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Abstract 

Adsorption of a series of primarily substituted hydrocarbons (RX; C18H37PO(OH)2 

(ODPA), C17H35COOH, C18H37OH, C18H37NH2 and C18H37SH) onto solid gallium substrates 

with and without UV/ozone treatment was studied using contact angle goniometry, spectroscopic 

ellipsometry and cyclic voltammetry (CV).  UV/ozone treatment offered a hydrophilic surface 

(water contact angle (water
) less than 10°), reflecting the formation of a surface oxide layer with 

the maximum thickness of ca. 1 nm and possibly the removal of surface contaminants.  Upon 

immersion in a toluene solution of a RX, water
 increased due to adsorption of the RX onto 

gallium substrates.  In particular, UV/ozone-treated gallium substrates (UV-Ga) immersed in an 

ODPA solution exhibited water
 close to 105°.  The ellipsometric thickness of the adsorbed 

ODPA layer was ca. 2.4 nm and CV data measured in an acetonitrile solution showed significant 

inhibition of redox reaction on the substrate surface.  These results indicate the formation of a 

densely-packed ODPA monolayer on UV-Ga.  The coverage of a C17H35COOH layer adsorbed 

onto UV-Ga was lower, as shown by smaller water
 (ca. 99°), smaller ellipsometric thickness (ca. 

1.3 nm) and smaller electrode reaction inhibition.  Adsorption of the other RX onto UV-Ga was 

weaker, as indicated by smaller water
 (82-92°).  ODPA did not strongly adsorb onto UV-

untreated gallium substrates, suggesting that the ODPA adsorption mainly originates from 

hydrogen bond interaction of a phosphonate group with surface oxide.  These results will provide 

a means for controlling the surface properties of oxide-coated gallium that play an essential role 

in monolayer conductivity measurements and electroanalytical applications. 

 



  

All the results have been published as “Chrishani M De Silva, Bipin Pandey, Feng Li and 

Takashi Ito, Langmuir, DOI: 10.1021/la400334n 
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Chapter 1 - Introduction 

Gallium is a non-toxic, non-volatile liquid metal (m.p. 29.8 ºC; b.p 2477K)  discovered 

by French chemist Paul Emile Lecoq de Boisbaudran in 1875. The molecular weight of gallium 

is 69.72 and  natural gallium can exist as a mixture of two stable isotopes Ga69 and Ga71.
1  

Gallium can form a non-metallic, thin film of self-passivating semiconducting oxide layer 

 ( Ga2O3,~1nm ) on gallium surface  upon exposure to the air  and also can maintain oxide free 

conditions using standard ultra high vacuum conditions.
3
 Gallium can form three oxides such as 

Ga2O, GaO and Ga2O3. The most common and stable oxide is Ga2O3 and can exists in five types 

(α, β, γ, δ, ε).  The crystal structure of Ga2O3  is corundum type and it is similar to aluminum 

oxide. The chemical properties of gallium metal is different from aluminum as it has lower 

melting point, softness and the ability to be reduced to lower oxidation compounds.
1

  

 

Gallium and its alloys have recently attracted considerable interest as electrode materials 

because of their low melting point and low toxicity. For example, Galanstain (eutectic mixture of 

gallium, indium and tin) electrode material shows comparable behavior to mercury in 

voltametric analysis of cadmium and lead. Galanstain has a higher hydrogen over potential, 

higher potential window and its renewable surface led to give higher reproducibility of results as 

mercury electrode does.
2 

Gallium film electrode has been proposed to eliminate copper 

interference on zinc determination in anodic striping voltammetry.
3
 These findings shows that 

we can take an advantage of gallium and its alloy electrodes as alternative to toxic mercury for 

trace metal ion analysis in voltammetry. Eutetic gallium indium (EGaIn )  is a  another alloy of 

gallium metal. It can be easily incorporated into µm-scale channels, leading to fabrication of 

http://en.wikipedia.org/wiki/Paul_Emile_Lecoq_de_Boisbaudran
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microelectrodes within microfluidic channels.
4-6

. Another advantage of EGaIn is it is an elastic 

material and can be molded at room temperature3. And also EGaIn is electrically conductive 

thus can be used as a contact  electrodes for measurements of electrical conductivity across self-

assembled monolayers (SAMs) formed on another metal surfaces.
5, 8-10

  Solid metallic gallium 

can form self organized nanoporous anodic oxide monoliths in the presence of 4 and 6M H2SO4 

at 10 and 15V. These monoliths pore diameters are ranging from 18-40 nm and can be used for 

future chemical sensors and catalyst applications.
7 

  

 

In these applications, it is important to understand the surface chemistry of these metals.  

It is well-known that metallic gallium is self-passivated by an ultrathin gallium oxide layer (≤ 1 

nm thick) upon exposure to air.
4, 11

  The oxide layer gives significant influences on 

electrochemical and conductivity measurements, including passivation of electron conduction 

and direct involvement in the redox reactions of a gallium electrode.
4, 12, 13

  In addition, 

chemisorption onto gallium electrodes will provide a means for modulating the electrical and 

electrochemical properties of gallium/alloy electrodes, as has been shown for other electrode 

materials in chemically modified electrodes.
14

  However, the surface chemistry of metallic 

gallium has attracted limited attention.  X-ray reflectivity method
11

 and Auger electron 

spectroscopy
4
 were used to measure surface oxide formation on metallic gallium and its alloys.  

Electrochemical methods exhibited the adsorption of ionic species onto gallium electrodes in 

aqueous solutions.
12

  Interestingly, it is known that the surface oxide layers of gallium alloys 

consist of mainly gallium oxide due to the very high reactivity of gallium with oxygen as 

compared to the other metallic components.
4
  Thus, it is important to understand the chemical 

properties of surface gallium oxide layers for the aforementioned applications. 
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In this study, adsorption of organic molecules on solid metallic gallium was 

systematically investigated using contact angle goniometry, spectroscopic ellisometry, atomic 

force microscopy (AFM) and cyclic voltammetry (CV).  The effects of UV/ozone treatment on 

surface properties of a solid gallium surface were also investigated.  As organic molecules, 

primary substituted hydrocarbons (RX) with long alkyl chains and different terminal functional 

groups (-X = -PO(OH)2, -COOH, -OH, -NH2 and -SH) were examined.  Their long alkyl chains 

facilitate the assessment of molecular adsorption, which can be recognized as an increase in 

water contact angle (water
) and ellipsometric thickness

15
 as well as the passivation of electrode 

reactions.
16

  Considering that surface oxide layers formed on liquid gallium and its alloys have 

solid-like properties,
4, 11

 knowledge obtained in this study will provide a guidance to select an 

organic functional group suitable for SAM conductivity measurements and surface 

functionalization of a gallium electrode in electrochemical applications.   
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Chapter 2 - Experimental section           

2.1 Chemical and Materials 

 High purity gallium (99.99%) was purchased from GalliumSource, LLC and used as 

received.  Gold-coated silicon substrates, which were prepared by sputtering 10 nm of titanium 

followed by 200 nm of gold onto Si(100) wafers, were purchased from LGA Thin Films (Foster 

City, CA).  n-Octadecylphosphonic acid (C18H37PO(OH)2; Alfa Aesar), n-octadecanoic acid 

(C17H35COOH; Aldrich), n-octadecanol (C18H37OH; Alfa Aesar), n-octadecylamine (C18H37NH2; 

Alfa Aesar), n-octadecyl mercaptan (C18H37SH; Acros Organics), tetrabutylammonium 

hexaflurophosphate (TBAPF6; Strem Chemicals), and anhydrous acetonitrile (Alfa Aesar) were 

used as received.  Toluene (Fisher Scientific) was dried over activated molecular sieves 3A 

(Acros Organics) prior to use.  

2.2 Fabrication of solid gallium films on planar gold coated silicon substrate  

The surface of planar Au substrate (6mm X 6mm ) was cleaned in a Novascan PSD-UVT 

UV-ozone  system for 45 minutes. A drop of liquid gallium spread over cleaned Au substrate. 

The gallium coated Au substrate was positioned on a sterile polystyrene Petri dish and freeze 

samples upside down on a Petri dish (Figure 01. steps 1,2,3 ). Detached the gallium coated Au 

substrates from Petri dish and obtained mirror like shinny gallium films. 

 

 

Figure 1. Fabrication of solid gallium film on planer gold coated silicon substrates and 

UV/ozone treatment 
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2.3 Surface Treatment of Solid Gallium Substrates 

UV/ozone treatment (Figure 1, step 4) of the resulting solid gallium substrates were 

carried out using a Novascan PSD-UVT UV-ozone system (ca. 20 mW/cm2).  To prevent a 

gallium film from melting, the sample stage of the instrument needed to be cooled with an ice 

pack every 10 minutes of UV/ozone treatment.  Solid gallium substrates were immersed in 5 mM 

toluene solutions of RX for 24 hours, washed thoroughly with toluene and dried under an Ar 

stream.  Adsorption of RX was completed after 24-hours immersion according to water contact 

angle measurements.
17 
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2.4 Instrumentation 

2.4.1 Contact angle goniometry 

Contact angle goniometry measures the contact angle through the liquid where liquid/ 

vapor interface meets a solid surface. This can be used to measure static contact angle, advancing 

and  receding contact angles. Water contact angle data can use to demonstrate surface wettability 

and  Young’s equation can be used to measure surface energy of a system.
27 

Water contact angles 

on solid gallium samples were measured using a PG-1 pocket contact angle goniometer for the 

two sides of a water drop (2 µL) within 30 s after deposition of the drop.
17, 18

   

 

 

Figure 2. A photograph of contact angle goniometry 

(http://www.ptli.com/testlopedia/subs/pocket_goniometer.asp) 
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2.4.2 Atomic force microscopy 

AFM operation modes can be divided in to two main types, contact mode and non contact 

mode depending on where cantilever is vibrated. In this study AFM images were obtained by 

contact-mode imaging in air using a Digital Instrument Multimode AFM with Nanoscape IIIa 

electronics.  Contact mode tips from Vista Probes were employed.  

 

 

Figure 3. A photograph of atomic force microscope (http://nano.mtu.edu/afm.htm) 
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2.4.3 Spectroscopic Ellipsometry 

Spectroscopic elleipsometry is an optical technique and it has been used to characterize 

thin film thickness, optical constant of multilayer and nonuniform gradient. The basic operation 

principle is based on change of polarization light in reflection or transmission. In this experiment 

spectroscopic ellipsometry measurements were performed using a J.A. Woollam Alpha SE 

spectroscopic ellipsometer.  A series of ellipsometric spectra on each gallium substrate were 

recorded before and after UV/ozone treatment and upon subsequent RX adsorption as follows.
17

  

An ellipsometric spectrum of a freshly-prepared gallium substrate prior to UV/ozone treatment 

(untreated Ga) was first recorded, and was used as a spectrum of an underlying substrate.  Then, 

a spectrum was recorded for the same substrate after UV/ozone treatment (UV-Ga) to obtain the 

thickness of a surface oxide layer.  Finally, a spectrum of the substrate upon immersion in a RX 

solution was recorded to determine the thickness of an adsorbed organic layer. 

 

 

Figure 4. A photograph of spectroscopic ellipsometry instrument ( 

http://www3.ntu.edu.sg/home/FANHJ/Facilities.html ) 

 

http://www3.ntu.edu.sg/home/FANHJ/Facilities.html
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2.4.4 Cyclic voltammetry 

CV measurements were carried out in a three-electrode cell containing a silver quasi-

reference electrode (AgQRE; ca. -0.68 V vs. Fc/Fc
+
) and a platinum counter electrode inside a 

glove bag continuously flowing Ar.  A gallium substrate was immobilized at the bottom of the 

electrochemical cell with the geometric electrode area defined by an O-ring (8 mm in diameter) 

as reported previously.
7
  All the CV data were obtained in 0.1 M TBAPF6 acetonitrile solution 

cooled by ice (ca. 0 °C) using a CH instruments model 618B electrochemical analyzer.  All the 

CV data shown were recorded at the first potential cycle.  Very similar voltammograms were 

measured also at the second cycle.   

 

 

Figure 5. Experimental set up for electrochemical measurements 
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Chapter 3 - Results and Discussion 

In this study, the effects of UV/ozone treatment on the surface properties of solid metallic 

gallium were first investigated using AFM, contact angle goniometry and spectroscopic 

ellipsometry.  Subsequently, adsorption of the different RX onto solid gallium substrates with 

and without UV/ozone treatment (UV-Ga and untreated Ga, respectively) was studied using the 

three techniques.  Finally, the electrochemical properties of the solid gallium substrates with and 

without surface oxide and adsorbed organic layers were measured using CV in an acetonitrile 

solution.  These experiments revealed the chemical properties of the solid gallium surfaces, and 

also the affinity of the terminal functional groups of RX to these surfaces.  

3.1 UV/ozone Treatment of Solid Gallium Substrates  

Figure 6ab shows AFM images of a solid gallium substrate before and after UV/ozone 

treatment.  Overall, the surfaces are fairly smooth, as indicated by their root-mean-square (RMS) 

roughness of less than 1 nm.  The surface features probably reflect those of a plastic Petri dish 

that was used for the preparation of the solid gallium substrate.  Indeed, the RMS roughness of 

untreated Ga (0.87 ± 0.39 nm; Figure 6a) is very similar to that of the plastic Petri dish (0.87 ± 

0.30 nm; Figure 7).  Very similar surface features were also measured by us with scanning 

electron microscopy.
7 

 Importantly, there is no significant change in surface morphology upon 

UV/ozone treatment, as indicated by the similar RMS roughness (0.74 ± 0.17 nm; Figure 6b).  

Thus, the experimental procedure based on layered models (vide supra) is applicable to analyze 

ellipsometric spectra for estimation of surface layer thickness.   
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Figure 6. AFM images (∆z = 15 nm) of (a) an untreated gallium substrate, (b) a UV/O3-

treated gallium substrate (UV-Ga) and (c) an ODPA-coated UV-Ga.  The root mean square 

(RMS) roughness obtained from multiple different images is (a) 0.87 ± 0.39 nm (n = 4), (b) 

0.74 ± 0.17 nm (n = 6) and (c) 0.93 ± 0.18 nm (n = 3), which is close to that of the surface of 

a plastic Petri dish (0.87 ± 0.30 nm (n = 3); Figure 7), taken by Feng.Li  
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Figure 7. AFM image (∆z = 15 nm) of the surface of a plastic Petri dish employed to 

prepare metallic gallium substrates.  The root mean square (RMS) roughness obtained 

from three different areas is 0.87 ± 0.30 nm, taken by Feng Li   

 

 A series of typical ellipsometric spectra obtained from one gallium substrate are shown 

in Figure 8.  Reliable data could be obtained only when a series of data were measured at almost 

the same area.  A spectrum for an untreated Ga was fitted using a B-spline model.  The thickness 

of surface oxide and adsorbed organic layers were determined by adding Cauchy layers on top of 

the B-spline model.  For the fitting, the parameter A in the Cauchy model (n = A + B/2
 + C/4

; n 

is the refractive index and  (µm) is the wavelength) was fixed: A = 1.89
19

 for an oxide layer and 

A = 1.45
20

 for an additional organic layer.  The average B and C parameters as well as the layer 

thicknesses obtained from spectroscopic ellipsometry measurements are summarized in Table 

01.   

 
200 nm 
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Figure 8 Typical ellipsometric spectra measured at a solid gallium substrate (top) just after 

its preparation under Ar atmosphere (untreated Ga), (middle) after UV/ozone treatment 

for 50 min (UV-Ga) and (bottom) after immersion in a toluene solution of ODPA for 24 

hours (ODPA/UV-Ga).  The dotted lines represent the fitted lines based on the layered 

model: A B-Spline model for an untreated Ga substrate; One Cauchy (oxide) layer on the 

Ga substrate for UV-Ga; An additional Cauchy layer (an organic layer) on the oxide-

coated Ga substrate (UV-Ga) for ODPA/UV-Ga.  For the fitting, the parameter A in the 

Cauchy model is fixed, and the layer thickness, the parameters B and C were varied to 

obtain the best fitting.  The parameters (layer thickness, B and C) that gave the best fit for 

each spectrum are shown, in addition to the mean-square error of the fitting (MSE).  Data 

collected by. Dr Takashi Ito 

MSE = 0.821 

Thickness # 1 = 10.71 ± 0.127 Å 

B = -0.07921 ± 0.010725 

C = 0.01258 ± 0.001334 

 

 

MSE = 1.235 

Thickness # 2 = 21.69 ± 0.366 Å 

B = 0.03045 ± 0.008257 

C = -0.00318 ± 0.001004 
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Table 1. Cauchy Model Parameters (Average ± Standard Deviation) Obtained from 

Multiple Ellipsometric Spectra.  

 

Sample # of data Thickness (nm) B C 

10 min UV-treated 8 0.63 ± 0.29 0.14 ± 0.72 -0.018 ± 0.090 

20 min UV-treated  8 0.85 ± 0.22 0.09 ± 0.47 -0.010 ± 0.058 

30 min UV-treated 8 0.98 ± 0.33 0.04 ± 0.42 -0.004 ± 0.051 

40 min UV-treated  8 1.00 ± 0.32 0.04 ± 0.34 -0.003 ± 0.042 

50 min UV-treated  8 1.09 ± 0.31 -0.10 ± 0.08 -0.014 ± 0.007 

ODPA/UV-Ga  6 2.4 ± 0.4 0.028 ± 0.051 -0.0037 ± 0.0061 

C17H35COOH/UV-Ga  7 1.3 ± 0.4 0.121 ± 0.126 -0.0125 ± 0.0131 

C18H37NH2/UV-Ga  3 1.1 ± 0.5 0.336 ± 0.263 -0.0390 ± 0.0339 

 

a
 Average ± standard deviation of data measured for three different samples.  The anodic and cathodic limits were 

defined as the potentials where a Faradaic current was larger than 0.25 µA (∆j = 0.5 µA/cm
2
) at the scan rate of 0.1 

V/s.  The Faradaic current was determined by subtracting a background current (e.g., a charging current).  
b
 

Calculated from a difference between the anodic and cathodic limits of each substrate. Data collected by  Dr.Takashi 

Ito, Chrishani M De Silva,  Shinabu Ito, Bipin Pandey 
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Figure 9 shows the water contact angles (water
) and ellipsometric thicknesses of surface layers on 

solid gallium substrates as a function of total UV/ozone treatment time.  Upon UV/ozone 

treatment, the surfaces changed to be hydrophilic (water
 < 10°), and the ellipsometric thickness 

of surface oxide layers increased up to ca. 1 nm.  The very limited oxide growth was previously 

reported as the passivation of metallic gallium and its alloys.
4, 11

  The higher hydrophilicity 

probably reflects the formation of an oxide layer as well as the removal of surface contaminants.  

Although the water
 values for solid gallium samples upon 10-50 min UV/ozone treatment were < 

10° in the figure, it could be recognized that water spread easily on substrates upon UV/ozone 

treatment for longer than 30 min.  Thus, gallium substrates were treated by UV/ozone for 50 min 

in total to prepare UV-Ga thereafter. 

 

 

Figure 9 Water contact angle (blue triangles) and ellipsometric thickness of a surface oxide 

layer (red circles) on a solid gallium surface as a function of total UV/ozone treatment time.  

Measured on three different samples.  The error bars represent the standard deviations of 

the data. Data collected by Dr. Takashi Ito, Chrishani M De Silva, Shinabu Ito, Bipin 

Pandey 
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3.2 Adsorption of Primary Substituted Hydrocarbons on Solid Gallium 

Substrates 

Table 2 summarizes the water
 values of untreated Ga and UV-Ga before and after their 

immersion in toluene solutions with and without RX for 24 hours.  The water
 values upon 

immersion in RX solutions were significantly larger than those upon immersion in toluene, 

reflecting the adsorption of RX onto the substrates.  Overall, UV-Ga offered larger increases in 

water
 than untreated Ga.  In particular, the very large water

 value for ODPA-adsorbed UV-Ga 

(water
 ≈ 105°) suggests the formation of a densely-packed monolayer, as reported on other metal 

oxide surfaces.
21

  In contrast, adsorption of RX onto untreated Ga was weak, as indicated by the 

smaller increases in water
.  The water

 values of RX-adsorbed UV-Ga are in the order of 

C18H37PO(OH)2 > C17H35COOH > C18H37OH > C18H37NH2 > C18H37SH.  This order corresponds 

to that of hydrogen bond acidity of the functional groups,
22

 indicating the significance of the 

hydrogen bond accepting properties (i.e., basicity) of the surface gallium oxide on the adsorption 

of RX.  The stronger adsorption of ODPA may also reflect the heterocondensation of the 

phosphonic acid moiety with the surface oxide layer, as reported for other metal oxide surfaces.
21

  

The difference in adsorption strength was further verified by spectroscopic ellipsometry and CV 

(vide infra).  It should be noted that only C18H37NH2 was examined for the spectroscopic 

ellipsometry and CV measurements among the three RX that showed weaker adsorption onto 

UV-Ga (i.e., C18H37NH2, C18H37SH and C18H37OH).   
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Table 2. Water Contact Angles (water
) of Chemically Modified Ga Substrates and 

Ellipsometric Thicknesses of Adsorbed Organic Layers   

  

 θ
water

 on untreated Ga (°)
a

  

θ
water

 on UV-Ga (°)
a,b

 Ellipsometric 

Thickness (nm)
a
 

 

No immersion in a 

solution 

73 ± 5 [22] < 10  

Immersion in toluene 66 ± 11 [30] 52 ± 14 [30]  

C18H37SH 
c
 87 ± 1 [4] 82 ± 4 [8] - 

d
 

C18H37NH2 
c
 88 ± 2 [4] 85 ± 5 [12] 1.1 ± 0.5 [3] 

C18H37OH 
c
 90 ± 2 [4] 92 ± 3 [8] - 

d
 

C17H35COOH 
c
 94 ± 2 [4] 99 ± 6 [17] 1.3 ± 0.4 [7] 

 

C18H37PO(OH)2 

(ODPA) 
c
 

93 ± 2 [4] 105 ± 4 [24] 2.4 ± 0.4 [6] 

 

a  
Average ± standard deviation.  The numbers of measurements are shown in square brackets.  

b
 Gallium substrates 

treated with UV/ozone for 50 minutes in total.   
c
 Gallium substrates were immersed in a toluene solution (5 mM) for 

24 hours.  
d
 Not measured. Data collected by Chrishani M De Silva, Dr. Takashi Ito, Shinabu Ito 
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Figure 6c shows an AFM image of an ODPA-coated UV-Ga.  The surface roughness and 

features were very similar to those on untreated Ga and UV-Ga (Figure 6ab), as indicated by the 

very similar RMS roughness (0.93 ± 0.18 nm).  This observation suggests the formation of a 

very thin and uniform monolayer upon immersion in an ODPA solution.  Organosilane SAMs 

may also be formed on UV-Ga as with other metal oxides, but may offer less uniform surfaces 

due to the formation of thick, polymeric layers.
15

 Table 2 also shows the ellipsometric 

thicknesses of ODPA, C17H35COOH and C18H37NH2 layers adsorbed onto UV-Ga.  The 

ellipsometric thickness of an ODPA layer (2.4 ± 0.4 nm) was close to the length of a C18 alkyl 

chain in all-trans configuration,
20

 supporting the formation of a densely-packed monolayer as 

anticipated from the large θwater values.  In contrast, the other two RX gave smaller 

ellipsometric thicknesses, suggesting that the adsorbed layers were packed more loosely.  It 

should be pointed out that the stability of the ODPA SAMs upon conversion from solid to liquid 

gallium could not be assessed using contact angle and ellipsometric measurements because of the 

significant change in surface morphology (Figure 10).  Thus, heating-induced 

heterocondensation, which has been often employed for organophosphonate SAMs on other 

metal oxides,
21

 cannot be employed to improve the stability of ODPA SAMs on gallium. 
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Figure 10. Optical images of ODPA/UV-Ga (ca. 1 x 1 cm
2
) before (upper) and after 

(bottom) the solid gallium are melted at 35 °C.  Note that the ODPA/UV-Ga prior to the 

heating has a uniform mirror-like surface taken by Chrishani M De Silva 

3.3 Electrochemical Characterization of Solid Gallium Surfaces   

Electrochemical methods provide a simple means for investigating the properties of 

passivation layers formed on conductor surfaces.
16, 23

  In this study, CV was employed to assess 

the passivation properties of surface oxide and/or adsorbed organic layers at solid gallium 

substrates.  CV measurements were carried out in an acetonitrile solution containing 0.1 M 

TBAPF6, because the adsorbed organic layers gradually desorbed from solid gallium substrates 

in an aqueous solution (Figure 11) as observed on GaN and AlGaN substrates for ODPA 

monolayers.
17, 18, 24

  The surface oxide and adsorbed organic layers were assessed based on 

anodic and cathodic voltage limit (electrochemical potential window) obtained from CV data.  
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Figure 11. Water contact angles of an ODPA/UV-Ga substrate as a function of immersion 

time in water at room temperature.  This data indicates that the desorption of ODPA from 

the UV-Ga surface is negligible in the timescale of the contact angle measurements (< 1 

min). Data collected by Chrishani M. De Silva  

 

Figure 12a shows cyclic voltammograms measured at untreated Ga, UV-Ga and ODPA-

modified untreated Ga (ODPA/Ga) in 0.1 M TBAPF6/acetonitrile.  The anodic and cathodic 

currents in these voltammograms possibly originate from the oxidation and reduction of a trace 

amount of water in the acetonitrile solution as well as the formation and reduction of a surface 

oxide layer.  Untreated Ga exhibited the narrowest electrochemical potential window due to the 

absence of a passivation layer.  UV-Ga showed the inhibition of anodic and cathodic reactions to 

give wider electrochemical potential window, suggesting that a surface oxide layer inhibited the 

electrode reactions.  An ODPA layer adsorbed on untreated Ga inhibited cathodic reactions.  

However, the electrochemical potential window of ODPA/Ga was much narrower than that of 

ODPA/UV-Ga (see Figure 12b) probably due to the low ODPA coverage as suggested by the 

smaller θ
water

 (Table 2; vide supra).   
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Figure 12. CVs (scan rate: 0.1 V/s) measured in 0.1 M TBAPF6/acetonitrile at 0 °C under 

Ar atmosphere.  (a) An untreated gallium substrate (red), a UV/O3-treated gallium 

substrate (UV-Ga; black) and an untreated gallium substrate upon adsorption of ODPA 

(blue); (b) UV/O3-treated gallium substrates (UV-Ga) with no organic layer (black; Note 

that this CV is the same as that shown in Figure 3a), upon adsorption of ODPA 

(ODPA/UV-Ga; red), C17H35COOH (C17H35COOH/UV-Ga; blue) and C18H37NH2 

(C18H37NH2/UV-Ga; green). Data collected by Chrishani M. De Silva 
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Figure 12b shows cyclic voltammograms measured at UV-Ga modified with ODPA 

(ODPA/UV-Ga), C17H35COOH (C17H35COOH/UV-Ga) and C18H37NH2 (C18H37NH2/UV-Ga), in 

addition to a cyclic voltammogram at UV-Ga shown in Figure 12a.  ODPA/UV-Ga offered the 

widest electrochemical potential window, indicating that the adsorbed ODPA inhibited the 

electrode reactions most efficiently.  The small charging current also supports the high coverage 

of the electrode surface with ODPA.  In contrast, the voltammogram at C18H37NH2/UV-Ga was 

similar to that at UV-Ga due to the weak adsorption of C18H37NH2 to UV-Ga, as shown by the 

smaller θ
water

 value and ellipsometric thickness  

 

Table 3. Anodic and Cathodic Voltage Limits for Gallium Substrates with and without 

Surface Oxide and Adsorbed Organic Layers 

 

Ga substrates    Anodic limit (V)
 a
 Cathodic limit (V)

 a
 ∆Ewindow (V)

 b
 

Untreated Ga -0.146 ± 0.024 -0.492 ± 0.056 0.346 ± 0.066 

UV/O3-treated Ga (UV-Ga) 0.054 ± 0.060 -0.592 ± 0.037 0.646 ± 0.059 

Untreated Ga with ODPA (ODPA/Ga) -0.072 ± 0.141 -0.692 ± 0.017 0.620 ± 0.124 

ODPA/UV-Ga 0.657 ± 0.006 -0.902 ± 0.032 1.559 ± 0.038 

C17H35COOH/UV-Ga 0.259 ± 0.061 -0.895 ± 0.149 1.153 ± 0.098 

C18H37NH2/UV-Ga 0.055 ± 0.059 -0.618 ± 0.124 0.673 ± 0.076 

a
 Average ± standard deviation of data measured for three different samples.  The anodic and cathodic limits were 

defined as the potentials where a Faradaic current was larger than 0.25 µA (∆j = 0.5 µA/cm
2
) at the scan rate of 0.1 

V/s.  The Faradaic current was determined by subtracting a background current (e.g., a charging current).  
b
 

Calculated from a difference between the anodic and cathodic limits of each substrate.  Data collected by Chrishani 

M. De Silva 
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Table 3 summarizes the anodic/cathodic voltage limits and electrochemical potential 

window (∆Ewindow) determined from the voltammograms at the solid gallium substrates 

examined.  The anodic and cathodic voltage limits are defined as the potentials where a Faradaic 

current is larger than a threshold value.  Previously, linear sweep voltammetry was employed to 

determine the voltage limits based on various threshold currents under different scan rates.
25, 26

  

Here, the limit is defined as a potential where a Faradaic current obtained as a result of the 

subtraction of a background current is larger than 0.25 µA (0.5 µA/cm2) in voltammograms 

measured at the scan rate of 0.1 V/s.  The background subtraction eliminates the influence of a 

charging current and an Ohmic resistance.   

 

The ∆Ewindow values in Table 3 confirm that electrochemical potential window is wider 

in the order of untreated Ga < ODPA/Ga ~ UV-Ga  ~ C18H37NH2/UV-Ga < C17H35COOH/UV-

Ga < ODPA/UV-Ga.  In particular, there is a good correlation between θwater, ellipsometric 

thickness and ∆Ewindow for the three UV-Ga samples with adsorbed organic layers: ODPA 

formed a densely-packed monolayer on UV-Ga to give the large θwater, ellipsometric thickness 

corresponding to the molecular length, and the most efficient passivation shown by the wide 

∆Ewindow.  The adsorption of C17H35COOH onto UV-Ga was weaker than ODPA, giving 

smaller θwater, smaller ellipsometric thickness and narrower ∆Ewindow.  C18H37NH2 did not 

strongly adsorb onto UV-Ga, leading to negligible passivation upon its adsorption onto the 

substrate.  These electrochemical results verify the high affinity of a functional group with higher 

hydrogen bond acidity onto a surface gallium oxide layer on solid metallic gallium.   
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Chapter 4 - Conclusion 

In this work, we investigated the adsorption of primary substituted hydrocarbons on solid 

gallium substrates with and without UV/ozone treatment.  UV/ozone treatment gave hydrophilic 

surfaces with surface oxide layers up to 1 nm in thickness.  Adsorption of primary hydrocarbons 

onto UV-O3 substrates were driven by the hydrogen bonding acidity of organic functional 

groups. According to the measured contact angle data we can hypothesis that gallium oxide 

shows basic oxide properties. The surface oxide layer shows extremely lower water contact angle 

<< 10 throughout the 50 minutes time intervals. Based on these results we can claim that formed 

surface oxide layer is higher hydrophilic in nature and it may show smooth surface 

characteristics. Further surface roughness data of AFM images are supporting to this claim.  

However adsorptions onto UV-O3 non treated gallium substrates were comparatively poor as 

pure metallic gallium surface may not exhibit basic surface properties.  The findings of this work 

elaborate that ODPA formed a densely-packed monolayer on UV-O3 treated gallium substrate. 

Results from contact angle measurements, ellipsometic thickness and efficient electrode 

passivation provide evidence that ODPA formed well packed monolayer. Although other organic 

functional groups did not show strong adsorption onto UV-O3 substrates except –COOH. This 

observation is consistence with hydrogen bond acidity of organic functional groups. In contrast, 

any of organic functional groups were not showed strong adsorption onto UV-O3 non treated 

gallium substrates. It indicates that gallium oxide layer has a significant influence on adsorption 

process.  These results will provide guidance to the control of electron transfer/conduction across 

gallium-organic layer interfaces and also to controlled functionalization of gallium, its alloys and 

their oxide surfaces.   
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