
/DATA BASE DESIGN PRINCIPLES APPLIED
TO A NETWORK MODEL

BY

MARK A. COSTELLQ

B.S. , Pittsburg State University, 1979

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

198«

Approved by:

Z/LiLl^dA^—
Major Professor

CO
c. -X-

MIEOE bQ077b

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

CHAPTER

1. INTRODUCTION 1

2. DESIGN OVERVIEW 14

3. BERNSTEIN'S ALGORITHM AND USER REQUIREMENTS . . 30

». DATA BASE INITIALIZATION 47

5. DATA BASE CUSTOMIZATION fc8

6. SCHEMA CREATION Sfi

7. SUMMARY AND CONCLUSIONS 93

BIBLIOGRAPHY 102

APPENDIX

A. SOURCE STATEMENTS 105

ACKNOWLEDGEMENTS

The author expresses his sincere appreciation to Pro-

fessor Elizabeth A. linger for her patience, guidance, and

encouragement during this project. The author also express-

es his sincere appreciation to Cindy Norman for her faithful

assistance during this project.

Chapter 1

INTBODDCTION

1. 1 Jhe Problem

1.1. 1 Introduction of Complex Data Base. Management Soft;

ware

The aata base approach for the storage, maintenance, and

retrieval of data is becoming a popular approach to the

problem of organizing data using a computer. A 1979 publi-

cation by B. L. Nolan indicated that over 60 percent of the

total number of data processing installations are committed

to the data base approach (NOLA79) for the organization,

storage, maintenance, and retrieval of data. The tradition-

al and data base approaches to data management differ in

that traditional data management methods organize data in

support of a specific service of an organization, introduc-

ing unnecessary replication of data, whereas, the data base

approach maintains data as a resource for the entire organi-

zation offering the opportunities for reduction of data re-

dundancy and the reduction of maintenance, integration, and

retrieval costs. Sophisticated data base management soft-

ware, known as data base management systems (DBFISs) , have

- 1

been written to support the data base. Although several

different classifications of the loqical data organization

for data bases exist {e.g., hierarchical, network, and rela-

tional) , the majority of functioning DBMSs are based on the

network model (01LE78). Network DBMSs are considered effi-

cient to operate if the data base is orqanized properly, but

data bases organized according to the network model are com-

plicated to design. This complexity demands a broad spec-

trum of expertise from those responsible for data base de-

sign. Thus, tools to automate or partially automate this

design process would be very helpful to those faced with the

task of automating the design of a data base structure ac-

cording to the network model.

1.1.2 D a ta Base Des ign Expertise

The central responsibility for data base design is the

data base administrator (DBA). As indicated by a well expe-

rienced data base consultant and frequently published au-

thor, Ronald Ross, the expectations of the DBA are over-

whelming.

"The typical corporate DBA finds himself trapped
on every side by a set of expectations totally out
of line with reality. On the one hand, DP manage-
ment expects that the DBA be thoroughly proficient
in the technology of the corporate DBMS, so that
database systems run smoothly and efficiently. . .

Yet at the same time, application and business
analysts (as well as end users) demand that the
DBA be so knowledgeable about detailed business
operations that all the endless subtleties of "do-
ing business" can be taken into account when cre-
ating the database design, . . . still more expec-
tations crowd in on the DBA. Realizing that a
crucial measure of any applications' s success

2 -

(whether database or not) is the ability to expand
and evolve over time—and that maintenance over-
head is a primary obstacle to this goal—the DBA
is expected to create database designs havinq in-
herent stability. . . . Translated, this means
that the DBA must also be an expert on the practi-
cal application of normalization for the design of
large-scale data resources. . . . Finally, there
is one last source of expectations. For those
corporations that have implemented a data adminis-
tration function, the DBA is expected to adhere
to, and promulgate, the data element (and other)
standards which that group produces. " (R0SS82)

In the likely event that the DBA cannot completely ful-

fill all the above expectations, a number of problems may

arise. According to Jan Bumberger of TSI, International,

the problems are not new ones. He states,

"The list of problems is a familiar one: D3HSs
being used as an access method, DAs unable to get
a real handle on element standardization, poor
database designs, high subsequent maintenance
costs. The results is increasing user and manage-
ment disenchantment with the costs and promised-
but-not-delivered benefits of data base technolo-
gy." (EOSS82)

These problems can have significant impacts on the produc-

tivity of an organization. It is imperative to develop

tools which reduce the expertise which must be available to

an organization designing a data base and to move the design

process from the art that it is currently to a scientific

methodologically based process.

3 -

1.1.3 Data Base Develo£ment Aids and their Shortcomings

Three of the most widely used data base development

aids currently available to data base designers are 1) the

data dictionary, 2) the normal forms introduced through

relational data base theory, and 3) data base development

methodologies.

1.1.3.1 Data Dictionary

Due to the sizable volume to data necessary to design,

implement, and maintain large computerized systems, the con-

cept of the data dictionaries emerged. Although there does

not exist a single definition for a data dictionary, the

following is one that most would find acceptable.

"A DD/D [Data Dictionary/Directory] is a central-
ized repository of information about data descrip-
tions such as meaning, relationships to other
data, responsibility, origin, usage and format.
It is a basic tool within the data base environ-
ment that assists company management, data base
administrators, systems analysts, and applications
programmers in effectively planning, controlling,
and evaluating the collection, storage and use of
the data resource." (UHK073)

Although data dictionaries are useful data base develop-

ment aids, they are not without problems. Data dictionaries

are designed primarily as maintenance aids and not data base

development aids (BOSS82) . Furthermore, in instances when

data dictionaries are designed to function as pre-implemen-

tation utilities they ". . . are concerned with efficient

- 4

physical data storage and access. They don't address them-

selves to the problem of generating an appropriate, com-

plete, accurate, and long lasting schema. " (TSIC78)

1.1.3.2 Normalization

The theory of relational data base normalization, as in-

troduced by Edgar Codd of IBM Corporation (CODD70) , provides

useful criteria for grouping data elements so as to reduce

data redundancy and limit data maintenance anomalies. (A

more precise definition of normalization is provided in

Chapter 3.) Normalization has proven to be a useful design

aid no matter which logical data organization model is being

used.

The foremost problem with normalization is that tradi-

tional normalization technigues (i.e., manual technigues)

are complex, cumbersome, and error-prone. Although a

synthesis algorithm has been derived to meet the criteria of

normalization [BEEN76) , in only one known case has this pro-

cess been incorporated as a design aid in an automated data

base development process (ROSS82) .

1. 1.3.3 Data Base Development Methodologies

To provide a more systematic approach to data base de-

sign the academic (TSIC78, HOLI79,CfiEN77) , consultant

(YOUB79,MUER80) , and corporate (ATRE80,MCEL79) communities

have established data base design methodologies. A data

base design methodology eclectically derived from the above

sources appears in Exhibit 1. 1.

{1) Determine user requirements

(2) Document data element attributes and their
inter-relationships

(3) Create normalized records

(4) Establish inter-record relationships

(5) Create a conceptual schema

(6) Transform the conceptual schema into a
physical model

(7) Convert the physical model into data
definition statements

Exhibit 1.1

While working as a consultant for Performance Development

Corporation, Ronald Ross supported data base methodoloqies

similar to the one in Exhibit 1.1 in corporations nation-

wide. Through his experience he found several major areas

of concern.

"First, the projects tended to become overwhelming
simply by the sheer volume of documentation pro-
duced. The tasks of monitoring standards, admin-
istering revisions, and producinq reports often
became major stumbling blocks to success. ... A

second problem was that no hard and fast method
existed for translating user requirements
("services") into a stable nonredundant database
architecture. Almost inevitably, it seemed, head-
strong and performance-oriented DBAs ended up do-
ing their own physical designs--which may or may
not have either matched the users' requirements or
constituted a reliable model of his business."
(R0SS82)

These concerns are addressed directly by the research de-

scribed in this thesis.

- k -

1.2 Current Relevant Research

In a search of the literature only one automated inte-

grated approach to data base desiqn was discovered. The

system, still under development, is known as FACETS

(ROSS82) . Ronald Ross, formerly of Performance Development

Corporation, was seriously considering automation of the

data base design process as early as the mid-1970s. By

1981, Ross had made marketable the initial system components

of what will likely become an integrated system for automa-

tion of the conceptual data base design process. FACETS is

described by the manager of Data Management Products for

TSI, International, Jan Rumberger, as "representing a major

evolutionary step . . . that will ultimately encourage bet-

ter— and more creative—results with database development

than ever before possible." (ROSS82)

The information required for the use of FACETS car. be

classified in three categories.

"Defining the business context of the data base
project, primarily (but not exclusively) to answer
'strategic' questions of scoping, planning and
higher-level data organization. ...

Defining the individual requirements that the fu-
ture database project must satisfy. These re-
quirements are called 'services,' and roughly
equate to inputs and outputs the end-users need
within the new system.

Developing a logical architecture for the database
system. In contrast to the 'local requirements'
of the previous area, the logical database archi-
tecture represents a 'global* statement about in-
tegrated data organization." (R0SS82)

7 -

In order to create and maintain the above data, FACETS

supports three major processes:

1) The entry and inspection of "Service Local
Views" to represent user requirements and ob-
tain dependencies about data elements.

2) The "Relational Generator" module to provide an
automation of the normalization process based
on information provided by "Service Local
Views".

3) The "Database Project Dictionary" to enter,
maintain, cross-reference, query, etc. informa-
tion relevant to the data base development pro-
ject. (MCCH83)

Thus the FACETS system terminates in the desiqn process with

the fifth step, create a conceptual schema (see Exhibit

1.1). FACETS is said to be generalized in that it is de-

signed to collect all the data, data descriptions, and data

relationships required in steps six and seven of Exhibit

1.1. Since steps six and seven require knowledge of the

specific tarqet DBMS, FACETS requests or creates data not

required for a specific DBMS.

1. 3 The Solution

In contrast with FACETS, the system described in this pa-

per, known as DB_GEN, has been designed not only to be a

useful design aid, but specifically to map the logical enti-

ties of a user's data base schema into IDHS data definition

language statements (PERH77) . That is to say, this tool,

DB_GEN, aids the designer through all sever, steps of the de-

sign process (see Exhibit 1.1), but aids in desiqn steps six

and seven only for one specific DBMS, IDMS.

The major objectives of this research are:

1) to organize and simplify the data base design
process through applied data base development
aids and

2) to carry the design process beyond logical data
base design by transforming a conceptual view
of the data base into CODASYI data description
source statements (specifically those reguired
by the Integrated Data Management System mar-
keted by Culinet (PEBR77)).

A generalized system such as FACETS may fail to reguest, or

at least poorly represents, all necessary data for specific

DBPISs. Thus, through selection of a specific DBMS the au-

thor feels the objectives of this research can be more

clearly stated and addressed.

The research objectives of this implemention were met us-

ing a single menu-driven interactive PL1/IDMS program called

DB_GEN. The data flow diagram, depicting the flow of con-

trol and data within DB_GEN is presented in Exhibit 1.2.

CONTROL AND DATA FLOW DIAGRAM FOR DB^GEN

FUNCTIONAL S
NON- FUNCTIONAL
DEPENDENCIES

Major entities
DATA BASE, F.ECORD
DATA ELEMENT, and SET

SYMBOL

o

IDMS SCHEMA
STATEMENTS

MEANING

PROCESS

SOURCE OF INFORMATION

TEMPORARY REPOSITORY
OF DATA

DATA FLOW

Exhibit 1.2

- 10

As illustrated by the control and data flow diagram in

Exhibit 1.2, the initial inputs into the system are func-

tional and nonfunctional dependencies. A functional depen-

dency (FD) exists when a given data element value is unique-

ly identified by the value (or set of values) of one or more

other data elements. For example, a functional dependency

exists between data elements X and Y if for any value of l

there is at most one value of Y (written 'X > T')- A non-

functional dependency (NFD) exists when a given data element

value is not uniquely identified by the value (or set of

values) of one or more other data elements. For example, a

nonfunctional dependency exists between data elements R and

S if for any value of E there is zero, one, or more values

of s (written "R » S") . once functional and nonfunctional

dependencies are collected, the data base about the data

base schema (i.e., a meta data base), is initialized (see

process one of Exhibit 1.2). All meta data base entities

(DATA BASE, DATA ELEMENT, RECORD, and SET) are customized in

process two of Exhibit 1.2 to meet user requirements with

respect to IDMS specifications. DB_GEN was desiqned under

the assumption that the data base desiqner (and the reader

of this report) has a qood workinq knowledge of the IDMS

generalized data base management system (PERR77). Following

customization of data base entities, process three of the

control and data flow diaqram transforms the data base enti-

ties into IDMS data definition languaqe statements accepta-

ble to the IDMS schema compiler shown in process four.

11 -

1.4 Guide to this PaEer

In order to familiarize the reader with menu perusals.

Chapter 2, Desiqn Overview, illustrates the user interaction

formats which are consistent throuqhout the entire implemen-

tation. Additional menus indicate how entities that are

stored in the meta data base are updated and what types of

interactions are made when conflicts between entity attri-

butes exist. once menu perusals are introduced, an outline

of primary activities is used as an overview of the various

system features.

A useful generation of entities requires a clear under-

standing of user needs. Chapter 3, Bernstein's Algorithm

and User Hequirements, discusses the transformation of user

requirements into functional and nonfunctional dependencies

and describes how Bernstein's alqorithm uses these dependen-

cies to create a relational schema.

Chapter 4, Data Base Initialization and Interpretation,

provides a description of how maior meta data base entities

are established from data element dependencies. Functional

dependencies, throuqh the use of Bernstein's alqorithm, qen-

erate data elements and records. In addition to the qenera-

tion of data elements and records, functional dependencies

also establish 1-to-1 inter-record relationships. Nonfunc-

tional dependencies are modified to represent owner and mem-

ber records and once modified the respective 1-to-many rela-

tionships are generated.

12 -

Chapter 5, Data Base Customization, describes the inter-

action between the data base designer and the system in or-

der to resolve issues about the data in the meta data base

that are mechanically unresolvable. Special emphasis is

made to default as many DBMS software parameters as possible

to minimize the need for customization. In situations where

the efficiency of the data base operation is the only con-

cern, parameter selection is made without the ability for

the DBA to make modifications. However, the DBA is given

the ability to modify all parameters that involve a correct

representation of user needs. All modifications are care-

fully scrutinized for potential conflicts and if such con-

flicts are found the system responds with helpful advice.

To insure the integrity of the meta data base, all propaga-

tional changes are carefully updated.

Chapter 6 describes the process of creating an operation-

al schema. Once meta data base entities are customized a

transformation must be made from the augmented conceptual

view to the IDM3 data definition statements. Although this

module consists of mostly a reformatting task, CODASYL re-

strictions, relationship interpretations, and pointer as-

signments introduce interesting transformations and algor-

ithms .

Chapter 7 summarizes the contributions of this research

and concludes with a discussion about future supportive re-

search.

- 13

Chapter 2

DESIGN OVERVIEW

The major subsystems of DB_GEN are highliqhted in this

chapter and covered in detail in later chapters. Addition-

ally, a case study is introduced in this chapter and used

throughout this paper as a tool to clarify the use of this

system by the data base designer. Followed by the case

study introduction, several sample menu traversals throuqh

DB_GEN are conducted to inform the reader of how this system

is used.

2. 1 I

m

ple mentation Description

2.1.1 DB^GEN Conceptual Schema and Block Diagram

The prevalent tool of data base practitioners to under-

stand and describe their data base requirements better is a

conceptual schema (e.g., see Exhibit 2.1). Rectanqles of a

conceptual schema represent data base entities containing

data elements that are bound by a unique identifier. The

arrows between entities represent relationships reguired by

user policy. A double-headed arrow indicates a 1-to-many

relationship, whereas, a single-headed arrow represents a

1-to-1 relationship. Ironically, this implementation uses

- 14

the IDHS network DBMS to maintain data about user ID.1S data

base schemas. Therefore, the conceptual schema describing

the data used by DB_GEN (see Exhibit 2.1) is a data base

schema representing data base entities and the relationships

between those entities (i.e., a meta data base schema).

This meta data base is representative of what has been tra-

ditionally called a data dictionary.

DEFINED-
3Y

I

CONCATENATED-
BY |

I

IHITIALIZED-BY
I |

»| DEPENDENCIES |

I I I

T 7
•J DATA-3ASE |

GROUPED-
IN

| DIVIDED-
I INTO
I

V

V _ .
CWNER-OF

"»l
I

>>|) »| |

I DATA
| | RECORD

J

1 ELEMENT |« 1 | »)
i I POPULATED-)) MEMBER-OF

)

WITH

LINKED-
V BY
v

SET I

Exhibit 2.

1

15 -

The block diagram of processes in Exhibit. 2.2 illustrates

the six major modules and significant sub-modules of DB_GEN.

These modules are used by the data base designer during the

development of a user's data base schema.

DB GEN

] I

I DB_ENTRY |

+

I I

| LEVEL_2 i

+-

1

1

1

1

+-

PBINT
DATA

- +

1

1

1

1

- +

DB_INIT
+ + + +

I I I CREATE_LBNT_REC |

I DEPENDENCY J] 1

I
_ENTRY

I I
<

I

1 J] I II
+ +

J] BEEN_ALG i j

II II
I

+ + 1

I
CREATE_SET

J

I
+ +

I I CREATE_ I

I I
MEMBER_

I

I I
RECORD]

J CREATE_ J

I
OHNEH_

I

I RECORD
I

+ 4.

DB_CUST

1

] DB
]

t

1 J

I
LMNT |

| UPDATE
1

1

1

J UPDATE
I

1 1

SCHEMA CREATE

+ +

1 J

I HECOHD_|
I
UPDATE J

1 I

+ +

+ +,

+ 1

1 I

I SET_
I

] UPDATE I

I I

+ +

+ *

I I

I
SIMPLE I

I _"_N 1

I I

+ *

+ +

1 J

I
POINTER

I

J _CREATE1
I I

+ +

I I

I
MISSING)

I _DATA_ J

I
CHECK

I

t +

+

I I

I
DDL_

I

I
CREATE

I

I I

+ +

+ + +

Exhibit 2.2

16

2.1.2 Infiut, Out£Ut, and Processes of DB_GEN

The data base designer enters DB_GEN in the DB_ENTRY mod-

ule (see Exhibit 2.2) where a selection of a user's data

base schema is made from those that are present in the DATA

BASE entity (see Exhibit 2.1). (Note: Throughout the re-

mainder of this section, when there is a reference to an

"entity" or "relationship" occurrence, refer to Exhibit 2.1,

and when there is a reference to a "module" occurrence, re-

fer to Exhibit 2. 2).

All services for development of the user's data base

schema are then presented through a primary menu in the

LEVEL_2 module.

The first service provided in the development of a user's

data base schema is to initialize the major entities of that

schema using the DB_INIT module. Functional dependencies

(FDs) and nonfunctional dependencies (NFDs) representing

user requirements are stored in the DEPENDENCIES entity and

are linked to an instance of the data base entity by the

INITIALIZED-BY relationship. Once functional and nonfunc-

tional dependencies are present in the meta data base,

DATA- ELEMENT, HECOBD, and SET entities may be created. Fur-

thermore, the association between DATA-ELEMENT and RECORD is

established by the POPUL ATED-WITH and GEOIJPED-IN relation-

ships. (The two relationships, POPULATED-WITH and

GROOPED-IN, form an H-to-N relationship (i.e., a bi-direc-

- 17

tional 1-to-many relationship) . This M-to-N structure, also

known as a complex relationship, cannot be directly imple-

mented in IDAS. Subsequent chapters discuss how complex re-

lationships like this one are simplified.) In order to

avoid redundant record names in the SET entity of Exhibit

2. 1, the OWNER-OF and BEMBER-OF relationships establish a

SET'S owner and member records. (The two relationships,

OWNER-OF and MEMBEB-OF, constitute a multiple relationship.

Multiple relationships allow different relationships with

the same owner to point to different member record instances

within the same member record.) All entities created durinq

data base initialization, i.e., DATA-ELEMENT, RECORD, and

SET entities, are licked respectively to the DATA BASE enti-

ty using DEFINED-BY, DI VIDED-INTO, and LINKED-BY relation-

ships .

Following the creation of these entities, customization

of record attributes are conducted using the DB_CUST module.

The customization module has the capabilities to modify all

entities, entity attributes, and relationships created

through data base initialization. In addition to these ca-

pabilities, sub-elements of a data element can be estab-

lished using the CONCATEN ATED-BY relationship. (This situ-

ation, where a single data element points to one or more

sub-elements, is referred to as an Lii relationship--a link

JL) with the same owner and member record (i) .)

- 18

The final step in the data base development process is to

create the data definition statements representing the

user's data base from information stored in the meta data

base. In situations where complex relationships exist, this

module, SCHEMA -CREATE, may create new RECORD and SET in-

stances. Otherwise, this module only retrieves data from

the meta data base for reformatting into compilable IDAS

data definition languaqe statements.

Any time during the data base development process the

PRINT-DATA module may be used to print or display informa-

tion about any or all data base entities in the meta data

base.

2. 2 Case Study, Introduction

In order to aid the reader of this work a simple case

study of the Wampum Brokerage company is now introduced.

Although this case study is restricted to two outputs, ef-

forts have been made to ensure the inclusion of some of the

most difficult data base design and implementation problems

(e.g., M-to-N relationships, data relevant to two or more

existing records (i.e., intersection data), 1-to-1 relation-

ships with no inverse, and the potential for second and

third normal form violations)

.

Requirements for this case

study are altered intermittently in order to emphasize spe-

cific situations.

- 19 -

Exhibits 2.3 and 2.4 are examples of two Wampum Brokerage

output requirements. Although this case study is limited in

scope, existing brokerage houses would have access to simi-

lar displays/documents. The "stock activity" display in Ex-

hibit 2.3 would be useful when news broke on any specific

stock {e.g., a stock split, extreme quarterly earninqs vari-

ation, merger or take over, bankruptcy, etc.). The broker

would want to have the latest changes in stock price guotes

and volume as well as the deqree to which clientele are af-

fected and perhaps a list of those clients that are affected

most. This display would also be used when clients make

queries concerning a specific stock and for the broker to

receive updates on how successful previous recommendations

concerning a stock have been. The "client activity" display

(see Exhibit 2.4) furnishes the broker with necessary client

demographic information showing both composite and detailed

data. This would be useful when providing financial advice

to a client.

20 -

*** STOCK ACTIVITY ***

STOCK NAME: INTERNATIONAL BUSINESS MACHINES
STOCK ABBREVIATION: IBM
HOST RECENT QUOTE: 140 1/4
MOST RECENT VOLUME: 1,824,000
LAST UPDATED: 12-01-83 10:24:13
TOTAL CLIENTAL STOCKS: 650
GAIN/LOSS PERCENTAGE WHEN RECOMMENDED: +13.37

CLIENT
ID NAME

021
613
419
414
812

JOE SLY
TYCOON MARY
BAGS MOONIE
BULL FRANCIS
T HOWELL III

PERCENT OF
QUANTITY TOTAL INVESTMENT

200
150
100
100
100

100
12
2

80
50

PHONE

555-8000
555-6350
555-6354
555-0549
555-2152

Exhibit 2.3

*** CLIENT ACTIVITY ***

CLIENT NAME: BAGS MOONIE
CLIENT ID: 411
EMPLOYER: KANSAS STATE UNIVERSITY
ANNUAL SALARY: 20000
PHONE: 555-6354
TOTAL INVESTMENT: 16,200.00
CURRENT WORTH: 18,525.00
GAIN/LOSS PERCENTAGE: +14.35

STOCK TRANS BROKER NO. CURRENT 7. GAIN
ABRV DATE RECMND PRICE PUR AMOUNT WORTH /LOSS

IBM 080 180 YES 90.00 50 4500.00
100283 NO 150.00 50 7500.00

7012.50 +55.83
7012.50 - 6.50

100 12000.00 14025.00 +16.875

MCI 060182 YES 42.00 100 4200.00 6000.00 +42.86

100 4200.00 6000.00 +42.86

Exhibit 2.4

21

2.3 Using DB_GEN

2-3.1 Formats fo r DB_GEN Interaction

The system has been desiqned to be user-friendly. It

provides information necessary to make user decisions and

aid the user in inputting information. User responses are

consistent throughout the entire system--a menu number and,

optionally, a menu entry. Any time a blank entry is qiven

in response to a menu display, the system responds with the

general instructions in Exhibit 2.5.

*** GENERAL INSTRUCTIONS ***

| TWO FOBHATS CAN BE USED —
1 FORMAT 1: <MENU_8UHBER>

I ==> THIS WILL PROVIDE DETAILED INSTRUCTIONS FOR
ENTERING THE RESPECTIVE INFORMATION

I FORMAT 2; <MENU_NUMBER> <MENU_ ENTRY>

1 = = > THE DETAIL INSTRUCTION STEP Ii SKIPPED BY
ADDING THE MENU ENTRY E.G. , 1 STOCK_ DATA_ BASE]

1 PRESS enter to continue

Exhibit 2.5

As a user becomes familiar with the system, intermediate

menus can be skipped by giving the appropriate menu number

and menu entry. A novice user of the system will find that

the system provides adequate guidance for its use.

- 22 -

2.3.2 Data Base EniEIzz2S_M2£J

Upon entering DB_G2N, the user must make a selection from

the list of existinq user data base schema nanes or create a

new user data base schema (see Exhibit 2.6). Exhibit 2.6

illustrates the selection of menu number one; the response

of this request is shown in Exhibit 2.1k.

I__

** DATA BASE ENTRY »*

1) CREATE DATA EASE
2) OPTION-DB
3) BOND-DB
X) EXIT

MAKE SELECTION ===>
1

Exhibit 2.6

** CREATE NEW DATA EASE **

1

)

DATA BASE NAME:
2) DATA BASE ADMINISTRATOR:
X) EXIT

Istock data base

Exhibit 2. 7A

** CREATE NEW DATA BASE **

1) DATA BASE NAME: STOCK-DATA-BASE
2) DATA BASE ADMINISTRATOR:
X) EXIT

Exhibit 2.71

- 23 -

The naae of the user's data base schema is supplied in Ex-

hibit. 2.7a by entering menu number one followed by the menu

entry "stock data base." Note that data base name could

have been supplied from Exhibit 2.fc and the display in 2.7a

would have been bypassed. DB_GEH is already preparing for a

clean schema compile by altering the data base name entered

in Exhibit 2. 7A into an acceptable IDMS data base name by

removing blanks and substituting hyphens (see Exhibit 2.7B).

These flexibilities and interpretations are consistent but

limited. One must be careful to provide user friendliness

as well as data integrity.

2.3.3 SEilaie. Considerations

Care has also been taken to allow for changes in all en-

tity names (i.e., data base, data element, record, and set

names). Exhibit 2.8 illustrates a change of the data base

name.

- 24 -

** CREATE NEK DATA BASE **

1) DATA BASE NAHE: STOCK-DATA-BASE
2) DATA BASE ADMINISTBATOB

:

X) EXIT

1 stock db

*** CEEATE NEW DATA BASE ***

1) DATA BASE NAME: STOCK-DB
2) DATA BASE ADBINISTRATOB

:

X) EXIT

Exhibit 2.8

DB-GEN has been written to thorouqhly, yet efficiently,

search all areas where chanqe is required and establish the

necessary associations between entities where chanqe propa-

gates. For example, one data element may be in several re-

cords, be a candidate key for several other data elements,

be part of a concatenated key, and/or be used as a sort or

hashinq field. All references to this entity attribute are

properly modified by the system.

25 -

2.3.1 Primary. Menu of Services—LEVEL 2

Upon entering a data base, a primary menu of services is

provided (see Exhibit 2.9).

DATA-BASE: STOCK_DB

** PRIMARY MENU **

1) DATA BASE INITIALIZATIOH
2) DATA ELEMENT UPDATE
3) RECORD UPDATE
4) SET UPDATE
5) DATA BASE UPDATE
6) PRINT DATA
7) CREATE SCHEMA
X) EXIT

= = >
2

Exhibit 2.9

The primary menu of services (see Exhibit 2.9) serves to

quide the data base desiqner through the design process of a

user's data base schema. This Exhibit is used to support an

overview of this implementation.

2.3.4. 1 Data Base Initialization--DB_IN.IT

Selection one (i.e., DB_INIT module) utilizes a very lim-

ited input of user requirements and Bernstein's Alqorithm to

perform a data base genesis. Functional dependencies are

used to create data elements and normalized records. The

third main ingredient, sets, is provided through nonfunc-

tional dependencies. A close study of the application's re-

26 -

quirements described in terms of functional and

non_f unctional dependencies provides a skeletal form upon

which to build the user's data base schema.

2.3.4.2 Data Base Cus t omization-- DB_CU5T

The next four selections from the primary menu are used

to customize the entites of the user's data base schema.

Actually, enough power exists in these four modules to cre-

ate the data base schema without the use of the DB_INIT mod-

ule. As data element, record, set, and data base modifica-

tions are made, there is constant monitoring for conflicts.

Conflicts are answered with an error message followed by ad-

vice. For example, if one selects a non-existent record to

be a set member, the error message and assistance of Exhibit

2. 10 appears.

I
** ti:)r

IRECDRD SELECTED AS A SET MEMBER DOES NOT EXIST—USE MENU

|

** SELECT SET MEMB2R **

1) STOCK
2) CLIENT
3) STK_CLNT
4) STK_CLNT_TXN
5) EMPLR
X) EXIT

Exhibit 2. 10

- 27 -

This list of records (see Exhibit 2.10) can then be used to

select the set member; the assumption is that the user in-

correctly spelled the record name.

2.3.1*. 3 Printing of Data Sage £nf orma£i2fiz:-,P!INT_DATA

Selection six from the primary menu allows the user to

view the leta data base data in a composite form either via

display or hardcopy by using the menu in Exhibit 2.11.

*** PBINT DATA BASE INFORMATION ***

1) DATA ELEMENT DISPLAY
2) DATA ELEMENT HARDCOPY
3) RECORD DISPLAY
<*) RECORD HARDCOPY
5) SET DISPLAY
6) SET HARDCOPY
7) ALL THE ABOVE
X) EXIT

Exhibit 2.11

2.3.4.4 Schema Creation-=SCHEiJA_CBEAIE

The final selection of the primary menu (see Exhibit 2.9)

assures an initial check for missing data, displays minor

errors, and then makes the conversion to an operational data

base schema. Because the previous steps carefully scruti-

nize attributes of major entities, the user should not be

faced with many changes in this final step.

28

2.3.5 Continued Use of DB_GEH

The data base schema is now ready to be generated for ap-

plication use. Any future changes due to forgotten or

changed user requirements can easily be made throuqh the en-

tity customization modules followed by a regeneration of the

schema.

To provide a clearer understanding of the scope of this

research, this chapter. Design Overview, highlighted the ma-

-jor services provided by DB_GEN with respect to the data ard

modules used to perform these services. The following chap-

ter, Bernstein's Algorithm and User Requirements, begins the

process of discussing the major parts of this research in

detail.

- 29

Chapter 3

BERNSTEIN'S ALGORITHM

AND

USER REQUIREMENTS

In a 1976 publication, "Synthesizing Third Normal Form

Relations from Functional Dependencies", Phillip Bernstein

proved that a normalized relational schema can be synthes-

ized "from a given set of functional relationships"

(BERN76). However, it is not clear how a "given set of

functional relationships" is derived. This chapter discuss-

es the translation of user requirements into functional and

nonfunctional dependencies and the use of these dependencies

in Bernstein's algorithm.

3. 1 DecomEOSition fie t hod for Schema fiprmalization

Normalization is an integral part of nearly all data base

design technigues (CODD70,CODD72,C0DD7<3) . Normalization in-

volves a study of data that an organization uses in the re-

lationships and dependencies among that data. The purpose

of normalization is to aqgregate data items into groups in

which the group represents, if possible, only one entity of

concern to the user. The output of normalization is a set

of data table definitions which is organized to limit data

- 30 -

base redundancy, thus simplifying data maintenance services

and enhancinq data base integrity. The three steps of nor-

malization nay best be defined by one of Codd's colleagues,

William Kent.

"FIRST NORMAL FORM: A relation is in first normal
form if none of its domains has elements which
are themselves sets.

SECOND NORMAL FORM: A relation in first normal
form is in second normal form if every attribute
in the complement of a candidate key is fully
functionally dependent on that candidate key.

THIRD NORMAL FORM: A relation in second normal
form is in third normal form if every attribute in
the complement of a candidate key is nontransi-
tively dependent on that candidate key. " (KENT73)

Codd's method involves starting with one relation and suc-

cessfully decomposing it into smaller relations until all

relations adhere to the above normalization criteria. It is

possible in this decomposition approach to normalization to

create a system which no longer represents all the FDs in

the original system of FDs. Sfhen this occurs the user loses

the possibility of referencing some of the information from

the data base that is a part of the enterprise's data.

3. 2 Synthesis Method for Schema Normalization

Phillip Bernstein's research has revealed that by using

FDs, third normal form relations can be synthesized using an

algorithm. The synthesis technigue for use in normalization

has been shown to be much more rigorous and consistent than

the original decomposition method. All FDs provided by the

designer are guaranteed to be represented in the schema gen-

erated by this synthesis method. The algorithm follows.

- 31 -

"ALGORITHM 1

(Eliminate extraneous attributes.) Let P be
the qiven set of FDs. Eliminate extraneous
attributes from the left side of each FD in F,
producing the set G. An attribute is extrane-
ous if its elimination does not alter the clo-
sure of the set of FDs.

(Find covering.) Find a nonredundant covering
H of G.

3. (Partition.) Partition H into groups such
that all of the FDs in each group have identi-
cal left sides.

(Merge equivalent keys.) For each pair of
groups, say H1 and 112, with left sides X and
Y, respectively, merge H1 and H2 together if
there is a bijection X <— > Y in H*.

(Construct relations.) For each group, con-
struct a relation consisting of all the attri-
butes appearing in that group. Each set of
attributes that appears on the left side of
any FD in the group is a key of the relation.
(Step 1 guarantees that no such set contains
any extra attributes.) All keys found by this
algorithm are called synthesized. The set of
constructed relations constitutes a schema for
the given set of FDs." (BERN7fc)

Exhibit 3. 1

This synthesis technique is used by DB_GEN as the method for

normalization of the data base records.

3. 3 translation of User Beguirejngnts into FDs

To understand better how Bernstein establishes FDs from

known requirements, we re-examine Exhibits 2.3 and 2.4 of

32 -

the Wampum Brokerage case study. output examples are quite

useful but fall short of the rigor reguired to adequately

describe the underlying policies of an organization. A

starting point for describing entities is the introduction

of a unique identifier in the form of a functional dependen-

cy for each data element appearing on the output examples.

To provide further semantic value to the functional depen-

dencies in Exhibit 3.3, consider the list of standard abbre-

viations (see Exhibit 3.2).

ABBREVIATION = ABRV PHONE PH
AHOUNT = AMT PRICE = PRC
ANNUAL = ANUL QUANTITY = QUAH
BROKER = BRKR QUOTE = QUT
CLIENT = CLNT RECENT = RCNT
CURRENT = CUR RECOMMEND = RECMD
DATE = DTE SALARY = SLRY
EHPLOYER = EMPLR STOCK = STK
GAIN_LOSS * GN_LS TOTAL TOT
IDENTIFICATION = ID TRANSACTION = TXN
INVESTMENT = INVST UPDATE = UPDTE
NUMBER = NUM VOLUME = VOL
PERCENTAGE PRCNT

Exhibit 3.2

WORTH — WRTH

STK_NAME

STK_ABRV

STK_ABRV,CLNT_ID

EKPLR_NAHE

CLNT ID

> STK_ABRV,RCNT_QUT,
RCNT_VOL,STK_LAST_ UPDTE,
TOT_A*T_WHEN_UPDTE,
TOT_NUK_WHEN_ UPDTE

> STK_NAME

> CLNT_NAME,CLNT_STK_QUAN,
CLNT_STK_PRCNT_ INVST,
EMPLR_PH

> EMPLR_PH

> CLNT_NAHE,EMPLR_NAME,
ANUL_SLRY, EHPLR_PH

CLNT_ID,STK_ABRV,TXN_DTE > BRKP_ RECUND, CLNT_STK_TX N,
NUH_STK_CLNT_PUR

Exhibit 3.3

- 33 -

A cursory look at the Wampum Brokerage requirements in

terms of FDs show the apparent loss of several data elements

(e.q. , gain/loss data). In many instances a data element

appearing on a user requested output can be derived from

other data elements. Therefore, it is not required to store

derivable data element values in the user's data base. The

data base administrator must weigh the cost of storing and

maintaining data elements values that can be derived from

other sources against the benefits of faster retrieval if

the data elements values are resident in the user's data

base. of the ten derivable items on the output examples

only two, CLNT_STK_QUAN and CLNT_STK_PRCNT_INVST, were se-

lected for actual storage. However, the derivation of

"GAIN/LOSS PERCENTAGE WHEN RECOMMENDED:" requires the intro-

duction of data elements TOT_AMT_WHEN_RECMND and

TOT_ND"M_WHEN_RECHND. (See definitions below.)

GN_LS_PBCNT_WHEN_RECMND =

TtOT_AMT_WHEN_RECMND - (TOT_N0M_WHEN RECMND * RCNT_QI)T))
/ (TOT_NUM_WHEN_BECMND * RCNT_QUT * TOO)

This calculation results in the percent of chanqe with re-

spect to the most recently quoted stock amount. The follow-

inq definitions should provide additional clarity.

TOT_AMT_WHEN_RECMND = Summation of AMT_CLN T_STK_TXN for
each stock when BRKS_RECMND = "yes".

TOT_NUM_WHEN_RECHND Summation of NIJM_CLN T_STK_TXN for
each stock when BRKR_RECMND = "yes".

If these data elements were not permanently stored in the

data base, it would require traversals of all transactions

- 3« -

for the given stock performinq comparisons and summations as

described above.

It is important to have a clear statement of user re-

quirements. Without a clear statement of user requirements,

an inappropriate transforaation of user requirements into

functional dependencies is likely to cause data base integ-

rity problems and maintenance anomalies to surface durinq

the use of the data base.

3. 4 Synthesize a Normalized Schema for Hampjim j3ro.kera.fle

Instead of a complete manual execution of Bernstein's al-

gorithm using the functional dependencies in Exhibit 3.3,

useful instances from the case study are provided for each

step of the alqorithm. Simplification of the compound right

sides of the given functional dependencies is done prior to

the initial step of the synthesis algorithm (see Exhibit

3. 4A) because an FD of the form X > A,B can always be re-

written as X > A and X > B.

- 35

A) STK_NAME > STK_ABRV
B) STK_NAME > RCNT_QtJT
C) STK_NAME > RCNT_VOL
D) STK_NAME > STK_LAST_tJPDTE
S) STK_NAKE > TOT~AMT_HHEN_RECMND
F) STK_NAHE > T0T~N™~WHEN~REC.,1ND
G) STK_ABEV > STK_NAni
H) STKlABRV,CLNT_ID > CLNT_NAME
I) STK_ABHV,CLHT_ID > CLNT_STK_QO AN
J) STK_ABRV,C1HT_ID > CLNT~STK PRCNT_IN VST
K) STK_ABRV,CLNtIiD > EMPLR_PH~
L) EHP1R_NAME > EMPIR_PH
H) CLUT_ID > CI,NT_NAME
N) CLNT^ID > EMPLR_NAME
0) CLHT_ID > ANt!I_SLRY
P| CLHT_ID > EMPIR_PH
Q) CLNT_ID,STK_ABRV,TXN_DTE > BRKR_RECMND
R) CLNT~ID,STK~ABRV,TXN_DTE > CLNT_STK_TX N PRC
S) CLNT_ID,STK_ABRV,TXN_DTE > NUM_STK_CLNT~PIJR

Exhibit 3.UA

The first step of Bernstein's algorithm, eliminate extra-

neous attributes, identifies STK_ABRV as an extraneous at-

tribute in the FD H, STK_ABRV,CLNT_ID > C1NT_NAME (see Ex-

hibit 3.4B). As shown in Exhibit 3.«B, the closure

(graphically indicated by a plus sign) of CLNT_ID includes

CLNT_NAHE which indicates that CLNT_IE alone functionally

determines CLNT_NAHE. The algorithm states that any extra-

neous attributes on the left side of an FD must be eliminat-

ed as illustrated by the removal of STK_ABRV for FD H in the

final statement of Exhibit 3.4B.

36 -

1) Eliminate extraneous attributes.

H) STK_ABBV #CLNT_ID > CLNT_NAME

Find closure of CLNT_ID:

CLNT_ID+ CLNT_ID,CLNT_NAME,EMPLR_NAHE,
AKOL_SLRY,EMPLE_PH

H) CLNT_ID > CLNT_NAME

Exhibit 3. UB

The second step of Bernstein's alqorithm establishes a

non-redundant covering from a list of FDs. This is accom-

plished by removing an FD from the list of FDs and finding

the closure of the removed FD's left side using the remain-

ing FDs. If the closure of the removed FD's left side con-

tains the removed FD's right side then the FD is considered

redundant. Exhibit 3.4c indicates that the closure of

CLNT_ID, the left side of FD P, contains EMPLE_?H, the right

side FD P, without the use of FD P. Thus, FD P is consid-

ered redundant and is removed from the list of FDs.

2) Find covering.

P) CLNT_ID > EHP1B_PH

Find closure of CLNT_ID without
functional dependency P:

CLNT_ID+ = CLNT_ID,CLNT_NAHE,EaPLE NAHE,
ANUL_SLHy,EMPLE_PH

Bemove FD P from list of FDs

Exhibit 3.4C

37 -

Step three of Bernstein's algorithm partitions the FDs

into groups that have identical riqht sides. Exhibit 3.4D

illustrates the creation of six partitions from the remain-

ing FDs.

3) Partition.

STK_NAHE > STK_ABEV,ECNT_QUT,
RCNT_V0L,STK_LA5T_UPDTE,
TOT_AMT_WHEN_RECKND,
T0T_NUM_HHEN_EEC,1ND

STK_ABEV > STK_NAM2

CLNT_ID > d.NT_NAME,ANUL_SLRY

STK_ABBV,CLNT_ID > C1NT_STK_QIIA N,
CLNT_STK~PRCNT_INVST

CLNT_ID,STK_ABRV,TXN_DTE > BRKR_RECMND,
CLNT_STK_TXN_PRC,
NUM_STK_CLNT_PUR

EMPLR_NAME > EMPI.R_PH

Exhibit 3.4D

It is possible that the left sides of the partitioned

groups of FDs in Exhibit 3.tD nay be equivalent keys. If

left sides of partitioned groups are equivalent keys then

step H of Bernstein's algorithm requires that they be

merged. Equivalent keys exist if the closures of the left

sides of partioned groups are equal. Exhibit 3.4E indicates

that the closures of STK_NAHE and STK_ABRV are equal and the

partitions containinq these as left sides should be merqed.

38

4) Herge equivalent keys.

Construct the closure of each of the left sides:

STK_NAME + = STK_tiAME,STK_ABRV,RCNT_QUT,BCNT_VOL,
STK_LAST_UPDATE,TOT_AMT WHEN RECMND
TOT_NIJH_WHEN_RECFIND

STK_ABEV+ = STK_ABRV,STK_NAHE,RCNT_Q[JT,RCNT_VOL,
STK_LAST_UPDATE,TOT_AMT_WHEN_RECMND
TOT_NUM_WHEN_RECMND

Exhibit 3. 4E

The final step of Bernstein's algorithm constructs rela-

tions from the merged partitions of the previous step by es-

tablishing relation identifiers, enclosing attributes in pa-

rentheses, and underlining key attributes as seen in Exhibit

3.4F.

5) Construct relations.

El (STK NAME . STK ABRV . BCNT_0»T , RCNT_VO T,

STK_LAST_aPDTE,T0T_AMT_WHEN_REC.1ND,
TOT_HUM_WHEN_BECMND)

E2 (CLHT ID , CIST NAHE.ANUL SLRY .EHPI.B_M»MF.)

B3 (STK ABRV.CINT ID .CLNT STK OIIAW.
CLNT_STK_PBCNT_INVST)

B4 (CLHT ID. STK A3BV.TXN DTE .BBKR RECMND.
CLNT_STK_TXN_PBC,NUM_STK_CLNT_PIJB)

E5 (EBPLB NAME .EMPLR PHI

Exhibit 3.4F

Exhibit 3.<»F illustrates the output of Bernstein's algor-

ithm with respect to the relational model. The next section

describes how the output of Bernstein's algorithm can be ap-

plied to the network model.

39 -

3-5 Correlation of Out£Ut from Bernstein's Algorithm and

Net work Entities

Each of the five relations in Exhibit 3. <*F become an oc-

currence in the RECORD entity of the conceptual schema in

Exhibit 2.1. Likewise, the data elements within the rela-

tions in Exhibit 3.4F becomes occurrences ir. the DATA

ELEMENT record of the conceptual schema in Exhibit 2. 1. The

appropriate links between RECORD and DATA-ELEHENT records in

the conceptual schema are established using the POPULATED-BY

and SBOUPED-IN sets. Subsequent chapters give the details

of creating data elements and records from these relations.

One can assume at this point, i.e., the completion of Bern-

stein's alqorithm using FDs, that data elements and records

for a user's data base requirements have been added to the

meta data base that is being manipulated by DB_GEN (see Ex-

hibit 2.1).

3.6 Nonfunctional Dependencies a_nd fie.rn.steinj.s JllaoEAthm

The functional dependencies shown in Exhibit 3.4A result

in the establishment of data elements and records for the

network schema beinq created through the use of DB_GEN.

But, as stated by Phillip Bernstein, "Clearly though, not

every logical connection in the world is functional."

(BERN76) In the section of Bernstein's 1976 paper discuss-

ing "The Synthesis Problem in Nonfunctional Relationships",

Bernstein never clearly addressed how one determines the

40 -

need for a nonfunctional dependency. However, one must as-

sume that a nonfunctional dependency exists when the policy

of an organization, for which the data base is being de-

signed, specifies that a specific value of an item, e.g.,

invoice number, determines a set of instances of another

item, e.g., product name. In the case of the Wampum Broker-

age case study, the STOCK ACTIVITY display (see Exhibit 2.3)

indicates that a given instance of STK_NAME (e.g. Interna-

tional Business Machines) , determines a set of instances of

CLNT_NAME (e.g., Joe Sly, Tycoon Mary, Bags Moonie, Bull

Francis, and T. Howell III) . Because Codd's first normal

form requires that none of the domains of a relation have

elements which are themselves sets, the STK_NAME and

CLNT_NAME data elements of Wampum Brokerage must be ir. sepa-

rate relations. Therefore, in order to establish the neces-

sary associations between instances of the relation that

STK_MAME appears in (i.e., relation IM of Exhibit 3. 4F) and

the instances of the relation that CLNT_NAME appears in

(i.e., relation K2 of Exhibit 3.4F), a relationship must be

established between relation El and relation B2 of Exhibit

3.«F. The implementation of such relationships reguires

some form of a data structure to link the various relations'

instances, e.g., pointers are used in the network model and

a matching of data element domains is used in the relational

model. with respect to the relational schema, Bernstein

claimed that ". . . all connections among attributes in a

data base description can be represented by FEs. As long as

«1 -

connections are functional there is of course no problem.

Nonfunctional connections require special attention."

(BERN76) Bernstein transformed each NFD into an FD by con-

catenating the riqht side of an NFD to the left side of the

NFD and introduced a unique variable, theta, on the now emp-

ty riqht side of what was an NFD. For example, the NFD de-

scribed previously for the Wampum Brokerage case study ap-

pears as follows;

S?K_NAME >> CINT_NAHE

This NFD is transformed into an FD by moving CLNT_NAHii to

the left side with STK_NANE and placing a unique theta data

element, THETA_2, on the riqht side (see below).

STK_NAME,CLNT_N»tlE > THETA_2

By adding this FD to the list of FDs in Exhibit 3. UA and ap-

plying Bernstein's synthesis algorithm, a new relation is

established (see below) .

Rfc (STK_NAME,CLNT_NAME,THETA_2)

For each instance in the cross-product of the domains of

STK_NAME and CLNT_NAHE in the above relation, if THETA_2 has

the value of "1" then a relationship exists between the re-

spective instances of STK_NAME and CLNT_NAME and if THETA_2

has a value of "0" then a relationship does not exist be-

tween the respective instances of STK_NAi1E and CLNT_NAME.

A complete list of NFDs for the output examples of Wampum

Brokerage case study (see Exhibits 2.3 and 2.4) appears in

Exhibit 3.5 followed by a transformation of the NFDS into

FDs as seen in Exhibit 3.6.

- U2

1) STK_NAME » CLNT_ID
2) STK_NAME » CLNT_NAME
3) STK_NAME » CLNT_STK_QO AN

,

4) STK_NAME » CLOT STK PRCNT INVST,
5) STK_NAME » EMPLS PH~
6) CLNT_NAME » STK ABEV
7) CLNT_ID,STK ABEV » TXN~DTE,
8) CLNT_ID,STK_ABEV » BBKB EECilND,
9) CLNT_ID,STK_A3HV » CLNT_STK_TXN_PRC,

10) CLNT_ID,STK_A3EV » NUM STK_CLNT PUE

Exhibit 3.5

1) stk_nahe,clnt_id
2) stk_name,ci.nt name
3) stk_name,ci,ntIstk_qoan
4) stk_nahe,cint_stk_pecnt invst
5) stk_name,empi.h_ph
6) clnt_name,stk abev
7) cint_nai1e,stk_abev,teans_dte
8) clnt_name,stkIabev,bbkr EECMND
9) CLNT_NAHE,STK_ABEV,CLNt3sTK_TXN DTE

10) CLNT_NAME,STK_ABKV,NUH_STK_CLNT~P!JR

> THETA 1

> T1IETA_2
> THETA_3
> T!IETA_4
> THETA_5
> THETA_fc
> THETA^7
> THETA~8
> THETA~9
> THETA 10

Exhibit 3.6

As illustrated in Exhibit 3.7, several new relations have

been created from the FDs in Exhibit 3.fc for the establish-

ment of the relationships between the original set of rela-

tions in Exhibit 3.4F.

- 43

El (STK NAflE . STK ABBV.BCNT OUT.RCNT VOL.
STK_LAST_UPDTE,TOT_ABT_WH£N_RECBND,
TOT_NUB_HHEN_RECBND)

B2 (CLNT_I_D,CLNT_tJAME, ANaL_SLBY,E«PLR_NAKE)

B3 [STK ABRV.CLNT ID .CLNT STK QTJAN.
CLNT_STK_PBCNT_INVST,THETA_ 1)

M (OuST ID, STK ABRV.TXS DTE , BRKR RECMND.
CLNT_STK_TXN_PRC,NUM_STK_CLNT~PUR,
THETA_7)

R5 (EHPLR HA3E .EMPLR PH)

Bfc (STK SAflE.CLHT NAHE . THETA 2)

B7 (STK NABE.CLNT STK OUAN . THETA 3)

R8 (STK NABE.CLNT STK PRCNT INVST .THETA 4)

R9 (STK NA3E.EMPLR NAHE.THETA 5)

B10 (CLST NAME. STK ABHV , THETA 6)

R11 (CLHT ID,STK ABRV,BRKR BECBND ,THETA 8)

B12 (CLMT ID, STK ABBV, CLNT STK TXN PRCNT , THETA 9)

R13 (CLMT ID. STK ABBV, NUB STK C1NT PRC . THETA 10)

Exhibit 3.7

By introducing a unique theta for each NFD , one is given

the flexibility to introduce multiple relationships. For

instance, both relations E7 and R8 have been established as

relationships between relations El and R3. Generally, mul-

tiple relationships are introduced when they are not needed

if all the FDs generated from NFDs are introduced. Bern-

stein provided no insight into the outcome of this method.

Thus, the data base designer must be called upon to make

44 -

sone lodgements as to which of the FDs represent the needs

of the organization in terns of inherent data structures.

In the case of Wampum Brokerage, a data base designer may

decide that only THETA_1 in relation R3 and THETA_7 in rela-

tion R4 are reguired for the correct representation of user

requirements in a relational model. In reference to Exhibit

3.7, the relationship established between relations E1 and

R2 by relations R6 and R10 are represented by the THE7A_7

data element in relation B3 because STK_ABRV and STK_NAME

represent relation R1 and CLNT_ID and CLNT_NAME represent

relation R2. Relations R7 and R8 represent the need for a

relationship between relations R1 and R3. Each of the rela-

tions R1 and R3 contain STK_NAME. Thus, this relationship

already exists without the need of relations R7 and Rfl.

Similarly, relations R11, R12, and R13 represent a need for

a relationship between relations R3 and R4. Each of the re-

lations R3 and R4 contain CLNT_ID and STK_ABRV. Therefore,

this relationship already exists without the need of rela-

tions B11, R 12, and R13. Relation R9 indicates a need for a

relationship between either relations R1 and R2 or Rl and

E5. The reason that a choice exists concerning the estab-

lishment of the relationship requested by relation F9 is

that EHPLR_NAME appears in both relations R2 and R5. Rela-

tion 83 already provides a relationship between relations R1

and R2. Thus, relation R9 is not necessary.

- 45

Although internally the network model addresses relation-

ships in a significantly different manner than the relation-

al model, the problems associated with transforming NFDs

into sets (the network model term for relationship) neces-

sary for the network model to meet user requirements remain.

This transformation process is addressed in more detail in

the following chapter. Data Base Initialization and Inter-

pretation.

46 -

Chapter 4

DATA BASE INITIALIZATION

AND

INTEBPHETATION

The data base initialization module, DB_INIT, makes use

of Bernstein's alqorithm to establish user required data

base entities (i.e., data elements, records, and sets).

However, Bernstein is creating a relational model and the

system described in this research is producinq a network

model. Thus, manipulation of the output of Bernstein's nor-

malization algorithm to transform it from a relational model

to a network model must be accomplished. This chapter ex-

plains how dependencies among data elements are entered into

DB_GEN and how those dependencies are modified by DB_GEN it-

self and by DB_GEN through interaction with the data base

designer to produce the network records and sets required to

meet the user's needs.

4. 1 Establish Position in DB_GEN

Before pursuing an indepth look into the functions of

DB_INIT, the DB_GEN response via menu traversals is given.

On entering DB_GEN one must select an existing data base or

create a new data base (see Exhibit 4.1). Selection four

47 -

generates the primary menu of services with respect te

STOCK-DB (see Exhibit 4.2)

.

1 *** SELECT A DATA BASE ***

1 1) CREATE DATA BASE
1 2) OPTION-DB |

1 3) BOND-DB
J

1
t) STOCK-DB

J

1 X) EXIT |

1 MAKE A SELECTION ===> 4
J

Exhibit 4. 1

*** PRIMARY MENU ***

1) DATA BASE INITIALIZATION
2) DATA ELEMENT UPDATE
3) RECORD UPDATE
4) SET UPDATE
5) DATA BASE UPDATE
6) PRINT DATA
7) SCHEMA CREATOR
X) EXIT

MAKE A SELECTION => 1

Exhibit 4.2

4.2 Eniii of Funciional and Nonfunctional Dependencies

Exhibit 4.3 provides the data base administrator with

several functions which may be performed and provides enouqh

information to maintain clarity of position and operation

for the user. The formats for entry of functional dependen-

cies (FDs) and nonfunctional dependencies (NFDs) are consis-

- 48

tent with those of the previous chapter and with most of the

literature. if the user were not familiar with the neces-

sary formats, help is provided by selectinq the appropriate

number of a function and then failing to provide an entry

(see Exhibit 4.3). The results of this help feature appear

in Exhibit 4.4.

*** DATA BASE INITIALIZATION ***

1) CREATE FUNCTIONAL DEPENDENCY
2) CBEATE NON-FUNCTIONAL DEPENDENCY
3) INITIALIZE DATA BASE
DELETE DEPENDENCY ...

4) STK_ABRV > STK_NAME
5) CLNT_ID > CLNT_HAME
6) STK_ABRV >> CLNT ID

X) EXIT

MAKE A SELECTION ===> 2

Exhibit H.3

*** CREATE NON-FUNCTIONAL DEPENDENCY ***

FORMAT:

left_side > right_side

Where either side can be a concatenation
of several elements separated by commas.

MAKE ENTRY
==> STK_ABRV,CLNT_ID >> TXN_DTE|BRKR RECMND

Exhibit 4.4

49 -

All riqht sides of dependencies are simplified to a single

attribute by the introduction of new dependencies (see num-

bers 7 and 8 of Exhibit 4.5).

J
*** DATA BASE INITIALIZATION ***

J D CREATE FUNCTIONAL DEPENDENCY
I 2) CBEATE NON _FUHCTIONAL DEPENDENCY i

1 3) INITIALIZE DATA BASE
1 DELETE DEPENDENCY . .

I «) STK A3BV > STK_ VABE
1 5) CLNT ID > CLNT. NAME
1 6) STK_ABRV >> clnt]"id
1 7) STK_ABRV, CLNT_ID »" TXN DTE

|

1 8) STK^ABRV, CLNT~ID » BRKR _RECHND |

J X) EXIT

I
HAKE A SELECTION ===> 1

Exhibit 4.5

Hith the exception of INITIALIZE DATA BASE the remaininq se-

lections of Exhibit 4.3 should be self explanatory.

4. 3 Initialijat ion of the Useris Data Bas_e. Schema

INITIALIZE DATA BASE transforms FDs and NFDs into data

base entities (i.e., data elements, records, and sets).

Bhile the user is creating the inputs representative of user

requirements of the data base, INITIALIZE DATA BASS, in con-

junction with the print options, should be used frequently

as a design aid. However, data base customization should be

restricted until user requirements stabilize. When a data

base is reinitialized, a complete regeneration of entities

50 -

occurs and any previous entity customization is lost. Al-

though DB_INIT provides a fast and easy way to initiate a

sound schema, the customization modules in chapter 5 contin-

ue to make major changes in requirements easy to incorpo-

rate.

4.3.1 Creation of Data Element and Record Entities

As discussed in Chapter 3, Bernstein's Alqorithm and User

Requirements, records and data elements are derived from

functional dependencies using Bernstein's alqorithm.

4.3.2 Creation of get Entities

The remainder of this chapter: 1) contrasts the rela-

tional DBMS's relationship with the network DBKS's set, 2)

discusses a necessary enhancement to Bernstein's alqorithm

to enable the NFD-to-set conversion, 3) explains the NFD-

to-set conversion technique, and 4) discusses the creation

of the set entity.

4.3.2.1 Contrast the Relational EMS Relationship, with

the Network DBHS Set

Functional dependencies deal with intra-record relation-

ships, whereas nonfunctional dependencies are concerned with

relationships between records. Because a relational model

uses only one structure (i.e., a relation), few interpreta-

tions need to be made by Bernstein's alqorithm to distin-

guish relations from relationships. The following steps.

51 -

implicitly derived from Bernstein (BERN76) , outline the

method used to synthesize a relational schema:

1) Enter functional and nonfunctional dependencies
2) Convert NFDs to FDs
3) Execute Bernstein's algorithm

The relational model establishes relationships throuqh a

foreign key (for 1-to-1 relationships) or through a separate

relation (for 1-to-n and m-to-n relationships) that contains

attributes of the relations to be linked. In Exhibit 4.6

the relation entitled STK_CLNT allows users to ask the ques-

tions "Given a stock, who are all the clients that own that

stock?" and "Given a client, what stocks are owned?"

I STOCK

| STK-ABRV
| STK-NAHE

I
CLIENT

I
CLNT-ID

| CLNT-NAME

I
STK-CLNT

I

| STK-ABRV
I CLNT-ID

Exhibit 4.6

A network model uses a cyclic pointer structure to estab-

lish relationships. Exhibit 4.7 shows a network model rep-

resentation of the relational model shown in Exhibit 4.6.

STOCK

| STK_ABRV
I STK_NAHE

OWNED BY

«-
OBNS

| CLIENT
-»]

I
CLNT_ID

-— J CLNT_NA«E

Exhibit 4.7

- 52 -

Network relationships can be described by their respective

owner and member records. In general, the left side (IS) of

an NFD identifies the owner record and the right side (HS)

specifies a member record. Exhibit a. 8 presents two NFDs

used to create the graphic schema in Exhibit 4.7.

S: STK_ABRV » CLNT_ID
T: CLNT_ID >> STK_ABEV

Exhibit 4.8

When creating the relational model, the NFDs were converted

to FDs and all the dependencies were used as input to Bern-

stein's algorithm. With a network model, one must know

which records exist before NFDs can be interpreted. There-

fore Bernstein's algorithm is run to completion with FDs

only. Candidate keys of the recently created records now

provide a means to interpret left and right sides of NFDs

into owner and member records. An evaluation of NFDs in Ex-

hibit 4.8 results in the selection of STK_ABRV to be a can-

didate key of STOCK and, therefore, the owner. Similarly,

CLNT_ID is a candidate key of CLIENT and therefore the mem-

ber. Requiring the user to enter only NFDs whose right and

left sides evaluate to a previously derived record is far

too restrictive. This is especially true when the user does

not have any way of knowing what the candidate keys are when

NFDs are entered. Suppose for example, an NFD, S, (see Ex-

hibit 4.8) was changed to STK_ABRV >> CLNT_NAME where

CLNT_NAME is not a candidate key. The user's meaning re-

mains clear. CLNT_NAME appears in the CLIENT record as a

53

non-priae attribute so the same result is expected. This

flexibility introduces several NFD interpretation problems.

Before addressinq these problems, it is necessary to study

an enhancement of Bernstein's algorithm.

4.3.2.2 Check for Missing but Implied Dependencies

Converting an NFD to a set requires a minor modification

to the output of Bernstein's algorithm. Consider an NFD,

STK_ABRV » EMPLR_PH. The NFD contains an attribute

£BPLR_PH which is not a part of any key, i.e. , it is a non-

prime attribute. In this case a substitution of the respec-

tive prime attribute (s) must be made and a search for a

matching candidate key performed. With the FDs given in Ex-

hibit 4.9, the non-prime attribute EMPLB_PH appears in two

records.

0) CLNT_ID > EMPLR_PH
NFDs S V) EHPLE_NAME > EHPLR_PH
FDs in ==> W) STK_ABHV » EHPuTpH

RELATIONS B1 (CLNT ID , EBPLB-PH)
OUT ==> 82 (EHPLB N AHE , EMPLK-P H)

Exhibit 4.9

In this case, the FDs do not provide enough information to

create a schema that would be optimal in a "real world" en-

vironment and human intervention is required. The standard

form of Bernstein's algorithm produces two relations shown

in Exhibit 4.9. There is attribute redundancy as EMPLR_PH

appears twice in the relations. The designer now has two

- 54

options for the substitution of prime attributes for non-

prime attributes: 1) a substitution of the prime attributes

CLNT_ID may be made producing STK_ABKV » CLNT_ID or 2) the

prime attribute EHPLR_NAME may be substituted producing

STK_AB2v » EHPLR_NAHE. Any non-prime attributes that ap-

pear more than once in FDs after application of steps 1 and

2 of Bernstein's algorithm (see Exhibit 3.4C) indicate that

additional semantic information is required of the user.

Given the FDs of Exhibit 4.9, at least one of the two FDs in

Exhibit 4. 10 must be true.

P) CLMT_ID > EMPLR_NAME
Q) EMPLR_NAHE > CLNT_ID

Exhibit 4.10

In this case, P is known to be true by the data base design-

er and a less redundant schema results (see Exhibit 4.11).

Relations E1 (CLNT_ID)
OUT ==> R2 (EMPLR_NAME,EMPLF-PH)

Exhibit 4.11

All this concern for removal of a single redundant attribute

is questionable. However, another case illuminates the im-

portance of this concept better (see Exhibit 4.12).

FDs in => H) STK_NA«E > RCNT_QUT
G) STK_ABRV > RCNT_Q0T

RELATIONS El (STK_ABR

V

, RCNT QUT)
OUT ==> R2 (STK MAKE , RCNT OUT)

Exhibit 4. 12

- 55 -

In this case the data base designer may know that there is a

bijection (i.e., STK_ABRV < > STK_NAME) between the prime

attributes STK_NAME and STK_ABRV. This allows the system to

produce a single record schema (see Exhibit 4.13).

RELATIONS
OUT ==> R1 (STK NAME . STK ABRV , RCNT-QUT)

Exhibit 4. 13

The purpose of Bernstein's 1976 paper was ". . . to

develop a provably sound and effective procedure for syn-

thesizing relations satisfying Codd's third normal form from

a given set of functional relationships. Also, the schema

synthesized by our procedure is shown to contain a minimal

number of relations. " (BERN76) The FDs added by the data base

designer as presented in the above Exhibits must be existing

facts. By addressing these facts the data base designer can

produce a less redundant schema.

If additional semantic information is reguired, the data

base administrator is expected to respond interactively (see

Exhibit 4. 14).

*** SEMANTIC QUESTION ***

I BASED ON GIVEN FDS ONE OF THE FOLLOWING MUST |

] BE TRUE. CLARIFY SEMANTICS BY SELECTION. |

i n
1 2)

CLNT ID <
EMPLB NAME

>

>

EMPLR NAME 1

CLNT ID
J 3) CLNT_ID > EMPLR .NAME

I

1 MAKE A SELECTION = ==> 3

Exhibit ». 14

- 56 -

The case statement in Exhibit 4.15 explains the action to be

taken, based on the dependencies in Exhibit 4.9 and the dis-

play of Exhibit 4. 14.

CASE menu selection
WHEN 1

replace either FD or FD V with both FDs 2 and 3

WHEN 2
replace FD V with FD 2

WHEN 3

replace FD with FD 3

END CASE

Exhibit 4. 15

Without this additional semantic information interpretations

of owner and member records from NFDs would be purely arbi-

trary in some situations. The fact that one produces a less

redundant and/or more minimal schema from this added infor-

mation is a fortunate side effect.

4.3.2.3 Nonfunctional Degendenc2zi2rSet Conversion

4.3.2.3.1 Convert Non-E£ime Attributes of an NFD to

Prime Attributes

Although each non-prime attribute can now be identified

by a set of candidate keys representing a single record,

concern remains about a mindless substitution of candidate

keys for non-primes. This substitution, as a rule, would

still model the users' needs but could add unwanted rela-

tionships between entities. A subset of FDs and NFDs from

the Wampum Brokerage case study is used to illustrate this

potential problem (see Exhibit 4.16).

57 -

FD1:
FD2:
FD3:
FD4:
FD5:

STK ABBV >

CLNT_ID >
STK_ABBV,CLNT ID >
CLNT_ID >
EMPLB_NAME >

STK NAME
CLNT_NAME
STK_CLNT QDAN
EMPLR NAME
EMPLB_PH

NFD1:
NFD2:
NFD3:

STK_ABBV
STK_ABBV
STK ABBV

»
»
»

CLNT_NAME
STK_CLNT_QUAN
EMPLR PH~

Exhibit 4. 16

Any tine an FD exists where the BS attribute represents

one record and LS attribute (s) represent another record, a

1-to- 1 relationship exists. The existence of a 1-to-1 rela-

tionship in this situation is based on the definition of a

functional dependency which appears in Chapter 1. Function-

al dependency four (FD4) in Exhibit U.lfc constitutes such an

FD. This relationship, derived from FD4, is graphically

shown by the single- headed arrow between REC0BD2 and RECORD**

in Exhibit 4. 17

SET2 from
NFD2

J

I

I

1

V

V

J BECOBD3
J

1 STK-ABBV
1 C1NT-ID
I STK-CLNT-QUAN

1 RECORD 1

J "stF^ABRV
I STK-BAME

SET1

from NFD1

]

-»l
RECORD2

1 C1NT-ID
| CLNT-NAME

I

SET3 | from NFD3
1

I | KEC0ED4
I J

»| EflPLB-NAKE
I
SMPLB-PH

I

Exhibit i». 17

I

SET 4 1 from FD4
1

I

I

58 -

Apparent from the model shown in Exhibit «. 17 is the ex-

istence of a transitive path from REConDl to RECORD** through

REC0RD2. Nonfunctional dependency NFD3 creates the unwanted

transitivity via SET3. In this case, SET3 is useless for

creating the STOCK ACTIVITY display and only serves to add

complexity to the schema. Should a different user applica-

tion dictate a path from REC0HD1 to REC0RD4, that relation-

ship can still be recognized through REC0RD2. Transitivity

of this type can be eliminated when the RS attribute of an

NFD is converted to a member record. The means by which

this transitivity is resolved is formally introduced by the

high level algorithm in Exhibit i*. 18 and expounded upon

through the example introduced in Exhibits U. 16 and 4. 17.

ALGORITHM TO CONVERT NON-PRIME NED ATTRIBUTES
TO PRIME ATTRIBUTES:

BEGIN ALGORITHM;
prime- substitute < non-prime attribute in an NFD;

DO WHILE prime-substitute exists on the RS of an FD and
the prime-substitute has yet to be considered;

LOCATE the FD where the prime-substitute attribute
exists on a RS;

prime-substitute < recently located FD's LS;

END LOOP;
END ALGORITHM;

Exhibit U. 18

The algorithm in Exhibit ".18 removes transitivity from the

the data base model by tracing existing FDs back to their

left most identifier. This backtracking continues until no

further backtracking can be done, or, in the case of a bi-

59 -

jection, the prime substitute becomes redundant with respect

to previous substitutions. Without the condition checking

for redundant substitutions an endless loop could result.

In the example presented in Exhibit 4.16, existinq FDs trace

the non-prime attribute, EMPLR_PH, back to its left most

identifier, CLHT_ID as shown belowj

CLNT_ID > E«PLR_NABE > EHPLR_PH.

The RS of NFD3 in Exhibit ".16 becomes CLNT_ID instead of

EHPLR_NAME (i.e., NFD3 becomes STK_ABRV >> CLNT_ID) and the

transitivity between records is removed. With respect to

NFDs, consistency has been established for converting non-

prime attributes to prime attributes. Note that the algor-

ithm also converts non-prime attributes on the LS of an HFD

to prime attributes. In order for owner records to be in-

terpreted from an NFD's RS and a member record to be inter-

preted from an NFD's LS, all NFD attributes must be prime

attributes.

4.3.2.3.2 Establish Member Record

Several questions concerninq the conversion of these mod-

ified NFDs to owner and member records remain unanswered.

The high level algorithm in Exhibit 4. 19 is used to estab-

lish the procedure for converting the HS of an NFD to the

expected member record. Following the algorithm, an example

is provided to give a further understanding of this process.

60

ALGORITHM TO CONVERT AN NFD'S BS ATTRIBUTE
TO A MEMBER RECORD:

BEGIN ALGORITHM;

/** INPUT ASSERTION — all non-prime attributes of the
given NFD have been converted to prime attributes
using the algorithm presented in Exhibit 4. 18 **/

/** The RS of the NFD is considered for the set member.**/

IF the NFD's RS is equivalent to an existing record's
candidate key (s)

LOCATE the record whose keys are eguivalent to an
existing NFD's RS;

member-record < recently located record;

ELSE
/** The intersection record created by concatenating **/
/** the LS and RS of the qiven NFD is considered **/
/** for the set member. **/

CONCATENATE LS and RS attributes of the given NFD;

IF the concatenated attributes are equivalent to an
existing record's candidate key(s)

LOCATE the record whose keys are eguivalent to the
concatenated attribute's;

member -record < recently located record;

ELSE

/** There is not enough information to assure a **/
/** correct interpretation of the user's NFD as **/
/** presented. **/

ENDIF

END LOOP;
END ALGORITHM;

Exhibit 4. 19

The algorithm in Exhibit 4.19 first checks to see if the at-

tribute on the RS of the NFD evaluates to an existing re-

cord. If it does evaluate to an existing record then that

- 61

record is used as the member record. If the attribute on

the RS of the NFD does not evaluate to an existinq record

then the concatenation of all NFD attributes is used to

search for an intersection record. If an intersection re-

cord exists, it is used as the member record. The existence

of an intersection record indicates an M-to-N relationship

between the LS and RS attributes of the nonfunctional depen-

dency. As is further clarified in Chapter 6, a complex re-

lationship is simplified usinq an intersection record.

Thus, the use of an intersection record as a member record

is acceptable.

The followinq example uses the NFD, CLNT_ID, STK_ABRV >>

TXN_DTE, with respect to the oriqinal set of records pro-

duced for the stock data base (see Exhibit 3. IF) , to help

clarify the establishment of the member record. The RS of

the NFD does not clearly indicate a member record. TXN_DTE

is a prime attribute of REC0RD4 in Exhibit 3. i»F, so no sub-

stitution is necessary. TXN_DTE is not found to be equiva-

lent to any candidate key (i.e., the closure of TXN_DTF does

not equal the closure of any candidate key for any record)

.

TXN_DTE must exist as part of some key (it must be a prime

attribute) and the only key that could assure semantic value

would be the key created by the entire NFD (i.e., the inter-

section record). The closure of CLNT_ID,STK_ABRV ,TXN_DTE is

checked aqainst closure of candidate keys for all records

and is found to be equivalent to RECORDS in Exhibit 3.4F and

62

therefore the member record. If RECORDS did not exist the

NFD, CLNT_ID,STK_ABRV >> TXN_DTE, would have been considered

uninterpretable. To further clarify the search for a member

record, refer to the graphic models in Exhibit 4.20.

Y) I II
1 STK_ABRV

J
»]

I CLNT_ID
| |

I I I.

OK

I

TXN DTE

z) I I

1 STK_ABRV | »
I CLNT ID

|

i I

STK_ABRV
CLNT_ID
TXN DTE

Exhibit 4.20

Option y is first considered, but TXN_DTE is not found to be

a candidate key of any record in Exhibit 3.4F.

STK_ABRV,CLHT_ID,TXN_DTE is a candidate key for REC03D4 and,

therefore, represents the nember record as shown by option

z.

4. 3. 2. 3. 3 Establish Owner Recor

d

The LS of an NFD, unlike the RS, does not necessarily

identify a sinqle record. The process to reduce an NFD's LS

to an exact and minimal set of owners uses recursive tree

traversals. Starting with the entire LS as a potential own-

er record, until all LSs are matched, recursive calls gener-

ate combinations of potential key attributes. If a wrong

- 63 -

path is taken, the process is backed up to where the initial

combination was found and starts aqain at that point. Based

on the input assertion that all LSs are prime attributes,

this tree traversal algorithm should eventually find a set

of combinations of the LS attributes whose closures are

equal to the closures of a respective set of records. in

exception case that deserves special attention exists when a

set of LS coabinations evaluate to an owner record that is

the same record as the member. This type of relationship

(i.e., an Lii) is not allowed by C0DA3YL and, when respec-

tive attribute combinations are found in the tree, they must

be bypassed.

Consider the qraphic depiction of STDCK_DB and NFD-G in

Exhibit 4.21 as an example illustrating this procedure.

RECORD 1

| stk-abrv (key)
| stk-name

REC0RD2

J
clnt-id(key)

I
clnt-name

I
REC0RD3

|

I I—»| stk-abrv (key) |«-
| clnt-id (key) J

| stk-clnt-quan

|

NFD-G: STK_ABRV,CLNT_ID » STK_CLNT_QUAN

Exhibit 4. 2 1

64 -

From NFD-G [see Exhibit 4.21) two sets are derived by the

tree traversal algorithm. The LS of NFD-G,

STK_ABRV,CLNT_ID, initially evaluates to the same record as

the member record (i.e., SEC0RD3) . Because an Lii relation-

ship is not allowed, REC0RD3 is bypassed and the tree trav-

ersal algorithm partitions the LS into STK_ABRV and CLNT_ID.

STK_ABRV is a candidate key of EEC0ED1 and therefore an own-

er record. CLNT_ID is a candidate key of REC0RD2 and also

an owner record.

4.3.2.4 Create get Entities in User^s Data Base

Once owner and member records are determined, the 1:many

sets are created. A pass of the FDs is made to determine if

LS and RS closures are equivalent to candidate key closures

of separate records. If so, a 1-to- 1 relationship, such as

SETS of Exhibit 4.22, is created. The conceptual schema in

Exhibit 4.22 shows the outcome of DB_INIT for the Wampum

Brokerage case study in terms of its major entities.

65 -

RECORD 1
J

stk-abrv (key 1) |

stk-name (key2)
|

rcnt-qut l«-
rcnt-vol

|

stk-last-updtej
tot-amt-wh.. .

|

tot-num-wh. . . |

I

SET1 1 REC0RD2

SET3

I REC0RD3 J

| stk-abrv (keyH
»| clnt-id (key) |

SET2 | stk-clnt-quanl
] stk-clnt-5S I

I I

I

I

I

SET4
]

-»l__

REC0RD4
J.

I
clnt-id (key)

I clnt-name
-| emplr-name

I
anul-slry

I stk_abrv(k ey)

-»| clnt-id (key)

| txn-dte (key
| brkr-tecEnd
J clnt-stk-txn$
| f-stk-clnt-pur

I

SET5
1

I

V

REC0RD5

emplr-name
(key)

emplr-ph

Exhibit 4.22

4.4 Status of flsexls Data Base Schema

At this point in the desiqn process, the leta data base

may contain some sets which still need to be modified to fit

within the constraints of the CODASYL model. For instance,

in Exhibit 4.22 the complex relationship between RECORD! and

REC0RD2 (an N-to-M relationship) is not acceptable. The

changes which still must be made are accomplished usinq the

- 66

next system module (DB_CUST) . These modifications are post-

poned until the schema is to be created. The next chapter

shows how these recently created entities can be customized

to meet user requirements in a better way.

67

Chapter 5

DATA BASE CUSTOMIZATION

It is unlikely that all entities created by DB_INIT cor-

rectly and completely describe user needs. DB_INIT makes

several assumptions that can lead to incorrect or ineffi-

cient code. For example, the defaulting of a data element's

type is likely to be wrong as often as right. Therefore the

need exists to modify entities to model the users' domain

more correctly. The data base customization module

{DB_CUST) is designed to lead the data base designer easily

through the processes of adding, deleting and changing char-

acteristics of the data elements, records, and sets created

by DB_INIT. DB_CUST meets these reguirements through the

following services:

1) modification of all entities via a user-friend-
ly, menu-driven, interactive system,

2) data base design assistance when the user is in
doubt about available options, and

3) real-time conflict checks on all applicable en-
tries.

The current assumed status, with respect to the data base

design process, is that a data base has just been initial-

ized and is ready for customization as shown in Exhibit

1.22.

fc8

5. 1 Establish Position in DB-GEN

Selections 2-5 of of the primary menu in Exhibit 5.1 com-

prise the options available in DB COST.

** PRIMARY MEND **

1 1) DATA BASE INITIALIZATION
1 2) DATA ELEMENT DPDATE
1 3)

J <•)

RECORD UPDATE
SET DPDATE

1 5) DATA BASE UPDATE
1 b) PRINT DATA
1 7) CREATE SCHEMA
1 X) EXIT

1 ==>
1 2

1 __ — , J

Exhibit 5. 1

As described in earlier chapters, there can be an undet-

ermined number of meta data bases under DB_GEN. Substantial

effort has been made to keep each of the data base's enti-

ties separate so like- named entities of one data base can

exist and be manipulated without affecting those of another

data base. Although difficult to implement and costly in

terms of input-output reguests, meta data base separation is

a necessity for integrity purposes.

5. 2 Data Base Update

Through selection five, DATA BASE UPDATE (see Exhibit

5.1), the data base name can be chanqed with full confidence

that all subordinate entities will remain intact. The data

- 69

base name is the only required attribute of the DATA BASE

record. Available, but not required, is the ability to as-

sign a data base administrator to each Beta data base. Once

a meta data base has been established, there is little need

for the DATA BASE UPDATE nodule.

5. 3 Data Element Update

Data elements form the basic building blocks for any data

base. Evident from Chapter 4, Data Base Initialization and

Interpretation, is the fact that data base generation is ac-

complished only from knowledge of how data elements relate

to one another. Although much can be told about a data ele-

ment, DB_GEH requests only the most basic data element in-

formation required for the schema generation {i.e., name,

definition, type, and format) .

The conceptual schema in Exhibit 2.1 illustrates how a

data element participates with other data base entities.

The CONCATENATED-BY relationship of DATA ELEMENT onto it-

self, allows for group-level data elements (a data element

comprised of sub-elements) . Group level data elements can-

not be described in terms of functional dependencies, there-

fore, they must be described using the customization module.

The SBOUPED_IN and POP0LATED_WITH relationships are initial-

ly created by DB_INIT and remain for use in this schema un-

less removed throuqh use of the RECOE D_UPDATE module. A se-

lected few of the data elements are customized, avoiding an

- 70 -

exhaustive trace of data element customization for the en-

tire organization which is not appropriate for this study.

Selection two of the primary menu, DATA ELEMENT UPDATE (see

Exhibit 5. 1) , lists all the data elements created by DB_INIT

(see Exhibit 5. 2) ,

** DATA ELEMENT UPDATE **

1) CREATE ELEMENT 16)
2) ANUL-SLRY 17)
3) BRKE-RECMND 18)

») CLNT-ID 19)
5) CLNT-NAME X)

6J CLNT-STK-PHCNT-I
7) CLNT-STK-QUAN
8) CLNT-STK-TXN-PRC
9) EMPLR-PH
10) EMPLR-NAME
11) NDM-STK-CLNT-PUR
12) RCNT-QUT
13) RCNT-VOL
!«) STK-ABRV
15) STK-LAST-UPDTE

MAKE
fc

SELECTION ===>

STK-NAME
TOT-AMT-WHEN-REC
TOT-NUM-HHEN-REC
TXN-DTE
EXIT

Exhibit 5.2

Each of the four maior data base entities use the same

format for presentation of the entities of concern. The

services available from Exhibit 5.2 are;

1) the creation of a new entity (selection 1) ,

2) the updating of existing entities (valid selec-
tion other than "1" or "X") , and

3) the removal of an existing entity (selection of
an existing entity followed by "DELETE").

71

This menu system provides a comprehensive approach for enti-

ty maintenance; however, several shortcuts have been created

to reduce menu traversals and therefore increase machine and

manpower performance. For example, the data base designer

can assign a data element name to a newly created data ele-

ment by enterinq the data element name following menu number

"1" in Exhibit 5.2.

Data element customization might begin by renaming selec-

tion six of Exhibit 5.2. Truncation by DB_INIT has left

that name less than descriptive. Exhibits 5.3 and 5. <4 track,

the name changing process.

I ** CHANGE OS DELETE DATA ELEMENT **

| 1) ELEMENT NAME: CLNT-STK-PRCNT-I
1 2) DEFINITION:
I 3) TYPE: CHAHACTEH
I

4) TOTAL SIZE: 010
] X) EXIT

] MAKE SELECTION ===>
J 1CLNT-STK-INVST

Exhibit 5.3

72

I

]
** CHANGE OS DELETE DATA ELEMENT **

J

J 1) ELEMENT NAME: CLNT-STK-INVST
] 2) DEFINITION:
) 3) TYPE: CHARACTER
i 4) TOTAL SIZE: 010
J X) EXIT
I

I MAKE SELECTION ===>
| 3numeric
I

Exhibit 5.4

Suppose the TYPE attribute of CLNT_STK_INVST needs to be

modified from CHARACTER to NUMERIC and given an applicable

format. Exhibits 5.4-5.6 illustrate the process the data

base designer must use to accomplish this task. In Exhibit

5.4 a menu number of three followed by a menu entry of "nu-

neric", indicates the TYPE attribute is to be modified from

CHARACTER to NUMERIC as shown in Exhibit 5.5. Exhibit 5.5,

inturn, changes the TOTAL SIZE attribute from ten to three

(see Exhibit 5. fc)

.

** CHANGE OR DELETE DATA ELEMENT **

1) ELEMENT NAME: CLNT-STK-INVST
2) DEFINITION:
3) TYPE: NUMERIC
4) TOTAL SIZE: 010
5) FRACTION SIZE:
X) EXIT

MAKE SELECTION ===>
4 3

Exhibit 5.5

73 -

** CHANGE OR DELETE DATA ELEMENT **

1) ELEMENT NAME: C1NT-STK-IN VST
2) DEFINITION:
3) TYPE: NUMERIC
4) TOTAL SIZE: 003
5) FRACTION SIZE:
I) EXIT

MAKE SELECTION ===>
x

Exhibit 5.6

To illustrate other features, let us assume that a user has

requested additional information which requires

STK_LAST_UPDTE to be partitioned into STK_DAY_UPDTE and

STK_TIMS_UPDTE. These sub-elements have been created and

appear in exhibits 5.7 and 5.8. The two new data elements

must be created before STK_LAST_DPDTE could add these as

sub-elements. If an attempt were made to divide

STK_LAST_0PDTE into sub-elements prior to their creation, an

error message would be displayed and a list of all valid

data elements would be made available. The addinq of sub-

elements is accomplished by entering menu number four fol-

lowed by the sub-element name (see Exhibit 5.9). If the

data base designer is not sure of the sub-element to be add-

ed, the menu entry can be left blank and a list of existing

data elements appears for selection.

74 -

** CB.EATE NEW DATA ELEMENT **
i

1) ELEMENT NAME: STK--TIME--UPDTE |

2) DEFINITION:
3) TYPE: NUMERIC
«) TOTAL SIZE: 006
5) FRACTION SIZE:
X) EXIT

MAKE SELECTION ===>

j

Exhibit 5.7

** CREATE NEB DATA ELEMENT **

I 1)

1 2)

1 3)

1 »)

i 5)

1 X)

ELEMENT NAME: STK-DAY-UPDTE
DEFINITION:
TYPE: NUMERIC
TOTAL SIZE: 006
FRACTION SIZE:
EXIT

1 MAKE SELECTION ===>

Exhibit 5.8

]

I
** CHANGE OR DELETE DATA ELEMENT **

I

I 1) ELEMENT NAME: STK-L AST-UPDTE
I 2) DEFINITION:
| 3) TYPE: CONCATENATED
I «) ADD SOB ELEMENT
I DELETE SOB ELEMENT . . .

I 5) STK-DAY-OPDTE
I 6) STK-TIME-OPDTE
I X) EXIT
I

I MAKE SELECTION ===

>

i

Exhibit 5.9

75

5. U Recor d fiEdate

Similar to DATA ELEMENT, the RECORD entity is very tight-

ly coupled within the DB_GEN data base (see Exhibit 2.1).

Populated with data elements and linked to sets for which it

is the owner and/or member, RECORD functions as an interface

entity for the data base. Upon entry into the RECORD_npDATE

nodule, the need to clarify the generic record names is most

apparent (see Exhibit 5.10). Changing RECORD attributes, as

one might suspect, is similar to DATA ELEMENT attribute

changes. Selection of a record displays the defaulted re-

cord attributes and, most importantly, the data elements

linked to that record by DB_INIT (see Exhibit 5.11). By

viewing the data elements within a record a more descriptive

record name can likely be created (see Exhibit 5.12).

** RECORD UPDATE **

I 1) CREATE RECORD
|1 2) RECORD 1

1 3) RECORD2
J

1 t) RECORD3
1 5) RECORD4
1 6) RECORD5
1

X) EXIT

1 MAK E SELECTION ===>
|

I 3

Exhibit 5.10

- 76 -

** CHANGE OH DELETE RECORD **

1) RECORD NAME: RECORD3
2) RECORD LOCATION BODE: CALC
3) RECORD DUPLICATE OPTION: DN
4) RECORD CALC KEY OH VIA SET:
5) ADD DATA ELEMENT TO REC0RD3
DELETE DATA ELEMENT ...

6) CLNT-STK-INVST
7) CLNT-STK-QOAN
8) CLNT-ID
9) STK-ABRV

X) EXIT

MAKE SELECTION ===>
1 STK-CLNT

Exhibit 5.11

** RECORD UPDATE **

1) CREATE RECORD
2) CLIENT
3) EMPLR
4) STK-CLNT
5) STK-CLNT-TXN
6) STOCK
X) EXIT

MAKE SELECTION ==>

Exhibit 5. 12

The record attribute of most concern is the LOCATION BODE.

Assignment of this attribute directly influences the remain-

ing two attributes (i.e., the DUPLICATE OPTION and CALC KEY

OR VIA SET). IB Exhibit 5.13 STK_NAME has been chosen as

the direct access key. (Note: If one wanted a concatenated

CALC key, it would be necessary to create such an element

using DATA ELEMENT UPDATE. Only one data element name is

77

accepted as a CALC key.) A change of the LOCATION MODE from

CALC to VIA is Bade. in Exhibit 5.13 and 5.1U. This change

forces suppression of the no longer applicable DUPLICATE

OPTION. Exhibit 5. 11 illustrates entry of an erroneous set

for the VIA SET parameter (STK_CLNT must be a member record

in the set chosen.) Selection of an invalid set name for

VIA SET results in an error message followed by a help fea-

ture which lists the set in which STK-CLNT functions as a

member record (see Exhibit 5. 15) .

1 ** CHANGE OR DELETE RECOHD **

] 1) RECORD NAHE: STK-CLNT
1 2) RECORD LOCATION BODE: CALC
J 3) RECOHD DUPLICATE OPTION: DN
| 4) RECORD CALC KEY OS VIA SET: STK-NAME
i 5) ADD DATA ELEMENT TO RECORD3
| DELETE DATA ELEMENT . . .

1 6) CLNT-STK-INVST
] 7) CLNT-STK-QnAN
I

8) CLNT-ID
I 9) STK-ABRV
J X) EXIT

I
BAKE SELECTION ===>

1 2 VIA

Exhibit 5.13

- 7£

** CHANGE OB DELETE RECORD **

1) RECORD NAME: STK-CLNT
2) RECORD LOCATION MODE: VIA
3) RECORD CALC KEY OR VIA SET:
U) ADD DATA ELEMENT TO RECORD3
DELETE DATA ELEMENT . . .

5) CLNT-STK-INVST
6) CLNT-STK-QUAN
7) CLNT-ID
8) STK-ABRV

X) EXIT

MAKE SELECTION ===>
3 SET3

Exhibit 5. 14

1 ** SELECT VIA SET **

] 1) SET2
1 X) EXIT

1 == > 1

Exhibit 5.15

Additional RECORD UPDATE capabilities are shown by con-

ducting a common data base optimization. To include a stand

alone 1-to-1 relationship into its owner record is often a

good tradeoff of increased redundancy for improved efficien-

cy. This type of relationship exists between CLIENT and

EMPLR in the Wampum Brokerage system (see Exhibit 4.22).

The EMPLR record is deleted from the data base (see Exhibit

5.16) and EflPLR_PH is linked to the CLIENT record (see Ex-

hibit 5.17 - 5.18). EMPLH_NAME previously existed in CLIENT

79

as a foreign key so it was not necessary to add EMPLP_NAME

to CLIENT.

J ** RECORD UPDATE **

J 1) CREATE RECORD
I 2) CLIENT
1 3) EMPLR
1 U) STK-CLNT
I 5) STK-CLNT-TXN
I 6) STOCK
I

X) EXIT

] HAKE SELECTION ===>
j

I
3 DELETE

Exhibit 5.16

** CHANGE Ofi DELETE RECORD ** |

I 1) RECORD NAME: CLIENT |

1 2) RECORD LOCATION MODE: CALC |

1 3) RECORD DUPLICATE OPTION: DN |

J "0 RECORD CALC KEY OR VIA SET: CLNT-NAME |

J 5) ADD DATA ELEMENT TO CLIENT |

| DELETE DATA ELEMENT ... 1

6) ANUL-SLRY |

7) EMPLR-NAME |

8) CLNT-NAME |

9) CLNT-ID
i

1 X) EXIT |

] HAKE SELECTION ===>
| 5 EMPLR-PH |

Exhibit 5. 17

- 80 -

** CHANGE OE DELETE RECORD **

1) RECORD NAME: CLIENT
2) RECORD LOCATION MODE: CALC
3) RECORD DUPLICATE OPTION: DN
4) RECORD CALC KEY OR VIA SET: CLNT-NAME
5) ADD DATA ELEMENT TO CLIENT
DELETE DATA ELEMENT . . .

6) ANDL-SLRY
7) EMPLR-NAME
3) CLNT-NAME
9) CLNT-ID

10) EMPLR-PH
X) EXIT

MAKE SELECTION ===>

Exhibit 5. 18

5. 5 Set SEdate

The SET_UPDATE module uses the customization software

previously discussed. After more meaninqful names are se-

lected (see Exhibit 5.19), few decisions concerninq a set

remain due to the fact that selections 2-5 are derived dur-

ing data base initialization (see Exhibit 5.2 0).

1)

2)

3)

*J

5)

X)

** SET UPDATE **

CREATE SET
OHNED-BY
OBNS
STK-CLNT-SET
STK-CLNT-TXN-SET
EXIT

MAKE SELECTION ===>
2

Exhibit 5.19

- 81

** CHANGE OR DELETE SET **

1 1) SET NAME: OHNED-BY
1 2) SET OH NEE: STOCK |

1 3) SET MEMBER: CLIENT
J

1 •) SET VALUE: 1 TO MANY |

1 5) SET INVERSE VALDE: 1 TO MAN!
J

1 6) SET MEMBERSHIP: MANDATORY AUTOMATIC |

J 7) SET ORDER: FIRST j

1 X) EXIT |

Exhibit 5.2

Any changes made to OWNER or MEMBER set attributes are

verified by DB_C0ST to assure that the the owner and member

records that are selected exist and are disjoint (remember

Lii sets are not allowed) . If a set was established by an

NFD, the SET VALUE is 1-to-Many and if it was derived from

an FD its SET VALUE is 1-to~1. The SET INVERSE for

1-to-Many SET VALUE is assumed 1-to-1 unless one or both of

the following are true:

1) The closure of the concatenation of owner and
member candidate keys is equal to the closure
of another record (i.e., an intersection record
exists between the owner and member records).

2) At least one other record exists that has the
opposite relationship of owner and member re-
cords of the set in question (i.e., an M-to-N
relationship exists) .

The SET INVERSE for a set with a SET VALUE of 1-to-1 is as-

sumed to be 1-to-Many. Otherwise, the member and owner re-

cords are the same.

- 82 -

Possibly the most mystifying of all IDMS parameters is

SET MEMBERSHIP. To help offset the perplexities of SET

MEMBERSHIP, excerpts from an IDMS programmer's guide

(CADY80) supplement the SET MEMBERSHIP help feature (see Ex-

hibit 5.21).

** SET MEMBERSHIP VALUES **

1) MAHDATORY AUTOMATIC —
DISCOSRECTIOS FROM SET ONLY BY ERASING RECORD
CONNECTION TO SET AUTOMATIC WHEN STORED

2) MANDATORY MANUAL -
DISCONNECTION FROM SET ONLY BY ERASING RECORD
CONNECTION TO SET VIA "CONNECT" STATEMENT

3) OPTIONAL AUTOMATIC -

DISCONNECTION FROM SET VIA "DISCONNECT" STATEMENT
CONNECTION TO SET AUTOMATIC WHEN STORED

4) OPTIONAL MANUAL -
DISCONNECTION FROM SET VIA "DISCONNECT" STATEMENT
CONNECTION TO SET VIA "CONNECT" STATEMENT

X) EXIT

Exhibit 5.21

With respect to SET ORDER, a final series of menu traver-

sals graphically summarizes DB_CUST's capabilities. Exhibit

5.22 illustrates a user's reguest for the SET ORDER option.

A selection of ASCENDING {see Exhibit 5.23) causes the "**

CHANGE OR DELETE SET **" display to add the SORT ELEMENT op-

tion (see Exhibit 5. 24) . A sort field must be a data ele-

ment present in the member record. In the likely event one

33 -

can not remember the spelling for the sort field data ele-

ment, the help feature lists all possible options (see Ex-

hibit 5.25).

1 ** CHANGE OB DELETE SET **

1 1) SET NAME.: OWNED-BY
1 2) SET OHNEB: STOCK
1 3) SET MEMBER: CLIENT
J ») SET VALUE: 1 TO MANY
1 5) SET INVERSE VALUE: 1 TO MANY
J fc) SET MEMBEPSHIP: MANDATORY AUTOMATIC]

1 7) SET OBDEB: FIRST
J X) EXIT

I
=== = >

| 7
I

Exhibit 5.22

** SET ORDER VALUES **

1) FIRST
2) LAST
3) NEXT
<*) PRIOR
5) ASCENDING
e) DESCENDING
X) EXIT

Exhibit 5.23

SU -

** CHANGE OR DELETE SET ** !

1) SET NAME: OWNED-BY
2) SET OHNER: STOCK

1

3) SET MEMBER: CLIENT
») SET VALUE: 1 TO MANY
5) SET INVERSE VALUE: 1 TO MANY 1

6) SET MEMBERSHIP: MANDATORY AUTOMATIC
i

7) SET ORDER: ASCENDING
8) SET SORT ELEMENT:
9) SET DUPLICATE OPTION: DUPLICATES NO)

X) EXIT
1

8

>
J

Exhibit 5.2«

** SELECT SORT ELEMENT **

1) CLNT-ID
2) CLNT-NAME
3) ANUL-SLRY
4) EHPLB-NAME
5) EMPLR-PH
X) EXIT

MAKE SELECTION ===>

Exhibit 5.25

5. fc Data Base Customization as a Maintenance Aid

Once the data base administrator feels confident that the

data base entities have been properly customized, it is time

to create the schema. It is likely however, that the first

few attempts at schema creation will find missinq data or

unforeseen conflicts. These problems, in conjunction with

requirement chanqes, may cause several revisits to DB_CUST.

- 85 -

Chapter 6

SCHEMA CKEATION

Upon entry of the user's data base name, the initial menu

entry of the system, edit checks and minor enhancements are

performed to insure a clean IDHS schema compilation. Vali-

dation and conflict checking continue throughout the data

base initialization and customization process, thus assuring

many strong input assertions for the actual creation of the

IDHS schema. Therefore, SCHEHA_CREATE, the module that cre-

ates schema source code, does not require user interaction

to reformat entities into IDHS data definition statements.

Of most interest is the way SCHEHA_CHEATE:

1) simplifies M-to-N relationships to meet CODASiL
(and IDHS) requirements,

2) generates pointer positions within records by
simulating the IDHS "clock rule" algorithm
(PEEE77) , and

3) establishes l-to-1 relationships via owner
pointers and foreign keys.

6. 1 Check for pissing Data

Before addressing the actual schema creation, a missing

data sub-module (HISSING_DATA_CHECK) must be successfully

run. This module only delineates required missing data. If

86

missing data is detected, the data base administrator is no-

tified (see Exhibit fc. 1) and schema compilation is aborted.

*** REQUIRED BUT MISSING DATA ***

DATA ELEMENT: ATTRIBUTE:

STK_ABRV FORMAT
STK_CLNT_QUAN TYPE

RECORDS:

CLIENT CALC KEY
STK_CLNT_TXI! VIA SET

SET:

OWNED_BY SET MEMBERSHIP

Exhibit 6.

1

6.2 Verify E.ntit;y. Customization

After missinq data requirements are met throuqh the use

of DB_CUST, a scan of all entities is made to verify custom-

ization. As discussed in Chapter 5, Data Base customiza-

tion, nearly all entities require some customization. Un-

like the missing data check, this routine generates only

warning messaqes (see Exhibit t.2) and then continues to the

next process.

*** WARNING—ENTITIES NOT CUSTOMIZED ***

DATA ELEMENT: RECORD: SET

STK_NAME RECORD3 SET«
CLIENT NAME

Exhibit fc.2

87

6.3 Simplify. Complex Relationships

Complex relationships (B-to-N relationships) are banned

by CODASYL data base management system specifications. The

user-required sets from the Wampum Brokeraqe System repre-

sent such a relationship, (see Exhibit 6.3).

owned-by
I

| », ",
I STOCK 1 owns] CLIENT |

I l« 1 I

Exhibit 6.3

In all situations the solution lies in the creation of an

intersection record (see Exhibit fc.4). The system automati-

cally detects this situation by evaluating SET VALUE and SET

INVERSE VALUE attributes of a set entity and creates the

necessary intersection record and accompanying sets.

11 11
I

STOCK | J CLIENT |

I 1 1 I

I I

owned-by owns
I I 1 I

»| STK_CLNT |«
1 I

Exhibit 6.1

Traversals from STOCK to CLIENT are now made by the follow-

ing statements:

OBTAIN NEXT SET (OWNED_BY) ;

OBTAIN OWNER SET (OWNS) ;

-88

From CLIENT to STOCK just the opposite statements are re-

quired.

OBTAIN NEXT SET (OWNS) ;

OBTAIN OWNER SET (OWNED_BY) :

Overtly, the solution seems flawless. But, if the user re-

quires other services additional sets made be needed. For

example, perhaps a CLIENT wishes to know which of his stocks

have made the most money (see Exhibit 6.5).

owns
|«

|

J owned-by
|

STOCK | »] CLIENT
I made-money-on |

Exhibit 6.5

Sets OWNS and OWNED-BY address reciprocatinq questions, are

correctly modeled by Exhibit 6. H, and can be easily imple-

mented. However, given the existence of the OWNS and

OWNED-BY sets, the implementation of the MA DE-MONEY-ON set

is less apparent. If a second intersection record were cre-

ated, software could not distinguish reciprocatinq relation-

ships like OWNS and OWNED-BY from non-reciprocatinq rela-

tionships like OWNED-BY and MADE-KONEY-ON- When multiple

sets exist between records, the interpretation of these sets

traditionally require human input. However, by aqain refer-

rinq to Bernstein's research (BEBN76) , a different approach

provides a solution to this problem without human interven-

tion.

89 -

Recall from Chapter 3, Bernstein's Algorithm and User Re-

quirements, that each of Bernstein's NFDs are converted to

FDs by concatenating on the LS both the BS and LS attributes

and creating a new SS , namely a unique theta attribute.

Each theta represents a set and the value of theta (either

"yes" or "no") indicates an association between current re-

cords. This concept, applied to a network model, limits in-

tersection records to one, and set names become data ele-

ments within the intersection record {see Exhibit 6-6).

I I

I STOCK |

stock-client-0

1

i | STK_CLNT

I
owns

I owned-by
J made-$-on

I I

I
CLIENT |

I I

I

I

client-stock -0 2

I

«

Exhibit 6.6

This simplification technique provides a consistent and use-

ful method for solvinq H-to-N relationships, and by usinq

IDMS' "logical record facility", traversals remain quite

readable. For example, a traversal from STOCK to CLIENT

would read

OBTAIN NEXT SET (STOCK_CLIENT_0
1) WHEBE [OWNS = 'YES');

OBTAIN OWNER SET (CLIENT_STOCK_02) ;

Should the data base administrator find substantial diffi-

culties with this transformation, any type of record/sot

configuration can be created via DB CtJST.

- 90 -

fc . t Establish 1-to-1 Relationships

The implementation of a 1-to-1 relationship is analogous

to a traditional table lookup operation. Use of an IDMS set

for this type of relationship is poor use of the software.

A set (and all its pointers) should not be introduced if at

most there is to be one occurrence of the member record. If

an inverse relationship exists, there is no problem; the

owner pointer provides the needed relationship. If the in-

verse relationship is non-existent, SCHEHA_CREATOK adds a

member record candidate key to the owning record, providing

it does not already exist (see Exhibit 6.7). The 1-to-1 re-

lationship can now be accomplished by matchinq like-keys

(see EMPLR_NAME in Exhibit 6.7).

I CLIENT J

,
1

I • 1

I : I

J EMPLR- |

I
NAME

|

1 EMPLR
J

J |

I •]

I : I

J EMPLR- 1

I
NAME

|

) (CA1C KEY) |

I I

Exhibit fc.7

- 91 -

6. 5 Generate Set Pointers

IDHS establishes pointers within records by a peculiar

technique known as the "clock rule" (PERR77) . Exhibit 6.8

graphically presents each record of the Wampum Brokeraqe

conceptual schema spiraled twice in their 12 hour clocks.

I
next - 1

I
prior - 2

i

STOCK-CLIENT-01

next - 4

prior - 5

owner - 6

CLIENT-STOCK-02
I

I

next - 1

prior - 2

owner - 3

STK-CLNT-TXN-SET

next - 1

prior - 2

owner - 3

Exhibit t

- 92

Starting at top center (12 o'clock), circle the graphical

representation of a record twice in a clockwise direction.

On the A.M. spiral, assign pointer positions for all sets in

which the record participates as a member in the order the

sets are encountered. On the P.M. spiral, assign pointer

positions for all sets in which the record participates as

an owner in the order the sets are encountered.

SCHEMA_CREATE simulates the clock rule algorithm in much

the same way it is done graphically. Possibly the best form

of explanation is a high level algorithm (see Exhibit t.9).

DECLARE tables—member-next-pointer, member-prior-pointer,
member-owner- pointer, owner-next -pointer,
owner-prior -pointer

BEGIN ALGORITHM;

FOR EACH record DO;
initialize pointer to 1;

FDR EACH set DO; /** simulates a. m. spiral **/

IF member of current set = current record
/** comment - assign member record pointers **/
member-next-pointer (current set) <-- pointer;
member-prior-pointer (current set) <— pointer + 1;

member-owr.er-pointer (current set) <— pointer + 2;
increment pointer by 3;

END IF;

END LOOP;

FOR EACH set DO; /** simulates p.m. spiral **/

IF owner of current set = current record
/** comment—assign owner record pointers **/
owner-next-pointer (current set) <— pointer;
owner-prior -pointer (current set) <— pointer + 1;

increment pointer by 2;
END IF;

END LOOP;
END LOOP;
END ALGORITHM;

Exhibit fc.9

- 93 -

A detailed narrative explanation of the above algorithm

would only serve to distort its clarity. In brief, the two

inner loops simulate the member record and owner record

pointer assignments for each record represented by the outer

loop. The alqorithm establishes all possible pointers

(i.e., next, prior, and owner) . Although this default op-

tion lacks praise for storage efficiency, there need not be

any concern by the programmer about the existence of a

pointer or any need for the data base administrator to per-

form a possibly costly regeneration of an operational system

due to additional pointer requirements.

6 . 6 Create Data Definition 3 ta te me n ts

The remaining function of SCHEMA_CREATE is the reformat-

ting of the application's data base entities into compile-

able IDMS data definition language statements (see Exhibit

6.10). In SCHEMA DESCRIPTION, a substitution of the data

base name and the current date for SCHEMA NAME and DATE (see

lines 7000 and 8000 of Exhibit 6-10) is made. Although much

potential exists for intelligently tuning the data base

through AEEA and PILE DESCRIPTIONS, this research does not

address these issues. AREAS and FILEs are defaulted to one

each (see lines 16000 and 2U000 of Exhibit 6.10). The major

reformatting work pertains to the RECORD and SET DESCRIP-

TIONS. Each existing record and set is obtained from the

desiqned data base and with careful evaluation of each enti-

ty's parameters, the entity is converted to IDMS data defi-

nition source statements.

- 94 -

001000*
00 200 0**** ** **********
003000* ** SCHEMA DESCRIPTION ** *
00 400 0**
005000*
OOfcOOO SCHEMA DESCRIPTION.
007000 SCHEMA NAME IS KDB.
008000 DATE. 12/02/83.
009000 INSTALLATION. KSO
010000*

1 1000**
012000* ** FILE DESCRIPTION ** *
01 300 0**
014000*
015000 FILE DESCRIPTION.
016000 FILE NAME IS IDMS-FILE1 ASSIGN TO SYS010.
017000 FILE NAME IS JOURNAL ASSIGN TO SYS009.
018000*
01900 0**
020000* ** AREA DESCRIPTION ** *
02 100 0********************************* *********************
022000*
023000 AREA DESCRIPTION.
024000 AREA NAME IS DB-AREA
025000 RANGE IS 1001 THRD 1100
026000 WITHIN FILE IDMS-FILE1 FROM 1 THRU 100.
02700 0*
02 800 0**
029000* ** RECORD DESCRIPTION ** *
03000 0**
031000*
032000 RECORD DESCRIPTION.
033000 RECORD NAME STOCK.
034000 RECORD ID 100.
035000 LOCATION MODE CALC USING STK-ABRV DUPLICATES LAST.
036000 WITHIN DB-AREA AREA.
037000
038000
039000
040000
041000
042000
043000
044000
045000
046000*
047000 RECORD NAME CLIENT.
048000 RECORD ID 200.
049000 LOCATION MODE CALC USING CLNT-NAME DUPLICATES LAST.
050000 WITHIN DB-AREA AREA.
051000 05 CLNT-ID PIC X (9) .

052000 05 CLNT-NAHE PIC X(25).
053000 05 ANUL-SLHY PIC 9(6) .

05400 0*

05500 RECORD NAME STK-CLNT

- 95 -

05 STK-NAME PIC X (16).
05 STK-ABRV PIC X(4) .

05 RCNT-QUT PIC 999V9999.
05 RCNT-VOL PIC 9(7) .

05 STK-LAST--UPDTE.
07 STK-DAY-!JPDTE PIC X(6) .

07 STK-TIME--OPDTE PIC X(6) .

05 TOT-AMT-KHEN--REC PIC 999V 9999.
05 TOT-NUM-I»HEN--REC PIC 9999.

STK--CLHT--KEY DN.

PIC X(4) .

PIC X<9) .

PIC 9(5).
PIC 999V99.
PIC X(3) .

PIC X(3) .

TXN--KEY DN.

PIC X(4) .

PIC X(9) .

PIC X(6) .

PIC X(3).
PIC 999V 9999.
PIC 9 (4) .

056000 RECORD ID 300.
057000 LOCATION MODE CALC USING
058000 WITHIN DB-AHEA AREA.
059000 05 STK-CLNT-KEY.
OtOOOO 07 STK-ABRV
061000 07 CLNT-ID
062000 05 CLNT-STK-QUAN
063000 05 CLNT-STK-INVST
064000 05 OWNES
065000 05 OWNED-BY
066000*
067000 RECORD NAME STK-CLNT-TXN.
068000 RECORD ID 400.
069000 LOCATION MODE CALC USING
070000 WITHIN DB-AREA AREA.
071000 05 TXN-KEY.
072000 07 STK-ABRV
073000 07 CLNT-ID
074000 07 TXN-DTE
075030 05 BRKR-RECHND
076000 05 CLNT-STK-TXN-PRC
077000 05 NUM-STK-CLNT-PUR
078000*
07900 0**
080000* ** SET DESCRIPTION ** *

08 100 0* ************************************** ***************
082000*
083000 SET DESCRIPTION.
084000 SET NAME STOCK-CLIENT-0 1 .

085000 ORDER IS SORTED
086000 MODE CHAIN .

087000 OWNER STOCK NEXT POSITION 1 PRIOR POSITION 2.
088000 MEMBER STK-CLNT NEXT POSITION 3 PRIOR POSITION 4

089000 LINKED OWNER
090000 OWNER POSITION 5
09 1000 MANDATORY AUTOMATIC
092000 ASCENDING KEY IS STK-CLNT-KEY
093000 DUPLICATES NOT ALLOWED.
094000*
095000 SET NAME CLIEHT-STOCK-02 .

096000 ORDER IS SORTED
097000 MODE CHAIN .

098000 OWNER CLIENT NEXT POSITION 1 PRIOR POSITION 2.
099000 MEMBER STK-CLNT NEXT POSITION 1 PRIOR POSITION 2

100000 LINKED OWNER
10 1000 OWNER POSITION 3

102000 MANDATORY AUTOMATIC
103000 ASCENDING KEY IS STK-CLNT-KEY
104000 DUPLICATES NOT ALLOWED.
105000*
106000 SET NAME STK-CLNT-TXN-SET.
107000 ORDER IS SORTED
108000 MODE CHAIN.
109000 OWNER STK-CLNT NEXT POSITION 7 PRIOR POSITION 8.
110000 MEMBER STK-CLNT-TXN NEXT POSITION 1 PRIOR POSITION 2

- 96 -

1 1 1000 LINKED OWNER
112000 08NER POSITION 3
113000 MANDATORY AUTOMATIC
11*00 ASCENDING KEY IS TXN-KEY
115000 DUPLICATES NOT ALLOWED.

Exhibit 6.10

6.7 Results of Schema Creation

Once the process of handling each record and set is com-

pleted, a CMS file containing the respective IDMS statements

is created. The filename is assigned the data base name and

the filetype is SCHMA (improperly spelled as reguired the by

IDMS/CMS EXEC available at the Kansas State University com-

puting center). One can be assured that the existing schema

will compile successfully! If the data base designer pre-

fers, the source file created by DB_GEN can be edited fur-

ther before it is compiled.

97 -

Chapter 7

SUMARY AND CONCLUSIONS

7 . 1 Contributions of this Re sea rch

This research shows that applied data base design aids

(e.g., data dictionary and normalization) can be integrated

into an encompassing automated data base design tool to as-

sist the data base desiqner. It is no longer necessary for

the data base designer to manually control large volumes of

data produced through the data base design process, manually

conduct the normalization process for hundreds of dependen-

cies, re-execute schema compilation due to syntax errors or

conflicting parameters, or develop his own data base desiqn

methodology through trial and error.

Although this research relies heavily on research by oth-

ers (YOUR79,ROSS82,CODD70,BERN76) , several areas lacked for-

mal guidance. One such area was the transformation of MFDs

into sets. Research being done with NFDs pertains strictly

to the relational model (e.g., BESN76) and no NFD-to-set

transformation processes were found for the network model.

A second area of limited guidance was the transformation of

a conceptual schema into a physical CODASYL network schema.

- 98 -

Several authors have developed useful conceptual- to- network

model transformations (ATRE80,CHEN77) , but none provide in-

siqht into the perplexing area of transforming multiple and

complex relationships into CODASYL sets without user inter-

vention. A final area of importance is that the entire de-

sign process is encompassed in a user friendly interactive

menu-driven system that constantly assists the data base de-

signer in the development of the user's data base schema.

Although another automated data base desiqn aid exists

(ROSS82), DB_GEN is the only known data base design aid that

produces an operational data base schema.

7.2 Status of Implementation

DB_GEN is currently operational with the following mod-

ules (refer to Exhibit 2.2): DB_ENTRY, 1EVEL_2, DB_CUST, and

UTILITY_RTNS.

7.3 E nh ancem en ts to DB_GEN

Retrospection on the system created, DB_GEN, reveals po-

tential improvements. Any significant change to user re-

quirements once the data base is customized leaves the user

with a decision between reinitializing all data base enti-

ties (and losing customized information) and adding the new

requirements without the design power of DB_INIT. Obvious-

ly, neither option is in the user's best interest. A better

solution would be to retain attributes of previous entities

and attempt to match similar reinitialized entites. Data

99 -

elements (throuqh unique names) , records (using candidate

key closures) , and sets (by their owner and member records)

could be reestablished or, if not found, could be added to

the data base.

7. 4 Con tin ued Besear ch

Another potential improvement deals with the two algor-

ithms in Chapter 5 that convert NFDs to CODASYL sets. Al-

though the algorithms are sound, the author feels that con-

tinued research may reveal a techr.igue to further interpret

NFDs that are judged uninterpretable by DB_GEH. Such an ex-

pansion of either one or both of the algorithms would re-

quire further study of the intentions of the data base de-

signer at the time an NFD was deemed necessary based on a

user requirement.

Although this research addresses important areas of auto-

mated data base modeling and implementation, much work re-

mains. Earlier stages of the design life cycle could asso-

ciate FDs and NFDs with specific user requirements and

associate these with organizational entities. User require-

ments could be supplemented with response time requirements,

frequency estimates, security measures, integrity con-

straints, and user priorities. Organizational areas also

need to collect information. By associating user reguire-

ments with an organizational area's priority, budqet, vola-

tility, staff experience, hardware and software availabili-

- 100 -

ty, etc., potential data base projects can be staged in an

order most beneficial to the entire organization (COHE79)

.

And if DBMS software becomes abundant, other software will

be able to choose the DBNS that best fits an organization's

reguirements. Once a DBMS is selected, initialized, and

made operational, live statistics can be kept to tune the

data base management system for efficiency. For example,

groups of data often accessed together can automatically be

stored contiguously for better performance, and if statis-

tics indicate substandard data base response time reguire-

ments, schema modifications can automatically be made to im-

prove efficiency (e.g., add a secondary index) in order of

user priorities.

101 -

BIBLIOGRAPHY

(ATRE80) Atre, S. (1980) Data Base Structured Technigues for
Design, Performance and Management. New York: John
Kiley £ Sons.

(BERN76) Bernstein, Phillip (1976) "Synthesis Third Normal
Form Relations From Functional Dependencies," ACM
Transactions on Data Base Systems Vol. 1, No. 4,
December.

(CADY80) Cady, William, Martin, Esther, eds. (1980) Jflgg
EE22£aSaeris Reference Guide - PL^I Rev. 0, Release
6.5, Hellesley: Culliname Corporation, August 1980.

(CHEN77) Chen, Perter (1977) T.he Entity.^Relationshi£ A£-
proach to Loaical fiat a Ba§S fiSSiaH QED Monograph
Series

.

(CHEN76) Chen, Perter (1976) "The Entity-Relationship Model
- Towards a Unified View of Data," ACM transactions
2£ Database Systems Vol. 1, No. 1, March, pp. 9-36.

(CODD70) Codd, Edgar (1970) "A Relational Model of Data for
Large Shared Data Banks," Communications of the. ACM.

Vol. 13, No. 7, June, pp. 377-387.

(CODD72) Codd, E.F. (1972) "Further Normalization of the
Data Base Relational Model," Data BaSS Systems
(CouraSi Computer Science Symposium) Prentice-Hall,
Englewood Cliffs, NJ.

(CODD79) Codd, E.F. (1979) "Extending the Database Rela-
tional Model to Capture More Meaning," ACM Trans-
a ctions on fiatabase Systems Vol. 4, No. 4, Decem-
ber, pp. 397-434.

(C0HE79) Cohen, Leo (1979) Pre-Data Base Survey. Princeton:
Performance Development Corporation.

(DATE81) Date, C. J. (1981) An Introduction of. Database sys-
tems (third edition) , Reading: Addison-Wesley.

- 102

(HAMM81) Hammer, M., McLeod, D. (1981) "Database Descrip-
tion with SDH: A Semantic Database Model, " ACM
Transactions on Database Systems Vol. 6, No. "57
September.

(KENT73) Kent, William (1973) "A Primer of Normal Forms,"
IBM Technical Be port TH 2.600, December 17.

(KENT83) Kent, William (1983) "A Simple Guide to Five Nor-
mal Forms in Relational Database Theory," Communi-
cations of the ACM Vol. 26, No. 2, February, "pp.
120-125.

(MCAB83) McCarthy, Elizabeth (1983) Telephone interview.
TSI, International, 27 December.

(MAET77) Martin, James (1977) Com£ater Data-Base Organiza-
tion (second edition) , Enqlewood Cliffs: Prentice-
Hall.

(MCEL79) Mcelreath, T. Jack (1979) "Chapter 8: Defining the
system; Chapter 9: Data Definition; Chapter 10:
General Data Base Desiqn," In IMS Design and Im£le-
SSalation Techniques Wellesley: QED Information
Science.

(MEIJR80) Meurer. Thomas F. (1980) "Solving the Mystery of
Data Base Desiyn," Computerworld/Extra! Vol. 14,
No. 38, September 17, pp. 43-51.

(MOLI79) Molina, Francisco Walter (1979) "A Practical Data
Base Design Method," fiata Base Vol. 11, No. 1, Sum-
mer, pp. 3-11.

(0LLE78) Olle, William T. (1978) TJie CODASYL Abroach to
Ba£a Base Management New York: John Wiley S Sons.

(ORR77A) Orr, Kenneth T. (1977) "Start with the Output,"
Inf osystems October, pp. 86-88.

(0RR78B) Orr, Kenneth T. (1977) "The Logic of Data Base
Structure," Infosystems September, pp. 58-59, 96.

- 103

(0P.R77C) Orr, Kenneth T. (1978) "Procedures for Structured
Data Base Design," Infos^stems June, pp. 78-82.

(PERR77) Perron, Bob, writer (1977) IDMS Conc epts and Facil-
ities, Hellesle^: Culliname Corporation.

(ROSS82) Boss, Ronald G. (1982) "Solving the Current DBA
Crisis," Data Base Newsletter.

(TSIC78) Tsichritzis, D.C., Lochovsky, F. H. (1978) "Design-
ing the Data Base," Datamation Vol. 24, No. 8, Au-
gust, pp. 147-151.

(OHRD73) Ohrowczid, P.P. (1978) "Data Dictionary/Directo-
ries," IBfi Systems Journal Vol. 12, No. 4, pp.
332-350.

(ULLH82) Oilman, J. D. (1982) £rinci]lles of Database Systems
(second edition). Rockville: Computer Science
Press.

(YOUR79) Data Base flofiellina and Desig_n Workshop (second
edition). (1979) New York: lourdon Press.

104

Appendix A

Schema Data Definition Statements

001000*
002000**
003000* ** SCHEMA DESCRIPTION ** *

004000**
005000*
006000 SCHEMA DESCRIPTION.
007000 SCHEMA NAME IS DB-GEN-DB VERSION IS 1.

008000 DATE. 12/02/83.
009000 INSTALLATION. KSU
012000*
013000 REMARKS. THIS DATA BASE SCHEMA IS USED TO SUPPORT THE
014000 INPUT-OUTPUT REQUIREMENTS EOR THIS IMPLEMENTATION.
018000*
019000** ************************************* *********************
020000* ** FILE DESCRIPTION ** *

02 1000**
022000*
023000 FILE DESCRIPTION.
024000 FILE NAME IS IDMS-FILE1 ASSIGN TO SYS010.
025500 FILE NAME IS JOURNAL ASSIGN TO SYS009.
026000*
0270 00**
028000* ** AREA DESCRIPTION ** *

029000************************* ****** *****************************
030000*
03 1000 AREA DESCRIPTION.
032000 AREA NAME IS DB-AREA
033000 RANGE IS 1001 THRU 1100
034000 WITHIN FILE IDKS-FILE1 FROM 1 THRU 100.
035000*
036000**
037000* ** RECORD DESCRIPTION ** *

038000**
039000*
040000 RECORD DESCRIPTION.
041000 RECORD NAME DATA-BASE.
042000 RECORD ID 100.
043000 LOCATION MODE CALC USING DB-NAME DUPLICATES NOT ALLOWED.
044000 WITHIN DB-AREA AREA.
045000 05 DB-NAME PIC X(1c).
046000 05 DBA PIC X (4) .

047000 05 DATE-CREATED.
048000 07 YEAR-CREATED PIC X (2) .

049000 07 MONTH-CREATED PTC X (2) .

050000 07 DAY-CREATED PIC X(2) .

05 1000 05 DATE-CHANGED.

- 105 -

052000 07 YEAF-CHANGED PIC X (2) .

053000 07 MOUTH-CHANGED PIC X (2) .

051*000 07 DAY-CHANGED PIC X (2) .

055000*
056000 RECORD NAME RE-CORD.
057000 RECORD ID 200.
058000 LOCATION MODE CALC USING REC-ID DUPLICATES LAST.
059000 WITHIN DB-AHEA AREA.
060000 05 R3C-ID PIC X (4) .

061000 05 REC-NAME PIC X(16).
062000 05 REC-STRG-MODE PIC X (2) .

063000 05 REC-LCTN-MODE PIC X (4) .

064000 05 REC-D0P-OPTICN PIC X (2) .

065000 05 REC-CALC-VIA PIC X{16).
066000 05 REC-AREA PIC X(16).
067000*
06 8000 RECORD NAME DATA-ELEMENT
069000 RECORD ID 300.
070000 LOCATION MODE CALC USING LMNT-NAM2 DUPLICATES LAST.
07 1000 WITHIN DB-AREA AREA.
072000 05 LMNT-NAHE PIC X(16).
073000 05 LMNT-DEF PIC X (55) .

074000 05 LMNT-TYPE PIC X(17).
075000 05 TOTAL-SIZE PIC 9(3).
076000 05 FRACTION-SIZE PIC 9{1).
0770 00*
078000 RECORD NAME SE-T.
079000 RECORD ID 400.
080000 LOCATION MODE CALC USING SET-NAME DUPLICATES LAST.
08 1000 WITHIN DB-AREA AREA.
082000 05 SET-NAME PIC X{16).
083000 05 SET-LINK PIC X (3) .

084000 05 SET-MEM PIC X (2) .

085000 05 SET-ORDER PIC X (5) .

086000 05 SET-SORT-LMNT PICX(16).
087000 05 SET-DUP-OPTION PIC X (2) .

088000 05 SET-VALUE PIC X (2) .

089000 05 SET-INVRS-VAL PIC X (2) .

090000*
091000 RECORD NAME LHNT-BEC.
092000 RECORD ID 500.
093000 LOCATION MODE VIA POPULATED-WITH SET.
094000 WITHIN DB-APEA AREA.
095000 05 LMNT-REC-DUMMY PIC X (8) .

096000*
097000 RECORD NAME FD-AND-NFD.
098000 RECORD ID 600.
099000 LOCATION MODE CALC USING LEFT-SIDE DUPLICATES NOT ALLOWED.
100000 WITHIN DB-AREA AREA.
101000 05 LEFT-SIDE PlCX(lfc).
101100 05 HOW-MANY PIC X (2) .

10 1200 05 RIGHT-SIDE PIC X(16).
102000*
103000 RECORD NAME CONCAT-LMNT.

- 106 -

104000 RECORD ID 700.
105000 LOCATION MODE CALC USING CONCAT-FIELD DH.
106000 HITHIN DB-AHEA AREA.
107000 05 CONCAT-FIELD PIC X (16)

.

108000*
109000***
110000* ** SET DESCRIPTION ** *
111000***
112000*
113000 SET DESCRIPTION.

SET NAME DEFINED-BY
ORDEB IS SORTED

114000
115000
116000 MODE CHAIN.
117000 OWNER DATA-BASE
118000 MEMBER DATA-ELEMENT
119000
120000
121000
122000
123000
124000*
125000 SET NAME DIVIDED-INTO

ORDER IS SORTED

NEXT POSITION 3.
NEXT POSITION 1

LINKED OWNER
OWNER POSITION 2

MANDATORY AUTOMATIC
ASCENDING KEY IS LMNT-NAME
DUPLICATES NOT ALLOWED.

126000
127000 MODE
128000 OWNER
129000 MEMBER
130000
131000
132000
133000
134000
135000*
136000 SET NAME

ORDER IS
MODE
OWNER
MEMBER

CHAIN.
DATA-BASE
RE-CORD

LINKED-BY.
SORTED137000

13 80 00 MODE CHA '1.

139000 OWNER DATA-BASE
140000 MEMBER SE-T
141000
142000
143000
144000
145000
146000*
147000 SET NAME CONCAT-WITH.

ORDER IS SORTED148000
149000 MODE
150000 OWNER
151000 MEMBER
152000
153000
154000
155000*
156000 SET NAME
157000 ORDER IS

CHAIN.
DATA- ELEMENT
CONCAT-LMNT

POPULATED- WITH.
FIRST

NEXT POSITION 2.

NEXT POSITION 1

LINKED OWNER
OWNER POSITION 2

MANDATORY AUTOMATIC
ASCENDING KEY IS REC-NAME
DUPLICATES NOT ALLOWED.

NEXT POSITION 1.

NEXT POSITION 5

LINKED OWNER
OWNER POSITION 6

MANDATORY AUTOMATIC
ASCENDING KEY IS SET-NAME
DUPLICATES NOT ALLOWED.

NEXT POSITION 4.

NEXT POSITION 1

MANDATORY AUTOMATIC
ASCENDING KEY IS CONCAT-FIELD
DUPLICATES NOT ALLOWED.

107 -

158000 MODE
159000 OWNER
160000 MEMBER
161000
164000*
165000 SET NAME
166000 ORDER IS
167000 MODE
168000 OWNER
169000 MEMBER
170000
171000
172000
173000*
174000 SET NAME
175000 ORDER IS
176000 MODE
177000 OHNER
178000 MEMBER
1790 00
180000
18 1000
182000*
183000 SET NAME
18 4000 ORDER IS
1,85000 MODE
186000 OWNER
187000 MEMBER
18 80 00
189000
190000
191000*
192000 SET NAME
193000 ORDER IS
194000 MODE
19 5000 OWNER
196000 MEMBER
197000
198000
199000
200000
201000

CHAIN.
RE-CORD
LMNT-REC

GROUPED-IN.
FIRST

CHAIN.
DATA-ELEMENT
LMNT-REC

OBNER-OF.
FIRST

RE-CORD
SE-T

MEMBER-OF.
FIRST

RE-CORD
SE-T

CHAIN.

CHAIN.

INITIALIZED-BY.
SORTED

CHAIN.
DATA-BASE
FD-AND-NFD

NEXT POSITION 5.

NEXT POSITION 1

MANDATORY AUTOMATIC.

NEXT POSITION 3.
NEXT POSITION 2

LINKED OWNER
OWNER POSITION 3

MANDATORY AUTOMATIC.

NEXT POSITION 3.
NEXT POSITION 3

LINKED OWNER
OWNER POSITION 4

OPTIONAL MANUAL

NEXT POSITION 4.
NEXT POSITION 1

LINKED OWNER
OWNER POSITION 2

OPTIONAL MANUAL

NEXT POSITION 4.

NEXT POSITION 1

LINKED OWNER
OWNER POSITION 2

MANDATORY AUTOMATIC
ASCENDING KEY IS LEFT-SIDE
DUPLICATES NOT ALLOWED.

108 -

2.S5i.£§ Hgdia Control Statements

000100 DEVICE-MEDIA DESCRIPTION.
000200 DEVICE-MEDIA NAME IS M DMCL OF SCHEMA NAME DB-GEN-DB.
000300 AOTHOB. MARK COSTELLO.
000400 DATE. 09/13/83.
000500 INSTALLATION. KSU.
000600 REMARKS. DMCL FOR DB_GEN.
000700
000800 BUFFER SECTION.
000900 BUFFER NAME IS IDMS-BUFFER
00 1000 PAGE CONTAINS 49fc CHARACTERS
00 1100 BUFFER CONTAINS 100 PAGES.
001200
00 1300 AREA SECTION.
00 1400 COPY DB-AREA AREA.

109 -

Subschema Data Deflation Statements

000100 ADD SUBSCHEMA NAME IS MSIJB
000200 OF SCHEMA NAME IS DB-GI
000300 DHCL NAME IS MDMCL.
0004 00 ADD ABEA DB-AREA.
000500 ADD RECORD DATA-BASE.
oooeoo ADD RECORD RE-CORD.
000700 ADD RECORD SE-T.
000800 ADD RECORD DATA-ELEMENT.
000900 ADD RECORD LMNT-REC.
000950 ADD RECORD CANDIDATE-KEY.
000975 ADD EECORD CONCAT-LMNT.
00 1000 ADD SET DEFINED-BY.
001050 ADD SET DIVIDED-INTO.
001100 ADD SET LINKED-BY.
001200 ADD SET HEMBER-OF.
001300 ADD SET OHNER-OF.
001325 ADD SET POPULATED-WITH.
001350 ADD SET GROOPED-IN.
001375 ADD SET DETERMINED- BY.
001400 ADD SET CONCAT-WITH.
00 1500 GENERATE.

110 -

Data ganiEUltion Source Statements

/*DHLIST*/
/*SCHEilA_COEMENTS*/
DB_GEN: PBOC OPTIONS (MAIN) ;

/***$****************/
/*****************************t^ttttttttt************************^
/* This program automates the data base design process through */
/* the use of applied data base design principles. The output */
/* of this implementation is operational IDHS schema data */
/* definition statements representing a user's data base */
/* schema. */
/* */
/* written by: Bark costello */
/* */
/* date: December 1983 */
/* */
/* The block diagram on the next page illustrates the major */
/* modules for this program. Each module will be broken down */
/* further into sub-modules. */
/********************* ***#*********#******#***#*#»4 ********* *****/
/a*** »»**** */

- 1 11

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DB_GEN

+ +

J I

i DB ENTRY J

I I

I

| LEVEL_2
!

+

+

| PEINT_
|

I DATA
|

1 1

•». +

+ +

1 i

I UTILITY_
|

I
RTNS " I

DB INIT

I I

|
DEPENDENCY 1

I ENTEY |

I I

+

CKEATE LMNT HEC

+ i

BEEN ALG
I I

I I

+ |

+ +

+

CEEATE_SET

1 CREATE_
|

I MEMBEE_ 1

I HECOBD
|

+

+
,

| CREATE_
1 |

I OWNER_~ 1 J

| EECOED
| |

* *
J

+

+

I DB_CUST

1 I

1 1 DB
1

1

1

1 LMNT
1 i

1 1

UPDATE
1

1

1

1

UPDATE

I 1

1 1

1 1

1 1

1
*~

EECOED
update"

i

.1

1

1

-*•

1

1

1

1

+ -

SET
UPDATE

SCHEMA CREATE

+ «.

I I

| SIMPLE
I

J M_N |

I

"
I

•f +

+ +

I I

I
POINTER

|

I _CEEATE|
I I

+ +

I I

I MISSING
I

I _DATA_ |

I CHECK
|

+ *

+ +

I I

I
DDL_

|

I CREATE |

I I

+ +
+

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
V
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/ *********************************** ****#***##*#*#!(,******#*# ^jj.^^,,^

- 112 -

/* This is the main driver module. To precede from this module */
/* one must either create a new data base, or select */
/* an existing data-base for enhancement or study. */
/*************** ***********************************#***********#/

DCL (IDMS, ABORT) OPTIONS (INTER, ASK) ENTRY;
DCL CLRSCR ENTRY;
DCL (MSUB SUBSCHEMA, DB-SEN-DB SCHEMA VERSION 1)

MODE (BATCH);
INCLUDE IDMS (SUBSCHEM A_DESC RIPTION) ;

INCLUDE IDMS (SUBSCHEMA_BINDS)

;

READY AREA (DB AREA) PROTECTED UPDATE;
CALL IDMS_STATUS;
/* IF I GET A MESSAGE 0966 FROM HERE THEN I MOST UNLOCK

BY "AREA(S)". THIS HAPPENS IF THE PROGRAM ABENDS.
EITHER RE "IDMSINIT DBASE" (WHICH LOSES WHAT IS IN
THE DATA BASE) OR USE THE "PFIX UTILITY" (SAVES
WHAT IS IN THE DATA BASE) . SEE NOTES. */

INCLUDE IDMS (I DMS_STATUS)

;

DCL (OK,REC_FOUND) CHAR (4) INIT ('0000'),
EDIT_OUT CHAR (72)

,

MENU_ENTKY CHAR (6 9) ,

MSG CHAR (60) ,

ENTER_KEY CHAR (1) ,

(I, J, COUNT) FIXED DEC(3) ,

DISPLAYJTBL (500) CHAR (72),
DOP!AIN_TBL(500) CHAR (16),
(SAVE_DB_NAME,SAVE_NAME) CHAR (16) ,

DB_KEY_TBL(500) FIXED BINARY(31),
HEND_NUH CHAP (3) ;

HENU_ENTRY = * •;

CALL DB_ENTRY (MEHtJ_NUM, MENU_ENTR Y) ;

DO WHILE (MEN0_NUM -.= 'X')!
IF MENU_NUM = '1'

THEN
CALL NEW_DB (MENU_NUM , MENU_ENTRY)

;

ELSE DO;
OBTAIN CALC RECORD (DATA BASE) ;

CALL IDMS_STATUS;
CALL LEVEL_2 (MENU ENTRY) ;

END;
CALL DB ENTRY (MENU_N UM,MEN II_ENTR Y) ;

END;

FINISH;

- 113

DB_ENTHY: PROC (MENU_NUM, MEND ENTRY);

/* This routine displays the primary menu and accepts the reply.*/
/* The primary menu consists of an option to start a new data */
/* base, select a data-base that already exists, or exit from V
/* the system. The MENU_NUM parameter returns an "X", "1" or a */
/* valid menu number. {Note: "x" stands for exit) */
/* If BENU_NUM is a valid menu number then the respective */
/* data base will be made "current". */
/Mr*************************** *^*t*********#**********t*****«*^ti*/
/* */
/* + + + + + */
/*

I II II IV
/* | DB_ENTRY] | NEW_DB

I | DB_UP_MENU) */
/*

1 II II IV
/* + + + + + + */
/* */

DCL SLCT_NUM FIXED DEC(3) ,

MENH_NUM CHAE(3) ,

MENU_ENTRY CHAR (fc9)

;

/* LOAD NAME TABLE WITH DATA BASES */

DISPLAY_TBL = •;

POT STRING (DISPLAY_TBL{1)) EDIT ('!) CREATE DATA BASE')
(X(K) ,A) ;

OBTAIN FIRST RECORD (DATA_BASE) AREA (DB.AREA) ;

IF ERROR_STATHS -.= '0307'~
THEN CALL IDMS_STATOS;
COONT = 1

;

DO WHILE (ERROR_STATUS = REC_fOUND)

;

COUNT = COUNT + 1;
PUT STRING (DISPLAY_TBL (COUNT)) EDIT (COUNT,') ',

DB_NAME) (X(2) ,F(3),2 (A)) ;

OBTAIN NEXT RECORD (DATA_BASE) AREA (DB_AREA) ;

IF EHROR_STATUS -.= '0307'
THEN CALL IDMS_STATUS;

END;
PUT STRING (DISPLAY_TBL (COUNT + 1))

EDIT (' X) EXIT') (A) ;

/* DISPLAY MENU / ACCEPT EDITED REPLY */

DB_NAME = ' ' ;

CALL GEN_MENU (MENU_NUM, MENU_ENTRY,
'** DATA BASE ENTRY **'7 COUNT, SLCT_NUK, 3) ;

/* SET CURRENCY FOR RESPECTIVE DATA BASE */

IF ->(MENU_NUM = 'X' 1 MENU_NUM = '1')
THEN DO;

- 114 -

DB_NAME
END;

END DB ENTRY;

SHBSTR (DISPLAYJTBL (SLCT_NUM) ,9, 16) ;

NEH_DB: PEOC (MENU_NUH, MEN U_ENTR Y) ;

/* This module establishes a new user's data base for develop- */
/* merit. Fields of the DATA BASE structure are assigned values */
/* and then the DATA BASE occurrence is stored in DB_GEN's data */
/* base. */

DCL SLCT
MENU_NUM
STATUS
HENU_ENTRY
D
DATE

CHAR (72) ,

CHAR(3) ,

CHAR (4) ,

CHAR (69) ,

CHAR (6) ,

BUILTIN;

DATA_B
IF MEN
THEN

CALL

ELSE
MENU

DO Will

IF B

ASE = •

U ENTRY

ELSE

CALL

END;

DB_UP_MENU (MENU_NUM, ME MJ_ ENTRY,
• ** CREATE NEW DATA BASE **•)

_NUM = • 1«;

LE (MENU_NUM -.= 'X') ;

ENU_NUM = 1* THEN DO;
DB_NAME = MENU_ENTRY;
CALL EDIT_NAME (DB NAM E,ST ATUS) ;

IF STATUS = 'GOOD'
THEN DO;
FIND CALC RECORD (DATA_BASE) ;

IF ERROR_STATUS -.= '0326'
THEN CALL IDMS_STATUS;
IF ERROR_STATIJS = REC_FOIJND
THEN DO;

PUT STRING (MSG) EDIT
(DB_NAME,' ALREADY EXISTS") (2(A));

CALL MESSAGES;
DB_NAME = ' ';

END;
END;

ELSE
DB NAME = •;

END;
IF MENU_NUM = > 2' THEN
DBA = MENU_ENTRY;
DB_UP_HENU (ME'ND_NUM, MENU_ENTRY,

• ** CREATE NEW DATA BASS **•)

IF DB_NAME
THEN DO;

- 1 15

MSG = 'DATA BASE NAHE IS BLANK — NO ADD MADE';
CALL MESSAGES;
RETURN;
END;

D = DATE;
YEAR_CHEATED, YEAE_CHANGED = SIJBSTR (D, 1 , 2) ;

MONTH_CREATED, MONTH_CHANGED SUBSTR (D, 3, 2) ;

DAY_CREATED, DAY_CHANGED = SUBSTR (D, 5, 2) ;

STORE RECORD (DATA_BASE) ;

CALL IDMS_STATnS;
END NEW_DB;

DB_UP_MENU: PROC (MEHU_NUM, MENO_ENT RY , MENU_MSG) ;/********** **********************#*******************************/
/* This module displays the fields to be added or modified */
/* for the DATA BASE structure. */
/****************** **,

DCL SLCT_NUM FIXED DEC (3),
SLCT CHAR (72),
STATUS CHAR(4) ,

WENU_NUM CHAR(3),
MENU_ENTRY CHAR (69),
MEHU_MSG CHAR (30);

STATUS = 'BAD'

;

DO WHILE (STATUS = 'BAD') ;

CALL CLRSCR;
PUT STRING (EDIT_OUT) EDIT (MENU_MSG)

(X(15) ,A) ;

DISPLAY (EDIT_OUT) ;

CALL BLANK_LINE(2) ;

PUT STRING (EDIT_OUT) EDIT
(M) DATA BASE NAKE: ',DB_NAME) (2(A));

DISPLAY (EDIT_0UT) ;

PUT STRING (EDIT_OUT) EDIT
('2) DATABASE ADMINISTRATOR: ',DBA) (2(A));

DISPLAY (EDIT_OUT) ;

PUT STRING (EDIT_OUT) EDIT ('X) EXIT') (A) ;

DISPLAY (EDIT_0DT)

;

CALL BLANK_LINE(2) ;

DISPLAY (»S== ><) EEPLY (SLCT);
CALL EXAMINE_ENTRY (SLCT, MENU_NUM, MENU ENTRY, SLCT_ NUM,

STATUS, 2) ;

END;
EHD DB_UP MEND;

- 1 16

LEVEL_2: PROC <M EN U_ENTRY) ;

/**/
/* This module calls the modules representing the primary */
/* services of DB_GEN. */
/******#*************#*****#***#***« *& ************* t*%** *t z+m:**/
/* */
/* LEVEL_2 */
/* */
/* + 1 t/
/*

I I V
/*

I PRIMARYJIENU | */
/*

I I V
/* + + v
/* */
/*** ***********y

DCL HENU_NUM CHAE (3) ,

MENO_ENTRY CHAB(69) ,

DEL_SH CHAR (1) ,

SLCT_2 CHAR (72)

;

IF MENU_ENTRY = ' DELETE'
THEN DO;

POT STRING (HSG) EDIT
(DB_NAME,' DATA BASE DELETED •) (2 (A)) ;

ERASE RECORD (DATA_BASE) ALL;
CALL IDMS_STATUS;
CALL MESSAGES;
RETURN;
END;

CALL PRIMARY_f1EN0;
DO HHILE (SLCT_2 -.= 'X');

IF «ENO_NUB = '1' THEN
CALL

-
LMNT_UPDATE (MENU_ENTEY) ;

ELSE IF MENO_NUM = '2' THEN
CALL RECOED_nPDATE (MENU_ENTSY)

;

ELSE IF MENO_NUM = '3' THEN
CALL SET_IJPDATE (MEN U_ENTP.Y) ;

ELSE IF MENU_NU« = '4' THEN
DO;

CALL CHG_DEL_DB (DEL_SW) ;

IF DEL_SW = 'D'

THEN
RETURN;

END;
ELSE IF MENU_NUM = '5' THEN

CALL PRINT_DATA;
ELSE IF MENU_NUM .= '6' THEN

CALL CREATE_SCHEMA;
ELSE DO;

HSG = 'ERROR: LEVEL_2 CASS STATEMENT';
CALL MESSAGES;
END;

CALL PRIMARY_MENO";

- 1 17 -

END;

PRIMARY_MENU: PEOC;
/*********************************** 4*************************44^
/* This module displays the primary menu of services of DB GEN. */
/************ *** 44** *^

DCL SLCT_STATUS CHAD (4),
SLCT_NUM FIXED DEC{3) ;

SLCT_STATUS 'BAD 1
;

DO HHILE (SLCT_STATUS = 'BAD');
HSG = ** PRIMARY MEND **;
CALL MENU_HEAD;
DISPLAY ('!) DATA BASE INITIALIZATION');
DISPLAY ('2) DATA ELEMENT UPDATE •) ;

DISPLAY ('3) RECORD UPDATE ');
DISPLAY {'«) SET UPDATE ');
DISPLAY ('5| DATA BASE UPDATE ');
DISPLAY ('6) PRINT DATA •);
DISPLAY ['V) CREATE SCHEMA ') ;

DISPLAY ("X) EXIT <) ;

CALL BLANK_LINE(2) ;

DISPLAY (
T==>') REPLY (SLCT_2)

;

CALL EXAMINE_EUTRY (SLCT_2 ,MENU_NUM, MENU ENTRY,
SLCT_B[JS,SLCT STATUs77);

END;
END PRIMAHY_PIENU;

END LEVEL_2;

118 -

DB. INIT: PEOC;
/***
/* Th is is a major global module of DB._GEN. Once comple
/* wi 11 accept functional and nonfunct ional dependencies
/* use those dependencies to create instances of the
/* DATA-ELEMENT, RECORD, and SET structures. The establ
/* of these structure instances is described in the thes
/* su sporting this implementation.
/**
/*
/*

DB _IHIT

/* INIT_DB_ENTITIE£
1 1

DB_ISIT_
/*
/*
/*
/*
/*

| CEEATE_ | |

| LMNT EEC | |

1 1 1

1 1 BEEN_ | | |

CREATE_ J

SET |

| INTERPEET_
| |

1 1 MENU

1 I ENTER |

/*
/*
/*

1 1 ALG III
1 + 1 1

I
RS_NFD | 1 1 1 FDS |

/*
1 | INTERPEET_

| | 1 *• +

/*
/*
/*

1

i

I
LS_NFD I I 1 1 EKTER_

|

NFDS |

+
1

+ - +.

1 1

1
+ "

/ + 1

y* *** **********

MSG 'CEEATE_SCHSMA TO BE COMPLETED';
CALL MENU_HEAD;
DISPLAY {'PRESS ENTER TO CONTINUE') REPLY (ENTER_KEY);
END CREATE SCHEMA;

- 119 -

/********** *»<.*****»#*****«************************** ***********/
/* ** The DB_CUST modules starts here. ** • */
/* V
/* The module name DB_CUST only serves as a loqical groupinq */
/* of modules and is not itself an actual module. The modules */
/* within DB_CUST follow. */
/**/

NEW_LMNT

I NEW_
|

i LHNT_NAHE 1

I LMNT_
] NEW_MEND"

LMNT_UPDATE: PROC (MENU_ENTRY) ;

/***********************************
/* This module displays all existinq
/* for the "current" DATA_BASE struc
/* to add a new DATA_ELEMENT occurre
/* DATA_ELEMENT occurrence, or delet
/* occurrence.
/************* * **************
/*
/* LHNT_OPDATE
/*
/* +

/* I

/* I

/*
I

/* 1

/*
I

/*
/*
/*
/*
/*
/*
/*

| TOTAL_
| | FRCTN_

/*
I SIZE_

! 1 SIZE_
/*

I RTN 1 | BTN

/* + + +

/* J LflNT_ 1 | LMNT_
/* | TTPE_HTN | | DEF_RTN
/* + + +—
/*
/****************************

DATA_ELEMENT oc

ture and allows
nee, change and
e an existinq DA

•+

| | MEW
I I _FI

•+ 1 +—
I I

D

I J C
J
—

+

_CONCAT
ELD

UP.
K

j. +

I

I—

+

+

CHG_C0NCAT_FI3LD
+ +

I DUP_
| CK
+

+

*************/
currences */
the user */
existinq */
TA_ELEMENT */

*/

^

*/
*/
*/

+ */
*/
*/
*/
*/
*/

V
*/
*/
*/
*/
V
*/
*/
*/
*/
*/
*/
*/

«. */
*/

*************/

CHG_DEL_LMNT
+ +

I
LMNT

!

| CHG_~
|

| MENU |

+ +

CHG_
|

LMNT_
|

HAME~
I

i

DCL MENU_EHTRY
SLCT_NnM
MENU NUM

CHAR(69) ,

FIXED DEC (3)

CHAR(3) ;

/* IF DATA ELEMENT NAME SUPPLIED THEN SKIP DATA ELEMENT MENU */
.

IF MENO"_ENTRY -.= • '

THEN DO;
LMNT_NAME = MENrj_ENTEY;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECOED {DATA_ELEMENT) :

120 -

DO WHILE (EBROH_STATUS = REC_FOUND) ;

OBTAIN OWNER SET (DEFINED_BY) ; CALL IDMS STATUS;
IF SAVE_DB_NAME = DB_NAME
THEN

ERROR_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD {DATA ELEMENT);
END;
IF (ERROR_STATUS -= '0326' E ERROR_STATUS -= 'FWND 1

)

THEN CALL IDMS_STATUS;
IF (ERROR_STATUS = ' FHND»)
THEN DO;

MENU_ENTRY = '

;

CALL CHG_DEL_LKNT (MENU_2NTRY) ;

RETDRN;
END;

ELSE DO;
DB_NAME = SAVE_DB_NAME;
OBTAIN CALC RECORD (DATA_BASE) ;

POT STRING (MSG) EDIT (MENU ENTRY,
' IS NOT AN EXISTING DATA ELEMENT') [A (16), A) J

CALL MESSAGES;
END;

END;

/* LOAD TABLE WITH DATA ELEMENT NAMES */

MENU_NDM = ' '

;

DO WHILE (HENU_NUM -= 'X') ;

DISPLAY_TBL = • ;

PUT STRING (DISPLAY_TBL(1)) EDIT (M) CREATE ELEMENT')
(X(4),A) ;

OBTAIN FIRST SET (DEFINED_BY)

;

IF ERROR_STATUS -= '0307'
THEN CALL IDMS_STATUS;
COUNT = 1

;

DO WHILE (ERROR_STATUS = REC_FOUND);
COUNT = COUNT + 1;

PUT STRING (DISPLAY_TBL (COUNT)) EDIT (COUNT,*) ',

L8NT_NAME) (X (2) , F (3) ,2 (A)) ;

DB_KEY_TBL (COUNT) = DBKEY;
OBTAIN NEXT SET (DEFINED_BY) ;

IF ERROR_STATUS -= '0307'
THEN CALL IDMS_STATUS;

END;
PUT STRING (DISPLAY_TBL(COUNT + 1))

EDIT (• X) EXIT') (A) ;

/* DISPLAY MENU / ACCEPT EDIT REPLY */

CALL GEN_MENU (MEND_NUM,HENII_EMTRY,
'** DATA ELEMENT UPDATE **',
COUNT,SLCT_NUM,3)

;

- 121 -

IF MENU_NUM = ' X'

THEM
RETURN;

/* CONTINUE TO UPDATE DATA ELEMENTS UNTIL EXIT */

IP SLCT_NUM = 1

THEN
CALL NEW_LMNT (M ENU_ENTR Y) ;

ELSE DO;
LMNT_NAME = SUBSTR (DISPL AY_TBL (SLCT_NUM) ,9 , 1 6) ;

OBTAIN RECORD (DATA_ELEBENT)
DBKEY (DB_KEY_TBL(SLCT_NUM)) ;

CALL IDHS_STATUS;
CALL CHG_DEL_LHNT (MENU ENTRY) ;

END;
END;

NEW_LMNT: PROC (MENO_ENTRY) ;

/* This nodule establishes a new DATA_ELEMENT occurrence by */
/* defaulting the DATA_ELEMENT fields and calling the modules */
/* to update these fields based on the user's MENU_ENTRY. */
/* Once updating is complete, the new DATA_ELEMFNT occurrence */
/* is stored. */

DCL HENU_NUH CHAR (3) ,

MENU_ENTRY CHAR (69) ,

SLCT_NUM FIXED (3) ,

NUM_CONCAT FIXED (3),
CONCAT_TBI. (20) CHAR (16) ,

' (LOW_LIMIT,UP_LIMIT) FIXED(3) ;

/********* INITIALIZE AND DEFAULT RECORD FIELDS *************/
SLCT NUM = 0;

NUM_CONCAT =

CONCAT TBL = • t •

UP LIMIT = 5;
LOW_LIMIT = 5;
LMNT_NAME = i >

LMNT DEF = i i -

LMNT_TYPE = •CHARACTER' ;

TOTAL_SIZE = 10;
FRACTION_SIZE = 0;

/* AS AN ELEMENT NAME BEEN PROVIDED FROM SECONDARY MENU */

IF MENU_ENTRY = ' •

THEN
CALL LMNT_NEW_MENU (MENU_NUM , MENU_ENTRY,SLCT_NUM) ;

ELSE
MENU NUM = • 1'

;

122 -

/* ADD ELEMENT ATTRIBUTES UNTIL EXIT */

DO WHILE (MENU_NUM -.= 'X');
IF MENU_NUM = ' 1' THEN

CALL NEW_LMNT_NAME (HENU_ENTE Y, LMNT_NAME) ;

ELSE IF HENU_NOM = '2' THEN
CALL LMNT_DEF_RTN (MENU_2NTRY ,LMNT_DEF)

;

ELSE IF MENU_NUM = '3' THEN
CALL LMNT_TYPE_RTN (MENIJ_ENTR Y, LMNT TYPE);

/* 1 */
IF (LMNT_TYPE = "CHARACTER' & MENU_NUM = 'I') THEN

CALL TOTAL_SIZE_RTN (MENU_ENTRY, TOTAL_SIZE) ;

ELSE IF (LMNT_TYPE = ^NUMERIC 6 MEND_NUM = '4') THEN
CALL TOTAL_SIZE_RTN (MENU_ENTRY,TOT AL_SIZE) ;

ELSE IF (LMNT_TYPE = 'NUMERIC S MENU_NUM = '5') THEN
CALL FRCTN_SIZE_RTN (MENU_ENT RY, FRACTI0N_S1ZE)

;

ELSE IF (LHNT_TYPE = 'CONCATENATED' S

(MENU_NUM >= ' U' 5 SLCT_NUM < LOW_LIMIT)) THEN
CALL NEW_CONCAT_FIELD (SLCT_NUM, MENU_ENTRY)

;

CALL LMNT_NEW_MENU (MENU_NUM , MENU_ENTRY,SLCT_NUM) ;

END;

IF LMNT_NAME = ' •

THEN DO?
MSG = 'ELEMENT NAME IS BLANK — NO ADD MADE';
CALL MESSAGES;
RETURN;
END;

STORE RECORD (DATA_ELEMENT) ; CALL IDMS_STATUS;

/****** STORE AND CONNECT DATA ELEMENT WITH ITS *********/
/«»**** CONCATENATED FIELDS *********/
DO I = 1 TO NUM_CONCAT;

CONCAT_FIELD = CONCAT_TBL (I) ;

STORE RECORD (CONC AT_LMNT) ;

END;

LMNT_NEW_MENU: PROC (MENU_NUM ,MENU_ENTR Y,SLCT_NIJM) ;

/***#*******#****»**/
/* This module displays the various DATA_ELEMENT fields that */
/* can be updated for a selected DATA_ELEMENT occurrence. */
/ ******************************* + ******************************** ^

DCL MENU_NUM CHAR{3) ,

MENIJ_ENTRY CHAR (69) ,

(I,SLCT_NUM) FIXED (3);

/*** LOAD DISPLAY TABLE ***/

DISPLAY_TBL = ' •

;

PUT STRING (DISPLAY_TBL{1)) EDIT
(' 1) ELEMENT NAME: ',LMNT_NAME) (2(A));

PUT STRING (DISPLAY_TBL(2)) EDIT

- 123 -

(" 2) DEFINITION: >,LMNT_DEF) (2(A));
PUT STRING (DISPLAY_TBL(3)) EDIT

(3) TYPE: ',LHNT_7YPE) (2(A));
/* v
IF (L«NT_TYPE = ' CHARACTER' i LMNT_TYPE = •) THEN

DO;
PUT STRING (DISPLAY_TBL (4)) EDIT

(• 4) TOTAL SIZE: ',TOTAL_SIZE) (2(A));
OP_LIMIT = 4;

END;
ELSE IF LMNT_TYPE = 'NUMERIC' THEN

DO;
POT STRING (DISPLAY_TBL{4)) EDIT

(' 4) TOTAL SIZE: • ,TOTAL_SIZF) (2(A));
POT STRING (DISPLAY_TBL(5)) EDIT

(• 5) FRACTION SIZE: , FRACTION_SIZE) (2(A));
OP_LIHIT = 5;

END;
ELSE IF LMNT_TYPE = 'CONCATENATED' THEN

DO;
DISPLAY_TBL(4) = ' 4) ADD SOB ELEMENT';
DISPLAY_TBL (5) = • DELETE SOB ELEMENT . . .';
OP_LIMIT = 4;
1 = 0;

DO HHILE (CONCAT TBL(I+1) -•= ' ');
1=1+1;
OP_LIMIT = 0P_LIMIT + 1;

PUT STRING (DISPLAY_TBL(I + 5)) EDIT
(' ',UP_IJ.MIT,') ',CONCAT_TBL(I)) (A, F (3) , 2 (A)) ;

END;
NOM_CONCAT = I;
END?

DISPLAY_TBL (UP_LIMIT + 1) = ' X) EXIT';
CALL GEN_MENU (MENJJ_NUM, M ENU_ENTR Y, ' ** CREATE NEW ELEMENT **'

,

OP_LIMIT,SLCT~NUM, 1) ;

END LMNT_NEW_MENU;

NEH_LMNT_NAME: PROC (MENU_ENTR Y,LMNT_NAME) ;

/* This module allows the user to assign a data element name */
/* to a newly created DATA_ELEMENT occurrence. Before the name */
'/* is accepted, a check is made to verify that it does not */
/* already exist. */

DCL MENU_ENTRY CHAR(69),
(LMNT_NAME,SAVE_NAME) CHAR (16),
STATUS CHAR (4) ;

LMNT_NAME = MEHO_ENTRY;
CALL EDIT_NAME (LMNT_N AME, STATUS) ;

IF STATUS = 'GOOD'
THEN DO;
SAVE_NAME = LHNT_NAHE;

- 124 -

i

SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (DAT A_ELEMENT) ;

DO WHILE (ERROR_STATUS =~REC_FOUND) ;

OBTAIN OWNER SET (DEFINED_BY) ;

IF SAVE_DB_NAME = DB_NAME
THEN

ERROH_STATOS = 'FWND';
ELSE
OBTAIN DUPLICATE RECORD (DATA_ELEMENT)

;

END;
IF (ERROR_STATUS ->= '0326' 5 ERROR STATUS -.= 'FWND')
THEN CALL IDMS_STATUS;
IF EHROB_STATUS = 'FWND'
THEN DO;

PUT STRING (HSG) EDIT (LMNT_NAME,' ALREADY EXISTS') (2(A));
CALL MESSAGES;
LMNT_NAME = • '

;

END;
ELSE DO;

DB_NAME = SAVE_DB_HAHE;
OBTAIN CALC RECORD (DATA_BASE)

;

END;
END;

ELSE
LMNT_NAME = ' '

;

END NEW_LMNT_NAME;

NEW_CONCAT_FIELD: PROC (SLCT_NUM ,MENU_ENTEY) ;

/* This module adds and delates sub-elements of a concatenated */
/* data element. If the user isn't sure which DATA_ELEMENT */
/* occurrences to make sub-elements, a blank MENU_ENTRY will */
/* list all DATA_ELENENT occurrences for the respective DATA_ */
/* BASE occurrence. */
/********************** ************* ***************************<,,(,/

DCL MENU_NUM CHAR (3),
MENU_ENTRY CHAE{69) ,

SAVE^NAME CHAR (16),
(SLCT_NUM,I) FIXED (3),
STATUS CHAR (4) ;

SAVE_NAKE = LflNT_NAHE;
IF (SLCT_NUM = 45 LMNT_TYPE = 'CONCATENATED')
THEN DO;
/********* ADD NEW SOB ELEMENT ***********/
IF MENU_ENTRY -.= ' '

THEN DO;
/******* SUB ELEMENT SUPPLIED VIA MENU_ ENTRY ******/
CONCAT_FIELD = MEMU_ENTRY;
IF CONCAT_FIELD » LMNT_NAME
THEN DO;

MSG = 'ELEMENT NAME S SUB ELEMENT ARE EQUAL - USE MENU';
CALL MESSAGES;

- 125 -

END;
ELSE DO;

/** SEE IF CONCAT_FIELD IS AN EXISTING DATA ELEMENT ***/
SAVE_DB_NAME = DB_NAME;
LMNT_NAME = CONCAT_FIELD;
OBTAIN CALC RECOPD (DAT A_EL EMENT) ;

DO WHILE (ERROR_STATUS = REC_FOUND) ;

OBTAIN OHNER SET (DEFINED BY) ; CALL IDMS_STATUS;
IF SAVE_DB_NAME = DB. NAME
THEN

ERROR_STATUS = 'FWND';
ELSE
OBTAIN DUPLICATE RECORD (DAT A_ELEMENT) ;

END;
IF (ERROR_STATUS -.= '0326' S ERROR STATUS -.= 'FWND')
THEN CALL IDMS_STATUS;

IF ERROR_STAT0S = 'FUND'
THEN DO;~

/*** VALID DATA ELEMENT BUT DOES IT ALREADY EXIST ***/
CALL DUP_CK (CONCAT_TBL,CONCAT_FIELD, STATUS)

;

IF STATUS = 'GOOD'
THEN DO;
/**** SUB ELEMENT DOESN'T ALREADY EXIST *****/
NUM_CONCAT = NUM_CONCAT + 1;
CONCAT_TBL(NUM_CONCAT) = CONCAT_FIELD;
END;

ELSE DO;
/**** SUB ELEMENT DOES ALREADY EXIST *****/
PUT STRING (MSG) EDIT (CONCAT FIELD,

• ALREADY EXISTS AS A SUB ELEMENT')
(2(A)) ;

CALL MESSAGES;
END;

LMNT_HAME = SAVE_NAME;
RETURN;
END;

ELSE DO;
/** SUB ELEMENT SELECTED ISN'T A VALID DATA ELEMENT **/
PUT STRING (MSG) EDIT (CONCAT_FIELD

,

DATA ELEMENT DOES NOT EXIST - USE MENU') (2(A));
CALL MESSAGES;
END;

END;
END;
/** LIST ALL DATA ELEMENTS TO SELECT A SUB ELEMENT *****/
DISPLAYJTBL = • •;

OBTAIN FIRST SET (DEFINED_BY) ;

IF ERROR_STATUS = '03 07'
THEN DO;~

MSG = 'NO DATA ELEMENTS TO SELECT FROM !';
CALL MESSAGES;
LMNT_NAME = SAVE_NAME;
RETURN;

- 126 -

END;
COONT = 0;
DO WHILE (ERROR_STATUS = REC_F0U!1D);

COUNT = COONT + 1;

POT STRING (DISPLAY_TBL (COUNT)) EDIT
(COUNT,') ',LMNT_NAME,' •) (F(3),3(A));

DOMAIN_TBL (COUNT) = LMNT_NAME;
OBTAIN NEXT SET (DEFINED~BY)

;

END;
IF ERBOR_STAT0S -•= '0307' THEN CALL IDHS_STATUS;
DISPLAY_TBL(COUNT+1) = ' X) EXIT';
CALL GEN_MENU (MENU_NUM ,MENU_ENTR Y, • * ADD DATA ELEMENT *',

COUNT, SLCT NUM, 3) ;

IF MENU_NUM -.= 'X'

THEN DO;
/*** VALID DATA ELEMENT BUT DOES IT ALREADY EXIST ***/
CALL DUP_CK(CONCAT_TBL,DOMAIN_TBL(SLCT NUM) , STATUS) ;

IF STATUS = 'GOOD'
THEN DO;

/**** SUB ELEMENT DOESN'T ALREADY EXIST *****/
NUM_CONCAT = NUM_CONCAT + 1;

CONCAT_TBL(NUM_CONCAT) = DOMAIN_TBL (SLCT NUM);
END;

ELSE DO;
/**** SUB ELEMENT DOESN'T ALREADY EXIST *****/
PUT STRING (MSG) EDIT (DOMAINJTBL (SLCT_NUM) ,

• ALREADY EXISTS AS A SUB~ELEME NT'

)

(2(A)) ;

CALL MESSAGES;
END;

END;
END;

ELSE DO;
/******** REMOVE A SUB ELEMENT ***********/
NUM_CONCAT = NUM_CONCAT - 1;

DO I = (SLCT_NUM-4) TO NUM_CONCAT;
CONCAT_TBL(I) = CONCAT_TBL (1+ 1) ;

END;
CONCAT_TBL (NUM_CONCAT+ 1) = ' ';

END;
DUP_CK: PROC (SRCH_TBL,SRCH_FLD,STATUS)

;

/it*********************************** *******#*****:«#***** #*»****/
/* This module is used when creating a new concatenated DATA_ */
/* ELEMENT occurrence to make sure that the same sub-element */
/* is not used twice for a single concatenated DATA_ELEMENT */
/* occurrence. */
/********#**************#****##**********###*****####**#**#**#***/

/** IF SRCH_FLD IS FOUND IN" SRCH_TBL THEN STATUS IS SET TO ***/
/** "BAD." IF IT IS NOT FOUND STATUS IS SET TO "GOOD." ***/

DCL (SECHJTBL (20) ,SRCH_FLD) CHAR (16),
STATUS CHAR (4) ,

I FIX ED (3) ;

- 127 -

STATUS = 'GOOD'

;

DO I = 1 TO 50;
IF SRCH_TBL(I) = SRCH FLD
THEN DO;

STATUS = 'BAD'

;

RETURN;
END;

END;
END D0P_CK;

LMNT_NAME = SAVE_NAME;
END NEW_CONCAT_FIELD;

END NEW_LMNT;

CHG_DEL_LMNT: PROC (M ENU_ENTRY) ;

/ ** ******************* ****************************,*»*** .m,,,*.,,,,.^
/* This module changes and deletes DATA_ELEMENT fields of the */
/* "current" DATA_ELEMENT occurrence. */
/******************* **************** ********************» lt:t * +#<t , % ^

DCL MENU_ENTRY CHAR(69);

MSG = 'CHG_DEI._I.MNT TO BE COMPLETED';
CALL MENU_HEAD;
DISPLAY PPRESS ENTER TO CONTINUE') REPLY (ENTER_KEY) ;

END CHG_DEL LMNT;

/********** ***/

LMNT_DEF_BTN: PROC (MENU_ENTR Y,L MNT_DEF) ;

/************************ ************************** **** #<,^ + » #:(t^ # ^
/* This module allows the data base desiqner to enter a data */
/* element definition for the "current" DATA_ZLEMENT */
/* occurrence. */
/********************** ***/

DCL MENU_ENTRY CHAR (69),
LMNT_DEF CHAR (55) ;

IF MENU_ENTRY = ' '

THEN DO;
MSG = '** ENTER ELEMENT DEFINITION **';
CALL MENU_HEAD;
DISPLAY ("• ====>') fiEPLY (LMNT_DEF) ;

END;
ELSE
LMNT_DEF = MENU_ENTRY;

END LMNT_DEF_RTN;

- 128

LMNTJTYPE_RTN: PEOC (MENU_EHTRY, LHNT_TYPE) ;

/* This module updates the LMNTJTYPE field in the DATA_ELEMENT */
/* structure. If no MENU_ENTRY parameter is" inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */

DCL MENU_ENTRY CHAR (69),
LMNTJTYPE CHAR (17),
THE_VALOE CHAR (16) ,

I FIXED (2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

DISPLAY_TBL(1) = '1) CHARACTER '; DOMAIN TBL (1)=' CHARACTER •;

DISPLAYJTBL(2) = '2) NUMERIC '; DOMAIN_TBL (2) *• NUMERIC •;

DISPLAY_TBL(3) =' 3) CONCATENATED' ; DOMAIN_IBL (3) = ' CONCATENATED •
;

DISPLAY_TBL(4) = 'X) EXIT •;

/* IF NO MEND_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_7ALDE = LMNT TYPE;
LMNT_TYPE = MENU_ENTRY;
IF LBNT_TYPE = ' '

THEN DO;
CALL SLCTJVALUE (DISPLAYJTBL, DOMAINJTBL ,THE_VALUE,

** ELEMENT TYPE VALUES **' ,3) ;

LMNTJTYPE = TUE_VALUE;
END;

ELSE DO;

/* THERE WAS A MENU_ENTRY — RETURN IF VALID MENU_ENTRY */

DO I = 1 TO 3;

IF DOMAIN_TBL (I) = LMNTJTYPE
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY */

PUT STRING (MSG) EDIT (LMNTJTYPE, 1 IS NOT AN ACCEPTABLE *,

•VALUE FOR ELEMENT TYPE — USE MENU') (3(A));
CALL MESSAGES;
CALL SLCT_VALUE (DISPLAYJTBL , DOMAIN JTBL, THE VALUE,

'** ELEMENT TYPE VALUES ***",3);

LMNTJTYPE = THEJVALUE;
END;

END LMNTJTYPE_RTN;

129

TOTAL_SIZE_RTN: PROC (KENU_ENTRY ,TOTAL_SIZE) ;

/**************** **/
/* This module updates the TOTAL_SIZE field in the DATA_ELEMENT */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. '

*/
/***** **************** ************************************„**,.#<t/,

DCL MENU_ENTRY CHAR (69),
TOTAL_SIZE PICTURE '(3)9',
DIGITS CHAR(IO) INIT ('0123456789'),
I FIXED (3);

IF MENU_ENTRY = ' •

THEN DO;
POT STRING (MSG) EDIT

('ENTER TOTAL SIZE OF • , LHN T_NAKE) (2(A));
CALL MESSAGES;
RETURN

;

END;

I = 69;
DO WHILE (SUBSTR(MENU ENTRY,1,1) = ' ');

1 = 1-1;
END;

IF I > 3

THEN DO;
MSG = 'ENTRY TO LARGE*;
CALL MESSAGES;
RETURN;
END;

IF VERIFY(SUBSTR(MENU ENTRY, 1 , 1) , DIGITS) =
THEN DO;

DO WHILE (SUBSTR(MENU_ENTRY,3,1) = • •);
SUBSTR(MENU_ENTRY,3,1) = SUBSTR (MENU_ENTRY, 2, 1) ;

SUBSTR(HENU_ENTRY,2,1) = SUBS TR (MENU_ENTRY, 1, 1) ;

SUBSTR(MENU_ENTRY, 1,1) = '
;

END;
GET STRING (SUBSTR (MENU ENTRY, 1,3) J EDIT

(TOTAL_SIZE) (F(3)) ;

END;
ELSE DO;

MSG = 'NON NUMERIC ENTRY - REENTER';
CALL MESSAGES;
END;

END TOTAL_SIZE_PTN;

- 130 -

FRCTN_SIZE_RTN: PROC (MENU_ENTHY ,FRACTION_SIZ E) ;

/**/
/* This module updates the FRCTN_SIZE field in the DATA.ELEMENT */
/* structure. If no MENU_ENTEY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/********************************#*******************************/

DCL NENUJ3NTRY CHAE(69),
FRACTION_SIZE PICTORE '(1)9'.
DIGITS CHAR(10) INIT (0 123456789'),
I FIXED(3);

IF HEN0_ENTRY = • •

THEN DO;
POT STRING (HSG) EDIT

{•ENTER FRACTION SIZE OF ',LMNT_NAME) (2(A));
CALL MESSAGES;
RETURN;
END;

I = 69;
DO WHILE (SUBSTR(MENU ENTRY, 1,1) = ' ');
1=1-1;

END;

IP I > 1

THEN DO;
HSG = 'ENTRY TO LARGE';
CALL MESSAGES;
RETURN;
END;

IF VERIFY (SOBSTR (MENO_ENTRY, 1,1) .DIGITS) =

THEN DO;
DO WHILE (SDBSTR(MENU_ENTRY,3, 1) = > ');

SUBSTR(MEN0_ENTRY,3,1) = SUBSTR(MENU ENTRY, 2,1);
SUBSTH(MENU_ENTRY,2,1) = SrjBSTE (MEHU~ENTRY, 1 , 1) ;

SOBSTR (MENO_ENTRY, 1,1) = ' ;
END;
GET STRING (SUBSTR (MENU_ENTRY , 1 , 3)) EDIT

(FRACTION_SIZE) (F (3 j")
;

END;
ELSE DO;

HSG 'NON NUMERIC ENTRY - REENTER';
CALL MESSAGES;
END.;

END FRCTN_SIZE_RTN;
END LMNT_HPDATE;

131 -

REC
/**
/*
/*
/*
/*
/*
/**

/*
/*
/*
/* +-

/* I

/* I

/* 1

/* I

/*
I

/* +-

/*
/*
/*
/*
/*
/*
/* *-

/* I

/* 1

/*
I

/* I

/* I

/* +

/*

ORD_0PDATE: PROC (HENU_ENTRY)
;

This module displays all existing RE_CORD occurrences
for the "current" DATA_BASE structure and allows the user
to add a new RE_CORD occurrence, chanqe and existinq
RE_CORD occurrence, or delete an existinq RE_CORD
occurrence.
******************** *************************************

RECORD UPDATE

NEW_RECORD
+ +

I NEH_
J

I REC_NAME |

+ +

I
REC_

|

I NEW_MENn |

| CALC_
I
VIA_NEW

REC_
|

LAST NEW I

I
LCTN_

|

I
MODE_RTN |

I R EC_
|

I
DUP_RTN |

CHG_DEL_REC
* * + + + + +
I
EEC- I 1 HEC_

| | CALC_ || CHG
|

I CHG_HENU | | LMNT.CHG
i | VIA_CHG | | FEC_5AME |

+ + + * + + +

************************************** *******************

*****/
*/
*/
*/
*/
*/

*****/
*/
*/
*/

+ */
*/
*/
*/
*/
*/

* */
*/
*/
*/
*/
*/
*/
*/
*/
•/
V
*/
*/
*/
*/

*****/

DCL MENIJ_ENTRY CHAR (69),
(SLCT_NU:i,NUM REC_LNNTS) FIXED DSC(3),
MENU_NtJM CHAR (3),
REC_LMNT_TBL (500) CHAR (16);

IF MENU_ENTEY -= ' •

THEN DO;
REC_NAME = MENU_ENT2Y;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (BE_CORD) ;

DO WHILE (ERROR_STATUS = REC_FOUND);
OBTAIN OWNER SET (DIVIDED_ INTO) ; CALL IDHS STATUS;
IF SAVE_DB_NAME = DB NAME
THEN

ERROR_STATUS = • FWND';
ELSE

OBTAIN DUPLICATE RECORD (RE_CORD);
END;
IF (ERROR_STATUS -.= '0326' 5 ERROR STATUS -.= "FBND'J
THEN CALL IDMS_STATUS;

132 -

IF (ERROR_STATUS = 'FWND')
THEN DO;

MENU_ENTRY = • '

;

CALL CHG_DEL_REC (MENU_ENTRY) ;

RETURN;
END;

ELSE DO;
DB_NAME = SAVE_DB_NAME; /***#***** NEW ********/
OBTAIN CALC RECORD (DATA_BASE) ; /****** NEW ***/
PUT STRING (HSG) EDIT (MENU_ENTRY,

• IS NOT AN EXISTING RECORD') (A (16), A);
CALL MESSAGES;
END;

END;

/* LOAD TABLE WITH RECORDS NAMES */
MENU_NUM = ' • ;

DO WHILE (HENU_NUB -- = 'X'):
DISPLAY_TBL = ' •

;

PUT STRING (DISPLAY_TBL(1)) EDIT (M) CREATE RECORD')
(X(4) ,A) ;

PUT STRING (DISPLAY_TBL(2)) EDIT ('2) 3NF ALL ELEMENTS')
(X{4) ,A) ;

PUT STRING (DISPLAY_TBL(3)) EDIT ('3) 3NF NEW ELEMENTS')
(X(4),A) ;

OBTAIN FIRST SET (DI VIDED_IN TO) ;

IF ERROR_STATUS -.= '0307'"
THEN CALL IDMS_STATUS;
COUNT = 3;
DO WHILE (ERROR_STATUS = REC_FOUND) ;

COUNT = COUNT~+ 1;

PUT STRING (DISPLAY_TBL (COUNT)

)

EDIT (COUNT, 1
) ',REC_NAME)

(X(2) ,F(3),2(A)) ;

DB_KEY_TBL (COUNT) = DBKEY;
OBTAIN NEXT SET (DIVIDED_I NTO) ;

IF ERROR_STATUS -.= '0307'
THEN CALL IDMS_STATDS;

END;
PUT STRING (DISPLAY_TBL(COUNT 1))

EDIT {' X) EXIT*) (A);

/* DISPLAY MENU / ACCEPT EDIT REPLY */

CALL GEN_MENU (MEND_NUM, MENU_ENTRY,
' ** RECORD UPDATE **

' , COUNT, SLCT_ HUM, 3)

;

/* CONTINUE TO UPDATE RECORDS UNTIL EXIT */

IF MENU_NUM = 'X'
THEN

RETURN;

- 133

IF SLCT_NUM = I THEN
CALL NEK_RECORD (MENU ENTRY);

ELSE IF SLCT_NUM = 2 THEN
CALL ALL_LMNTS_3NF;

ELSE IF SLCT_NUM = 3 THEN
CALL NEW_LMNTS_3NF;

ELSE DO;
REC_NAME = SUBSTR(DISPLAY_TBL(SLCT ROB), 9, 16);
OBTAIN RECORD (RE_CORD) DBKEY (DB_KEY_TBL (SLCT_NUH)

) ;

CALL IDMS_STATUS;
CALL CHG_DEL_REC («ENn_ENTEY) ;

END;
END;

NEW_RECORD: PROC (MENU_EN TR Y) ;

/******#****** ******************************** *********„*,,,. j.^,,.,,^

/* This module establishes a new RE_CORD occurrence by */
/* defaulting the EE_CORD occurrence fields and calling the */
/* modules to update the fields based on the user's M2NU_ENTBY. */
/* Once updating is complete, the new RE_CORD occurrence is */
/* stored. */
/**************** **/

DCL MENU_ENTRY CHAR (69) ,

MENU_NUM CHAR (3),
(SLCT_NOft,I) FIXED DEC (3);

/* INITIALIZE AND DEFAULT RECORD FIELDS */

2EC_LMNT_TBL = • '

;

NOM_REC_LMNTS = 0;
RE_COED = ' ' ;

REC_NA!1E = • '
;

REC_STRG_MODE = • F'

;

REC_DOP_OPTION = 'DN 1
;

REC_LCTN_HODE = 'CALC;
REC_CALC_VIA = ' •

;

/* HAS A RECORD NAME BEEN PROVIDED FROM SECONDARY MENU */

IF MENU_ENTHY = ' •

THEN
CALL REC_NEW_MENU (MENU_NU?1 , MEN U_EN TRY, SLCT NOM) ;

ELSE
MENU_NUM = *V I

/* ADD RECORD ATTRIBUTES UNTIL EXIT */

DO WHILE (MEND"_NUM -.= 'X');
IF MENU_NUM = T THEN

CALL NE»_REC_NAME (MENU_2NTRY ,REC_NAM E) ;

ELSE IF MEHu_NUH = *2' THEN
CALL STRG_MODE_RTIJ (MENU_ENTE Y, R2C_STRG_M0DE) ;

ELSE IF MENU_NUM = '3' THEN

- 134 -

CALL LCTN_MODE_RTN (MENU ENTRY, REC_I.CTN_MODE) ;

ELSE IF REC_LCTN_MODE = 'CALC
THEN DO;

IF MENU_NUM = 4 ' THEN
CALL REC_DIJP_RTN (M EN U_ENTR Y,REC_DUP_OPTION) ;

ELSE IF MENU_NUM = '5' THEN
CALL CALC_VIA_NEW (MENU_ENTRY, REC_CALC_VIA) ;

ELSE IF MENU_NUM >= '6' THEN
CALL REC_LMNT_NEW (SLCT_NUM ,MENU_ENTRY) ;

END;
ELSE DO;

IF MENU_NUM = •«' THEN
CALL CALC_VIA_NEW (MENU_ENTRY,EEC_CALC_ VIA)

;

ELSE IF MENU_NUM >= '5' THEN
CALL REC_LMNT_NEW (SLCT_NUM ,MEN U_ENTRY) ;

END;
CALL REC_NEW_MENU (MENU_NUM, MEN U_ENTRY,SLCT NUM) ;

END;

IF REC_NAME = ' '

THEN DO;
MSG = 'RECORD NAME IS BLANK — NO ADD MADE';
CALL MESSAGES;
RETURN;
END;

STORE RECORD (RE_CORD) ;

DO I = 1 TO NOM_REC_LMNTS;
LHNT_NAME = REC_LMNT_TBL (I) ;

SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (DAT A_ELEMENT) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DEFINED_BY)

;

CALL IDMS STATUS;
DO WHILE (SAVE_DB_NAME -« DB_NAME) ;

OBTAIN CALC RECORD (DATA_ELEM ENT) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DEFINED BY)

;

CALL IDMS_STATUS;
END;
STOBE RECORD (LMNT_REC) ; CALL IDMS STATUS;

END;

NEW_REC_NAME: PROC (M ENU_ENTRY, R EC_NAME) ;

/***$*#/
/* This module allows the user to assign a record name to a */
/* newly created RE_CORD occurrence. Before the record name */
/* is accepted, a check is made -to verify it does not already */
/* exist. */

DCL MENU_ENTRY CHAR (69),
(REC_NAKE«SAVE_NAME) CHAR(16),
STATUS CHAR (4) ;

REC_NAME = MENU_ENTPY;
CALL EDIT_NAME (REC_NAME, ST ATUS) ;

- 135 -

IF STATUS = 'GOOD'
THEN DO;

SAVE_NAME = REC_NAJ1E;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (RE_CORD) ;

DO WHILE (ERR0R_STATI1S = PEC_FOUND) ;

OBTAIN OWNER SET (DIVIDED_INTO) ; CALL IDMS STATUS;
IF SAVE_DB_NAME = DB_NAME
THEN

ERROR_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD (RE_CORD) ;

END;
IF (ERBOR_STATUS -•= '0326' E ERROR STATUS -.= < FWND'

)

THEN CALL IDMS_STATUS;

IF ERROR STATUS = 'FWND'
THEN DO;~

PUT STRING (HSG) EDIT (REC_NAHE,' ALREADY EXISTS '
) (2 (A)) ;

CALL MESSAGES;
REC_NAME = •

;

END;
ELSE DO;

DB_NAME = SAVE_DB_NAME;
OBTAIN CALC RECORD (DATA BASE)

;

END;
END;

ELSE
REC_NAME = ' *

;

END NEW_REC_NAME;

REC_NEW_HENU: PROC (MENU_N UM,MEN U_ENTR Y,SLCT_NUM) ;

/*»«*«*»***»*»***********»»»«**»****»*****»**»»»*(,»»»«*»*»»»»/
/* This module displays the RE_CORD fields that can be updated */
/* for a new RE_CORD occurrence. It also displays the DATA */
/* ELEMENT occurrences that are liked to this RE_CORD occurrence*/
/* for updating (i.e., add or delete). */
/***** ***********************#*#****#<,#***!),* ************ *********/

DCL MENU_NUM CHAR (3)

,

MENU_ENTRY CHAR(69),
(I,SLCT_UUM) FIXED DEC (3) ;

/* LOAD DISPLAY TABLE */

DISPLAY_TBL = •
;

PUT STRING (DISPLAY_TBL (1)) EDIT
(•1) RECORD NAME: • ,REC_NAME) (2(A));

PUT STRING (DISPLAY_TBL(2)) EDIT
(*2) RECORD STORAGE BODE: • , RBC_STRG_HODE) (2(A));

PUT STRING (DISPLAY_TBL(3)) EDIT
('3) RECORD LOCATION MODE: • , REC_LCTN_MODE) (2 (A)) ;

IF REC_LCTN_MODE = 'CALC

- 13f. -

THEN DO;
COUNT = 7;
PUT STRING (DISPLAY, TBI, («)) EDIT

(4) EECOBD DUPLICATE OPTION: • ,EEC_DUP_OPTION) (2(A));
PUT STRING (DISPLAY_TBL (5)) EDIT

(•5) RECORD CALC KEY OR VIA SET: ' ,REC_CALC VIA) (2 (A));
PUT STRING (DISPLAY_TBL (6)) EDIT

(•6) ADD DATA ELEMENT TO ' , REC_NAME) (2 (A)) ;

END;
ELSE DO;

COUNT = 6;

PUT STRING (DISPLAY_TBL(4)) EDIT
{•!») RECORD CALC KEY OR VIA SET: ' , REC_CALC_VIA) (2(A)) ;

PUT STRING (DISPLAY_TBL (5)) EDIT
('5) ADD DATA ELEMENT TO • , REC_NAME) (2 (A)) ;

DISPLAY_TBL (6) = 'DELETE DATA ELEMENT . . .';
END;

DO I = 1 TO NUM_PEC_LMNTS;
COUNT = COUNT 1;

PUT STRING (DISPLAY_TBL (COUNT)) EDIT
(COUNT- 1,') ' ,REC_LMNT_TBL(I)) (X (2) , F (3) , 2 (A)) ;

END;
DISPLAY_TBL (COUNT* 1) = 'X) EXIT';
CALL GEN_HENU (MENU_NUM, MENU_ENTR Y, ' ** CREATE NEK RECORD **',

COUNT-1,SLCT_NUH,2) ;

. END REC_NEB_MENU;

CALC_VIA_NEH: PROC (MENU_ENTR Y ,R EC_CALC_VIA) ;

/********** ****** ******************* ************* ***** ****** *****/
/* This module assiqns a value to the REC_CALC_VIA field of a */
/* new HE_CORD occurrence. Because it is a new RE_CORD */
/* occurrence, it cannot be a member of any set at this time. */
/* Thus, a proper via set value is not allowed. The calc value */
/* can be any DATA_ELEMENT occurrence associated with this */
/* RE_CORD occurrence. */
/**************** *************************************** *********/

DCL MENU_NUM CHAR (3) ,

HENU_ENTRY CHAR (69) ,

REC_CALC_VIA CHAR (16),
(SLCT_NUM,I) FIXED DEC(3);

/* VIA SET IS NOT POSSIBLE FOR A NEW RECORD */

IF REC_LCTN_MODE = 'VIA'
THEN DO;

msg = 'record is not member of any set - ',

'no acceptable value'

;

Call messages;
RETURN;
END;

/* SEE IF flENU_ENTRY IS A RECORD DATA ELEMENT */

DO I = 1 TO NUM_EEC_LMNTS;

- 137 -

IF HEC_LMNT_TBL(I) = HENU_ENTFY
THEN DO;

REC_LCTN_MODE = 'CMC; /* III CASE IT WAS BLANK */
REC_CALC_VIA = MENU_ENTRY;
RETURN;
END;

END;
DISPLAY_TBL(I) = • X) EXIT';

/* ARE THERE DATA ELEMENTS FOR A CALC KEY */

IF NUM_REC_LMNTS = • 0*

THEN DO;
MSG = 'RECORD CONTAINS NO DATA ELEMENTS - " ',

•NO ACCEPTABLE VALUE';
CALL MESSAGES;
RETURN;
END;

/* DISPLAY DATA ELEMENTS FOR CALC KEY SOLUTION */

CALL GEN_HENtI (MENU_NUM, M EI!IJ_ENTR Y, ' ** SELECT CALC KEY **
,

NDM REC_LMNTS7SLCT_NUM,3)
;

IF MENU_NUM = 'X'
THEN

RETURN;
EEC_CALC_VIA = REC LMNT_TBL (SLCT_NUM) ;

END CALC_VIA_NEW;

REC_LMNT_NEH: PROC (SLCT_NUM, MENU_E NT RY) ;

/****************************###*****,),**»,*******»*#*****#****»#»/
/* This module links existing DATA_ELEMENT occurrences to a */
/* new RE_CORD occurrence. If the~MENU_ENTRY parameter does */
/* not contain a valid data element name then a complete list */
/* of data element names is displayed for the user to select */
/* from. if,
/********************* ***********************„#**,.„,,<,,,;<,* *«*******/

DCL MENU_NIJM CHAR(3),
MENU_E!!TRY CHAR(fc9),
(SLCT_NUM, START) FIXED (3) J

IF (SLCT_NUM = 5 | (SLCT_NUM = 6 £ RSC_LCTN_MODE = 'CALC'))
THEN DO;

IF MENU_ENTRY -•= ' •

THEN DO?
LMNT_NAME = MENU_ENTRY;
SAVE_DB_NAME = DB_MAME;
OBTAIN CALC RECORD (DATA ELEMENT) ;

DO WHILE (ERROR_STATUS =~REC_FOUHD)

;

OBTAIN OWNER SET (DEFINED_BY) ; CALL IDMS_STATUS;
IF SAVE_DB_NAME = D3_NAME
THEN

ERROR_STATUS = 'FUND';

- 138 -

ELSE
OBTAIN DUPLICATE RECORD (DATA_ELEKENT) ;

END;
IF (ERROR_STATUS -= '0326' £ ERROR_STATUS -= 'FWND')
THEN CALL IDMS_STATUS;
IF EBROR_STATUS = 'FUND'
THEN DO;~

NUM_R2C_LMNTS = NUM_REC_LMNTS + t;

REC_LMNT_TBL(NUM_REC_LMNTS) = LMNT_NAME;
RETURN;
END;

ELSE DO;
POT STRING (MSG) EDIT
(LMNT_NAME,
• DATA ELEMENT DOES NOT EXIST - USE MENU') (2(A));
CALL MESSAGES;
END;

END;

/******* LIST ALL DATA ELEMENTS TO SELECT FROM *******/
DISPLAY_TBL = » '

;

OBTAIN FIRST SET (DEFINED_BY) ;

IF ERROR_STATUS = '0307 •

THEN DO;
MSG = 'NO DATA ELEMENTS TO CHOOSE FROM!';
CALL MESSAGES;
RETDBN;
END;

COUNT = 0;
DO WHILE (ERROR_STATUS = REC_FOUND) ;

COUNT = COUNT~+ I;

PUT STRING (DISPLAY_TBL (COUNT)) EDIT
(COUNT,') ',LMNT_NAME, ' •) (F (3) , 3 (A)) ;

DOMAINJTBL (COUNT) = LMNT_NAME;
OBTAIN NEXT SET (DEFINED_BY) ;

END;
IF ERSOR_STATUS -= '0307'
THEN CALL IDMS_STATUS;
DISPLAY_TBL(COUMT+1) = • X) EXIT";
CALL GEN_MENU (MENU_NUM ,MEN U_EN TR Y,

•** ADD DATA ELEMENT TO A RECORD **• , COUNT, SLCT_ NUM. 3)

;

IF MEND_NUM -.= 'X'
THEN DO?

NUM_REC_LMNTS = NUM_REC_LMHT + 1

;

REC_LMNT_TBL(NUM_PEC_LMNTS) = DOM AIN_TBL (SLCT_NUM) ;

END;
END;

ELSE DO;
NUM_REC_LMNTS = NUM_REC_LMNT - 1;

IF REC_LCTN_MODE = 'CALC
THEN

START = SLCT_NUM - ft;

ELSE

- 139 -

START = SLCT_NUM - 5;
DO I = START TO NUM_REC_LMNTS

;

REC_LMNT_TBL (I) = REC_LMNT_TB L (1+ 1)

;

END;
END;

END REC_LMNT_NEW;
END NEW_RECORD;

CHG_DEL_REC: PROC (MENU_ENTRY) ;

/* This module chanqes and deletes RE_CORD fields of the */
/* "current" RE_CORD occurrence. */

DCL DEL_SW CHAH(l),
SAVE_NAME CHAR{16) ,

MENU_NUM CHAR (3),
MENU_ENTRY CHAR (69) ;

IF MENU_ENTRY = 'DELETE'
THEN DO;

FIND CURRENT RECORD (RE_CORD)

;

CALL IDMS STATUS;
ERASE RECORD (RE_CORD) PERMANENT; CALL IDMS~STATUS;
RETURN;
END;

SAVE_NAME = REC_NAHE;
CALL REC_CHG_MENU (MENU_NUM .MENU ENTRY, SLCT SDH) ;

DO WHILE (MENO_NUM -•= 'X');
IF HENU_NUM = '1' THEN

CALL CHG_R2C_NAME (MENU_ENTRY ,REC_NAME) ;

ELSE IF MEN0_NUM = '2' THEN
CALL STRG_MODE_RTN (MENU ENTRY, PEC_STRG_MODE)

;

ELSE IF MENU_NUM = '3' THEN
CALL LCTN_MODE_RTN (MEN U_ENTR Y,REC_LCTN_MODE) ;

ELSE IF REC_LCTN_MODE = 'CALC
THEN DO;

IF MENU_NUM = 4' THEN
CALL REC_DUP RTN (NENU_ENTRY, REC_DU P OPTION);

ELSE IF MENU_NUM = '5' THEN
CALL CALC_VIA_CHG (MENU_ENTRY,REC_CALC_ VIA)

;

ELSE IF MENU_NUM >= '6' THEN
CALL REC_LtlNT CHG (SLCT_NUM ,MENU_ENTP Y) ;

END;
ELSE DO;

IF MENU_NUM = ' U' THEN
CALL CALC_VIA_CHG (MENU_ENT RY , REC_CALC_VIA) ;

ELSE IF MENU_NUM >= • 5' THEN
CALL REC_LMNT_CHG (SLCT_NUM ,MENU_ENT3Y) ;

END;
CALL REC CHG_MENU (MENU_NUM , MENU ENTRY, SLCT_NUM)

;

END;

IF REC NAME

- 140

THEN DO;
CALL CLRSCR;
CALL BLANK_LINE(5) ;

DISPLAY ('CONFIRM DELETE BY TYPING "D" 1);
CALL BLANK_LINE{5)

;

DISPLAY ('=====>') REPLY (DEL_SW) ;

IF DEL_SW = 'D'

THEN DO;
FIND CURRENT RECORD (RE_CORD) ; CALL IDMS_STATUS;
ERASE RECORD (RE_CORD) PERMANENT; CALL IDMS^STATUS;
RETURN;
END;

ELSE DO;
nSG = 'DELETE REQUEST ABORTED';
CALL MESSAGES;
REC_NAME = SAVE_NAME;
END;

END;
ELSE DO;

FIND CURRENT RECORD (RE_CORD)

;

CALL IDMS_STATUS;
MODIFY RECORD (RE_CORD)

;

CALL IBMS_STATUS;
END;

CHG_REC_NAME: PROC (M ENU_ENTR Y,R EC_NAME) ;

/* This module changes the record name of the "current" RE_COSD */
/* occurrence based on the MENU_ENTRY. »/
/ft** 9********/

DCL MENU_ENTHY CHAR(fc9),
REC_NAME CHAR (16) ,

STATUS CHAR («) ;

REC_NAME = MENU_ENTBY;
CALL EDIT_NAME (REC_NAME, STATUS) ;

IF STATUS = 'GOOD'
THEN DO;

IF SAVE_NAME = REC_NAME
THEN

ENTER_KEY = •

;

ELSE DO;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (RE_CORD) ;

DO WHILE (ERROR_STATUS = REC_FOUND) ;

OBTAIN OWNER SET (DIVIDED_INTO) ; CALL IDMS_STATUS;
IF SAVE_DB NAME = DB_NAME
THEN

ERROE_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD (RE_CORD) ;

END;
IF (ERROR_STATns -= '032f.' S ERROR_STATUS -.= 'FWND')
THEN CALL IDMS_STATUS

;

- 1«1 -

IF ERROR_STATUS = 'FWND'
THEN D0;~

POT STRING (MSG) EDIT (REC NAME,' ALREADY EXISTS") (2 (A)) ;

CALL MESSAGES;
HEC_NAME = SAVE_NAME;
END;

ELSE DO;
DB_NAME = SAVE_DB_NABE;
OBTAIN CALC RECORD (DATA BASE) ;

IF REC_NAME -i= '

THEN
SAVE_NAHE = REC_NAME;

END;
END;

END;
ELSE
REC_NAME = SAVE_NAHE;

END CHG_REC_NA11E;

REC_CHG_MENU: PROC (MENH_N tJM ,MENU_ENTR Y,SLCT_NUM) ;

/********************* ********************************** ^t***,^
/* This module displays the RE_CORD fields that can be updated */
/* for an existing RE_CORD occurrence. It also displays the */
/* DATA_ELEHENT occurrences that are linked to this RE_CO-RD */
/* occurrence for updating {i.e., add or delete). */
/is************************ ********* ** ************* ****** »******/

DCL MENU_NUM CHAR (3) ,

PIENtl_ENTRY CHAR(fc9),
SLCT_NUM FIXED (3) ;

/* LOAD DISPLAY TABLE */

DISPLAY_TBL = • •

;

PUT STRING (DISPLAY_TBL(1)) EDIT
{•1) RECORD NAME: • , REC_NAME) (2 { A)) ;

PUT STRING (DISPLAY_TBL (2)) EDIT
{'2) RECORD STORAGE MODE: ',REC STRG MODS) (2 (A)) ;

POT STRING (DISPLAY_TBL(3)) EDIT
('3) RECORD LOCATION MODE: ',

REC_LCTN_MODE) {2(A)) ;

IF REC_LCTN_MODE = 'CALC
THEN DO;
COUNT = 7;
PUT STRING (DISPLAY_TBL (")) EDIT

(•«) RECORD DUPLICATE OPTION: ' ,REC_DU?_OPTION) (2(A));
PUT STRING (DISPLAY_TBL(5)) EDIT

('5) RECORD CALC KEY OR VIA SET: ',

REC_CALC_VIA) (2(A));
PUT STRING (DISPLAY_TBL (fc)) EDIT

('6) ADD DATA ELEMENT TO • ,REC_NAME) (2 (A)) ;

DISPLAY_TBL (7) = 'DELETE DATA ELEMENT . . .';
END;

ELSE DO;

- 142 -

COUNT = 6;

POT STRING (DISPLAY_TBL («)) EDIT
{"») RECORD CALC KEY OB VIA SET: '

,

REC_CALC_VIA) (2(A)) ;

PUT STRING (DISPLAY_TBL (5)) EDIT
(•5) ADD DATA ELEMENT TO • ,REC_NAME) (2 (A)) ;

END;
OBTAIN FIRST SET (POPULATED_WITH) ;

IF ERROR_STATUS -.= '0307*
THEN DO;

CALL IDMS_STATUS;
OBTAIN OWNER SET (GROUPED_IN) ; CALL IDMS_3TATUS;
END;

DO WHILE (ERROR_STATUS = OK) ;

COUNT = COUNT + 1

;

PUT STRING (DISPLAY_TBL (COUNT)) EDIT
(COUNT-lT') ',LMNT_NAME) (X (2) ,F(3) ,2 (A)) ;

OBTAIN NEXT SET (POPULATED_WITH)

;

IF ERROR_STATUS -.= '0307'
THEN DO;~

CALL IDPIS_STATUS;
OBTAIN OWNER SET (GEO UPED_IN) ; CALL IDMS STATUS;
END;

END;
DISPLAY_TBL (COUNT* 1) = 'X) EXIT';
CALL GEN_MENU (MENU_ NUM, PIENU_ENTRY,

•** CHANGE OR DELETE RECORD ** , COUNT- 1 ,S1CT_B0B ,2) ;

END REC_CHG_MENU;

CALC_VIA_CHG: PROC (MENU_ENTR Y,R EC_CALC_VIA) ;

/* This module changes the value of an existing RE_CORD */
/* occurrence's REC_CALC_VIA field based on the value of */
/* the HENU_ENTRY. This module assures that the value */
/* assigned to REC_CALC_VIA is an acceptable value based */
/* the REC_LCTH_MODE field. */
/is***/

DCL HENU_NUM CHAR (3) ,

HEHU_ENTRY CHAR (69) ,

EEC_CALC_VIA CHAF.(16),
(CALC_SLCT_TBL(500) , VI A_SLCT_TBL (500)) CHAP (21) ,

(SLCT_NUM / NUM_CALC / NUH_VIA) FIXED (3);

/Load VIA_SLCT_TBL with valid VIA Set values */
VIA_SLCT_TBL = '

;

NUM_VIA = 0;
OBTAIN FIRST SET (MEMEER_0F)

;

DO WHILE (ERROR_STATUS = OK);
NUM_VIA = NUM_VIA 1;

IF MENU_ENTRY = SET_NAf\E
THEN DO;

PEC_LCTN_MODE = 'VIA'

;

REC~CALC_VIA = MEHU_ENTRY;

- 113 -

HETURN;
END;

ELSE DO;
PUT STRING (VIA_SLCT_TBL(NUM_VIA)) EDIT

(NUM_VIA,') ',SET_NAME,' ~ ') (F (3) , 3 (A)) ;

OBTAIN NEXT SET (MEMBER_OF) ;

END;
END;
VIA_SLCT_TBL(NUM_VIA + 1) = • X) EXIT';
IF ERROR_STATUS -.= '0307' THEN CALL IDMS_STATUS;

/* Load CALC_SLCT_TBL with valid CALC_KEY values */
CALC_SLCT_TBL = *;

NUM_CALC = 0;
OBTAIN FIRST SET (POPUL ATED_WITH) ;

IF ERROR STATUS -.= '0307'
THEN DO;~

CALL IDMS_STATUS;
OBTAIN OWNER SET (GROUPED_IN) ; CALL IDMS_STATUS;
END;

DO WHILE (ERROR_STATUS = OK) ;

NUM_CALC = NU«_CALC + 1;

IF MENU_ENTRY = LMNT_NAME
THEN DO;

REC_LCTN_MODE = 'CALC;
REC_CALC_VIA = HENU_ENTRY;
RETURN;
END;

ELSE DO;
PUT STRING (CALC_SLCT_TBL (NUM_CALC)) EDIT

(NUM_CALC,') ',LMNT_NAME,' •) (F (3) , 3 (A)) ;

OBTAIN NEXT SET (POPULATED_WITH) ;

IF ERROR_STATUS -•= '0 307'
THEN DO;~

CALL IDHS_STATUS;
OBTAIN OWNER SET (GROUPED IN) ; CALL IDMS_STATUS;
END;

END;
END;
CALC_SLCT_TBL (NUH_CALC*1) = X) EXIT';

IF REC_LCTN_HODE = • '

THEN DO;
MSG = 'HAKE AN ENTRY IN RECORD LOCATION BODE FIRST';
CALL MESSAGES;
RETURN;
END;

IF MENU_ENTRY -= • •

THEN DO;
PUT STRING (MSG) EDIT (MENU_ENTHY,

• IS INVALID CALC KEY OF VIA SET - USE MENU')
(A(16),A);

CALL MESSAGES;

- 1 4U -

END;

/* Display valid CALC_KEY fields if any */
IF REC_LCTN_MODE = 'CALC
THEN DO;
IF Mia CALC =
THEN DO;

aSG=' RECORD CONTAINS NO DATA ELEMENTS -
NO ACCEPTABLE VALUE'

;

CALL MESSAGES;
RETURN;
END;

DISPLAY_TBL = CALC_SLCT_TBL

;

CALL GEN_MENU (MEN U_NUM ,MENU_EN TR Y,
•** SELECT CALC KEY **',
NUM_CALC,SLCT_NUM,3)

;

IF MENU NOM = 'X 1

THEN DO?
REC_CALC VIA = ' •

;

RETURN;
END;

REC_CALC_VIA = SUBSTR (C ALC_SLCT_TBL (SLCT NUM),7,16);
END;

ELSE DO;

/* Dispaly valid VIA_SE fields if any */
IF NUM_VIA =
THEN DO;

MSG='RECORD IS NOT MEMBER OF ANY SET -
HO ACCEPTABLE VALUE'

;

CALL MESSAGES;
BETUBN;
END;

DISPLAY_TBL = VIA_SLCT_TBL;
CALL GEN_MENU (MENU_NUM ,MENU_EN TR Y,

'** SELECT VIA SET **',
NUM_VIA,SLCT_NUM,3)

;

IF MENU_NUM = 'X'
THEN DOT

REC_CALC_VIA = ' ' ;

RETURN;
END;

REC_CALC_VIA = SUBSTR (VIA_SLCT_TBI (SLCT_NUM) ,7 , 1 6) ;

END;
END CALC_VIA_CHG;

REC_LMNT_CHG: PROC (SLCT_HUM, MENU_ENTRY) ;

/* This module links existing DATA_ELEMENT occurrences to */
/* an existing RE_CORD occurrence. If the MENU_SNTRY */
/* parameter does not contain a valid data element name */
/* then a complete list of data element names is displayed */
/* for the user to select from. */
/** ***************#*********#**********#**#**# *#*#*#** #**#**/

- 145 -

DCL MENU_NUM CHAR (3) ,

MENU_ENTRY CHAP. (69) ,

SLCT_NUM FIXED (3);

IF (SLCT_NUM = 5 | (SLCT_NUM =65
EEC LCTN MODE 'CALC'))

THEN DO;
IF MENU ENTEY -= '

THEN DOT
LMNT_NAME = MENU_ENTRY;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (DATA_ELEMENT) ;

DO WHILE (ERBOK_STATIJS =~BEC_FOUH D) ;

OBTAIN OWNER SET (DEFINED_BY) ; CALL IDMS STATUS;
IF SAVE_DB_NAME = DB_NAME
THEN

ERROR_STATUS = 'FWND';
ELSE
OBTAIN DUPLICATE RECORD (DAT A_ ELEMENT) ;

END;
IF (EBROR_STATUS -.= '0326' E ERROB_STATUS -.= 'FWND')
THEN CALL IDMS_STATUS;
IF EBBOE_STATUS = 'FWND'
THEN DO;
STOBE RECOED (LHNT_REC) ; CALL IDMS_STATUS;
RETURN;
END;

ELSE DO;
PUT STRING (MSG) EDIT
(LHNT_NAME,
• DATA ELEMENT DOES NOT EXIST - USE MENU') (2(A));

CALL MESSAGES;
END;

END;

/***** LIST ALL DATA ELEMENTS TO SELECT FROM ******/
DISPLAY_TBL = ' • ;

OBTAIN FIRST SET (DEFINED_BY)

;

IF EBROR_STATUS = '0307'
THEN DO;

MSG = 'NO DATA ELEMENTS TO CHOOSE FROM!';
CALL MESSAGES;
RETURN;
END;

COUNT = 0;
DO WHILE (ERROR_STATUS = SEC_FOUND) ;

COUNT = COUNT +1;
PUT STRING (DISPLAY_TBL (COUNT)) EDIT

(COUNT,*) ' ,LMNT_NAME, • •
) (F (3) ,3 (A)) ;

DOMAIN_TBL (COUNT) = LMNT_NAME;
OBTAIN NEXT SET (DEFI NED_BY) ;

END;
IF EEEOR_STATUS -•= '0307'

- i«e -

THEN CALL IDHS_ST ATUS

;

DISPLAY_TBL (COUNT* 1) = ' X) EXIT';

CALL GEN_MENU (MENU_NUM ,MENU_EN TRY,
•** ADD DATA ELEMENT TO A RECORD **,
COUNT,SLCT_NUM,3)

;

IF MENU_NUM -.= 'X'
THEN DOT

LMNT_NAME = DOM AIN_TBL (SLCT_N OK)

;

FIND CALC RECORD (DATA_ELEMENT) ;

STORE RECORD (LMNT_REC) ; CALL IDMS_STATUS;
END;

END;
ELSE DO;
LMNT_NAME = SDBSTR (DISPLAYJTBL (SLCT_NUM+1) , 8 , 1 6)

;

/** FIND CALC RECORD (LMNT_REC) ; CONFLICT W/ SCHEMA==> VIA */
ERASE RECORD (I.MNT_REC) PERMANENT; CALL IDMS_STATUS;
END;

END REC_LMNT_CHG;
END CHG_DEL_REC;

STRG_MODE_RTN: PROC (MENU_ENTRY, REC_STRG_KODE)

;

/************************************* ****** ************#* S******/
/* This module updates the REC_STRG_MODE field in the RE_COED */
/* structure. If no MENO_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/A************************************** **„#**:»* ***********/

DCL MENU_ENTBY CHAR (69),
REC_STRG_MODE CHAR (2),
THE_VALUE CHAR (Ifc) ,

I FIXED DEC(2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

'; DOMAIN_TBL(1) = 'F';
•; DOMAIN_TBL(2) = 'V;
•; DOMAIN_TBL (3) = 'C ;

i .

/* IF NO MENO_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_VALDE = REC_STRG_MODE;
REC_STRG_MODE = MEN!J~EHTRY;
IF REC_STRG_MODE = • '

THEN DO;
CALL SLCT_VALUE (DISPLA Y_TBL, DO MAIN_TBL, THE VALUE,

' ** RECORD STORAGE MODES **',3);
REC_STRG_MODE = THE_VALUE;
END;

ELSE DO;

- 1«7

DISPLAY_TBL(1) = •1) FIXED
DISPLAY TBL(2) = •2) VARAIBLE
DISPLAY_TBL(3) = »3) COMPRESSED
DISPLAYJTBL (I») = X) EXIT

/* THESE WAS A MENU_ENTRY — RETURN IF VALID MENU_ENTRY */

DO I = 1 TO 3;

IF DOMAIN_TBL(I) = REC_STRG_MODE
THEN

RETURN;
END;

/THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY*/

PUT STRING (MSG) EDIT (REC_STRG_KODE, • IS NOT ACCEPTABLE ,
•FOR RECORD STORAGE MODE — USE MENU') (3(A));

CALL MESSAGES;
CALL SLCT_VALUE (DISPLAY_TBL, DOMAIN_T3L,THE VALUE,

•** RECORD STORAGE MODES ** '
, 3) ;

REC_STRG_MODE = THE_VALUE;
END;

END STRG_MODE_RTN;

LCTN_MODE_RTN: PROC (MENU_ENTnY,REC_LCTN_MODE) ;

/ft************** ************************************** a******,*,,^
/* This module updates the REC_LCTN_MODE field in the RE_CORD */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/************************** ************************txamsttzt^+f

DCL HENO_ENTRY CHAR(69),
REC_LCTN_MODE CHAR (4) ,

(THE_VALUE,SAVE_VALUE) CHAR(U) ,

I FIXED DEC (2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

DISPLAY_TBL(1) = '1) CALC KEY •; DOMAIN_TBL { 1
) = 'CALC";

DISPLAY_TBL(2) = • 2) VIA SET ; DOMAINJTBL (2) = 'VIA';
DISPLAY_TBL(3) - 'X) EXIT ';

/* IF NO MENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

SAVE_VALUE = REC_LCTN_MODE;
THE_VALUE = REC_LCTN_MODE;
REC_LCTN_MODE = M£NU_ENTRY;
IF REC_LCTN_MODE = ' •

THEN DO;
CALL SLCT_VALUE (DISPLAY_TBL, DOMAIN_TBL,THE_ VALUE,

' ** RECORD LOCATION MODES **',2);
REC_LCTN_MODE = THE VALUE;
END;

ELSE DO;

/* THERE WAS A MENU_ENTRY — RETURN IF VALID MENU_ENTRY */

- 1«8 -

DO I = 1 TO 2;
IF DOMAIN_TBL (I) = REC_LCTN_MODE
THEN

RETURN;
END;

/* THERE HOST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY*/

PUT STRING (MSG) EDIT (REC_LCTN_MODE, IS NOT ACCEPTABLE ',

'FOR RECORD LOCATION MODE —~USE MENU') (3(A));
CALL MESSAGES;
CALL SLCT_VALUE (DISPLA Y_TBL, DOMAIN_TBL,THE_ VALUE,

•** RECORD LOCATION MODES **',2);
REC LCTN_MODE = THE VALUE;
END;
IF SAVE_VALOE -^ HEC_LCTN_i10DE
THEN

REC_CALC_VIA = • ';

END LCTN_MODE_RTN;

REC_DUP_RTN: PROC (MENU_ENT EY ,EEC_DUP_OPTION) ;

/* This module updates the REC_DUP_OPTION field in the RE_CORD */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */

DCL MENU_ENTRY CHAR(fc9) ,

REC_DUP_OPTION CHAR (2) ,

THE_VALUE CHAfi(lfc) ,

I FIXED DEC (2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

DISPLAY_TBL{1) = *1) DUPLICATES FIRST ';

DOMAIN_TBL(1) = 'DF';
DISPLAY_TBL(2) = '2) DUPLICATES LAST ';

DOMAIN_TBL (2) = 'DL';
DISPLAY_TBL(3) = '3) DUPLICATES NOT ALLOWED';

DOMAIN TBL(3) = ' DN '
;

DISPLAY_TBL(tt) = 'X) EXIT ';

/* IF NO HENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_VALDE = REC_DUP_OPTION

;

REC_DUP_OPTION = MENU_ENTRY;
IF £EC_DUP_OPTION = ' '

THEN DO;
CALL SLCT_VALUE (DISPLA Y_TBL, DO MAIN_TBL ,THE_VALUE,

'** RECORD DUPLICATE OPTIONS **',3);
REC_DUP_OPTION = THE_VALUE;
END;

- 149 -

ELSE DO;

/* THERE BAS A MENU^ENTRY — RETURN IF VALID HENU_ENTRY */

DO I = 1 TO 3;

IF DOMAIN_TBL(I) REC_DUP_OPTION
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY*/

PUT STRING (MSG) EDIT (REC_DUP_CPTION, ' IS MOT ACCEPTABLE ',
•FOR RECORD DUPLICATE OPTION — USE MENU') (3 (A));

CALL MESSAGES;
CALL SLCT_VALUE (DISPLA Y_TBL, DOMA IN_TBL ,THE_VALUE,

•** EECORD DUPLICATE OPTIONS **',3);
REC_DUP_OPTION = THE_VALUE;
END;

END REC_DUP_RTN;
END RECORD UPDATE;

- 150 -

SET
/**
/*
/*
/*
/*

/***
/*
/*
/*
/*
/* I

/* J

/* I

/* I

/* i

/*
/*
/* +

/*
I

/* I

/* +

/*
/* *

/* I

/•* I

/* +

/***

.UPDATE: PRO

This module d
"current" DAT
a new SET occ
delete an exi

SET UPDATE

C(HENU.ENTRY) ;

isplays all existing SET
A_BASE occurrence and al
urrence, change an exist
sting SET occurrence

occurrences for the

Llows the user to add
ting SET occurrence, or

NEW.SET |

+

CHG_DE1_SET |

+————— + | + —— i | |

1 VE»_
I I 1 CHG | |

| NA11E_ETN | | | NAME.RTN | |

J * +
1

SET.UP |

MEND
|

+ + + »
MEM.

I | LINK_
| |

OWN~RTN | J RTN "
1 |

+

SET.
|

VALUE.RTN |

ORDER_ |

RTN

+ «. + + .

SOHT_
| | MEM.

| 1

LMNT.RTN J | RTN~ | |

DUP.
|

OPTION_RTN |

+ + + + + + +

**

**/
*/
*/
*/
*/

**/
*/
*/

V
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

V
*/
*/
*/
V

**/

DCL MENU.ENTRY
SLCT.NUM
MF.NU.NHM
(SET.OWNER.SET.MEMBER)

CHAR(69) ,

FIXED DEC (3) ,

CHAR (3) ,

CHAR (16) ;

IF HENO_ENTRY -= •

THEN DO;
SET.NAME = MENU.ENTRY;
SAVE.DB.NAME = DB.NAME;
OBTAIN CALC RECORD (SE_T) ;

DO WHILE (ERROR_STATUS~= REC.FOUND) ;

OBTAIN OHNER SET (1INKED.BY) ; CALL IDMS.STATUS;
IF SAVE_DB_NAHE = DB.NAME
THEN

ERROR_STATUS = 'FUND';
ELSE

OBTAIN DUPLICATE RECORD (SE T) ;

END;
IF (ERROR.STATUS -= '0326' S ERROR.STATUS -.= 'FUND')
THEN CALL IDMS.STATUS;
IF (ERROR_STATUS = 'FWND')
THEN DO;

MENU.ENTRY = • •

;

CALL CHG_DEL_SET (MENU.ENTRY)

;

RETURN;

151

END;
ELSE DO;

DB_NAME = SAVE_DB_NAME;
OBTAIN CALC RECORD (DATA_BASE)

;

POT STRING (HSG) EDIT (KEN 0_ENTRY,
1 IS NOT AN EXISTING SET') (A(1fc),A);

CALL MESSAGES;
END;

END;

LOAD TABLE WITH SET NAMES */

MENO_NOM = ' •;

DO WHILE (MENU_NOM -.= 'X') ;

DISPLAY_TBL = • ;

PHT STRING (DISPLAY_TBL(1)) EDIT (M) CREATE SET 1
)

(X{4) ,A) ;

OBTAIN FIRST SET (LINKED_BY) ;

IF ERROR_STATrjS -»= '0307'
THEN CALL IDMS_STATOS;
COONT = 1;

DO' WHILE (ERROR_STATOS = REC_FO[JND) ;

COONT = COONT + 1;

POT STRING (DISPLAY_TBL (COONT)) EDIT (COONT,') ',

SET_NAME)
(X 12) , F (3), 2(A));

DB_KEY_TBL (COONT) = DBKEY;
OBTAIN NEXT SET (LINKED_BY)

;

IF ERROR_STAT0S -.= *0307'
THEN CALL IDBS_STAT0S;

END;
POT STRING (DISPLAY_TBL(COONT + 1)) EDIT (' X) EXIT')

(A)
i

/* DISPLAY MENO / ACCEPT EDIT REPLY */

CALL'GEN_MENU (MENU_NOM, MEHO_ENTR Y, ' ** SET OPDATE **•-,

COONT,SLCT_NOM,3)
;

IF MENO_NOM = 'X'
THEN

RETORN;

IF SLCT_NOM = 1

THEN
CALL NEW_SET (MENO_ENTRY)

;

ELSE DO;
OBTAIN RECORD (SE_T) DBKEY (DB_KEY TBI, (SLCT NOM)) ;

CALL IDP!S_STATOS;
CALL CHG_DEL_SET (MENO_ENT3Y) ;

END;
END;

- 152

NEW_SET: PROC (HENU_SNTRY) ;

/***/
/* This module established a new SET occurrence by defaulting */
/* the SET occurrence fields and callinq the modules to update */
/* the fields based on the data base designer's MENU_ENTRY. */
/* Once updating is complete, the new SET occurrence is stored.*/
/*********************«*********************#******************/

DCL STATUS CHAR (4)

,

MENU_NUM CHAR (3),
MENIJ~ENTRY CHAR (69) ;

/* INITIALIZE AND DEFAULT SET FIELDS */

SE_T = • •
»

SET OWNER = i i .

SET MEMBER = i t •

SET_LINK = 1 N PO ;

SET_MEM = •MA' ;

SET ORDER = 'FIRST* ;

set!sort_lmnt = 1 •

SET_DUP_OPTION = 1 DN' ;

SET VALUE = ' 1M' ;

SET_INVRS_VAL = • 11' ;

/* HAS A SET NAME BEEN PROVIDED FROM SECONDARY MENU? */

IF MENU_ENTRY = ' •

THEN
CALL SET_UP_M£NH (MENU_ NUM. MENU_ENTRY,

'** CREATE NEW SET **')

;

ELSE
MENIJ_NUM = ' V

;

/* ALLOW ADDITION OF SET ATTRIBUTES UNTIL EXIT */

DO WHILE (MENU_NOM -.= 'X<);
IF MENU_NUM = ' V THEN

CALL NEW_SET_NAME (MENU_ENTRY ,S ET_NAME) ;

ELSE IF MENU_NUM = '2« THEN
CALL MEM_OWN_RTN (MENU_ENTRY, SET_OWNER, SET_MEHBEB

,

•** SELECT SET~OWNER **•
) ;

ELSE IF HENU_N'JM = '3' THEN
CALL MEM_OWN_RTN (MEN U_ENTRY, SET_MEMBER , SET_OWNER

,

•** SELECT SET MEMBER **') ;

ELSE IF MENU_NUfl '4' THEN
CALL SET_VALUE_RTN (MENU_ENTR Y, SET_VALUE) ;

ELSE IF MENU_NUM = '5' THEN
CALL SET_VALUE_RTN (M EN U_ENTR Y,SET_IN VES_VAL) ;

ELSE IF MENU_NUM = 'fc' THEN
CALL LINK_RTN (MENU_ENTFY , SET_LINK) ;

ELSE IF MENU_NUM = '7* THEN
CALL MEM_RTN (MENU_ENTRY, SET_ MEM) ;

- 153 -

ELSE IF MENU_NHM = '8' THEM
CALL ORDER_RTN (MENU_ENTR Y, SET_OHDER) ;

ELSE IF NENU_NUM = '9'~THEN
CALL SORT_LMNT RTN (H BBO BUTE Y, SET_SORT_LMNT) :

ELSE IF MENU_NUM = '10' THEN
CALL DUP_OPTIOM_RTN (MENU_ENT RY , SET_DUP_OPTION) ;

CALL SET_UP_MENU (MENTJ_NUM, MENU_ENTR Y,
** CREATE NEW SET **

•)

;

END;
IF SET_NAME = • '

THEN DO;
HSG = 'SET NAME IS BLANK — NO ADD MADE';
CALL MESSAGES;
RETURN;
END;

STORE RECORD (SE_T) ; CALL IDMS_STATUS;

/***** CONNECT SET_OHNEE TO RESPECTIVE RECORD **************/

IF SET_OWNER -^= ' '

THEN DO;
REC_NAME = SET_OWNER;
SAVE_DB_NAME =~DB_NAME;
OBTAIN CALC RECORD (RE_CORD) ; CALL IDMS_ST&TUS;
OBTAIN OWNER SET (DIVIDED_INTO) ; CALL IDMS STATUS;
DO WHILE (SAVE_DB_NAME -.= DB_NAME);

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DIVIDED_INTO) ; CALL IDMS_STATUS;

END;
CONNECT RECORD (SE_T) SET (OWNER_OF) ; CALL IDMS_STATUS;
END;

/***** CONNECT SET_MEMBER TO RESPECTIVE RECORD *************/

IF SET_MEMBER -*= • >

THEN DO;
REC_NAME = SET_MEMBER;
SAVE_3B_NAME = DB_NAME;
OBTAIN CALC RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DIVIDED_INTO) ; CALL IDMS STATUS;
DO WHILE (SAVE_DB_NAME -= DB_NAME);

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DIVIDED_IHTO) ; CALL IDMS_STATUS;

END;
CONNECT RECORD (SE_T) SE^ (MEMBER OF); CALL IDMS STATUS;
END;

NSW_SET_NAME: PROC (M ENU_ENTRY, SET_HAME) ;

/* This module allows the data base desiqner to assiqn a set */
/* name to a newly created SET occurrence. Before the set */
/* name is accepted, a check is made to verify that it does */
/* not already exist. */

- 154 -

DCL MENU_ENTRY CHAR (69),
(SET_NAME,SAVE_NA.ME) CHAB(16),
STATUS CUAR(«) ;

SET_NAME = MENU_ENTBY;
CALL EDIT_NAME (SET_N AHE, STATUS) ;

IF STATUS = 'GOOD'
THEN DO;
SAVE_NAME = SET NAME;
SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (SE_T) ;

DO WHILE (EBBOR_STATUS~= REC_FOUND) ;

OBTAIN OWNER SET (LINKED_BY); CALL IDHS_STATUS;
IF SAVE_DB_NAaE = DB_NAME
THEN

EBROR_STATHS = • FWND*;
ELSE

OBTAIN DUPLICATE RECORD (SE_T) :

END;
IF {ERROR_STATOS -= '0326' S ERBOB_STATOS 1= 'FWND')
THEN CALL I DHS_ST ATUS

;

IF ERROB_STATUS = 'FWND'
THEN DO;

PUT STRING (MSG) EDIT (SET_NAHE,' ALREADY EXISTS") (2 (A)) ;

CALL MESSAGES;
SET_NAME = ' <

;

END;
ELSE DO;
DB_NAME SAVE_DB_NAME;
OBTAIN CALC RECORD (DATA_BASE);
END;

END;
ELSE

SET_NAME = ' » ;

END NEW_SET_NAME;
END NEW_SET;

CHG_DEL_SET: PROC (MENU_ENTRY) ;

/********************************#***************************»**/
/* This module changes and deletes SET fields of the "current" */
/* SET occurrence. */
/***#***************/

DCL DEL_SW CHAR(1) ,

(SAVE_NAME,SAVE_OWNER,SAVE_MEMBER) CHAR(16),
MENU_NUPI CHAR (3) ,

MENU_ENTRY CHAR(69) ;

SA7E_0WNER, SAVE_MEMBER = '

IF MENU_ENTRY = 'DELETE'
THEN DO;

- 155

POT STRING (MSG) EDIT (SET_NAME,' SET DELETED'
) (2 (A)) ;

OBTAIN CURRENT RECORD (SE_T)

;

ERASE RECORD (SE_T) ;

CALL IDMS_STATUS;
CALL MESSAGES;
RETURN

;

END;

/* OBTAIN VALUES FOR SET_OWNER 5 SET_MEMBER IF EXISTENT */

OBTAIN CURRENT RECORD (SE_T) ;

IF SET (OWNER_OF) MEMBER
THEN DO;

OBTAIN OWNER SET (OWNER_OF) ; CALL TDMS_STATUS;
SAVE_OWNER / SET_OWNER = REC_NAME;
END;

ELSE
SET_OHNER = '

;

OBTAIN CURRENT RECORD (SE_T) ;

IF SET (MEMBER_OF) MEMBER
THEN DO;

OBTAIN OWNER SET (MEMBER_OF) ; CALL IDMS_STATUS;
SAVE_HEMBEH,SET_MEM3ER = EEC_NAME;
END;

ELSE
SET_MEMBER = ' •

;

/* MAKE CHANGES TO SET INFO UNTIL EXIT */

SAVE_NAME = SET_NAME;
CALL SET_UP_MENU (MENU_NUM, MEN U_ENTRY

,

'** CHANGE OR DELETE SET **'
) ;

DO WHILE (HENU_NUB -.= 'X');
IF MENU_NUM = • 1' THEN

DO;
CALL CHG_SET_NAME (M ENU_ENTRY ,SET_NAME)

;

IF SET_NAME -.= • '

THEN
SAVE_NAME = SET_NAME;

END;
ELSE IF HENU_NUM = '2' THEN
CALL MEM_OWN_RTN (MEN U_ENTR Y, SET_OWNER, SET_KEMBER

,

'** SELECT SET OWNER **');
ELSE IF MENU_NUM = "3' THEN
CALL MEM_OWN_RTN (MENU_ENTRY,SET_MEMBER,SET_OKNER

,

'** SELECT SET~MEMBER **')";

ELSE IF MENU_NUM = '4' THEN
CALL SET_VALUE_RTN (MENU ENTRY, SET_VALUE) ;

ELSE IF MEHU_NUM = '5' THEN
CALL SET_VALUE_RTN (MENU_ENTR Y, SET_IN VRS_ VAL) ;

ELSE IF MENU_NUM = 't' THEN

- 156 -

CALL LINK_RTN (MENU_ENTEY,SET_LINK)

;

ELSE IF MENU_NUM = '7' THEN
CALL MEM_ETN (MENU_ENTEY, SET_ MEM) ;

ELSE IF MEN0_NUM = '8' THEN
CALL OBDEB_BTN (MENU_EKTR Y, SET_OHDEH) ;

ELSE IF MENU_NUM = '9' THEN
CALL SOBT_LMNT_BTN (MENl!_ENTRY,SET_SORT_LMNT) ;

ELSE IF MENU_NUM~= MO' THEN
CALL DUP_OPTION_RTN (MENU_ENT RY,SFT_DUP_OPTION) ;

CALL SET_UP_MENU (MENU_NUM, MENU_ENTRY,
•** CEEATE NEW SET **•);

END;

/* IF BLANK SET_NAHE THE CONFIBM DELETION AND EITHEP DELETE OR
ABORT DELETE REQUEST. */

IF SET_NAME = • '

THEN DO;
CALL CLHSCE;
CALL BLANK_LINE(5) ;

DISPLAY ('CONFIBM DELETE BY TYPING "D"*):
CALL BLANK_LINE(5)

;

DISPLAY ('====>') REPLY (DEL_SW);
IF DEL_SW = 'D'

THEN DO;
PUT STEING (MSG) EDIT (SAVE_NAME,' SET DELETED') (2(A));
FIND CURRENT BECORD (SE_T) ;~

EEASE BECORD (SE_T) ;

CALL IDMS_STATUS;
CALL MESSAGES;
RETURN;
END;

ELSE DO;
MSG = 'DELETE REQUEST ABORTED';
CALL MESSAGES;
SET_NAME = SAVE_NAME;
END;

END;

IF SAVE_OHNER -.= SET_OWNER
THEN DO;

/******** DELETE PREVIOUS SET_OWNER **************/
IF SAVE_OWNER -.= • '

THEN DO;
SAVE_DB_NAME = DB_NAME;
REC_NA«E = SAVE_OWNER;
OBTAIN CALC BECOED (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNEE SET (DIVIDED_INTO) ; CALL IDMS_STATUS;
DO HHILE (SAVE_DB_NAME -.= DB_NA[1E) ;

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNEB SET (DIVIDED_ItlTO) ; CALL IDMS_STATUS;

END;
DISCONNECT RECORD (SE_T) SET (OKNER_OF);
END;

- 157 -

/************ ADD NEB SET_OWNER ********************/
IF SET_OWNER -.= ' '

THEN DO;
R3C_NAME = SET_OWNER;
OBTAIN CALC RECORD (RE_CORD); CALL IDMS_STATUS

;

OBTAIN OWNER SET (DIV IDED_INTO) ; CALL IDMS STATUS;
DO WHILE (SAVE_DB_NAME - DB_NAME) ;

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET { DIVIDED_INTO) ; CALL IDHS_STATUS:

END;
CONNECT RECORD (S2_T) SET (OWNER_OF) ;

END;

END;

IF SAVE_MEMBER -.= SET.MEMBER
THEN DO;

/**** DELETES PREVIOUS SET MEMBER ******************/
IF SAVE_MEMBER ->= • •

THEN DO;
SAVE_DB_NAME = DB_NAME;
REC_NAME = SAVE_HEMBER;
OBTAIN CALC RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DIV IDED_INTO) ; CALL IDMS_STATUS;
DO WHILE (SAVE_DB_NAME -m DB_NAME) ;

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET (DIVIDED INTO) ; CALL IDMS_STATUS;

END;
DISCONNECT RECORD (SE_T) SET (MEMBER_OF) ;

END;
/************* END *************************#******/

/********* ADD NEW SET MEMBER ***********************/
IF SET_MEMBER -.= ' •

THEN DO;
REC_NAME SET_MEMBER;
OBTAIN CALC RECORD (EE_CORD); CALL IDMS_STATUS;
OBTAIN OWNER SET (DIVIDED INTO) ; CALL IDMS STATUS;
DO WHILE (SAVE_DB_NAME -.= ~DB_NAME) ;

OBTAIN DUPLICATE RECORD (RE_CORD) ; CALL IDMS_STATUS;
OBTAIN OWNER SET { DIVIDED_IHTO) ; CALL IDMS STATUS;

END;
CONNECT RECORD (SE_T) SET (MEMBER_OF) ;

END;
/#******«******* EHD *******«*******#***************/

END;

FIND CURRENT RECORD (SE_T) ; CALL IDMS_STATUS;
MODIFY RECORD (SE_T) ; CALL IDMS_STATUS;

- 158 -

CHG_SET_NAME: PHOC (MEHU_EU TE Y,SET_NA ME) ;

/#*********#**#************************************#************/
/* This module changes the set name of the "current" SET */
/* occurrence based on the MENU_ENTRY. */

DCL MENO_ENTRY CHAR(f.9) ,

SET_NAME CHAR (16),
STATUS CHAR (4) ;

SET_NAME = MENU_ENTRY;
CALL EDIT_NAME (SET_NAME, STATUS) ;

IF STATUS = 'GOOD'
THEN DO;

. IF SAVE_NAME = SET_NAME
THEN

ENTER_KEY = • •; /* NULL STATEMENT */
ELSE DO;

SAVE_DB_NAME = DB_NAME;
OBTAIN CALC RECORD (SE_T) ;

DO WHILE (ERSOR_STATUS~= REC_?OUND) ;

OBTAIN OWNER SET (LINKED_BY); CALL IDMS_STATUS:
IF SAVE_DB_NAME = DB_NAME
THEN

EEROR_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD (SE_T) ;

END;
IF (ERROR_STATUS -.= '0326' £ ERROR_STATUS -.= 'FWND')
THEN CALL IDMS_STATUS;

IF (ERPOR_STATUS = 'FWND')
THEN DO;

PUT STRING (MSG) EDIT (SET_NAME,' ALREADY EXISTS')
12(h));

CALL MESSAGES;
SET_NAHE = SAVE_NAME;
END;

ELSE DO;
DB_NAHE = SAVE_DB_NAME;
OBTAIN CALC RECORD (DATA_BASE) ;

IF SET NAME -.= •

THEN
SAVE_NAME = SET_NABE; /*IN CASE ABORT A DELETE WE WANT

END; /*TO KNOW THE LAST GOOD S£T_NAME*/
END;

END;
ELSE

SET_NAME = SAVE_NAME;
END CHG_SET_NAME;

END CHG DEL SET;

- 159 -

SET_UP_MENU: PEOC (MENU_NUK,MENU_ENTRY,MENU_MSG)

;

/* This module displays the SET fields that can be updated for */
/* SET occurrences. */

DCL MENU_MSG CHAE (30) ,

MENU_NUM CHAR (3),
MENU_ENTRY CHAE (69) ,

STATUS CHAR («) ,

SECT CHAR (72),
(SLCT_N[JH,NUN_ATTRIBIJTES) FIXED DEC (3) ;

STATUS = "BAD'

;

DO WHILE (STATUS = 'BAD'):
HSG = MENU_MSG;
CALL MENU_HEAD;
PUT STRING (EDIT_OUT) EDIT

(• 1) SET NAME: ', SET_NAME) (2(A));
DISPLAY (EDIT_OUT)

;

PUT STRING (EDIT_OUT) EDIT
(2) SET OWNEE: ', SET_OWNER) (2(A));

DISPLAY (EDIT_OUT)

;

PUT STRING (EDIT_OUT) EDIT
{• 3) SET MEMBER: ', S2T_MEMBER) (2(A));

DISPLAY (EDIT_OUT)

;

PUT STRING (EDIT_OUT) EDIT
(4) SET VALUE: ', SET_VALUE) (2(A));

DISPLAY (EDIT_OUT);
PUT STRING (EDIT_OUT) EDIT

(' 5) SET INVERSE VALUE: ', SET_INVRS VAL) (2(A));
DISPLAY (EDIT_OUT)

;

PUT STRING (EDIT_OUT) EDIT
(• fc) SET LINKAGE: ', SET_LINK) (2(A));

DISPLAY (EDIT_OUT)

;

PUT STRING (EDIT_OUT) EDIT
(• 7) SET MEMBERSHIP: ', SET_MEM) (2(A));

DISPLAY (EDIT.OUT)

;

PUT STRING (EDIT_OUT) EDIT
(' 8) SET ORDER: ', SET_ORDER) (2(A));

DISPLAY (EDIT_OUT)

;

IF (SET_OEDER = ' ASC • | SET_ORDER = 'DES')
THEN DO;

NUM_ATTRIBUTES = 10;
PUT~STRING (EDIT_OUT) EDIT

(' 9) SET SORT ELEMENT: ', SET_SORT LMNT) (2(A));
DISPLAY (EDIT_OUT) ;

PUT STRING (EDIT_OUT) EDIT
(MO) SET DUPLICATE OPTION: ', SET_DUP_OPTION) (2(A));

DISPLAY (EDIT_OUT) ;

END;
ELSE

NUM_ATTIUBUTES = 8 ;

DISPLAY (X) EXIT 1

);

- 160 -

CALL BLANK_LINE (2) ;

DISPLAY ('====>) REPLY (SLCT) ;

CALL EXAMINE_ENTRY (SLCT, MENU_NOM , H ENU_ENTRY,SLCT_NUM

,

STATUS, NUM_ATTRIBUTES) ;

END;
END SET_UP_HENU;

MEM_OWN_RTN: PBOC (MENU_ENTEY ,CHG_E EC, TEST_EEC,MENU_MSG)

;

/** ************* ** *****/
/* This module verifies that the CHG_REC parameter exists as */
/* an occurrence of the RE_COED structure of the user's data */
/* base and that it is different than TEST_EEC. This is */
/* done to avoid havinq identical owner and member records for */
/* the same SET occurrence. ' */
/************************#***#*************#*********************/

/* THIS ROUTINE VERIFIES THAT THE CHOSEN RECORD EXISTS AND THAT
IT IS DIFFEEENT THAN THE OTHER EECORD OF THAT SET V

DCL MENU_NUM CHAR (3),
MENU_ENTEY CHAR (69) ,

(CHG_REC,TEST_REC) CHAR(16),
(SOB,TBL_SIZE) FIXED DEC(3),
MENU_HSG CHAR(KO) ;

/* LOAD DISPLAY_TBL AND DOMAIN_TBL WITH EXISTING RECOPDS */

DISPLAY_TBL = • •

;

OBTAIN FIRST SET (DI VIDED_INTO) ;

IF EEROR_STATUS = '0307'
THEN DO;~

PUT STRING (MSG) EDIT ('NO EECOEDS TO SELECT FROM!') (A);

CALL MESSAGES;
RETUEN;
END;

TBL_SIZE = 0;
DO WHILE (EEROR_STATUS = OK) ;

TBL_SIZE = TBL_SIZE + 1;

PUT STRING (DISPLAY_TBL(TBL_SIZE)) EDIT
(TBL_SIZE, •) ' ,REC_NAHE) (X (2) , F (3) , 2 (A)) ;

DOMAIH_TBL(TBL_SIZE) = REC_NAME;
OBTAIN NEXT SET (DIVIDED_INTO) ;

END;
IF ERROB_STATUS -= '0307'
THEN CALL IDMS_STATUS;
DISPLAY_TBL(TBL_SIZE+1) = X) EXIT*;

/* IF NO SELECTION THEN GIVE LIST OF RECORDS */

IF MENU_ENTRY = '

THEN DO;
CALL GEN_MENU (MENU_NUM , HENII ENTRY, MENU MSG, TBL_SIZE ,

SLCT_NUM,3)

;

- 161 -

IF MENU NUM = ' X«
THEN DO?

CHG_REC = ' •;

RETURN;
END;

DO WHILE (DOMAIN_TBL(SLCT_NUM) = TEST_REC) ;

MSG = 'THE SAME RECORD CANNOT BE BOTH MEMBER S OWNER";
CALL MESSAGES;
CALL GEN_MEND (MENU_NUM,MEN U_ENTR Y , MENU_MSG ,

TBL_SIZE,SLCT_NUM,3) ;

IP MENU_NUM = 'X'
THEN DO;

CHG_REC = ' •

;

RETURN;
END;

END;
CHG_REC = DOMAIN_TBL(SLCT_NUM) ;

RETURN;
END;

/* A MEMBER/OWNER RECORD WAS GIVEN — VERIFY */

CHG_REC = HENU_ENTRY;
DO SUB = 1 TO TBL_SIZE WHILE (CHG_REC -.= TEST EEC) ;

IF CHG_REC = DOMAIN_TBL(SUB)
THEN

RETURN; /* GOOD SELECTION — RETURN */
END;

/* A NON ACCEPTABLE RECORD WAS GIVEN — DISPLAY ERROR AND GIVE */
/* A LIST OF VALID RECORDS TO CHOSE FROM. */

IF CHG_REC = TEST_REC
THEN DO;

MSG = 'THE SAME RECORD CANNOT BE BOTH MEMBER C OWNER';
CALL MESSAGES;
END;

ELSE DO;
PUT STRING (MSG) EDIT

(CHG_REC,' NOT AN EXISTING RECORD — USE MENU*)
(2(A)) ;

CALL MESSAGES;
END;

CALL GEN_MENU (MENU_NUM ,MENU_2NTRY , MENU_MSG, TBL_SIZE,
SLCT_NUM,3)

;

IF MENU_NUM = 'X'
THEN DO;

CHG_HEC = ' •

;

RETURN;
END;

DO WHILE (DOMAIN_TBL (SLCT_NUM) = TEST_REC);
MSG = 'THE SAME RECORD CANNOT BE BOTH MEMBER £ OWNER';

- 162 -

CALL MESSAGES;
CALL GEN_MENU (HEN U_NUM , MENU_ENTRY , MENU MSG.TBL SIZE,

SLCT_NUM,3)

;

IF MENU_HUM = 'X'
THEN DOT

CHG_REC = • • ;

RETURN;
END;

END;
CHG_REC = DOMAIN_TBL (SLCT_NUM) ;

END MiM_OWN_HTN;

LINK_RTN: PROC (MENU_ENTRY, SET_LINK)

;

/*******************»**************»*******************#******#**/
/* This module updates the SET_LINK field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/is**/

DCL MENU_ENTRY
SET_LINK
THE VALUE

CHAK (6^ ,

CHAR (3) ,

CHAE(lfc)

,

FIXED DEC (2)

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

displayjtbl(i)
display!tbl(2)
display_tbl(3)
display_tbl{4)
display_tbl(5)

= •1) NEXT DOMAIN_TBL(1)

= •2) NEXT PRIOR DOMAIN TBL(2)
= •3) NEXT OWNER DOMAINJTBL (3)
= "*) NEXT PRIOR OWNER' DOHAItl_TBL(U)
= •X) EXIT

IJ, I

»HB •

NO •

' NPO'

/* IF NO MENO_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY

THE_VAL0"E = SET_LINK;
SET~LINK = MENU_ENTRY;
IF SET_LINK = ' '

THEN DO;
CALL SLCT_VALUE (DISPLA Y_TBL, DO MAIN_TBL ,THE_VALUE,

'** SET LINKAGE VALUES **',«);
SET_LINK = THE_VALUE;
END;

ELSE DO;

THEHE WAS A MENU ENTRY — RETURN IF VALID MENU_SNTRY */

DO I = 1 TO 4;

IF DOMAIN_TBL (I) = SET_LINK
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.

- 163 -

WPITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY */

POT STRING (MSG) EDIT (SET_LINK,' IS NOT AN ACCEPTABLE ',

•VALUE FOR SET LINKAGE — USE MENU') (3(A)) ;

CALL MESSAGES;
CALL SLCT_ VALUE (DI3PLA Y_TBL, DOMAINJTBL.T HE_VALUE,

'** SET LINKAGE VALUES **',4);
SET_LINK = THE_VALUE;
END;

END LINK_RTN;

SET_VALUE_RTN: PROC (MENII_ENTRY,SET_VALUE) ;

/***** *************************<,******** ******************** *****/
/* This module updates the SET_VALUE field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/**#»**/

DCL menu_entry
set_value
theIvalue
I

CHAR (69) ,

CUAR(2) ,

CHAR{16) ,

FIXED DEC (2)

/* LOAD DISPLAY TABLE AND DOMAIN TABLE

DISPLAI_TBL(1) = *1) 1 TO 1

DISPLAY_TBL(2) = •2) 1 TO MANY
DISPLAY~TBL(3) = •X) EXIT

DOMAIN_TBL(1) * Ml'
DOMAIN_TBL(2) = MM'

/* IF NO MENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_VALUE = SET_VALUE;
SET_VALUE = MEHU_ENTRY;
IF SET_VALUE = *

THEN DO;
CALL SLCT_VALUE (DISPLA Y_TBL , DOHAIU_TBL ,THE_VALU2

,

i** SET VALUE OPTIONS **',2);
SET_VALUE THE_VALUE;
END;

ELSE DO;

/* THERE WAS A MENU_ENTRY — RETURN IF VALID MENU ENTRY */

DO I = 1 TO 2;

IF DOMAIN_TBL(I) = SET_VALUE
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WPITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY*/

PUT STRING (MSG) EDIT (SET_VALUE," IS NOT AN ACCEPTABLE ',

- 164 -

•VALUE — USE MENU 1

) (3(A));
CALL MESSAGES;
CALL SLCT_VAHJE (DISPLAY_TBL, DOMAIN_TBL,THE_VALUE,

'** SET VALUE OPTIONS **',2);
SET_VALUE = THE_VALUE;
END;

END SET_VALUE_RTN;

MEM_RTN: PROC (MENU_ENTRY ,SET_MEM) ;

/**#***********#*********/
/* This module updates the SET_MEM field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/************** *** *********/

DCL MENU_ENTRY CHAR {6 9) ,

SET_MEM CHAR (2) ,

THE~VALUE CHAR (16),
I FIXED DEC (2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE V
DISPLAY_TBL (1) = ' 1) MANDATORY AUTOMATIC; DOMAIN_TBL (1

)

= 'MA';
DISPLAY_TBL{2) = '2) MANDATORY MANUAL '; DOMAIN_TBL (2) = 'MM';
DISPLAY_TBL(3) = '3) OPTIONAL AUTOMATIC •; DOM AIH_TBL (3) = 'OA';
DISPLAY_TBL (4) = *4) OPTIONAL MANUAL '; DOM AIN_TBL (1) = 'OM';
DISPLAY_TBL (5) = 'X) EXIT ';

/* IF NO MENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_VALUE = SET_MEM;
SET~MEM = MENU_ENTRY;
IF SET_MEM = •

THEN DO;
CALL SLCT_VALUE (DISPLAY_TBL, DOMAIN_TBL, THE_VALUE,

'** SET MEMBERSHIP VALUES **',U);
SET_MEM = THE_VALUE;
END;

ELSE DO;

/* THERE WAS A MENU_ENTEY — RETURN IF VALID MENU_ENTRY */

DO I = I TO D;

IF DOMAIN_TBL(I) = SET_MEM
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY*/

PUT STRING (HSG) EDIT (SET_HEM,' IS NOT AN ACCEPTABLE ',

•VALUE FOR SET MEMBERSHIP — USE MENU') (3(A));

- 165 -

CALL MESSAGES;
CALL SLCT_VALUE (DISPLA Y_TBL , DOMAIN_TBL ,THE_ VALUE,

** SET MEMBERSHIP~VALUES **',H);
SET_H2M = THE_VALUE;
END;

END HEM RTN;

DUP_OPTION_RTN: PROC (MENU_ENTRY,SET_DUP_OPTION) ;

/******************* *******************#*********************#**/
/* This module updates the SET_DUP_OPTION field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base desiqner to make a decision. */

DCL HENU_ENTRY CHAR(fc9) ,

SET_DDP_OPTION CHAR (2) ,

THE~VALUE CHAR (16) ,

I FIXED DEC (2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

DISPLAY_TBL(I) =
•1) DUPLICATES FIRST *; DOMAIN_TBL { 1) = 'DF';

DISPLAY_TBL(2) =
•2) DUPLICATES LAST ; DOMAIN TBL(2) = "DL 1

;

DISPLAY_TBL(3) =
'3) DUPLICATES NOT ALLOWED'; DOMAIN_TBL (3) = 'DM*;

DISPLAYJTBL(U) =
•X) EXIT •;

/* IF NO MENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY */

THE_VALUE = SET_DUP_OPTION;
SET_DUP_OPTION = MENU_ENTRY;
IF SET_DUP_OPTION = • '

THEN DO;
CALL SLCT_VALUE (DISPLA Y_TBL , DO MAIN_TBL ,THE_VALUE,

'** SET DUPLICATE OPTIONS **',3);
SET_DUP_OPTION = THE_VALUE;
END;

ELSE DO;

/* THERE WAS A MENU_ENTRY — RETURN IF VALID MENU_ENTEY */

DO I = 1 TO 3;

IF DOMAIN_TBL (I) = SET_DUP_OPTION
THEN

RETURN;
END;

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY */

- 166 -

PUT STRING (MSG) EDIT (SET_DUP_0PTION, IS NOT ACCEPTABLE ',

•FOE SET DUPLICATE OPTION — USE MENU') (3(A));
CALL MESSAGES;
CALL SLCT_VALUE (DISPLA Y_TBL ,DO MAIN_TBL,THE_VALUE

,

•** SET DUPLICATE OPTIONS **',3);
SET_DUP_OPTION = THE_VALUE;
END;

END DUP_OPTION_RTN;

DRDER_RTN: PROC (MENU_ENTRY ,SET_ORDER) ;

/**/
/* This module updates the SET_ORDER field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
^ *** ***********************/

DCL MENU_ENTRY CHAR (69),
SET_ORDER CHAR (5) ,

THE_VALUE CHAR (16) ,

I FIXED DEC(2) ;

/* LOAD DISPLAY TABLE AND DOMAIN TABLE */

DISPLAY_TBL(1)
DISPLAY_TBL(2)
DISPLAY_TBL(3)
DISPLAY_TBL(4)
DISPLAY_TBL(5)
DISPLAY_TBL(6)
DISPLAY_TBL(7)

•1) FIRST
•2) LAST
'3) NEXT
"U PRIOR
*5) ASCENDING
t) DESCENDING
•X) EXIT

DOMAIN_TBL(1)
DOMAIN_TBL (2)

DOMAIN_TBL(3)
DOMAIN TBL(4)
DOMAINlTBL (5)

DOMAIN_TBL(6)

FIRST'
'LAST
•NEXT '

'PRIOR'
'ASC •

•DES '

/* IF NO MENU_ENTRY THEN CALL ROUTINE TO SELECT A VALID ENTRY
THE_VALUE =~SET_ORDER;
SETloRDER = MENU_ENTRY;
IF SET_ORDER = • '

THEN DO;
CALL SLCT_VALUE (DISPLAY_TBL, DOMAIN_TBL ,THE_VALUE,

i** set ORDER VALUES **',6)";

SET_ORDER = THE_VALDE;
END;

ELSE DO;

*/

THERE WAS A MENU ENTRY — RETURN IF VALID MENU ENTRY

DO I = 1 TO 6;

IF DOMAIN_TBL(I)
THEN

RETURN;
END;

SET ORDER

/* THERE MUST HAVE BEEN AN INVALID ENTRY TO GET TO THIS POINT.
WRITE AN ERROR MESSAGE AND CALL ROUTINE TO SELECT A VALID ENTRY */

167 -

PUT STRING (MSG) EDIT (SET_ORDEF., ' IS NOT AH ACCEPTABLE ',

'VALUE FOR SET ORDER — USE MENU') (3(A)) ;

CALL MESSAGES;
CALL SLCT_VALUE (DI5PLAY_TBL , DO MAIN_TBL,THE_ VALUE,

' ** SET ORDER VALUES **' ,bj ;

SET_ORDER = THE VALUE;
END;

END ORDER_RTN;

SORT_LMNT_RTN: PROC (MENU_ENTRY ,SET_SORT_LMNT) ;

/* This module updates the SET_SORT_LMNT field in the SET */
/* structure. If no MENU_ENTRY parameter is inputted into this */
/* module, a list of possible values will be displayed for the */
/* data base designer to make a decision. */
/***** ***************************** ****** ******** *+# + ******+at**/

DCL MENU_NUM CHAR(3),
HENU_ENTRY CHAR (69) ,

SET_SORT_LMNT CHAR (16),
(SDB,TBL_SIZE) FIXED DEC (3);

IF SET_M EMBER = • •

THEN DO;
MSG = SET MEMBER ENTRY MUST FIRST BE MADE';
CALL MESSAGES;
RETURN;
END;

/* LOAD DISPLAY_TBL AND DOMAIN_TBL WITH DATA ELEMENTS OF
MEMBER SET*/

REC_NAME = SET_flEMBER;
OBTAIN CALC RECORD (RE_CORD) ;

CALL IDMS_STATUS;
OBTAIN FIRST SET (POPUL ATED_WITH) ;

IF ERROR_STATUS = '0307'
THEN DO;~

PUT STRING (MSG) EDIT
('NO ELEMENTS IN ' ,S ET_MEMBER, ' TO BE SELECTED FROM!')
(3(A)) ;

CALL MESSAGES;
RETURN;
END;

DO TBL_SIZE = 1 TO 999 WHILE (ERROR_STATUS = OK)

;

PUT STRING (DISPLAY_TBL(TBL_SIZE)) EDIT
(TBL_SIZE,') ',LMNT_NAME) (X (2) ,F(3) ,2 (A)) ;

DOMAIN_TBL = LMNT_NAME;
OBTAIN NEXT SET (POPUL ATED_WITH) ;

END;
IF ERROR_STATUS -= '0307'
THEN CALL IDMS_STATUS;
DISPLAY_TBL(TBL_SIZE + 1) = • X) EXIT';

- 168 -

/*IF NO SELECTION THEN GIVE LIST OF DATA ELEMENTS FOE
MEMBER RECORD */

IF MENU_EHTRY = • •

THEN DO?
CALL GEN_MENO (MENU_NUM, MENU_ENTRY

,

'** SELECT SORT ELEMENT **',
TBL_SIZE, SLCT_NUM ,3) ;

SET_SORT_LMNT = DOMAIN_TBL (SLCT_NUM) ;

RETURN;
END;

/* A SET_SOBT_LMNT WAS GIVEN — SEE IF IT IS ACCEPTABLE */

SET_SORT_LMNT = MENU_ENTRY

;

DO SUB = 1 TO TBL_SIZE;
IF SET_SORT_LflNT = DOMAIN_TBL (SUB)

THEN
RETURN;

END;

/* A NON ACCEPTABLE SET_SORT_LMNT WAS GIVEN. DISPLAY ERROR AND*/
/* GIVE A LIST OF VALID CHOICES */

PUT STRING (MSG) EDIT
(SET_SORT_LMNT, • NOT FOUND IN ' , SET_MEMBER, ' - USE MENU')
(MA)) ;

CALL MESSAGES;
CALL GEN_MENU (MENU_NUM, MENU_ENTRY , ' ** SELECT SORT ELEMENT **'

,

' " TBL_SIZE,SLCT_NUM,3)

;

SET_SORT_LMNT = DOMAIN_TBL (SLCT_NUM) ;

END SORT_LMNT_RTN;
END SET_UPDATE;

- 169 -

CHG_DEL_DB: PP.OC (DEL_SW) ;

/********* ttt***»***»****/
/* This module displays the values of the "current" DATA_BASE */
/* occurrence and allows the data base designer to chanqe the */
/* DATA_BASE occurrence's fields or delete the DATA_BASE */
/* occurrence's fields. */
/**/

/********************/
/* */
/* CHG_DEL DB */
/* */
/*******************/

DCL MENn_N(JM CHAR (3) ,

MENU_ENTRY CHAR(fc9),
SAVE_SAHE CHAR (If),
DEL_SW CHAR(1) ,

STATUS CHAR (4) ,

D CHAR (6) ,

DATE BOILTIN;

/* DISPLAY MENU AND MAKE CHANGES TO CURRENT DATA BASE RECORD */

DEL_SW = ' •

;

SAVE_NAME = DB_NAME;
CALL DB_UP_MENU (MEN U_NUM, MENU_ENTRY,

** CHAMGE OR DELETE DATA BASE **•)

;

DO WHILE (MENU_NUM -.= 'X');
IF MENU_NUM = •

1<

THEN DO;
DB_NAME = MENU_ENTRY;
CALL EDIT_NAME (DB_N AME, ST ATUS) ;

IF STATUS~= 'GOOD'
THEN DO;

IF SAVE_NAME = DB NAME
THEN

ENTER_KEY = ' '; /* MULL STATEMENT */
ELSE DO;
FIND CALC RECORD (DATA_BASE) ;

IF ERROR_STATUS -.= '0326'
THEN CALL IDMS_STATUS;
IF ERROR_STATUS = REC_FOUND
THEN DO;~

PUT STRING (MSG) EDIT (DB_NAME,
ALREADY EXISTS') (2(A));

CALL MESSAGES;
DB_NAME = SAVE_NAME;
END;

ELSE DO;
IF DB_NAME -.= '

THEN
SAVE_NAME = DB_NAME; /* A GOOD DB_NAME */

END;

- 170 -

END;
END;

ELSE
DB_NAME = ' •

;

END;"
ELSE

DBA = HENU_ENTEY;
CALL DB_UP_MENU (MENU_N UM, M2NU_ENTRY

,

•** CHANGE OH DELETE DATA BASE **
) ;

END;

/* IF BLANK DB_UAME THEN CONFIRM DELETION AND 3ITHEB DELETE OR
ABORT DELETE REQUEST */

IF DB_1IAME = '

THEN DO;
CALL CLRSCR;
CALL BLANK_LINE (5);
DISPLAY {'CONFIRM DELETE BY TYPING " D" ');

CALL BLANK LINE (5) ;

DISPLAY {•====><) REPLY (D£L_SW) ;

IF DEL_SW = »0«

THEN DO;
PUT STRING (KSG) EDIT (SAVE NAME,' DATA BASE DELETED')

(2(A)) ;

FIND CURRENT RECORD (DATA_BASE);
ERASE RECORD (DATA_BASE) ALL;
CALL IDMS_STATUS

;

CALL MESSAGES;
RETURN;
END;

ELSE DO;
MSG = 'DELETE REQUEST ABORTED';
CALL MESSAGES;
DB_NAHE = SAVE_NAME;
END;

END;

/* MAKE CHANGES TO CURRENT DATA BASE RECORD */

D = DATE;
YEAR_CHANGED = SUBSTR (D, 1 , 2) ;

HONTH_CHAIJGED = SUBSTR (D, 3,2) ;

DAY_CFIANGED = SUBSTR (D, 5, 2) ;

MODIFY RECORD (DATA_BASE) ;

CALL IDMS_STATUS;

END CHG_DEL_DB;

/** DB_CUST module ends hero. **/

171 -

d, w
or ma
s us

2)

re la
sta

ill
tion
ed t

Val
tion
teme

create an opera-
stored in DB_GEN

o accomplish this
idate customiza-
ships, 4) Create
nts.

MISSING,
DATA_CHK

I LHNT_
|

I DATA_CHK |

I KEC_ |

1 DATA_CHK |

4. «.

I
SET_

|

I DATA_CHK |

+ +

I I

I SIHPLE_
|

I «_N I

I SET_
|

| COST_CK |

+ +

I

| POINTER
I CREATE
I

DDL_
CREATE

CREATE_SCHEMA: PROC;
/****************************
/* This module, when complete
/* tional schema based on inf
/* data base. Five sub-system
/* are: 1) Missing data check
/* tion, 3) Simplify complex
/* pointer, and 5) Create DDL
/****************************
/*
/* CREATE_SCHEHA
/*
/* + + +

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/.*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/* t +

/*
/it***

ENTIT
Ct!ST_

| LMN
I COS

| REC
I CUS

Y_
CK

T_CK |

I

T_CK |

| SCHEMA,
|

I
DSCR "

|

+ +

+ 1

I FILE_
|

I DSCR
-

|

| AREA
|

I
DSCR

|

* +

| RECORD_
|

I DSCR "
|

+ ___ +

I
SET_ |

I
DSCR |

***/
*/

s*/
*/
V
*/
*/

**/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

***/

MSG = 'CBEATE_SCHEMA TO BE COMPLETED';
CALL MENU_HEAD;
DISPLAY ('PRESS ENTER TO CONTINUE') REPLY (ENTER_KSY) ;

END CREATE SCHEMA;

- 172 -

PRINT_DATA: PEOC;
/a***************************#*******#******************#**«»**/
/* This module will print or display information describing */
/* a user's data base schema. */
/***/
/* */
/* PRINT_DATA */
/* */
/* + + t + + + */
/* | LMNT_ | I LMT | |

EECORD_
|

*/
/* | PRINT | | DISPLAY | | PRINT | */
/* + + + + + + */
/* */
/* > + + + + + + 1 */
/* | BECORD_

| |
SET_

| | SET_
I | ALL_ENTI TIES_

|
*/

/* J DISPLAY 1] PRINT j | DISPLAY
I 1 ~PRINT 1 */

/* + + + + + + + + */
/* */
/a**/

JiSG = 'PRINT_DATA TO BE COMPLETED';
CALL MENU_HEAD;
DISPLAY ('PRESS ENTER TO CONTINUE') REPLY (ENTER_KEY);
END PRINT_DATA;

173 -

/** The UTILITY_RTNS start here **/
/*************#****#**#********#**#**#****#(,„**##*#***#*****»*****/
/* */
/* t!TILITY_RTNS */
/* */
/* + «• + + + + + + t + */
/* | GEN_ 1 | SLCT_

| | EXAMINE_
| 1 EDIT_

| | GEN | */
/* I MENU] | VALUE 1 | ENTRY 1 | NAME | | INST | */
/* > « «• + + + + + + + */
/* */
/* + «. + + + + + + + */
/*

| HESSA- | | MENU_
| | B1ANK_

| | ASRRIC_ | |
DI V_ |

*/
/* J GES ' 1 | HEAD] | LINE | 1 LINE J | ENTRY 1 */
/* + * + + + + + + + */
/* */

DIV_ENTRY: PROC (MENU_ENTRY,P ART_TBL, STATUS) ;

/**********************************#***#***#********$»*********/
/* This module is used to divide a multiple MEHU_ENTRY, */
/* separated by semi-colons, into parts and store the */
/* in the PART_TBL. */

DCL MENU_ENTRY CHAR (69),
PART_TBL(20) CHAR(lfc),
STATUS CHAR (4),
(START, SUB, I, J) FIXED(3);

/******** 2EM0VE ALL LEADING ";" *************/
DO WHILE (SUBSTR(MENU_ENTRY,1, 1) = ; •

) ;

DO I = 1 TO fc8 HHILE (SUBSTR (M ENU_ENTRY, 1, 70-1) -.= ' *);
SUBSTR(HENU_ENTHY,I,1) = SUBSTR (HENU_ENTRY,I+ 1 , 1) ;

END;
SUBSTR <MENH_ENTRY, 1+1, 1) = ' ';

END;

/*** REDUCE ANY MULTIPLE CONTIGUOUS ";" TO SINGLE "; " ******/
DO I = 2 TO 68 HHILE (SUBSTR (MEN U_ENTRY, 1, 70-1) -.= •);

DO HHILE (SUBSTR(MENU_ENTRY,I,1) = ';' 5

SUBSTR (MENU_ENTF,Y, (1+ 1) , 1) = ';');
DO J = I TO 68 WHILE (SUBSTE (MENU_ENTB Y, J ,70-J) -= • ') ;

SUBSTR(MENU_ENTRY,J,1) = SUBSTR (MEN U_ENTRY , J + l , 1) ;

END;
SUBSTR(MENU_ENTRY,J+1,1) = •;

END;
END;

/***** left JUSTIFY ALL ENTRIES AGAINST ";" *********/
DO I = 2 TO £8 WHILE (SUBSTR (MENU_ENTRY, 1, 70-1) -.= • •);

IF SUBSTR (MENU_ENTRY, I, 1) = •;'

THEN DO;

- I7U -

DO WHILE (SUBSTR(MENU ENTRY, 1 + 1,1) = ');
DO J = (1+1) TO fc8

WHILE (SUBSTR(MENU_ENTRY, 1,70-1) -.= • •);

SUBSTR(MENU_ENTRY,J,1) = SUBSTR (MENU_ENTRY, J+ 1 , 1) ;

END;
SUBSTR(MENU_ENTRY,J+1,1) = • •;

END;
END;

END;

/*** ONCE VERIFIED AS VALID LOAD TABLE WITH ENTRIES ********/
START = 1;

SUB = 0;
PART_TBL = ' ' ;

STATUS = 'GOOD';
DO I = 2 TO 68 WHILE (SUBSTR (MEN U_ENTRY, I, 70-1) -.= • ');

IF SDBSTR (MENU_ENTRY,I, 1) = •;•

THEN DO;
,

SOB = SOB + 1;

PARTJTBL(SOB) = SOBSTR (MENU_ENTRY , START ,I-START) ;

/****** s EE j F CAND_FIELD IS AN EXISTING DATA ELEMENT ****/
LMNT NAME = P ART_TBL (SUB) ;

SAVeIdB_NAME = DB_NAME;
OBTAIN CALC RECORD (DATA_ELEM ENT) ;

DO WHILE (ERROR_STATUS = BEC_JOUND);
OBTAIN OWMER SET (DEFINED_BY) ; CALL IDMS_STATUS;
IF SAVE_DB_NAME = DB_NAME
THEN

ERROH_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD (DATA_ELEMENT) ;

END;
IF (ERROR_STATUS -•= '032fc' S ERBOR_STATUS -i= 'FWND')
THEN CALL~IDMS_STATUS;
IF ERROR_STATUS -*= 'FWND*
THEN DO;

PUT STRING (MSG) EDIT
(•ENTRY ',SUB,' DOES NOT EXIST - USE MENU 1

) (A,F(3),A);
CALL MESSAGES;
STATUS = 'BAD' ;

RETURN;
END;

ELSE
START = I + 1 ;

END;
END;

/** SEE IF THERE WAS A FINAL ENTRY. KEYING ON » ; " AND FINAL */
/** ENTRY LIKELY WILL NOT BE FOLLOWED BY A ";". */
IF SUBSTB(MENU_ENTRY,START, I-START) -= '

THEN DO;
SUB = SUB+1 ;

PART_TBL (SUB) = SUBSTR (MENU_ENTRY, START , I-START) ;

/******** SEE IF CAND_FIELD IS AN EXISTING DATA ELEMENT ****/

- 175 -

LMNT_NAME = PART_TBL (SUB) ;

SAVE_DB_NAME = DB_NA«E;
OBTAIN CALC RECORD (DAT A_ELEI1EM T) ;

DO WHILE (EHROR_STATOS = REC_FOUND) ;

OBTAIN OWNER SET (DEFINED_BY) ; CALL IDMS_STATUS;
IF SAVE_DB_NAME = DB_NAME
THEN

EREOB_STATUS = 'FWND';
ELSE

OBTAIN DUPLICATE RECORD (DATA ELEMENT);
END;
IF (ERROR_STATUS * ' 032fc* S ERROR_STATUS -.= 'FWND')
THEN CALL IDMS_STATUS;
IF ERROR_STATnS -.= 'FWND'
THEN DO;

PUT STRING (MSG) EDIT
(ENTRY 'jSOB,' DOES NOT EXIST - USE MENU 1

) (A,F(3),A)
CALL MESSAGES;
STATUS = 'BAD'

;

RETURN;
END;

END;
EFD DIV_ENTRY;

GEN _MENU:

/**********
/* This mo
/* varible
/* identif
/* selecti
/* The con
/* in 1, 2
/* NUM COL
/**********

PROC (MENU_NUM,MENU_ENTRY,MENU_HSG,TBL_SIZE,
SLCT_NUM,NUM_COLS) ;

**/
dule displays a menu that is provided in the global */
, DISPLAY_TBL. The size of the DISPLAY_TBL is */
ied by the TBL_SIZE parameter. The user makes a */
on that is divided into MENU_NUM and MENU_ENTRY. */
tents of DISPLAY_TBL is displayed on the screen */
, or 3 columns depending on the value of the */
S parameter. */
********* ***************************** ****************/

DCL MENU_NUM CHAR (3),
MENU_ENTRY CHAR (69) ,

SLCT CHAR (72),
MENU_MSG CHAR (10) ,

(TBL_SIZE,NUM SCREENS) FIXED DEC (3) ,

(SLCT_NUM,I,j7NUM_CHOICES) FIXED DEC(3),
SLCT_STATUS CHAP. («) ,

NUM_COLS FIXED DEC(1);

/* DISPLAY MENU / ACCEPT REPLY

SLCT = •

;

IF NUM_COLS = 1

THEN
NUM_CHOICES = 15;

ELSE IF NUM_COLS = 2 THEN
NUM_CHOICES = 30;

17f

ELSE IF NUM_COLS = 3 THEN
NUM_CHOICES = 45;

ELSE
DISPLAY ("PROGRAMMER ERROR IN GEN_MENU •)

REPLY (ENTER_KEY);

^CHOICES - 1)) =0

_SIZE/(NUM_CHOICES

IF HOD (TBL_SIZE,(NUM_
THEN

NOM_SCREENS = {TBL_SIZE/ (N 0B_CHDICES - 1)) - 1;

ELSE
NUM_SCREENS = (TBL_SIZE/ (NUM CHOICES - 1));

SLCT_STATUS = 'BAD';
DO WHILE (SLCT_STATUS = 'BAD'):

DO I = TO NUM_SCREENS SHILE (SLCT = ' ') ;

MSG = MENU MSG;
CALL MENU_HEAD;
DO J = 1 TO 15;

IF N0M_COLS = 1 THEN
PUT STRING (EDIT_OOT) EDIT

(DISPLAY_TBL(J+ (I* NUM_CHOICES))) (A) ;

ELSE IF NUM_COLS = 2 THEN
PUT STRING (EDIT_OUT) EDIT

(DISPLAY_TBL (J+ (I* NUM_CHOICES)
) ,

DISPLAY_TBL (J 1 5 + (I*NUM_CHOICES)))

(A (48), A (24)) ;

ELSE IF NUM_COLS = 3 THEN
PUT STRING (EDIT_OUT) EDIT

(DISPLAY_TBL (J+ (I* NUM_CHOICES)) ,

DISPLAY_TBL(J
DISPLAY TBL (J

(3(A(2H))) ;

DISPLAY (EDIT_OUT) ;

END;
CALL BLANK_LINE(1) ;

IF I < NUM_SCREENS
THEN

15

30
(I*NUM.
(I*NUM.

CHOICES)) ,

CHOICES)))

/* I.E. MORE DATA */

DISPLAY (•MAKE
REPLY

SELECTION
(SLCT) ;

OH PRESS ENTER ===>)

ELSE
DISPLAY ('MAKE SELECTION ===>') REPLY (SLCT)

END;
CALL EXAMINE ENTRY

END GEN
END;
MENU;

(SLCT,MEMU_NUM,MENU_EMTSY,SLCT_NUM,
SLCT_STATUS,TBL_SIZE) ;

SLCT_VALOE: PEOC (DISPLAY_TBL,DOMAIN_TBL,
THE_VALUE,MENU_MSG,TBL_SIZE)

;

/ft** ** ******* *************»/
/* This module displays a menu that is provided in the DISPLAY_ */
/* TBL. The user enters a number representing a menu selection */
/* and the value of that selection is moved to the output */
/* parameter, THE_VALUE. */
/***********^** *** ****<,/

177

DCL DISPLAY_TBL(500) CHAE (72) ,

DOBAIN_TBL(500) CHAR(lfc),
THE_VALUE CHAH(16),
MENU_MSG CHAE (30),
SLCT CHAE (7 2),
(TBL_SIZE,I,SLCT_NUtt) FIXED DEC(3),
STATUS CHAE (4),
MENU_NUM CHAE(3),
MENU_ENTRY CHAR(69) ;

STATUS = 'BAD';
DO WHILE (STATUS = 'BAD');

NSG = MENU_HSG;
CALL MENU_HEAD;
DO I = 1 TO TBL_SI2E;

DISPLAY (DISPLAY_TBL(I)
) ;

END;
DISPLAY (DISPLAY TBL(I));
CALL BLANK_LINE(2) ;

DISPLAY ('====>*) EEPLY (SLCT) ;

CALL EXAMINE_ENTRY (SLCT, HENU_NUM, MENU ENTRY, SLCT_HUH,
STATUS, TBL_SIZE)

;

END;
IF MENU_NUM -.= 'X'
THEN

THE_VALUE = DOMAINJTBL (SLCT_NU?l) ;

END SLCT_VALUE;

EXAMINE_ENTRY: PEOC (SLCT, M EN0_NUM, MENU_ENTRY , SLCT NUM,
SLCT_STATUS,UP_LIMIT)

;

/ft******************** *************# s********************^*^,,,,,,^
/* This module examines an entry made by the data base designer.*/
/* The SLCT parameter contains the value inputted by the data */
/* base desiqner which is divided into MENU_NUH and HENU_ENTRY. */
/* SLCT_NUfl is the numeric equivalent to the I1ENU_NUM which is */
/* of type character. */

DCL SLCT CHAR (72) ,

MENU_ENTRY CHAR(69),
HENU_NTJM CHAR (3),
(UP_LIHIT,SLCT_NU«,I,J) FIXED DEC(3) ,

SLCT_STATUS CHAR (4) ;

/* CHECK FOB NULL ENTRY BY USEE */

IF SLCT = • •

THEN DO;
CALL GEN_IHST;
SLCT_STATUS= 'BAD'

;

RETURN;
END;

- 178

/* LEFT JUSTIFY SLCT — USEE MIGHT SPACE BEFOEE ENTRY */

DO WHILE (SUBSTR (SLCT, 1, 1) = ' ');
DO I = 1 TO 71;

SUBSTR(SLCT,I,1| = SUBST B (SLCT ,1 + 1 , 1) ;

SUBSTR (SLCT, 1+1, 1) = • ';

END;
END;

/* CHECK FOR EXIT BEQUEST */

IF SUBSTR (SLCT, 1, 1) = 'X'

THEN DO;
MENU_NUM = 'X';
SLCT~STATUS = 'GOOD';
RETuIn;
END;

/* ROTATE RIGHT ALL CHARACTERS OUT OF FIRST 3 POSTITIONS THAT
ABE NOT ' ' OR NUMERIC — SET UP MENU_NUM */

DO J = 1 TO 3;
IF (SUBSTR (SLCT, J, 1) -='•£

i (SUBSTR (SLCT, J, 1) >= '0' S
SUBSTR (SLCT, J, 1) <= '9'))

THEN DO;
DO I = 72 TO (J+1) BY -1 ;

SUBSTR (SLCT, I, 1) = SUBST R (SLCT, I- 1 , 1) ;

SUBSTR (SLCT, I- 1,1) = • •;

END;
END;

END;

/* DIVIDE SLCT INTO MENU_NUM AND MENU_ENTRY */

GET STRING (SLCT) EDIT (MENU_NUM ,ME1IU_ENTE Y) (A (3) , A (69)) ;

/* LEFT JUSTIFY MENU_ENTRY */

IF MENU_ENTRY -.=

THEN DO;
DO HHILE (SUBSTR (MENU_ENTRY, 1, 1) = • ');

DO I = 1 TO £8;
SUBSTE(MENU_ENTEY,I,1) = SUBSTE (MENU_ENTRY ,1 + 1 , 1) ;

SUBSTE(MENU_ENTRY,I+1, 1) = • ';

END;
END;

END;

/* EMBEDDED BLANKS — MAKE POSITION 3 OF MEUU_NUM PART OF
MENU_ENTEY */

IF SUBSTR (MENU_NUM, 3,1) -.= ' '

THEN DO;

- 179 -

DO J = 69 TO 2 BY -1

;

SUBSTR(MENU_Et.'TRY,J, 1) = SUBSTR(MENU EIWBf, (iJ- t» , tl

J

END;
SUBSTR (MENU_ENTRY, 1,1) = S UBST R (MENU_NUM, 3, 1) ;

SUBSTR (MENU_NUH, 3, 1) = ' •;

END;

/* CONVERT CHARACTER (MENU_NUM) TO NUMBER (SLCT_NUH) */

GET STRING (MENU_NUM) EDIT (SLCT_NUM) (F (3)) ;

/* CHECK UPPER 5 LOWER LIMITS. NOTE: ALL BLANKS HOULD
CONVERT TO ZERO AND WOULD THEREFORE BE INVALID. */

IF (SLCT_N1JH > £ SLCT_NUM <= UP_LIMIT)
THEN
SLCT_STATUS = 'GOOD';

ELSE DO;
SLCT = • '; /* NECESSARY TO REDISPLAY SELECTIONS */
MSG 'HOT A VALID MENU NUMBER •;

CALL MESSAGES;
SLCT_STATUS = 'BAD';
END;

END EXAMINE_ENTRY;

EDIT_NAME: PROC (NAME, STATUS)

;

/********»********************»******#******##*»***#*#*#***»»**»*/
/* This module receives NAME as input and attempts to make it */
/* a compilable field name. If the name cannot be made valid, */
/* then the output parameter, STATUS, is set to "BAD". */

DCL NAME CHAR (16) ,
'

STATUS CHAR («) ,

(END_POS,I,J) FIXED DEC (3);

STATUS = 'GOOD';

IF NAME = ' •

THEN
RETURN;

/* LEFT JUSTIFY NAME */

DO WHILE (SUBSTR(NAME,1, 1) = ' ');
DO I = 1 TO 15;

SUBSTR(NAME,I,1) = SUBSTR (NAME ,1+ 1 , 1) ;

SUBSTR(NAME,I + 1,1) = ' ';

END;
END;

/* LOCATE ENDING POSITION OF NAME. */

- 180 -

END_POS = 16;
DO I = 16 TO 1 BY -1 WHILE (SUBSTR {NAME, 1 , 1) = • ') ;

END_POS = 1-1

;

END;

/* VEEIFT 1ST CHARACTER AS ALPABETIC */

IF (SUBSTR(NAME,1,1) < 'A' | SUBSTR (NAME, 1 , 1) > 'Z')
THEN DO;

MSG = 'FIRST POSITION OF DATA BASE NAME NOT ALPABETIC;
CALL MESSAGES;
PUT STRING (MSG) EDIT

('YOUR ENTRY WAS ==> '.NAME) (2(A));
DISPLAY (MSG)

;

STATUS = 'BAD';
RETURN;

END;

/* REDUCE IMBEDDED BLANKS TO DASHES */

1=2;
DO WHILE (I < END_POS) ;

IF (SUBSTR (NAME, I, 1) = '
| SUBSTR (NAME, I, 1) = •-'

|

SUBSTR (NAME, I, 1) = •_•
)

THEN DO;
SUBSTR(NAME,I,1) = '-•;

IF (SUBSTR (NAME, 1+1,1) = ' '
I

SUBSTR (NAME, 1+1, 1) = •-•
|

SUBSTR (NAME,1+1, 1) = '_•)

THEN DO;
DO J = 1+1 TO END_POS - 1;

SUBSTR (NAME, J, 1)~ = SUBSTR (NAME, J+ 1 , 1) ;

SUBSTR (NAME, J+1, 1) = •;

END;
END_POS = END_POS - 1;

END;
ELSE
1=1+ 1;

END;
ELSE
1=1+1;

END;

/* VERIFY POSITIONS 2 THROUGH END_POS AS A DASU, NUMBER, OR
LETTER */

DO I = 2 TO END_POS;
IF i (SUBSTR(NAME,I, 1) = '-

|

(SUBSTR (NAME, I, 1) >= 'A' 8

SUBSTR (NAME, I, 1) <= '9'))
THEN DO;

PUT STRING (MSG) EDIT ('ERROR ~ INVALID ',

'CHARACTER IN POSITION ', I, ' OF ',NAXE) (2(A),
F(2),2(A));

- 181 -

CALL MESSAGES;
STATUS = ' BAD'

;

RETURN;
END;

END;
END EDIT_NAHE;

GEN_INST: PROC;
/#*************** **/
/* This module displays the qeneral instructions for inter- */
/* actinq with DB_GEN. /
/*********************************** t**************!,*************/
/*

SOME GENERAL USER INSTRUCTIONS FOE USING THIS PROGRAM
*/

CALL CLRSCR;
DISPLAY (• ** GENERAL INSTRUCTIONS');
CALL BLANK_LINE (2) ;

DISPLAY (• TWO FORMATS CAN BE USED — ') ;

DISPLAY (' •) ;

DISPLAY {• FORMAT 1: <MSNU_NUM>') ;

DISPLAY (• ') ;

DISPLAY
(*==> THIS WILL PROVIDE DETAILED INSTRUCTIONS FOR ENTERING');

.
DISPLAY (• THE RESPECTIVE INFORMATION') ;

DISPLAY (• •) ;

DISPLAY (• FORMAT 2: <MENU_MUN> <MENU_ENTRY> •) ;

DISPLAY (' •) ;

DISPLAY
(•==> THE DETAIL INSTRUCTION STEP IS SKIPPED BY ADDING THE);

DISPLAY (• MENU ENTRY E.G. 1 PART_NUMBES ');
CALL BLANK_LINE (2) ;

DISPLAY ('PRESS ENTER TO CONTINUE') REPLY (ENTER KEY);
END GEN_INST;

MESSAGES: PROC;
/*** ***** ifif ifififii lfJfif + iftJr */
/* This module writes a messaqe to the screen. It displays */
/* the value of the qlobal varible, MSG, and waits for the user*/
/* to respond before continuinq. */
/**************** *********************************** **** m * tttt:l, tJI,/

CALL CLRSCR;
CALL BLANK_LINE(3)

;

CALL ASTRICK_LINE (2) ;

CALL BLANK_LINE(1) ;

DISPLAY (MSG);
CALL BLANK_LINE(1) ;

CALL ASTRICK_LINE (2) ;

CALL BLAHK_LINE(3) ;

DISPLAY ('PRESS ENTER TO CONTINUE') REPLY (ENTER K2Y) ;

END MESSAGES;

MENU_HEAD: PROC;

- 182 -

/a**/
/* This module clears the screen and prints the "current" data */
/* base name in the upper right hand corner of the screen. */
/**/

CALL CLRSCB;
OBTftIN CALC RECORD (tATA_BASE);
IF ERROR_STATUS = '0326'
THEN
DB_NAME = '????•

;

ELSE
CALL IDMS_STATUS;

PUT STRING (EDIT_OUT) EDIT ("DATA-BASE: ' , DB NAME)
(X(40) ,A,A);

DISPLAY (EDIT_OUT) ;

CALL BLANK_LINE (1) ;

PUT STRING (EDIT_CUJT) EDIT (MSG) (X{10),A);
DISPLAY (EDIT_OUT) ;

CALL BLANK_LINE(1) ;

END MEND_HEAD;

BLANK_LINE: PROC (NUM_LINE) ;

/**/
/* This module prints a blank line - used for screen formatting.*/
/**/

DCL (NDM_LINE,I,J) FIXED DEC(3);

DO I = 1 TO NDM_LINE;
DISPLAY (' ') ;

END;
END BLANK_LINE;

ASTRICK_LINE: PROC (NDM_LINE)

;

/**/
/* This module prints an astrick line - used for screen */
/* formatting. */
/it***/

DCL (NUM_LINE,I,J) FIXED DEC{3) ;

DO I = 1 TO NUM_LINE;
DISPLAY (•*** ******

) ;

END;
END ASTEICK_LINE;
MSG = 'NORMAL PROGRAM TERMINATION';
CALL MESSAGES;
END DB_GEN;

183

DATA BASE DESIGN PRINCIPLES APPLIED
TO A NETWORK MODEL

BY

MARK A. COSTELLO

B.S. , Pittsburg State adversity, 1979

AN ABSTRACT OP A MASTER'S THESIS

subaitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

198<*

ABSTRACT

This thesis describes the automation of the data base de-

sign process by using the principles of schema normaliza-

tion, the data dictionary concept, and a sound data base de-

sign methodology. The implementation of this data base

desiqn tool aids the data base designer in the monumental

task of designing the user's data base schema.

This implementation uses an interactive menu driven sys-

tem to aid the data base administrator throughout the entire

data base design process. The initial step collects only

necessary data (i.e., functional and nonfunctional dependen-

cies) to generate the major data base entities. Once the

major entities are generated the data base administrator is

able to interactively customize the entities to best de-

scribe the users' needs. Finally the actual data base man-

agement system data definition statements representing the

users' data base are generated.

This paper describes an implementation of this process

using the PL/I Optimizing Compiler supported by the IDKS

version 5.7 generalized data base management system. The

system operates under IBM's CP/CMS operating system.

