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Abstract 

This dissertation focuses on logistics challenges arising in the biofuels industry. Studies 

have found that logistics costs in the biomass-to-biofuel supply chain (BBSC) account for 35%-

65% of total biofuel production cost. This is mainly due to the low density of biomass that results 

in high costs associated with biomass transportation, storage, and handling in the biomass-to-

biofuel supply chain. Densification provides an as-yet-unexplored opportunity to reduce logistic 

costs associated with biomass-to-biofuel supply chains. 

This research advances understanding about biomass-to-biofuel supply chain management 

through new optimization models. As a first step, the author presents an extensive overview of 

densification techniques and BBSC optimization models that account for biomass densification. 

This literature review helps the author to recognize the gaps and future research areas in BBSC 

studies. These gaps direct the author toward the remaining components of the dissertation. In 

particular, the literature review highlights two research gaps. First, the review indicates that mobile 

pelleting holds promise for improved BBSC management, but that there is no mathematical 

optimization model that addresses this opportunity. Second, currently, there does not exist a model 

that explicitly accounts for farmers’ objectives and their probability to sell biomass to the 

bioenergy plant in BBSC optimization. 

To fill the first gap, the author focuses on managing the BBSC considering mobile 

densification units to account for chances to minimize logistics costs. A mixed integer linear 

programming model is proposed to manage the BBSC with different types and forms of biomass 

feedstock and mobile densification units. Sensitivity analysis and scenario analysis are presented 

to quantify conditions that make mobile densification an attractive choice. The author conducts a 

case study to demonstrate model applicability and type of analysis that can be drawn from this 



  

type of models. The result indicates that mobile pelleting is not an attractive choice under the 

current economic status. However, modest changes in pelleting cost, satellite storage location fixed 

cost, and/or travel distances are enough to make mobile pelleting an attractive choice. 

To fill the second gap, the author introduces a model that explicitly accounts for mobile 

densification and farmers’ probability to supply a bioenergy plant with biomass feedstock. 

Farmers’ probability to provide biomass to the bioenergy plant depends on contract attributes, 

including expected net return and services provided by the bioenergy plant. The proposed model 

helps the bioenergy plant to meet biofuel demand while considering farmers’ choices that satisfy 

their own objectives and preferences. The model makes it possible to determine most important 

factors that influence type of contract offered to each supplier and optimal BBSC design. A case 

study based on the state of Kansas is conducted to demonstrate how bioenergy plant can benefit 

from this type of model.  
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Chapter 1 - Introduction 

Biofuels are environmentally friendly renewable energy sources that could potentially 

reduce energy dependence on fossil fuels. Considerable research has focused on increasing 

understanding and improving management of logistics challenges in the biomass-to-biofuel supply 

chain (BBSC). The low bulk density of biomass is the most pressing challenge because it increases 

costs associated with biomass transportation, storage, and handling. Densification techniques such 

as baling, pelleting, and pyrolysis help mitigate these costs, but the role of densification within the 

overall supply chain context is not yet well understood. This dissertation provides new insights 

into the effect of densification, especially mobile densification, on minimizing logistic costs of 

BBSC. Literature shows that using mobile densification to densify close to the biomass source 

instead of transporting low-density biomass to fixed densification facilities could improve BBSC 

management. However, no mathematical optimization model addresses this opportunity. 

Furthermore, biomass supply depends on farmers’ choices and their willingness to provide 

biomass feedstocks to a bioenergy plant. No optimization model considers farmers’ decisions in 

conjunction with mobile densification.  

Optimization models that consider multiple biomass types, multiple densification forms, 

mobile densification units, and farmers’ choices are essential for reflecting BBSC reality and 

complexity. Mobile pelleting could potentially minimize logistics costs caused by the low bulk 

density of lignocellulosic biomass (LB). Moreover, because farmers differ in their willingness to 

collaborate with bioenergy plants, consideration of farmers’ choices under various contract 

features provides an accurate estimate of supply and contract payments. 

This dissertation addresses gaps in previous BBSC studies by (1) describing issues and 

challenges related to BBSC modeling with densification, (2) introducing new mathematical 
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models that incorporate mobile densification, and (3) introducing new mathematical models that 

consider farmers’ willingness to supply biomass for ethanol production.  Section 1.1 of this chapter 

introduces research motivation, Section 1.2 summarizes in detail the dynamic facility location 

problem and distinguishes the author’s research from previous related literature, and Section 1.3 

describes the contributions and organization of the dissertation.   

1.1 Research Motivation  

The research described in this dissertation aims to advance knowledge related to the 

management of BBSC challenges. The author considers two factors that are absent from prior 

literature: the option to densify biomass at satellite storage locations (SSLs) using mobile pelleting 

machines (MPMs), and farmers’ choices and their probability to provide biomass feedstock to the 

bioenergy plant.  

The low bulk density of LB results in high costs associated with biomass transportation, 

storage, and handling in the BBSC [1, 2]. Densification is considered essential for reducing total 

BBSC cost because it produces a dense intermediate product that has low storage and 

transportation costs [3, 4, 5, 6, 7, 8, 9, 10, 11]. In addition to traditional densification techniques 

in which biomass is densified at a fixed location, researchers suggest utilizing mobile densification 

machines that move between SSLs to densify biomass before being transported to the bioenergy 

plant [4, 10, 12, 13, 14]. Prior literature focuses mainly on densification at fixed locations, and 

currently no model explicitly accounts for optimizing BBSC with mobile densification [11, 15, 

16]. Therefore, the author proposes a mathematical model that optimizes MPM movement in the 

BBSC. 

BBSC research studies typically focus on bioenergy plant objectives [17, 18, 19, 20, 21, 

22, 23, 24, 25], although a few studies consider farmers’ choices and their willingness to participate 
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in the BBSC [26, 27, 28, 29, 30]. Because farmers’ decisions directly impact BBSC operations, 

omitting farmers’ choice results in inaccurate estimates of available supply for biofuel. However, 

no current optimization model explicitly accounts for optimizing BBSC with mobile densification 

and farmers’ choices and their probability to sell biomass to the bioenergy plant. 

The research described in this dissertation is expected to benefit society because it 

optimizes the utilization of a nonfood source of biomass (LB) to produce an environmentally 

friendly renewable energy source (ethanol). BBSC is characterized by low bulk density biomass 

and multiple decision makers (bioenergy plant and farmers’ choices). Failure to manage these 

characteristics can significantly increase the total cost of the BBSC and the ability to meet biofuel 

demand. This research is compatible with worldwide efforts to produce a renewable energy source 

that could decrease dependency on fossil fuels and reduce greenhouse gas (GHG) emissions.  The 

proposed research also is in agreement with the United States’ Revised Renewable Fuel Standard 

(RFS2) that establishes a goal to consume a 36 billion gallons of biofuel per year by 2022, of which 

at least 16 billion gallons per year of biofuel consumption should be from LB [31]. 

1.2 Background 

The problem considered in this dissertation is related to the dynamic facility location 

problem. Researchers have studied facility location, including dynamic aspects, before. This 

section summarizes existing literature on dynamic facility location and the importance of the 

existing literature to the work presented in this dissertation.  

1.2.1 Facility location 

Facility location decisions are typically strategic decisions designed to serve the supply 

chain for a long planning horizon; therefore, the decision must be robust. Facility location 

decisions are costly and difficult to change once they are made. Many research studies have 
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considered facility location optimization in a variety of applications and proposed optimization 

models to determine optimal number and location of facilities in the supply chain to minimize 

facilities’ fixed costs and transportation costs. Numerous reviews have summarized various 

models for facility location considering different key aspects [32, 33, 34, 35, 36, 37, 38, 39].  

1.2.2 Dynamic facility location 

Modeling the facility location decision as a strategic decision is useful in a static 

environment, but in a dynamic environment, where model parameters vary by time period, facility 

location may be a tactical or operational decision that can change annually, semiannually, monthly, 

weekly, or even daily. Because supply and demand in the supply chain vary per time period, idle 

facilities that do not efficiently utilize their capacity must be relocated to areas with high supply 

or demand. In addition, facility location must be modeled as a dynamic facility location problem 

to account for the dynamic nature of parameters. A dynamic facility location problem enables a 

decision maker to model facility location as a time-dependent decision by considering facility 

relocation and/or capacity relocation per time period. Dynamic facility location problems are 

complicated. Various techniques have been developed to solve this problem; some researchers 

used heuristics [40, 41, 42, 43, 44, 45, 46, 47], others utilized integer programming [48, 49], and 

others used mixed integer linear programming [50, 51, 52, 53, 54, 55]. Since this dissertation 

proposes optimization tool to manage dynamic supply chain, the author did extensive literature 

review on optimizing dynamic facility location using integer and mixed integer linear 

programming models.  

Dynamic facility location problems have been extensively studied by researchers 

throughout various disciplines since Ballou [56] first introduced a dynamic unconstrained multi-

period facility location problem with one facility. His model objective, which was to maximize 

https://www.sciencedirect.com/science/article/pii/S0957417412009219#b0010
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profit for the planning horizon, was extended by Scott [57] to include multiple facilities. 

Wesolowsky [58] proposed a dynamic unconstrained model for the single-facility location 

problem considering relocation cost in the objective function. Wesolowsky and Truscott [50] then 

proposed a multi-period mixed integer linear programming (MILP) model that allows facilities to 

be relocated based on demand change. Their model aims to minimize the cost associated with 

assigning facility node to demand node and cost associated with relocation of facilities, including 

facility removal and establishment cost. However, their multi-period location-allocation model 

restricts the number of relocations. Chardaire et al. [44], Galvão and Santibañez-Gonzalez [45], 

Kelly and Marucheck [59], Khumawala and Whybark [60], Roodman and Schwarz [46, 61], and 

Van Roy and Erlenkotter [62] produced relevant early works on managing the dynamic facility 

location problem, but the proposed models assume that facilities have unlimited capacity,  meaning 

no capacity constraints.   

Many studies account for dynamic parameters by assuming that facility location is a 

strategic decision but that associated capacity is a tactical decision that can be partially or 

completely relocated between facilities. The capacity relocation was early studied, amongst others, 

by Fong and Srinivasan [47, 63], Jacobsen [64], and Lee and Luss [65]. These studies manage the 

dynamic facility location problem by considering operating capacity expansion and reduction. 

These papers, however, consider only a single commodity. Melo et al. [51] first presented an 

optimization model that combined dynamic facility location and multiple commodities in a 

comprehensive mixed integer linear programming model for a dynamic multi-commodity facility 

location problem. The study managed demand fluctuation by considering capacity relocation, 

which is capacity expansion or reduction, instead of facility relocation; facility capacity could be 

completely or partially relocated. If facility capacity is completely relocated to another facility, 

https://www.sciencedirect.com/science/article/pii/S0925527308000406#bib21
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then the original facility is closed permanently. Their model considers several realistic aspects, 

such as external supply and holding products at inventory.  

As stated, dynamic modeling of facilities and machine locations allows decision makers to 

efficiently respond to daily or hourly fluctuations in model parameters. Previously mentioned 

papers addressed the facility location problem by assuming that facilities are immobile and that 

facility location and capacity should be reconfigured to handle parameter changes [52].  Another 

practice associated with dynamic facility location considers utilization of mobile facilities or 

machines that move to new locations instead of closing a facility in one location and opening a 

new facility in a new location. Both practices are similarly modeled.  

Prior studies have introduced models to optimize the location and relocation of mobile 

facilities [53, 66, 67, 68], as well as to consider mobile and immobile facilities simultaneously 

[54]. Location-allocation of ambulances is an important application dynamic facility location 

models, assuming facilities (in this case, ambulances and station) are mobile. Gendreau et al. [43] 

proposed a multi-period MILP model for ambulance relocation that includes consideration of 

penalty cost per relocation in the objective function to minimize the number of relocations. Degel 

et al. [55] developed a data-driven optimization model for locating and relocating ambulance 

stations according to the daily change in demand, travel time, speed of ambulances, and areas of 

coverage. 

Researchers have modeled and solved problems in all categories using different methods, 

such as single-stage [51, 52, 54], two-stages [53, 69, 70], or rolling horizon facility location model 

[71, 72, 73].  

Managing the BBSC considering mobile densification and farmers’ choices is a dynamic 

facility location problem. Dynamic aspects of a BBSC are considered in this dissertation. Because 



7 

facility relocation based on biomass supply is expensive, this dissertation assumes that locating 

SSLs is a strategic decision that must account for the dynamic environment associated with 

biomass supply. However, this study copes with fluctuating biomass supply by utilizing mobile 

densification units that change location based on biomass availability at each time period. There 

are specific features that need to be considered in the model to be able to solve the BBSC problem 

presented in this dissertation. The model needs to simultaneously consider multiple periods, 

multiple commodities, facilities’ relocation, losses in transportation and inventory arcs, facilities 

that change product characteristic in middle stage, and stakeholders’ choices. There are no prior 

studies that simultaneously consider all of these conditions, thus, this dissertation advances the 

field of dynamic facility location. 

1.3 Research Contribution and Organization of the Dissertation 

The research described in this dissertation utilizes optimization to advance knowledge 

about BBSC design and management and provides insights for minimizing BBSC logistic costs. 

The following subsections summarize the research contributions of each chapter. 

1.3.1 State of Current Literature 

Chapter 2 contains the author’s summary of current academic literature related to BBSC 

management with densification and a comprehensive literature review of modeling and 

optimization studies of LB supply chains with densification processes. The literature review 

focuses on ethanol, a prevalent biofuel in the United States, and two promising LB feedstocks for 

commercial ethanol production, corn stover and switchgrass. Research in academic journals, 

books, and trade publications is classified based on densification method, analytical methodology, 

feedstock type, and mobility. Baling is the most-studied densification technique, while cost 
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analysis is the most common analysis method. This review identifies gaps and future research areas 

in BBSC studies. Major contributions of the review include the following: 

 The author considers models that include densification as a decision variable and finds 

that most existing literature shows biomass densification reduces BBSC cost. However, 

some studies determine that biomass densification is not always cost-effective.  

 The author finds that mobile pelleting holds promise for improved BBSC management, 

but no mathematical optimization model addresses this opportunity.  

 The review identifies opportunities to improve BBSC management. The author 

suggests that farmers’ objectives and choices be considered in the BBSC since no 

model explicitly accounts for these objectives in BBSC optimization. 

1.3.2 Mobile Densification 

In Chapter 3, the author analyzes the effect of densifying biomass on the BBSC design 

with the objective of quantifying conditions that make mobile densification economically 

attractive. An optimization model is proposed to design the BBSC with mobile densification units 

that move between satellite storage locations to densify biomass. The proposed model addresses 

the unique challenges of different LB types and baling forms at production fields and potential use 

of MPMs.  

Chapter 3 contains the following: 

  A new optimization model is proposed to design the BBSC with mobile densification. 

The design includes strategic level decisions represented by supplier selection 

(production fields), storage site location, and bioenergy plant capacity. It also includes 

tactical level decisions that determine the flow of biomass between farms, the amount 
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of biomass stored at various BBSC facilities, the amount of biomass processed and 

densified, and MPM movement.  

 A computational study based on the state of Kansas is performed to illustrate the types 

of analysis that can be performed with the model. The case study is based on data 

obtained from the United States Department of Agriculture (USDA) and academic 

journals. Results indicates that mobile densification is not preferable under current 

economic conditions. 

 A sensitivity analysis is presented to identify the impact of parameter changes on the 

amount of pelleted biomass. Sensitivity analysis results indicate that modest changes 

in pelleting cost, SSL fixed cost, or travelling distance make mobile densification 

economically attractive. 

 A scenario analysis is performed to examine simultaneous changes in parameters to 

understand conditions under which mobile densification is economically viable. 

Scenario analysis results indicate that increasing number of MPMs in the BBSC makes 

densification more attractive.  The high fixed cost associated with establishing SSL can 

be offset by decreasing logistics costs.  

 Break-even analysis is presented to enable rapid decision making about densification 

for a specific production field. The analysis calculates the distance for which mobile 

densification and baling have the same cost, and it provides insight into conditions that 

make mobile pelleting appealing to reduce BBSC logistic costs.  
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1.3.3 Mobile Densification and Farmers’ Choices 

In Chapter 4, the author adjusts the model proposed in Chapter 3 to account for farmers’ 

objectives and their probability to sell biomass to the bioenergy plant. The optimization model 

proposed in Chapter 3 assumes that farmers immediately and unconditionally provide the 

bioenergy plant with all needed biomass, omitting farmers’ objectives and preferences. However, 

this scenario is often unrealistic, because farmers’ choices and their willingness to participate in 

the BBSC differ based on different factors such as their favorability to contract payment or other 

contract options, conservation and environmental concerns, and demographic factors such as age 

and education. 

The research described in Chapter 4 is designed to answer the following fundamental 

question: How do factors, such as location, yield, weather, and farmers’ probabilities to supply 

biomass under different contract types, influence the optimal BBSC design? In response to this 

question, Chapter 4 provides the following contributions: 

 The author updates the optimization model proposed in Chapter 3 to account for 

farmers’ choices and mobile densification. To do so, the author utilizes a study 

performed in Kansas that estimates farmers’ probability to provide biomass under 

various contract options.  

 A computational study is performed based on the state of Kansas. Results indicate the 

biomass yield, farmers’ probability to sell biomass to the bioenergy plant, and distances 

between supplier and SSLs and bioenergy plant affect the type of contract offered to 

each supplier. 
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1.4 Summary  

This research advances dynamic facility location modeling by proposing an optimization 

model that manages a multi-commodity supply chain, while simultaneously considering 

stakeholders’ choices, losses on transportation and storage arcs, and the potential to relocate 

facilities to cope with dynamic supply. For the area of managing the biomass-to-biofuel supply 

chain, the research described in this dissertation advances knowledge in managing the logistic 

challenges in the BBSC, especially the complexities caused by biomass low bulk density and 

farmers’ choices. This dissertation not only fill the gaps in previous BBSC studies, it also 

demonstrates real life examples that can benefit from models proposed in the study. In Chapter 5 

the author describes conclusions and future research. 
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Chapter 2 - Optimization of Lignocellulosic Biomass-To-Biofuel 

Supply Chains with Densification: Literature Review 

Chapter 2 is based on the manuscript, “Optimization of Lignocellulosic Biomass-To-

Biofuel Supply Chains with Densification: Literature Review,” which is in preparation for 

submission to a peer-reviewed journal. 

 

2.1 Introduction 

The growing world population and rapid industrial development have considerably 

increased global energy demand. The search for economically viable, environmentally friendly 

renewable energy sources has been stimulated by non-renewable fossil fuel depletion, high prices, 

and recognition of environmental consequences. Biofuels, derived from plants and other biological 

materials (termed feedstock or biomass), are being developed as part of the solution to current 

energy challenges. Biofuels are garnering attention as promising renewable energy sources that 

not only could decrease fossil fuel dependence and protect the environment by reducing 

greenhouse gas (GHG) emissions, but also could improve the economy by bringing business to 

rural regions [74, 75]. The revised renewable fuel standard (RFS2) established a mandate that the 

U.S. consume 36 billion gallons of biofuel per year by 2022, of which at least 16 billion gallons 

per year must be produced from cellulosic biomass [31]. 

 This study focuses on ethanol as an important liquid transportation biofuel in the U.S. 

Although ethanol can be produced from multiple sources, this study focuses primarily on corn 

stover and switchgrass, two promising lignocellulosic feedstocks for commercial ethanol 

production. Corn stover is the biomass that remains after harvesting corn grain, an annual crop. In 

the U.S. every year, more than 238 million tons of dry corn stover are available that can potentially 
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be used to produce ethanol [76]. On the other hand, switchgrass is a perennial bioenergy crop. It 

is among the most favorable biofuel feedstocks because it is abundant and relatively inexpensive 

compared to other feedstocks [77, 78]. Switchgrass is considered a sustainable feedstock for 

ethanol production [79].  

Realizing biofuels’ potential benefits requires effective management of the biomass-to-

biofuel supply chain, which includes the processes associated with growing, harvesting, storing, 

and transporting biomass feedstock from the source to the biofuel conversion point at the 

bioenergy plant. Modeling and optimizing the BBSC is an important research area that has recently 

received great attention from researchers. We briefly summarize research related to key BBSC 

design and operational planning decisions in Section 2. 

Studies have found that biomass collection, storage, preprocessing, and transportation from 

fields to the bioenergy plant account for 35 – 65% of total biofuel production cost [1, 2]. However, 

studies indicate that BBSC logistics costs should not exceed 25% of the biofuel production cost in 

an economically viable supply chain [80]. A key contributing factor to the high logistics costs is 

the low bulk density of biomass. To minimize total supply chain costs, researchers recommend 

densifying biomass feedstocks to produce a dense intermediate product before transportation to 

the bioenergy plant for final processing [3, 4, 5, 6, 7, 8, 9]. Introducing densification affects BBSC 

design, including facility locations, biomass flow, and the amount of biomass densified or 

processed. Decisions about densification, such as densification unit type, location, and capacity, 

add complexity to BBSC management. Although an increasing number of studies model BBSC 

decisions related to biomass densification, to date there has been no comprehensive review 

describing densification mechanisms, quality attributes, or efforts to incorporate densification into 

holistic BBSC models.  Our study addresses this gap by surveying work that integrates 
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densification techniques, including baling, pelleting, and pyrolysis, into BBSC models (Section 

3).  We further discuss the promising trend of mobile densification (Section 4). The study 

concludes by summarizing the current state of the research in BBSC models that incorporate 

densification and highlighting important opportunities for future research. 

2.2 Biomass-To-Biofuel Supply Chain  

A BBSC network consists of production fields, satellite storage locations (SSLs), and 

bioenergy plants. Biomass is purchased from production fields, and then it is either transported 

directly to bioenergy plants or to a SSL. At a SSL, biomass is stored and densified (if required) 

before being transported as needed to the bioenergy plant. Figure 2.1 illustrates a typical biomass-

to-biofuel supply chain structure on a time-expanded network. Solid arcs that connect different 

facilities within the BBSC in different time periods represent transportation decisions. Dashed arcs 

that connect the same facility in different time periods represent inventory holding decisions. 
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Figure 2.1: Biomass-to-biofuel supply chain structure 

 

Effective, efficient supply chain design and management are challenging in any 

circumstance. However, biomass feedstocks have unique characteristics that amplify this 

complexity, such as low bulk density and uncertain, seasonal supply [17]. These characteristics 

prompt important research questions and encourage researchers to model BBSCs. Table 2.1 shows 

basic elements of biomass feedstock systems, decision variables to be optimized, and major 

logistical hurdles to deliver material from the field to the bioenergy plant. Supply chain decisions 
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occur at strategic, tactical, and operational planning levels, distinguished by time frame and scope 

[19, 20, 21]. 

 

Table 2.1: Decisions and logistical challenges for BBSC elements 

 

2.2.1 Strategic Level Decisions 

For the biofuel industry, strategic level decisions have a long-term impact (years to 

decades) and are oriented toward achieving overall BBSC objectives [81]. Strategic decisions 

include but are not limited to production technology selection, biomass and baling type(s), location 

and capacity of bioenergy plant and satellite storage locations, and transportation mode [17, 81, 

82, 83, 84]. 

Facility location is one of the most-studied strategic decisions [85]. Facility location is a 

crucial decision due to its long-term influence on the entire supply chain and the difficulty of 

changing the decision once it has been made. Transporting cheap bulky biomass between BBSC 

facilities represents a high percentage of the final cost of delivered biomass to the bioenergy plant 
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[86]. As a result, facility location decisions should be robust; the solution should remain near 

optimal even if input parameters, such as customer demands, transportation costs, raw material 

prices, or environmental conditions, change [87].  Researchers have used various methods, the 

most common of which are geographical information system (GIS) analysis and mixed integer 

linear programming (MILP), to select locations for BBSC facilities. We summarize this work here.  

GIS software provides a spatial representation of supply chain locations, capturing 

facilities’ proximity to each other and to transportation routes [88]. It also enables researchers to 

compute distances between BBSC facilities with great precision [86, 89, 90], although large study 

areas may require long computation times [85, 91]. GIS analysis can be an essential step for 

selecting candidate facility sites before implementing optimization and simulation [88].  GIS has 

been used to determine potential locations for bioenergy plants [91, 92], collection and storage 

sites [93], and biomass production fields [94]. Despite the fact that GIS analysis does not guarantee 

optimality [91], its visualization capabilities are important for decision support. GIS is used to 

optimize 

MILP is another tool to design the supply chain and manage BBSC logistics. This approach 

has been used to determine the optimal location of collection facilities [18, 17, 95], bioenergy 

plants [17, 19, 20, 21, 96, 97, 98, 99], and supply zones among potential fields [99]. 

Introducing densification may change BBSC facility location decisions [15]. Balance 

should be achieved between transporting low-density biomass to nearby densification locations 

and transporting high-density densified biomass from densification sites to a more distant 

bioenergy plant. Utilizing densification techniques may also make it economically attractive to 

locate bioenergy plants closer to biofuel demand zones rather than biomass supply zones. 
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2.2.2 Tactical and Operational Level Decisions 

Tactical level decisions are medium-term decisions (e.g., monthly, quarterly) that help 

achieve BBSC strategic objectives, such as determining the biomass quantity to purchase, store, 

and process; optimizing material flow within the BBSC network; and scheduling machines and 

vehicles [17, 82, 83, 84].  

Many studies have analyzed the number of machines needed within BBSC, such as 

harvesting units [25, 95, 97, 98] and transportation units [19, 24, 100, 101]. A significant number 

of papers examine biomass and biofuel flow within the BBSC, considering decisions related to 

harvested, stored, and transported biomass quantities over time across the entire BBSC network 

[17, 20, 97, 98, 100, 101, 102, 103, 104, 105, 106]. Three interesting studies [105, 106, 107],] 

proposed MILP models that take into account densification and intermediate products before 

transporting biomass for final processing at a bioenergy plant. Introducing densification techniques 

into the BBSC could positively affect most tactical level decisions. For example, densification 

makes transportation of larger biomass quantities over longer distances more economically viable, 

thereby altering sourcing decisions. 

Operational level decisions are short-term decisions (e.g., hourly, daily, or weekly) made 

by facility managers that aim to satisfy demand [81]. Examples include weekly, daily, or hourly 

production scheduling decisions, fleet management, and inventory review and management [82, 

84, 108, 109]. Utilizing densification techniques may impact operational decisions since fewer 

trucks will be required to transport biomass to the bioenergy plant.  Densification may also 

introduce new operational decisions, such as scheduling for densification operations. 
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2.2.3 Uncertainties in the Biomass-to-Biofuel Supply Chain 

The previously-mentioned papers use deterministic methods to inform supply chain 

decisions under the assumption that all problem parameters are well-known in advance. This work 

has led to important insights regarding supply chain costs and operations.  However, BBSC 

managers face uncertainty. Various papers have discussed uncertainties in supply [110, 111, 112, 

113, 114], transportation [17, 114], biofuel demand [115], biomass price [116, 117], or biofuel 

price [116]. 

Kim et al. [103] studied BBSC logistics under uncertainty for a system converting woody 

biomass to biofuel and demonstrated their method using data from an industrial partner in the 

Southeast U.S. Among 14 uncertain parameters, the authors first identified five that are most 

influential: biomass availability, maximum demand, final product sale price, intermediate product 

yield, and final product yield. Scenarios were constructed by taking all combinations of these five 

parameters at high (+20%) and low (-20%) values. The authors then introduced a two-stage mixed 

integer stochastic model to identify the supply chain design that optimized expected profit over all 

scenarios. First stage decisions were strategic, such as facility location and capacity. The second 

stage incorporated tactical and operational level decisions such as determining biomass, 

intermediate products, and biofuel flow. Robustness analysis indicated that the scenario-based 

approach using a subset of the uncertain parameters was effective at identifying a supply chain 

design that performed well under the full range of uncertainty.  

Marufuzzaman and Ekşioğlu [114] consider potential BBSC disruption by natural 

disasters. The proposed mixed integer nonlinear programming model adopts a rolling horizon 

framework to account for the dynamic nature of decision making in such contexts.  It also 

incorporates multimodal transportation, which helps mitigate adverse impacts of seasonal events 
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like hurricanes. They demonstrated that the reliable, dynamic model produces less costly supply 

chain management decisions for disaster events when compared both to a model that minimizes 

cost assuming normal conditions and to a reliable, static model. 

A few studies have examined optimum BBSC facility location decisions under uncertainty. 

Dal-Mas et al. [116] proposed a MILP model for the BBSC that considers corn and ethanol selling 

price uncertainty in Northern Italy. Their model has two objectives, first to maximize expected net 

present value under different scenarios of biomass production cost and biofuel price and to 

minimize conditional value-at-risk. Marvin et al. [107] proposed a MILP model for BBSC with 

multiple types of biomass. Their model aims to determine optimal bioenergy plant locations and 

capacities in the Midwestern U.S. The authors used sensitivity analysis to demonstrate the supply 

chain robustness to ethanol selling price uncertainty. Cundiff et al. [118] formulated a linear 

stochastic optimization model with recourse under biomass production uncertainty due to weather 

conditions. 

2.3 Biomass Densification 

This section describes the importance of densification to the BBSC, densification types, 

and studies that incorporate densification into holistic BBSC models.    

2.3.1 Background 

Low bulk density is a major barrier to widespread adoption of lignocellulosic biomass 

feedstocks for transportation fuel production, because it causes challenges during biomass 

harvesting, transporting, and storing [8, 119]. Low-density biomass is susceptible to loss resulting 

from weather events; handling processes at production fields, SSLs, and the bioenergy plant; and 

shipping. Low density and dry matter loss create logistical hurdles when moving bulky biomass 

from the field to a centralized bioenergy plant [120, 121], potentially significantly increasing 
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biofuel cost. Sokhansanj et al. [76] asserted that a large fraction of biomass feedstock costs can be 

attributed to the handling associated with moving biomass from fields to preprocessing locations 

or conversion plants. 

Biomass densification is proposed to increase BBSC efficiency [2, 8, 9, 121]. This 

densification could be implemented at the field, SSLs, or local biomass processing depots used 

exclusively for densifying biomass [120, 122]. The conventional densification process for corn 

stover and switchgrass is accomplished by baling, pelleting, cubing, briquetting, or pyrolysis. The 

first four densification types produce solid densified biomass, while pyrolysis produces liquefied 

densified biomass.  

The idea of densification is not new. Biomass is traditionally densified in fields with balers 

[123]. Baling continues to be an essential step in the BBSC, because bioenergy plants need uniform 

feedstock with low ash and moisture content. Baling methods are a significant factor affecting total 

supply chain logistic cost. The baling operation is an indispensable technology that increases 

biomass supply chain efficiency by producing a standard uniform unit with higher density that is 

more efficiently handled, transported, and stored than loose biomass [121].  

A number of research studies investigated the benefit and feasibility of further densifying 

baled biomass before transporting it to the bioenergy plant.  Hess et al. [2] and Forsberg [121] 

recommended densification, with the densification units as close to the production fields as 

possible to simplify handling, storing, and transportation. Upstream densification also reduces 

GHG emissions by decreasing fossil fuel consumption for biomass transport [4, 12, 13, 14]. 
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Figure 2.2: Number of papers describing dimensions of BBSC with densification 

 

Most existing literature on densification focuses primarily on understanding densification 

methods and associated properties of densified biomass. This chapter reviews studies that have 

used different analytical methodologies to manage densification in the context of biomass 

feedstock supply chains for ethanol production. Figure 2.2 classifies reviewed densification 

models according to four criteria: biomass feedstock type, densification form, modeling methods 

used in the paper, and mobility of the densification technique considered. The figure makes clear 

that baling is the most-studied densification technique, while cubing and briquetting have received 

the least attention in literature. Mobility is not commonly addressed in the biomass densification 

literature, as nearly all studies considered stationary machines. Cost analysis is the most common 

method, followed closely by optimization models. 
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Table 2.2 compares ethanol yield for various densification forms. Biomass densification 

increases ethanol yield per m3 of transported biomass.  The ratio in Table 2.2 shows that pelleted 

form has an ethanol yield of 4 to 5 times the baled form. 

Table 2.2: Comparison of densities and ethanol yield for various types of corn stover 

densification forms 

Densification form 
Density 

(kg/m3) 

Ethanol yield 

(gallon/m3)a 
Ethanol yield ratiob 

Loose 70 [5] 5.69 1/9.29 

Chop 71 [5] 5.77 1/9.15 

Round bale 144 [124] 11.70 1/4.51 

Square bale 156 [119] 12.68 1/4.17 

Briquettes 190[125] 15.44 1/3.42 

Cubes – regular size 450 [5] 36.56 1/1.45 

Cubes – small size 550 [5] 44.69 1/1.19 

Pellet 650 [5] 52.81 1 

a Ethanol yield is calculated by multiplying densification form density (kg/m3) by ethanol yield 

(73.71 gallon/ton) and conversion factor 0.0011 (ton/kg) 
b Ratio of ethanol yield for each densification form to that from pelleted biomass 

 

Table 2.2 summarizes the bulk density and ethanol yield for each primary densification 

technology. Each densification form has different advantages and disadvantages. For example, 

bales have low density compared to other densification types, and briquettes need additional 

preprocessing at the bioenergy plant. Moreover, the high costs required for cubing and pyrolysis 

densification may outweigh handling and transportation cost reductions. Overall, numerous factors 

influence the choice of optimal densification techniques in BBSC systems that convert corn stover 

or switchgrass to ethanol.  
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2.3.2 Baling 

Baling is a common densification method that is usually carried out at production fields. 

Bale shape and size depends on the baling machine that is used; the most common are round, 

rectangular, or square. A round baler has lower capital cost than a large rectangular baler. 

However, square and rectangular baling are preferred over round bales for large scale biomass 

handling [126]. Round bales are difficult to stack, thereby increasing handling and transportation 

costs, and the weight of stacking can cause them to deform [127]. Research has found that baling 

can significantly increase biomass bulk density compared to loose form [5, 12]. Loose biomass 

without any densification has bulk density ranging from 50 to 130 kg/m3 [5], while the bulk 

density of bales can be as high as 255 kg/m3 [123].  

Sokhansanj and Turhollow [124] estimated the cost of densifying and collecting biomass 

in round and rectangular baling forms. Increasing biomass bulk density by baling reduces costs 

and simplifies biomass handling and transportation logistics. Several studies have assessed the 

impact of different harvesting and baling techniques on the total transportation cost. Three main 

approaches have been proposed: cost analysis, MILP models, and simulation. 

2.3.2.1 Cost analysis 

Cost analysis is a technique for determining the most economically attractive biomass 

baling type in the BBSC by comparing costs or identifying conditions that favor one type of baling 

over another. Brownell and Liu [3] developed a mathematical model to help managers determine 

the cost of various switchgrass harvesting methods at different production fields for a predefined 

bioenergy plant location and three plant capacities: 2,205 ton/day (2,000 tonne/day), 5,512 ton/day 

(5,000 tonne/day), and 11,023 ton/day(10,000 tonne/day). The study focused on four biomass 

forms: loose material, round bale, large rectangular bale, and compressed rectangular bale. The 
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primary model objective is to identify the harvesting and handling system combination with the 

lowest cost for each field, while simultaneously determining the number and locations of SSLs. 

Results showed that bioenergy plant capacity significantly influences SSL size and location. For 

the given case study, the authors concluded that increasing biomass density decreased 

transportation and storage costs, but this was made possible by utilizing expensive densification 

equipment that increased harvesting cost.   

Sultana and Kumar [6] estimated the delivery cost associated with a combination of 

multiple biomass feedstocks in multiple densification forms. Biomass delivery cost includes all 

costs incurred in the BBSC, namely harvesting, collection, storage, preprocessing, transportation, 

and processing at bioenergy plant. They considered three biomass types (wheat straw, corn stover, 

and forest biomass) and four densification forms (loose, bales/bundles, chopped/chipped, and 

pellets). They found that pelleted biomass was the lowest-cost delivery option for a bioenergy 

plant with a capacity greater than 66,138 dry ton/day, due to pellets’ high bulk density compared 

to other forms. Interestingly, delivering a combination of biomass types was less expensive than 

delivering a single type. They also noted that at longer distances, the transportation cost differences 

between biomass densification forms are higher than at shorter distances. 

2.3.2.2 Mixed integer linear programming 

MILP is widely used to manage the BBSC with different baling types by optimizing 

decisions about biomass types, baling forms, BBSC facility locations, feedstock storage, 

transportation modes, and processing [17, 18, 19, 20, 21, 22, 23, 24, 25, 97, 101]. A few authors 

explicitly included baling types as decision variables in their proposed models. In general, studies 

found that the most efficient and economical baling types depend on field size, climate, 
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transportation distances between fields and bioenergy plant, and the harvesting time window [128, 

129]. 

Judd et al. [10] formulated a MILP model to minimize the cost of a switchgrass-based 

ethanol supply chain, where costs included biomass transportation, mobile equipment 

transportation between SSLs, and SSLs establishment. Decision variables included SSL sites, 

biomass flow between BBSC facilities, and type of handling and transportation systems used at 

SSLs, under the assumption that bioenergy plant location and capacity are given. Biomass is 

densified at the production field into round baled form. The authors considered three handling and 

transportation equipment options for biomass at SSLs; two options used a rack (rear or side-

loading rack system), and one option used a densification system to convert baled biomass into 

briquettes. They considered the possibility of moving handling machines between SSLs (mobile 

machines). The authors found the side-loading rack handling system has a 21.3% lower total cost 

compared to the densification system. Densification was advantageous if the densified biomass 

was transported more than 81 km, and equipment mobility generated savings.  

Griffith et al. [89] proposed a MILP model to maximize the net present value of the biomass 

supply chain, assuming that biomass is densified only into large rectangular bales. The decision 

variables included bioenergy plant location, biomass quantity harvested from each field, and 

number of harvesting and baling machines. Model parameters were based on Oklahoma weather 

conditions, and the bioenergy plant was assumed to process a single biomass, either switchgrass 

or forage sorghum. The results demonstrated that switchgrass was less expensive to deliver 

$54.43/ton ($60/tonne) than forage sorghum $67.13/ton ($74/tonne), where delivery cost includes 

land rent for biomass production, establishment and maintenance, fertilizer, harvest, field storage, 

and transportation. The authors attributed this to differences in harvest windows and drying time 
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for the two biomasses. Forage sorghum has a five-month harvest window, compared to the nine-

month window for switchgrass, and requires twice as much drying time prior to baling. Thus, 

sorghum requires more harvesting machines and the harvesting cost is $26.17/ton ($28.85/tonne), 

while that of switchgrass is $14.27/ton ($15.73/tonne).  

2.3.2.3  Simulation 

Many researchers have used simulation models to evaluate aspects of biomass logistics 

system performance, including baling operations. The method’s capability and flexibility for 

modeling and evaluation [130] make it an important analytical tool.  

Sokhansanj et al. [131] developed a discrete event simulation model called the Integrated 

Biomass Supply and Logistics (IBSAL) model for the BBSC. The paper describes a case study 

examining harvesting, wrapping, and stacking operations for square corn stover bales. The model 

identified the number and capacity of machines needed to meet the predetermined bioenergy plant 

demand for biomass feedstock. Their work is considered an advancement in BBSC modeling, 

because they considered daily weather conditions and their effect on dry matter loss and moisture 

content. 

Kumar and Sokhansanj [132] used the previously proposed IBSAL model [131] to 

determine the most efficient switchgrass supply among five potential densification methods: 

square baling, round baling, loafing, dry chopping, and wet chopping. The evaluation is based on 

three criteria: delivered cost (collection and transportation costs), energy consumption, and GHG 

emissions. Results showed that loaves have the lowest collection and delivery cost to bioenergy 

plant at $33.6/dry ton ($37/dry tonne) and $12.4/dry ton ($13.67/dry tonne), respectively. 

However, square baling has the lowest energy consumption and GHG emissions, followed by wet 

chopping, loafing, dry chopping, and round baling. Sokhansanj et al. [127] likewise found that 
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loafing was a less expensive option for densifying switchgrass compared to rectangular bales and 

chopping, but this study did not explicitly compare total delivery costs for the three operations. 

2.3.3 Pelleting, Briquetting, and Cubing  

Biomass baling reduces biomass handling, storage, and transportation costs. However, 

bales lack desirable qualities. If multiple baling types are used concurrently, their different storage 

and transportation requirements prohibit a consistent, uniform, smooth biomass supply chain. In 

addition, high costs for transportation and handling equipment negate some transportation cost 

savings. Flowable biomass forms, such as pellets, briquettes, and cubes, can be handled and 

transported with equipment currently used for grain commodities to overcome these challenges 

[133].   

The aforementioned obstacles associated with baled biomass have motivated researchers 

to recommend densifying biomass to pelleted form [9]. Pelleting is a densification technique that 

produces biomass with density up to 700 kg/m3 [5, 123] and energy density of 9.8–14.0 GJ/m3 

[123, 134], both of which are much greater than those achieved by baling. Pelleting increases bulk 

density through mechanical and thermal processing [123, 135]. The high temperature generated 

during pelleting softens lignin, a complex natural polymer in the plant, enabling it to act as a binder 

to form durable pellets [136, 137]. Pelleted biomass has a uniform cylindrical shape with a 

diameter of approximately 6 mm and length less than 25 mm [5]. Pelleting makes biomass handling 

processes more efficient compared to bales [138, 139] and reduces high handling, storage, and 

transportation costs associated with biomass feedstocks’ low bulk density [2, 9, 140].  

Another research area examines characteristics and quality of pelleted biomass for ethanol 

production.  Guragain et al. [140] studied the effect of pelleting as a pre-processing step by 

comparing sugars and ethanol production for pelleted biomass with those for unpelleted biomass. 
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Their study considers four types of biomass: wheat straw, corn stover, big bluestem, and sorghum 

stalk. Based on the amount of released sugars, they found no significant difference in ethanol 

production between pelleted and unpelleted biomass. They also found that pelleted biomass 

consumes fewer enzymes than unpelleted biomass. However, due to higher mass loss for pelleted 

biomass during the alkali pretreatment process, overall ethanol yield was not significantly higher 

than that of unpelleted biomass. Pelleting effects were found to differ among the four biomass 

types, highlighting the need for customized processes. 

Pelleting cost has also received attention in the literature. Mani et al. [141] estimated 

woody biomass pelleting costs for different pelleting plant capacities. They defined pelleting cost 

as the sum of operating and capital costs. They found that pelleting cost of plant of capacities 6.61 

ton/hr (6 tonne/hr) and 11.02 ton/hr (10 tonne/hr) are $46.27/dry ton ($51/dry tonne) and 

$36.29/dry ton ($40/dry tonne), respectively. Sultana and Kumar [6] found that pelleted biomass 

is an attractive choice as bioenergy plant capacity increases, because the plant must draw biomass 

from a larger area to meet the capacity. Roni et al. [133] introduced a hub-and-spoke design for 

large-scale bioenergy production, in which agricultural residues are further densified near 

production fields to decrease transportation costs. Although the densification form assumed for 

their model is not specified, they indicate that biomass is converted to a flowable form with 

physical properties similar to wood chips.  

Briquetting and cubing are other biomass densification processes that also produce 

flowable products, although fewer studies have examined their use in BBSC operations. Briquettes 

are similar to pellets in shape but with different dimensions (approximately 32 mm in diameter 

and 25 mm thick). Briquettes have density of 350 kg/m3 and energy density of 6.4 GJ/m3 [123]. 

Cubes are larger and less dense than pellets, with bulk density ranging from 400 kg/m3 [123] to 
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450 kg/m3 [5, 12] and energy density from 7.3 GJ/m3 [123] to 7.993 GJ/m3 [5]. Sokhansanj and 

Turhollow [5] calculated the cost of densifying corn stover by cubing and then compared the 

transportation and storage cost for cubes with that of bales. The study found that cubing increases 

corn stover density and reduces associated transportation and storage costs. However, cubes still 

had higher final delivered costs ($65.38/dry ton, $71.92/dry tonne) than conventional corn stover 

bales ($54.57/dry ton, $60.15/dry tonne), even though baled biomass requires a grinding operation 

at the bioenergy plant and cubes may not. The higher cubing equipment and operation costs 

exceeded the savings in handling and transportation costs.  The authors discuss operational 

changes that could reduce cubing costs. 

Thoreson et al. [8] studied various corn stover densification methods, including grinding, 

baling, briquetting, and pelleting densification operations. The authors also measured the logistical 

impact of various harvest techniques on large-scale stover production. Results showed that 

increasing corn stover bulk density from 240 kg/m3 to 640 kg/m3 may reduce equipment 

requirements and the number of truckloads by as much as 70% compared to loose corn stover. 

2.3.4 Pyrolysis  

Researchers have classified pyrolysis as a promising densification technique, because it 

results in the highest density among current technologies. Pyrolysis involves heating biomass to 

high temperature (400°C–600°C) in the absence of oxygen [142]. Before heating, feedstocks are 

dried and ground to minimize water content in the densified liquid and to optimize heat transfer 

rate [143]. The pyrolysis process decomposes biomass feedstock into three main products: liquid 

bio-oil, solid biochar, and synthesis gas [142]. 

Bio-oil, an intermediate biofuel product [123], is the highest yield product from the 

pyrolysis process [142, 144]. Further processing is required to convert it to ethanol and make it 
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suitable for use as a transportation fuel; removing impurities and reducing oxygen content 

decreases its viscosity and corrosivity [15]. The yield ratio of pyrolysis products depends on factors 

such as biomass feedstock type and pyrolysis conditions [145]. Fast pyrolysis, which employs a 

higher heat transfer rate than traditional pyrolysis, produces a higher percentage of bio-oil, 

potentially reaching 60–75 % of total product weight [142]. Bio-oil yield from traditional pyrolysis 

may reach up to 60% of total product weight [146].  

Handling processes for liquid bio-oil include pumping and tank storage, which are simpler 

than handling for other densified biomass forms [123]. As a result of bio-oil’s high density, 

transportation between BBSC locations is more likely to be limited by weight restrictions on trucks 

(36.3 tons on most major U.S. highways) than by the load’s volume [12]. Pyrolysis capital costs 

are greater than those of other densification processes, which may make it unattractive under some 

conditions [12]. 

Comparatively few research studies investigate BBSC optimization in systems with 

biomass pyrolysis. Rogers and Brammer [11] determined the effect of pyrolysis on overall biomass 

transportation cost for a U.K. supply chain in which the pyrolysis plant produces bio-oil to be used 

at an electrical power generation plant. They calculated fixed and variable costs for truck 

movement between production fields and the pyrolysis plant while taking into account different 

pyrolysis plant capacities. They compared the use of satellite pyrolysis plants versus a central one. 

Results indicated that a distributed network, in which biomasses are densified into bio-oil at 

satellite pyrolysis plants located near production fields and then transported to the generation plant, 

would only be economical if a large proportion of land is used as a feedstock source. 

Li et al. [15] compared the total annual cost of two BBSC designs in which bio-oil is 

produced from corn stover and upgraded at a distributed fast pyrolysis facility before being 
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transported to a central bioenergy plant. The first MILP model considered distributed fast pyrolysis 

facilities and an existing bioenergy plant in Louisiana. The second model identifies the optimal 

location in Iowa for a new bioenergy plant instead of utilizing the existing plant. The authors 

compared the results from the two models for an Iowa study region. The models identified optimal 

locations and capacities for pyrolysis units and the new bioenergy plant.  The second model 

resulted in lower total annual BBSC cost; transportation cost reductions to the optimal bioenergy 

plant location offset the new capital investment. 

Li et al.  [16] proposed an optimization model that captures capacity expansion over time 

according to the phased goals set by the RFS2 for a BBSC with fast pyrolysis densification. The 

MILP model was demonstrated for a case study region in Iowa, with corn stover feedstock and a 

planning horizon from 2014 – 2022.  The model maximized net present value while considering 

facility location and capacity decisions, transportation decisions between BBSC facilities, and 

demand both in- and out-of-state. The authors found that bioenergy plants tended to be centrally 

located and that capacity expansion at existing facilities typically occurred before new facilities 

were built. Fast pyrolysis facility location decisions favored regions with high biomass availability 

and areas close to bioenergy plants.  

2.4 Mobile Densification 

The majority of prior research considers BBSC systems with stationary densification units. 

Using one or more stationary densification facilities makes it possible to realize economies of scale 

when biomass can be transported to the locations in large quantities. However, stationary 

densification becomes economically unattractive under some conditions. To improve the BBSC, 

researchers suggest utilizing mobile densification units that can be moved between BBSC facilities 

[4, 12, 13, 14]. To our knowledge, the study by Judd et al. [10] is the only one that proposes a 
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prescriptive optimization model for the BBSC that captures mobile densification machines. 

Researchers have conducted descriptive studies focused primarily on two types of mobile 

densification: mobile pelleting and mobile pyrolysis.  

Large-scale commercial mobile pelleting machines are in early development.  The U.S. 

Department of Energy’s Idaho National Laboratory, developed a small, transportable pelleting 

machine that can be taken to biomass sources and storage locations [147].  This unit was for 

demonstration only, however. Although some studies describe benefits associated with mobile 

pelleting machine utilization [148, 149], no study to date has considered optimizing mobile 

pelleting utilization and movement in the BBSC. 

A few research studies have investigated the economic feasibility of incorporating mobile 

fast pyrolysis units in the BBSC and analyzed their movement between facilities. In this approach, 

the pyrolysis unit is transported to the production fields or SSLs where low bulk density biomasses 

in various baling forms are converted into high-density bio-oil. 

Badger and Fransham [12] discussed efforts to develop mobile fast pyrolysis machines. 

The study compared capital and handling costs of bio-oil and green wood chips. Handling system 

capital costs for the two forms were found to be roughly equivalent, but the bio-oil system required 

about half as much land area for handling and storage as did the system for green wood chips. 

Although the authors do not explicitly calculate operating and maintenance costs, they expect these 

to be lower for bio-oil since the system requires less labor and equipment. 

Palma et al. [4] compared the probability of economic benefit when utilizing a mobile 

pyrolysis plant versus stationary one using a Monte Carlo financial simulation model that 

incorporates transportation logistics costs and GIS data. The case study region included locations 

in Illinois and Texas that supply corn stover, as well as an energy sorghum feedstock source in 



34 

Nebraska.  The pyrolysis unit was stationary or moved monthly, bi-monthly, quarterly, or bi-

annually. The results suggested that a stationary pyrolysis plant has the highest net present value, 

and the mobile pyrolysis plant becomes less economical as plant relocation frequency increases. 

The authors concluded that the pyrolysis unit’s high transportation costs outweigh biomass 

transportation cost savings. The probability that the mobile pyrolysis unit achieves a positive net 

present value was less than 16% for all biomass and movement frequency scenarios. However, the 

stationary system is more likely to be successful. Sensitivity analysis on important input 

parameters indicated that if the feedstock prices decrease by 75% or oil prices increase by 75%, 

then the probability of economic success will be greater than 90% for all scenarios. These results 

are more conservative regarding the benefits of mobile pyrolysis over stationary pyrolysis units 

than those in [12].  

Ha et al. [13] used GIS to determine the best locations and movement for mobile pyrolysis 

units used to densify corn stover and bioenergy sorghum in the North Central U.S. The mobile 

pyrolysis units were allowed to move bi-annually. The study suggested that mobile pyrolysis units 

be placed in regions with highest feedstock production rates and dry weather, a combination that 

reduced feedstock hauling distances, ensured transport was not affected by wet weather, and 

supported biomass drying. A related GIS analysis [14] determined mobile pyrolysis machine 

movement to minimize feedstock transportation distance in the North Central U.S. for corn stover, 

energy sorghum, and switchgrass. In this study, the authors took into account factors such as 

transportation networks, seasonality, bioenergy plant location, feedstock availability, and fields’ 

production rates.  
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2.5 Conclusion 

Bioethanol is a promising renewable energy source that reduces fossil fuel dependence 

while reducing GHG emissions. Biomass densification improves BBSC efficiency by producing a 

dense biomass that is simpler and less expensive to handle and transport. This chapter presents a 

broad overview of densification techniques and BBSC models that incorporate densification.  We 

have seen that baling is the most-studied densification technique, and cost analysis using 

mathematical equations is the most common method for managing BBSC systems. Future research 

is needed to develop mathematical models that optimize the movement of mobile densification 

units in the BBSC. Such comprehensive BBSC optimization models should also incorporate 

uncertainty. Moreover, despite the fact that numerous optimization models have been developed 

for the BBSC, these are almost exclusively from a centralized perspective. Many studies point out 

that the U.S. has the potential to meet RFS2 production goals for cellulosic-based biofuel, but 

achieving this potential may require BBSC models that account for farmers’ willingness to harvest 

crop residues or grow energy crops for the bioenergy plant. 

 

2.6  Relation to Thesis Objectives 

This chapter identifies research gaps in the BBSC studies and the opportunities to improve 

the supply chain to reduce logistics costs. First, the review indicates that mobile pelleting is a 

promising technology to reduce BBSC logistics costs. However, there is no mathematical 

optimization model that manages the BBSC considering mobile pelleting units. Second, currently 

there does not exist a model that explicitly accounts for farmers’ objectives in BBSC optimization. 

To fill this gap, the author, in Chapter 3, focuses on understanding the role of mobile densification 

in the BBSC by proposing comprehensive BBSC optimization model that integrate mobile 
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densification units. To fill the second gap, the author in Chapter 4 modifies the comprehensive 

BBSC optimization model proposed in Chapter 3 to integrate farmers’ choice.   
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Chapter 3 - Optimization of Lignocellulosic Biomass-To-Biofuel 

Supply Chains with Mobile Pelleting 

Chapter 3 is based on the paper, “Optimization of Lignocellulosic Biomass-To-Biofuel 

Supply Chains with Mobile Pelleting,” which is currently under revision after first review by a 

peer-reviewed journal. 

 

3.1 Introduction 

Biomass-to-biofuel supply chains (BBSCs) face significant logistical challenges. Among 

these are the low bulk density of biomass feedstocks. Densification has an important role in 

minimizing BBSC logistics costs, and its benefits are greatest when biomass is densified close to 

the supply source. One way to accomplish this is by using mobile densification units, which are 

capable of traveling to sites close to the supply sources, rather than transporting low bulk density 

biomass to a fixed densification site. To date, no study has introduced an optimization approach 

for managing BBSCs with different biomass types and multiple baling forms in conjunction with 

mobile densification units. This chapter addresses that gap, with the primary focus on BBSCs that 

convert lignocellulosic biomasses into ethanol. 

Different biomass feedstocks can be used to produce ethanol, including corn grain, 

agricultural residues (e.g., corn stover, wheat straw, rice straw), and dedicated energy crops (e.g., 

switchgrass, sorghum). Lignocellulosic biomasses (LB), such as switchgrass and corn stover, are 

considered promising biofuel feedstocks, because they are readily available and relatively 

inexpensive compared with traditional biofuel feedstocks [103, 150]. However, their low bulk 

density and high dry matter loss result in high handling and transportation costs [4, 12, 13, 80]. 
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To overcome these obstacles, researchers suggest densifying biomass feedstock before 

transporting it to the bioenergy plant [3, 5, 6, 7, 8, 12]. Densification methods, such as baling, 

cubing, pelleting, and pyrolysis, result in different biomass forms and bulk densities. In addition 

to these traditional methods, in which densification machines operate at fixed locations, mobile 

densification machines that may be transported between sites are proposed to decrease total BBSC 

cost [4, 12, 13]. Research shows that mobile pelleting, in particular, holds promise for improved 

BBSC management [149], but to date there is no mathematical optimization model that addresses 

this opportunity.  

Most BBSC studies focus on a single type and form of biomass. However, one feedstock 

type may not be sufficient to fully utilize bioenergy plant capacity and fulfill biofuel demands, 

especially if biomass supply is seasonal [25]. Biomass form (e.g., round bale or rectangular bale) 

is often determined by production field operators, not by the bioenergy plant, and thus it is more 

realistic to consider multiple forms. To address these issues, we propose a model that explicitly 

accounts for different biomass feedstock types and forms. This increases both flexibility and 

complexity in the BBSC.  

Optimizing BBSC operations while accounting for multiple feedstock types, different 

biomass forms, and mobile densification opportunities is expected to produce economic and 

environmental benefits. This research is compatible with efforts in the United States and 

worldwide to produce renewable energy sources that decrease dependency on fossil fuel and 

reduce greenhouse gas (GHG) emissions. For instance, the current U.S. renewable fuel standard 

established by the Energy Independence and Security Act of 2007 [31] sets a goal to consume 36 

billion gallons of biofuel per year by 2022, of which at least 16 billion gallons per year should be 

from lignocellulosic biomass.  
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This chapter’s objective is to investigate conditions under which mobile densification is 

economically attractive. We first summarize related literature (Section 2). Then we introduce a 

mixed integer linear programming (MILP) model for the BBSC in Section 3 that considers 

different lignocellulosic biomass types, harvesting (baling forms) at the production fields, and 

mobile pelleting machines (MPMs) moving between satellite storage locations (SSLs). The 

proposed MILP model captures both strategic and tactical level decisions. Strategic decisions 

include the number and locations of SSLs and the number of MPMs. Tactical decisions include 

biomass flow between BBSC facilities, biomass inventory, MPM movement between SSLs, and 

the amount of densified biomass. We describe data for a case study in Section 4 and use these data 

to demonstrate the MILP model in Section 5. We describe the results of sensitivity and scenario 

analyses in Sections 6 and 7, and we present a breakeven analysis of mobile pelleting costs in 

Section 8. We conclude in Section 9 with directions for future research. 

3.2 Problem Context 

The research in this study builds on existing literature that describes methods for managing 

the BBSC with one or more of the following: strategic and/or tactical level decisions; densification; 

and mobile densification. We summarize relevant studies and our contributions here.  

High BBSC logistics costs motivate researchers to optimize supply chain decisions. Many 

studies propose MILP models that capture strategic aspects, including bioenergy plant location 

[17, 19, 20, 21, 95, 96, 97, 98, 99, 106], collection facility location [17, 18, 95, 105], and/or supply 

field location [99]. Many models also consider tactical and operational decisions, such as the flow 

of biomass and biofuel between BBSC facilities [17, 18, 19, 20, 21, 95, 96, 97, 98, 99, 103, 105, 

106].  
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Despite the fact that a bioenergy plant may receive biomass in different baling forms, all 

of the previously mentioned models consider a single biomass feedstock form. The literature also 

pays much less attention to optimizing densification decisions within the BBSC [3, 4, 12, 13, 15, 

103, 106].  

There are a number of studies that investigate the effect of biomass densification on BBSC 

design and management decisions without explicitly employing optimization. Pelleting is one of 

the most important densification techniques, because it increases biomass bulk density [151, 152, 

153, 154, 155, 156], reduces transportation costs [157, 158], and simplifies handling [152, 155].  

Notably, research has shown no difference in ethanol production between pelleted and 

unpelleted biomass [140]; the study considers wheat straw, corn stover, big bluestem, and sorghum 

stalk biomasses. Several studies demonstrate that supply chain characteristics significantly 

influence the economic attractiveness of pelleting. For example, Krishnakumar and Ileleji  [148] 

investigate the benefit of pelleting biomass in minimizing BBSC logistical requirements and costs. 

They compare five combinations of biomass type and form: corn grain, baled corn stover, baled 

switchgrass, pelleted corn stover, and pelleted switchgrass. The results show that baled corn stover 

has the lowest transportation cost for a small bioenergy plant, but that pelleted switchgrass has the 

lowest transportation cost for a large capacity bioenergy plant.  In the latter case, biomass needs 

to be transported from a larger region to fully utilize the bioenergy plant capacity; the 

transportation cost savings for pelleted biomass outweigh pelleting cost. Mani et al. [141] divide 

pelleting into three operations, drying, size reduction, and densification, and estimate costs for 

each operation for different pelleting plant capacities. The authors come to a similar conclusion as 

[148], finding that pelleting unit costs decrease as pelleting plant capacity increases due to scale 

economies.   

http://www.sciencedirect.com/science/article/pii/S0960852412001241#b0070
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While the preceding papers focus primarily on densification units that operate in fixed 

locations, there are some studies that investigate the effect of mobile densification units on BBSC 

design and total cost. The literature focuses mainly on mobile pyrolysis, since pyrolysis produces 

bio-oil that has the highest energy density compared to other densified biomass forms. Badger and 

Fransham [12] investigate the benefit of densifying woody biomass into bio-oil using mobile 

pyrolysis units. The authors indicate that by densifying biomass to bio-oil at a site close to the 

supplying field, this will increase the distance from supplying field to bioenergy plant for which 

bio-oil is cost effective. Palma et al. [4] use Monte Carlo financial simulation and GIS to compare 

the economic feasibility of a stationary pyrolysis unit and a mobile pyrolysis unit. For their study 

region, the costs of hauling the mobile machine exceed the savings in biomass transportation and 

storage costs. Ha et al. [14] use GIS to determine locations and routes of mobile pyrolysis units 

used to densify corn stover, energy sorghum, and switchgrass to bio-oil. The study concludes that 

pyrolysis units should visit locations with high biomass availability. 

In summary, while there are many research studies that apply optimization techniques to 

BBSC management decisions and a few that consider densification, none optimize the BBSC with 

mobile densification. In this context, our study makes two primary contributions. First, we propose 

a mathematical optimization model for the BBSC with mobile densification. The model makes it 

possible to quantify conditions that make mobile densification an attractive choice, and it is 

generalizable across regions and input parameter values. Second, we demonstrate the model’s 

applicability for BBSC decision support using data from the state of Kansas. 

3.3 Problem Formulation 

This section presents a BBSC model with multiple biomass types, multiple baling forms, 

and mobile pelleting machines. The BBSC is modeled on a time-expanded network. The planning 
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horizon is divided into discrete time periods t =1, …, |T|, where T is the set of periods in the 

planning horizon. Each BBSC facility (production fields, SSLs, and bioenergy plant) is replicated 

in each time period. Figure 3.1 depicts a small example BBSC with two potential fields, one 

potential SSL for storing and densifying biomass, and one bioenergy plant. A dashed arc 

connecting the same facility in different time periods represents the decision to store biomass or 

biofuel in inventory, while a solid arc connecting different facilities represents a transportation 

decision. If at least one mobile pelleting machine is stationed at an SSL during any time period, 

the corresponding facility is shaded. 

 

Figure 3.1:  Biomass-to-biofuel supply chain network representation 

The time- expanded network is represented on a directed graph G = (L, A). Facilities in the 

node set L include the set of potential production fields 𝐿1, set of potential SSLs 𝐿2, and the 

prespecified location of the bioenergy plant n. Note that 𝐿 = 𝐿1 ∪ 𝐿2 ∪ n and 𝐿1 ∩ 𝐿2 = ∅, implying 

that SSLs cannot be located at potential production fields. The set A of network arcs includes 

transportation and inventory arcs. Flows on transportation arcs represent decisions about biomass 
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movement between BBSC facilities. Transportation costs depend on distance and biomass form 

(round bale, rectangular bale, or pelleted). Flows on inventory arcs represent decisions to store 

biomass or biofuel at a facility from one time period to the next. Inventory costs depend on storage 

duration, storing conditions, and biomass form. As shown in the figure, the term BBSC here refers 

to supply chain operations from the point of harvesting biomass into different densification forms 

at production fields to the point producing ethanol at the bioenergy plant to satisfy demand; pre-

harvest and post-refining operations are excluded.  

A MILP is developed to solve the problem. The objective function is to minimize the total 

BBSC cost for the planning horizon including (1) biomass purchase cost, (2) biomass 

transportation cost, (3) fixed cost associated with opening SSLs, (4) transportation cost of mobile 

pelleting machines between SSLs, (5) inventory holding cost of biomass and biofuel, (6) biomass 

densification cost at SSLs, and (7) biofuel production cost. Decision variables representing the 

amount of biomass held in inventory, transported, densified, and converted to biofuel are 

nonnegative and continuous. In addition, binary variables represent decisions to open SSLs and to 

move mobile pelleting machines. Sets and indices are shown in Table 3.1, while the parameters 

are represented in Table 3.2. The decision variables are summarized in Table 3.3. 
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Table 3.1: Sets and indices 

 

Table 3.2: Input parameters  

Parameter Description Unit 

𝐴 𝑙𝑏𝑘𝑡 
Available biomass of type 𝑏 ∈ 𝐵 in form 𝑘 ∈ 𝐾 at production field 

𝑙 ∈ 𝐿1 at time 𝑡 ∈ 𝑇 
ton 

𝜑𝑏𝑘 Price of biomass type 𝑏 ∈ 𝐵 in form 𝑘 ∈ 𝐾 $/ton 

𝐻𝑘𝑙𝑡 
Unit inventory holding cost of biomass in form 𝑘 ∈ 𝐾 at facility 𝑙 ∈
𝐿 at time 𝑡 ∈ 𝑇 

$/ton 

𝐻 Unit inventory holding cost of biofuel  $/gallon 

𝜇 Unit densification cost (pelleting) of biomass feedstock $/ton 

𝑑𝑙𝑙′ Distance between facility 𝑙 ∈ 𝐿 and facility 𝑙′ ∈ 𝐿, 𝑙′ ≠  𝑙 mile 

𝑇𝑘 Unit transportation cost per ton of biomass in form 𝑘 ∈ 𝐾 $/ton.mile 

𝜋 Cost of transporting mobile pelleting machine $/mile 

𝑆𝑙𝑏𝑘 
Storage capacity for biomass type 𝑏 ∈ 𝐵 in form 𝑘 ∈ 𝐾 at facility 𝑙 ∈
𝐿 

ton 

𝑆′ Storage capacity for biofuel at bioenergy plant  gallon 

𝑃𝑏𝑘 
Unit cost of converting biomass feedstock type 𝑏 ∈ 𝐵 in form 𝑘 ∈ 𝐾 

to biofuel  
$/ton 

Notation Description 

L Set of all locations in biomass-to-biofuel supply chain, 𝑙 ∈ 𝐿 

𝐿1 Set of biomass production fields, 𝐿1 ⊆ 𝐿 

𝐿2 Set of all candidate locations for satellite storage, 𝐿2 ⊆ 𝐿 

𝑛 Given location of bioenergy plant, 𝑛 ∈ 𝐿 

0 
Depot where the MPMs are stationed before being transported to SSL for densifying 

biomass, 0 ∈ 𝐿 

B Set of biomass types, b ∈ B 

K Set of biomass forms, k ∈ K, k = 1 (rectangular), k = 2 (round), k = 3 (pelleted) 

T Set of time periods in the planning horizon, t ∈ T 

W Set of mobile pelleting machines, 𝑤 ∈ 𝑊 
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𝐷𝑡 Demand for biofuel at time 𝑡 ∈ 𝑇 gallon 

𝐹 Annualized fixed cost of opening bioenergy plant  $/year 

𝑉𝑙 Annualized fixed cost of opening SSL at location 𝑙 ∈ 𝐿2  $/year 

𝜃𝑘𝑙 
Dry matter loss rate of biomass in form 𝑘 ∈ 𝐾 during storage at 

facility 𝑙 ∈ 𝐿 
unitless 

ℷ𝑘 Dry matter loss rate of biomass in form 𝑘 ∈ 𝐾 during transportation unitless 

𝛼𝑏 Conversion rate of biomass type 𝑏 ∈ 𝐵 unitless 

m Number of mobile pelleting machines available unitless 

𝑞 Mobile pelleting machine capacity ton/period 

𝐶 Bioenergy plant capacity gallon/period 

 

 

 

Table 3.3: Decision variables 

 

Variable Description Unit 

𝑌𝑏𝑘𝑙𝑙′𝑡 Amount of biomass type  𝑏 ∈ 𝐵 in form  𝑘 ∈ 𝐾  shipped from 

facility 𝑙 to facility 𝑙′ for  𝑙,  𝑙′ ∈ 𝐿 and  𝑙′ ≠  𝑙, at time 𝑡 ∈ 𝑇 
ton 

𝑋𝑏𝑘𝑙𝑡 Amount of biomass type 𝑏 ∈ 𝐵  in form  𝑘 ∈ 𝐾  stored at facility l ∈
𝐿  from time period 𝑡 ∈ 𝑇 to the next time period 

ton 

𝑋𝑡
′   

 

Amount of biofuel stored at bioenergy plant from time period 𝑡 ∈ 𝑇 

to the next time period gallon 

𝐸𝑏𝑘𝑡 Amount of biomass type  𝑏 ∈ 𝐵  in form  𝑘 ∈ 𝐾  used to produce 

biofuel in time period 𝑡 ∈ 𝑇 
ton 

𝑅𝑏𝑘𝑙𝑡 Amount of biomass of type  𝑏 ∈ 𝐵  in form  𝑘 ∈ 𝐾 pelleted at 

facility 𝑙 ∈ 𝐿2 in time period 𝑡 ∈ 𝑇 
ton 

𝐵𝑡 Biofuel production in time period 𝑡 ∈ 𝑇 gallon 

𝐺𝑙 1 if an SSL is opened at location l ∈ 𝐿2 binary 

𝑍𝑤𝑙𝑡 1 if mobile pelleting machine  𝑤 ∈ 𝑊  is located at facility 𝑙 ∈ (𝐿2 ∪
 0) in time period 𝑡 ∈ 𝑇 

binary 

𝑈𝑤𝑙𝑙′𝑡 1 if mobile pelleting machine  𝑤 ∈ 𝑊  travels from facility 𝑙 ∈ (𝐿2∪ 

0) to facility 𝑙′ ∈ (𝐿2 ∪  0) in time period 𝑡 ∈ 𝑇 
binary 
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The MILP optimization model is presented below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ ∑𝜑𝑏𝑘
𝑡 ∈ 𝑇𝑘∈𝐾\{3}𝑏 ∈ 𝐵𝑙′∈ (𝐿2∪ 𝑛) 𝑙 ∈ 𝐿1

𝑌𝑏𝑘𝑙𝑙′𝑡 + ∑ ∑ ∑ ∑𝐻𝑘𝑙𝑡
𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑏 ∈ 𝐵 𝑙 ∈ 𝐿

𝑋𝑏𝑘𝑙𝑡 + 𝐻∑  𝑋𝑡
′

𝑡 ∈ 𝑇

+ ∑ ∑ ∑ ∑𝜑𝑏𝑘𝜃𝑘𝑙𝑋𝑏𝑘𝑙𝑡
𝑡 ∈ 𝑇𝑘 ∈ 𝐾\{3}𝑏 ∈ 𝐵 𝑙 ∈ 𝐿1

+ ∑ ∑ ∑ ∑ 𝜇 𝑅𝑏𝑘𝑙𝑡
𝑡 ∈ 𝑇𝑘 ∈ 𝐾\{3}𝑏 ∈ 𝐵 𝑙 ∈ 𝐿2

+ ∑ ∑ ∑ 𝑃𝑏𝑘
𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑏 ∈ 𝐵

𝐸𝑏𝑘𝑡 + ∑ ∑ ∑ ∑ ∑𝑇𝑘 𝑑𝑙𝑙′

𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑏 ∈ 𝐵𝑙′∈𝐿: 𝑙′≠ 𝑙𝑙∈𝐿/𝑛

𝑌𝑏𝑘𝑙𝑙′𝑡

+ ∑ ∑ ∑ ∑ 𝜋𝑑𝑙𝑙′𝑈𝑤𝑙𝑙′𝑡
𝑡 ∈ 𝑇𝑙′∈ 𝐿2𝑙 ∈(𝐿2∪ 0)𝑤 ∈ 𝑊

+ ∑ 𝑉𝑙
𝑙 ∈ 𝐿2

𝐺𝑙 

 

Subject to: 

𝐵𝑡 + 𝑋𝑡−1
′ ≥ 𝐷 𝑡  ∀ 𝑡 ∈ 𝑇 (1) 

∑ 𝑌𝑏𝑘𝑙𝑙′𝑡 + 𝑌𝑏𝑘𝑙𝑛𝑡 + 𝑋𝑏𝑘𝑙𝑡 ≤ 𝐴 𝑙𝑏𝑘𝑡 + (1 − 𝜃𝑘𝑙)𝑋𝑏𝑘𝑙,𝑡−1 𝑙′ ∈ 𝐿2    

 ∀ 𝑙 ∈ 𝐿1, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇      (2) 

𝑌𝑏𝑘𝑙𝑛𝑡 + 𝑋𝑏𝑘𝑙𝑡 + 𝑅𝑏𝑘𝑙𝑡 = (1 − ℷ𝑘)∑ 𝑌𝑏𝑘𝑙′𝑙𝑡𝑙′∈ 𝐿1 + (1 − 𝜃𝑘𝑙)𝑋𝑏𝑘𝑙,𝑡−1      

 ∀ 𝑙 ∈ 𝐿2, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇    (3)   

 𝑌𝑏3𝑙𝑛𝑡 + 𝑋𝑏3𝑙𝑡 = (1 − 𝜃3𝑙) 𝑋𝑏3𝑙,𝑡−1 + ∑ 𝑅𝑏𝑘𝑙𝑡𝑘∈𝐾\{3}    

 ∀ 𝑙 ∈ 𝐿2, 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇  (4) 

𝐸𝑏𝑘𝑡 + 𝑋𝑏𝑘𝑛𝑡 = (1 − ℷ𝑘)∑ 𝑌𝑏𝑘𝑙′𝑛𝑡𝑙′ ∈ (𝐿1∪ 𝐿2) + (1 − 𝜃𝑘𝑛)𝑋𝑏𝑘𝑛,𝑡−1   

 ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇  (5) 

𝐸𝑏3𝑡 + 𝑋𝑏3𝑛𝑡 = (1 − ℷ3)∑  𝑙′ ∈ 𝐿2 𝑌𝑏3𝑙′𝑛𝑡 + (1 − 𝜃3𝑛)𝑋𝑏3𝑛,𝑡−1

 ∀ 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇 (6) 

𝐵𝑡 = ∑ ∑  𝛼𝑏𝑘∈𝐾𝑏∈ 𝐵 𝐸𝑏𝑘𝑡      ∀ 𝑡 ∈  𝑇  (7) 
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𝑋𝑡
′ + 𝐷 𝑡 = 𝑋𝑡−1

′ + 𝐵𝑡        ∀ 𝑡 ∈  𝑇 (8) 

𝑋𝑏𝑘𝑙𝑡 ≤ 𝑆𝑙𝑏𝑘 𝐺𝑙        ∀  𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇     (9) 

𝑋𝑏𝑘𝑛𝑡 ≤ 𝑆𝑛𝑏𝑘        ∀  𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑡 ∈  𝑇     (10) 

𝑋𝑡
′ ≤ 𝑆′        ∀ 𝑡 ∈  𝑇  (11)  

𝐵𝑡 ≤ 𝐶     ∀ 𝑡 ∈  𝑇     (12) 

∑ ∑ 𝑅𝑏𝑘𝑙𝑡 ≤𝑘∈𝐾\{3}𝑏∈ 𝐵 𝑞 ∑ 𝑍𝑤𝑙𝑡𝑤∈ 𝑊    ∀ 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇  (13) 

∑ 𝑌𝑏𝑘𝑙′𝑙𝑡𝑙′∈ 𝐿1 ≤ 𝑆𝑙𝑏𝑘𝐺𝑙 ∀ 𝑙 ∈ 𝐿2, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇    (14)   

𝑈𝑤𝑙𝑙′𝑡 ≥ 𝑍𝑤𝑙′𝑡 + 𝑍𝑤𝑙,𝑡−1 − 1  ∀ 𝑤 ∈ 𝑊, 𝑙′ ∈ (𝐿2 ∪ 0), 𝑙 ∈ (𝐿2 ∪ 0), 𝑡 ∈ 𝑇\{1} 

  (15) 

𝑈𝑤𝑙𝑙′𝑡 ≤ 𝑍𝑤𝑙′𝑡  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ (𝐿2 ∪ 0), 𝑡 ∈ 𝑇    

  (16) 

𝑈𝑤𝑙𝑙′𝑡 ≤ 𝑍𝑤𝑙,𝑡−1  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ (𝐿2 ∪ 0), 𝑡 ∈ 𝑇\{1} 

  (17) 

∑ 𝑈𝑤0𝑙1 = 1𝑙 ∈ (𝐿2∪0)   ∀ 𝑤 ∈  𝑊 (18) 

∑ 𝑈𝑤𝑙𝑙′𝑡 =  ∑ 𝑈𝑤𝑙′𝑙,𝑡−1𝑙′ ∈ (𝐿2∪0)𝑙′ ∈ 𝐿2   ∀ 𝑤 ∈  𝑊, 𝑙 ∈ 𝐿2, 𝑡 ∈ 𝑇\{1}  (19) 

∑ 𝑈𝑤0𝑙𝑡 =  𝑈𝑤00,𝑡−1𝑙 ∈ (𝐿2∪0)   ∀ 𝑤 ∈  𝑊, 𝑡 ∈ 𝑇\{1} (20) 

∑ ∑ 𝑍𝑤𝑙𝑡𝑤 ∈ 𝑊 ≤ 𝑚𝑙 ∈ 𝐿2      ∀ 𝑡 ∈  𝑇 (21) 

𝑍𝑤𝑙𝑡 ≤ 𝐺𝑙   ∀ 𝑤 ∈  𝑊, 𝑙 ∈  𝐿2, 𝑡 ∈ 𝑇 (22) 

 𝐵𝑡        ≥ 0   ∀ 𝑡 ∈  𝑇  (23) 

 𝑋𝑡
′        ≥ 0   ∀ 𝑡 ∈  𝑇  (24) 

𝑌𝑏𝑘𝑙𝑙′𝑡  ≥ 0  ∀ 𝑙 ∈  𝐿1, 𝑙
′ ∈  𝐿2, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈ 𝑇  (25) 

𝑌𝑏𝑘𝑙𝑛𝑡   ≥ 0  ∀ 𝑙 ∈  (𝐿1 ∪ 𝐿2), 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇 (26) 

𝑌𝑏3𝑙𝑛𝑡   ≥ 0   ∀ 𝑙 ∈  𝐿2, 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇        (27) 
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𝐸𝑏𝑘𝑡     ≥ 0   ∀ 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾, 𝑡 ∈  𝑇     (28) 

𝑋𝑏𝑘𝑙𝑡    ≥ 0         ∀ 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇  (29) 

𝑋𝑏3𝑙𝑡    ≥ 0            ∀ 𝑙 ∈ (𝐿2 ∪ 𝑛), 𝑏 ∈ 𝐵, 𝑡 ∈  𝑇       (30)  

𝑅𝑏𝑘𝑙𝑡    ≥ 0   ∀ 𝑙 ∈  𝐿2, 𝑏 ∈ 𝐵, 𝑘 ∈ 𝐾\{3}, 𝑡 ∈  𝑇        (31) 

𝐺𝑙         ∈ {0,1} ∀ 𝑙 ∈  𝐿2 (32) 

𝑍𝑤𝑙𝑡     ∈ {0,1} ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ 𝐿2, 𝑡 ∈  𝑇 (33) 

𝑈𝑤𝑙𝑙′𝑡  ∈ {0,1}  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ 𝐿2, 𝑡 ∈ 𝑇 (34) 

The objective function consists of nine terms. The first term is the biomass purchase cost. 

The next two terms are the inventory holding cost of biomass at BBSC facilities and of biofuel at 

the bioenergy plant, respectively. The fourth term accounts for biomass that is purchased but lost 

in storage at the field. The fifth term is the biomass densification cost. The cost of converting 

biomass into biofuel is represented in the sixth term. Biomass transportation cost between facilities 

is reflected in the seventh term. The eighth term is the cost associated with transporting mobile 

pelleting machines between SSLs. The last term is the fixed cost associated with opening SSLs.  

Constraint (1) ensures that the biofuel demand in each planning period is met through that 

period’s production or with inventory carried from the previous period.  To guarantee that no more 

unpelleted biomass is shipped from fields than what is actually available at the time of shipping, 

constraint (2) is established. Constraints (3) – (8) describe flow balance at time-space locations for 

biomass and biofuel, where the left-hand side of each equation represents flow out and the right-

hand side represents flow into a node. Feedstock flow balance constraints for the unpelleted and 

pelleted biomass feedstock at SSLs are constraints (3) and (4), respectively; they account for dry 

matter loss during storage and transportation. Constraints (5) and (6) are the flow balance 

constraints at the bioenergy plant for the unpelleted and pelleted biomass feedstock, respectively. 
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Constraint (7) links biofuel production to the corresponding biomass via the conversion rate. 

Biofuel flow balance at the bioenergy plant is enforced by constraint (8).  

Constraints (9) and (10) are capacity constraints on feedstock inventory at the SSLs and at 

the bioenergy plant, respectively, while constraint (11) enforces biofuel inventory capacity limits 

at the bioenergy plant. The bioenergy plant’s production capacity in each time period is reflected 

in constraint (12). Similarly, constraint (13) is the densification capacity constraint for the mobile 

pelleting machines. To prevent shipping biomass to unopened SSLs, constraint (14) is established. 

Constraints (15) – (22) concern mobile pelleting machine movement. Constraint (15) 

ensures that if a mobile pelleting machine moves from SSL 𝑙′ in period t-1 to SSL 𝑙 in period t, 

then the binary variable 𝑈𝑤𝑙𝑙′𝑡 equals 1.  Constraints (16) and (17) ensure that a MPM does not 

travel to a SSL unless it is assigned to visit it. Constraint (18) states that the depot is the starting 

point for all MPM routes. MPM flow balance is enforced by constraints (19) and (20) for SSLs 

and depot, respectively; the left-hand side of each equation represents the number of mobile 

pelleting machines that leave a time-space node and the right-hand side gives the number that 

arrive. The number of mobile pelleting machines in use in any time period is limited by constraint 

(21). Constraint (22) requires that mobile pelleting machines are only used at open storage 

facilities. Constraints (23) – (31) enforce non-negativity, while constraints (32) – (34) define the 

binary variables. 

3.4 Case Study 

To demonstrate the applicability of the model, we analyze a case study using data from the 

state of Kansas. Kansas is a forerunner in the biofuel industry. Currently, there are fourteen ethanol 

plants in Kansas, and corn grain is the main feedstock [159]. The case study considers two LB 
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types, corn stover and switchgrass, and two baling techniques at production fields, large 

rectangular bales and large round bales. Baled biomass may be densified at SSLs using one or 

more of 25 mobile pelleting machines that can move between SSLs. The case study has a one-year 

planning horizon, where the planning period is one month. Corn stover, the residue left after 

harvesting corn grain, is available at production fields year-round. Switchgrass is available at 

production fields only at harvesting windows. Switchgrass cannot be harvested from March to 

June, but it can be bought when it is available and stored at production fields.  

 Corn stover availability in the selected study region is determined by considering two 

factors: (1) the amount of corn stover that can be removed from a given field, and (2) the fraction 

of corn acres from which any stover will be harvested. Concerning the first factor, if a field is 

chosen to supply corn stover, best practice leaves some stover in the field to prevent erosion and 

preserve soil organic material [160, 161, 162]. Milhollin et al. study [162] Suggest harvesting at 

most 50% of the corn stover. The average gross corn stover yield in Kansas in the last ten years 

(2008-2017) is 3.948 ton/acre [163]. Thus, using a 50% removal rate, we assume that net corn 

stover yield from selected fields is 1.974 ton/acre. With respect to the second factor, some farmers 

are not willing to harvest corn stover from their production fields at all; one study found that 77% 

of Kansas farmers are willing to do so [28]. In our study, we conservatively assume that no more 

than 50% of corn acres are potential corn stover sources for the bioenergy plant. 

  To determine switchgrass availability, we consider farmers’ willingness to plant 

switchgrass and the land that could be devoted to this crop. A survey of Kansas farmers found that 

44% are willing to plant switchgrass, and that those who are willing will devote about 5% of their 

acres to the crop [28].  Based on these results, we assume that 2% of the total crop and pasture 
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land in the study region that is not planted to corn can be planted to switchgrass. The switchgrass 

yield is assumed to be 7 ton/acre [164]. 

The case study region is depicted in Figure 3.2, where 𝐹𝑖 represents the ith potential field, 

𝑆𝑆𝐿𝑗 represents the jth potential SSL, and B represents the bioenergy plant location. The case 

study has 10 production fields, two candidate SSLs, and one bioenergy plant. The production 

fields in our case study are assumed to be the 10 Kansas counties with the greatest number of 

acres planted to corn in 2015 [165]. 

 

Figure 3.2: Case study geographical layout 

 

In this study, each production field consists of a number of smaller fields. The biomass is 

baled into large round bales (5 ft × 4 ft) or large rectangular bales (4 ft × 8 ft) depending on the 

equipment available at production fields. Then, the bales are arranged at the field’s edge and stored 

until they are transported by truck to the SSL or directly to the bioenergy plant. At the SSL, the 

stored baled biomass may keep its original form or may be densified into pellets before being 
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transported to the bioenergy plant. We assume that trucks are used to transport mobile pelleting 

machines between SSLs in the BBSC. 

There are different techniques for storing biomass at BBSC facilities. For example, bales 

may be covered with a tarp or uncovered, and they may be kept on wooden pallets, a gravel surface, 

or on bare ground [166].  Each storage method has different cost and dry matter loss characteristics. 

We assume that baled biomass is covered with tarps at all locations, that it is stored on bare ground 

at production fields and SSLs, and that it is stored on gravel at the bioenergy plant.  Pelleted 

biomass is kept in storage bins at SSLs and at the bioenergy plant.  

Storage loss represents the amount of dry matter that biomass loses after one month of 

storage at fields, SSLs, or bioenergy plant locations. Storage loss depends on two factors: storage 

type and densification form. For simplicity, we assume dry matter loss per month is constant. Dry 

matter loss during transportation is very small so it is neglected.  

Table 3.4 summarizes the parameter estimates used for the case study. A major contribution 

of this work is the compilation of more than 50 input parameter values. Most parameter estimates 

used for the case study come from journal papers and United States Department of Agriculture 

(USDA) publications. However, because mobile pelleting is still under development, the cost of 

moving mobile pelleting machines ($/mile) is estimated based on values associated with similar 

processes. 
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Table 3.4: Values of input parameters 

Parameter Value Source 

Price of rectangular switchgrass ($/ton)  𝜑21=41.63 [166] 

Price of round switchgrass ($/ton)  𝜑22=49.88 [166] 

Price of rectangular corn stover ($/ton) 𝜑11=70 

Assumed based on 

differences in rectangular 

and round bale costs in 

[166] 

Price of round corn stover ($/ton) 𝜑12=80 [167] 

Unit inventory holding cost of rectangular biomass at field 

and SSL ($/ton) (tarp only) 
𝐻11𝑡=𝐻12𝑡=4.84  [166] 

Unit inventory holding cost of round biomass at field and SSL 

($/ton) (tarp only) 
𝐻21𝑡=𝐻22𝑡=4.84  [166] 

Unit inventory holding cost of pelleted biomass at SSL ($/ton) 𝐻32𝑡=0.08  [141] 

Unit inventory holding cost of rectangular biomass at 

bioenergy plant ($/ton) (tarp and gravel) 
𝐻13𝑡=10.75 [166, 168] 

Unit inventory holding cost of round biomass at bioenergy 

plant ($/ton) (tarp and gravel) 
𝐻23𝑡=17.78 [166, 168] 

Unit inventory holding cost of pelleted biomass at bioenergy 

plant ($/ton) (steel bins) 
𝐻33𝑡=1.1525 [169, 6] 

Unit inventory holding cost of biofuel at the bioenergy plant 

(30% product value) ($/ gallon) 
𝐻 =0.654 [168] 

Conversion rate of corn stover (gallons /ton) 𝛼1=73.71 [170] 

Conversion rate of switchgrass (gallons /ton) 
𝛼2=90 

 
[17] 

Bioenergy plant processing capacity (gallons/ month) 𝐶=8,360,000 [168] 

Annualized fixed cost of bioenergy plant with capacity level 

𝑪 ($) 
𝐹=72,000,000 [171, 168] 

Dry matter loss of rectangular biomass at bioenergy plant 

(tarp and gravel) (per month) (0.31 / 200 days) 
𝜃13=0.0465 [172] 

Dry matter loss of round biomass at bioenergy plant  

(tarp and gravel) (per month) (0.16 / 200 days) 
𝜃23=0.024 [172] 
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Dry matter loss of rectangular biomass at fields and SSLs 

(tarp only) (per month) (0.19*2 / 200 days) 
θ11=θ12=0.057 

Assumed twice the loss for 

round biomass based on 

[172] 

Dry matter loss of baled biomass at fields and SSLs (tarp 

only) (per month) (0.19 / 200 days) 
𝜃2𝑙=𝜃22=0.0285 [172] 

Unit transportation cost of rectangular biomass ($/(ton.mile)) 𝑇1=0.263 [166, 168] 

Unit transportation cost of round biomass 

($/ton. mile) 
𝑇2=0.322 [166, 168] 

Unit transportation cost of pelleted biomass ($/(ton. mile)) 𝑇3=0.088 [131, 6] 

Processing cost of baled corn stover ($/ton) 𝑃1𝑘=44.30 [17] 

Processing cost of baled switchgrass ($/ton)  𝑃2𝑘=50 [168, 95] 

Processing cost of pelleted corn stover ($/ton) 𝑃13=32.3 [169] 

Processing cost of pelleted switchgrass ($/ton) 𝑃23=38 [169] 

Ethanol price ($/gallon) 2.18 [20, 173] 

Unit cost of pelleting ($/ton) 𝜇 =48 [149] 

Cost of moving mobile pelleting machine ($/mile)  𝜋 =1.639 [174] 

Annualized fixed cost of opening SSLs ($/year)  𝑉1,𝑉2=500,000 Assumed 

Bioenergy plant capacity for storing baled biomass (ton) 

𝑆311,𝑆312,𝑆321,

𝑆321=5,000 

 

Assumed 

Bioenergy plant capacity for storing pelleted biomass (ton) 𝑆313,𝑆323=20,000 Assumed 

SSL capacity for storing baled biomass (ton)  

 

𝑆211,𝑆212,𝑆221, 

𝑆222 =100,000 
Assumed 

SSL capacity for storing pelleted biomass (ton)  

 

𝑆213,𝑆223=200,00

0 
Assumed 

 

Figure 3.3 shows the amount of biomass of different types and densification forms 

available at production fields in the case study. Each production field has a different combination 
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of biomass types and forms. For example, some fields have all four combinations (e.g., Fields 5, 

7, 9 and 10), while others have just two (e..g, Fields 1 and 4). During the switchgrass harvesting 

months (t =1, 2, 7, 8, 9, 10, 11, 12), the total biomass available each month is 249,000 dry tons, of 

which 200,000 dry tons are corn stover and 49,000 dry tons are switchgrass. In the remaining 

months, the total biomass availability is 200,000 dry tons per month, consisting only of corn stover.  

 

Figure 3.3: Biomass availability at production fields 
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To estimate the necessary MPM parameters for our model, we depend on [149], who 

describes technical specifications for a potential mobile pelleting machine. The model requires 

two parameters, the MPM capacity per month (𝑞) and the pelleting cost per ton (𝜇). We suppose 

that if a MPM visits a SSL, it remains there for one planning period (month). Mason [149] 

estimates the MPM capacity to be 5 ton/hr. We assume that a MPM can operate 12 hrs/day, 20 

days/month. Thus, each MPM has a monthly capacity of 1,200 ton/month. Total pelleting cost per 

ton of biomass is $48/ton and includes fuel, labor, setup, insurance, equipment amortization, and 

maintenance costs [149]; these cost components are summarized in Table 3.5.  Fuel cost per ton is 

calculated by multiplying fuel consumption (30 gallon/hr, [149]) by fuel price ($3/gallon), then 

dividing the result by machine capacity (5 ton/hr), yielding $18/ton. Labor cost per ton is calculated 

under the assumption that a MPM requires two operators each earning $40/hr [149], which gives 

$16/ton. Mason [149] estimates the machine setup cost and insurance costs to be $1/ton. 

Equipment amortization cost of $6/ton is computed by dividing the MPM purchase price 

($1,800,000) by the number of tons that can be pelleted during its useful life (60,000 hrs, or 

300,000 tons) [149]. Finally, Mason [149] estimates maintenance cost of a MPM and the truck 

used to transport it between SSLs to be $6/ton.  

Table 3.5: Pelletizing input parameters [149] 

Parameter Value 

Fuel cost ($/ton) 18 

Labor cost ($/ton) 16 

Setup cost ($/ton) 1 

Equipment amortization($/ton) 6 

Insurance costs ($/ton) 1 

Maintenance cost  ($/ton) 6 

Total pelleting cost ($/ton) 48 
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3.5 Results 

In this section, we summarize the results produced by the MILP model for the case study 

region under the base case parameters presented in Section 4, which are representative of current 

economic conditions and technology capabilities. The model is implemented using IBM ILOG 

CPLEX Studio and solved using CPLEX 12.6.2 on a desktop computer with a 3.4 GHz processor. 

The resulting MILP problem includes 3,692 binary variables, 3,850 continuous variables, and 

9,540 constraints. The optimal solutions for main case study, sensitivity analysis, and scenario 

analysis are found in less than 2 minutes. 

The optimal solution generated by the MILP model shows that no SSL is opened and 

MPMs are not utilized. This is due to the high densification cost of baled biomass into pelleted 

form and the high fixed cost associated with opening a SSL. In summary, utilizing a MPM is not 

an attractive decision under current economic conditions. Total annual BBSC cost by category is 

illustrated in Figure 3.4. Feedstock costs paid to production field owners’ account for 39.95% of 

the BBSC cost. Transportation, the second largest cost, accounts for 30.61%, processing for 

28.88%, storage for 0.43%, and storage loss for 0.13% of total cost.  
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Figure 3.4: Total annual BBSC cost by category 

Figure 3.5 shows the dry tons of switchgrass and corn stover that are processed at the 

bioenergy plant in each month. The bioenergy plant processes switchgrass whenever it is available. 

Figure 3.6 summarizes the dry tons of different forms of biomass processed at the bioenergy plant 

in each month, illustrating that the rectangular form is preferred over round biomass. This is due 

to its lower transportation and storage cost, which outweighs the greater storage loss incurred by 

rectangular bales.  

 

Figure 3.5: Total biomass processed at the bioenergy plant each month, by type 
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Figure 3.6: Total biomass processed at the bioenergy plant each month, by baling form 
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parameters helps to determine those that are most significant to the choice to pellet. For this reason, 

independent changes in parameters including densification cost, SSL fixed cost, number of MPMs, 

and travel distances are considered separately. The sensitivity analyses for densification cost and 

SSL fixed cost consider decreases in the nominal parameter value from 0% to 100% in 1% 

increments. We analyze the system with 25, 50, and 75 MPMs. To examine the effect of distances 

between BBSC facilities, the original distances are increased in 1% increments from 1% to 20%. 

We adjust the distances between the SSLs and bioenergy plant, and between fields and bioenergy 

plant, but the distances from fields to SSLs remain the same as in the base case study. When 

creating the new parameter values, we make sure to satisfy the triangle inequality between any 

combination of field, SSL, and bioenergy plant. This is necessary to prevent using a SSL as a stop 

for biomass. This will occur if the total distance from a field to a SSL to the bioenergy plant is less 

than the distance directly from a field to the bioenergy plant. 

Results indicate that mobile pelleting machine utilization is sensitive to independent 

changes in biomass densification costs, transportation distances, and satellite storage location fixed 

cost. Figure 3.7 – 3.9 show the sensitivity of the tons of pelleted biomass to parameter changes. 

There are several findings to note. First, mobile pelleting machines will be utilized if the 

densification cost is reduced by 15%, 13%, or 11% when there are 25, 50, or 75 MPMs in the 

BBSC, respectively. Moreover, if SSL fixed cost is reduced by 67%, then MPMs will be utilized 

a regardless of the number of machines available. Finally, mobile pelleting machines will be 

utilized if distances are increased by 17%, 13%, or 12% when there are 25, 50, or 75 MPMs in the 

BBSC, respectively.  
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Figure 3.7: Effect of changes in densification cost on pelleted biomass quantity 
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Figure 3.9: Effect of transportation distances between BBSC facilities on amount of pelleted 

biomass 
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Results from the MILP model show that MPMs are utilized when the distances between 

facilities are large (20% increase) or the densification cost is low (20% decrease), regardless of 

other parameter values (S3, S6, S9, S12, S15, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27). 

Also, reducing biomass densification costs and/or satellite storage location fixed costs decreases 

the distance threshold for which mobile densification is attractive (S11, S14, S17, S19, S20, S22, 

S23, S25, S26). If the densification cost and distances between BBSC facilities do not change 

(original values), then changing SSL fixed cost will not affect the choice to pellet (S1, S4, S7). 

Also, if the densification cost is reduced by 10% (medium level) without changing the distances, 

then densification remains unattractive for any value of  SSL fixed cost (S10, S13, S16).  
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Table 3.6: Scenario construction 

 

Scenario 

number 

Scenario 

type 

Densification 

cost ($/ton) 

SSL fixed 

cost ($) 

Traveled distances  

(% increase) 

 

Tons of pelleted 

biomass 

S1 000 48.0 500,000 0% 0.00 

S2 001 48.0 500,000 10% 0.00 

S3 002 48.0 500,000 20% 88,306.18 

S4 010 48.0 450,000 0% 0.00 

S5 011 48.0 450,000 10% 0.00 

S6 012 48.0 450,000 20% 88,306.18 

S7 020 48.0 400,000 0% 0.00 

S8 021 48.0 400,000 10% 0.00 

S9 022 48.0 400,000 20% 88,306.18 

S10 100 43.2 500,000 0% 0.00 

S11 101 43.2 500,000 10% 103,222.22 

S12 102 43.2 500,000 20% 176,038.00 

S13 110 43.2 450,000 0% 0.00 

S14 111 43.2 450,000 10% 103,222.22 

S15 112 43.2 450,000 20% 176,038.00 

S16 120 43.2 400,000 0% 88,306.18 

S17 121 43.2 400,000 10% 103,222.22 

S18 122 43.2 400,000 20% 176,038.00 

S19 200 38.4 500,000 0% 111,044.00 

S20 201 38.4 500,000 10% 146,544.00 

S21 202 38.4 500,000 20% 287,408.34 

S22 210 38.4 450,000 0% 111,044.00 

S23 211 38.4 450,000 10% 146,544.00 

S24 212 38.4 450,000 20% 286,764.34 

S25 220 38.4 400,000 0% 111,044.00 

S26 221 38.4 400,000 10% 146,544.00 

S27 222 38.4 400,000 20% 286,764.34 

 

Next, we investigated the impact of the number of MPMs (from 1 to 25) on MPM 

utilization under each of the 27 scenarios.  Figure 3.10 shows scenarios that utilize mobile 

densification for a different number of machines. Results indicate that by adding more MPMs to 

the BBSC, the number of scenarios that utilize MPM increases. This is because mobile 

densification becomes more attractive when additional MPMs are available, since the increased 

densification capacity offsets the fixed costs associated with establishing SSLs. However, there 
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are five scenarios where densification remains unattractive even if there are enough MPMs to 

densify all biomass. This occurs for original travel distance and densification cost regardless of 

SSL fixed cost (S1, S4, S7), when SSL fixed cost is unchanged and densification cost decreases 

10% (S2), and when SSL fixed cost is unchanged and transportation distance increases 10% (S10).  

 

Figure 3.10: Scenarios that utilize mobile densification for different number of MPMs 
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S24, S27); these are the only scenarios in which two SSLs are opened. For scenarios that utilize 

MPMs and do not have mobility, once a MPM moves to a SSL, it will remain there until the end 

of the planning horizon.  

Table 3.7: Scenario analysis 

Scenario 25 MPM 50 MPM 75 MPM 

Scenario 

# 

Scenario 

Type 

# of 

machines 

utilized 

Mobility 

# of 

machines 

utilized 

Mobility 

# of 

machines 

utilized 

Mobility 

S1 000 0 0 0 0 0 0 

S2 001 0 0 0 0 0 0 

S3 002 25 0 50 0 75 0 

S4 010 0 0 0 0 0 0 

S5 011 0 0 0 0 73 0 

S6 012 25 0 50 0 75 0 

S7 020 0 0 0 0 0 0 

S8 021 0 0 0 0 73 0 

S9 022 25 0 50 0 73 0 

S10 100 0 0 0 0 0 0 

S11 101 25 0 50 0 75 0 

S12 102 25 0 50 0 75 0 

S13 110 0 0 0 0 73 0 

S14 111 25 0 50 0 75 0 

S15 112 25 0 50 0 75 0 

S16 120 0 0 50 0 73 0 

S17 121 25 0 50 0 75 0 

S18 122 25 0 50 0 75 0 

S19 200 25 0 50 0 75 0 

S20 201 25 0 50 0 75 0 

S21 202 25 128 50 55 75 37 

S22 210 25 0 50 0 75 0 

S23 211 25 0 50 0 75 0 

S24 212 25 123 50 55 75 37 

S25 220 25 0 50 0 75 0 

S26 221 25 0 50 0 75 0 

S27 222 25 125 50 55 75 39 
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3.8 Breakeven Analysis 

The preceding sections compared scenario sets to identify circumstances under which 

mobile pelleting is economically attractive. Given the input parameters for a particular system, it 

is also possible to calculate a priori the distance from field to bioenergy plant for which the total 

cost for pelleted biomass is equivalent to the total cost for baled biomass. Here we introduce an 

expression for calculating this value, denoted the breakeven distance. It represents the maximum 

distance that the bioenergy plant is willing to transport biomass from a supplying field without 

further densification at a SSL.  The breakeven distance is calculated for each combination of 

biomass type and densification form.  

Let 𝑋𝑏𝑘 be the breakeven distance from field to bioenergy plant for biomass type b and 

densification form k. This distance consists of two components; r is the fraction of the total 

breakeven distance represented by the distance from field to SSL, and (1 − 𝑟) is the fraction 

represented by the distance from SSL to bioenergy plant (see Figure 3.11). Then 𝑋𝑏𝑘 can be 

calculated using Equation (35), which captures the total cost incurred by transporting baled 

biomass directly to the bioenergy plant (left-hand side) and the total cost incurred by transporting 

and densifying pelleted biomass (right-hand side).  

 
𝐷𝑡

𝛼𝑏
(𝜑𝑏𝑘 + 𝑃𝑏𝑘 + 𝑇𝑘𝑋𝑏𝑘) =

𝐷𝑡

𝛼𝑏
(𝜑𝑏𝑘 + 𝑃𝑏3 + 𝜇 + 𝑟𝑇𝑘𝑋𝑏𝑘 + (1 − 𝑟)𝑇3𝑋𝑏𝑘) + 𝑉𝑙. (35) 

𝐷𝑡 is the demand for biofuel at time t and 𝛼𝑏 is the conversion rate of biomass type b. The 

terms in parentheses on the left represent the baled biomass purchase cost, the baled biomass 

processing cost at the bioenergy plant, and transportation cost of baled biomass from field to 

bioenergy plant, respectively. The right-hand side represents the cost incurred by pelleted biomass 

and consists of six terms: baled biomass purchase cost, pelleted biomass processing cost at the 

bioenergy plant, densification cost, transportation cost of baled biomass from field to the SSL to 
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be densified, transportation cost of pelleted biomass from SSL to bioenergy plant, and the fixed 

cost associated with opening a SSL. Equation (35) simplifies to: 

𝑋𝑏𝑘=   
𝑃𝑏3−𝑃𝑏𝑘+𝜇+

𝛼𝑏𝑉𝑙
𝐷𝑡

(𝑇𝑘−𝑇3)(1−𝑟)
.  (36) 

Increasing densification cost, SSL fixed cost, or r will increase the breakeven distance. High 

densification cost or SSL fixed cost make densification less attractive at short distances. On the 

other hand, densification is more attractive the closer the SSL is to the supplying field.  Changes 

in demand also affect breakeven distance, where higher demand results in a smaller breakeven 

distance.  

 

Figure 3.11: Representation of the BBSC facilities 
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Table 3.8: Cost elements for baled and pelleted biomass 

Cost element Switchgrass/Rectangular Switchgrass/Round 

Purchase cost ($/ton) 𝜑𝑏21=41.630 𝜑𝑏22=49.88 

Transportation cost of baled biomass 

($/(mile. ton)) 
𝑇1 =0.263 𝑇2=0.322 

Baled biomass cost 

Conversion cost-bale ($/ton)  𝑃21=50 𝑃22=50 

Pelleted biomass cost 

Densification cost ($/ton) 𝜇 =48 𝜇 =48 

SSL fixed cost  ($/month) 𝑉𝑙=41,666.67 𝑉𝑙=41,666.67 

Transportation cost of pelleted biomass 

($/(mile. ton)) 
𝑇3=0.088 𝑇3=0.088 

Conversion cost-pellet ($/ton) 𝑃23=38 𝑃23=38 

 

Breakeven distance can be calculated for any combination of parameter values. Cost 

parameters corresponding to our case study are summarized in Table 3.8 for baled and pelleted 

biomasses. Suppose the monthly demand for ethanol (𝐷𝑡) is 10,000,000 gallons, and that required 

biomass can be provided by one large production field. If this production field is planted only with 

switchgrass, we need a supply of (
𝐷𝑡

𝛼𝑏
) =111,111.111 tons to satisfy biofuel demand. The breakeven 

distance for rectangular switchgrass bales is:  

𝑋21 = 
207.857

1−𝑟
.  (37) 

The breakeven distance for round switchgrass is:     

𝑋22 =
155.795

1−𝑟
.  (38) 

Figure 3.12 illustrates the relationship between total breakeven distance (𝑋𝑏𝑘) and the ratio 

(r) between the distance from the field to the SSL and the total distance for switchgrass in 
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rectangular and round forms. The breakeven distance increases as r increases, because the SSL is 

closer to the bioenergy plant than to the production field. This makes densification less attractive. 

The breakeven distance for round bales is less than that for rectangular bales. This is because the 

transportation cost of round bales is higher than that of rectangular bales, so converting round bales 

to pellets becomes economically attractive at smaller distances. Similar observations are true for 

corn stover biomass. 

 

Figure 3.12: Breakeven analysis of the effect of SSL location on the choice to pellet 
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3.9 Conclusion 

This chapter introduces a MILP to optimize BBSC design in settings with multiple types 

and forms of biomass feedstock and mobile densification units. The method is demonstrated with 

a case study that reflects current technology and economic characteristics of mobile pelleting. We 

find that mobile densification is unattractive under these conditions. However, sensitivity analysis 

shows that mobile pelleting is beneficial with modest changes in densification cost, SSL fixed cost, 

or travel distances. Increasing the number of available MPMs also makes mobile densification 

more attractive.   

This work provides a foundation for future study of this and related problems. The 

proposed optimization model can be adapted to manage supply chains for other products in which 

mobile units are employed to change product characteristics, such as density or form. For example, 

in addition to mobile pelleting for biomass feedstock used for ethanol production, mobile machines 

are used to mill olives at individual farm sites [175], to densify biomass for electricity [176], and 

to convert biomass to bio-oil via pyrolysis [12, 14, 15, 4, 11]. Future research may build on this 

framework by accounting for uncertainty in system parameters or representing farmers’ choices 

about biomass production explicitly in the model.  
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Chapter 4 - Optimization of Lignocellulosic Biomass-To-Biofuel 

Supply Chains Considering Mobile Pelleting and Farmers’ Choices 

4.1 Introduction 

The optimization model proposed in Chapter 3 adds to the state of the art, as there is no 

research study that proposes an optimization tool to manage the complexities of having different 

types and forms of biomass, in addition to mobile densification. However, the previous study does 

not account for farmers’ decisions. Farmers play an important role in the BBSC, and ignoring their 

decision and preference may prevent the bioenergy plant from meeting biofuel demand. One way 

to account for farmers’ decisions is to incorporate the probability that farmers will sell biomass 

feedstock to the bioenergy plant in the optimization model of the BBSC. This will help accurately 

estimate biomass supply at field level. To date, no study has proposed an optimization tool to 

manage the BBSC considering mobile densification and farmers’ decisions. To fill this gap, this 

chapter modifies the comprehensive BBSC optimization model proposed in Chapter 3 integrating 

farmers’ choices. 

Most BBSC research studies assume that farmers are willing to sell all available biomass 

at a specified price. These studies also assume the bioenergy plants pay a fixed biomass price per 

ton for all farmers, regardless of origin. However, fixed payments for all farmers is not realistic 

because farmers’ preferences differ based on favorability to contract payment or other contract 

options, conservation and environmental concern, and demographic factors such as age and 

education [26, 27, 28, 177]. Due to these factors, bioenergy plants may need to pay different prices 

to receive the same biomass quantity from different farmers. To guarantee sufficient supply for the 

bioenergy plant and obtain acceptable biomass prices for farmers, contractual arrangements may 
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need to be proposed [26, 28, 177, 178, 179, 180].  Bioenergy plants offer other services in the 

contract that affect farmers’ probability to participate in the BBSC; such as harvesting biomass, 

transportation services to the bioenergy plant, and nutrient replacement options. Soil nutrient loss 

can be compensated by using fertilizer, and farmers’ probability to provide biomass to bioenergy 

plants increases if the bioenergy plant will pay for fertilizer [28].  

We propose a mixed integer linear programming (MILP) model for the biomass-to-biofuel 

supply chain that considers densification using MPMs and farmers’ choices.  This study 

investigates the most important factors that influence type of contract offered to farmers in 

different locations and under different weather conditions. Several factors may affect contract 

payment, such as geographical factors (distance from bioenergy plant and SSLs), farmers' 

probability to provide biomass to bioenergy plant, and corn stover yield, the latter of which 

depends both on location and weather.  

We organize the paper into five sections. First, we briefly summarize several papers that 

manage BBSC considering farmers’ choices in Section 2. Second, we describe model structure 

and formulation in Section 3. We describe the case study, including the parameters used in 

formulating the model to examine corn stover conversion to ethanol in Kansas, in Section 4.  We 

present results in Section 5. We provide conclusions and future research directions in Section 6. 
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4.2 Problem Context 

Most of the research studies in the area of optimizing the BBSC consider traditional 

densification techniques and account for bioenergy plant objectives. Few research studies account 

for mobile densification, as summarized in Section 3.2, or farmers’ decisions in the BBSC. This 

section summarizes studies that propose tools to manage the BBSC considering farmers’ choices. 

Farmers’ decisions within the BBSC are difficult to model because there are a lot of factors 

that affect their choices, such as economic and environmental impacts. The majority of studies that 

investigate the importance of including farmers’ decisions not directly utilize optimization models.  

Past research has investigated farmers’ decision with choice experiments and agent-based 

simulation models. 

The studies that propose economics models do not integrate them with the complete BBSC. 

Economics models use choice experiments to estimate farmers’ probability of selling bioenergy 

crops to a bioenergy plant. Choice experiments depend on surveys distributed to farmers that 

investigate farmers’ preference for contract attributes to estimate farmers’ probability to provide 

biomasses including corn stover [26, 27, 28], switchgrass [28, 177, 179], and sweet sorghum [28]. 

The results of Bergtold et al. [27] study are used as an input to our optimization model in order to 

have an accurate estimate of supply at each field. Bergtold et al. [27] investigate farmers’ 

probability to provide corn stover to a bioenergy plant under contract in Kansas. They utilize 

choice experiments to determine the probability that a farmer is willing to supply biomass 

feedstock considering different contract options: the net return and the other three contract 

attributes (contract length, biomass refinery harvest option, and a nutrient replacement option). 

Results indicate that eastern and central districts of Kansas have a higher probability of 
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participating in the BBSC compared to the western part of Kansas. Under preferable contract 

conditions, farmers in the western part of Kansas are less likely to participate in the BBSC.  

Agent-based simulation is another tool that has been employed to model farmers’ behavior 

and their interaction with other farmers in their neighborhood [29, 30]. Agent-based simulation 

has been utilized to investigate farmers’ choices of irrigation plan [181], crop choice [182], and 

participation in the BBSC [30, 183]. 

Two interesting studies propose agent-based simulation to estimate farmers’ willingness to 

supplying biomass to the bioenergy plant [30, 183]. Huang et al. [30] propose an agent-based 

simulation model that considers farmers’ decision making in growing row crops (corn) versus 

dedicated energy crops (switchgrass). Farmers decide the number of acres dedicated for row crop 

and the number of acres farmers will rent out to the bioenergy plant. The model considers farmers’ 

economic and environmental preferences, environmental impact of soil erosion, and neighborhood 

influence. Their model is demonstrated for a case study region in Iowa. The model finds that Iowa 

is able to supply 14.2% of the RSF2 goal by 2022. Huang and Hu [183] incorporate similar 

decision part of farmers as [62]. However, they add interactions with the bioenergy plant and omit 

the impact of neighboring farmers on farmers’ decisions. In their model, farmers’ decisions are 

profit driven; they do not consider other factors such as an environmental impact on soil erosion. 

After a bioenergy plant observes farmers’ decision they adjust their contract pricing accordingly 

to increase their profit for the next year. Their model is demonstrated for a case study in the state 

of Iowa. Results indicate that a constant land renting price strategy yield higher profit for the 

bioenergy plant than a flexible renting price strategy.  

This study adds to the state of the art in two ways. First, we propose an optimization model 

that simultaneously considers different densification forms, the complexities of having mobile 
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densification units, and farmers’ probability to provide crop residue (corn stover) to the bioenergy 

plant. This contribution builds on the unique model introduced in Albashabsheh and Heier Stamm 

study [184].  Second, we implement a case study based on the state of Kansas that demonstrates 

the model. 

4.3 Problem Description and Formulation 

This section presents the MILP model for the BBSC, in which we consider biomass 

densification using MPMs and farmers’ choices. The objective of the proposed model is to 

minimize BBSC total cost. The BBSC consists of potential biomass suppliers, potential SSLs, and 

a bioenergy plant. We consider ethanol produced from corn stover from irrigated and non-irrigated 

land types. For the same supplying field, each land type has a different yield (ton/acre) and 

production cost ($/ton). It is important to consider both land types to gain insight about preferred 

biomass supply under different conditions, because they have different biomass production costs 

and yield characteristics.  

Decisions in the optimization model are chosen to minimize the cost to the bioenergy plant. 

The associated costs are feedstock cost, biomass and biofuel storage costs, densification cost, 

processing cost, biomass transportation cost, MPM transportation cost, and annualized fixed cost 

of SSLs and bioenergy plant. Our model considers strategic and tactical level decisions. The 

strategic level decisions include determining the bioenergy plant capacity and the number and 

location of SSLs. Tactical level decisions include determining biomass quantity purchased from 

each potential supply location, net return offered to each supply location, biomass transported 

between BBSC facilities, biomass stored at different BBSC facilities, biofuel stored at bioenergy 

plant, biomass densified, and MPM movement between SSLs.   
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In practice, farmers decide, for a given contract, whether or not they will provide biomass. 

This decision depends on multiple factors, such as environmental aspect and profit, and farmers’ 

preferences differ. We consider four attributes for each contract: (1) the average annual expected 

net return ($/acre) from biomass after production costs, (2) contract length, (3) whether or not the 

bioenergy plant harvests the biomass, and (4) whether or not the bioenergy plant pays for the 

nutrient loss.  

We include the influence of farmers’ choices by considering farmers’ probability to 

provide biomass to the bioenergy plant under different contract options. We assume farmers are 

rational and they seek to increase the payment they receive from the bioenergy plant. This means 

that farmers’ probability to sell biomass to the bioenergy plant increases by increasing contract 

payment if other contract attributes are fixed. We assume farmers’ probability to provide biomass 

to the bioenergy plant is affected by contract attributes they receive from the bioenergy plant.  

In this model, farmers’ decisions are modeled by modifying the supply that is available for 

the bioenergy plant to purchase. This modified supply is an input to the optimization model. 

Although each farmer makes his/her own decision, we model the cumulative result of these 

decisions at the county level. We assume that the available supply under a given contract is equal 

to the total biomass in the county multiplied by the probability that farmers in the county accept 

the contract.  

Table 4.1 lists model sets and indices, while Table 4.2 shows model parameters. Table 4.3 

presents model decision variables. 

 

 



78 

Table 4.1: Sets and indices 

 

 

 

 

 

 

 

 

 

 

 

Notation Description 

L Set of all locations in biomass-to-biofuel supply chain, l ∈ 𝐿 

𝐿1 Set of counties, 𝐿1 ⊆ 𝐿 

𝐿2 Set of all candidate locations for satellite storage, 𝐿2 ⊆ 𝐿 

𝐿3 Set of all candidate locations for bioenergy plant, 𝐿3 ⊆ 𝐿 

0 
Depot where the MPMs are stationed before being transported to SSL for densifying 

biomass, 0 ∈ 𝐿 

Y Set of years of the contract, y ∈ Y 

u Set of land types, u ∈ U,  u =1 (irrigated),  u = 2  (non-irrigated) 

K Set of biomass forms, k ∈ K, k = 1 (round), k = 2 (pelleted) 

T Set of time periods in the planning horizon, t ∈ T 

W Set of mobile pelleting machines, w ∈ W 

C Set of contracts, c ∈ C 

E Set of bioenergy plant capacity level, e ∈ E 
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Table 4.2: Parameters  

Parameter Description Unit 

𝑆𝑙𝑐𝑡
𝑢  

Corn stover available in county l ∈𝐿1 from land type u ∈ U under 

contract c ∈ C at time t ∈ T 
ton 

ƞ𝑙𝑐𝑦
𝑢  

Contract payment under contract c ∈ C at county l ∈ 𝐿1 for land type 

u ∈ U at year of contract y ∈ Y 
$/ton 

N The cost of nutrient replacement per dry ton of corn stover removed $/ton 

𝐴𝑙𝑦
𝑢  

The cost of harvesting corn stover at county l ∈ 𝐿1 of land type u ∈ 

U at year y ∈ Y 
$/ton 

𝐻𝑘𝑙𝑡 
Unit inventory holding cost of corn stover in form k ∈ K at facility 

𝑙 ∈ 𝐿 at time t ∈ T 
$/ton 

𝐻 Unit inventory holding cost of biofuel  $/gallon 

𝜇 Unit densification cost (pelleting) of corn stover feedstock $/ton 

𝑑𝑙𝑙′  Distance between facility l ∈ 𝐿 and facility 𝑙′ ∈ 𝐿, 𝑙′ ≠  𝑙 mile 

𝑇𝑘 Unit transportation cost per ton of corn stover in form k ∈ K $/ton.mile 

𝜋 Cost of transporting mobile pelleting machine $/mile 

𝑆𝑘𝑙 Storage capacity for corn stover in form k ∈ K at facility l ∈ 𝐿 ton 

𝑆𝑙
′ Storage capacity for biofuel at bioenergy plant 𝑙 ∈ 𝐿3 gallon 

𝑃𝑘 Unit cost of converting corn stover in form k ∈ K to biofuel  $/ton 

𝐷𝑡 Demand for biofuel at time t ∈ T gallon 

𝐹𝑙𝑒 
Annualized fixed cost associated with opening bioenergy plant of 

capacity level e ∈ E at location 𝑙 ∈ 𝐿3 
$/year 

𝑉𝑙 
Annualized fixed cost associated with opening SSL at location 𝑙 ∈
𝐿2  

$/year 

𝜃𝑘𝑙 
Dry matter loss rate of corn stover in form k ∈ K during storage at 

facility 𝑙 ∈ 𝐿 
unitless 

ℷ𝑘 
Dry matter loss rate of corn stover in form k ∈ K during 

transportation 
unitless 

𝛼 Conversion rate of corn stover unitless 

m Number of mobile pelleting machines available unitless 
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𝑞 Mobile pelleting machine capacity ton/period 

Ω𝑒 Bioenergy plant capacity under capacity level e ∈ E gallon/period 

 

 

Table 4.3: Decision variables 

 

 

 

 

 

Variable Description Unit 

𝑄𝑙𝑐𝑦
𝑢  

Amount of corn stover purchased from county l ∈ 𝐿1 from land type 

u ∈ U under y ∈ Y  year of contract c  
ton 

𝛽𝑙𝑡 Demand in time period t ∈ T statisfied by bioenergy plant 𝑙 ∈ 𝐿3   ton 

𝑌𝑘𝑙𝑙′𝑡 
Amount of corn stover in form k shipped from facility 𝑙 to facility 𝑙′, 
𝑙′ ≠  𝑙, at time t ∈ T 

ton 

𝑋𝑘𝑙𝑡 
Amount of corn stover in form k stored at facility l ∈ 𝐿 from time 

period t ∈ T to the next time period 
ton 

𝑋𝑙𝑡
′  

Amount of biofuel stored at bioenergy plant 𝑙 ∈ 𝐿3 from time period  

t ∈ T to the next time period 
gallon 

𝐸𝑘𝑙𝑡 
Amount of corn stover in form k used to produce biofuel in time 

period t ∈ T at bioenergy plant at  l ∈ 𝐿3 
ton 

𝑅𝑙𝑡 
Amount of baled corn stover pelleted at facility 𝑙 ∈ 𝐿2 in time period 

t ∈ T 
ton 

𝐵𝑙𝑡 Biofuel production at bioenergy plant 𝑙 ∈ 𝐿3 in time period t ∈ T gallon 

𝑔𝑙𝑐
𝑢  

1 if the bioenergy plant decide to offer contract c ∈ C  for county l ∈ 

𝐿1 land type u ∈ U 
binary 

𝐺𝑙 1 if an SSL is opened at location l ∈ 𝐿2 binary 

𝑀𝑙𝑒 
1 if an bioenergy plant of capacity level e ∈ E is opened at location l 

∈ 𝐿3 
binary 

𝑍𝑤𝑙𝑡 
1 if mobile pelleting machine w is located at facility  𝑙 ∈ (𝐿2∪ 0) in 

time period t ∈ T 
binary 

𝑈𝑤𝑙𝑙′𝑡 
1 if mobile pelleting machine w travels from facility 𝑙 ∈ (𝐿2∪ 0) to 

facility 𝑙′∈ (𝐿2 ∪  0) in time period t ∈ T 
binary 
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The MILP optimization model is presented below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑  

𝑦∈ 𝑌 𝑢 ∈ 𝑈

∑(

𝑐 ∈ 𝐶𝑙 ∈ 𝐿1

ƞ𝑙𝑐𝑦
𝑢 𝑄𝑙𝑐𝑦

𝑢 + 𝐴𝑙𝑦
𝑢  𝑄𝑙𝑐𝑦

𝑢 + 𝑁𝑄𝑙𝑐𝑦
𝑢 ) +∑ ∑ ∑𝐻𝑘𝑙𝑡

𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑙 ∈ 𝐿

𝑋𝑘𝑙𝑡

+ 𝐻 ∑  ∑ 𝑋𝑙𝑡
′

𝑡 ∈ 𝑇𝑙 ∈ 𝐿3

+ ∑ ∑ ∑ 𝜇 𝑅𝑘𝑙𝑡
𝑡 ∈ 𝑇𝑘 ∈ 𝐾\{2}𝑙 ∈ 𝐿2

+ ∑ ∑ ∑ 𝑃𝑘
𝑡 ∈ 𝑇𝑘 ∈ 𝐾

𝐸𝑘𝑙𝑡
𝑙 ∈ 𝐿3

+ ∑ ∑ ∑ ∑ 𝑇𝑘 𝑑𝑙𝑙′

𝑡 ∈ 𝑇𝑘 ∈ 𝐾𝑙′∈𝐿: 𝑙′≠ 𝑙𝑙∈𝐿\{𝐿3}

𝑌𝑘𝑙𝑙′𝑡 + ∑ ∑ ∑ ∑ 𝜋𝑑𝑙𝑙′𝑈𝑤𝑙𝑙′𝑡
𝑡 ∈ 𝑇𝑙′∈ 𝐿2𝑙 ∈(𝐿2∪ 0)𝑤 ∈ 𝑊

+ ∑ |𝑌|𝑉𝑙
𝑙 ∈ 𝐿2

𝐺𝑙 + ∑ ∑ |𝑌|𝐹𝑙𝑒
𝑒 ∈ 𝐸   

𝑀𝑙𝑒

𝑙 ∈ 𝐿3

 

Subject to: 

𝑄𝑙𝑐𝑦
𝑢 ≤ ∑ 𝑆𝑙𝑐𝑡

𝑢
𝑡 ∈ 𝑇:12𝑦−11≤𝑡≤12𝑦  𝑔𝑙𝑐

𝑢   ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈, 𝑦 ∈  𝑌, 𝑐 ∈  𝐶 (1) 

∑ 𝑔𝑙𝑐
𝑢  𝑐∈ 𝐶 ≤ 1    ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈 (2) 

∑ 𝑌𝑘𝑙𝑙′𝑡 +𝑙′∈ (𝐿2∪𝐿3) 𝑋𝑘𝑙,𝑡 = ∑ ∑  𝑄𝑙𝑐𝑦
𝑢

𝑐∈ 𝐶 +𝑢 ∈ 𝑈 (1 − 𝜃𝑘𝑙) 𝑋𝑘𝑙,𝑡−1

 ∀ 𝑙 ∈  𝐿1, 𝑘 = 1, 𝑦 ∈  𝑌, 𝑡 ∈  𝑇: 𝑡 = 12𝑦 − 11 

  (3) 

∑ 𝑌𝑘𝑙𝑙′𝑡 +𝑙′∈ (𝐿2∪𝐿3) 𝑋𝑘𝑙,𝑡 = (1 − 𝜃𝑘𝑙) 𝑋𝑘𝑙,𝑡−1 ∀ 𝑙 ∈  𝐿1, 𝑘 = 1, 𝑦 ∈  𝑌, 𝑡 ∈  𝑇: 12𝑦 − 10 ≤

𝑡 ≤ 12𝑦  (4) 

∑ 𝑌𝑘𝑙𝑙′𝑡𝑙′∈  𝐿3 + 𝑋𝑘𝑙𝑡 + 𝑅𝑘𝑙𝑡 = (1 − ℷ𝑘)∑  𝑙′∈ 𝐿1 𝑌𝑘𝑙′𝑙𝑡 + (1 − 𝜃𝑘𝑙)𝑋𝑘𝑙,𝑡−1      

  ∀ 𝑙 ∈ 𝐿2, 𝑘 = 1, 𝑡 ∈  𝑇    (5)   

 ∑ 𝑌𝑘𝑙𝑙′𝑡𝑙′∈  𝐿3 + 𝑋𝑘𝑙𝑡 = ∑ 𝑅𝑘𝑙𝑡𝑘∈𝐾\{2} + (1 − 𝜃𝑘𝑙) 𝑋𝑘𝑙,𝑡−1  

 ∀ 𝑙 ∈ 𝐿2, 𝑘 = 2, 𝑡 ∈  𝑇  (6) 

𝐸𝑘𝑙𝑡 + 𝑋𝑘𝑙𝑡 = (1 − ℷ𝑘)∑ 𝑌𝑘𝑙′𝑙𝑡𝑙′ ∈ (𝐿1∪ 𝐿2) + (1 − 𝜃𝑘𝑛)𝑋𝑘𝑙,𝑡−1   

 ∀ 𝑙 ∈ 𝐿3, 𝑘 ∈ 𝐾, 𝑡 ∈  𝑇  (7) 

𝑋𝑙𝑡
′ + 𝛽𝑙𝑡 = 𝑋𝑙,𝑡−1

′ + 𝐵𝑙𝑡       ∀ 𝑙 ∈ 𝐿3, 𝑡 ∈  𝑇 (8) 

𝐵𝑙𝑡 = ∑  𝛼𝑘∈𝐾 𝐸𝑘𝑙𝑡      ∀ 𝑙 ∈ 𝐿3, 𝑡 ∈  𝑇  (9) 

∑ (𝐵𝑙𝑡 + 𝑋𝑙,𝑡−1) ≥ 𝐷 𝑡𝑙 ∈ 𝐿3   ∀ 𝑡 ∈ 𝑇 (10) 

∑ 𝛽𝑙𝑡 = 𝐷 𝑡𝑙 ∈ 𝐿3   ∀ 𝑡 ∈ 𝑇 (11) 

𝑋𝑘𝑙𝑡 ≤ 𝑆𝑘𝑙 𝐺𝑙        ∀  𝑘 ∈ 𝐾, 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇     (12) 

𝑋𝑘𝑙𝑡 ≤ 𝑆𝑘𝑙 𝑀𝑙𝑒        ∀  𝑘 ∈ 𝐾, 𝑙 ∈  𝐿3, 𝑒 ∈  𝐸, 𝑡 ∈  𝑇     (13) 

𝑋𝑙𝑡
′ ≤ 𝑆𝑙

′ 𝑀𝑙𝑒        ∀ 𝑙 ∈  𝐿3, 𝑒 ∈  𝐸, 𝑡 ∈  𝑇  (14)  

𝐵𝑙𝑡 ≤ ∑ Ω𝑒 𝑀𝑙𝑒𝑒 ∈ 𝐸      ∀  𝑙 ∈  𝐿3, 𝑡 ∈  𝑇     (15) 
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∑ 𝑅𝑘𝑙𝑡 ≤𝑘∈𝐾\{2} 𝑞 ∑ 𝑍𝑤𝑙𝑡𝑤∈ 𝑊    ∀ 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇  (16) 

∑ 𝑀𝑙𝑒 ≤   1𝑒 ∈ 𝐸   ∀  𝑙 ∈ 𝐿3  (17) 

∑ 𝑌𝑘𝑙′𝑙𝑡𝑙′∈ 𝐿1 ≤ 𝑆𝑘𝑙𝐺𝑙 ∀ 𝑙 ∈ 𝐿2, 𝑘 = 1, 𝑡 ∈  𝑇    (18)   

𝑈𝑤𝑙𝑙′𝑡 ≥ 𝑍𝑤𝑙′𝑡 + 𝑍𝑤𝑙,𝑡−1 − 1  ∀ 𝑤 ∈ 𝑊, 𝑙′ ∈ (𝐿2 ∪ 0), 𝑙 ∈ (𝐿2 ∪ 0) , 𝑡 ∈

𝑇\{1}  (19) 

𝑈𝑤𝑙𝑙′𝑡 ≤ 𝑍𝑤𝑙′𝑡  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ (𝐿2 ∪ 0), 𝑡 ∈ 𝑇    

  (20) 

𝑈𝑤𝑙𝑙′𝑡 ≤ 𝑍𝑤𝑙,𝑡−1  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ (𝐿2 ∪ 0), 𝑡 ∈

𝑇\{1}  (21) 

∑ 𝑈𝑤0𝑙1 = 1𝑙 ∈ (𝐿2∪0)   ∀ 𝑤 ∈  𝑊 (22) 

∑ 𝑈𝑤𝑙𝑙′𝑡 =  ∑ 𝑈𝑤𝑙′𝑙,𝑡−1𝑙′ ∈ (𝐿2∪0)𝑙′ ∈ 𝐿2   ∀ 𝑤 ∈  𝑊, 𝑙 ∈ 𝐿2, 𝑡 ∈ 𝑇\{1} (23) 

∑ 𝑈𝑤0𝑙𝑡 =  𝑈𝑤00,𝑡−1𝑙 ∈ (𝐿2∪0)   ∀ 𝑤 ∈  𝑊, 𝑡 ∈ 𝑇\{1} (24) 

∑ ∑ 𝑍𝑤𝑙𝑡𝑤 ∈ 𝑊 ≤ 𝑚𝑙 ∈ 𝐿2      ∀ 𝑡 ∈  𝑇 (25) 

𝑍𝑤𝑙𝑡 ≤ 𝐺𝑙   ∀ 𝑤 ∈  𝑊, 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇 (26) 

𝐵𝑙𝑡        ≥ 0   ∀  𝑙 ∈  𝐿3, 𝑡 ∈  𝑇  (27) 

𝑌𝑘𝑙𝑙′𝑡  ≥ 0  ∀ 𝑙 ∈  𝐿1, 𝑙
′ ∈  (𝐿2 ∪ 𝐿3), 𝑘 = 1, 𝑡 ∈ 𝑇  (28) 

𝑌𝑘𝑙𝑙′𝑡   ≥ 0  ∀ 𝑙 ∈  𝐿2, 𝑙
′ ∈ 𝐿3, 𝑘 ∈  𝐾, 𝑡 ∈  𝑇 (29) 

𝐸𝑘𝑙𝑡     ≥ 0   ∀ 𝑘 ∈ 𝐾, 𝑙′ ∈  𝐿3, 𝑡 ∈  𝑇     (30) 

𝛽𝑙𝑡        ≥ 0   ∀  𝑙 ∈  𝐿3, 𝑡 ∈  𝑇  (31) 

𝑋𝑘𝑙𝑡    ≥ 0         ∀ 𝑙 ∈ 𝐿, 𝑘 ∈ 𝐾, 𝑡 ∈  𝑇  (32) 

𝑋𝑙𝑡
′        ≥ 0   ∀  𝑙 ∈  𝐿3, 𝑡 ∈  𝑇 (33) 

𝑅𝑙𝑡    ≥ 0   ∀ 𝑙 ∈  𝐿2, 𝑡 ∈  𝑇        (34) 

𝑄𝑙𝑐𝑦
𝑢    ≥ 0   ∀ 𝑙 ∈  𝐿1, 𝑐 ∈ 𝐶, 𝑦 ∈  𝑌, 𝑢 ∈  𝑈        (35) 

𝐺𝑙         ∈ {0,1} ∀ 𝑙 ∈  𝐿2 (36) 

𝑀𝑙𝑒     ∈ {0,1}  ∀ 𝑙 ∈  𝐿3, 𝑒 ∈  𝐸 (37) 

𝑍𝑤𝑙𝑡     ∈ {0,1} ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ 𝐿2, 𝑡 ∈  𝑇 (38) 

𝑈𝑤𝑙𝑙′𝑡  ∈ {0,1}  ∀ 𝑤 ∈ 𝑊, 𝑙 ∈ (𝐿2 ∪ 0), 𝑙
′ ∈ 𝐿2, 𝑡 ∈ 𝑇 (39) 

𝑔𝑙𝑐
𝑢      ∈ {0,1}  ∀ 𝑐 ∈ 𝐶, 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈 (40) 
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The objective function aims to minimize the total BBSC cost over the entire contract 

period. The first three terms represent the corn stover contract payment, corn stover harvesting 

cost, and nutrient replacement cost, respectively. Inventory holding cost for corn stover at all 

BBSC locations is given by the fourth term, and the fifth term captures inventory holding cost for 

biofuel at the bioenergy plant. Densification cost for baled corn stover is represented in the sixth 

term. The seventh term is the cost to convert corn stover to biofuel. Costs for transporting corn 

stover between BBSC facilities and MPMs between SSLs are reflected in the eighth and ninth 

terms, respectively.  The last two terms capture fixed annual operating costs for SSLs and 

bioenergy plants, respectively. 

Corn stover is purchased in only one month of each year of the contract. Constraint (1) 

guarantees that the amount of corn stover bought from each county in each year does not exceed 

the corn stover supply at the county under each contract option. Constraint (2) ensures that at most 

one contract option is offered for each land type in each county.  

Constraints (3)-(8) are flow balance constraints for baled corn stover, pelleted corn stover, 

and biofuel at each time period. Constraint (3) ensures flow balance for baled corn stover at each 

county in months where corn stover may be purchased, while Constraint (4) ensures balance in all 

other time periods.  Constraints (5) and (6) are the flow balance constraints at SSLs for baled and 

pelleted corn stover, respectively. Constraint (7) is the flow balance constraint for baled and 

pelleted corn stover at bioenergy plants, while Constraint (8) ensures flow balance for biofuel at 

bioenergy plants. To link between the amount of corn stover processed at each bioenergy plant 

and the biofuel production, constraint (9) is established. 

 Constraint (10) requires that biofuel demand is met in each time period.  Constraint (11) 

links the biofuel demand that is satisfied by each bioenergy plant to the total biofuel demand.  
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Constraints (12)-(18) relate to system capacities. Constraints (12) and (13) are storage 

capacity constraints for corn stover at SSLs and bioenergy plants, respectively. Constraint (14) is 

the biofuel storage capacity constraint at bioenergy plants. Constraints (15) and (16) are production 

capacity constraints for bioenergy plants and MPM machines, respectively. Constraint (17) 

requires that at most one capacity level is chosen for each bioenergy plant. Constraint (18) prevents 

shipping corn stover to unopened SSLs.   

Constraints (19)-(22) consider mobile pelleting machine movement between SSLs. Based 

on constraint (19), if the mobile pelleting machine is stationed at SSL 𝑙 in period t-1 and then at 

SSL 𝑙′ in period t, then the binary variable 𝑈𝑤𝑙𝑙′𝑡 equals 1.  Constraints (20) and (21) link between 

the two binary variables 𝑈𝑤𝑙𝑙′𝑡 and 𝑍𝑤𝑙𝑡. To ensure that each MPM initially is stationed at the 

depot and may move from there to a SSL to densify biomass, constraint (22) is established. MPM 

flow balance at SSLs and the depot is ensured by constraints (23) and (24), respectively. These 

constraints require that the number of MPMs arriving a time-space node (SSLs or depot) equals 

the number of MPMs that depart that node. Constraint (25) imposes the limit on the maximum 

number of MPMs utilized, and constraint (26) requires that MPMs can only densify biomass at 

open SSLs. Constraints (27)-(35) are non-negativity constraints, and constraints (36)-(40) define 

the binary variables.  

4.4 Case Study 

We conduct a case study in the state of Kansas to demonstrate model applicability and 

corresponding analysis. The study considers ethanol produced from corn stover because Kansas 

ranks eighth in ethanol production out of all states in the United States [159]. The model is solved 

for three contract periods 2006−2007, 2008−2009, and 2012−2013. These periods are chosen 

based on average biomass yield, where 2006−2007 is an average period, 2008−2009 is a surplus 
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period, and 2012−2013 is a drought period. Figure 4.1 shows the drought map for Kansas for all 

contract years. We consider two densification forms of corn stover: large round bales and pellets 

obtained from mobile pelleting machines. Mobile pelleting machines begin at the depot and then 

move to SSLs as needed. The case study planning horizon is two years and the planning period is 

one month. Previous literature states that corn stover must be harvested a few days to a few weeks 

after the corn grain is harvested [17, 185]. Corn stover typically is harvested into round bales and 

stored in open fields. The following subsections summarize parameter estimates collected for the 

case study as gathered from journal papers and government data services such as the United States 

Department of Agriculture (USDA). Table 4.4 summarizes the parameter estimates used for the 

case study. 
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                     2006                        2007

   

                    2008                          2009

    

2012                           2013 

 

 

Figure 4.1: U.S. Drought Monitor (USDM) [186] drought map for Kansas for August of each 

contract year. 

 



87 

Table 4.4: Values of input parameters  

Parameter Value Source 

Unit inventory holding cost of baled corn stover at field and 

SSL ($/ton) (tarp only) 
𝐻11𝑡=𝐻12𝑡=4.84  [166] 

Unit inventory holding cost of pelleted corn stover at SSL 

($/ton) 
𝐻22𝑡=0.08  [141] 

Unit inventory holding cost of baled corn stover at bioenergy 

plant ($/ton) (tarp and gravel) 
𝐻13𝑡=17.78 [166, 168] 

Unit inventory holding cost of pelleted corn stover at 

bioenergy plant ($/ton) (steel bins) 
𝐻23𝑡=1.1525 [169, 6] 

Unit inventory holding cost of biofuel at the bioenergy plant 

(30% product value) ($/gallon) 
𝐻 =0.654 [168] 

Conversion rate of corn stover (gallons/ton) 𝛼=73.71 [170] 

Bioenergy plant processing capacity under different capacity 

levels (gallons/ month) 
Ω1=4,180,000 

Ω2=8,360,000 

[168] 

Annualized fixed cost of bioenergy plant under different  

capacity levels ($/year) 
𝐹𝑙1=39,000,000 

𝐹𝑙2=72,000,000 

[168] 

Dry matter loss of  baled corn stover at bioenergy plant  

(tarp and gravel) (per month) (0.16/200 days) 
𝜃13=0.024 [172] 

Dry matter loss of baled corn stover at fields and SSLs (tarp 

only) (per month) (0.19/200 days) 
𝜃11=𝜃12=0.0285 [172] 

Unit transportation cost of round biomass 

($/ton.mile) 
𝑇1=0.322  [166, 168] 

Unit transportation cost of pelleted biomass ($/(ton.mile)) 𝑇2=0.088 [131, 6] 

Processing cost of baled corn stover ($/ton) 𝑃1=44.30 [17] 

Processing cost of pelleted corn stover ($/ton) 𝑃2=32.3 [169] 

Unit cost of pelleting ($/ton) 𝜇 =48 [149] 

Cost of moving mobile pelleting machine ($/mile)  𝜋 =1.639 [174] 

Annualized fixed cost of opening SSLs ($/year)  𝑉𝑙 =500,000 Assumed 

Bioenergy plant capacity for storing baled biomass (ton) 𝑆13=50,000 

 

Assumed 

Bioenergy plant capacity for storing pelleted biomass (ton) 𝑆23=100,000 

 

Assumed 

SSL capacity for storing baled biomass (ton)  

 
𝑆12=100,000 

 

Assumed 
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SSL capacity for storing pelleted biomass (ton)  

 
𝑆12=200,000 

 

Assumed 

 

4.4.1 Geography  

We assume that all 105 counties in Kansas could be potential suppliers of corn stover, but 

only six counties are considered potential SSLs: Butler, Finney, Jewell, Marshall, Pratt, and 

Thomas. The SSL counties are selected based on nearness to highways and to counties with high 

corn availability. The maximum distance between any Kansas county and the closest potential SSL 

is less than 162 miles. One bioenergy plant in Reno County is chosen based on its proximity to 

counties with high biomass availability, highways, and railroad network infrastructure. BNSF 

Railway, the Kansas and Oklahoma Railroad, and the Union Pacific Railroad all pass through the 

county, thereby simplifying biofuel shipping from the bioenergy plant to distributors or blending 

facilities. Distances between counties are calculated using Google's Distance Matrix API [187] 

and the latitude and longitude coordinates of counties’ population-weighted centroid, where 

centroids are determined by the 2010 US Census [188]. Google's Distance Matrix API produces 

the shortest distance between any two points, so resulting distances satisfy the triangle inequality. 

Distances within a county are not considered. Figure 4.2 shows facility locations for the case study.  
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Figure 4.2: Case study facility locations in Kansas counties. The triangle represents the 

bioenergy plant; circles represent potential SSLs. Heavy solid lines divide districts [189]; NE is 

northeast, SE is southeast, NC is north central, SC is south central, SE is southeast, SW is 

southwest. 

 

4.4.2 Potential Corn Stover Supply 

County-specific biomass supply calculations considering farmers’ choices are conducted 

according to methods proposed in a study by Bergtold et al. [27] using harvested corn acreage and 

corn stover yield. Table 4.5 describes the parameters required to calculate corn stover supply.  
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Table 4.5: Parameters required to calculate corn stover supply 

Parameter Description Unit 

𝑎𝑙
𝑢 Total harvested corn acreage in county l ∈ 𝐿1 of land type u ∈ U acre 

𝑦𝑙
𝑢 Corn grain yield in county l ∈ 𝐿1 of  land type u ∈ U bu/acre 

ℎ(𝑦𝑙
𝑢) Harvesting index for corn grain yield of 𝑦𝑙

𝑢 unitless 

𝑔𝑠𝑙
𝑢 Gross yield of corn stover in county l ∈ 𝐿1 of land type u ∈ U lbs/ acre 

𝑛𝑠𝑙
𝑢 Net corn stover yield in county l ∈ 𝐿1 of land type u ∈ U ton/ acre 

𝑝𝑠𝑙
𝑢 

Total potential amount of corn stover to be harvested in county l ∈ 

𝐿1 of land type u ∈ U 
ton 

𝑐 Level of return  $/ton 

𝜌𝑙𝑐 
Probability of adoption for county l ∈ 𝐿1 under c ∈ C level of net 

return 
unitless 

 

 

The USDA’s National Agricultural Statistic Service (NASS) [165] provides data for the 

total harvested corn acreage (𝑎𝑙
𝑢) and corn grain yield (𝑦𝑙

𝑢) for irrigated and non-irrigated land in 

Kansas. However, data for harvested acreage and corn grain yield are not reported by NASS for 

some counties and years because doing so would reveal individually-identifying information. 

Appendix A details the method used to impute the missing data, including the procedure to 

estimate harvested corn acreage and yield at the county level for missing data.  

Corn stover yield is estimated using harvest index, which is a function of corn grain yield 

(bushels per acre) [161]. Harvest index (ℎ(𝑦𝑙
𝑢)) is 
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ℎ(𝑦𝑙
𝑢) =

{
 

 
0.45          𝑖𝑓 𝑦𝑙

𝑢 <  112.5                     

0.475       𝑖𝑓 112.5 ≤  𝑦𝑙
𝑢 <  137.5  

0.5             𝑖𝑓 137.5 ≤  𝑦𝑙
𝑢 <  162.5 

0.525         𝑖𝑓 𝑦𝑙
𝑢 ≥  162.5                     

  

 ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈. (41) 

This study considers counties that implement conservation or reduced tillage production 

systems, meaning that farmers retain a percentage of corn stover on the soil surface to prevent soil 

erosion and preserve soil organic material. They are considered because they have higher corn 

stover availability to be harvested compared to conventional tillage system [190]. To account for 

reduced tillage, the literature suggests an adjustment factor of 0.905 for moderate change in corn 

stover yield [27, 161]; thus, corn stover yield will be multiplied by 0.905. Equation (3) calculates 

the estimated gross yield of pounds of corn stover per acre (𝑔𝑠𝑙
𝑢) for land type u in county l as 

𝑔𝑠𝑙
𝑢 = (

1−ℎ(𝑦𝑙
𝑢)

ℎ(𝑦𝑙
𝑢)
) 𝑦𝑙

𝑢 × 0.905 × 56  ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈, (42) 

where 56 is the number of pounds per bushel [27, 161].  

This research adopts previous recommendations that farmers keep approximately 1430 lbs 

per acre of corn stover on the soil surface [161, 191]. Anand et al. [160] recommend adjustments 

to account for winter decay (88% residue retention) and no-till coulter usage (85% retention). 

Therefore, net yield of corn stover in tons per acre (𝑛𝑠𝑙
𝑢) can be calculated using the following 

formula: 

𝑛𝑠𝑙
𝑢 = (𝑔𝑠𝑙

𝑢 −
1430

0.88

0.85
)(

1

2000
)  ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈. (43) 

The total potential amount of corn stover available for harvesting in each county equals the 

net corn stover yield multiplied by the number of acres available and percentage of land that 
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undergoes conservation or reduced tillage practices. In Kansas, approximately 56% of corn-

cultivated land undergoes conservation practices and approximately 19% of land designated for 

corn cultivation experiences reduced tillage [27]. Total potential corn stover supply (𝑝𝑠𝑙
𝑢) is 

calculated using the following formula: 

𝑝𝑠𝑙
𝑢 = 𝑛𝑠𝑙

𝑢 × [𝑎𝑙
𝑢 × (0.56 + 0.19)]  ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈. (44) 

Figure 4.3 and 4.4 display potential corn stover supply for irrigated and non-irrigated land 

in Kansas counties for the years considered in the case study. 
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        2006 irrigated      2006 non-irrigated 

     

        2007 irrigated      2007 non-irrigated 

      

        2008 irrigated      2008 non-irrigated 

 

 

Figure 4.3: Potential supply of corn stover (𝒑𝒔𝒍
𝒖 , in dry ton) in 2006, 2007, and 2008 for 

irrigated land (left map) and non-irrigated land (right map). 
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        2009 irrigated      2009 non-irrigated 

      

        2012 irrigated      2012 non-irrigated 

     

        2013 irrigated      2013 non-irrigated 

 

 

 

Figure 4.4: Potential supply of corn stover (𝒑𝒔𝒍
𝒖 , in dry ton) in 2009, 2012, and 2013 for 

irrigated land (left map) and non-irrigated land (right map). 
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4.4.3 Contract Payment to Farmers 

Although many studies have proposed optimization models to manage the BBSC under 

various design options, they have not considered farmers’ probability to supply crop residues or 

grow energy crops for bioenergy processing. Therefore, contractual arrangements between farmers 

and bioenergy plants are one solution to guarantee sufficient biomass supply [27]. Bergtold et al. 

[27] investigated farmers’ choices and their probability to provide biomass to bioenergy plants by 

considering four contractual attributes: (1) average annual expected net return from biomass, (2) 

contract length, (3) whether or not the bioenergy plant harvests the biomass, and (4) whether or 

not the bioenergy plant pays for nutrient loss incurred as a result of removing biomass. Net return 

is defined as the payment received by the farmer after accounting for corn stover production cost 

in $/acre [27].  

This research defines contract types based on net return, in which all contracts have 

length two years, the bioenergy plant always pays for harvesting and nutrient replacement, and 

net return varies from $0/acre to $75/acre; thus, there are 76 contract types. The contract 

payment is given in $/ton (ƞ𝑙𝑐
𝑢 ) after paying harvesting and nutrient replacement expenses and is 

calculated using the following formula: 

ƞ𝑙𝑐
𝑢 =

𝑛𝑐

𝑛𝑠𝑙
𝑢 ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈, 𝑐 ∈  𝐶, (45) 

where 𝑛𝑐 is the net return received under contract type c ($/acre) and 𝑛𝑠𝑙
𝑢is the net corn stover 

yield (ton/acre). 

4.4.4 Farmers’ Choices 

Total potential corn stover supply refers to the total amount of corn stover available for 

harvesting, assuming farmers provide bioenergy plant with 100% of available corn stover. The 

potential supply does not, however, account for farmers’ choices and their probability to sell 
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biomass to bioenergy plant, or lack thereof. Therefore, in order to account for a realistic supply, 

this study utilizes research conducted in Kansas to determine the probability that a farmer is 

willing to supply corn stover under various contractual options [27]. The predicted supply of 

corn stover from the county (𝑆𝑙𝑐
𝑢) can be calculated using the following equation: 

𝑆𝑙𝑐
𝑢 = 𝜌𝑙𝑐 × 𝑛𝑠𝑙

𝑢 ∀ 𝑙 ∈  𝐿1, 𝑢 ∈  𝑈, 𝑐 ∈  𝐶 (46) 

Where the predicted supply of corn stover (𝑆𝑙𝑐
𝑢 ) equals the probability that a farmer sells biomass 

to the bioenergy plant (𝜌𝑙𝑐) multiplied by potential corn stover supply (𝑛𝑠𝑙
𝑢) [27]. Predicted 

supply (𝑆𝑙𝑐
𝑢 ) represents the maximum amount able to be purchased from the county depending on 

farmers' choices. The predicted supply of corn stover at each county (𝑆𝑙𝑐
𝑢 ) is an input parameter 

for the optimization model.  

4.4.5 Biomass Storage 

After harvesting, biomass must be stored within supplying counties, SSLs, or bioenergy 

plants until it is needed. This study assumes that round corn stover is stored on bare ground and 

covered with a tarp within the county and SSL, while corn stover at the bioenergy plant is stored 

on gravel and covered with a tarp; pelleted corn stover is stored in storage bins.  

Dry matter loss represents the fraction of biomass lost during biomass storage or 

transportation. Factors such as densification form, storage conditions, and environment affect dry 

matter loss. This study assumes that corn stover loss is most closely related to densification form 

and storage method. Dry matter loss is estimated per month, with the assumption that it is fixed.  

4.4.6 Biomass Pelleting 

Most parameter estimates used for the case study came from journal papers and USDA 

publications. However, because mobile pelleting is still under development, the cost of moving 

mobile pelleting machines ($/mile) is estimated based on values from similar processes. For this 
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case study, 25 mobile pelleting machines are assumed to be available. Albashabsheh and Heier 

Stamm [184] estimate the densification cost to be $48/ton with mobile pelleting based on a 

previous technical study that determined MPM cost elements [149]. 

 

4.5 Results 

The proposed optimization model is solved using IBM ILOG CPLEX version 12.6 on a 

desktop computer with a 3.4 GHz processor. The resulting MILP problem includes 49,568 binary 

variables, 52,990 continuous variables, and 133,811 constraints. We examine the BBSC design for 

three contract periods in Kansas: 2006−2007, 2008−2009, and 2012−2013. Solutions are reached 

in 5.012 hrs, 1.736 hrs, and 7.656 hrs for contract periods 2006−2007, 2008−2009, and 2012−2013, 

respectively. In each instance, SSLs are established in Finney and Marshall counties. The 

bioenergy plant in Reno County has a high capacity level of 8,360,000 gallons per month. We 

summarize results of the optimization model for Kansas in the following subsections. 

4.5.1 Cost Distribution 

Optimal cost breakdown for various contract periods is presented in Figure 4.5. Results 

show that feedstock cost, fixed cost, and processing cost are the primary components of total BBSC 

cost for all contract periods, as demonstrated in other studies [17, 192]. Logistics cost for contract 

periods 2006−2007, 2008−2009, and 2012−2013 are 25.75%, 24.98%, and 25.73%, respectively. 

This is in line with Idaho National Laboratory recommendation that logistics cost should not 

exceed 25% of the total biofuel production cost.  

Corn stover feedstock cost includes harvesting, nutrient replacement, and contract payment 

expenses. As shown in Figure 4.5, feedstock cost for contract period 2008−2009 is lower than 

other contract periods. Feedstock cost is lower when yield is higher, because harvesting cost 
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($/acre) and net return ($/acre) are divided by corn stover yield (ton/acre) to calculate 

corresponding components of feedstock cost in $/ton. On average, corn stover yield is higher for 

contract period 2008−2009 than other contract periods.  

 Fixed cost is the cost incurred for opening SSLs and the bioenergy plant. Fixed costs are 

identical for all contract periods because all contract periods have identical facility location 

decisions (SSL number and locations and bioenergy plant capacity).  

Densification cost is the summation of costs incurred for densifying baled biomass to 

pelleted form and MPM transportation. Densification costs for contract periods 2006−2007 and 

2012−2013 are similar because the amount of corn stover densified to pelleted form is identical 

(i.e., 450,00 tons of biomass densified to pelleted form); however, MPM transportation costs differ 

slightly, totaling $20,368.51 and $19,761.51 for contract periods 2006−2007 and 2012−2013, 

respectively. Densification cost for contract period 2008−2009 is lower than other contract periods 

because the amount of densified biomass and MPM transportation cost are lower. The amount of 

densified biomass is 420,263.48 tons and the MPM transportation cost is $12,041.80 for contract 

period 2008−2009. 

Transportation cost, which is the corn stover transportation cost between BBSC facilities, 

is lower for contract period 2008−2009 than other contract years. In this surplus period with high 

yield, the bioenergy plant is surrounded by counties with high supply, consequently decreasing 

transportation cost associated with transporting biomass from faraway counties. 

Finally, storage cost and processing cost are higher for contract year 2008−2009, because 

the amount of baled biomass that is stored and processed biomass is higher than in other contract 

periods. As mentioned, the amount of pelleted biomass in surplus period 2008−2009 is lower than 
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other contract periods, thereby increasing storage and processing costs because those costs are 

higher for bales compared to pellets. 

 

Figure 4.5: Total annual BBSC cost by category.    

 

4.5.2 Amount Purchased 

This section captures differences across Kansas districts in amount of corn stover 

purchased. Figures 4.6 and 4.7 display the amount of corn stover purchased in contract years for 

irrigated (left maps) and non-irrigated (right maps) land types. The triangles represent the 

bioenergy plant, and the circles denote open SSLs.   

The figures show a few counties in which the bioenergy plant buys a large amount of 

biomass and many counties in which the bioenergy plant buys a minimal amount of biomass. The 

optimal solutions indicate that most purchased biomass is from counties close to the bioenergy 

plant in Reno County and SSLs in Finney and Marshall counties. As a result, the average amount 

of biomass purchased from south central, southwest, and northeast districts of Kansas are higher 

than the amount of biomass purchased from other districts. The amount purchased from the 
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northwest district is lowest among all districts and years for all land types. This district has low 

corn grain yield and is far from the bioenergy plant and SSLs; farmers there also are less willing 

to sell biomass to bioenergy plant compared to farmers in other districts especially eastern districts. 

For all contract periods, the amount of biomass purchased from irrigated land is higher than 

the amount purchased from non-irrigated land, because irrigated land has higher biomass yield 

(ton/acre), resulting in lower harvesting cost ($/ton) and contract payment expenses ($/ton) 

compared to non-irrigated land. Most of the biomass purchased from non-irrigated land in all 

contract years is from the eastern (northeast and southeast) and central (north central and south 

central) districts. These Kansas districts have a higher yield, lower transportation costs, and lower 

contract payment expenses compared to other districts. 

The proportion of biomass purchased from irrigated land is highest in 2012, an extreme 

drought year according to the U.S. Drought Monitor (USDM) [186], when most counties had very 

low or zero corn grain yield on non-irrigated land. Low yields result in very high contract payments 

for biomass purchased from non-irrigated land. Since the bioenergy plant must meet demand, most 

biomass is purchased from irrigated land. Consequently, the proportion of biomass purchased from 

irrigated land is lowest for the surplus year in 2008. 

 

 

 

 

 

 



101 

     

        2006 irrigated      2006 non-irrigated 

      

        2007 irrigated      2007 non-irrigated 

    

        2008 irrigated      2008 non-irrigated 

 

 

Figure 4.6: Amount of purchased corn stover (𝑸𝒍𝒄𝒚
𝒖 , in dry ton) in 2006, 2007, and 2008 for 

irrigated land (left map) and non-irrigated land (right map). Triangles represent the bioenergy 

plant; circles represent open SSLs. 



102 

    

        2009 irrigated      2009 non-irrigated 

    

        2012 irrigated      2012 non-irrigated 

     

        2013 irrigated      2013 non-irrigated 

 

 

Figure 4.7: Amount of purchased corn stover (𝑸𝒍𝒄𝒚
𝒖 , in dry ton) in 2009, 2012, and 2013 for 

irrigated land (left map) and non-irrigated land (right map). Triangles represent the bioenergy 

plant; circles represent open SSLs. 
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4.5.3 Densification and Mobility Decisions 

This section investigates decisions related to densification. Among the six potential SSLs, 

two SSLs are open in Finney and Marshall counties for the three contract periods. For all contract 

periods, the amount of corn stover densified in Finney County, which is located in the southwest 

district, is approximately twice the amount densified in Marshall County, which is located in the 

northeast district, because the southwest district of Kansas has high biomass availability compared 

to the northeast district.  

Densification not only helps reduce storage, processing, and transportation costs, it also 

helps reduce dry matter loss cost, resulting in increased amounts of densified biomass during 

drought periods when biomass cost increases and high-value biomass is preserved. Figures 4.8–

4.10 show the amount of corn stover densified at SSLs each month and MPM mobility.   

 

Figure 4.8: Total biomass pelleted at SSLs each month and MPM mobility for contract period 

2006–2007.    
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Figure 4.9: Total biomass pelleted at SSLs each month and MPM mobility for contract period 

2008–2009.    

 

 

Figure 4.10: Total biomass pelleted at SSLs each month and MPM mobility for contract period 

2012–2013.    
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transportation, storage, and dry matter loss costs. Biomass densified later in the contract year must 

be purchased during the first month (month 1 or month 13) of the contract year and then stored as 

bale at field or SSL until it is densified. However, this process incurs densification costs in addition 

to high dry matter loss and storage costs that cannot be recovered. 

The amount of corn stover densified in contract period 2008–2009 is lower than the amount 

densified in other contract periods, because this is a surplus contract period with high yield and 

low net return. This contract period has sufficient biomass in counties near the bioenergy plant in 

Reno County; therefore, less biomass must be transported from distant counties, thereby 

decreasing the attractiveness of densification. Densification is appealing for years with low yield 

and high contract payment per ton, because it reduces dry matter loss expenses during the drought 

years in which biomass costs are high. 

MPM mobility is low for contract period 2008–2009 because sufficient biomass is present 

in counties close to SSLs (i.e., Finney and Marshall counties). Biomass is densified from fewer 

counties with a significant supply, causing MPMs to remain a long time period at one SSL to 

densify biomass from a county with a high contract payment before moving to another SSL, 

consequently decreasing the frequency of MPM movement.  

Biomass is stored in supplying counties until it needs to be densified at an SSL or processed 

at the bioenergy plant. Biomass is transported to an SSL at the time of densification because 

county-based storage cost and dry matter loss for biomass are the same as those at the SSLs. 

Counties do not have a storage limit, but SSLs are subject to storage capacities. 

An SSL is used to densify biomass and store pellets; biomass is then shipped as needed to 

at the bioenergy plant. Biomass is densified at the SSL within the early month of contract years 

and then stored as pellet at the SSL due to comparatively lower SSL storage costs compared to 
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storage costs at the bioenergy plant. The fraction of total pelleting capacity utilized is 62.50%, 

58.36%, and 62.50% for contract periods 2006–2007, 2008–2009, and 2012–2013, respectively. 

Pelleted biomass is processed into biofuel only after the baled biomass has been completely 

processed. Processing priority is given to baled biomass because dry matter loss and storage cost 

of baled biomass are higher than for pelleted biomass.  

4.5.4 Contract Payment to Farmers 

Figures 4.11 and 4.12 illustrate contract payments ($/ton) counties receive for each contract 

year; contract payments for irrigated (left maps) and non-irrigated (right maps) lands are shown. 

Contract payments for counties near the bioenergy plant in Reno County and SSLs in 

Finney and Marshall counties are higher than other counties. The bioenergy plant offers high 

contract payments to increase the probability that farmers provide corn stover to the bioenergy 

plant. Transportation cost savings exceed the increase in contract payments. 

For both land types, the bioenergy plant pays low contract payments ($/ton) to supplying 

counties in the northwest district of Kansas; these counties are far from open SSLs and the 

bioenergy plant, they have low yield (ton/acre), and they contain farmers who have low probability 

to sell biomass to  bioenergy plant. (The probability to harvest corn stover (𝜌𝑐𝑙) in western Kansas 

is low).  

Supplying counties in the eastern district of Kansas (northeast and southeast) receive lower 

contract payments ($/ton) in general, but these payments are higher for counties near the SSL in 

Marshall County. The eastern portion of the state has high yield (ton/acre) and high probability of 

farmer collaboration with the bioenergy plant.  

The bioenergy plant offers high contract payments to many counties with irrigated land in 

2012, which is an extreme drought year when yields are low, requiring increased purchase from 
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other counties and increased costs to obtain the required supply. The bioenergy plant does not offer 

a contract for non-irrigated land unless overwhelming demand must be satisfied. 
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        2006 irrigated      2006 non-irrigated 

        

        2007 irrigated      2007 non-irrigated 

       

        2008 irrigated      2008 non-irrigated 

 

 

Figure 4.11: Contract payment (ƞ𝒍𝒄𝒚
𝒖 , in $/ dry ton) in 2006, 2007, and 2008 for irrigated land 

(left map) and non-irrigated land (right map). Triangles represent the bioenergy plant; circles 

represent open SSLs. 
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        2009 irrigated      2009 non-irrigated 

       

        2012 irrigated      2012 non-irrigated 

       

        2013 irrigated      2013 non-irrigated 

 

Figure 4.12: Contract payment (ƞ𝒍𝒄𝒚
𝒖 , in $/ dry ton) in 2009, 2012, and 2013 for irrigated land 

(left map) and non-irrigated land (right map). Triangles represent the bioenergy plant; circles 

represent open SSLs. 
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4.5.5 Net Return 

Figure 4.13 shows box-and-whiskers plots of net return for Kansas districts to summarize 

lower and upper quartiles and median. The box plots indicate variability in net return between and 

within districts. In general, two factors cause variability in net return: variability in yield within 

and between districts, and differences in transportation distance between counties that collaborate 

with the bioenergy plant. 

The box plots show that the net return for non-irrigated land is lower than the net return of 

irrigated land because irrigated land has higher yield. Irrigated land receives higher net return per 

acre per contract payment ($/ton) because net return ($/acre) equals net corn stover yield multiplied 

by contract payment ($/ton).  

Overall, counties in the south central district of Kansas have high net return and there is 

low variation in net return between counties in south central district due to proximity to the 

bioenergy plant in Reno County. The bioenergy plant offers high net returns to increase supply 

from this district. 

Counties in the southwest district of Kansas also receive high net return because an SSL is 

in Finney County. However, this district has high variability in net return within the district 

because net return received depends on distance between the county and SSL or bioenergy plant.  

On average, counties in the northwest district of Kansas receive the lowest net return. 

Because these counties are undesirably far from the bioenergy plant and SSLs and have low yield, 

the bioenergy plant offers low net return contracts. Conversely, however, the north central district 

has low variability within the district and fairly high net return because variability in net yield for 

these counties is low. Irrigated counties in the northwest, southwest, and northeast districts have 

the highest variability due to variability in net yield. 
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(a) 2006–2007 

      

(b) 2008–2009 

      

(c) 2012–2013 

Figure 4.13: Boxplots representing net return (𝒏𝒄, $/acre) for Kansas districts.     
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4.6 Conclusion 

This chapter presents a MILP model to guide BBSC management decisions while 

considering mobile densification and farmers’ probability to supply biomass to the bioenergy 

plant. A case study based on the state of Kansas is conducted to illustrate the usage of the model 

and type of analysis can be drawn from results. We observe from the case study that the most 

important factors that influence type of contract offered to each supplier and optimal BBSC design 

are: biomass yield, farmers’ willingness to sell biomass to the bioenergy plant, and distances 

between supplier and SSLs and bioenergy plant. The optimization results indicate that 

densification is carried out at earlier months in each contract year to avoid high logistic costs 

associated with storing baled biomass (storage cost and dry matter loss cost during storage) until 

being densified. Moreover, irrigated land type receive high net return contract compared to non-

irrigated land. This is because irrigated land has a higher net yield (ton/acre) which decreases 

harvesting cost and contract payment per ton of biomass. 

The model we propose is promising as it reflects BBSC reality and complexity. However, 

it is designed for one biomass feedstock (corn stover). A possible future extension is to update the 

model to account for multiple lignocellulosic feedstocks simultaneously, such as switchgrass and 

energy sorghum.  This can be accomplished by updating supply to consider different types of 

biomass feedstocks and their associated harvesting seasons. The model should consider the 

farmers’ probability to provide different type of biomass to the bioenergy plant under different 

contract options.  
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Chapter 5 - Conclusion 

Biomass-to-biofuel supply chains involve logistical challenges that differ from those of 

other supply chains. This is because biomass feedstocks have special characteristics that add 

complexity to the optimization problem.  First, biomass has low bulk density which increases the 

logistic costs and decision alternatives associated with handling, transporting, and storing biomass. 

Second, biomass supply is affected by farmers’ choices. Farmers’ choices and their probability to 

supply biomass to the bioenergy plant affect the expected biomass availability at supplying 

sources. To manage previously mentioned complexities, the author created optimization models 

that consider mobile densification and farmers' choices.  

In the first part of this dissertation, an extensive overview of densification techniques and 

BBSC optimization models that account for biomass densification is presented. The author 

discusses models that manage BBSC with densification processes. Based on the review, mobile 

densification is proposed as a technique to reduce logistics costs in the BBSC. However, there 

does not exist an optimization model to manage the BBSC with mobile densification. 

In the second part of this dissertation, an optimization model is developed to design the 

BBSC with mobile densification. The proposed method helps the BBSC manager to overcome the 

complexities of having different types and forms of biomass and the opportunity to densify bales 

at SSLs using MPMs, since the model identifies the best densification form for all locations at the 

BBSC facilities. This research promotes using a quantitative decision-making approach to identify 

conditions under which mobile densification is necessary and economically feasible.  

The author integrates farmers’ probability to supply biomass to the bioenergy plant under 

different contract options in the third part of the dissertation. The methodology accurately 

estimates biomass supply under different contract options. This part helps to build the foundation 
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to consider all BBSC stakeholder objectives, instead of just considering bioenergy plant objectives. 

The proposed optimization model can help to motivate ethanol production from lignocellulosic 

biomass, and to satisfy farmers’ conditions and requirements.  

Despite the advances presented in this dissertation, the proposed models have some 

limitations that should be addressed in future research. The model proposed in Chapter 4 does not 

consider the external market for crop residue. For example, during drought years farmers’ 

probability to sell biomass to bioenergy plant may decrease, because the farmer may receive high 

payment for selling the biomass as livestock feed. Second, the author did not investigate the effect 

of considering farmers’ choices on the BBSC. Future research should compare the results of a 

model that accounts for farmers’ choices with one that does not. The model proposed in Chapter 

4 can be modified by omitting farmers’ choices and their probability to participate in the supply 

chain. To investigate the consequences of omitting farmers’ choices, differences in biomass 

purchased for each county should be calculated to determine amount of unmet demand.  

The proposed model in Chapter 3 can be easily updated to manage any supply chain that 

involves a product that changes its properties at a middle stage using a mobile machine before 

being delivered to the final customer. One example is the olive oil supply chain, where olives are 

milled using mobile machines at individual farm sites before transport to factories [175]. Also, this 

model is beneficial for meat supply chain. Instead of transporting livestock hundreds of miles to 

butcheries, there is a new technology that exists called mobile slaughter unit [193]. These units 

slaughter and inspect animals at warehouses or fields before transporting them to butcheries. This 

technology is promising for small-volume producers as it avoids transporting live animals large 

distances, reduces logistics costs, and reduces capital investment. The research proposed in 

Chapter 3 can be applied for meat supply chain where animals can be transported directly to 
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butchery or to the closest warehouse to be slaughtered using mobile slaughter unit before transport 

to butchery.   

In practice, bioenergy plants consider may different type of biomass feedstock in their 

supply chain as hedging strategy to mitigate the effect of biomass supply disruption. The 

optimization model in Chapter 4 can be adjusted to consider different type of biomass feedstock. 

The model should consider farmers’ probability to sell different types of biomass feedstock under 

different contract option. This is likely to increase computational requirements of the model. One 

way to reduce computation time is to decompose the model and solve it in two stages. The first 

stage is modeled as integer model to determine strategic level decisions such as bioenergy plant 

capacity, SSLs location, and type of contract offered for each county need. Then the second stage 

is linear programming model that determine operational decisions related to amount of biomass 

purchased, stored, and transported over time across the time horizon.  

For future research the optimization model proposed in Chapter 4 can be adapted to the 

long-term planning for the bioenergy plant considering different contract cycles for each supplier. 

Once the contract ends, the farmer may choose to begin another collaboration with the bioenergy 

plant. The planning horizon can be divided into different contract cycle of same length. Future 

research may build stochastic MILP model for this problem that consider the probability that famer 

will renew or participate in the BBSC chain at each contract cycle.   

The research proposed in Chapter 4 helps to illustrate the optimal design of the BBSC for 

an average, surplus, and drought contract periods. Future research should investigate the effect of 

yield uncertainty on the BBSC. One way to do that is by using scenario-based stochastic 

optimization methodology. This can be done by building different scenarios for biomass yield such 

as low, medium, high, with the probability distribution of yield determined using historical data of 
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biomass yield from USDA. To minimize computational time needed, if the decisions are at the 

county level, counties can be grouped, where all counties within the same group have same yield 

distribution. 

The research proposed in this dissertation proposes optimization models to dynamically 

locate mobile machines that move between supply chain facilities in different time periods to 

produce a different forms of material that have lower logistic costs. To the best of our knowledge, 

this is the first dynamic study that simultaneously copes with mobile facilities, stakeholders’ 

choices, and losses on transportation and inventory arcs. The proposed models assumes supply is 

dynamic; however final product demand is the same for all time periods. For future research, this 

work can be extended by considering a more realistic situation by having dynamic demand. 

Another direction for future research is considering a multi-objective optimization model such as 

economic and environmental objectives. For the area of BBSC, the decision maker may have 

economic considerations that are evaluated by calculating total cost of the BBSC, and /or 

environmental goals that are evaluated by the effect on soil or greenhouse gas emissions. 
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Appendix A - Procedures for Imputing Missing Data 

 

In order to protect farmers’ privacy for farm yield and planted acreage, NASS requires a 

specific number of surveys be completed before publishing harvested acreage or yield by county. 

NASS requires having at least 30 survey responses from an individual county, or at least 3 survey 

responses from producers who own at least 25% of county acreage for the crop [194]. If these 

requirements are not met, then counties in the same district that do not have data of the number of 

acres harvested or corn grain yield share one number and are referred to as “Other combined 

counties.” In total, the models in Chapter 4 require 2520 values (acres harvested and corn grain 

yield for 105 counties, 2 land types, and 6 years); of these, 1674 are imputed using the methods 

described here. 

A.1 Missing harvested acreage and yield for individual counties 

The total number of harvested acres in combined counties can be divided in proportion to 

the area of each county using the following formula: 

Harvested acreage = 

Area of the county × total number of acres harvested in the combined counties

Total area of the combined counties
 

Corn yield of a county that does not meet NASS requirement for individual county reporting is 

assumed to equal the value given for all unreported counties in the same district and referred to 

as “Other combined counties.”   
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A.2 Missing harvested acreage and yield for entire district  

This part of the appendix illustrates estimation methodology for harvested acreage and 

corn grain yield if NASS has no data for an entire district. In that case, 17 years of historical data 

(2000–2016) regarding the total number of harvested acres in the district are used in the 

following steps to impute harvested acreage in the district: 

1. Find the total number of harvested acres in the district for years 2000 to 2016. 

2. Calculate the percentage of harvested acres of type u to the total harvested acres in the district 

using  

Percentage of harvested acres of type u = 

 Number of acres harvested in the district for land of type 𝑢

Total number of acres harvested in the district for both land types
 

3. Calculate the average percentage of harvested acres of type u from the historical data: 

Average percentage of harvested acres of type u = 

 
 Sum of percentage of harvested acres of type 𝑢   

Number of years considered with reported acreage
 

4.  Calculate the number of harvested acres in the district using the following formula: 

Number of harvested acres in the district = 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑟𝑒𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑢 𝑎𝑡 𝑦𝑒𝑎𝑟 𝑦 

×  𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑟𝑒𝑠 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑙𝑎𝑛𝑑 𝑡𝑦𝑝𝑒𝑠 𝑎𝑡 𝑦𝑒𝑎𝑟 𝑦 

5. Calculate the harvested corn acreage in counties in the same district using the following 

formula: 
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Harvested acreage in the county

=
Area of the county × Number of harvested acres in the district

Total area of the district
 

 

Corn yield of a county with no available information for the entire district for one year equal 

County’s average over other years where the data are available 

 

 

 

 

 

  

 


