the emotion
recognition system in speech was developed and while building the multimodal toolbox.

On a parting note some suggestions for future work in this direction would be to take up
development of a multi-modal database with utmost importance. Further use of time-dependent
machine learning techniques for emotion extraction in voice, because these can extract temporal
information of emotions in voice and assist in multi-modal fusion. Matlab is an excellent tool for
prototyping with its easy handling of matrices and inbuilt toolboxes for image processing, signal
processing and neural networks, but not the most efficient in terms of processing speed. For
being able to run this system in real time it will have to be reprogrammed in a more efficient
language such a C/C++.
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Appendix A - MATLAB Code

Filename : integrate.m

This isthe code that controls the main window in the graphical user interface.

function varargout = integrate (varargin)

\o

s INTEGRATE M-file for integrate.fig

% INTEGRATE, by itself, creates a new INTEGRATE or raises the existing

% singleton*.

% H = INTEGRATE returns the handle to a new INTEGRATE or the handle to

% the existing singleton*.

% INTEGRATE ('CALLBACK', hObject, eventData, handles,...) calls the local

% function named CALLBACK in INTEGRATE.M with the given input arguments.
% INTEGRATE ('Property', 'Value', ...) creates a new INTEGRATE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before integrate OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to integrate OpeningFcn via varargin.

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help integrate

oe

Last Modified by GUIDE v2.5 31-Mar-2008 15:58:41

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @integrate OpeningFcn,
'gui OutputFcn', @integrate OutputFcn,

'gui LayoutFcn', (1,
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'gui Callback', [1);:
if nargin && ischar(varargin{l})
gui State.gui Callback = str2func(varargin{l});

end

if nargout

[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end

% End initialization code - DO NOT EDIT

°

% —-- Executes just before integrate is made visible.

function integrate OpeningFcn (hObject, eventdata, handles, varargin)

oe

This function has no output args, see OutputFcn.

% hObject handle to figure

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to integrate (see VARARGIN)

% Choose default command line output for integrate

handles.output = hObject;

[1;
[1;

handles.audioSet

handles.videoSet
handles.audio = [];
handles.video = [];
% Update handles structure

guidata (hObject, handles);

set (handles.recognizeEmo, 'Enable', 'off');

% UIWAIT makes integrate wait for user response (see UIRESUME)
% uiwait (handles.figurel);
axes (handles.audioSignal) ;
imshow ('logo.jpg') ;

axes (handles.speechEmo) ;
imshow ('logo.jpg') ;

axes (handles.faceEmo) ;
imshow ('logo.jpg') ;

axes (handles.face);
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imshow ('logo.jpg') ;

% ——-- Outputs from this function are returned to the command line.
function varargout = integrate OutputFcn (hObject, eventdata, handles)

)

% varargout cell array for returning output args (see VARARGOUT) ;

o

5 hObject handle to figure

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure

varargout{l} = handles.output;

function fileName Callback (hObject, eventdata, handles)

o

5 hObject handle to fileName (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of fileName as text
% str2double (get (hObject, 'String')) returns contents of fileName as a

double

oe

global audio;

oe

global video;

oe

global audioSet;
fileName = get (hObject, 'String');
[handles.video handles.audio] = mmread(fileName) ;
% % sets audio setting button on if media file contains audio
set (handles.recognizeEmo, 'Enable', 'off');
set (handles.setAudio, 'Enable', 'off');
if (isempty (handles.audio) == 0)

set (handles.setAudio, 'Enable', 'on');

handles.audioSet = [];

% set (handles.recognizeEmo, 'Enable', 'on');
% handles.audioSet.freq = handles.audio.rate;
% handles.audioSet.pause = 8;
% handles.audioSet.silence = 0.1;

end

% % sets video setting button on if media file contains video
set (handles.setVideo, 'Enable', 'off');
if (isempty (handles.video) == 0)

set (handles.setVideo, 'Enable', 'on');
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handles.videoSet = [];
axes (handles.face) ;
imshow (handles.video.frames (1) .cdata)
end
guidata (hObject, handles);
% —--- Executes during object creation, after setting all properties.
function fileName CreateFcn (hObject, eventdata, handles)
% hObject handle to fileName (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

~

set (hObject, 'BackgroundColor', 'white') ;

end

)

% —--- Executes on button press in setAudio.
function setAudio Callback (hObject, eventdata, handles)
% hObject handle to setAudio (see GCBO)

\o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

\o

5 global audio;

% global audioSet;

setAudio (handles.audio);

handles.audioSet = evalin('base', 'audioSet');

guidata (hObject, handles);

if ( isempty(handles.video) || isempty(handles.videoSet) == 0)
set (handles.recognizeEmo, 'Enable', 'on');

end

% —--- Executes on button press in setVideo.

function setVideo Callback (hObject, eventdata, handles)
% hObject handle to setVideo (see GCBO)

°

)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setVideo (handles.video) ;

handles.videoset = evalin('base', 'videoSet');

guidata (hObject, handles);

set (handles.recognizeEmo, 'Enable', 'on');
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if ( isempty(handles.audio) || isempty(handles.audioSet) == 0)
set (handles.recognizeEmo, 'Enable', 'on');

end

% —--- Executes on button press in browse.

function browse Callback (hObject, eventdata, handles)

% hObject handle to browse (see GCBO)

°

)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[FN PN] = uigetfile('*.*', 'Select Media File');

set (handles.fileName, 'String', strcat(PN,FN));

fileName Callback (handles.fileName, [], handles);

)

% —--- Executes on button press in recognizeEmo.
function recognizeEmo Callback (hObject, eventdata, handles)

% hObject handle to recognizeEmo (see GCBO)

°

)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes (handles.audioSignal) ;

imshow ('logo.jpg') ;

axes (handles.speechEmo) ;

imshow ('logo.jpg') ;

set (handles.audioleg, 'Visible', 'off');

axes (handles.faceEmo) ;

imshow ('logo.jpg') ;

set (handles.videoleg, 'Visible', 'off');

axes (handles.face);

imshow ('logo.jpg') ;

if strcmp (get (handles.setAudio, 'Enable'), 'on')

try

handles.audioSet = evalin('base', 'audioSet');
catch
% Just to eliminate a crash in case of an error.
end

)

% Plotting word seperation

axes (handles.audioSignal) ;

plot ((0:1length (handles.audioSet.features.fullSpec) -
1) *handles.audioSet.totTime/ (length (handles.audioSet. features.fullSpec)-1),
handles.audioSet.features.fullSpec, 'r', 'LineWidth', 2);
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hold on;

plot (handles.audioSignal, (0:length (handles.audioSet.features.word) -
1) *handles.audioSet.totTime/ (length (handles.audioSet. features.word)-1),
handles.audioSet.features.word, 'g', 'LineWidth', 2);

axis ([0 handles.audioSet.totTime -Inf
max (handles.audioSet.features.fullSpec)*1.1]);

hold off;

if (size (handles.audioSet.features.F,1) < 166)
errordlg('Words are too short for classification', 'Feature Length
Error')
axes (handles.speechEmo), title('Words are too short to be classified');
elseif (size(handles.audioSet.features.F,1) > 166)
handles.audioSet. features.F = handles.audioSet.features.F(1:166,:);

end

if (size (handles.audioSet.features.F,1) == 166)
% Doing Emotion recogniton in speech
load('VEnet.mat');

ANNvoice = network2;

netOP = sim(ANNvoice, handles.audioSet.features.F);

SpeechEmo.Emo = [];
M = max (netOP) ;
for i = 1l:size (netOP,2)
SpeechEmo.Emo = [SpeechEmo.Emo, find(netOP(:,i) == M(1,i), 1)1;

end

SpeechEmo.time = handles.audioSet.features.time;

A = [SpeechEmo.Emo; SpeechEmo.Emo];

axes (handles.speechEmo)
for i = 1l:length (SpeechEmo.Emo)
plot (SpeechEmo.time(:,1i), A(:,1i), 'LineWidth', 5);
axis ([0 length (handles.audio.data)/handles.audioSet.freq 0 8]);
title('Emotion in Speech');
hold on;
end
grid on;
hold off;

set (handles.audioleg, 'Visible', 'on');
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end

end

if strcmp (get (handles.setVideo, 'Enable'), 'on')

o o

% % Video emotion recognition

try
handles.videoSet = evalin('base', 'videoSet');
catch
% just to eliminate a crash
end
if (isempty (handles.videoSet) == 0 &&

isempty (handles.videoSet.featurePoints) == 0)
load('FEnet.mat');
FEnet = networkl;
axes (handles. face);
imshow (handles.videoSet.neutrallImage) ;
dist Vec Ne =
distanceDirVectorl (handles.videoSet.featurePoints{handles.videoSet.neutral});

window = 5;

for i = l:handles.video.nrFramesTotal
dist Vec = distanceDirVectorl (handles.videoSet.featurePoints{i});
dist Change Vec = distanceDiffVector (dist Vec Ne, dist Vec);
A = [A dist Change Vec];
if (i > window)
A(:,1) = [1;
end
ip = mean(A,2);
op = [op sim(FEnet, ip)];

end

timeScale = (l:length (op))*handles.video.times (end)/length (op) ;
axes (handles. faceEmo) ;
for i = 1:6

plot(timeScale, op(i,:)+i, 'LineWidth', 1.5);

drawnow;

axis ([0 handles.video.times (end) 0 8]);

hold all;

end



grid on;
hold off;
set (handles.videoleg, 'Visible', 'on');
end
end

guidata (hObject, handles);
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Filename : mmread.m
Thisis used to read the mediafile. It reads the file and stores data from the audio and
video channel separately into data structures in the Matlab workspace. This iswritten by Micah
Richert.
URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?object! d=8028

function [video, audio] = mmread (filename, frames, time, disableVideo,
disableAudio, matlabCommand, trySeeking)

% function [video, audio] = mmread(filename, frames, time, disableVideo,

disableAudio, matlabCommand)

oe

mmread reads virtually any media file. If Windows Media Play can play
% it, so should mmread, this includes URLs. It uses the Window's DirectX

% infrastructure to render the media, so other 0Ss are out of luck.

% INPUT
% filename input file to read (mpg, avi, wmv, asf, wav, mp3, gif, jpg,
.)
% frames specifies which video frames to capture, default [] for all or
% to specify time
% time [startTime stopTime], default [] for all

% disableVideo disables ALL video capturing, to save memory or time
% disableAudio disables ALL audio capturing, to save memory or time

% matlabCommand Do not return the video structure, but call the function

% specified by matlabCommand. The function definition must
% match that of processFrame.m. See processFrame.m for more
% information.

% trySeeking [true] set to false to disable this if when using time

% ranges or frames, and between subsequent reads the data

% doesn't match.

% OUTPUT

% video is a struct with the following fields:

% width width of the video frames

% height height of the video frames

% rate the frame rate of the video, if it can't be determined
% it will be 1.

% nrFramesTotal the total number of frames in the movie regardless of
% how many were captured. Unfortunately, this can not

% always be determined. If it is negative then it
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is an estimate based upon the duration and rate
(normally accurate to within .1%). It can be O,

in which case it could not be determined at all. If it
is a possitive number then it should always be accurate.

totalDuration the total length of the video in seconds.

% frames a struct array with the following fields:

% cdata [height X width X 3] uint8 matricies

% colormap always empty

% times the corresponding time stamps for the frames (in
milliseconds)

o
°

o
°

oe

audio is a struct with the following fields:

nrChannels the number of channels in the audio stream (1 or 2)

rate sampling rate of the audio, ex. 44100. TIf it can't be
determined then it will be 1.

bits bit depth of the samples (8 or 16)

data the real data of the whole audio stream. This can be
played using wavplay. If time ranges are specified,
the length of the data may not correspond to the total
time. This normally happens with movies. The issue is
that the start of the audio stream is generally counted
at the END of the first frame. So, time is shifted by
1/framerate.

nrFramesTotal Audio comes in packets or frames when captured, the
division of the audio into frames may or may not make
sense.

totalDuration the total length of the audio in seconds.

% frames cell array of uint8s. Probably not of great use.
% times the corresponding time stamps for the frames (in
milliseconds)

If there is no video or audio stream the corresponding structure will be

empty.

Specifying frames does not effect audio capturing. If you want only a
subsection of the audio use the 3rd parameter "time". Specifying time
effects both audio and video. Time is specified in seconds (subsecond
resolution is supported with fractional numbers ex. 1.125), starting at O.
Time is defined as startTime (inclusive) to stopTime (exclusive), or

using set notation [startTime stopTime).

If there are multiple video or audio streams, then the structure will be
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% of length > 1. For example: audio(l).data and audio(2) .data.

% Images work, however the frames must be specified. For some reason
% DirectShow doesn't ever stop when "playing" an image. So to deal with
% this, I added support so that the processing stops once the last

% specified frame is captured instead of waiting until the media completes.

% EXAMPLES
% [video, audio] = mmread('chimes.wav'); % read whole wav file
% wavplay(audio.data,audio.rate);

3 video = mmread ('mymovie.mpg'); % read whole movie

> movie (video. frames) ;

% video = mmread('mymovie.mpg',1:10); %get only the first 10 frames

% video = mmread('mymovie.mpg', [],[0 3.5]); %read the first 3.5 seconds of the

video

oe

[video, audio] = mmread('chimes.wav',[], [0 0.25]); %read the first 0.25
seconds of the wav
% [video, audio] = mmread('chimes.wav',[],[0.25 0.5]); %read 0.25 to 0.5

seconds of the wav, there is no overlap with the previous example.

o
°

oe

video = mmread ('mymovie.mpg', [],[],false,true); S%Sread all frames, disable
audio
% % read a movie directly from a URL

% video = mmread ('http://www.nature.com/neuro/journal/v9/n4/extref/nnl660 -

n
(00
@
<
-

% mmread ('mymovie.mpg', [],[],false,false, 'processFrame'); %Use inline

processing for all frames in a movie using the function processFrame.m

% Written by Micah Richert

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&objectTy

pe=FILE
if nargin < 7

trySeeking = true;

if nargin < 6

88


http://www.nature.com/neuro/journal/v9/n4/extref/nn1660
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8028&objectTy

matlabCommand = '';
if nargin < 5
disableAudio = false;
if nargin < 4
disablevVideo = false;
if nargin < 3
time = [];
if nargin < 2
frames = [];
end
end
end
end
end

end

try
mexDDGrab ('buildGraph', filename) ;
if (isempty(time))
mexDDGrab ('setFrames', frames) ;
else
if (numel (time) ~= 2)
error ('time must be a vector of length 2: [startTime stopTime]');
end
mexDDGrab ('setTime', time (1), time (2)) ;
end
if (disableVideo)
mexDDGrab ('disableVideo') ;
end;
if (disableAudio | nargout < 2)
mexDDGrab ('disableAudio') ;
end;

mexDDGrab ('setMatlabCommand',matlabCommand) ;

mexDDGrab ('setTrySeeking',double (trySeeking)) ;

try
mexDDGrab ('doCapture') ;
catch
err = lasterror;
if (~strcmp(err.identifier, 'processFrame:STOP'))

rethrow (err) ;
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end

end
[nrVideoStreams, nrAudioStreams] = mexDDGrab ('getCapturelInfo');

video = struct ('width',{}, '"height', {}, 'nrFramesTotal', {}, 'frames"', {});
audio =

struct ('nrChannels', {}, 'rate', {}, 'bits', {}, 'nrFramesTotal', {}, 'data"', {}, 'frames', {});

warned = false;

% we can only get the video frames if we don't process a matlabCommand
if strcmp (matlabCommand, '')
% loop through getting all of the video data from each stream
for i=l:nrVideoStreams
[width, height, rate, nrFramesCaptured, nrFramesTotal,
totalDuration] = mexDDGrab ('getVideoInfo',i-1);
video (i) .width = width;
video (i) .height = height;
video (i) .rate = rate;
video (i) .nrFramesTotal = nrFramesTotal;

video (i) .totalDuration = totalDuration;

video (i) .frames =

struct ('cdata',cell (1, nrFramesCaptured), 'colormap',cell (1,nrFramesCaptured)) ;

if (nrFramesTotal > 0 && any(frames > nrFramesTotal))
warning ('mmread:general', ['Frame(s) '
num2str (frames (frames>nrFramesTotal)) ' exceed the number of frames in the movie.']);

end

scanline = ceil (width*3/4)*4; % the scanline size must be a

multiple of 4.

for f=l:nrFramesCaptured

[data, time] = mexDDGrab ('getVideoFrame',i-1,f-1);

if (numel (data) ~= scanline*height)
if (numel (data) > 3*width*height)
if (~warned)
warning ('mmread:general', 'dimensions do not match
data size. Guessing badly...'");

warned = true;
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end
scanline = width*3;

data = data(l:3*width*height);

else
if (£ == 1)
error ('dimensions do not match data size. Too
little data.');
else
warning (['dimensions do not match data size. Too
little data for ' num2str(f) 'th frame.']);
continue;
end
end

end

% 1f there is any extra scanline data, remove it
data = reshape (data,scanline,height);

data(l:3*width, :);

data

% the data ordering is wrong for matlab images, so permute it
tmp = permute (reshape (data, 3, width, height),[3 2 1]);

% the images are also upside down and colors were backwards.
video (i) .frames (f) .cdata = tmp(end:-1:1,:,3:-1:1);
video (i) .times (f) = time;

end

% if frames are specified then make sure that the order is the same
if (~isempty (frames) && nrFramesCaptured > 0)
[uniqueFrames, dummy, frameOrder] = unique (frames);
if (length (uniqueFrames) > nrFramesCaptured)
warning ('mmread:general’', 'Not all frames specified were
captured. Returning what was captured, but order may be different than specified.');
remainingFrames =
frames (frames<=uniqueFrames (nrFramesCaptured)) ;
[dummy, dummy, frameOrder] = unique (remainingFrames) ;

end

video (i) .frames = video (i) .frames (frameOrder) ;
video (i) .times = video (i) .times (frameOrder) ;
end
end

end

91



% loop through getting all of the audio data from each stream
for i=l:nrAudioStreams
[nrChannels, rate, bits, nrFramesCaptured, nrFramesTotal, subtype,
totalDuration] = mexDDGrab ('getAudioInfo',i-1);
audio (i) .nrChannels = nrChannels;
audio (i) .rate = rate;
audio (i) .bits = bits;
audio (i) .nrFramesTotal = nrFramesTotal;
audio (i) .totalDuration = totalDuration;
audio (i) .frames = cell (1,nrFramesCaptured);

for f=l:nrFramesCaptured

[data, time] = mexDDGrab ('getAudioFrame',i-1,f-1);
audio (i) .frames{f} = data;
audio (i) .times (f) = time;

end
% combine the data across frames

°

d = double(cat(l,audio (i) .frames{:}));

% rescale the data so that it is between -1.0 and 1.0
if (subtype==0)
$PCM formated data...
switch (bits)
case {4, 8}
d = (d-2"(bits-1)) /2" (bits-1);
case {16, 24, 32}
d = d/2” (bits-1);
end
elseif (subtype==1)
if (bits == 32)
SIEEE FLOAT formated data...
if (max(d) > 1 | min(d) < -1)

there are two float formats one that is already -1 to 1

o©

o©

and the there is between -2715 to 2715
d=d/ 2715;
end
else
warning ('Audio data format not recognized/supported, it
probably is going to be useless.');
end

else
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warning ('Audio data format not recognized/supported, it probably is
going to be useless.');
end
% reshape the data so that it is nrChannels x Samples. This should be
the same output as wavread.
audio (i) .data = reshape (d,nrChannels, length (d) /nrChannels)';

end

mexDDGrab ('cleanUp') ;
catch
err = lasterror;
mexDDGrab ('cleanUp') ;
if strfind(err.message, 'combination')
disp('The ''No combination of intermediate filters could be found to
make the connection'' error');
disp ('means that no appropriate codec could be found. Mpg2 files seem
to be the worst. ');

disp('Installing ffdshow (www.free-codecs.com/FFDShow download.htm)

often fixes this problem. ');
end
rethrow (err) ;

end
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Filename : distanceDiffVVector.m

It computes the vector difference between its inputs, Vecl and Vec2.

function dist change vec = distanceDiffVector (Vecl, Vec2)

dist change vec = Vec2 - Vecl;

Filename : distanceDirVector 1.m
This function builds the 44 dimentional feature mask from the coordinated of the

seventeen feature points.

function [dist vec] = distanceDirVectorl (Vec)

% get all the feature points
right eye = Vec(l,:);
right eye in corner = Vec(2,:);
right eye out corner = Vec(3,:);
right eyebrow = Vec(4,:);

right eyebrow corner = Vec(5,:);
left eye = Vec(6,:);

left eye in corner = Vec(7,:);
left eye out corner = Vec(8,:);
left eyebrow = Vec(9,:);

left eyebrow corner = Vec (10, :);
mouth corner left = Vec(1ll,:);
mouth corner right = Vec (12, :);
mouth lip upper = Vec(1l3,:);
mouth lip lower = Vec(l4,:);
nose = Vec(1l5,:);

nose left(1:2) = Vec(l6,:);

nose right(l1:2) = Vec(17,:);

$normalizing value - distance between left and right eye outter corners

normalize = distance(left eye out corner, right eye out corner);

)

% without normalizing

V_mouth width = distance (mouth corner left, mouth corner right);
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V_mouth height = distance(mouth lip upper, mouth lip lower);

V_mouth nose left = distance (mouth corner left, nose);

V_mouth nose right = distance (mouth corner right, nose);

V_1lip nose = distance(mouth lip upper, nose);

V_eyebrow eye inner left = distance(left eye in corner, left eyebrow corner);
V_eyebrow eye inner right = distance(right eye in corner,
right eyebrow corner);
V_eyebrow eye left = distance(left eye, left eyebrow);
V_eyebrow eye right = distance(right eye, right eyebrow);

V_eye angle left = angle(left eye out corner, left eye, left eye in corner);
V_eye angle right = angle(right eye out corner, right eye,

right eye in corner);

V_eyebrow corners = distance (left eyebrow corner, right eyebrow corner);

V_eye corners = distance (left eye in corner, right eye in corner);

V_eyebrow angle left = angleZpoints(left eyebrow, left eyebrow corner, 1);

V_eyebrow angle right = angleZpoints(right eyebrow, right eyebrow corner, 2);

V_mouth eyes left = distance (mouth corner left, left eye);

V_mouth eyes right = distance (mouth corner right, right eye);

V_mouth lip lower left = distance(mouth corner left, mouth lip lower);
V_mouth lip lower right = distance(mouth corner right, mouth lip lower);
V_mouth lip upper left = distance(mouth corner left, mouth lip upper);

V_mouth lip upper right = distance (mouth corner right, mouth lip upper);

V_nose left = distance(nose left, nose);

V_nose right = distance(nose right, nose);

V_nose eye left = distance(nose, left eye);

V_nose eye right = distance(nose, right eye);

V_mouth eye corner left = distance (mouth corner left, left eye out corner);

V_mouth eye corner right = distance (mouth corner right, right eye out corner);

V_eye out eyebrow left = distance(left eye out corner, left eyebrow);

V_eye out eyebrow right = distance(right eye out corner, right eyebrow);
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V_mouth angle lower = angle(mouth corner left, mouth lip lower,

mouth corner right);

V_mouth angle upper angle (mouth corner right, mouth lip upper,

mouth corner left);

V_nose angle = angle (mouth corner left, nose, mouth corner right);

V_mouth left nose vec = (nose - mouth corner left)';
V_mouth right nose vec = (nose - mouth corner right)';
V_eyebrow left vec = (left eyebrow corner - left eyebrow)';
V_eyebrow right vec = (right eyebrow corner - right eyebrow)';
V_mouth eyes left vec = (left eye - mouth corner left)';
V_mouth eyes right vec = (right eye - mouth corner right)';

% vector containing all the vectors descibing the face

dist vec = [V _mouth width; V mouth height; V mouth nose left;
V_mouth nose right; V 1lip nose; V _eyebrow eye inner left; V eyebrow eye inner right;
V_eyebrow eye left; V eyebrow eye right; V eye angle left; V eye angle right;
V_eyebrow corners; V eye corners; V eyebrow angle left; V eyebrow angle right;
V_mouth eyes left; V mouth eyes right; V mouth lip lower left;
V_mouth lip lower right; V mouth lip upper left; V mouth lip upper right; V nose left;
V_nose right; V nose eye left; V nose eye right; V mouth eye corner left;
V_mouth eye corner right; V eye out eyebrow left; V eye out eyebrow right;
V_mouth angle lower; V mouth angle upper; V nose angle; V mouth left nose vec;
V_mouth right nose vec; V eyebrow left vec; V eyebrow right vec;
V_mouth eyes left vec; V mouth eyes right vec];

SILIITTLL7 0777777777707 7777777777777777777777777777

function a = distance(point a, point b)

% calculates the distance between two points in 2D
a = sqgrt(power ((point a(l,1) - point b(l,1)),2) + power((point a(l,2)
point b(1,2)),2));

SILITTTIL77 077777777077 777777777777777777777777777

function a = angle(point a, point b, point c)

% finds the angle created by 3 points

Pi = 4*atan(l);
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vecl = [(point a(l,1)
vec2 = [(point c(1,1)

- point b(1,1)) (point a(l,2) - point b(1,2))];
- point b(1,1)) (point c(1,2) - point b(1,2))];

scalar = [vecl(l) * vec2(l) + vecl(2) * vec2(2)];

length vecl
length vec2

sqgrt (power (vecl (1) ,2)
sqgrt (power (vec2 (1) ,2)

+ power (vecl (2),2));

+ power (vec2(2),2));

a = acos(scalar/ (length vecl * length vec2));

SILITTTIT7I0 777777777077 777777777777777777777777777

function a =

angleZ2points (point a, point b, side)

Pi = 4*atan(l);

vecl = [(point a(l,1)
if side ==

vec2 = [0 (-10)];
else

vec2 = [0 10];

end

- point b(1,1)) (point a(l,2) - point b(1,2))];

scalar = [vecl(l) * vec2(l) + vecl(2) * vec2(2)];

length vecl
length vec2

sqgrt (power (vecl (1) ,2)
sqgrt (power (vec2 (1) ,2)

+ power (vecl (2),2));

+ power (vec2(2),2));

a = acos(scalar/ (length vecl * length vec2));

SILITTILLT 77777777777 7777777777777777777777777777
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Filename : setAudio.m

This controls the audio toolbox that pops up upon clicking on the “Audio Setting” button.

It separates words and extracts features based on the setting feed by the user. It then passes this

data back to integrate.m.

function varargout = setAudio (varargin)

oe

oe

SETAUDIO M-file for setAudio.fig

SETAUDIO, by itself, creates a new SETAUDIO or raises the existing

singleton*.

H = SETAUDIO returns the handle to a new SETAUDIO or the handle to

the existing singleton*.

SETAUDIO ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in SETAUDIO.M with the given input arguments.

SETAUDIO ('Property', 'Value',...) creates a new SETAUDIO or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before setAudio OpeningFunction gets called. An
unrecognized property name or invalid value makes property application

stop. All inputs are passed to setAudio OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

instance to run (singleton)".

also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help setAudio

Last Modified by GUIDE v2.5 16-Jan-2008 12:47:51

Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,

'gui Singleton', gui Singleton,

'gui OpeningFcn', @setAudio OpeningFcn,
'gui OutputFcn', @setAudio OutputFcn,
'gui LayoutFcn', (1,

'gui Callback', [1);

98



if n

end

if n

else

end

% En

o

°

func

argin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});

argout

[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});

gui mainfcn(gui State, varargin{:});

d initialization code - DO NOT EDIT

- Executes just before setAudio is made visible.

tion setAudio OpeningFcn (hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% ha

s va

ndles structure with handles and user data (see GUIDATA)

rargin command line arguments to setAudio (see VARARGIN)

% Choose default command line output for setAudio

s UI

5 uil

handles.output = hObject;

WAIT makes setAudio wait for user response (see UIRESUME)

wait (handles.figurel);

handles.okclicked = false;
handles.data = mean(varargin{l}.data,2);

handles.totTime = varargin{l}.totalDuration;

handles.dFreq = varargin{l}.rate;
handles.freqg = handles.dFreq;
dFregButton Callback (handles.dFregButton, [], handles)

handles.dSilence = 0.1;
handles.silence = handles.dSilence;

dSilenceButton Callback (handles.dSilenceButton, [], handles)
handles.dPause = 8;

handles.pause = handles.dPause;

dPauseButton Callback (handles.dPauseButton, [], handles)
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)

% Update handles structure

guidata (hObject, handles);

)

% ——-- Outputs from this function are returned to the command line.
function varargout = setAudio OutputFcn (hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT) ;

o

5 hObject handle to figure

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

op.freq = handles.dfFreqg;
op.silence = handles.dSilence;
op.pause = handles.dPause;
op.features = [];

op.totTime = handles.totTime;

assignin('base', 'audioSet', op);

)

% Get default command line output from handles structure

varargout{1l} = handles.output;

function eFreq Callback (hObject, eventdata, handles)

o

5 hObject handle to eFreq (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eFreqg as text

% str2double (get (hObject, 'String')) returns contents of eFreq as a
double
handles.freq = str2double (get (hObject, 'String'));
guidata (hObject, handles);
% —--- Executes during object creation, after setting all properties.

function eFreq CreateFcn (hObject, eventdata, handles)
% hObject handle to eFreq (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
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% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, "defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;

end

function eSilence Callback (hObject, eventdata, handles)
% hObject handle to eSilence (see GCBO)
3 eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

5 Hints: get (hObject, 'String') returns contents of eSilence as text

% str2double (get (hObject, 'String')) returns contents of eSilence as a
double
handles.silence = str2double (get (hObject, 'String'));
guidata (hObject, handles);
% —--- Executes during object creation, after setting all properties.

function eSilence CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to eSilence (see GCBO)

o

> eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;

end

function ePause Callback (hObject, eventdata, handles)
% hObject handle to ePause (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of ePause as text
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double

get (0,

% str2double (get (hObject, 'String')) returns contents of ePause as a

handles.pause = str2double (get (hObject, 'String'));
guidata (hObject, handles);
% —--- Executes during object creation, after setting all properties.

function ePause CreateFcn (hObject, eventdata, handles)
% hObject handle to ePause (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;

end

)

% —--- Executes on button press in dFregButton.
function dFregButton Callback (hObject, eventdata, handles)
% hObject handle to dFreqgButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

set (handles.eFreq, 'String', num2str (handles.dFreq));
eFreq Callback (handles.eFreq, [], handles);

oe

--- Executes on button press in dSilenceButton.
function dSilenceButton Callback (hObject, eventdata, handles)
% hObject handle to dSilenceButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

set (handles.eSilence, 'String', num2str (handles.dSilence));

eSilence Callback(handles.eSilence, [], handles);

oe

--- Executes on button press in dPauseButton.
function dPauseButton Callback (hObject, eventdata, handles)
% hObject handle to dPauseButton (see GCBO)
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o
°

eventdata reserved - to be defined in a future

oe

handles structure with handles and user data

set (handles.ePause, 'String', num2str (handles

(1,

ePause Callback (handles.ePause, handles) ;

oe

--- Executes on button press in testButton.

version of MATLAB
(see GUIDATA)

dPause) ) ;

function testButton Callback (hObject, eventdata, handles)

% hObject handle to testButton (see GCBO)
% eventdata reserved - to be defined in a future
% handles structure with handles and user data

handles. features

handles.silence, handles.pause);

axes (handles.audioSignal) ;

featureExtraction (handles.data,

version of MATLAB
(see GUIDATA)
handles. freq,

plot ((0:1length (handles.data)-1)*handles.totTime/ (length (handles.data)-1),

mean (handles.data,2), 'b');

axes (handles.audioWord) ;

plot ((0:1length (handles.features.fullSpec) -
1) *handles.totTime/ (length (handles.features.fullSpec)-1),
'LineWidth', 2);

hold on;

vrl,

plot ((0:1length (handles.features.word) -

1) *handles.totTime/ (length (handles.features.word)-1), handles.features.word,

'LineWidth', 2);
hold off;
guidata (hObject, handles) ;

o
°

--- Executes on button press in okButton.
function okButton Callback (hObject,
% hObject

o

eventdata, han

handle to okButton (see GCBO)

o
°

eventdata reserved - to be defined in a future

handles

o
°

structure with handles and user data
op.freq = handles. freqg;
op.
op
op
op.

assignin('base’,

silence

handles.silence;

.pause handles.pause;

.features

handles. features;

totTime

handles.totTime;
'audioSet', op);

close (handles.figurel) ;
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Filename : featur eExtraction.m

This function extracts the features from a segment of word. It takesthe ra signal from a
word segment as its input and extracts formants, mel-energy, their rate of change, and their mean

and median.

% Parameter extraction for voice emotion recogniton

o

% Srivardhan C, Kansas State University, Sept 2007.

oe

Input audio data and frequency. To be used while emotion recogniton
function [features] = featureExtraction(y, Fs, silence, pause)
% Resampling at 8000Hz
y = resample(y, 8000, Fs);
Fs = 8000;
tic
% Computing spectrum for energy levels.
fullSpec = zeros(l,size(y));
overlapEnd = floor ((Fs-256)/(Fs/100));
nFFT = 256;
for i =1 : Fs/2: size(y)-Fs
spectrum = computeSpectrum (nFFT, Fs/100, y(i:i+Fs));
if (i==1)
fullSpec = spectrum.e;
end
fullSpec = [fullSpec spectrum.e (overlapEnd-49:overlapEnd)];

end

% Word seperation if energy level is less than a preset limit for more than
0.08 sec
silencelevel = silence*max (fullSpec); %Setting silence at 5% of Peak

wordPause = pause; % 30 milliseconds is the pause that seperates 2 words

[wordIndex, word] = wordSeperation (fullSpec, wordPause, silencelevel);
% Index for words on original Signal

wordIndexOriginal = round(wordIndex .* length(y)/length (fullSpec));
features.word = word;

features.fullSpec = fullSpec;
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)

% Linear Predictive Coding vocal tract filter for each word
AvgEnergyWord = zeros(1l,length (wordIndex)/2);
PeakEnergyWord = zeros (1, length(wordIndex) /2);
J = 0;
voiced = 0;
totPeaks = 0;
[melMat fCenters] = melFilterMatrix (Fs,256,22);
for 1 = 1l:length(wordIndexOriginal) /2
sample = y(wordIndexOriginal (2*i-1) :wordIndexOriginal (2*1));
voiced = voiced + (wordIndexOriginal (2*i) - wordIndexOriginal (2*i-1));
totPeaks = totPeaks + length (Peak(fullSpec (wordIndex (2*i-
1) :wordIndex (2*1i))));
if (length (sample) > 600)
j = 3+l;
Formant (j) = computeFormant (sample, Fs, 4, melMat, fCenters);
AvgEnergyWord(j) = mean (fullSpec (wordIndex (2*i-1) :wordIndex (2*1i)));
PeakEnergyWord (j) = max(fullSpec (wordIndex (2*i-1) :wordIndex (2*1i)));
timeStamp(:,3j) = [wordIndexOriginal (2*i-1) wordIndexOriginal (2*i)]"' /
Fs;
end

end

e o & o o o o o o o o o o o o o o
5 © © © © © © © © © © © © © © © ©

oe

oe
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% Calculating Words Spoken Per Sec
WordPerSec = (length (wordIndex)/2)/(length(y)/Fs); % Words Per Sec
% Calculating ratio of voiced to unvoiced speech
unvoiced = (length(y) - voiced)/length (y);
voiced = voiced/length (y);
% Average Energy Over Utterance
AvgEnergyUtterance = mean (AvgEnergyWord) ;
% Building Feature Vector
features.F = []; features.time = [];
for i = 1:3j

try

if (sum(isnan (Formant (i) . features)) == 0)
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features.F = [features.F [Formant(i).features; unvoiced; voiced;
AvgEnergyUtterance; WordPerSec]];
features.time = [features.time timeStamp(:,1)];
end
catch
end
end

toc
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Filename : computeSpectrum.m
This function computes the spectrum using fast Fourier transform, and also computes the
energy levels as a sum of energies at various frequency bands.
URL : http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function SPEC = computeSpectrum (fftLength,winShift,s)

% compute spectrum from time signal

% Returns power spectrum (|X(f)[”"2) in

% matrix SPEC.X (coefficientIndex, frameIndex)

% No energy normalization is performed.

% The signal energy (sum of power spectrum coefficients)

% is returned in vector SPEC.e (frameIndex)

% parameters:
% fftLength: length of FFT
% winShift: window shift [number of samples]

% s: vector of time samples

% last update 18.1.04

% http://www.speech-recognition.de/matlab-examples.html

% modified Srivardhan, Kansas State University

% compute local variables
nofSamples = size(s);

maxFFTIdx = fftLength/2;

)

% compute time window
win = hamming (fftLength) ;

% compute matrix X (fftIndex,timeFrameIndex) short term spectra

k =1;

for m = l:winShift:nofSamples-fftLength

spec = fft( (win.*s(m:m+fftLength-1)) ,fftLength);

Suse only lower half of fft coefficients
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SPEC.X(:,k) = ( abs( spec(l:maxFFTIdx) ) )."2;
$compute energy

SPEC.e (k) = sum(SPEC.X(:,k));

k = k+1;

end
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Filename : wor dSeper ation.m

This function separates words in the signal using the energy levels calculated by
computeSpectrum.m and the word pause and threshold setting from the audio toolbox.

function [wordIndex, word] = wordSeperation (Spec, Pause, Silence)

o

5 Srivardhan C, Kansas State University

% Inputs are

oe

Spec = energy spectrum

oe

Pause = Time in milliSec that seperates 2 words

oe

Silence = The energy level below which it is considered unvoiced

oe

Outputs are

% wordIndex = index of begning and ending of each segment of voiced
% data in the spectrum vector. [beginl endl begin2 ...]
% word = vector the same size as spectrum, with 0Os for unvoiced

% segment and 1ls for voiced segment

SpecNorm = zeros(l, size(Spec,2));

SpecNorm (Spec > Silence) = 1;

word = zeros(l,size(SpecNorm,2));
i = find(SpecNorm, 1);
wordIndex = 1i;
while i1 <= length (SpecNorm)-Pause
if sum(SpecNorm(i : i + Pause)) < 0.075*Pause
wordIndex = [wordIndex , i + 1];
i = find(SpecNorm(i+l : end), 1) + 1i;
wordIndex = [wordIndex , i];
else
word (i) = 1;
i =14+ 1;
end

end

if wordIndex (end) ~= (find(SpecNorm,1,'last')+1)
wordIndex = [wordIndex, find(SpecNorm,1,'last')];
word (wordIndex (end-1) :wordIndex (end)) = 1;

end

word= word * max (Spec);
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Filename : melfiltermatrix.m
This function computes the mel frequency filter matrix that is used to comvert the
gpectrogram into a mel spectrum. The center frequencies of the channels follow the mel scale,
while the frequency distribution is linear. The bandwidth increases with frequencies.
URL : http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function [W, fcenters] = melFilterMatrix(fs, N, nofChannels)

% melFilterMatrix(fs, N, nofChannels) :

% compute mel filter coefficients

% returns: Matrix (channelIndex, FFTIndex)

% of mel filter coefficients.

% parameters:
% fs: Sampling rate [Hz], eg., 8000
% N: FFT length, eg., 256

% nofChannels: Number of mel channels, eg., 22

% last update: 13.1.04

% http://www.speech-recognition.de/matlab-examples.html

$for test, use these parameters

Sparameters
$fs = 8000;
SN = 256;

$nofChannels = 22;

Scompute resolution etc.

df = fs/N; %$frequency resolution
Nmax = N/2; $Nyquist frequency index
fmax = fs/2; %Nyquist frequency

melmax = freg2mel (fmax); S%S$maximum mel frequency

tmel frequency increment generating 'nofChannels' filters

melinc = melmax / (nofChannels + 1);

$vector of center frequencies on mel scale

melcenters = (l:nofChannels) .* melinc;

110


http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

$vector of center frequencies [Hz]

fcenters = mel2freq(melcenters);

%compute bandwidths
$startfreq = [0 , fcenters(l: (nofChannels-1))];
%endfreq = [fcenters (2:nofChannels) , fmax];

$bandwidth = endfreq - startfreqg ;

Squantize into FFT indices

indexcenter = round(fcenters ./df);

$compute resulting frequencies

sfftfreq = indexcenter.*df;

Scompute resulting error

$diff = fcenters - fftfreq;

$compute startfrequency, stopfrequency and bandwidth in indices

indexstart = [1 , indexcenter(l:nofChannels-1)];
indexstop = [indexcenter (2:nofChannels),Nmax];
$idxbw = (indexstop - indexstart)+1l;

$FFTbandwidth = idxbw.*df;

Scompute matrix of triangle-shaped filter coefficients
W = zeros (nofChannels,Nmax) ;
for ¢ = l:nofChannels

$left ramp

increment = 1.0/ (indexcenter (c) - indexstart(c));
for i = indexstart (c):indexcenter (c)

W(c,i) = (i - indexstart(c)) *increment;
end $i

Sright ramp

decrement = 1.0/ (indexstop(c) - indexcenter(c));
for i = indexcenter (c) :indexstop (c)
W(c,i) = 1.0 - ((1i - indexcenter(c)) *decrement);
end $i
end %c

$normalize melfilter matrix

for j = l:nofChannels
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W(jl:)/ sum(W(J,:))

’
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Filename : freg2mel.m

This converts the from the hertz frequency scale to mel scale
URL.: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function m = fregZ2mel (f)

% compute mel value from frequency £

% http://www.speech-recognition.de/matlab-examples.html

m = 2595 * loglO(1 + £./700);

Filename : mel2freq.m

This converts from mel scale to hertz frequency scale.
URL.: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function f = mel2freq (m)

)

% compute frequency from mel value

% http://www.speech-recognition.de/matlab-examples.html

°

f = 700*((10."(m ./2595)) -1);
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Filename : Peak.m

This function picks peaks by comparing the sample with its previous and next sample. If
the previous sample is less than or equal to the sample and the next sampleislessthenit is

recognized as a peak.

function [Peak] = peak(ip)
% Srivardhan C, Kansas State University, 2007
% this function returns indices of local maxima in vector

% ip has to be a vector and not a matrix

Peak = [];
for k = 2:1length(ip)-1
if( ip(k-1) <= ip(k) && ip(k+1l) < ip(k) )
Peak = [Peak, k];
end

end
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Filename : computeFor mant.m

This compute the formants and mel energy along the given segment of signal. Formant
extraction is done using the linear predivtive coding.

function [Formant] = computeFormant(y, Fs, num, melMat, fCenters)
% Srivardhan C, Kansas State University, 2007

% Computes Formant frequencies, median valus for formant freq

% Inputs - 1. y = Voiced portion of Speech

% 2. Fs = Sampling Frequency

% 3. num = number of formants desiered

% 4. melMat = Mel Matrix for computing mel Spectrum

% Sampling window length

N = Fs*32/1000;

if length(y) < N

N = length(y)-1;
end
% Hamming Window

ham = hamming (N+1) ;

Step = Fs * 5/1000;
% Number of poles of filter
M =5 + Fs/1000;

% Number of windows in given sample

noWin = (length(y)-N);

Formant.freq = [];
Formant.Spec = [];
Formant.pitch = [];
for i = 1l:Step:noWin
try
% Pitch Extraction using AutoCorrelation

% http://www.phon.ucl.ac.uk/courses/spsci/matlab/lectl10.html

CoeffP = xcorr(y(i:1i+N), 'coeff');
pitchP = peak(CoeffP);
Pitch = 8000/ (pitchP (find (pitchP>257,1, 'first'))-257);
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Formant.pitch = [Formant.pitch, Pitch];

% Method described in 'FORMANT EXTRACTION USING DIFFERENCE SPECTRUM',
% S.P.Kishore et.al. ,

Coeffl = lpc(y(i:i+N).*ham, M);

Coeff2 = lpc(y(i:i+N).*ham, M+1);

[hl,f]=freqgz(1,Coeffl,512,Fs);
[h2,f]=freqgz (1,Coeff2,512,Fs);

Gainl = 20*1ogl0 (abs (hl) +eps);

Gain2 = 20*1ogl0 (abs (h2) +eps) ;

GainDiff = Gain2-Gainl;

P = peak(GainDiff);

formant = zeros(M,1);

formant (1:length(P),1) = P' .* (Fs/(2*length(GainDiff))); % Convert

from index to Hz

Formant.freq = [Formant.freq , formant (l:num)]; % convert to Hz and
sort
[Spec, Freq, Time] = spectrogram(y(i:i+N),N,N-Step, formant (1:num),Fs);
Formant.Spec = [Formant.Spec, abs(Spec)];
catch

display('Error Computing Formant');
end
end
% Compute mel Spectrum

MEL = computeMelSpectrum(melMat, Step, V)

$normalize energy of mel spectra
$take log value
epsilon = 10e-5;
for k = l:size(MEL.M,2);
for ¢ = l:size(MEL.M,1)
snormalize energy
MEL.M(c,k) = MEL.M(c,k)/MEL.e (k) ;
$take log energy
MEL.M(c, k) = loglimit (MEL.M(c, k) ,epsilon);
end %for c

end %$for k
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)

% Number of peaks in the segment
Formant.noPeaks = length(P);
% time of word segment

Formant.time = length(y)/Fs;

% Picking Mel band energies for formants
for i = l:size(Formant.freq, 2)
for j = l:num
% Absolute Diff between Center frequency and Formant
absDiff = abs(fCenters - Formant.freq(j,i));
% Index of min difference
MelInd = find (absDiff == min(absDiff));
% Energy from mel band for formant freg
Formant .MEL.M(j,i) = MEL.M(MelInd, 1i);
end

end

Formant.diffFreq = [Formant.freq(:,2:end) - Formant.freqg(:,l:end-1)
zeros (num, 1) ];

Formant.diffMel = [Formant.MEL.M(:,2:end) - Formant.MEL.M(:,l:end-1)
zeros (num, 1) ];

% Dividing a word into 5 parts
s = floor((size(Formant.freq,2))/5);
Formant. features = [];
for 1 = 1:s:(size(Formant.freq,2)-s)

A = [mean (Formant.freqg(:,1l:1+s),2);
median (Formant.freq(:,1l:1+s),2);
mean (Formant .MEL.M(:,1:1+s),2);
median (Formant .MEL.M(:,1:1+s),2);
mean (Formant.diffFreqg(:,1:1+s),2);
median (Formant.diffFreq(:,1:1+s),2);
mean (Formant.diffMel (:,1:1+s),2);
median (Formant.diffMel (:,1:1+s),2)];

Formant.features = [Formant.features; A];

end

Formant.features = [Formant.features; Formant.time; Formant.noPeaks];
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Filename: loglimit.m
It computes the log if the signal is above athreshold, or else returns the log of the lower
limit.
URL.: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function y = loglimit(x,limit)

% return log(x) or log(limit) if x < limit

http://www.speech-recognition.de/matlab-examples.html

if (x < limit)

y = log(limit);

log (x) ;

=
I
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Filename : computeM elSpectrum.m
This computes the mel spectrum by multiplying the spectrum obtained using
computeSpectrum.m with the mel frequency filter matrix obtained from melFilterMatrix.m.
URL.: http://www.speech-recognition.de/matlab-examples.html (05/12/2008)

function MEL = computeMelSpectrum (W,winShift,s)

% computeMelSpectrum (W,winShift,s)

% compute mel spectrum from time signal

% Returns mel spectral coefficients in

% matrix MEL.M(coefficientIndex, frameIndex) .
% No energy normalization is performed.

% Signal energy

% 1is copied from SPEC.e

% ('computeSpectrum') to vector MEL.e (framelndex) .

% parameters:
% W: matrix(channellIndex,FFTIndex) of mel filter coefficients
% winShift: window shift [number of samples]

% s: vector of time samples

% last update 18.1.04

% http://www.speech-recognition.de/matlab-examples.html

oe

compute local variables
[nofChannels, maxFFTIdx] = size (W);

fftLength = maxFFTIdx * 2;

% compute matrix X (fftIndex,timeFrameIndex) short term spectra

SPEC = computeSpectrum (fftLength,winShift, s);

% apply mel filter to spectra

MEL.M = W * SPEC.X;

%copy energy vector

MEL.e = SPEC.e;

119


http://www.speech-recognition.de/matlab-examples.html
http://www.speech-recognition.de/matlab-examples.html

Filename: setVideo.m

Controlsthe video setting toolbox, and all its functions.

function varargout = setVideo (varargin)

\o

oe

o
°

SETVIDEO M-file for setVideo.fig

SETVIDEO, by itself, creates a new SETVIDEO or raises the existing

singleton*.

H = SETVIDEO returns the handle to a new SETVIDEO or the handle to

the existing singleton*.

SETVIDEO ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in SETVIDEO.M with the given input arguments.

SETVIDEO ('Property', 'Value',...) creates a new SETVIDEO or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before setVideo OpeningFunction gets called. An
unrecognized property name or invalid value makes property application

stop. All inputs are passed to setVideo OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help setVideo

Last Modified by GUIDE v2.5 23-Jan-2008 17:49:30

Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,

'gui Singleton', gui Singleton,

'gui OpeningFcn', @setVideo OpeningFcn,
'gui OutputFcn', @setVideo OutputFcn,
'gui LayoutFen', [] ,

'gui Callback', [1);:

if nargin && ischar(varargin{l})

end

gui State.gui Callback = str2func(varargin{l});
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if nargout

[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end

% End initialization code - DO NOT EDIT

% ——-- Executes just before setVideo is made visible.

function setVideo OpeningFcn (hObject, eventdata, handles, varargin)

oe

This function has no output args, see OutputFcn.

% hObject handle to figure

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to setVideo (see VARARGIN)

% Choose default command line output for setVideo

handles.output = hObject;

handles.neutral 1;

handles. frameNo 1;
handles.lastFrame = varargin{l}.nrFramesTotal;
for i = 1 :handles.lastFrame

handles.frames{i} = rgb2gray(varargin{l}.frames (i) .cdata);

handles.originalFrames{i} = rgb2gray(varargin{l}.frames (i) .cdata);

end

handles.time = varargin{l}.times;

handles.neutralImage = handles.frames{handles.neutral};

% updating thresholds

handles.thresh.background = get (handles.sBackground, 'Value');
handles.thresh.lighting = get(handles.sLighting, 'Value');
handles.thresh.eye = get (handles.sThreshEye, 'Value');
handles.thresh.eyebrow = get (handles.sThreshEyebrow, 'Value');
handles.thresh.lips = get (handles.sThreshlLips, 'Value');
handles.thresh.lipcorner = get (handles.sThreshLipcorner, 'Value');
handles.thresh.nose = get (handles.sThreshNose, 'Value');
handles.thresh.nosetril = get (handles.sThreshNosetril, 'Value');
handles.thresh.eyeOut = get (handles.sThreshEyeOut, 'Value');
handles.thresh.eyeIn = get (handles.sThreshEyeIn, 'Value');

handles.thresh.ebCorner = get (handles.sThreshEBcorner, 'Value');

121



handles.pointsManual = 1;
handles.manualFace = 1;
% Update handles structure
guidata (hObject, handles);
% Setting Frame Panel
set (handles.sFrame, 'Max', handles.lastFrame);
set (handles.sFrame, 'Value', 1);
set (handles.sFrame, 'SliderStep', [0.99/handles.lastFrame,
9.9/handles.lastFrame]) ;
set (handles.eframeNo, 'String', num2str (handles.frameNo)) ;
set (handles.etime, 'String', num2str (handles.time (handles.frameNo)));
% Setting Crop Panel
resetCrop (handles)
% Showing the image
showFace (handles)
% Setting Height and Width values.
set (handles.eWidth, 'String',
num2str (size (handles.frames{handles.frameNo},2)));
set (handles.eHeight, 'String',
num2str (size (handles.frames{handles.frameNo},1)));
% Setting points selection to manual
rPointsManual Callback (handles.rPointsManual, [], handles);
% Setting Face region selection to manual
rFaceManual Callback (handles.rFaceManual, [], handles);
% Setting Rotate Panel
rotate0 Callback (handles.rotateO, [], handles);

)

% UIWAIT makes setVideo wait for user response (see UIRESUME)

)

% uiwait (handles.figurel);

% ——-- Outputs from this function are returned to the command line.
function varargout = setVideo OutputFcn (hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure
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varargout{l} = handles.output;

op.thresh = handles.thresh;

op.featurePoints = [];

op.neutral = handles.neutral;

op.neutralImage = handles.neutrallImage;
assignin('base', 'videoSet', op);

% —-- Executes on slider movement.

function sFrame Callback (hObject, eventdata, handles)

% hObject handle to sFrame (see GCBO)

°

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
handles.frameNo = ceil (get (hObject, 'Value'));

set (handles.eframeNo, 'String', num2str (handles.frameNo)) ;

set (handles.etime, 'String', num2str (handles.time (handles.frameNo)));

% Showing the image

showFace (handles)

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.

function sFrame CreateFcn (hObject, eventdata, handles)

% hObject handle to sFrame (see GCBO)

°

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

)

% —--- Executes on button press in testFrameButton.

function testFrameButton Callback (hObject, eventdata, handles)

% hObject handle to testFrameButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes (handles.face);

123



handles.manualFace
if handles.manualFace
imshow (handles.frames{handles.frameNo}) ;
tl = round(ginput(l));
tr = round(ginput(l));
bl = round(ginput(1l));
Rmin = tl(2);
Rmax = bl (2);
Cmin = tl(1);
tr(l);

Cmax

handles.faceCoord = [Rmin, Rmax, Cmin, Cmax];

else
J = getFaceRegion (handles. frames{handles.frameNo},
handles.thresh.lighting, handles.thresh.background) ;
L = bwlabel (J);
stats=regionprops (L, 'BoundingBox"') ;
k=[stats.BoundingBox];
stats=regionprops (L, 'Area');
a = [stats.Areal;
display(a):
%Separating was unsuccesfull if no region was found or if area of found
Sregion is less than 1000 pixels
if (isempty(a) || a < 1000)
display ('Unable to locate face region.');

imshow (J) ;

else

Rmin=round (k(2)) ;

Rmax=round (k (2) +k (4) ) ;

Cmin=round (k (1)) ;

Cmax=round (k (1) +k (3)) ;

handles.faceCoord = [Rmin, Rmax, Cmin, Cmax];
end

end

$visualisation of the selected face region in the face Region subimage

ImagePoints = handles.frames{handles.frameNo};

ImagePoints (Rmin, Cmin:Cmax) = 256;
ImagePoints (Rmax, Cmin:Cmax) = 256;
ImagePoints (Rmin:Rmax, Cmin) = 256;
ImagePoints (Rmin:Rmax, Cmax) = 256;

imshow (ImagePoints) ;
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if (handles.pointsManual)
% manual input to points
imshow (ImagePoints) ;

% right eye

in = round(ginput(1l));

feature points(1l,1) = in(2);

feature points(1,2) = in(1l);

ImagePoints (feature points(l,1) - 5 : feature points(1l,1) + 5 ,
feature points(1,2)) = 256;

ImagePoints (feature points(l,1), feature points(l,2) - 5

feature points(1,2) + 5) = 256;

imshow (ImagePoints) ;

$right eye inner corner

in = round(ginput(1l));

feature points(2,1) = in(2);

feature points(2,2) = in(1l);

ImagePoints (feature points(2,1) - 5 : feature points(2,1) + 5 ,
feature points(2,2)) = 256;

ImagePoints (feature points(2,1), feature points(2,2) - 5

feature points(2,2) + 5) = 256;

imshow (ImagePoints) ;

$right eye outer corner
in = round(ginput(1l));

feature points(3,1) = in(2);

feature points(3,2) = in(1l);

ImagePoints (feature points(3,1) - 5 : feature points(3,1) + 5 ,
feature points(3,2)) = 256;

ImagePoints (feature points(3,1), feature points(3,2) - 5

feature points(3,2) + 5) = 256;

imshow (ImagePoints) ;

Sright eyebrow

in = round(ginput(1l));

feature points(4,1) = in(2);

feature points(4,2) = in(1l);

ImagePoints (feature points(4,1) - 5 : feature points(4,1) + 5 ,
feature points(4,2)) = 256;
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ImagePoints (feature points(4,1), feature points(4,2) - 5
feature points(4,2) + 5) = 256;

imshow (ImagePoints) ;

$right eyebrow corner

in = round(ginput(1l));

feature points(5,1) = in(2);

feature points(5,2) = in(1l);

ImagePoints (feature points(5,1) - 5 : feature points(5,1) + 5 ,
feature points(5,2)) = 256;

ImagePoints (feature points(5,1), feature points(5,2) - 5

feature points(5,2) + 5) = 256;

imshow (ImagePoints) ;

$left eye

in = round(ginput(1l));

feature points(6,1) = in(2);

feature points(6,2) = in(1l);

ImagePoints (feature points(6,1) - 5 : feature points(6,1) + 5 ,
feature points(6,2)) = 256;

ImagePoints (feature points(6,1), feature points(6,2) - 5

feature points(6,2) + 5) = 256;

imshow (ImagePoints) ;

%left eye inner corner

in = round(ginput(1l));

feature points(7,1) = in(2);

feature points(7,2) = in(1l);

ImagePoints (feature points(7,1) - 5 : feature points(7,1) + 5 ,
feature points(7,2)) = 256;

ImagePoints (feature points(7,1), feature points(7,2) - 5

feature points(7,2) + 5) = 256;

imshow (ImagePoints) ;

$left eye outer corner

in = round(ginput(1l));

feature points(8,1) = in(2);
feature points(8,2) = in(1l);
ImagePoints (feature points(8,1) - 5 : feature points(8,1) + 5 ,

feature points(8,2)) = 256;
ImagePoints (feature points(8,1), feature points(8,2) - 5

feature points(8,2) + 5) = 256;
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imshow (ImagePoints) ;

$left eyebrow
in = round(ginput (1)
feature points(9,1)

feature points(9,2)

ImagePoints (feature

feature points(9,2)) = 256;

ImagePoints (feature points(9,1),

256;

feature points(9,2) + 5) =

imshow (ImagePoints) ;

)i
= in(2);
= in(1);

points(9,1)

$left eyebrow corner

in = round(ginput (1)
feature points(10,1)

feature points(10,2)

ImagePoints (feature points (10,1)

feature points(10,2)) = 256;

ImagePoints (feature points(10,1),

256;

feature points(10,2) + 5) =

imshow (ImagePoints) ;

%$left mouth corner

in =

feature points(11,1)
feature points (11, 2)

ImagePoints (feature points(11,1)

feature points(11,2)) = 256;

ImagePoints (feature points(11,1),

feature points(11,2) + 5) = 25

)
= in(2);

= in(1);

round (ginput (1)) ;

= in(2);

= in(1);

6;

imshow (ImagePoints) ;

Srightmouth corner

in =

feature points(12,1)
feature points(12,2)

ImagePoints (feature points(12,1)

feature points(12,2)) = 256;

round (ginput (1)) ;

= in(2);

= in(1);

-5

feature points(9,1) + 5 ,

feature points(9,2) - 5

5 : feature points(10,1) + 5 ,

feature points(10,2) - 5

- 5 : feature points(11,1) + 5 ,

feature points(11,2) - 5

ImagePoints (feature points(12,1),

feature points(12,2) + 5) =

imshow (ImagePoints)

256;

’

5 : feature points(12,1) + 5 ,

feature points(12,2) - 5
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Supper lip

in = round(ginput(1l));

feature points(13,1) = in(2);
feature points(13,2) = in(1);
ImagePoints (feature points(13,1) - 5 : feature points(13,1) + 5 ,

feature points(13,2)) = 256;
ImagePoints (feature points(13,1), feature points(13,2) - 5
feature points(13,2) + 5) = 256;

imshow (ImagePoints) ;

$lower lip

in = round(ginput(1l));

feature points(14,1) = in(2);

feature points(14,2) = in(1);

ImagePoints (feature points(14,1) - 5 : feature points(14,1) + 5 ,
feature points(14,2)) = 256;

ImagePoints (feature points(14,1), feature points(14,2) - 5
feature points(14,2) + 5) = 256;

imshow (ImagePoints) ;

% nose

in = round(ginput(1l));
feature points(15,1) = in(2);
feature points(15,2) = in(1);

ImagePoints (feature points(15,1) - 5 : feature points(15,1) + 5 ,
feature points(15,2)) = 256;

ImagePoints (feature points(15,1), feature points(15,2) - 5
feature points(15,2) + 5) = 256;

imshow (ImagePoints) ;

%nose corner left

in = round(ginput (1)) ;
feature points(16,1) = in(2);
feature points(16,2) = in(1);

ImagePoints (feature points(16,1) - 5 : feature points(1l6,1) + 5 ,
feature points(16,2)) = 256;

ImagePoints (feature points(16,1), feature points(16,2) - 5
feature points(16,2) + 5) = 256;

imshow (ImagePoints) ;

%$nose corner right

in = round(ginput (1)) ;
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feature points(17,1) in(2);

feature points(17,2) = in(1);

ImagePoints (feature points(17,1) - 5 : feature points(17,1) + 5 ,
feature points(17,2)) = 256;

ImagePoints (feature points(17,1), feature points(17,2) - 5
feature points(17,2) + 5) = 256;

imshow (ImagePoints) ;

$visualize the selected points on the image

ImagePoints = handles.frames{handles.frameNo};

handles.points{handles.frameNo} = feature points;

if (handles.frameNo == handles.neutral)
handles.neutralImage = ImagePoints;
end
else
[ImagePoints, handles.featurePoints{handles.frameNo}] =

testFrame (handles. frames{handles.frameNo}, handles.faceCoord, handles.thresh);

if (handles.frameNo == handles.neutral)
handles.neutralImage = ImagePoints;
end
% handles. frames{handles.frameNo} = ImagePoints;
end
axes (handles.face), imshow (ImagePoints), drawnow;
set (handles.testVideoButton, 'Enable', 'on');

guidata (hObject, handles) ;

% —--- Executes on button press in setNeutralButton.

function setNeutralButton Callback (hObject, eventdata, handles)

% hObject handle to setNeutralButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.neutral = ceil (get (handles.sFrame, 'Value'));

guidata (hObject, handles);

function eframeNo Callback (hObject, eventdata, handles)
% hObject handle to eframeNo (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

°
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double

get (0,

double

o
°

o
°

Hints: get (hObject, 'String') returns contents of eframeNo as text

str2double (get (hObject, 'String')) returns contents of eframeNo as a

handles.frameNo = ceil (str2double (get (hObject, 'String')));

if

(handles.frameNo < 1)

handles.frameNo = 1;

set (handles.eframeNo, 'String', num2str (handles.frameNo)) ;

elseif (handles.frameNo > handles.lastFrame)

handles.frameNo = handles.lastFrame;

set (handles.eframeNo, 'String', num2str (handles.frameNo)) ;

end

set (handles.sFrame, 'Value', handles.frameNo) ;

set (handles.etime, 'String', num2str (handles.time (handles.frameNo)));

o
°

Showing the image

showFace (handles)

guidata (hObject, handles);

o
°

--- Executes during object creation, after setting all properties.

function eframeNo CreateFcn (hObject, eventdata, handles)

o
°

o
°

oe

oe

o
°

hObject
eventdata

handles

handle to eframeNo (see GCBO)
reserved - to be defined in a future version of MATLAB

empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;

end

function etime Callback (hObject, eventdata, handles)

o
°

o

°

oe

hObject
eventdata

handles

handle to etime (see GCBO)
reserved - to be defined in a future version of MATLAB

structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of etime as text

str2double (get (hObject, 'String')) returns contents of etime as a
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% —--- Executes during object creation, after setting all properties.

function etime CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to etime (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

end

)

% —--- Executes on button press in cCrop.

function cCrop Callback (hObject, eventdata, handles)

% hObject handle to cCrop (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject, 'Value') returns toggle state of cCrop
if get (hObject, 'Value')

set (handles.eCropX, 'Enable', 'on');

set (handles.eCropY, 'Enable', 'on');

set (handles.eCropW, 'Enable', 'on');

set (handles.cropButton, 'Enable', 'on');
else

set (handles.eCropX, 'Enable', 'off');

set (handles.eCropY, 'Enable', 'off');

set (handles.eCropW, 'Enable', 'off');

set (handles.cropButton, 'Enable', 'off');

end

function eCropX Callback (hObject, eventdata, handles)
% hObject handle to eCropX (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eCropX as text
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double

% str2double (get (hObject, 'String')) returns contents of eCropX as a

if (str2double (get (hObject, 'String')) < 1)
set (hObject, 'String', num2str(l));

elseif

(str2double (get (hObject, 'String') ) +str2double (get (handles.eCropW, 'String')) >
str2double (get (handles.eWidth, 'String')))

set (hObject, 'String', num2str (str2double(get (handles.eWidth, 'String'))

str2double (get (handles.eCropW, 'String'))));

end

showFace (handles) ;
% —--- Executes during object creation, after setting all properties.
function eCropX CreateFcn (hObject, eventdata, handles)

% hObject handle to eCropX (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;
end
function eCropY Callback (hObject, eventdata, handles)
% hObject handle to eCropY (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get (hObject, 'String') returns contents of eCropY as text
% str2double (get (hObject, 'String')) returns contents of eCropY as a
double
if (str2double (get (hObject, 'String')) < 1)
set (hObject, 'String', num2str(l));
elseif
(str2double (get (hObject, 'String') ) +str2double (get (handles.eCropW, 'String')) >

str2double (get (handles.eHeight, 'String')))

set (hObject, 'String', num2str (str2double (get (handles.eHeight, 'String'))

str2double (get (handles.eCropW, 'String'))));
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end
showFace (handles) ;
% —--- Executes during object creation, after setting all properties.
function eCropY CreateFcn (hObject, eventdata, handles)

% hObject handle to eCropY (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;

end

function eCropW Callback (hObject, eventdata, handles)
% hObject handle to eCropW (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eCropW as text

% str2double (get (hObject, 'String')) returns contents of eCropW as a
double

if (str2double (get (hObject, 'String')) >=
(str2double (get (handles.eHeight, 'String')) - str2double (get (handles.eCropY, 'String')))
| | str2double (get (hObject, 'String')) >= (str2double (get (handles.eWidth, 'String')) -

str2double (get (handles.eCropX, 'String'))))
set (hObject, 'String',

num2str (min( (str2double (get (handles.eHeight, 'String')) -
str2double (get (handles.eCropY, 'String'))), (str2double(get (handles.eWidth,'String'))-
str2double (get (handles.eCropX, 'String'))))));

end

showFace (handles) ;

% —--- Executes during object creation, after setting all properties.
function eCropW CreateFcn (hObject, eventdata, handles)
% hObject handle to eCropW (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

°
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get (0,

yCrop)

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;
end
% —--- Executes on button press in cropButton.
function cropButton Callback (hObject, eventdata, handles)
% hObject handle to cropButton (see GCBO)

°

)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

for i = l:handles.lastFrame

xCrop = str2double (get (handles.eCropX, 'String'));

yCrop = str2double (get (handles.eCropY, 'String')):;

wCrop = str2double (get (handles.eCropW, 'String'));

oHeight = str2double (get (handles.eHeight, 'String'));

handles.frames{i} = handles.frames{i} ( (oHeight+l-yCrop-wCrop) : (oHeight-

, XCrop: (xCropt+wCrop)) ;

end

resetCrop (handles) ;
showFace (handles) ;

guidata (hObject, handles);
% —--- Executes on button press in rotate0.

function rotate0 Callback(hObject, eventdata, handles)

o

5 hObject handle to rotateO (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hint: get (hObject, 'Value') returns toggle state of rotatel
if get (hObject, 'Value')
handles.frames = handles.originalFrames;
end
resetCrop (handles) ;
showFace (handles) ;
guidata (hObject, handles);
% —--- Executes on button press in rotate90.
function rotate90 Callback (hObject, eventdata, handles)
% hObject handle to rotate90 (see GCBO)

°
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% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hint: get (hObject, 'Value') returns toggle state of rotate90
if get (hObject, 'Value')
for i = l:handles.lastFrame
handles.frames{i} = imrotate (handles.originalFrames{i}, 90);
end
end
resetCrop (handles) ;
showFace (handles)
guidata (hObject, handles);
% —--- Executes on button press in rotatel80.

function rotatel80 Callback(hObject, eventdata, handles)

o

5 hObject handle to rotatel80 (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hint: get (hObject, 'Value') returns toggle state of rotatel80
if get (hObject, 'Value')
for i = l:handles.lastFrame
handles.frames{i} = imrotate (handles.originalFrames{i}, 180);
end
end
resetCrop (handles) ;
showFace (handles) ;
guidata (hObject, handles);
% —--- Executes on button press in rotate270.

function rotate270 Callback (hObject, eventdata, handles)

o

5 hObject handle to rotate270 (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hint: get (hObject, 'Value') returns toggle state of rotate270
if get (hObject, 'Value')
for i = l:handles.lastFrame
handles.frames{i} = imrotate (handles.originalFrames{i}, 270);
end
end

resetCrop (handles) ;
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showFace (handles) ;

guidata (hObject, handles);

function eWidth Callback (hObject, eventdata, handles)
% hObject handle to eWidth (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eWidth as text
% str2double (get (hObject, 'String')) returns contents of eWidth as a
double

% —--- Executes during object creation, after setting all properties.
function eWidth CreateFcn (hObject, eventdata, handles)
% hObject handle to eWidth (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;

end

function eHeight Callback (hObject, eventdata, handles)
% hObject handle to eHeight (see GCBO)

°

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eHeight as text
% str2double (get (hObject, 'String')) returns contents of eHeight as a
double

% —--- Executes during object creation, after setting all properties.

function eHeight CreateFcn (hObject, eventdata, handles)
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% hObject handle to eHeight (see GCBO)

\o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white') ;

end

)

% —--- Executes on button press in resizeButton.
function resizeButton Callback (hObject, eventdata, handles)
% hObject handle to resizeButton (see GCBO)

)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
dlg = 0;
if (str2double (get (handles.eHeight, 'String')) ~=

str2double (get (handles.eWidth, 'String')))
dlg = questdlg('Are you sure you want to RESIZE? Height and Width are not
equal. Image might get distorted', 'Size Mismatch', 'Yes', 'No', 'No');

end

if strcmp(dlg, 'Yes')
for i = l:handles.lastFrame
handles.frames{i} = imresize (handles.frames{i}, [256,256]);
end
resetCrop (handles) ;
set (handles.testFrameButton, 'Enable', 'on');
end
guidata (hObject, handles);

showFace (handles) ;

)

% —--- Executes on button press in rFaceManual.
function rFaceManual Callback (hObject, eventdata, handles)
% hObject handle to rFaceManual (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
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% Hint:

°

get (hObject, 'Value')

returns toggle state of rFaceManual

handles.manualFace = 1;

guidata (hObj
set (handles.

set (handles.

)

function rFaceAuto Callback (hObject,

% hObject
% eventdata

handles

5 Hint:

get (hObject, 'Value')

ect, handles);

sBackground, 'Enable', 'off');

sLighting, 'Enable', 'off');

3 ———- Executes on button press in rFaceAuto.

eventdata, handles)

handle to rFaceAuto (see GCBO)
reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

returns toggle state of rFaceAuto

handles.manualFace = 0;

set (handles.sBackground, 'Enable', 'on');

set (handles.sLighting, 'Enable', 'on');

guidata (hObject, handles);

% —--- Executes on button press in rPointsManual.

function rPointsManual Callback (hObject, eventdata, handles)

\o

5 hObject

\o

s eventdata

handles

oe

oe

Hint:
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.

get (hObject, 'Value')

handle to rPointsManual (see GCBRO)
reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

returns toggle state of rPointsManual

Turning off threshold setting

sThreshEye, 'Enable', 'off');
eThreshEye, 'Enable', 'off');
sThreshEyebrow, 'Enable', 'off');
eThreshEyebrow, 'Enable', 'off');
sThreshLips, 'Enable', 'off');
eThreshLips, 'Enable', 'off');
sThreshLipcorner, 'Enable', 'off');
eThreshlLipcorner, 'Enable', 'off');
sThreshNose, 'Enable', 'off');
eThreshNose, 'Enable', 'off'):;
sThreshNosetril, 'Enable', 'off');
eThreshNosetril, 'Enable', 'off');
sThreshEyeOut, 'Enable', 'off');
eThreshEyeOut, 'Enable', 'off');
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set (handles.sThreshEyeIn, 'Enable', 'off');
set (handles.eThreshEyeIn, 'Enable', 'off');
set (handles.sThreshEBcorner, 'Enable', 'off');
set (handles.eThreshEBcorner, 'Enable', 'off');
handles.pointsManual = 1;

guidata (hObject, handles);

% —--- Executes on button press in rPointsAuto.

function rPointsAuto Callback (hObject, eventdata,

% hObject handle to rPointsAuto (see GCBO)

% eventdata reserved - to be defined in a future
% handles structure with handles and user data
% Hint: get (hObject, 'Value') returns toggle state

set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles
set (handles.
set (handles.
set (handles.
set (handles.
set (handles
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.
set (handles.

handles.pointsManual =

guidata (hObj

sThreshEye, 'Enable', 'on');
eThreshEye, 'Enable', 'inactive');
sThreshEyebrow, 'Enable', 'on');
eThreshEyebrow, 'Enable', 'inactive');
sThreshLips, 'Enable', 'on');
.eThreshLips, 'Enable', 'inactive');
sThreshLipcorner, 'Enable', 'on');
eThreshLipcorner, 'Enable', 'inactive'
sThreshNose, 'Enable', 'on');
eThreshNose, 'Enable', 'inactive');
.sThreshNosetril, 'Enable', 'on');
eThreshNosetril, 'Enable', 'inactive')
sThreshEyeOut, 'Enable', 'on');
eThreshEyeOut, 'Enable', 'inactive');
sThreshEyeIn, 'Enable', 'on');
eThreshEyeIn, 'Enable', 'inactive');
sThreshEBcorner, 'Enable', 'on');
eThreshEBcorner, 'Enable', 'inactive')

0;

ect, handles);

function showFace (handles)

)

if get (handles.cCrop,

5 Cropiing Image

'Value')
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xCrop = str2double (get (handles.eCropX, 'String'));
yCrop = str2double (get (handles.eCropY, 'String')):;
wCrop = str2double (get (handles.eCropW, 'String'));
oHeight = str2double (get (handles.eHeight, 'String'));
handles. frames{handles.frameNo} ( (ocHeight+l-yCrop-wCrop) : (cHeight-yCrop),
xCrop: (xCrop+wCrop) ) =
handles. frames{handles.frameNo} ( (ocHeight+l-yCrop-wCrop) : (oHeight-
yCrop), xCrop: (xCrop+wCrop)) /2;
end
% Showing the image
axes (handles. face);
imshow (handles. frames{handles.frameNo}) ;
% Setting Height and Width values.
set (handles.eWidth, 'String',
num2str (size (handles.frames{handles.frameNo},2)));
set (handles.eHeight, 'String',

num2str (size (handles.frames{handles.frameNo},1)));

function resetCrop (handles)

set (handles.testFrameButton, 'Enable', 'off');
set (handles.testVideoButton, 'Enable', 'off');
% Setting Crop Panel

set (handles.eCropX, 'String', num2str(l));
set (handles.eCropY, 'String', num2str(l));
set (handles.eCropW, 'String', num2str(0));
set (handles.cCrop, 'Value', 0);

cCrop Callback (handles.cCrop, [], handles);

)

% —--- Executes on button press in testVideoButton.
function testVideoButton Callback (hObject, eventdata, handles)
% hObject handle to testVideoButton (see GCBO)

°

)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
offset.EBL = handles.points{handles.frameNo} (6,2) -

handles.points{handles.frameNo} (9, 2) ;
offset.EBR = handles.points{handles.frameNo} (1,2) -

handles.points{handles.frameNo} (4, 2);
axes (handles. face);
if handles.pointsManual

for i = l:handles.lastFrame

%visualize the selected points on the image
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ImagePoints = handles.frames{i};

imshow (ImagePoints) ;

% right eye

in = round(ginput (1)),

feature points(1l,1) = in(2);

feature points(1,2) = in(1);

ImagePoints (feature points(l,1) - 5 : feature points(l,1)
feature points(1,2)) = 256;

ImagePoints (feature points(1l,1), feature points(l,2) - 5

feature points(1l,2) + 5) = 256;

imshow (ImagePoints) ;

$right eye inner corner

in = round(ginput (1)),

feature points(2,1) = in(2);

feature points(2,2) = in(1l);

ImagePoints (feature points(2,1) - 5 : feature points(2,1)
feature points(2,2)) = 256;

ImagePoints (feature points(2,1), feature points(2,2) - 5

feature points(2,2) + 5) = 256;

imshow (ImagePoints) ;

sright eye outer corner

in = round(ginput (1)),

feature points(3,1) = in(2);

feature points(3,2) = in(1l);

ImagePoints (feature points(3,1) - 5 : feature points(3,1)
feature points(3,2)) = 256;

ImagePoints (feature points(3,1), feature points(3,2) - 5

feature points(3,2) + 5) = 256;

imshow (ImagePoints) ;

sright eyebrow

in = round(ginput (1))

feature points(4,1) = in(2);

feature points(4,2) = in(1l);

ImagePoints (feature points(4,1) - 5 : feature points(4,1)
feature points(4,2)) = 256;

ImagePoints (feature points(4,1), feature points(4,2) - 5

feature points(4,2) + 5) = 256;

imshow (ImagePoints) ;
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$right eyebrow corner

in = round(ginput (1)),

feature points(5,1) = in(2);

feature points(5,2) = in(1);

ImagePoints (feature points(5,1) - 5 : feature points(5,1)
feature points(5,2)) = 256;

ImagePoints (feature points(5,1), feature points(5,2) - 5

feature points(5,2) + 5) = 256;

imshow (ImagePoints) ;

$left eye

in = round(ginput (1)),

feature points(6,1) = in(2);

feature points(6,2) = in(1l);

ImagePoints (feature points(6,1) - 5 : feature points(6,1)
feature points(6,2)) = 256;

ImagePoints (feature points(6,1), feature points(6,2) - 5

feature points(6,2) + 5) = 256;

imshow (ImagePoints) ;

$left eye inner corner

in = round(ginput (1)),

feature points(7,1) = in(2);

feature points(7,2) = in(1l);

ImagePoints (feature points(7,1) - 5 : feature points(7,1)
feature points(7,2)) = 256;

ImagePoints (feature points(7,1), feature points(7,2) - 5

feature points(7,2) + 5) = 256;

imshow (ImagePoints) ;

sleft eye outer corner

in = round(ginput (1))

feature points(8,1) = in(2);

feature points(8,2) = in(1l);

ImagePoints (feature points(8,1) - 5 : feature points(8,1)
feature points(8,2)) = 256;

ImagePoints (feature points(8,1), feature points(8,2) - 5

feature points(8,2) + 5) = 256;

imshow (ImagePoints) ;

$left eyebrow
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in = round(ginput (1))

feature points(9,1) = in(2);

feature points(9,2) = in(1);

ImagePoints (feature points(9,1) - 5 : feature points(9,1) + 5 ,
feature points(9,2)) = 256;

ImagePoints (feature points(9,1), feature points(9,2) - 5

feature points(9,2) + 5) = 256;

imshow (ImagePoints) ;

sleft eyebrow corner

in = round(ginput (1))

feature points(10,1) = in(2);

feature points(10,2) = in(1);

ImagePoints (feature points(10,1) - 5 : feature points(10,1) + 5 ,
feature points(10,2)) = 256;

ImagePoints (feature points(10,1), feature points(10,2) - 5
feature points(10,2) + 5) = 256;

imshow (ImagePoints) ;

%$left mouth corner

in = round(ginput (1)),

feature points(11l,1) = in(2);
feature points(11,2) = in(1);
ImagePoints (feature points(11l,1) - 5 : feature points(11,1) + 5 ,

feature points(11,2)) = 256;
ImagePoints (feature points(11,1), feature points(1l1l,2) - 5
feature points(11,2) + 5) = 256;

imshow (ImagePoints) ;

Srightmouth corner

in = round(ginput (1))

feature points(12,1) = in(2);
feature points(12,2) = in(1);
ImagePoints (feature points(12,1) - 5 : feature points(12,1) + 5 ,

feature points(12,2)) = 256;
ImagePoints (feature points(12,1), feature points(12,2) - 5
feature points(12,2) + 5) = 256;

imshow (ImagePoints) ;
supper lip

in = round(ginput (1)),

feature points(13,1) = in(2);
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feature points(13,2)

in(1);

ImagePoints (feature points(13,1) -

feature points(13,2)) = 256;

ImagePoints (feature points(13,1),

feature points(13,2) + 5) = 256;

imshow (ImagePoints) ;

$lower lip

in = round(ginput (1))

feature points(14,1)
feature points(14,2)

in(2);

in(1);

ImagePoints (feature points(14,1) -

feature points(14,2)) = 256;

ImagePoints (feature points(14,1),

feature points(14,2) + 5) = 256;

imshow (ImagePoints) ;

)

s nose

in = round(ginput (1)),

feature points(15,1)
feature points(15,2)

in(2);

in(1);

ImagePoints (feature points(15,1) -

feature points(15,2)) = 256;

ImagePoints (feature points(15,1),

feature points(15,2) + 5) = 256;

imshow (ImagePoints) ;

%nose corner left

in = round(ginput (1)),

feature points(16,1)
feature points(16,2)

in(2);

in(1);

ImagePoints (feature points(16,1) -

feature points(16,2)) = 256;

ImagePoints (feature points(16,1),

feature points(16,2) + 5) = 256;

imshow (ImagePoints) ;

%nose corner right

in = round(ginput (1)),

feature points(17,1)
feature points(17,2)

in(2);
in(1);
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ImagePoints (feature points(17,1) - 5 : feature points(17,1)

feature points(17,2)) = 256;
ImagePoints (feature points(17,1), feature points(17,2) - 5
feature points(17,2) + 5) = 256;

imshow (ImagePoints) ;

handles.points{i} = feature points;

set (handles.sFrame, 'Value',6 1i);

if (i == handles.neutral)
handles.neutralImage = ImagePoints;
end
end
else
for i = handles.frameNo-1:-1:1
set (handles.sFrame, 'Value', 1i);

sFrame Callback (handles.sFrame, [], handles);

[ImagePoints test op reg handles.points{i}] = run2(handles.frames{i},

handles.faceCoord, handles.points(i+l), handles.thresh, offset);
imshow (ImagePoints), drawnow;
if (i == handles.neutral)
handles.neutralImage = ImagePoints;

end

end

for i = handles.frameNo+l:handles.lastFrame
set (handles.sFrame, 'Value', 1i);

sFrame Callback (handles.sFrame, [], handles);

[ImagePoints test op reg handles.points{i}] = run2(handles.frames{i},

handles.faceCoord, handles.points(i-1), handles.thresh, offset);
imshow (ImagePoints), drawnow;
if (i == handles.neutral)
handles.neutralImage = ImagePoints;
end
end
end
guidata (hObject, handles);
% —--- Executes on button press in saveSetButton.
function saveSetButton Callback (hObject, eventdata, handles)
% hObject handle to saveSetButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

°
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op.thresh = handles.thresh;
op.featurePoints = handles.points;
op.neutral = handles.neutral;
op.neutralImage = handles.neutrallImage;
assignin('base', 'videoSet', op):;

close (handles.figurel) ;

% —-- Executes on slider movement.

function sBackground Callback (hObject, eventdata, handles)

% hObject handle to sBackground (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
handles.thresh.background = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sBackground CreateFcn (hObject, eventdata, handles)
% hObject handle to sBackground (see GCBO)

°

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

% —-- Executes on slider movement.

function sLighting Callback (hObject, eventdata, handles)

% hObject handle to sLighting (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
handles.thresh.lighting = get (hObject, 'Value');

guidata (hObject, handles);
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)

% —--- Executes during object creation, after setting all properties.

function sLighting CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to sLighting (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

)

% —--- Executes on slider movement.
function sThreshEye Callback (hObject, eventdata, handles)
% hObject handle to sThreshEye (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshEye, 'String', num2str(get (hObject, 'Value'))):;
handles.thresh.eye = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshEye CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshEye (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

)

% —--- Executes on slider movement.
function sThreshEyebrow Callback (hObject, eventdata, handles)
% hObject handle to sThreshEyebrow (see GCBO)

)

% eventdata reserved - to be defined in a future version of MATLAB
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% handles structure with handles and user data (see GUIDATA)

°

)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshEyebrow, 'String', num2str (get (hObject, 'Value')));
handles.thresh.eyebrow = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshEyebrow CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshEyebrow (see GCBO)

°

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

function eThreshEye Callback (hObject, eventdata, handles)
% hObject handle to eThreshEye (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eThreshEye as text
% str2double (get (hObject, 'String')) returns contents of eThreshEye as a
double

% —--- Executes during object creation, after setting all properties.
function eThreshEye CreateFcn (hObject, eventdata, handles)

% hObject handle to eThreshEye (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))

148



set (hObject, 'BackgroundColor', 'white') ;

end

function eThreshEyebrow Callback (hObject, eventdata, handles)

o

5 hObject handle to eThreshEyebrow (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eThreshEyebrow as text

% str2double (get (hObject, 'String')) returns contents of eThreshEyebrow

as a double

get (0,

)

% —--- Executes during object creation, after setting all properties.
function eThreshEyebrow CreateFcn (hObject, eventdata, handles)

% hObject handle to eThreshEyebrow (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.

oe

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;

end

)

% —--- Executes on slider movement.
function sThreshLipcorner Callback (hObject, eventdata, handles)
% hObject handle to sThreshlLipcorner (see GCBO)

°

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshlLipcorner, 'String', num2str (get (hObject, 'Value')));
handles.thresh.lipcorner = get (hObject, 'Value');

guidata (hObject, handles);

)

% —--- Executes during object creation, after setting all properties.
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function sThreshLipcorner CreateFcn (hObject, eventdata, handles)

\o

5 hObject handle to sThreshlLipcorner (see GCBO)

\o

> eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

)

% —--- Executes on slider movement.
function sThreshLips Callback (hObject, eventdata, handles)
% hObject handle to sThreshLips (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshLips, 'String', num2str (get (hObject, 'Value'))):;
handles.thresh.lips = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshLips CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshLips (see GCBO)

°

\o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

function eThreshLips Callback (hObject, eventdata, handles)
% hObject handle to eThreshLips (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

°
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oe

Hints: get (hObject, 'String') returns contents of eThreshlips as text
% str2double (get (hObject, 'String')) returns contents of eThreshlips as a
double

oe

--- Executes during object creation, after setting all properties.
function eThreshLips CreateFcn (hObject, eventdata, handles)
% hObject handle to eThreshLips (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;

end

function eThreshLipcorner Callback (hObject, eventdata, handles)
% hObject handle to eThreshlipcorner (see GCBO)

o

> eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eThreshlLipcorner as text
% str2double (get (hObject, 'String')) returns contents of eThreshlLipcorner

as a double

o

5 ——— Executes during object creation, after setting all properties.
function eThreshLipcorner CreateFcn (hObject, eventdata, handles)

% hObject handle to eThreshlipcorner (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;
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end

)

% —--- Executes on slider movement.
function sThreshNose Callback (hObject, eventdata, handles)
% hObject handle to sThreshNose (see GCBO)

°

\o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshNose, 'String', num2str (get (hObject, 'Value'))):;
handles.thresh.nose = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshNose CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshNose (see GCBO)

\o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

)

% —--- Executes on slider movement.
function sThreshNosetril Callback (hObject, eventdata, handles)
% hObject handle to sThreshNosetril (see GCBO)

°

\o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'Value') returns position of slider

% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshNosetril, 'String', num2str (get (hObject, 'Value')));
handles.thresh.nosetril = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.

function sThreshNosetril CreateFcn (hObject, eventdata, handles)
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% hObject handle to sThreshNosetril (see GCBO)

o

5 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

function eThreshNosetril Callback (hObject, eventdata, handles)
% hObject handle to eThreshNosetril (see GCBO)
3 eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

5 Hints: get (hObject, 'String') returns contents of eThreshNosetril as text

% str2double (get (hObject, 'String')) returns contents of eThreshNosetril
as a double

o

5 ———- Executes during object creation, after setting all properties.

function eThreshNosetril CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to eThreshNosetril (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

end

function eThreshNose Callback (hObject, eventdata, handles)
% hObject handle to eThreshNose (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
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)

% Hints: get (hObject, 'String') returns contents of eThreshNose as text
% str2double (get (hObject, 'String')) returns contents of eThreshNose as a

double

oe

--- Executes during object creation, after setting all properties.
function eThreshNose CreateFcn (hObject, eventdata, handles)
% hObject handle to eThreshNose (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

~

set (hObject, 'BackgroundColor', 'white') ;

end

)

% —-- Executes on slider movement.

function sThreshEyeIn Callback (hObject, eventdata, handles)

% hObject handle to sThreshEyeIn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshEyelIn, 'String', num2str (get (hObject, 'Value')));
handles.thresh.eyeIn = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshEyeIn CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshEyeIn (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end
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function eThreshEyeIn Callback (hObject, eventdata, handles)

oe

hObject handle to eThreshEyeIn (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eThreshEyeIn as text

% str2double (get (hObject, 'String')) returns contents of eThreshEyeln as
a double
% —--- Executes during object creation, after setting all properties.

function eThreshEyeIn CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to eThreshEyeIn (see GCBO)

oe

eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

end

o

5 —-—— Executes on slider movement.

function sThreshEyeOut Callback (hObject, eventdata, handles)

% hObject handle to sThreshEyeOut (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'Value') returns position of slider

% get (hObject, 'Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshEyeOut, 'String', num2str (get (hObject, 'Value')));
handles.thresh.eyeOut = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshEyeOut CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshEyeOut (see GCBO)

°
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oe

oe

o
°

eventdata reserved - to be

handles

defined in a future version of MATLAB

empty - handles not created until after all CreateFcns called

Hint: slider controls usually have a light gray background.

if isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

function eThreshEyeOut Callback (hObject, eventdata, handles)

o
°

oe

oe

oe

a double

o
°

hObject

eventdata reserved - to be

handles

Hints:

get (hObject, 'String')

handle to eThreshEyeOut (see GCBO)

defined in a future version of MATLAB

structure with handles and user data (see GUIDATA)

returns contents of eThreshEyeOut as text

str2double (get (hObject, 'String')) returns contents of eThreshEyeOut as

--- Executes during object creation, after setting all properties.

function eThreshEyeOut CreateFcn (hObject, eventdata, handles)

o

°

o

°

oe

oe

o
°

hObject

eventdata reserved - to be

handles

handle to eThreshEyeOut (see GCBO)

defined in a future version of MATLAB

empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

end

o
°

--—- Executes on slider movement.

function sThreshEBcorner Callback (hObject, eventdata, handles)

o
°

o
°

oe

hObject
eventda

handles

Hints:

handle to sThresh
ta reserved - to be

structure with ha

get (hObject, 'Value')

EBcorner (see GCBO)
defined in a future version of MATLAB

ndles and user data (see GUIDATA)

returns position of slider
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% get (hObject, '"Min') and get (hObject, 'Max') to determine range of slider
set (handles.eThreshEBcorner, 'String', num2str (get (hObject, 'Value')));
handles.thresh.ebCorner = get (hObject, 'Value');

guidata (hObject, handles);

% —--- Executes during object creation, after setting all properties.
function sThreshEBcorner CreateFcn (hObject, eventdata, handles)

% hObject handle to sThreshEBcorner (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal (get (hObject, 'BackgroundColor'),
get (0, '"defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);

end

function eThreshEBcorner Callback (hObject, eventdata, handles)
% hObject handle to eThreshEBcorner (see GCBO)

°

% eventdata reserved - to be defined in a future version of MATLAB

oe

handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of eThreshEBcorner as text
% str2double (get (hObject, 'String')) returns contents of eThreshEBcorner

as a double

)

% —--- Executes during object creation, after setting all properties.

function eThreshEBcorner CreateFcn (hObject, eventdata, handles)

o

5 hObject handle to eThreshEBcorner (see GCBO)

o

3 eventdata reserved - to be defined in a future version of MATLAB

oe

handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

end
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Filename : getFaceRegion.m
Extracts the face region using the seeded region growing algorithm.

function Im = getFaceRegion (I, thresh light, thresh bg)

$Making image blured with gabor filter.
[G,I1] = gaborfilterl(I,4,4,0,pi/4);
BW=edge (I1, 'canny');

I=double (imadjust (I, stretchlim(I), []));

% using canny edge detector to find edges
I=I-BW*255;

Bg = zeros(size(I));

% choosing 4 seed pixels background separation by seed region growing
% algorithm

gl=[20 201;

g2=[20 240];

g3=[150 201;

g4=[150 240];

splBack = [gl(1l) gl(2); 92(1) g2(2); g3(1) g3(2); g4(l) g4(2)];
fcheckBack = @checkBackground;

display('Separating the background') ;

while splBack ~=zeros(size (splBack))

[Bg, splBack]=feval (fcheckBack, splBack, I,Bg, thresh light ,thresh bg);

end

% substituing background with black color in the origanal image
for xcord = 1:256
for ycord = 1:256
I(xcord, ycord) = I(xcord, ycord) * ~Bg(xcord, ycord);
end
end

Im = zeros(size(I));

%$choosing 3 seed pixels
gl=[128 128];

g3=[160 128];

g4=[96 1601];

g5=[96 128];

g6=[96 96];
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head

% arbtarily choosen co-ordinate on the forehead
spl = [gl; g3; g4; g5; g6];
% refining coordinates
spl = feval (@seedPixel, spl, I, 150);
% finished choosing seed pixels.
fcheck=@check3;% function handle
threshold = thresh 1light*30;
First = zeros(size(I));
wrong = 0;
wrongFirst = 0;
spl = [gl(l) gl(2); g2(1) g2(2); g3(1l) g3(2) ]; % co-ordinate on the fore head
while spl ~=zeros(size(spl))

[Im,spl,wrong] = feval (fcheck,spl, I, Im,threshold);

if (wrong == 1)

wrongFirst = 1;
end

end

if wrongFirst ==

0;

wrong
First = Im;
Im = zeros(size(I));

spl = [gl(l) gl(2); g2(1) g2(2); g3(1l) g3(2) 1; % co-ordinate on the fore

while spl ~=zeros(size (spl))
[Im,spl,wrong] = feval (fcheck,spl,I,Im,threshold);
if wrong ==
display ('Lowering threshold...');
Im = zeros(size(I));

spl = [gl(l) gl(2); g2(1) g2(2); g3(1l) g3(2) ]1; % co-ordinate on the

fore head

threshold = threshold - 1;
end
end
for xcord = 210:255
for ycord = 1:255
if Im(xcord, ycord) == 0 && First(xcord, ycord) == 1
First (xcord, ycord) = 0;
end
end

end
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else

First = Im;
end
imshow (First, []);

Im = First;
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Filename : checkBackground.m
Separates the background using seeded region growing algorithm.

function [J,newspl] = checkBackground(spl,I,J, thresh light, thresh bg)

newspl=[];
thresh neighbor = thresh light * 80;
thresh diff = thresh bg;
for i=l:size(spl,1)
current posn=spl(i,:);
N=neighbor (current posn) ;
% if all neighborhood pixels follow the condition put it in the spl
for j=1:8
if N(j,1) < 256 && (N(j,1) > 0) && N(j,2) < 256 && N(j,2) > 0
if (abs(I(N(3j,1),N(j,2))-I(spl(i,1),spl(i,2)))<=thresh diff)
&& J(N(j,1),N(3,2))==0 && I(N(j,1),N(j,2)) > thresh neighbor
newspl (size (newspl,1l)+1, :)=N(j, :); % add to the spl
J(N(3,1),N(3,2))=1;
end
end
end

end
function N=neighbor (S)
r=S(1,1);

c=S(1,2);

N=[r-1 c-1;r-1 c;r-1 c+l;r c-1;r c+l;r+1 c-1;r+1 c;r+l c+1];
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Filename : seedPixel.m
Initializes the seed pixels for the seeded region growing algorithm.

function spl = seedPixel (spl, Image, thresh)

% Method for choosing seed pixels.

%looking for pixels within a 10 pixel window around some arbitarily
%chossen pixels with good chances of being located in the forehead and
Sintensity less than 150. A maximum of 20 iterations are done to pick the
%pixel or else the original pixel is picked. But this seel pixel would
smost probably eliminated in the first cycle because its neighbourhood

%seems to be dark upon random searching.

for i = 1l:size(spl,1)

bad = 0;

while (Image (spl(i,1l), spl(i,2)) >= thresh & bad < 20)
spl(i,1) = spl(i,1l) + round(lO0*rand(l));
if spl(i,1) <= 0; spl(i,1l) = spl(i,1)+10; end;
if spl(i,1) >= 255; spl(i,1l) = spl(i,1)-10; end;
spl(i,2) = spl(i,2) + round(lO0*rand(l));
if spl(i,2) <= 0; spl(i,2) = spl(i,2)+10; end;
if spl(i,2) >= 255; spl(i,2) = spl(i,2)-10; end;
bad = bad + 1;

end

end
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Filename : check3.m
Compares the seed pixel with its neighborsto check if they can be included in the region.

function [J,newspl,wrong] = check3(spl,I,J,thresh)

newspl=[];

wrong = 0;

wrongLocal = 0;

for i=l:size(spl,1)
current posn=spl(i,:);

N=neighbor (current posn) ;

% if all neighborhood pixels follow the condition put it in the spl
for j=1:6
if N(3,1) <1 || N(J,1) > 250 || N(J,2) <1 || N(j,2) > 250

wrongLocal = 1;

else
if abs(I(N(j,1),N(j,2))-I(spl(i,1),spl(i,2))) <= thresh &&
J(N(3,1),N(j,2))==0 && I(N(j,1),N(3,2)) > 20
newspl (size (newspl,1)+1, :)=N(j, :); % add to the spl
J(N(3,1),N(3,2))=1;
end
end

if (wrongLocal == 1)
wrong = 1;
wrongLocal = 0;

end

end

end
function N=neighbor (S)
r=S(1,1);

c=S(1,2);

N=[r-1 c-1;r-1 c;r-1 c+l;r c-1;r c+l;r+1 c];
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Filename : testFrame.m
This runs the feace separation and feature extraction algorithms upon the present frame.
function [Image Points feature points] = testFrame (Image, faceCoord, thresh)
load 'MouthTF.mat';
Imagel = Image;
Image2 = Image;

Image Points = Image;

Rmin = faceCoord(1l);

Rmax = faceCoord(2);
Cmin = faceCoord(3);
Cmax = faceCoord(4);

deltaRow = Rmax - Rmin;

deltaCol

Cmax - Cmin;

$Aproximate Left eye region
EyeLRmin = Rmin;
EyeLRmax = Rmin + round(deltaRow / 2);

EyelLCmin = Cmin;

EyelLCmax = Cmin + round(deltaCol / 2);

%$Aproximate right eye region

EyeRRmin = Rmin;

EyeRRmax = Rmin + round(deltaRow / 2);
EyeRCmin = Cmin + round(deltaCol / 2);

EyeRCmax = Cmax;

$Aproximate left mouth half region
MouthLeftRmin = Rmin + round(deltaRow / 2);
MouthLeftRmax = Rmax;

MouthLeftCmin = Cmin;

MouthLeftCmax = Cmin + round(deltaCol / 2);

$Aproximate left mouth half region

MouthRightRmin = Rmin + round(deltaRow / 2);

MouthRightRmax Rmax;
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MouthRightCmin = Cmin + round(deltaCol / 2);

MouthRightCmax = Cmax;

width = Cmax - Cmin;

dt = floor((Cmax - Cmin) / 4);
% check if the template can get out of the image while looking for the eye
if EyeRRmin < (dt / 2)

EyeRRmin = round(dt / 2) + 1;
end
if EyeRCmax > (255 - (dt / 2))

EyeRCmax = 255 - round(dt / 2) + 1;

end;

% Finding Right eye
border = Cmax - round(deltaCol / 8);
display('finding right eye cordinates...... ')
right eye = Pso2 eye (EyeRRmin,EyeRRmax,EyeRCmin, EyeRCmax, Image,width, 1,
border, thresh.eye, thresh.lighting);

Image Points(right eye(l), (right eye(2) - 5): (right eye(2) + 5)) 256;

Image Points((right eye(l) - 5): (right eye(l) + 5), right eye(2)) = 256;
% call function to extract the coordinates of corners of the right eye
display('finding right eye corners cordinates...... ')

right eye corners = getRightEyeCorners (right eye, Image2,dt, thresh.eyeln);
right eye in corner = [right eye corners(l) right eye corners(2)];

right eye out corner = [right eye corners(3) right eye corners(4)];

)

% Visualising Right Eye

Image Points (right eye(1l), (right eye(2) - 5): (right eye(2) + 5)) = 256;
Image Points ((right eye(l) - 5): (right eye(l) + 5), right eye(2)) = 256;
Image Points (right eye in corner(l), (right eye in corner(2) - 5):

(right eye in corner(2) + 5))=256;

Image Points ((right eye in corner(l) - 5): (right eye in corner(l) + 5),
right eye in corner (2))=256;

Image Points (right eye out corner(l), (right eye out corner(2) - 5):
(right eye out corner(2) + 5))=256;

Image Points ((right eye out corner(l) - 5): (right eye out corner(l) + 5),

right eye out corner(2))=256;
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Sextracting right eyebrow region coordinates

EyebrowRRmin = right eye(l) - floor(l.5 * dt);
EyebrowRRmax = right eye(l) - floor(0.45 * dt);
EyebrowRCmin = right eye(2) - floor(dt/4);

EyebrowRCmax = right eye(2) + floor(dt/2);

% check if the eyebrow template can get out of the image when searching
% for the eyebrow
if EyebrowRRmin < round(dt/2)
EyebrowRRmin = round(dt/2) + 1;
end
% Finding Right eyebrow
display('finding right eyebrow cordinates...... ')
right eyebrow =
Pso eyebrow (EyebrowRRmin, EyebrowRRmax, EyebrowRCmin, EyebrowRCmax, Image,width) ;

o)

% call a function to extract the coordinates of the inner corner of the
% right eyebrow

display('finding right eyebrow inner corner cordinates...... ')

right eyebrow corner = getRightEyebrowCorner (right eyebrow, Image2,dt,
thresh.ebCorner) ;

)

% Visualizing Right Eyebrow

Image Points (right eyebrow(l), (right eyebrow(2) - 5): (right eyebrow(2) +
5))=256;
Image Points ((right eyebrow(l) - 5): (right eyebrow(l) + 5),

right eyebrow(2))=256;
Image Points (right eyebrow corner(l), (right eyebrow corner (2) - 5):
(right eyebrow corner(2) + 5))=256;
Image Points ((right eyebrow corner(l) - 5): (right eyebrow corner(l) + 5),
right eyebrow corner(2))=256;
% check if the template can get out of the image while looking for the eye
if EyelRmin < (dt / 2)
EyeLRmin = round(dt / 2) + 1;
end
if EyelLCmin > (dt / 2)
EyelLCmin = round(dt / 2) + 1;

end;
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% Finding Left Eye
border = Cmin + round(deltaCol / 8);
display('finding left eye cordinates...... ")
left eye =

Pso2 eye (EyelLRmin, EyeLRmax,EyeLCmin, EyeLCmax, Image,width, 0,border, thresh.eye,

thresh.lighting) ;

% call function to extract the coordinates of corners of the left eye
display('finding left eye corners cordinates...... ')

left eye corners = getLeftEyeCorners (left eye,Image2,dt,thresh.eyeln);
left eye in corner = [left eye corners(l) left eye corners(2)];

left eye out corner = [left eye corners(3) left eye corners(4)];

% Visualizing Left Eye

Image Points (left eye(l), (left eye(2) - 5): (left eye(2) + 5))=256;
Image Points ((left eye(l) - 5): (left eye(l) + 5), left eye(2))=256;
Image Points (left eye in corner(l), (left eye in corner(2) - 5):

(left eye in corner(2) + 5))=256;
Image Points ((left eye in corner(l) - 5): (left eye in corner(l) + 5),

left eye in corner(2))=256;

Image Points (left eye out corner(l), (left eye out corner(2) - 5):
(left eye out corner(2) + 5))=256;
Image Points ((left eye out corner(l) - 5): (left eye out corner(l) + 5),

left eye out corner(2))=256;

Sextracting left eyebrow region coordinates

EyebrowLRmin = left eye(l) - floor(l.5 * dt);
EyebrowLRmax = left eye(l) - floor(0.45 * dt);
EyebrowLCmin = left eye(2) - floor (dt/2);

+

EyebrowLCmax = left eye(2) floor (dt/4) ;

% check if the eyebrow template can get out of the image when searching

% for the eyebrow

if EyebrowLRmin < round(dt/2)
EyebrowLRmin = round(dt/2) + 1;

end

% Finding Left Eyebrow

display('finding left eyebrow cordinates...... ')
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left eyebrow =

Pso eyebrow (EyebrowLRmin, EyebrowLRmax, EyebrowLCmin, EyebrowLCmax, Image,width) ;

display('finding left eyebrow inner corner cordinates...... ')
left eyebrow corner =

getLeftEyebrowCorner (left eyebrow, Image2,dt, thresh.ebCorner);

% Vizualising Left Eyebrow
Image Points (left eyebrow corner (l), (left eyebrow corner(2) - 5):
(left eyebrow corner (2) + 5))=256;
Image Points ((left eyebrow corner(l) - 5): (left eyebrow corner(l) + 5),

left eyebrow corner(2))=256;

Image Points (left eyebrow(l), (left eyebrow(2) - 5): (left eyebrow(2) +
5))=256;
Image Points ((left eyebrow(l) - 5): (left eyebrow(l) + 5),

left eyebrow(2))=256;

% Finding left corner of mouth

center = left eye(2);

% check if the template for mouth corner can get out of the image.

if MouthLeftRmax > (255 - dt/2)
MouthLeftRmax = round (255 - dt/2) + 1;

end

display('finding left mouth cordinates...... ')
mouth left =
Pso2 mouth left (MouthLeftRmin,MouthLeftRmax,MouthLeftCmin,MouthLeftCmax, Image,center,

thresh.lips);

mouth corner left = mouth left(l:2);

% Finding Right Corner of Mouth

center = right eye(2);

% check if the template for mouth corner can get out of the image.
if MouthRightRmax > (255 - dt/2)
MouthRightRmax = round (255 - dt/2) + 1;

end
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display('finding right mouth cordinates...... ')
mouth right =
Pso2 mouth right (MouthRightRmin, MouthRightRmax,MouthRightCmin, MouthRightCmax, Image, cen

ter);
mouth corner right = mouth right (1:2);
% Checking if the mouth is located right
vector = [ (mouth corner right(l) - mouth corner left(l))
(mouth corner right(2) - mouth corner left(2))]';

Y = sim(net,vector);

if ¥ == [1;0]
display('Mouth corners located successfully.');

else
display('Mouth corners were NOT located successfully.');
display('Fixing it...");
mvec = mouth fix(mouth left,mouth right,net);
mouth corner left = mvec(l:2);
mouth corner right = mvec(3:4);

end

% Visualizing mouth corners
Image Points (mouth corner left(l), (mouth corner left(2) - 5):

(mouth corner left(2) + 5))=256;

Image Points ((mouth corner left(l) - 5): (mouth corner left(l) + 5),
mouth corner left(2) )=256;
Image Points(mouth corner right(l), (mouth corner right (2) - 5):

(mouth corner right(2) + 5))=256;
Image Points ((mouth corner right(l) - 5): (mouth corner right(l) + 5),

mouth corner right(2) )=256;

% call a function to extract the upper and lower lip mid point coordinates
% Locating upper and lower lip

display('finding mouth lips cordinates...... ')

mouth Lips =

getMouthLipsCoordinates (Imagel,mouth corner left,mouth corner right,dt,thresh.lips);
% extracted coordinates of the midpoint of the upper lip
mouth lip upper = [mouth Lips(1l) mouth Lips(2)];

mouth lip lower = [mouth Lips(3) mouth Lips(4)];

% Visualising Upper and lower Lip

°
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Image Points (mouth lip upper(l), (mouth lip upper(2) - 5): (mouth lip upper (2)
+ 5))=256;

Image Points ((mouth lip upper(l) - 5): (mouth lip upper(l) + 5),
mouth lip upper(2) )=256;

Image Points (mouth lip lower (1), (mouth lip lower(2) - 5): (mouth lip lower (2)
+ 5))=256;

Image Points ((mouth lip lower(l) - 5): (mouth lip lower(l) + 5),
mouth lip lower(2) )=256;

)

% check whether the upper lip was located right - must be above the corners

)

% of mouth

midpoint = floor ((mouth corner left(l) + mouth corner right (1)) / 2);

if (mouth lip upper(l) < midpoint)
upper lip = mouth lip upper(1l);
else
%display ('Mouth upper lip was not located successfully.');
upper lip = midpoint - floor(dt / 2);
end
% Locating nose
NoseRmin = upper lip - floor (1.5 * dt);
NoseRmax = upper lip - floor(dt / 4);
NoseCmin = mouth lip upper(2) - floor(0.75 * dt);
NoseCmax = mouth lip upper(2) + floor(0.75 * dt);

display('finding nose cordinates...... ')
nose =

Pso nose (NoseRmin, NoseRmax,NoseCmin, NoseCmax, Image2,width, thresh.nose);

Image Points(nose(l), (nose(2) - 5): (nose(2) + 5))=256;
Image Points((nose(l) - 5): (nose(l) + 5),nose(2) )=256;
display('finding nostril cordinates...... ')

nose corners = getNoseCorners (nose, Image2,dt, thresh.nosetril);

% Visualising nose coordinates
Image Points (nose(l), (nose(2) - 5): (nose(2) + 5))=256;

Image Points((nose(l) - 5): (nose(l) + 5),nose(2) )=256;
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Image Points (nose corners(l), (nose corners(2) - 5): (nose corners(2) +

5))=256;

Image Points ((nose corners(l) - 5): (nose corners(l) + 5),nose corners(2)
)=256;

Image Points (nose corners(3), (nose corners(4) - 5): (nose corners(4) +
5))=256;

Image Points ((nose corners(3) - 5): (nose corners(3) + 5),nose corners(4)
)=256;

)

% vector with coordinates of all feature points
feature points = [right eye; right eye in corner; right eye out corner;
right eyebrow; right eyebrow corner;...
left eye; left eye in corner; left eye out corner;
left eyebrow; left eyebrow corner;...
mouth corner left; mouth corner right; mouth lip upper;
mouth lip lower;...

nose; nose corners(l:2); nose corners(3:4)];
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Filename: Pso2_eye.m

Thisisthe particle swarm optimization algorithm used to locate the eye.

function [VeryBest M]=Pso2 eye (Rmin, Rmax,Cmin,Cmax, I,width, side,border,
thresh eye, thresh light)

o

n = 5; % number of particles

o)

group = 3; % number of groups

Vmax= 10; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0O];

GbestFit = [0 0 0];

MaxFit = [0 0 0];

MaxCord = [0 O O O O O];

best response = [0 0 0];

best = [0 0 0];

VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev _best values=[];
threshold = 400;

dt = floor (width/4);

%initialising particles with random velocities and setting

%Pbest to the initial posiion

%Deploying the particles into an region where the eye is expected.
deltaR3 = round((Rmax - Rmin) / 3);

deltaR2 = round((Rmax - Rmin) / 2);

deltaC4 = round((Cmax - Cmin) / 4);

deltaC = Cmax - Cminj;

% initializing particles in all groups

for g = 0: (group - 1)
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for i = 1:n

partInd = g*n + 1i;

particle (partInd) .posn=[round ((Rmin + 2*deltaR3)+ deltaR3*rand(1l))

round ( (Cmin + deltaC4) + (2 * deltaC4)*rand(1l))];

particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =

cost function7subReg (I,particle(partInd) .posn(l),

particle (partInd) .posn(2),dt,side,border, thresh eye, thresh light);

particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response]
max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;

GbestFit (g+l) = particle (best(g+l)).func response;

MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));

best response(g+l) = particle(best(g+l)) .func response;

MaxFit (g+1) = best response(g+l);

end

itr=1;
t=1;
thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm

% is converging.
if (GbestFit (g+l) > 0)
%$In each group
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .vel (1l)=wi*particle (partInd) .vel (1l)+cl*rand(l)* (particle (partInd)

st (l)- particle(partInd) .posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-
particle (partInd) .posn(l)) ;
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particle (partInd) .vel (2)= wi*particle (partInd).vel(2) +
cl*rand(l) * (particle(partInd).Pbest(2) -particle(partInd) .posn(2))+
c2*rand (1) * (Gbest (2*g+2) - particle(partInd) .posn(2));

particle (partInd) .posn(l)= round(particle (partInd) .posn(l) +
particle (partInd) .vel(1l));

particle (partInd) .posn(2)= round(particle (partInd) .posn(2) +
particle (partInd) .vel(2));

%checking if the solution lies within domain
if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(1l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax

Q

% setting position to previous P-best

particle (partInd) .posn = particle (partInd) .Pbest;

o)

% setting velocity to max

particle (partInd) .vel=[rand (1) *Vmax rand(l) *Vmax];

end

%Calculating the function response for each particle with new
Spositions
particle (partInd) .func response = cost function7subReg (I,

particle (partInd) .posn(l), particle(partInd) .posn(2), dt, side, border,
thresh light);

thresh eye,

%checking and updating Pbest
if particle(partInd).func response >

particle (partInd) .func resp prev

particle (partInd) .Pbest = particle(partInd) .posn;
end

particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

)

% Gbest is a global best of all times

% display(particle (best (g+l)) .func response);

if particle(best (g+l)) .func response > GbestFit (g+1)
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Gbest ((2*g + 1):(2*g + 2)) = particle (best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;

end

best response(g+l) = particle(best(g+l)).func response;

if (best response(g+l) < MaxFit(g+l))
MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));

end

else

o)

% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .posn=[round ((Rmin + 2*deltaR3)+
deltaR3*rand(l)) round((Cmin + deltaC4) + (2 * deltaC4)*rand(l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost function7subReg(I,particle(partInd).posn(l),parti

cle(partInd) .posn(2),dt,side,border, thresh eye, thresh light);

particle (partInd) .func resp prev=particle(partInd).func response;
end
end
else
5 if we didn't find a positive fittness value before the
3 fifth iteration that the region for deployment is
% extended.
% 1t helps in the cases, when the face region is not
% located well
for g = 0: (group-1)
for i=1:n
partInd = g*n + 1i;
particle (partInd) .posn = [round((Rmin + deltaR2)+
deltaR2*rand(1l)) round(Cmin + deltaC*rand(l))];
particle (partInd) .vel = [round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (partInd) .Pbest = particle(partInd) .posn;
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particle (partInd) .func response = cost function7subReg(I,
particle (partInd) .posn(l), particle(partInd).posn(2), dt, side, border, thresh eye,
thresh light);
particle (partInd) .func resp prev =
particle (partInd) .func response;
end
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==
max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+1) = g*n + bestfind(l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;

GbestFit (g+1) = particle (best(g+l)).func response;

MaxCord((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)).func response;
MaxFit (g+1) = best response(g+l);

t=1;

thresh list=[];

)

end % all particles updated...

%...recording co-ordinates for display
itr = itr+1l;
sdisplay (best response);
thresh list=[thresh list best response];
if itr == 20
ind = 1;
end
end
% choose the best point
very best ones = find( GbestFit == max (GbestFit));
very best = very best ones(1l);

VeryBest = Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2);
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Filename : cost_function7subReg.m
Thisisthe cost function used to locate the eyes.

function y = cost function7subReg(I,r,c,dtIn,side,border, thresh eye,
thresh light)

% new cost function for mouth

$8:09 pm 12/26/04

global Im;

Im = I;

global dt;

dt = dtiIn;

global de;

de = floor (dt/8);
rtl = r + floor(dt/4);
ctl = c;

rt2 = rtl + de;
ct2 = c;

rt3 = rt2 + de;
ct3 = c;

rtd = rt3 + de;

ctd = c;

y = Cm(xr,c) + CcPackl(r,c,rtl,ctl,rt2,ct2,rt3,ct3,rt4,ctd4, thresh eye,
thresh light) + CMean(r,c) + Cout(r, c, side, border);
S///1177777 77777777777 777777777777777777777777777777

function a = Cm(r,c)

global Im;

global dt;

Kc=0.2;

Il=double (Im( (r-floor (dt/2)) : (r+ floor(dt/2)), (c-floor(dt/2)) : (c+
floor(dt/2))));

varl=sum(std(I1l));

var2=sum(std (I1'"));

a=Kc* (varl+var2) ;

SILIITTL70 77777777777 7777777777777777777777777777

function a = CMean (r,c)

global Im;
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global dt;

Il=double(Im( (r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/6) : c
floor(dt/6)));

a = 255 - mean2 (Il);

SILLLTTTI0 0707777707777 77777777777 77777777777777

function c¢c=U(x)

% Unit step function..........

if x >=0

end

SILITLTTIL7 0077777777707 7777777777777777777777777777

function a = CcPack(r,c,rtl,ctl,rt2,ct2,rt3,ct3,rt4,ctd4d, thresh eye,
thresh light)

global Im;

K = 50;

if (U(double (Im(rtl,ctl)) - double(Im(r,c)) - K) * U(double(Im(rt2,ct2)) -
double (Im(r,c)) - K) * U(double(Im(rt3,ct3)) - double(Im(r,c)) - K) *
U(double (Im(rt4,ct4)) - double(Im(r,c)) - K))==

a = Cc(r,c, thresh eye, thresh light);
else

-800;

@
1

end

function a = CcPackl(r,c,rtl,ctl,rt2,ct2,rt3,ct3,rt4,ct4, thresh eye,
thresh light)

global Im;

global dt;

K = 50;

% Mean intensities of subregions that we will compare with the center
% region to determine whether it is eyebrow or not. We are loking at the
% region below the center point and then on the region to the lower left

% and lower rigth - it is because of the inner corner of eyebrow.

uc = mean?2 (Im(r - floor(dt/15):r + floor(dt/15), ¢ - floor(dt/15): c +
floor(dt/15)));
ull = mean2 (Im(rtl - floor(dt/10):rtl + floor(dt/10), ...
ctl - floor(dt/3) - floor(dt/10): ctl - floor(dt/3) + floor(dt/10)));
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ucl = mean2 (Im(rtl - floor(dt/10):rtl + floor(dt/10), ctl - floor (dt/10): ctl
floor(dt/10)));
url = mean2 (Im(rtl - floor(dt/10):rtl + floor(dt/10), ...
ctl + floor(dt/3) - floor(dt/10): ctl + floor(dt/3) + floor(dt/10)));
ul2 = mean2 (Im(rt2 - floor(dt/10):rt2 + floor(dt/10), ...
ct2 - floor(dt/3) - floor(dt/10): ct2 + floor(dt/3) + floor(dt/10)));
uc2 = mean2 (Im(rt2 - floor(dt/10):rt2 + floor(dt/10), ct2 - floor (dt/10): ct2
floor(dt/10)));
ur2 = mean2 (Im(rt2 - floor (dt/10):rt2 + floor(dt/10), ...
ct2 + floor(dt/3) - floor(dt/10): ct2 + floor(dt/3) + floor(dt/10)));
ul3d = mean2 (Im(rt3 - floor (dt/10):rt3 + floor(dt/10), ...
ct3 - floor(dt/3) - floor(dt/10): ct3 - floor(dt/3) + floor(dt/10)));
uc3 = mean2 (Im(rt3 - floor(dt/10):rt3 + floor(dt/10), ct3 - floor (dt/10): ct3
floor(dt/10)));
ur3 = mean2 (Im(rt3 - floor (dt/10):rt3 + floor(dt/10), ...
ct3 + floor(dt/3) - floor(dt/10): ct3 + floor(dt/3) + floor(dt/10)));
ul4d = mean2 (Im(rt4 - floor(dt/10):rt4 + floor(dt/10), ...
ctd - floor(dt/3) - floor(dt/10): ctd - floor(dt/3) + floor(dt/10)));
uc4d = mean2 (Im(rt4d - floor(dt/10):rt4 + floor(dt/10), ctd - floor (dt/10): ctd
floor(dt/10)));
ur4 = mean2 (Im(rt4 - floor(dt/10):rt4 + floor(dt/10), ...
ctd + floor(dt/3) - floor(dt/10): ct4 + floor(dt/3) + floor(dt/10)));

checkl
check2

check3

checkd =

if (U(ull - uc - K) * U(ucl - uc - K) * U(url - uc - K) == 1)
checkl = 1;

end

if (U(ul2 - uc - K) * U(uc2 - uc - K) * U(ur2 - uc - K) == 1)
check2 = 1;

end

if (U(ul3 - uc - K) * U(uc3 - uc - K) * U(ur3 - uc - K) == 1)
check3 = 1;

end

if (U(ul4d - uc - K) * U(ucd - uc - K) * U(urd - uc - K) == 1)

check4 = 1;

end

if checkl*check2*check3*checkd4 ==
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@
Il

Cc(r,c, thresh eye, thresh light);
else

a = -800;
end

SILITTTLL70 7777777777077 777777777777777777777777777

function a=Cc(r,c, thresh eye, thresh light)

global dt;

global Im;

Kc=0;

a=0;

I1=Im( (r - floor(dt/2)) : (r + floor(dt/2)), (c - floor(dt/2)) : (c +
floor(dt/2)));

% arbitrary constant

uu=mean? (Im((r- floor(dt/2)):(r- floor(dt/4)), (c-floor(dt/2)) : (c+
floor(dt/2)))):

uc=mean2 (Im( (r- floor (dt/10)): (r+ floor (dt/10)), (c- floor (dt/10)): (c+
floor (dt/10))));

ul=mean2 (Im( (r+ floor(dt/4)): (r+ floor(dt/2)), (c- floor(dt/2)): (c+
floor (dt/2)))):

% intensity of midpoint less than 50
5 we need to change this dynamically based on the output of the slider,
3 need to make it lower for brighter eyes, or more for darker eyes
% if uc<=50
if uc <= thresh eye
Kc=1.2*(50-uc) ;
end
% lower edge region darker than 128
% we need to change this based on lighting conditions.
3 increase for bad lighting and decrease for good lighting.
s if ul<=128
if ul<=(64/thresh light)
a=a-200;
end
% upper edge region darker than 128
5 we need to change this based on lighting conditions.
3 increase for bad lighting and decrease for good lighting.
% if uu<=128
if uu<=(64/thresh light)
a=a-200;

end
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% difernce in midpoint and upper point intensities is less than 50
% if uu-uc <50
if uu-uc < 50 %thresh eye
a=a-200;
end
% difernce in midpoint and lower point intensities is less than 50
% if ul-uc <50
if ul-uc < 50 %thresh eye
a=a-200;

end

a=atKc+uutul-2*uc;

SILITTILL70 7777777777077 777777777777777777777777777

function a = Cout(r, c, side, border)

oe

function discriminating points outside of the eye subregion ( it is

oe

supposed to prevent the algorithm from chosing hair when they are included

oe

in the face region)

a = 0;
if side ==
if ¢ < border
a = -800;
end
else
if ¢ > border
a = -800;
end

end
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Filename

: getRightEyeCor ners.m

This extracts the eye corners of the right eye based upon the location of the eye.

function right eye corners =

thresh eyelnner)

EyeRegionRRmin
EyeRegionRRmax
EyeRegionRCmin
EyeRegionRCmax

right eye (1)
right eye (1)
right eye(2)
right eye(2)

%estimated eye region

getRightEyeCorners (right eye, Image,dt,

- floor(dt/5);
floor (dt/4);

+

floor(dt / 2);

+

floor (2 * (dt/3)):

Image Eye = Image (EyeRegionRRmin : EyeRegionRRmax, EyeRegionRCmin

EyeRegionRCmax) ;

)

level = mean2(Image Eye)

(0.8 * level)

level

Image Eye BW =

% convert the right eye region into binary image with the threshold set
% to the 1/2 of the mean intensity of whole region
/ 255;

* thresh eyelnner;

im2bw (Image Eye,level);

% invert the colors

Image Ones = ones (size (Image Eye));

Image Eye BW =

)

Image Ones - Image Eye BW;

% get a bounding box around the thresholded area

statsE = regionprops (Image Eye BW, 'BoundingBox');

cordEye = [statsE.BoundingBox];

)

% get a region aroud the inner corner of the right eyebrow

Image Eye Corner In BW = Image Eye BW(l : (EyeRegionRRmax - EyeRegionRRmin),

ceil (cordEye (1)) : ceil(cordEye(l) + 1));

Eye Corner In Stat = bwlabel (Image Eye Corner In BW);

statsEIC = regionprops (Eye Corner In Stat, 'BoundingBox');

cordEyeInCorner

)

[statsEIC.BoundingBox];

% get a region aroud the outter corner of the right eye

Image Eye Corner Out BW = Image Eye BW(l : (EyeRegionRRmax - EyeRegionRRmin),

floor (cordEye (1) + cordEye(3) -1)

floor (cordEye (1) + cordEye(3)));
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Eye Corner Out Stat = bwlabel (Image Eye Corner Out BW);
statsEOC = regionprops (Eye Corner Out Stat, 'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned

%and an error is reported

if numel (cordEyeOutCorner) ==
cordEyeOutCorner = [0 (right eye(2) - EyeRegionRRmin) + round(dt / 4) 0 0];
display('Outer corner of the right eye was not located right...');

end

if numel (cordEyeInCorner) ==

cordEyeInCorner = [0 (right eye(2) - EyeRegionRRmin) - round(dt / 4) 0 0];
display('Inner corner of the right eye was not located right...');

end

right eye corners = [floor (EyeRegionRRmin + cordEyeInCorner (2) +

cordEyeInCorner (4) / 2) floor (EyeRegionRCmin + cordEye(l))...

floor (EyeRegionRRmin + cordEyeOutCorner (2) + cordEyeOutCorner (4) /
2) floor (EyeRegionRCmin + cordEye(l) + cordEye(3))];
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Fielname : Pso_eyebrow.m

Thisisthe particle swarm optimization algorithm used to locate the eyebrow.

function [Gbest M]=Pso_ eyebrow (Rmin, Rmax,Cmin, Cmax, I,width)

)

% PSO algorithm for extracting the eyebrow coordinates

n=5;%no of particles

Vmax= 10; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];

GbestFit = 0;

MaxFit = 0;

MaxCord = [0 0];

wi = 0.8; %inertial weight

cl=0.5;

c2=0.5;

ind=0;

coord=[];

prev best values=[];
threshold=400;

dt = floor (width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaC = Cmax - Cmin;
deltaR = Rmax - Rmin;
% initialising particles for PSO.
for i=1:n

particle (i) .posn=[round(Rmin + deltaR*rand(l)) round(Cmin +
deltaC*rand(1))];

particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1)) round (Vmin+ (Vmax-
Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;
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particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
particle (i) .func_resp prev=particle(i).func response;

o)

end $ finished initializing
% Finding initial best values

bestfind = find([particle.func response] == max([particle.func response]));
best = bestfind(1l);

Gbest=particle (best) .posn;

GbestFit = particle(best).func response;

itr=1;
t=1;
thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities
% 1if GbestFit > 0 compute new position and velocities - algorithm
% 1is converging.

if (GbestFit > 0)

for i=1:n

particle (i) .vel(l)=wi*particle(i).vel(l)+cl*rand(l)* (particle (i) .Pbest (1) -
particle (i) .posn(l)) + c2*rand(l)* (Gbest (1)-particle(i) .posn(l));

particle (i) .vel(2)=wi*particle(i).vel(2)+cl*rand(l) * (particle (i) .Pbest(2) -
particle (i) .posn(2)) + c2*rand(l)* (Gbest (2)-particle(i) .posn(2));

% set new position
particle (i) .posn(l)=round(particle (i) .posn(l) +particle (i) .vel (1)) ;

particle (i) .posn(2)=round(particle (i) .posn(2) +particle (i) .vel (2));

%checking if the solution lies within domain

if particle(i) .posn(l) < Rmin || particle(i).posn(l) > Rmax ||
particle (i) .posn(2) < Cmin || particle(i).posn(2) > Cmax
particle (i) .posn=particle (i) .Pbest; % setting position to

previous P-best

oo

particle (i) .vel=[rand(l) *Vmax rand(1l) *Vmax] ;
setting velocity to max

end
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%Calculating the function response for each particle with new

$positions

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
%checking and updating Pbest
if particle(i) .func response > particle(i).func resp prev
particle (i) .Pbest=particle (i) .posn;

end

particle (i) .func resp prev = particle(i).func response;

end

V=[particle.func response];
best ones=find(V==max (V) ) ;

best=best ones(1l);

%Gbest is a global best of all times
sdisplay (particle (best) .func_response);
if particle(best) .func response > GbestFit
Gbest = particle (best) .Pbest;
GbestFit = particle (best).func response;
end
else
% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for i=1:n
particle (i) .posn=[round( (Rmin + deltaR2)+ deltaR2*rand(l))
round (Cmin + deltaC*rand(l))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
particle (i) .func_resp prev=particle (i) .func_response;
end
else
% 1f we didn't find a positive fittness value before the

% fifth iteration that the region for deployment is
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% extended.
% it helps in the cases, when the face region is not
% located well

for i=1:n

particle (i) .posn=[round (Rmin + deltaR*rand(l)) round(Cmin +
deltaC*rand(1))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
particle (i) .func_resp prev=particle (i) .func_response;
end

end

bestfind = find([particle.func response] ==
max ([particle.func response])) ;

best = bestfind(1l);

Gbest=particle (best) .posn;

GbestFit = particle (best) .func response;

MaxCord = Gbest;

best response=particle (best).func response;

MaxFit = best response;

t=1;

)

end % all particles updated...

% 2 - based on the mean value of func response of all particles
if mean([particle.func response]) >= 1100;%threshold;
ind = 1;

end

%...recording co-ordinates for display

itr = itr+1l;

if itr == 20
ind = 1;
end
end
if itr == 22

Gbest = MaxCord;

end
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Filename: cost_functionEyebrow.m
Thisisthe cost function that is used to locate the eyebrow.

function y = cost functionEyebrow (I, r,c,dtIn)
% new cost function for Eyebrow

$8:09 pm 12/26/04

global Im;

Im = I;

global dt;

dt = dtiIn;

global de;

de = floor (dt/8);

% global variables that defines the border of the template
% they are checked and eventually reset to desired values, so that

)

% the template doesn't go out from the image
global ri; global rx; global ci; global cx;

y = CMean(r,c);
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function a = Cm(r,c)
global Im;

global dt;

global ri;

global rx;

global ci;

global cx;

Kc=0.2;

ri = r - floor(dt/2);

if ri <1
end
rx = r + floor(dt/2);

if rx > 255
rx = 255;
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end

ci = ¢ - floor(dt/2);

if ci <1

end

cx = ¢ + floor(dt/2);
if cx > 255
cx = 255;

end

I1 = double(Im( ri : rx, ci : cx));
varl=sum(std(I1l));

var2=sum(std (I1'"));

a=Kc* (varl+var2) ;

SILITTTIL70 77777777777 7777777777777777777777777777

function a = CMean (r,c)

global Im;

global dt;

Il=double(Im( (r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/3) : c
floor(dt/3)));

a = 255 - mean2 (Il);

SI/11T1 11100707777 77777 7777777777777 77777777777777

function c¢c=U(x)

% Unit step function..........

if x >=0

end

SILIITTIL70 077777777707 7777777777777777777777777777

function a=Cc(r,c)

global dt;
global Im;
global ri;
global rx;
global ci;
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global cx;
Kc=0;
a=0;
Il=Im( ri : rx, ci : cx);
% arbitrary constant
uu=mean? (Im(ri: (r- floor(dt/4)), ci:cx));
uc=mean2 (Im((r- floor (dt/10)): (r+ floor (dt/10)), (c- floor (dt/10)) : (c+
floor (dt/10))));
ul=mean2 (Im( (r+ floor(dt/4)): (r+ floor(dt/2)),ci:cx));
% intensity of midpoint less than 50
if uc<=thresh eb
Kc=1.2*(50-uc) ;
else
a = a -500;
end
% lower edge region darker than 128
if ul<=(256*thresh light)
a=a-200;
end
% upper edge region darker than 128
if uu<=(256*thresh light)
a=a-200;
end
% difernce in midpoint and upper point intensities is less than 50
if uu-uc <(100-thresh eb)
a=a-200;
end
% difernce in midpoint and lower point intensities is less than 50
if ul-uc < (100-thresh eb)
a=a-200;

end

a=a+Kc+uu+ul-2*uc;

SILIITTIL70 077777777707 7777777777777777777777777777

function a = CPos(r,c)

)

% function saying the the higher the region is, the better.

a =300 -2 * r;
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Filename : getRightEyebrowCor ner.m

This locates the inner corner of the right eyebrow.

function right eyebrow corner = getRightEyebrowCorner (right eyebrow, Image,dt,

thresh ebCorner)

EBCornerRRmin = right eyebrow(l) - floor(dt/4);
EBCornerRRmax = right eyebrow(l) + floor (dt/3);
EBCornerRCmin = right eyebrow(2) - dt;
EBCornerRCmax = right eyebrow(2);

Image Eyebrow = Image (EBCornerRRmin : EBCornerRRmax, EBCornerRCmin
EBCornerRCmax) ;

)

% convert the right eyebrow region into binary image with the threshold set

% to the 1/2 of the mean intensity of whole region

level = mean2 (Image Eyebrow) / 255;

level = (level / 2) * thresh ebCorner;

Image Eyebrow BW = im2bw (Image Eyebrow,level);

% invert the colors

Image Ones = ones (size (Image Eyebrow)) ;

Image Eyebrow BW = Image Ones - Image Eyebrow BW;
% get a bounding box around the thresholded area
statsEB = regionprops (Image Eyebrow BW, 'BoundingBox');
cordEyebrow = [statsEB.BoundingBox];

if numel (cordEyebrow) ==
display('Unable to locate the right eyebrow')
right eyebrow corner = [right eyebrow(l) + round(dt/8) right eyebrow(2) -
round (dt/4) 1;
else

o)

% get a region aroud the inner corner of the right eyebrow\

o)

% check so that matrix index does not exceeds the matrix dimension
if cordEyebrow(l) > (EBCornerRCmax - EBCornerRCmin)

Image Eyebrow Corner BW = Image Eyebrow BW(l1 : (EBCornerRRmax -
EBCornerRRmin - 1), ceil (cordEyebrow(l) - 1 ) : ceil(cordEyebrow(l)));
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else
Image Eyebrow Corner BW = Image Eyebrow BW(l1 : (EBCornerRRmax -
EBCornerRRmin - 1), ceil (cordEyebrow(l)) : ceil (cordEyebrow(l) + 1));

end

statsEBC = regionprops (Image Eyebrow Corner BW, 'BoundingBox');

cordEyebrowCorner = [statsEBC.BoundingBox];

if (numel (cordEyebrowCorner) == 0)
display('Unable to locate the right eyebrow corner');
right eyebrow corner = [right eyebrow(l) + round(dt/8) right eyebrow(2)
- round(dt/4)1;

else

right eyebrow corner = [floor (EBCornerRRmin + cordEyebrowCorner (2)
+ cordEyebrowCorner (4) / 2) floor (EBCornerRCmin + cordEyebrow(1l))];
end

end
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Filename : getL eftEyeCorners.m
This locates the corners of the left eye.

function left eye corners = getLeftEyeCorners (left eye, Image,dt,

thresh eyelnner)

load 'threshold.mat';

EyeRegionLRmin = left eye(l) - floor (dt/5);
EyeRegionLRmax = left eye(l) + floor (dt/4);
EyeRegionLCmin = left eye(2) - floor(2 * (dt/3));

EyeRegionLCmax = left eye(2) + floor(dt / 2);

Image Eye = Image (EyeRegionLRmin : EyeRegionLRmax, EyeRegionLCmin
EyeRegionLCmax) ;

)

% convert the left eye region into binary image with the threshold set

)

% to the mean intensity of whole region

level = mean2(Image Eye) / 255;
level = (0.8 * level) * thresh eyelnner;
Image Eye BW = im2bw(Image Eye,level);
% invert the colors
Image Ones = ones (size (Image Eye));
Image Eye BW = Image Ones - Image Eye BW;
% get a bounding box around the thresholded area
statsE = regionprops (Image Eye BW, 'BoundingBox');
cordEye = [statsE.BoundingBox];
% get a region aroud the inner corner of the left eye

Image Eye Corner In BW = Image Eye BW(l : (EyeRegionLRmax - EyeRegionLRmin),
floor (cordEye (1) + cordEye(3) - 1) : floor(cordEye(l)) + cordEye(3));

Eye Corner In Stat = bwlabel (Image Eye Corner In BW);

statsEIC = regionprops (Eye Corner In Stat, 'BoundingBox');

cordEyeInCorner = [statsEIC.BoundingBox];

)

% get a region aroud the outter corner of the left eye
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Image Eye Corner Out BW = Image Eye BW(1l : (EyeRegionLRmax - EyeRegionLRmin),
ceil (cordEye (1)) : ceil(cordEye(l) + 1));

Eye Corner Out Stat = bwlabel (Image Eye Corner Out BW);
statsEOC = regionprops (Eye Corner Out Stat, 'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned

%and an error is reported

if numel (cordEyeOutCorner) == 0
cordEyeOutCorner = [0 left eye(2) - round(dt / 4) 0 0];
display('Outer corner of the left eye was not located right...');
end

if numel (cordEyeInCorner) ==
cordEyeInCorner = [0 left eye(2) + round(dt / 4) 0 0];

display('Inner corner of the left eye was not located right...');

end

left eye corners = [floor (EyeRegionLRmin + cordEyeInCorner(2) +
cordEyeInCorner (4) / 2) floor (EyeRegionLCmin + cordEye(l) + cordEye (3))
floor (EyeRegionLRmin + cordEyeOutCorner (2) + cordEyeOutCorner (4) / 2)
floor (EyeRegionLCmin + cordEye(1l))];
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Filename : getL eftEyebr owCor ner.m

This locates the inner corner of the left eyebrow.

function left eyebrow corner =

getLeftEyebrowCorner (left eyebrow, Image, dt, thresh ebCorner)

EBCornerLRmin = left eyebrow(l) - floor(dt/4);
EBCornerLRmax = left eyebrow(l) + floor(dt/3);
EBCornerLCmin = left eyebrow(2);

EBCornerLCmax = left eyebrow(2) + dt;

Image Eyebrow = Image (EBCornerLRmin : EBCornerLRmax, EBCornerLCmin
EBCornerLCmax) ;

)

% convert the right eyebrow region into binary image with the threshold set

% to the 1/2 of the mean intensity of whole region

level = mean2 (Image Eyebrow) / 255;

level = (level / 2) * thresh ebCorner;

Image Eyebrow BW = im2bw (Image Eyebrow,level);

% invert the colors

Image Ones = ones(size (Image Eyebrow)) ;

Image Eyebrow BW = Image Ones - Image Eyebrow BW;
% get a bounding box around the thresholded area
statsEB = regionprops (Image Eyebrow BW, 'BoundingBox');
cordEyebrow = [statsEB.BoundingBox];

if (numel (cordEyebrow) == 0)
display('Unable to locate the Left eyebrow corner (1)');
left eyebrow corner = [left eyebrow(l) + round(dt/8) left eyebrow(2) +
round (dt/4) 1;
else

o)

% get a region aroud the inner corner of the right eyebrow

left = floor (cordEyebrow(l) + cordEyebrow(3) - 1);
right = floor (cordEyebrow(l) + cordEyebrow(3));
Image Eyebrow Corner BW = Image Eyebrow BW(1l : (EBCornerLRmax -

EBCornerLRmin), left : right);
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statsEBC = regionprops (Image Eyebrow Corner BW, 'BoundingBox');

cordEyebrowCorner = [statsEBC.BoundingBox];

if (numel (cordEyebrowCorner) == 0)
display('Unable to locate the Left eyebrow corner (2)');
left eyebrow corner = [left eyebrow(l) + round(dt/8) left eyebrow(2) +
round (dt/4) 1;
display(cordEyebrow (1)) ;
display (cordEyebrow(3));

else

left eyebrow corner = [floor (EBCornerLRmin + cordEyebrowCorner (2) +
cordEyebrowCorner (4) / 2) floor (EBCornerLCmin + cordEyebrow (3))];
end

end
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Filename: Pso2_mouth_left.m
This is the particle swarm optimization algorithm used to locate the left corner of the

mouth.

function [VeryBest M]=Pso2 mouth left (Rmin,Rmax,Cmin,Cmax,I,center, thresh lip)

n = 5; % number of particles

group = 3; % number of groups

Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0O];

GbestFit = [0 0 0];

MaxFit = [0 0 0];

MaxCord = [0 O O O O O];

best response = [0 0 0];

best = [0 0 0];

VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev best values=[];
threshold = 400;

dt = floor ((Cmax - Cmin)/2);

meanInt = mean2 (I (Rmin:Rmax,Cmin:Cmax)) ;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);

deltaC Cmax - Cmin;

deltaR = Rmax - Rmin;
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% initializing particles in all groups
for g = 0: (group - 1)
for i = 1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round ((Rmin + deltaR4)+ deltaR2*rand(1l))
round ((Cmin + deltaC3) + (2*deltaC3)*rand(l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

% check if the particle isn't too close to the lower edge of the
image,
% so that the lower edge of the template would get out of the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =
cost functionMouthL2 (I,particle(partInd) .posn(l),
particle (partInd) .posn(2),dt,center,meanInt, thresh 1lip);
particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(1l);
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+l) = particle (best(g+l)).func response;

MaxCord((2*g + 1): (2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));

best response(g+l) = particle(best(g+l)) .func response;
MaxFit (g+1) = best response(g+l);

end

itr=1;

t=1;

thresh list=[];

while ind == 0 && itr < 22

$Compute particles new position and velocities
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% 1if GbestFit > 0 compute new position and velocities - algorithm
% 1is converging.
if (GbestFit (g+l) > 0)
%$In each group
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;
particle (partInd) .vel (l)=wi*particle (partInd) .vel (1l)+cl*rand(l)* (particle (partInd) .Pbe
st (l) - particle(partInd).posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-
particle (partInd) .posn(l));
particle (partInd) .vel (2)=wi*particle (partInd) .vel (2)+cl*rand(l) * (particle (partInd) .Pbe
st (2) - particle(partInd) .posn(2))+ c2*rand(l)* (Gbest (2*g + 2)-
particle (partInd) .posn(2));

particle (partInd) .posn (1l)=round(particle (partInd) .posn(l)+particle (partInd) .vel (1)) ;

particle (partInd) .posn (2)=round(particle (partInd) .posn(2)+particle (partInd) .vel (2));

oe

check if the particle isn't too close to the lower edge of

the image,

oe

so that the lower edge of the template would get out of the

bounds.

% this check might be together with the following check of
particle

% position

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))

particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

%checking if the solution lies within domain

if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax

particle (partInd) .posn = particle (partInd) .Pbest; S
setting position to previous P-best
particle (partInd) .vel=[rand (1) *Vmax rand(l) *Vmax];

% setting velocity to max

end

%Calculating the function response for each particle with new

199



$positions

particle (partInd) .func response=cost functionMouthL2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanInt, thresh 1lip);

%$checking and updating Pbest
if particle(partInd).func response >
particle (partInd).func resp prev
particle (partInd) .Pbest = particle(partInd) .posn;

end

particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

%Gbest is a global best of all times
if particle(best (g+l)) .func response > GbestFit (g+1)

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;

end

best response(g+l) = particle(best(g+l)).func response;

if (best response(g+l) < MaxFit(g+l))
MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
end
else
% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for g = 0: (group-1)
for i=1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round ((Rmin + deltaR4)+
deltaR2*rand(1l)) round((Cmin + deltaC3) + (2*deltaC3)*rand(1l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];
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oo

check if the particle isn't too close to the lower edge

of the image,

oo

so that the lower edge of the template would get out of
the bounds.

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost functionMouthL2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanInt, thresh 1lip);

particle (partInd) .func resp prev=particle(partInd).func response;
end
end
else

3 if we didn't find a positive fittness value before the

oe

fifth iteration that the region for deployment is

oe

extended.

o

5 1t helps in the cases, when the face region is not

oe

located well
for g = 0: (group-1)
for i=1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round (Rmin + deltaR*rand(1l))
round ( (Cmin + deltaC3) + (2*deltaC3)*rand(l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];
% check if the particle isn't too close to the lower edge
of the image,
% so that the lower edge of the template would get out of
the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));
end
particle (partInd) .Pbest = particle(partInd) .posn;
particle (partInd) .func response =
cost functionMouthL2 (I,particle (partInd) .posn(l),
particle (partInd) .posn(2),dt,center,meanInt, thresh 1lip);
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particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response]

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+1) = g*n + bestfind(1);
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;

MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)).func response;
MaxFit (g+1) = best response(g+l);

t=1;

thresh list=[];

)

end % all particles updated...

%...recording co-ordinates for display

itr = itr+1l;
thresh list=[thresh list best response];
if itr == 20
ind = 1;
end
end
% choose the best point
very best ones = find( GbestFit == max (GbestFit));
very best = very best ones(1l);

VeryBest = Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2);

GbestFit (very best) = [];
Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];
very best ones = find( GbestFit == max (GbestFit));

very best = very best ones(1l);

VeryBest = [VeryBest Gbest (2* (very best - 1) + 1: 2*(very best - 1)
GbestFit (very best) = [];
Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];

VeryBest = [VeryBest Gbest];
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Filename: cost_functionM outhL2.m

This isthe cos function used to locate the left corner of the mouth.

function y = cost functionMouthL2 (I, r,c,dtIn,center,meanInt, thresh lip)
% cost function for looking for left corner point of mouth

$8:09 pm 12/26/04

global Im;
Im = I;

global dt;
dt = dtiIn;

y = CMouth (r,c,meanInt, thresh 1lip);% + CMouthTemplate (r,c,meanInt);

% function calculating the mean intensity of all points within the template
function a = CMean(r,c)

global Im;

global dt;

Il=double(Im( r - floor(dt / 15) : r + floor(dt / 15), ¢ - floor(dt / 7)

c )i
a = (255 - mean2(Il));
function a = CMouth(r,c,meanInt, thresh lip)
global Im;
global dt;

a = 0;

I1 = double(Im( (r - floor(dt / 10) : r + floor(dt / 10)), c : c +
floor(dt/2)));

I2 = double(Im( (r - floor(dt / 10) : r + floor(dt / 10)), c - floor(dt/4)
c )i

I3 = double(Im( (r - floor(dt / 3) : r - floor(dt / 15)), ¢ : c + floor(dt /
7))

I4 = double(Im( (r + floor(dt / 15) : r + floor(dt / 3)), ¢ : c + floor(dt /
7))

I6 = double(Im( (r - floor(dt / 15) : r + floor(dt / 15)), ¢ : c +

floor (dt/10) ));
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I7 = double(Im( (r - floor(dt / 15) : r + floor(dt / 15)), c - floor(dt/10):

c )

meanIl = mean2 (Il);
meanl2 = mean2 (I2);
meanI3 = mean2 (I3);
meanI4 = mean2 (I4);
meanIc = CMean(r,c);
meanlI6 = mean2 (I6);
meanl7 = mean2 (I7);

b = CMouthTemplate (r,c,meanInt);

if (meanIl < 0.8 * meanInt * thresh lip) && (meanI2 > 0.8 * meanInt *

thresh lip)

a a + meanI2 - meanIl;

a a + meanIc;
a =a + (meanI7 - meanlo6);
if ((meanI3 - meanIc) > 50 ) && ((meanI4 - meanIc) > 50)
a =a + 100;
end;
else
a =a - 200;
end

SILIITTIL70 777777777707 7777777777777777777777777777

function a = CMouthTemplate(r,c,meanInt)

)

% function trying to calcute if the region is really mouth. Calculates the

)

% avarage intensity of rectangular template

global Im;
global dt;

I1 = double(Im((r - floor(dt/6) : r + floor(dt/2)), c : c + dt ));

a = mean2(Il);

SILITTTIL77 077777777077 777777777777777777777777777

function a = CPos(r,c,center)

)

% function evaluating if the given point lies under the eye

a = (-2) * abs(center - c);
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Filename: Pso2_mouth_right.m
Thisisthe particle swarm optimization algorithm used to locate the right corner of the

mouth.

function [VeryBest M]=Pso2 mouth right (Rmin, Rmax,Cmin,Cmax, I, center)

n = 5; % number of particles

group = 3; % number of groups

Vmax= 10; % Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0O];

GbestFit = [0 0 0];

MaxFit = [0 0 0];

MaxCord = [0 O O O O O];

best response = [0 0 0];

best = [0 0 0];

VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev _best values=[];
threshold = 400;

dt = floor ((Cmax - Cmin)/2);

meanInt = mean2 (I (Rmin:Rmax,Cmin:Cmax)) ;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);

deltaC Cmax - Cmin;

deltaR = Rmax - Rmin;
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% initializing particles in all groups
for g = 0: (group - 1)
for i = 1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round ((Rmin + deltaR4)+ deltaR2*rand(1l))
round (Cmin + (2*deltaC3) *rand(1l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

% check if the particle isn't too close to the lower edge of the
image,
% so that the lower edge of the template would get out of the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =
cost functionMouthR2 (I,particle (partInd) .posn(l),
particle (partInd) .posn(2),dt,center,meanint);
particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(1l);
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+l) = particle (best(g+l)).func response;

MaxCord((2*g + 1): (2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));

best response(g+l) = particle(best(g+l)) .func response;
MaxFit (g+1) = best response(g+l);

end

itr=1;

t=1;

thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm
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o)

% 1is converging.

if (GbestFit (g+l) > 0)

%$In each group

for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .vel (l)=wi*particle (partInd) .vel (l)+cl*rand(l)* (particle (partInd) .Pbe
st(l)...
- particle(partInd) .posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-

particle (partInd) .posn(l));

particle (partInd) .vel (2)=wi*particle (partInd) .vel (2)+cl*rand(l) * (particle (partInd) .Pbe

st (2) - particle(partInd) .posn(2))+ c2*rand(l)* (Gbest (2*g + 2)-

particle (partInd) .posn(2));

particle (partInd) .posn (1l)=round(particle (partInd) .posn(l)+particle (partInd) .vel (1)) ;

particle (partInd) .posn (2)=round(particle (partInd) .posn(2)+particle (partInd) .vel (2));

oe

check if the particle isn't too close to the lower edge of

the image,

oe

so that the lower edge of the template would get out of the

bounds.

% this check might be together with the following check of
particle

% position

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))

particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

%checking if the solution lies within domain

if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax

particle (partInd) .posn = particle (partInd) .Pbest; S
setting position to previous P-best
particle (partInd) .vel=[rand (1) *Vmax rand(l) *Vmax];

% setting velocity to max

end

%Calculating the function response for each particle with new
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$positions

particle (partInd) .func response=cost functionMouthR2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanlint);

%checking and updating Pbest
if particle(partInd).func response >
particle (partInd).func resp prev
particle (partInd) .Pbest = particle(partInd) .posn;

end

particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

% Gbest is a global best of all times

°

)

% display(particle (best (g+l)) .func response);

if particle(best (g+l)) .func response > GbestFit (g+1)

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;

end

best response(g+l) = particle(best(g+l)).func response;

if (best response(g+l) < MaxFit(g+1l))
MaxCord((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));

end

else
% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .posn=[round ((Rmin + deltaR4)+
deltaR2*rand(l)) round(Cmin + (2*deltaC3)*rand(l))];
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particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

o)

% check if the particle isn't too close to the lower edge
of the image,

o)

% so that the lower edge of the template would get out of
the bounds.

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost functionMouthR2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanint);

particle (partInd) .func resp prev=particle(partInd).func response;
end
end

else

% 1f we didn't find a positive fittness value before the
5 5th iteration that the region for deployment is
s extended.
3 1t helps in the cases, when the face region is not
% located well

for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .posn = [round(Rmin + deltaR*rand(1l))
round (Cmin + (2*deltaC3) *rand(1l))];
particle (partInd) .vel = [round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

o)

% check if the particle isn't too close to the lower edge
of the image,

% so that the lower edge of the template would get out of
the bounds.

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(1l) = 255 - (round(dt / 2));

end
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particle (partInd) .Pbest = particle(partInd) .posn;

particle (partInd) .func response =
cost functionMouthR2 (I,particle(partInd) .posn(l),particle(partInd).posn(2),dt,center,m
eanlnt);

particle (partInd).func resp prev =
particle (partInd) .func response;

end
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+1) = g*n + bestfind(l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;

MaxCord ((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)).func response;
MaxFit (g+1) = best response(g+l);

t=1;

thresh list=[];

)

end % all particles updated...

%...recording co-ordinates for display
itr = itr+1l;
thresh list=[thresh list best response];
if itr == 20
ind = 1;
end
end
% choose the best point
very best ones = find( GbestFit == max (GbestFit));
very best = very best ones(1l);
VeryBest = Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2);
GbestFit (very best) = [];
Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];
very best ones = find( GbestFit == max (GbestFit));
very best = very best ones(1l);
VeryBest = [VeryBest Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2)];
GbestFit (very best) = [];
Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];
VeryBest = [VeryBest Gbest];
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Filename : mouth_fix.m
This used a neural network to check if the right and the left corner of the mouth are

located correctly, or else it reloacates the mouth corners to a more appropriate solution.

function a = mouth fix(ml,mr,net)
% function looking at all found mouth coordinates and trying to decide

% which pair is the right one

% mr2 - mll
vector = [(mr(3) - ml(l)) (mr(4) - ml(2))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('1l"');
a = [ml(l) ml(2) mr(3) mr(4)];
else
gmrl - ml2
vector = [(mr(l) - ml(3)) (mr(2) - ml(4))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('2');
a = [ml(3) ml(4) mr(l) mr(2)];
else
Smr3 - mll
vector = [(mr(5) - ml(l)) (mr(6) - ml(2))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('3");
a = [ml(l) ml(2) mr(5) mr(o6)];
else
Smrl - ml3
vector = [(mr(l) - ml(5)) (mr(2) - ml(6))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('4'");
a = [ml(5) ml(6) mr(l) mr(2)];

else
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gmr2 - ml2
vector = [(mr(3) - ml(3)) (mr(4) - ml(4))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('5");
a = [ml(3) ml(4) mr(3) mr(4)];
else
Smr3 - ml2
vector = [(mr(5) - ml(3)) (mr(6) - ml(4))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display('6'");
a = [ml(3) ml(4) mr(5) mr(o6)];
else
Smr2 - ml3
vector = [(mr(3) - ml(5)) (mr(4) - ml(6))];
vector = vector';
Y = sim(net,vector);
if Y == [1;0]
display ('7");
a = [ml(5) ml(6) mr(3) mr(4)];
else
display('Unable to fix the mouth points.');
a = [ml(l) ml(2) mr(l) mr(2)];
display(a);
end
end
end
end
end
end

end

oe

check if the choosen point lies within the matric dimension of the image

this is important for the program not throw an error when the mouth is no

oe

oe

located right, so that it keeps running and does not stop
if a(l) > 251

a(l) = 250;

end
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if a(3) > 251
a(3) = 250;

end
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Filename : getM outhL ipsCoor dinates.m

This locates the upper and lower lips.

function mouth lips =

getMouthLipsCoordinates (Imagel,mouth corner left,mouth corner right,dt,thresh lips)

dif = floor (2 * (dt/3));
mid = mouth corner left(2) + floor ((mouth corner right(2) -
mouth corner left(2)) / 2);

)

% Separet the estimated mouth region

Image Mouth Mean = Imagel (mouth corner left(l) - floor (dt/3)
mouth corner left(l) + dif, mouth corner left(2) : mouth corner right(2));

Image Mouth = Imagel (mouth corner left(l) - floor(dt/3) : mouth corner left(l)
+ dif, mid - floor(dt/10) : mid + floor(dt/10));

% convert mouth region into binary image with the threshold set to the 2/3
% of the mean intensity of whole region
level = mean2 (Image Mouth Mean) / 255;
level = 0.8 * level * thresh lips;

Image Mouth BW = im2bw (Image Mouth, level);
% invert the colors

Image Ones = ones (size (Image Mouth));

Image Mouth BW = Image Ones - Image Mouth BW;

% get a bounding box around the thresholded area
statsM = regionprops (Image Mouth BW, 'BoundingBox');
cordMouth = [statsM.BoundingBox];

if numel (cordMouth) ==
display('Mouth lips were not located right. Setting default values...');
default = ((mouth corner right(l) - mouth corner left(l)) / 2);
cordMouth = [0 default 0 0];

end

%exrtact the corner points of mouth region

MouthRmin = mouth corner left(l) - floor(dt/3) + round(cordMouth(2));
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MouthRmax = mouth corner left (1) - floor(dt/3) +
round (cordMouth (2) +cordMouth (4)) ;

% extracted coordinates of the midpoint of the lips

mouth lips = [MouthRmin mouth corner left (2) + floor (( mouth corner right(2) -
mouth corner left(2)) / 2) MouthRmax mouth corner left(2) +

floor (( mouth corner right(2) - mouth corner left(2)) / 2)1;
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Filename: Pso_nose.m

Thisisthe particle swarm optimization algorithm used to locate the nose.

function [Gbest M] = Pso nose(Rmin,Rmax,Cmin,Cmax,I,width, thresh nose)

% PSO algorithm for extracting the nose midpoint coordinates
n=10;%no of particles

Vmax= 10; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];

GbestFit = 0;

MaxFit = 0;

MaxCord = [0 0];

wi = 0.8; %inertial weight

cl=0.5;

c2=0.5;

ind=0;

coord=[];

prev best values=[];
threshold=400;

dt = floor (width/4);

center = Rmin + (Rmax - Rmin)/2.0;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

%Deploying the particles into an region where the nose is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaR4 = round((Rmax - Rmin) / 4);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);

deltaC = Cmax - Cmin;

deltaR = Rmax - Rmin;
for i=1l:n

particle (i) .posn=[round( (Rmin + deltaR4)+ deltaR2*rand(l)) round((Cmin +

deltaC4) + deltaC2*rand(1l))];
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particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1)) round (Vmin+ (Vmax-
Vmin) *rand (1)) 1];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center, thresh nose);
particle (i) .func_resp prev=particle(i).func response;

end

% initiating wvalues
bestfind = find([particle.func response] == max([particle.func response]));
best = bestfind(1l);
Gbest=particle (best) .posn;
GbestFit = particle(best) .func response;
MaxCord = Gbest;
best response=particle (best).func response;

MaxFit = best response;

itr=1;
t=1;
thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm

% 1is converging.

if (GbestFit > 0)
for i=1:n

%set new velocities

particle (i) .vel(l)=wi*particle(i).vel(l)+cl*rand(l)* (particle (i) .Pbest (1) -
particle (i) .posn(l))+ c2*rand(l) * (Gbest (1) -particle (i) .posn(l));

particle (i) .vel(2)=wi*particle(i).vel(2)+cl*rand(l) * (particle (i) .Pbest(2) -
particle (i) .posn(2))+ c2*rand(l) * (Gbest (2) -particle (i) .posn(2));

o)

% set new position
particle (i) .posn(l)=round(particle (i) .posn(l) +particle (i) .vel (1)) ;

particle (i) .posn(2)=round(particle (i) .posn(2) +particle (i) .vel (2));

%checking if the solution lies within domain
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if particle (i) .posn(l) <Rmin || particle (i) .posn(l) > Rmax ||
particle (i) .posn(2) <Cmin || particle(i).posn(2) > Cmax

particle (i) .posn=particle (i) .Pbest; % setting position to

previous P-best

o°

particle (i) .vel=[rand(1l) *Vmax rand(1l) *Vmax] ;
setting velocity to max
end
%Calculating the function response for each particle with new

Spositions

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center, thresh nose);
%checking and updating Pbest
if particle(i) .func response > particle(i).func resp prev
particle (i) .Pbest=particle (i) .posn;

end

particle (i) .func resp prev = particle(i).func response;

end
V=[particle.func response];
best ones=find(V==max (V) ) ;

best=best ones(1l);

%Gbest is a global best of all times
sdisplay (particle (best) .func_response);
if particle(best).func response > GbestFit
Gbest = particle (best) .Pbest;
GbestFit = particle (best).func response;
end
best response=particle (best).func response;
if (best response < MaxFit)
MaxCord = Gbest;
end
else

o)

% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for i=1:n
particle (i) .posn=[round( (Rmin + deltaR4)+ deltaR2*rand(l))
round ( (Cmin + deltaC4) + deltaC2*rand(l))];
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particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center, thresh nose);
particle (i) .func_resp prev=particle (i) .func_response;
end

else

oe

if we didn't find a positive fittness value before the
% fifth iteration that the region for deployment is

% extended.

% it helps in the cases, when the face region is not

% located properly

for i=1:n
particle (i) .posn=[round (Rmin + deltaR*rand(l)) round(Cmin +
deltaC*rand(1))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i) .posn(2),
dt,center, thresh nose);
particle (i) .func_resp prev=particle (i) .func_response;
end

end

best=max position([particle.func response]);

Gbest=particle (best) .posn;

GbestFit = particle (best) .func response;

MaxCord = Gbest;

best response=particle (best).func response;

MaxFit = best response;

t=1;

thresh list=[];

end % all particles updated...
% 2 - based on the mean value of func response of all particles
if mean([particle.func response]) >= 1100;%threshold;

ind = 1;

end

219



%...recording co-ordinates for display

itr = itr+1;

thresh list=[thresh list best response];

if itr == 20
ind = 1;
end
end
if itr == 22

end

Gbest = MaxCord;
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Filename : cost_functionNose.m

Thisthe cogt function used to compute the fithess of the particle in the swarm looking for

the nose.

function y = cost functionNose(I ,r ,c ,dtIn ,center, thresh nose)
global Im;

Im = I;

global dt;

dt = dtiIn;

global de;

de = floor (dt/8);

rtl = r + floor(dt/2);
ctl = c;

rt2 = rtl + de;

ct2 = c;

rt3 = rt2 + de;

ct3 = c;

rt4 = rt3 + de;

ctd = c;

K = 50;

y = Cc(r,c, thresh nose) + CPos(r,center);

SILITTTIL7 0777777777707 7777777777777777777777777777

function a = Cm(r,c)

global Im;

global dt;

Kc=0.2;

Il=double (Im( (r-floor (dt/2)) : (r+ floor(dt/2)), (c-floor(dt/2)) : (c+
floor(dt/2))));

varl=sum(std (Il));

var2=sum(std (I1'"));

a=Kc* (varl+var?2);

SILITTTIL70 0777777777077 777777777777777777777777777

function a = CMean (r,c)

global Im;

global dt;

Il=double(Im( (r - floor(dt / 6) : r + floor(dt / 6)), c - floor(dt/6) : c +
floor(dt/6)));
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a = mean2(Il);

SILIITTIT70 7777777777077 777777777777777777777777777

function c¢c=U(x)

% Unit step function..........

if x >=0

end

SILIITIIT7I0 07777777707 7777777777777777777777777777

function a=Cc(r,c, thresh nose)
global dt;

global Im;

Kc=0;

a=0;

%mean intensity central area
uc = mean2 (Im( (r- floor(dt/10)): (r+ floor(dt/10)), (c—- floor (dt/10)) : (c+
floor(dt/10))));

%mean intensity of the region to the left

ul = mean2 (Im(r : (r + floor(dt/4)), (c - floor(dt/2)):(c - floor(dt/4))));

%mean intensity of the region to the right
ur = mean? (Im(r : (r + floor(dt/4)), (c + floor(dt/4)):(c + floor(dt/2)))):
% intensity of midpoint more than 200
if uc >= thresh nose

Ke=1.2* (uc - 200);
end
% left region brighter than 150
if ul >= (thresh nose*0.75)

a =a - 200;
end
% right region brighter than 150
if ur >= (thresh nose*0.75)

a =a - 200;
end

% difernce between midpoint and left region intensities is less than 50

if uc - ul < (0.25*thresh nose)

222



a=a-200;
end
% difernce between midpoint and right point intensities is less than 50
if uc - ur < (0.25*thresh nose)

a=a-200;

end

a = Kc - ur - ul + 2*uc;

SILITTTIT7I0 777777777077 777777777777777777777777777

function a = CPos(r,center)

)

% function saying the the higher the region is, the better.

a = 200 - 3 * abs(center - r);

SILIILTTIL7I 077777777077 777777777777777777777777777
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Filename : getNoseCor ners.m
This locates the nosetrils based upon the coordinates of the nose.

function nose corners = getNoseCorners (nose, Image,dt, thresh nostrils)

NoseCornerRmin = nose(l);

NoseCornerRmax = nose(l) + floor(dt/2);
NoseCornerCmin = nose(2) - floor (0.5 * dt);
NoseCornerCmax = nose(2) + floor (0.5 * dt);

)

% extract nose corners
deltaNose2 = floor ((NoseCornerCmax - NoseCornerCmin) / 2);

Image Nose Left = Image (NoseCornerRmin : NoseCornerRmax, NoseCornerCmin
NoseCornerCmin + deltaNose?2);

)

% convert the left nose region into binary image with the threshold set
% to the 1/3 of the mean intensity of whole region
level = mean2 (Image Nose Left) / 255;

level = (level / 3) * thresh nostrils;

Image NoseL BW = im2bw (Image Nose Left,level);

% invert the colors

Image Ones = ones (size (Image Nose Left));
Image NoseL BW = Image Ones - Image Nosel BW;
% get a bounding box around the thresholded area
Nosel. Stat = bwlabel (Image Nosel BW);

statsNL = regionprops (NoseL Stat, 'BoundingBox'");
cordNoselL = [statsNL.BoundingBox];

Image Nose Right = Image (NoseCornerRmin : NoseCornerRmax, NoseCornerCmin +
deltaNose2 : NoseCornerCmax) ;

)

% convert the 1 nose region into binary image with the threshold set

% to the 1/4 of the mean intensity of whole region

level = mean2 (Image Nose Right) / 255;

level = (level / 3) * thresh nostrils;

Image NoseR BW = im2bw (Image Nose Right,level);
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% invert the colors

Image Ones

Image NoseR BW

°

ones (size (Image Nose Right));

Image Ones - Image NoseR BW;

% get a bounding box around the thresholded area

NoseR Stat = bwlabel (Image NoseR BW) ;

statsNR

cordNoseR

if (numel (statsNR) ==

else

offsetR

end

oe

oe

numel (statsNR)

regionprops (NoseR Stat, 'BoundingBox'") ;

[statsNR.BoundingBox] ;

0)

1;

check if the nostrils were located right.

1) both of them were not found => use default values

% 2) one them was located ok => us the offset from the midpoint of the good
% one to estimate the other one.
left ok = 1;
right ok = 1;
if numel (cordNoselL) ==
cordNoseL = [((nose(2) - floor(dt/3)) - NoseCornerCmin) ((nose(l) +
floor(dt/4)) - NoseCornerRmin) 2 1];
left ok = 0;
end
if numel (cordNoseR) ==
cordNoseR = [((nose(2) + floor(dt/3)) - deltaNose2 - NoseCornerCmin)
((nose(l) + floor(dt/4)) - NoseCornerRmin) 1 1];
offsetR = 0;
right ok = 0;
end
nose corners = [floor (NoseCornerRmin + cordNoseL(2) + cordNoseL(4) / 2)

floor (NoseCornerCmin + cordNoseL (1))

2) + cordNoseR((4 * offsetR)
cordNoseR((4 * offsetR) + 1)
if

(left ok == 0)

nose corners (1)

&&

+ 4) / 2)

+ cordNoseR((4 * offsetR)

floor (NoseCornerCmin + deltaNose2 +

+ 3017

(right ok == 1)

nose corners (3);
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nose _corners(2) = nose(2) - (nose corners(4) - nose(2));

display('Left nostril was NOT located right. Estimated.');

end
if (left ok == 1) && (right ok == 0)
nose corners(3) = nose corners(l);
nose corners(4) = nose(2) + (nose(2) - nose corners(2));
display('Right nostril was NOT located right. Estimated.');
end
if (left ok == 0) && (right ok == 0)
display('Both nostrils were NOT located right. Just guess.');
end
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Filename: run2.m
This runs the feature location algorithm on the whole video sequence. It uses the features
from the previous frame as a reference for the next frame and does not locate the face in every
frame. This executed when “Test Video” button on the video toolbox is clicked.

function [Image Points Image Regions feature points] = run2(Image, faceCoord,

feature points, thresh, offset)
load 'MouthTF.mat';
feature points = cellZ2mat (feature points);

Imagel = Image;
Image2 = Image;

Image Points = Image;

Rmin = faceCoord(l);
Rmax = faceCoord(2);
Cmin = faceCoord(3);
Cmax = faceCoord(4);
deltaRow = Rmax - Rmin;

deltaCol = Cmax - Cmin;

$Aproximate Left eye region

EyeLRmin = Rmin;

EyeLRmax = Rmin + round(deltaRow / 2);
EyelLCmin = Cmin;

EyelCmax = Cmin + round(deltaCol / 2);

%$Aproximate right eye region

EyeRRmin = Rmin;

EyeRRmax = Rmin + round(deltaRow / 2);
EyeRCmin = Cmin + round(deltaCol / 2);

EyeRCmax = Cmax;

$Aproximate left mouth half region
MouthLeftRmin = Rmin + round(deltaRow / 2);
MouthLeftRmax = Rmax;

MouthLeftCmin = Cmin;
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border,

lower

MouthLeftCmax = Cmin + round(deltaCol / 2);

$Aproximate left mouth half region
MouthRightRmin = Rmin + round(deltaRow / 2);
MouthRightRmax = Rmax;

MouthRightCmin = Cmin + round(deltaCol / 2);
MouthRightCmax = Cmax;

width = Cmax - Cmin;
dt = floor((Cmax - Cmin) / 4);
% check if the template can get out of the image while looking for the eye
if EyeRRmin < (dt / 2)

EyeRRmin = round(dt / 2) + 1;

end

if EyeRCmax > (255 - (dt / 2))
EyeRCmax = 255 - round(dt / 2) + 1;

end;

border = Cmax - round(deltaCol / 8);
display('finding right eye cordinates...... ')
right eye = Pso2 eye run(EyeRRmin,EyeRRmax,EyeRCmin,EyeRCmax, Image,width,1,

feature points(1l,:), thresh);
Image Points (right eye(1l), (right eye(2) - 5): (right eye(2) + 5)) = 256;
Image Points ((right eye(l) - 5): (right eye(l) + 5), right eye(2)) = 256;
% check if the right eyebrow is getting closer to the right eye, if yes then

% the region where we are looking for the inner corner of the right eye.

% => this should prevent the algorithm from locating the inner corner of

eyebrows

% instead of the inner corner of eyes.

threshold Eb2E = (3*dt/4);
right eb low = 0;

if (feature points(l,1) - feature points(4,1)) < threshold Eb2E
right eb low = 1;
display('Right eyebrow lowered.');

end
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)

% call function to extract the coordinates of corners of the right eye
display('finding right eye corners cordinates...... ')
right eye corners = getRightEyeCorners2(right eye,Image2,dt,

right eb low,thresh.eyeln);

right eye in corner = [right eye corners(l) right eye corners(2)];
right eye out corner = [right eye corners(3) right eye corners(4)];
Image Points (right eye in corner(l), (right eye in corner(2) - 5):

(right eye in corner(2) + 5))=256;
Image Points ((right eye in corner(l) - 5): (right eye in corner(l) + 5),

right eye in corner (2))=256;

Image Points (right eye out corner(l), (right eye out corner(2) - 5):
(right eye out corner(2) + 5))=256;
Image Points ((right eye out corner(l) - 5): (right eye out corner(l) + 5),

right eye out corner(2))=256;

Sextracting right eyebrow region coordinates

EyebrowRRmin = right eye(l) - floor(l.5 * dt);
EyebrowRRmax = right eye(l) - floor(0.45 * dt);
EyebrowRCmin = right eye(2) - floor(dt/4);

EyebrowRCmax = right eye(2) + floor(dt/2);

)

% check if the eyebrow template can get out of the image when searching
% for the eyebrow

if EyebrowRRmin < round(dt/2)
EyebrowRRmin = round(dt/2) + 1;

end

display('finding right eyebrow cordinates...... ')

right eyebrow = Pso eyebrow run2 (EyebrowRRmin, EyebrowRRmax, EyebrowRCmin,

EyebrowRCmax, Image, width, feature points(4,:), right eye, 1, offset);

Image Points (right eyebrow(l), (right eyebrow(2) - 5): (right eyebrow(2) +
5))=256;

Image Points ((right eyebrow(l) - 5): (right eyebrow(l) + 5),

right eyebrow(2))=256;

)

% call a function to extract the coordinates of the inner corner of the
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)

% right eyebrow

display('finding right eyebrow inner corner cordinates...... ')

right eyebrow corner =

getRightEyebrowCorner (right eyebrow, Image2,dt, thresh.ebCorner);

Image Points (right eyebrow corner(l), (right eyebrow corner(2) - 5):
(right eyebrow corner(2) + 5))=256;
Image Points ((right eyebrow corner(l) - 5): (right eyebrow corner(l) + 5),

right eyebrow corner(2))=256;

°

if EyelRmin < (dt / 2)
EyelRmin = round(dt / 2) + 1;

end

if EyelLCmin > (dt / 2)
EyeLCmin = round(dt / 2) + 1;

end;

border = Cmin + round(deltaCol / 8);
display('finding left eye cordinates...... ')
left eye =

Pso2 eye run (EyeLRmin,EyeLRmax,EyeLCmin, EyeLCmax, Image,width, 0, border,

% check if the template can get out of the image while looking for the eye

feature points(6,:), thresh);
Image Points (left eye(l), (left eye(2) - 5): (left eye(2) + 5))=256;
Image Points ((left eye(l) - 5): (left eye(l) + 5), left eye(2))=256;

oe

check if the right eyebrow is getting closer to the right eye,

if yes then

lower
% the region where we are looking for the inner corner of the right eye.
% => this should prevent the algorithm from locating the inner corner of
eyebrows

% instead of the inner corner of eyes.

threshold Eb2E = (3*dt/4);
left eb low = 0;

if (feature points(6,1) - feature points(9,1)) < threshold Eb2E
left eb low = 1;
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display('Left eyebrow lowered.');
end

)

% call function to extract the coordinates of corners of the left eye

display('finding left eye corners cordinates...... ')
left eye corners = getLeftEyeCorners2 (left eye,Image2,dt,left eb low,
thresh.eyeln);

left eye in corner = [left eye corners(l) left eye corners(2)];
left eye out corner = [left eye corners(3) left eye corners(4)];
Image Points (left eye in corner(l), (left eye in corner(2) - 5):

(left eye in corner(2) + 5))=256;
Image Points ((left eye in corner(l) - 5): (left eye in corner(l) + 5),

left eye in corner(2))=256;

Image Points (left eye out corner(l), (left eye out corner(2) - 5):
(left eye out corner(2) + 5))=256;
Image Points ((left eye out corner(l) - 5): (left eye out corner(l) + 5),

left eye out corner(2))=256;

Sextracting left eyebrow region coordinates

EyebrowLRmin = left eye(l) - floor(l.5 * dt);
EyebrowLRmax = left eye(l) - floor(0.45 * dt);
EyebrowLCmin = left eye(2) - floor(dt/2);

+

EyebrowLCmax = left eye(2) floor (dt/4) ;

)

% check if the eyebrow template can get out of the image when searching
% for the eyebrow

if EyebrowLRmin < round(dt/2)
EyebrowLRimn = round(dt/2) + 1;

end

display('finding left eyebrow cordinates...... ')
left eyebrow = Pso_eyebrow run2 (EyebrowLRmin,EyebrowLRmax,EyebrowLCmin,
EyebrowLCmax, Image, width, feature points(9,:), left eye,0, offset);

display('finding left eyebrow inner corner cordinates...... ')

left eyebrow corner =

getLeftEyebrowCorner (left eyebrow, Image2,dt, thresh.ebCorner);
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Image Points (left eyebrow corner (l), (left eyebrow corner(2) - 5):
(left eyebrow corner(2) + 5))=256;
Image Points ((left eyebrow corner(l) - 5): (left eyebrow corner(l) + 5),

left eyebrow corner(2))=256;

Image Points (left eyebrow(l), (left eyebrow(2) - 5): (left eyebrow(2) +
5))=256;
Image Points ((left eyebrow(l) - 5): (left eyebrow(l) + 5),

left eyebrow(2))=256;

center = left eye(2);
% check if the template for mouth corner can get out of the image.
if MouthLeftRmax > (255 - dt/2)

MouthLeftRmax = round (255 - dt/2) + 1;

end

display('finding left mouth cordinates...... ')
mouth left = Pso2 mouth left run (MouthLeftRmin, MouthLeftRmax, MouthLeftCmin,

MouthLeftCmax, Image, center,feature points(1ll,:), thresh);

mouth corner left = mouth left(1:2);

center = right eye(2);
% check if the template for mouth corner can get out of the image.
if MouthRightRmax > (255 - dt/2)

MouthRightRmax = round (255 - dt/2) + 1;

end
display('finding right mouth cordinates...... ')
mouth right = Pso2 mouth right run (MouthRightRmin, MouthRightRmax,

MouthRightCmin, MouthRightCmax, Image, center, feature points(12,:));

mouth corner right = mouth right(1:2);

vector = [ (mouth corner right(l) - mouth corner left(l)) (mouth corner right(2)

- mouth corner left(2))1';

)

% using neural network to analyze if the mouth corners were located right

)

% 1f not, then we look at other combinations of the rest of the located

)

% mouth corner points
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Y = sim(net,vector);

if Y == [1;0]

display('Mouth corners located successfully.');

Image Points (mouth corner left(l), (mouth corner left(2) - 5):
(mouth corner left(2) + 5)) = 256;

Image Points((mouth corner left(l) - 5): (mouth corner left(l) + 5),
mouth corner left(2) ) = 256;

Image Points (mouth corner right(l), (mouth corner right (2) - 5):
(mouth corner right(2) + 5)) = 256;

Image Points((mouth corner right(l) - 5): (mouth corner right(l) + 5),
mouth corner right(2) ) = 256;

else

display('Mouth corners were NOT located successfully.');
display('Fixing it..."');

mvec = mouth fix (mouth left,mouth right,net);

mouth corner left = mvec(l:2);

mouth corner right = mvec(3:4);

Image Points (mouth corner left(l), (mouth corner left(2) - 5):
(mouth corner left(2) + 5)) = 256;

Image Points ((mouth corner left(l) - 5): (mouth corner left(l) + 5),
mouth corner left(2) ) = 256;

Image Points(mouth corner right(l), (mouth corner right (2) - 5):
(mouth corner right(2) + 5)) = 256;

Image Points ((mouth corner right(l) - 5): (mouth corner right(l) + 5),
mouth corner right(2) ) = 256;

end

display('finding mouth lips cordinates...... ')

mouth Lips =
getMouthLipsCoordinates (Imagel,mouth corner left,mouth corner right,dt,thresh.lips);

% extracted coordinates of the midpoint of the upper lip
mouth lip upper = [mouth Lips(l) mouth Lips(2)];
mouth lip lower = [mouth Lips(3) mouth Lips(4)];
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Image Points (mouth lip upper(l), (mouth lip upper(2) - 5): (mouth lip upper (2)
+ 5))=256;

Image Points ((mouth lip upper(l) - 5): (mouth lip upper(l) + 5),
mouth lip upper(2) )=256;

Image Points (mouth lip lower (1), (mouth lip lower(2) - 5): (mouth lip lower (2)
+ 5))=256;

Image Points ((mouth lip lower(l) - 5): (mouth lip lower(l) + 5),
mouth lip lower(2) )=256;

%extracting the nose region coordinates

% check whether the upper lip was located right - must be above the corners

% of mouth

midpoint = floor ((mouth corner left(l) + mouth corner right (1)) / 2);

if (mouth lip upper(l) < midpoint)
upper lip = mouth lip upper(1l);

else
display('Mouth upper lip was not located successfully.');
upper lip = midpoint - floor(dt / 2);

end

% extract vector of the eye movement and use it for navigating the nose PSO

eye move now = mean([left eye(l),right eye(l)]);

eye move prev = mean ([feature points(l,1), feature points(6,1)]);

eye move vector = round(eye move prev - eye move now) ;

NoseRmin = upper lip - floor(l.5 * dt);

NoseRmax = upper lip - floor(dt / 4);

NoseCmin = mouth lip upper(2) - floor(0.75 * dt);
NoseCmax = mouth lip upper(2) + floor(0.75 * dt);

display('finding nose cordinates...... ')
nose =
Pso nose run vector (NoseRmin,NoseRmax, NoseCmin,NoseCmax, Image2,width, feature points (15

;1) ,eye move vector, thresh.nose);

Image Points (nose(l), (nose(2) - 5): (nose(2) + 5))=256;
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Image Points ((nose(l) - 5): (nose(l) + 5),nose(2) )=256;

display('finding nostril cordinates...... ')

nose_corners = getNoseCorners (nose,Image2,dt,thresh.nosetril);

Image Points (nose corners(l), (nose corners(2) - 5): (nose corners(2) +
5))=256;

Image Points ((nose corners(l) - 5): (nose corners(l) +
5) ,nose_corners(2) )=256;

Image Points (nose corners(3), (nose corners(4) - 5): (nose corners(4) +
5))=256;

Image Points ((nose corners(3) - 5): (nose corners(3) +
5) ,nose_corners (4) )=256;

Image Regions = Image Points;

)

% visualization of the feature regions

Image Regions (Rmin, Cmin:Cmax) = 256;

Image Regions (Rmax, Cmin:Cmax) = 256;

Image Regions (Rmin:Rmax, Cmin) = 256;

Image Regions (Rmin:Rmax, Cmax) = 256;

Image Regions (Rmin + round(deltaRow / 2), Cmin:Cmax) = 256;

Image Regions (Rmin:Rmax, Cmin + round(deltaCol / 2)) = 256;

$left eye subregion

Image Regions (Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +
round(deltaCol / 8) ) = 256;

Image Regions (Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +
3*round(deltaCol / 8) ) = 256;

Image Regions (Rmin + round(deltaRow / 3), Cmin + round(deltaCol / 8) : Cmin +
3*round(deltaCol / 8)) = 256;

%$right eye subregion

Image Regions (Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +
5*round(deltaCol / 8) ) = 256;

Image Regions (Rmin + round(deltaRow / 3) : Rmin + round(deltaRow / 2), Cmin +
7*round(deltaCol / 8) ) = 256;

Image Regions (Rmin + round(deltaRow / 3), Cmin + 5*round(deltaCol / 8) : Cmin +
7*round (deltaCol / 8)) = 256;

%$left mouth subregion
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Image Regions (Rmin + 5*round(deltaRow / 8) : Rmin + 7*round(deltaRow / 8), Cmin

+ round(deltaCol / 6)) = 256;

Image Regions (Rmin + 5*round(deltaRow / 8), Cmin + round(deltaCol / 6): Cmin +

round (deltaCol / 2)) = 256;

Image Regions (Rmin + 7*round(deltaRow / 8), Cmin + round(deltaCol / 6): Cmin +

round (deltaCol / 2)) = 256;

Sright mouth subregion

Image Regions (Rmin + 5*round(deltaRow / 8) : Rmin + 7*round(deltaRow / 8), Cmin

+ 5*round(deltaCol / 6)) = 256;

Image Regions (Rmin + 5*round(deltaRow / 8), Cmin + round(deltaCol / 2): Cmin +

5*round (deltaCol / 6)) = 256;

Image Regions (Rmin + 7*round(deltaRow / 8), Cmin + round(deltaCol / 2): Cmin +

S*round(deltaCol / 6)) = 256;
% vector with coordinates of all feature points
feature points = [right eye; right eye in corner; right eye out corner;
right eyebrow; right eyebrow corner; left eye; left eye in corner;
left eye out corner; left eyebrow; left eyebrow corner; mouth corner left;
mouth corner right; mouth lip upper; mouth lip lower; nose; nose corners(l:2);

nose_corners(3:4)];

end
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Filename: Pso2_eye run.m
Thisisthe particle swarm optimization algorithm used to locate the eyes while testing the

whole video sequence.

function [VeryBest]=Pso2 eye run (Rmin,Rmax,Cmin,Cmax,I,width, side,border,

prev_eye, thresh)

n = 10; % number of particles
group = 1; % number of groups

% particle = zeros (8, n*group);

oe

Vmax= 5; Max velocity..set arbitrarily
Vmin= 3; % particle move one pixel at a time at minimum

Gbest=[0 0 0 0 O O]

GbestFit = [0 O 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev_best values=[];
threshold = 400;

dt = floor (width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR3 = round((Rmax - Rmin) / 3);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);

deltaC = Cmax - Cmin;

deltaRunR = 5; % round(dt/5);
5; % round(dt/8);

deltaRunC

% initializing particles in all groups
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for g = 0: (group - 1)
for i = 1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round((prev_eye(l) - deltaRunR) + 2*deltaRunR
* rand(l)) round((prev_eye(2) - deltaRunC) + 2*deltaRunC * rand(1l))];
particle (partInd) .vel = [round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =
cost function7subReg (I,particle(partInd) .posn(l),
particle (partInd) .posn(2),dt,side,border, thresh.eye, thresh.lighting);
particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==
max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(1l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;
end
itr=1;
t=1;

thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm
% is converging.

for g = 0: (group-1)

if (GbestFit (g+l) > 0)

%$In each group

for i=1:n

partInd = g*n + 1i;

particle (partInd) .vel (l)=wi*particle (partInd) .vel (1l)+cl*rand(l)* (particle (partInd) .Pbe
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st (l) - particle(partInd) .posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-
particle (partInd) .posn(l)) ;

particle (partInd) .vel (2)=wi*particle (partInd) .vel (2)+cl*rand(l) * (particle (partInd) .Pbe

st (2) - particle(partInd) .posn(2))+ c2*rand(l)* (Gbest (2*g + 2)-

particle (partInd) .posn(2));

particle (partInd) .posn (1l)=round(particle (partInd) .posn(l)+particle (partInd) .vel (1)) ;

particle (partInd) .posn (2)=round(particle (partInd) .posn(2)+particle (partInd) .vel (2));

%checking if the solution lies within domain

if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(1l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax
particle (partInd) .posn = particle (partInd) .Pbest; %

setting position to previous P-best
particle (partInd) .vel=[rand (1) *Vmax rand(l) *Vmax];

% setting velocity to max

end

%Calculating the function response for each particle with new

$positions

particle (partInd) .func response=cost function7subReg(I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,side, border, thresh.eye, thresh.lighting);

%checking and updating Pbest
if particle(partInd).func response >
particle (partInd).func resp prev
particle (partInd) .Pbest = particle(partInd) .posn;
end
particle (partInd) .func resp prev =

particle (partInd) .func response;

end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

)

% Gbest is a global best of all times

)

% display(particle (best (g+l)) .func response);
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if particle(best (g+l)) .func response > GbestFit (g+1)
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;
end
else
% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds

if (itr < 22)

for i=1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round((prev_eye(l) - deltaRunR)
2*deltaRunR * rand(l)) round((prev_eye(2) - deltaRunC) + 2*deltaRunC * rand(l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost function7subReg(I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,side,border, thresh.eye, thresh.lighting);

particle (partInd) .func resp prev=particle(partInd).func response;
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+1) = g*n + bestfind(1);
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;

thresh list=[];
end % all particles updated...
end

%...recording co-ordinates for display

itr = itr+l;
end
% choose the best point
very best ones = find( GbestFit == max(GbestFit (l:group))):;
very best = very best ones(1l);

VeryBest = Gbest (2* (very best - 1) + 1l: 2*(very best - 1) + 2);
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Filename : getRightEyeCor ner s2.m
This extracts the corner coordinates of the eyes while testing the complete video

sequence.

function right eye corners =

getRightEyeCorners2 (right eye, Image,dt,right eb low,thresh eyelnner)

if right eb low == 0

EyeRegionRRmin right eye(l) - floor(dt/5);
else

EyeRegionRRmin = right eye (1);
end
EyeRegionRRmax = right eye(l) + floor(dt/4);
EyeRegionRCmin = right eye(2) - floor(dt / 2);

EyeRegionRCmax = right eye(2) + floor(2 * (dt/3));

%estimated eye region
Image Eye = Image (EyeRegionRRmin : EyeRegionRRmax, EyeRegionRCmin
EyeRegionRCmax) ;

)

% convert the right eye region into binary image with the threshold set

% to the 1/2 of the mean intensity of whole region

level = mean2(Image Eye) / 255;

level = (0.8 * level) * thresh eyelnner;
Image Eye BW = im2bw(Image Eye,level);
% invert the colors
Image Ones = ones (size (Image Eye));
Image Eye BW = Image Ones - Image Eye BW;
% get a bounding box around the thresholded area
statsE = regionprops (Image Eye BW, 'BoundingBox');
cordEye = [statsE.BoundingBox];
% get a region aroud the inner corner of the right eyebrow

Image Eye Corner In BW = Image Eye BW(l : (EyeRegionRRmax - EyeRegionRRmin),
ceil (cordEye (1)) : ceil(cordEye(l) + 1));

Eye Corner In Stat = bwlabel (Image Eye Corner In BW);
statsEIC = regionprops (Eye Corner In Stat, 'BoundingBox');

cordEyeInCorner = [statsEIC.BoundingBox];
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)

% get a region aroud the outter corner of the right eye
Image Eye Corner Out BW = Image Eye BW(l : (EyeRegionRRmax - EyeRegionRRmin),
floor (cordEye (1) + cordEye(3) -1) : floor(cordEye(l) + cordEye(3)));

Eye Corner Out Stat = bwlabel (Image Eye Corner Out BW);
statsEOC = regionprops (Eye Corner Out Stat, 'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned

%and an error is reported

if numel (cordEyeOutCorner) ==
cordEyeOutCorner = [0 (right eye(2) - EyeRegionRRmin) + round(dt / 4) 0 0];
display('Outer corner of the right eye was not located right...');

end

if numel (cordEyeInCorner) ==
cordEyeInCorner = [0 (right eye(2) - EyeRegionRRmin) - round(dt / 4) 0 0];
display('Inner corner of the right eye was not located right...');

end

right eye corners = [floor (EyeRegionRRmin + cordEyeInCorner (2) +
cordEyeInCorner (4) / 2) floor (EyeRegionRCmin + cordEye(1l)) floor (EyeRegionRRmin +
cordEyeOutCorner (2) + cordEyeOutCorner (4) / 2) floor (EyeRegionRCmin + cordEye (1) +
cordEye (3))];
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Filename: Pso_eyebrow_run2.m

This is the particle swarm optimization algorithm used to locate the eyebrow while
testing the whole video sequence.

function [Gbest M]=Pso_eyebrow run2 (Rmin, Rmax, Cmin, Cmax, I, width,
prev_eyebrow, eye,side, offset)

)

% PSO algorithm for extracting the eyebrow coordinates

)

% variation of PSO eyebrow run, it looks for the eye only in a tiny region

)

% which is always at the same ofset from the eye as was at the test image

n=10;%no of particles

)

Vmax= 5; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];

GbestFit = 0;

MaxFit = 0;

MaxCord = [0 0];

wi = 0.8; %inertial weight

cl=0.5;

c2=0.5;

ind=0;

coord=[];

prev_best values=[];
threshold=400;

dt = floor (width/4);

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR2 = round((Rmax - Rmin) / 2);

deltaC = Cmax - Cmin;

deltaR = Rmax - Rmin;

deltaRun = 10;

% get coordinates of the expected eyebrow region
if side ==

midP = eye(2) - offset.EBL;
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else
midP = eye(2) - offset.EBR;
end

)

% get coordinates of the lower border of the eyebrow region. This should

o

3 prevent the PSO looking for eyebrow get confused by the eye, when

oe

eyebrows are lowered close to the eyes

lowerEdge = eye(l) - round(dt/3);
if abs(prev_eyebrow(2) - midP) > (dt/2)
prev_eyebrow(l) = eye(l) - round(dt/2);

display('prev_eyebrow was not used');

end

% check if the previous eyebrow does not lie too close to the current eye.
% 1f this true, then it is likely that there was a big movement of the

% eyebrow or of the whole head. Therefore we will estimate the position of
% the eyebrow and won't use the value of the previous eyebrow ( it probably

% lies within the current eye region)

if (prev _eyebrow(l) > lowerEdge)

eyeBR = lowerEdge - round(dt/3);

display('Too big movement of eye was detected. Eyebrow moved upwards.');
else

eyeBR = prev eyebrow(l);

end

for i=1:n
posR = (eyeBR - deltaRun) + 2*deltaRun * rand(l);
if posR > lowerEdge
posR = lowerEdge - round(dt/5);

end
particle (i) .posn=[round(posR) round((midP - 1) + rand(l))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1)) round (Vmin+ (Vmax-

Vmin) *rand (1)) 1];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
particle (i) .func_resp prev=particle(i).func response;

end
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)

% initiating wvalues

bestfind = find([particle.func response] == max([particle.func response]));
best = bestfind(1l);

Gbest=particle (best) .posn;

GbestFit = particle(best) .func response;

MaxCord = Gbest;

best response=particle (best).func response;

MaxFit = best response;

itr=1;
t=1;
converge = 1;

thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% if GbestFit > 0 compute new position and velocities - algorithm
% is converging.

if (GbestFit > 0)

for i=1:n

particle (i) .vel(l)=wi*particle(i).vel(l)+cl*rand(l)* (particle (i) .Pbest (1) -
particle (i) .posn(l)) + c2*rand(l)* (Gbest (1)-particle(i) .posn(l));

particle (i) .vel(2)=wi*particle (i) .vel (2) +
cl*rand(l) * (particle (i) .Pbest (2) - particle(i).posn(2)) + c2*rand(l)* (Gbest (2)-
particle (i) .posn(2));

% set new position

% if possible move only in the column around the expected
% eyebrow point
particle (i) .posn(l) =

round (particle (i) .posn(l)+particle (i) .vel (1)),
if converge ==
particle (i) .posn(2) = midP;

else

particle (i) .posn(2)=round(particle (i) .posn(2)+particle (i) .vel(2));

end
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%checking if the solution lies within domain
if particle(i) .posn(l) < Rmin || particle(i).posn(l) > Rmax ||

particle (i) .posn(2) < Cmin |

particle (i) .posn(2) > Cmax

particle (i) .posn=particle (i) .Pbest; % setting position to

previous P-best

o°

particle (i) .vel=[rand(1l) *Vmax rand(1l) *Vmax] ;
setting velocity to max
end
%Calculating the function response for each particle with new

Spositions

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
%checking and updating Pbest
if particle(i) .func response > particle(i).func resp prev
particle (i) .Pbest=particle (i) .posn;

end

particle (i) .func resp prev = particle(i).func response;

end

V=[particle.func response];
best ones=find(V==max (V) ) ;

best=best ones(1l);

%Gbest is a global best of all times
sdisplay (particle (best) .func_response);
if particle(best) .func response > GbestFit
Gbest = particle (best) .Pbest;
GbestFit = particle (best).func response;
end
best response=particle (best).func response;
if (best_response < MaxFit)
MaxCord = Gbest;
end
else

o)

% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 22)

for i=1:n

posR = (eyeBR - deltaRun) + 2*deltaRun * rand(l);
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if posR > lowerEdge
posR = lowerEdge;
end
particle (i) .posn=[round(posR) round((midP - 1 ) + rand(l))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionEyebrow (I,particle (i) .posn(l),particle (i) .posn(
2),dt);
particle (i) .func_resp prev=particle (i) .func_response;
end

end

bestfind = find([particle.func response] ==
max ([particle.func response])) ;

best = bestfind(1l);

Gbest=particle (best) .posn;

GbestFit = particle (best) .func response;

MaxCord = Gbest;

best response=particle (best).func response;

MaxFit = best response;

t=1;

thresh list=[];

)

end % all particles updated...

% 2 - based on the mean value of func response of all particles
if mean([particle.func response]) >= 1100;%threshold;
ind = 1;

end

%...recording co-ordinates for display
itr = itr+1l;
thresh list=[thresh list best response];
if itr == 20

ind = 1;
end

end

if converge ==
display ('Did not converged. Region enlarged');
else

display('Eyebrow was located at the defined offset');
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end
if itr == 22

Gbest = MaxCord;

end
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Filename : getL eftEyeCorners2.m

This locates the corners of left eye while testing the complete video sequence.

function left eye corners =

getLeftEyeCorners2 (left eye,Image,dt,left eb low,thresh eyelnner)

if left eb low ==
EyeRegionLRmin = left eye(l) - floor(dt/5);
else

EyeRegionLRmin = left eye(l);

end
EyeRegionLRmax = left eye(l) + floor (dt/4);
EyeRegionLCmin = left eye(2) - floor(2 * (dt/3));

EyeRegionLCmax = left eye(2) + floor(dt / 2);

Image Eye = Image (EyeRegionLRmin : EyeRegionLRmax, EyeRegionLCmin
EyeRegionLCmax) ;

o)

% convert the left eye region into binary image with the threshold set
% to the mean intensity of whole region
level = mean2(Image Eye) / 255;

level = (0.8 * level) * thresh eyelnner;

Image Eye BW = im2bw (Image Eye,level);

% invert the colors
Image Ones = ones (size (Image Eye));
Image Eye BW = Image Ones - Image Eye BW;
% get a bounding box around the thresholded area
statsE = regionprops (Image Eye BW, 'BoundingBox');
cordEye = [statsE.BoundingBox];
% get a region aroud the inner corner of the left eye

Image Eye Corner In BW = Image Eye BW(l : (EyeRegionLRmax - EyeRegionLRmin),
floor(cordEye (1) + cordEye(3) - 1) : floor(cordEye(l)) + cordEye(3));

Eye Corner In Stat = bwlabel (Image Eye Corner In BW);

statsEIC = regionprops (Eye Corner In Stat, 'BoundingBox');

cordEyeInCorner = [statsEIC.BoundingBox];
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)

% get a region aroud the outter corner of the left eye
Image Eye Corner Out BW = Image Eye BW(l : (EyeRegionLRmax - EyeRegionLRmin),
ceil (cordEye (1)) : ceil(cordEye(l) + 1));

Eye Corner Out Stat = bwlabel (Image Eye Corner Out BW);
statsEOC = regionprops (Eye Corner Out Stat, 'BoundingBox');
cordEyeOutCorner = [statsEOC.BoundingBox];

%Check if the corner point was found. If not a default value is assigned

%and an error is reported

if numel (cordEyeOutCorner) == 0
cordEyeOutCorner = [0 left eye(2) - round(dt / 4) 0 0];
display('Outer corner of the left eye was not located right...');

end

if numel (cordEyeInCorner) ==
cordEyeInCorner = [0 left eye(2) + round(dt / 4) 0 0];

display('Inner corner of the left eye was not located right...');

end

left eye corners = [floor (EyeRegionLRmin + cordEyeInCorner(2) +
cordEyeInCorner (4) / 2) floor (EyeRegionLCmin + cordEye(l) + cordEye (3))
floor (EyeRegionLRmin + cordEyeOutCorner (2) + cordEyeOutCorner (4) / 2)
floor (EyeRegionLCmin + cordEye(1l))];
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Filename: Pso2_mouth_left run.m

Thisisthe particle swarm optimization algorithm used to locate the left corner of the
mouth while testing the whole video sequence.

function [VeryBest]=Pso2 mouth left run(Rmin, Rmax, Cmin, Cmax, I, center,

prev left mouth, thresh)

n = 10; % number of particles
group = 3; % number of groups

)

% particle = zeros (8, n*group);

oe

Vmax= 8; Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 O];

GbestFit = [0 0 0];

MaxFit = [0 0 0];

MaxCord = [0 O O O O O];

best response = [0 0 0];

best = [0 0 0];

VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;
coord=[];
prev_best values=[];

threshold = 400;

Rmin = prev left mouth(l) - 20;
Rmax = prev left mouth(l) + 20;
20;
prev_left mouth(2) + 20;

Cmin prev_left mouth (2)

Cmax

dt = floor ((Cmax - Cmin) /2);

meanInt = mean2 (I (Rmin:Rmax,Cmin:Cmax)) ;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.
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deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round( (Cmax - Cmin) / 3);
deltaC = Cmax - Cminj;

deltaR = Rmax - Rmin;

deltaRun = 5; % round(dt/4);
% initializing particles in all groups
for g = 0: (group - 1)
for i = 1:n

partInd = g*n + 1i;

particle (partInd) .posn=[round((prev_left mouth(l) - deltaRun) +
2*deltaRun * rand(l)) round((prev_left mouth(2) - deltaRun) + 2*deltaRun * rand(1l))];

particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

% check if the particle isn't too close to the lower edge of the
image,

% so that the lower edge of the template would get out of the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))

particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =
cost functionMouthL2 (I,particle (partInd) .posn(l),
particle (partInd) .posn (2),dt,center,meanInt, thresh.lips);
particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==
max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;

GbestFit (g+1l) = particle (best(g+l)).func response;

MaxCord((2*g + 1):(2%*g + 2)) = Gbest ((2*g + 1):(2*g + 2));

best response(g+l) = particle(best(g+l)) .func response;

MaxFit (g+1) = best response(g+l);

end
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itr=1;
t=1;
thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm
% is converging.
if (GbestFit (g+l) > 0)
%$In each group
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;
particle (partInd) .vel (1l)=wi*particle (partInd) .vel (l)+cl*rand(l)* (particle (partInd) .Pbe
st (l) - particle(partInd) .posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-
particle (partInd) .posn(l)) ;
particle (partInd) .vel (2)=wi*particle (partInd) .vel (2)+cl*rand(l) * (particle (partInd) .Pbe
st (2) - particle(partInd) .posn(2))+ c2*rand(l)* (Gbest (2*g + 2)-
particle (partInd) .posn(2));

particle (partInd) .posn (1l)=round(particle (partInd) .posn(l)+particle (partInd) .vel (1)) ;

particle (partInd) .posn (2)=round(particle (partInd) .posn(2)+particle (partInd) .vel (2));

oe

check if the particle isn't too close to the lower edge of

the image,

oe

so that the lower edge of the template would get out of the

bounds.

oe

this check might be together with the following check of

particle

oe

position
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

%checking if the solution lies within domain
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if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(1l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax

oe

particle (partInd) .posn = particle (partInd) .Pbest;
setting position to previous P-best
particle (partInd) .vel=[rand(l) *Vmax rand(l) *Vmax];

% setting velocity to max

end

%Calculating the function response for each particle with new

$positions

particle (partInd) .func response=cost functionMouthL2 (I,particle(partInd).posn(l),

particle (partInd) .posn (2),dt,center,meanInt, thresh.lips);

%checking and updating Pbest
if particle(partInd).func response >
particle (partInd).func resp prev
particle (partInd) .Pbest = particle(partInd) .posn;

end

particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

%Gbest is a global best of all times
if particle(best (g+l)) .func response > GbestFit (g+1)

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;

end

best response(g+l) = particle(best(g+l)).func response;

if (best response(g+l) < MaxFit(g+l))
MaxCord((2*g + 1):(2*g + 2)) = Gbest((2*g + 1):(2*g + 2));
end
else
% if is not > 0 than deploy te particles again in new random

% positions and with new random speeds
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if (itr < 22)
for g = 0: (group-1)
for i=1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round((prev_left mouth(l) -
deltaRun) + 2*deltaRun * rand(l)) round((prev left mouth(2) - deltaRun) + 2*deltaRun *
rand(1))1;
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];
% check if the particle isn't too close to the lower edge
of the image,
% so that the lower edge of the template would get out of
the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost functionMouthL2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanInt, thresh.lips);

particle (partInd) .func resp prev=particle(partInd).func response;
end
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));
best (g+1) = g*n + bestfind(l);
Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;
MaxCord ((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)).func response;
MaxFit (g+1) = best response(g+l);
t=1;

thresh list=[];

)

end % all particles updated...

oe

.recording co-ordinates for display
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itr = itr+1l;
thresh list=[thresh list best response];
if itr == 20
ind = 1;
end
end
% choose the best point
very best ones = find( GbestFit == max (GbestFit));

very best = very best ones(1l);

VeryBest = Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2);
GbestFit (very best) = [];

Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];

very best ones = find( GbestFit == max (GbestFit));

very best = very best ones(1l);

VeryBest = [VeryBest Gbest (2* (very best - 1) + 1: 2*(very best - 1)
GbestFit (very best) = [];

Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];

VeryBest = [VeryBest Gbest];
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Filename: Pso2_mouth_right_run.m
Thisisthe particle swarm optimization algorithm used to locate the eyes while testing the

whole video sequence.

function [VeryBest M]=Pso2 mouth right run(Rmin, Rmax, Cmin, Cmax, I, center,

prev_right mouth)

n = 10; % number of particles

group = 3; % number of groups

Vmax= 8; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0 0 0 0 0O];

GbestFit [0 0 0];

MaxFit = [0 0 0];

MaxCord = [0 O O O O O],

best response = [0 0 0];
best = [0 0 0];
VeryBest = [0 0];

wi = 0.85; %inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev best values=[];
threshold = 400;

dt = floor ((Cmax - Cmin)/2);

meanInt = mean2 (I (Rmin:Rmax,Cmin:Cmax)) ;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

$Deploying the particles into an region where the eye is expected.

deltaR4 = round((Rmax - Rmin) / 4);
deltaR2 = round((Rmax - Rmin) / 2);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC3 = round((Cmax - Cmin) / 3);
deltaC = Cmax - Cminj;

deltaR = Rmax - Rmin;
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deltaRun = round(dt/4);

% initializing particles in all groups
for g = 0: (group - 1)
for i = 1:n
partInd = g*n + 1i;
particle (partInd) .posn=[round((prev_right mouth(l) - deltaRun) +
2*deltaRun * rand(l)) round((prev_right mouth(2) - deltaRun) + 2*deltaRun * rand(l))];
particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];
% check if the particle isn't too close to the lower edge of the
image,
% so that the lower edge of the template would get out of the bounds.
if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(1l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest = particle (partInd) .posn;
particle (partInd) .func response =
cost functionMouthR2 (I,particle (partInd) .posn(l),
particle (partInd) .posn(2),dt,center,meanint);
particle (partInd) .func resp prev = particle(partInd).func response;

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==
max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+l) = g*n + bestfind(1l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1l) = particle (best(g+l)).func response;
MaxCord((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)) .func response;
MaxFit (g+1) = best response(g+l);

end

itr=1;

t=1;

thresh list=[];

while ind == 0 && itr < 22
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%Compute particles new position and velocities

% 1if GbestFit > 0 compute new position and velocities - algorithm
% 1is converging.
if (GbestFit (g+l) > 0)
%$In each group
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;
particle (partInd) .vel (1l)=wi*particle (partInd) .vel (1l)+cl*rand(l)* (particle (partInd) .Pbe
st (l) - particle(partInd).posn(l))+ c2*rand(l)* (Gbest (2*g + 1)-
particle (partInd) .posn(l));
particle (partInd) .vel (2)=wi*particle (partInd) .vel (2)+cl*rand(l) * (particle (partInd) .Pbe
st (2) - particle(partInd) .posn(2))+ c2*rand(l)* (Gbest (2*g + 2)-
particle (partInd) .posn(2));

particle (partInd) .posn (1l)=round(particle (partInd) .posn(l)+particle (partInd) .vel (1)) ;

particle (partInd) .posn (2)=round(particle (partInd) .posn(2)+particle (partInd) .vel (2));

oe

check if the particle isn't too close to the lower edge of

the image,

oe

so that the lower edge of the template would get out of the

bounds.

% this check might be together with the following check of
particle

% position

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))

particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

%checking if the solution lies within domain

if particle(partInd) .posn(l) <Rmin || particle(partInd) .posn(1l)
> Rmax || particle(partInd) .posn(2) <Cmin || particle (partInd).posn(2) > Cmax

oe

particle (partInd) .posn = particle (partInd) .Pbest;
setting position to previous P-best

particle (partInd) .vel=[rand (1) *Vmax rand(l) *Vmax];
% setting velocity to max

end
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%Calculating the function response for each particle with new

$positions

particle (partInd) .func response=cost functionMouthR2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanlint);

%checking and updating Pbest
if particle(partInd).func response >
particle (partInd) .func resp prev
particle (partInd) .Pbest = particle(partInd) .posn;

end

particle (partInd) .func resp prev =

particle (partInd) .func response;

end
end
V = [particle((g*n + 1):(g*n + n)).func response];
best ones = find(V == max(V));
best (g+1) = g*n + best ones(1l);

% Gbest is a global best of all times

% display(particle (best (g+l)) .func response);

if particle(best (g+l)) .func response > GbestFit (g+1)

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .Pbest;
GbestFit (g+1l) = particle (best(g+l)) .func response;

end

best response(g+l) = particle(best(g+l)).func response;

if (best response(g+l) < MaxFit(g+l))
MaxCord ((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));

end

else

o)

% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 5)
for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;
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particle (partInd) .posn=[round((prev_right mouth(l) -
deltaRun) + 2*deltaRun * rand(l)) round((prev right mouth(2) - deltaRun) + 2*deltaRun
* rand(l))];

particle (partInd) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

% check if the particle isn't too close to the lower edge
of the image,

% so that the lower edge of the template would get out of
the bounds.

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))

particle (partInd) .posn(1l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest=particle (partInd) .posn;

particle (partInd) .func response=cost functionMouthR2 (I,particle(partInd).posn(l),

particle (partInd) .posn(2),dt,center,meanlint);

particle (partInd) .func resp prev=particle(partInd).func response;
end
end

else

% 1f we didn't find a positive fittness value before the
5 5th iteration that the region for deployment is
s extended.
> 1t helps in the cases, when the face region is not
% located well

for g = 0: (group-1)
for i=1:n

partInd = g*n + 1i;

particle (partInd) .posn=[round( (prev_right mouth(l) -
2*deltaRun) + 4*deltaRun * rand(l)) round((prev_ right mouth(2) - 2*deltaRun) +
4*deltaRun * rand(l))];
particle (partInd) .vel = [round (Vmin+ (Vmax-Vmin) *rand (1))

round (Vmin+ (Vmax-Vmin) *rand (1)) ];

o)

% check if the particle isn't too close to the lower edge

of the image,
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o)

% so that the lower edge of the template would get out
the bounds.

if particle(partInd) .posn(l) > (255 - (round(dt / 2)))
particle (partInd) .posn(l) = 255 - (round(dt / 2));

end

particle (partInd) .Pbest = particle(partInd) .posn;
particle (partInd) .func response =

cost functionMouthR2 (I,particle (partInd) .posn(l),

particle (partInd) .posn(2),dt,center,meanlint);
particle (partInd).func resp prev =

particle (partInd) .func response;

end
end

end

bestfind = find([particle((g*n + 1):(g*n + n)).func response] ==

max ([particle((g*n + 1):(g*n + n)).func response]));

best (g+1) = g*n + bestfind(l);

Gbest ((2*g + 1):(2*g + 2)) = particle(best(g+l)) .posn;
GbestFit (g+1) = particle (best(g+l)).func response;

MaxCord ((2*g + 1):(2*g + 2)) = Gbest ((2*g + 1):(2*g + 2));
best response(g+l) = particle(best(g+l)).func response;
MaxFit (g+1) = best response(g+l);

t=1;

thresh list=[];

end % all particles updated...

oe

.recording co-ordinates for display

itr = itr+1l;

thresh list=[thresh list best response];

if itr == 20

ind = 1;

end
end
% choose the best point
very best ones = find( GbestFit == max (GbestFit));
very best = very best ones(1l);

VeryBest = Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2);
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GbestFit (very best) = [];

Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];

very best ones = find( GbestFit == max (GbestFit));

very best = very best ones(1l);

VeryBest = [VeryBest Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2)];
GbestFit (very best) = [];

Gbest (2* (very best - 1) + 1: 2*(very best - 1) + 2) = [];

VeryBest = [VeryBest Gbest];
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Filename: cost_functionM outhR2.m
This is the cost function used to locate the right corner of the mouth while testing the

whole video sequence.

function y = cost functionMouthR2 (I, r,c,dtIn,center,meanInt)

% cost function for looking for the right corner point of mouth

global Im;

Im = I;

global dt;

dt = dtIn;

K = 50;

y = CMouth(r,c,meanInt);

SILIITTLL7I 77777777707 7777777777777777777777777777

function a = CMean(r,c)
% function calculating the mean intensity of all points within the template
global Im;
global dt;
Il=double(Im( r - floor(dt / 15) : r + floor(dt / 15), ¢ - floor(dt / 7)
c )i
a = (255 - mean2(Il));
SILLLTTTIL 7770777700777 7770777777777 77777777777777

function a = CMouth (r,c,meanInt)

global Im;

global dt;

a = 0;

I1 = double(Im( (r - floor(dt / 10) : r + floor(dt / 10)), c - floor(dt/2)
c )i

I2 = double(Im( (r - floor(dt / 10) : r + floor(dt / 10)), c : c +

floor(dt/4)));
I3 = double(Im( (r - floor(dt / 3) : r - floor(dt / 15)), ¢ - floor(dt / 7)

c )

I4 = double(Im( (r + floor(dt / 15) : r + floor(dt / 3)), c - floor(dt / 7)

c )
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I5 = double(Im( (r - floor(dt / 4) : r + floor(dt / 4)), c : ¢ + floor(dt /
5)))i

I6 = double(Im( (r - floor(dt / 15) : r + floor(dt / 15)), ¢ - floor(dt/10)
c )i

I7 = double(Im( (r - floor(dt / 15) : r + floor(dt / 15)), c : c +

floor (dt/10)));

meanIl = mean2 (Il);
meanl2 = mean2 (I2);
meanI3 = mean2 (I3);
meanI4 = mean2 (I4);
meanlIc = CMean(r,c);
meanI5 = mean2 (I5);
meanlI6 = mean2 (I6);

meanl7 = mean2 (I7);

b = CMouthTemplate (r,c,meanInt);

if (meanIl < 0.8 * meanInt * thresh lip) && (meanI2 > 0.8 * meanInt *
thresh lip)
a =a + (meanI2 - meanIl);
a = a + meanlIc;
a =a + (meanI7 - meanlo6);
if ((meanI3 - meanIc) > 50 ) && ((meanI4 - meanIc) > 50)
a=a + 100;
end;
else
a =a - 200;
end

SILIITTLL7 0777777777707 7777777777777777777777777777

function a = CMouthTemplate(r,c,meanInt)

)

% function trying to calcute if the region is really mouth. Calculates the

)

% avarage intensity of rectangular template

global Im;
global dt;

I1 = double(Im((r - floor(dt/6) : r + floor(dt/2)), c - dt : c ));

a = mean2(Il);

SILITTTLL77 07777777707 7777777777777777777777777777

265



function a = CPos(r,c,center)

% function evaluating if the given point lies under the eye

a = (-2) * abs(center - c);

SILIITTIL70 777777777077 777777777777777777777777777
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Filename: Pso_nose run_vector.m
Thisisthe particle swarm optimization algorithm used to locate the nose while testing the

whole video sequence.

function [Gbest M] = Pso nose run vector (Rmin,Rmax,Cmin,Cmax, I,width,

prev _nose, eye move vector, thresh nose)
% PSO algorithm for extracting the nose midpoint coordinates

n=5;%no of particles

Vmax= 5; % Max velocity..set arbitrarily

Vmin= 3; % particle move one pixel at a time at minimum
Gbest=[0 0];

GbestFit = 0;

MaxFit = 0;

MaxCord = [0 0];

wi = 0.8; %$inertial weight
cl=0.5;
c2=0.5;

ind=0;

coord=[];

prev_best values=[];
threshold=400;

dt = floor (width/4);

center = Rmin + (Rmax - Rmin)/2.0;

%initialising particles with random velocities and setting
%Pbest to the initial posiion

%Deploying the particles into an region where the nose is expected.

deltaR2 = round((Rmax - Rmin) / 2);
deltaR4 = round((Rmax - Rmin) / 4);
deltaC2 = round((Cmax - Cmin) / 2);
deltaC4 = round((Cmax - Cmin) / 4);

deltaC = Cmax - Cmin;

deltaR = Rmax - Rmin;

deltaRun = 5;
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nose moved = prev nose(l) - eye move vector;

)

% new borders of the nose region based on the vector of eye movement

Rmin = nose moved - round(dt/4);

Rmax = nose moved - round(dt/4);

Cmin = prev nose(2) - round(dt/4);

Cmax = prev nose(2) - round(dt/4);

for i=1:n
particle (i) .posn=[round((nose moved - deltaRun) + 2*deltaRun * rand(l))
round( (prev_nose (2) - deltaRun) + 2*deltaRun * rand(1l))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1)) round (Vmin+ (Vmax-
Vmin) *rand (1)) 1;

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center, thresh nose);
particle (i) .func_resp prev=particle(i).func response;

% I (particle (i) .posn(l),particle (i) .posn(2))=250;

end

% initiating wvalues

bestfind = find([particle.func response] == max([particle.func response]));
best = bestfind(1l);

Gbest=particle (best) .posn;

GbestFit = particle(best).func response;

MaxCord = Gbest;

best response=particle (best).func response;

MaxFit = best response;

itr=1;
t=1;
thresh list=[];

while ind == 0 && itr < 22

%Compute particles new position and velocities
% 1if GbestFit > 0 compute new position and velocities - algorithm

o)

% is converging.
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if (GbestFit > 0)
for i=1:n

% set new velocities

particle (i) .vel(l)=wi*particle(i).vel(l)+cl*rand(l)* (particle (i) .Pbest (1) -
particle (i) .posn(l))+ c2*rand(l) * (Gbest (1) -particle (i) .posn(l));

particle (i) .vel(2)=wi*particle(i).vel(2)+cl*rand(l) * (particle (i) .Pbest(2) -
particle (i) .posn(2))+ c2*rand(l) * (Gbest (2) -particle (i) .posn(2));

% set new position
particle (i) .posn(l)=round(particle (i) .posn(l) +particle (i) .vel (1)) ;
particle (i) .posn(2)=round(particle (i) .posn(2) +particle (i) .vel (2));

o)

% checking if the solution lies within domain

if particle (i) .posn(l) <Rmin || particle (i) .posn(l) > Rmax ||
particle (i) .posn(2) <Cmin || particle(i).posn(2) > Cmax
particle (i) .posn=particle (i) .Pbest; % setting position to

previous P-best

oo

particle (i) .vel=[rand(1l) *Vmax rand(1l) *Vmax] ;
setting velocity to max
end

o)

% Calculating the function response for each particle with new

o)

% positions

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center, thresh nose);
%checking and updating Pbest
if particle(i) .func response > particle(i).func resp prev
particle (i) .Pbest=particle (i) .posn;

end

particle (i) .func resp prev = particle(i).func response;
end
V=[particle.func response];

best ones=find(V==max (V) ) ;

best=best ones(1l);
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%Gbest is a global best of all times
sdisplay (particle (best) .func_response);
if particle(best).func response > GbestFit
Gbest = particle (best) .Pbest;
GbestFit = particle (best).func response;
end
best response=particle (best).func response;
if (best response < MaxFit)
MaxCord = Gbest;
end
else
% if is not > 0 than deploy te particles again in new random
% positions and with new random speeds
if (itr < 22)
for i=1:n
particle (i) .posn=[round((nose moved - deltaRun) + 2*deltaRun
* rand(l)) round((prev _nose(2) - deltaRun) + 2*deltaRun * rand(l))];
particle (i) .vel=[round (Vmin+ (Vmax-Vmin) *rand (1))
round (Vmin+ (Vmax-Vmin) *rand (1)) ];

particle (i) .Pbest=particle (i) .posn;

particle (i) . func response=cost functionNose (I,particle (i) .posn(l),particle(i).posn(2),
dt,center) ;
particle (i) .func_resp prev=particle (i) .func_response;

end

end

best=max position([particle.func response]);
Gbest=particle (best) .posn;

GbestFit = particle (best) .func response;
MaxCord = Gbest;

best response=particle (best).func response;
MaxFit = best response;

t=1;

thresh list=[];

end % all particles updated...
% 2 - based on the mean value of func response of all particles
if mean([particle.func response]) >= 1100;%threshold;

ind = 1;

end
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%...recording co-ordinates for display

itr = itr+1;

thresh list=[thresh list best response];

if itr == 20
ind = 1;
end
end
if itr == 22

End

Gbest = MaxCord;
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Appendix B - Facial Action Coding System

Figure B.1 Anatomy of Facial M uscles
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Table B.1 Facial Action Coding System

Source URL : http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm (05/09/2008)

AU Description Facial muscle Exampleimage
1 | Inner Brow Raiser Frontalis, pars medialis
2 | Outer Brow Raiser Frontalis, pars lateralis

Corrugator supercilii,
4 | Brow Lowerer
Depressor supercilii
) ) Levator
5 | Upper Lid Raiser
palpebrae superioris
_ Orbicularis oculi, pars
6 | Cheek Raiser
orbitalis
o Orbicularis oculi, pars
7 | Lid Tightener
palpebralis
) Levator labii
9 | Nose Wrinkler
superioris alaquae nasi
10 | Upper Lip Raiser Levator labii superioris
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http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm

11

Nasolabial Deepener

Zygomaticus minor

——

12 | Lip Corner Puller Zygomaticus major
Levator anguli oris
13 | Cheek Puffer
(a.k.a. Caninus)
14 | Dimpler Buccinator
) Depressor anguli
15 | Lip Corner Depressor

oris (a.k.a. Triangularis)

16

Lower Lip Depressor

Depressor labii

inferioris

17

Chin Raiser

Mentalis
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Incisivii labii

18 | Lip Puckerer superioris and Incisivii
labii inferioris

20 | Lip stretcher Risorius w/ platysma

22 | Lip Funneler Orbicularis oris

23 | Lip Tightener Orbicularis oris

24 | Lip Pressor Orbicularis oris
Depressor labii

) inferioris or relaxation

25 | Lips part
of Mentalis, or
Orbicularis oris
Masseter, relaxed

26 | Jaw Drop Temporalis and internal

Pterygoid
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27

Mouth Stretch

Pterygoids, Digastric

28

Lip Suck

Orbicularis oris

41

Lid droop

Relaxation of Levator

palpebrae superioris

42

Slit

Orbicularis oculi

Eyes Closed

Relaxation of Levator
palpebrae superioris;
Orbicularis oculi, pars

palpebralis

Squint

Orbicularis oculi, pars

palpebralis

Blink

Relaxation of Levator
palpebrae superioris;
Orbicularis oculi, pars

palpebralis

46

Wink

Relaxation of Levator
palpebrae superioris;
Orbicularis oculi, pars

palpebralis
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51

Head turn left

52

Head turn right

53

Head up

Head down

55

Head tilt left

56

Head tilt right

57

Head forward
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58

Head back

61

Eyesturn left

62

Eyes turn right

63

Eyes up

Eyes down
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Appendix C - Neural Network asa Useful Tool for Real-Time Facial

Expression Recogntion

Linda O., Chandrapati S., Tokuhiro A., 2007, “Neural Network as a Useful Tool for
Real-Time Facial Expression Recogntion”, Proccedings of 17" Conference on Artificial Neural
Networks in Engineering, St Louis, USA, Nov 2007.
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ABSTRACT

Human beings communicate by rather skillful projection and reception of facial
and voiced-expressions, as well as gestures (hand, posture, etc.). In order to
develop “tools”™ by which humans can interact with a computer, we need to
develop a software tool that is capable of processing, for example a wide range
of facial expressions (FEs) in time. Facial expressions, in their variety and in
addition, digital quality when captured presents itself as nontrivial challenge in
applied biometrics. In this paper we present results to date on development of a
real time and computationally “light™ facial expression recognition software
tool. Contrary to past studies reporting elaborate processing and FE
classification methods, we undertook an approach extracting a small number of
facial feature points, and one that realistically contained noise. We additionally
proposed a vectoral descriptor and amplitude for a given FE, relative to a
reference, neutral FE image. Moreover we trained and tested across FE
databases that were ethnically/'culturally and gender-wise different. Our resulis
to date opened for consideration the following in brief, that: 1) there are
similarities/differences across FE database, 2) wvectoral descriptors and
amplitude per FE appear effective, 3) “happy” and “surprise™ FEs are well
classified across different database, while 4) “angry-distress”™ and “fear-
surprise” pairs are linked by misclassification across databases; that 1s, there is
some evidence that these are ethmicity/culture specific and thersfore
misinterpreted.

INTRODUCTION
During one-on-one communication it is widely accepted that significant

amount of information 1s conveyed through non-verbal communication, such as
gestures or facial expressions (Mehrabian, 1968). Developing a software tool for
automatic facial expression recognition would significantly improve the
communication between human and computer not only during normal use, but

also when communicating with an handicapped person.
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Amongst an wide range of functional skills, we often take our ability to
recognize and project facial expressions for granted. this m fact 1s a challenge
when tried to achive usmng computers. The range of human expressions and the
cognitative state to which the expression 1s attached 1s vast. even a simple
expression such as a simle 1s different form person to person. Additionally, there
1s some evidence of differences amongst different ethnic groups and cultures.
However. as humans are able to distinguish between basic expressions/emotions
irrespective of ethnicity and culture, it 1s reasonable to assert that there exists a
commen functional modality for each expression. We believe that discovering
this modality and developing a tool to accurately extract an inherent “pattern”™
from an expression 1s the key to building flexible and robust facial expression
recognition software.

Automated facial expression recognition has been proposed by a number of
mvestigators; a notable, detailed survey is that given by Fasel and Luettin (2003)
and also by Pantic and Rothkrantz (2003). However, most of the approaches are
far from being applicable in a real time environment except perhaps for that
developed by Littlewort et al. (2003). This 1s mainly due to the limitation on
computing power; that 1s, considerable computing 15 needed for detailed 1mage
preprocessing and feature point extraction. In the present work, our objective 1s
to develop a useful real time application that will be capable of a relatively
accurate classification of the facial expressions. Because each captured frame
needs to be processed as quickly as possible, we plan to limit the processing
time per image. This poses a number of challenges. First of all we cannot extract
a large number of (facial) feature points. Instead we search for the most
distinguishable pomts i the face which can consistently be tracked
spatiotemporally (frame-to-frame 1f needed) with high accuracy. Secondly, we
exercise the option to limit the search for feature points if an initial “pass™ does
not easily reveal them. Thus, at the onset we expect a lower overall accuracy in
facial expression recognition and from a learning point of view (from a dataset).
we acknowledge the existence of noise in our data.

It 15 here at the pre-processing stage that we significantly differ from
Littlewort et al. {2006) where they began with the whole face region to get
92,160 possible features which they later reduced to a minimum of 500 features
using machme learning techniques. Under such circumstances they found an
optimum set of facial features, but without specifics on what features are being
learned and are important. Based on Bassili's (1978) experiment, we instead
choose to select points on the face.

In the present work we will introduce results to date of work toward
developing a real time facial expression recognition tool. We used a feed-
forward Artificial Neural Network (ANN) tramned with back propagation
training using gradient descent with momentum rule, to adapt to the
charactenistics of our facial expression image database. The ANN was bult
using the neural network toolkit in MATLAB™ _ In this paper we present our
results on classifving captured facial expressions from snapshot and wvideo
frames._ extracted from ethnically different databases.
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LEARNING

One of the most common techniques for facial expression classification 1s
via Artificial Neural Network (ANN). Based on our previous work on facial
expression biometrics (Chennamsetty and Tokuhiro, 2004; Chennamsetty,
2005). we sought to use ANN to perform (quasi) real-time FE-classification.

There are two basic approaches to classifying expressions, one being
identifying the presence of each (facial) action unit (A1) as defined by FACS
(Ekman and Friesen, 1978) and then classifying based upon combinations of
AUs, and the other, classifving the FE into one of the six basic emotions as
defined by Ekman (1992). Here. we chose to classify the given face into one of
the six basic expressions: Anger, Distress, Fear, Happv, Sad and Surprise. The
tracking of AUs requires high resolution and standardization of images, which 1s
ultimately far from reality. We also recognize that precisely defining a FE 1s
difficult (perhaps irrelevant) and it 1s often unrealistic (questionable) to seek a
“pure” FE. In fact, as FEs are highly spatiotemporal, each given expression can
be a mixture of several FEs. Thus, ideally the ANN should output its “degree of
belieficonfidence”™ in how much a given FE is similar to one of our six
expressions. A feed-forward ANN tramned with back propagation learning rule 1s
capable of giving such a response (Kobavashi and Hara, 1992).

expressions that we are trying to classify. From left to right: Angry
{An), Distress (Di), Fear (Fe), Happy (Ha), Sad (5a), Surprise (Su).

Figure 2. Fram‘-; from the video sequences from the M.‘s[[ database.
From left to right: Angry, Distress, Fear, Happy, Sad, Surprise.

INPUTDATA

For our experiments we used two facial image databases. The first. known
as the JAFFE database, consists of 213 images of 10 Japanese females (Lyons,
1998). The second database, known as MMI, consists of video sequences of 15
different subjects (Pantic et al.. 2003). The MMI subjects are mostly voung
white males and females. Each video sequence starts with a neutral face and
then slowly transitions to an expression and back to a neutral face.

Feature Points Extraction

Although some may contest Johansson's (1973) point light experiment and
Bassili's (1978) experuments based on Johansson's work, there is evidence that
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extraction of only the key facial features or points are enough for classification
of FEs. Further., as we are cogmizant of in-the-field application issues, we
decided to locate 17 of the most distinguishable feature pomts on the eyvebrows,
eves. nose and mouth, as shown in the Fiz. 3. To locate these points we used an
algorithm consisting of three main stages: 1) Face region estimation, 2) Feature
region detection, and 3) Fearure point detection. In the first stage, face region
location 1s estimated using seeded region growing method. This face region
information 1s passed to the feature region detection algorithm that identifies key
points of the eves. mouth, nose and evebrow using a Particle Swarm
Optimization-based search. The feature points associated with these regions are
defined bazed on the assumption that the feature 1s continuous at least along 1ts
edge and separated from other features, even if large variations appear within
the feanu%itself. This 15 accomplished by using the bounding box function built
mn Matlab™.

Figure 3. Face with located feature points that we select on the face.

Descriptors

In Fig. 3, the absolute coordinates of the feature poimnts only tell us where
they are located in the image. Rather one needs to construct ‘a descriptor’ that
describes the position of the feature points with respect to the other points, for a
given FE. This descriptor 1s also important m order to compensate for head
movement and differences in placement of the face in the field-of-view (frame).
In other words, we want to extract information about the feature points’
movement on the face. We constructed a descriptor “vector’ consisting of 42
different distances, angles and vectors among the points. This descriptor vector
served as the input vector for the ANN.

Tracking changes in expression

Rather than processing each FE image as single enfity, in the present work
we focused our interest on changes m FE between two images; that 1s, what
Cohen et al. (2003) called static processing. As FEs constantly change. we
sought to extract information like whether the corners of the mouth move
relative to one another or whether the eyebrows are rising relative to the mouth.
Our goal throughout was to classify the expression into one of the six accepted
FE groups. Therefore we generated a descriptor vector for a given FE image and
compared it with the descriptor vector of the neutral FE for the subject. In this
manner we derive the change in descriptor vector relative to the neutral vector
FE for the subject. For the JAFFE database we have three neutral FE images for
each subject. So we took each of these as a reference neutral descriptor and
calculated difference vectors between these reference vectors and the FE vector
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of interest. Where-as in the MMI video-frame sequence we first split the video
mto individual frames and took the first FE frame (always neutral) in the
sequence as the reference and then calculated the relative changes between
subsequent frames relative to this reference. We thus generated a sequence of
vectoral descriptors tracking the spatio-temporality of FEs.

Target function

In order to tramn the ANN we constructed a tramning set contaming labeled
mstances. In the case of the JAFFE database we assigned the same apriori
expression label from the database to the demved descriptor relative to the
reference neutral FE. However, for the MMTI database, lacking apriori labels, we
devised an approach as follows. Here we sought to attach one of the six FE
labels to each frame from the video sequence. The question is what label we
should assign to each FE frame, as the expression changes in time from a neutral
face. In addition, in some frame-to-frame sequence, we had to assign
mcrementally different FE labels; that 15, at some point, one frame for instance,
was labeled ‘neutral” and the next “happv'. even if it represented the first of
several images expressing a happv FE. We recognize that this incremental
evaluation introduces some noise ito the database and may influence the
training exercise.

EXPERIMENTAL RESULTS

In considering ANN methods, we initially used a feed forward NN with
back propagation trammng rule. We began with the JAFFE database as our
tramung set and the preprocessed video sequences from the MMI database as our
testing set, since our eventual goal is to tun this on real time wvideo. As a
comparison we also constmucted 10 pairs of training and testing sets from the
JAFFE database. In each pair there are 9 subjects 1n the traming set and the tenth
was used for cross validation. Splitting the data m this way for each subject gave
us 10 cross validation sets. By tabulating the result for each cross validation set,
we were able to assess and compare the performance of the ANN of the JAFFE
and the MMI database.

Training and testing on the JAFTE database

We first present our results of traming the ANN on the JAFFE database and
testing 1t on the JAFFE database cross validation sets as was described above.
We present these results first. because we anticipate that testing the ANN on a
non-JAFFE images would potentially yield either misclassification of FEs or a
strong indication of the goodness of a minimal feature point set that we used per
FE. In fact, this baseline should wield expectedly good results. The following
results were achieved by using ANN with one hidden laver containing 30
neurons. We trained 10 different networks and then averaged the results.

Table 1. True positive rate for ANN trained and tested on the JAFFE
database.

TP Angry Distress Fear |Happy Sad Surprise
58.43% | 5733% (42.00% | 50.89% | 74.17% [44.22% |90.00%
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As shown i Table 1, the average, overall accuracy of the tramned ANN was
58.43%. but ranges from a low of 42% for “distress™ to as high of 90% for
“surprise”’. This average figure of merit (FOM) 1s disappomnting when compared
to higher figures reported by other studies. However, we emphasize the limited
number of feature points extracted per FE and additionally, noise contained in
the data. In fact, other studies when tested with FE images bevond its training
database show a comparable true positive rate. Thus, in the task of classifving
s1x different FEs, we conditionally accepted this figure of merit. In fact, this
figure 1s consistent with the drop in accuracy of FE recognition by human
subjects (Bassili 1978). Also the table shows accuracies for each particular FE.
From above we can clearly see that our methodology 15 suited for classifving
FE= with clear movement of feature points, 1.e. “happy” and “surprize™ relative
to the neutral FE. We assert that these FEs are well-suited for the ANN to leam
and classify. On the other hand. FEs such as “angry. distress, fear and sad™ are
“weaklv” characterized by our descriptor and therefore not well-suited for the
ANN to learn. Another possible source of the lower FOM 1s the inherent noise
that could mask anv pattern in our training or testing data.

Training on the JAFYE database and testing on MMI database

It 1s mmpractical to assume that we will alwavs have associated training
dataset available for a FE which we want to analyze. Therefore to evaluate the
ability of our ANN-based application to recognize FEs on unseen (external)
faces, we first trained the ANN with the JAFFE database and then tested images
taken from the MMI database. In fact, not only are the trainmg/test sets
different, they span ethnic and cultural characteristics. Thus, again using the
same ANN, we averaged the results of 10 networks. Validation based early
stopping was used while tramming the ANN, this method uses a sample validation
set that 1s used to test the netowrk after every epoch of traming and stops furthur
training upon increase in the error for the validation set. even if the maximum
number of tramning epochs has not been reached. In this case we used a sample
of the MMI database as the validation set so as to improve performance. This
also prevents the ANN from overfitting, which 1s when the ANN begins to
memorize the training set rather than 1dentifying a trend.

Table 2. True positive rate for ANN trained on the JAFFE database
and tested on the MMI database.

P Angry Distress | Fear Happv Sad Surprise
55.96% | 57.38% |[17.22% | 13.05% | 90.80% |350.24% |92.00%

Table 2 shows that the average accuracy achieved on a different database
was 55.96%. which 1s comparable to the accuracy we achieved using the JAFFE
database. This 15 also comparable to the nonlinear AdaSVM developed by
Littlewort et al. (2006) who reported impressive results for FE recogniton on
one database; however, this FOM dropped to ~60% when tested on another
databaze.
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One can agam see that “surprise(Su)”and “happy(Ha)” FEs consistently
produce higher figures of merit and support the view that these FEs are easiest to
train on and classify. Interestingly, the ANN 1s some 15% better at recognizing
the happy expression in the MMI than in JAFFE on which it was trained.
Though limited. we learned through our own FE database development that
subjects from some ethnicities and cultures (here Asians) do not express a sense
of “happy” with the same “intensity”™ as from other backgrounds. However, the
vectoral descriptor appears to be consistent for both JAFFE and MMI. We can
also see that “angry” and “sad” FEs are still relatively difficult for the ANN to
classify; that 1s, the descriptor for these MMI FEs is not particularly distinet.
Interestingly the true positive rates for FEs “distress”™ and “fear™ exhibated a
significant decrease relative to Table 1. In fact, in the case of “fear™, the rate 1
worse than that achieved by random guess. So overall the performance of the
ANN tramed on the JAFFE and tested on the MMI database appears to be
consistent for Angry. Happy, Sad and Surprise expressions and (provisionally)
suspect for Distress and Fear, relative to Table 1.

INTERPRETATION OF OUR RESULTS

We will be disussing a curtons observation where there was a drop in FOM
with respect to Distress and Fear expressions on the MMI database suggesting
that indeed there may be some potential ethnic and cultural constraints (within a
group) and equally, bias (beyond a group) when tramnmg and testing on different
database.

Lower FOM on Distress and Fear FEs

We observed from Table 1 and Table 2 that the FOM resulting from the
ANN were consistent except for the FEs, “distress” and “fear”. To mnvestigate
the potential source of these results, we generated a simple “confusion matrix™,
Table 4, for ten networks of our ANN. Here the top row FE labels represent the
classification FE and the leftmost column FE labels represent the true (known)
classificatton. Thus the diagonal elements sigmify a (desired) one-to-one
“correct” correspondence; the off-diagonal elements per column signify
mcidence of misclassification. The asterisk (*) 15 discussed below.

Table 4. The confusion matrix of ANN trained on the JAFFE database
and tested on the MMI database.

true'classif. Angry Distress Fear Happv Sad Surprise
Angry 30 3 5 0 2 0
Distress 26" ] 1 0 2 1
Fear 0 4 2 1 8 31=
Happy 0 1 2 44 2 1
Sad 3 ] 3 0 23 6
Surprise 0 0 0 0 3 47

For for all FEs “Angry. Distress, Fear, Happy. Sad and Surprise”, we see
that one element (box) contamns the largest number of incidents. In fact, “Angry,
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Happy. Sad and Surprize”™ are correctly classified with conditions to be
discussed. Further, by the low number of incidents on the diagonal, both
“Distress and Fear™ are inconclusively classified. That 15, these two FEs leamnt
from JAFFE tramning set 1s weakly correlated to the same FEs from the MMI test
set, and thus misclassified as other FEs, except surprise. At the least, “distress
and fear™ 1s not taken as “surprise” by the paired JAFFE-MMI datasets.

Next, we noted that a large number of incidents of “distress and fear
(column)” test examples were muisclassified as “angry and surprise(row)”
respectively. Here, the network 1s simply not able to distinguish between “fear
and surprise” and “angry and distress” FEs: that is, even though human
experience may indicate a measure of confidence to the contrary (that one can
indeed distinguish Fear, Surprise, Angry and Distress), from a image processing
and ANN perspective, these FEs “look™ similar and are pawed. Moreover, there
were not recorded mcidents of “surprise” misclassified as “fear™ and only a few
cases of “angry” misclassified as “distress”. Based on this. the wvectoral
descriptor corresponding to “Distress and Fear” learned wvia ANN/JAFFE
appears to be similar to the descrniptor corresponding to the MMI FE for “Angry
and Surprise” respectively.

Finally, from an application perspective we suggest the following ethnic
and cultural mferences. As noted, the JAFFE database used here for ANN
trammg consists of voung to middle-aged (20-35 wvears old) Japanese female
subjects. On the other hand. the MMI database for tramning, consists of diverse
(gender, age) subjects but contains in majority, white (Caucasian, European)
men and women. There are individual subjects (see Fig. 2) with different
ethnic/cultural appearance. This leads us to the partial interesting conclusion that
ethnic, cultural and gender differences between these two databases can lead to
misclassification and expectedly. a lower FOM. These results may also suggest
that, although six basic FEs are widely accepted as common across ethnicities
and cultures, the subtleties associated with FEs that are etther mixed FEs and/or
lower in amplitude intensity” (not a distinct vectoral descriptor) can be
misclassified when the training occurs on a ethnicitv/culture-specific database
and testing on another specific or non-specific database. Further, results from
our work suggests that the FEs, “distress-fear”™ and “fear-surprise™. are prone to
a patred misclassification when tramnmg occurs on JAFFE (Japanese) and testing
on MMI (mostly Caucasian/European) FE datasets.

CONCLUSION

Human beings communicate by many means but in spoken conversation
with one or more subjects, the voiced and facial expressions (FEs) are dommant
modes in conveying mformation. In the present work we sought to process facial
expressions images and classify them into one of six standard FEs; that 1s,
“happv, sad. surprised, fear, distress and angry”. A seventh neutral expression
was taken as a reference for both of the two FE databases we used in the study.
To maintamn minimal computational effort, we used a limited number of facial
feature pomts (per FE image) and accepted a measure of noise as well.

In spite of these conditions and comstramts, we showed that the ANN
conditionally performs in a reasonable manner. That is. although the overall
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figure of merit (FOM) of our method does not attain a high value reported by
previous investigators, we note that these higher FOMs are achieved at the
expense of off-line and computationally-intensive FE recognition. image
processing and classification. From the present objective applications i the
field, quasi-real time acquisition, processing and classification of lower quality
facial mmages are anticipated. Our results to date indicate the following for
consideration, mamly that:

» Training with an ethnicity/culture specific (JAFFE) FE database and testing
with different databaze reveals some consistencies and differences among
FEs.

* Generating vectoral descriptors for a given FE and tracking change m 1ts
amplitude, relative to a reference, neutral FE 1s a simple wav of analyzing
spatiotemporal changes in FEs.

s The “happy” and “surprise” FE: are consistently recognized and classified
across these FE database via use of vectoral descriptors.

* The “angry-distress” and “fear-surprise” FE pairs are evidently linked by
muisclassification across different FE databazes:; that i1s. there 15 some
evidence that these are ethnicity/culture specific.

ONGOING WORK

In our research we are working toward improving the performance of our
algorithm. And also improve the performance of the ANN using a larger
database of ethnicallv/culturally diverse facial images or video sequences. We
are also investigating initial indications that differences in FEs (and thus
emotions) between different ethnicities and cultures can indeed be revealed by
the systematic misclassification as indicated by our “confusion matrix™. Fimally,
in order to reduce computational time while simultaneously improving FOM. we
are developing a means to quasi-simultaneously process the voiced expression
along with the FE since the voice also conveys a measure of the state of emotion
(Ramamohan and Dandapat, 2006).
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