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Abstract 

 In recent years both metal and semiconductor nanoparticles have gained the 

attention of many research groups because of their unique properties. Synthesizing 

metal and semiconductor nanoparticles with narrow size distribution, uniform shape, 

and good crystalline nature represents a significant challenge.   

Our research group has taken the synthesis procedure a step forward when we 

discovered that “when a polydispersed colloidal solution upon heating at or near the 

boiling point of the solvent in presence of excess surface active ligands, the particles 

evolve into a thermodynamic equilibrium size regime and this phenomenon was named 

“Digestive Ripening”. The ability to tune the nanoparticles size with a narrow size 

distribution after post - preparation in a reproducible fashion is remarkable.    

 The current dissertation research encompasses the field of metal and 

semiconductor nanoparticles and the major part of the work is devoted to understand  

the digestive ripening of gold-dodecanethiol system, and  the effect of the nature of the 

ligand and solvent temperature on a low melting point indium  metal – digestive 

ripening.  

A noteworthy achievement of the current work is the ability to extent the digestive 

ripening to the semiconductor materials cadmium selenide and cadmium telluride by 

employing different ligands and by the use of different solvents. A diverse set of 

instrumental techniques is used for the characterization of both metal and 

semiconductor nanoparticles. 
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CHAPTER 1 -  Gold-Dodecanethiol: Digestive 
Ripening, Effect of Ligand Concentration, and 

Reaction Intermediates  
1.1 INTRODUCTION 

Historically, colloidal gold is most often tracked back to Alchemy, where coloring glass 

and enamels were made from colloidal gold in the presence of tin. 1 In modern era the 

synthesis of colloidal gold was first reported by Michael Faraday in 1857,2 where he 

discovered a ruby color from colloidal gold upon reduction of gold salts with a reducing 

solution such as phosphorus in carbon disulfide in a two phase system. 2 The objective 

of his investigations with gold was to examine the interaction of light with the metal 

particles and he concluded that the ruby fluid of gold was from the dispersion of small 

gold in the liquid and those small gold particles were not detected from any of the 

imaging microscopes in those days.  Later, his idea of interaction of light with the metal 

particles was theoretically explained by Mie, who solved the Maxwell equation of 

electricity and magnetism for small metal nanoparticles 3 and after nearly 100 years of 

Faraday’s first observations, it was Turkevich et al, investigation with transmission 

electron microscopy revealed that the ruby color colloid produced by Faraday was 

particles of gold with an average size in the rage of 6 – 8 nm. 4  

1.2 Gold Nanoparticles – Colloidal Synthesis Routes  

1.2.1 Turkevich Method – 1951  

A useful method for synthesis of metal colloids was reported by Turkevich and co-

workers in 1951.4  Figure 1.1 represents the schematic synthesis of colloid gold by 
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reduction of metal salts in aqueous phase, where the gold ions were reduced in the 

presence of citrate anions.  

 

Figure 1.1 Schematic representation of synthesis of colloidal gold by Turkevich 
Method 4 

Even though this procedure is well established in practice, this method does not yield 

highly monodispersed nanoparticles.   

1.2.2 Micelles and Inverse Micelle assemblies  

An alternate method to synthesize colloidal gold is by reduction of gold salts in 

constrained environment created by a surfactant molecule. 5,6 7  These surfactant 

molecules consist of hydrophilic head and a hydrophobic tail,  by maintaining a delicate 

balance between a surfactant and two solvents of different polarities, surfactant 
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molecules order themselves into spherical micellar pockets separating the aqueous and 

organic phases. These micellar pockets acts as “microreactors”, where the reduction of 

metal salts takes place. Hence particles growth is somewhat limited and controlled 

within these microreactors. In these systems, the constituents undergo rapid exchange 

with time and therefore the number of metal ions available in the micellar pockets is not 

constant and hence these systems yields poly-dispersed particles. 6  Synthesis of 

nanomaterial by such method involves an extensive size – selective procedure to obtain 

mono-dispersed particles.8  Figure 1. 2 represent a schematic overview of a typical 

inverse micelle method.  9    

 

 

 

 

 

 

 

 

Figure 1.2 Schematic overview of a typical Inverse Micelle Method, (Didodecyl di 
methyl ammonium bromide (DDAB), Dodecane thiol (DDT)) 9 . 
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1.2.3 Brust Method   

This method was reported by Brust and co-workers in 1994,10 and is a single- step 

synthesis which utilizes a two-phase system to produce alkanethiol stabilized gold or 

silver nanoparticles.  By employing a phase transfer agent tetraoctyl ammonium 

bromide (TOAB), transfer of unreduced gold salt (AuCl4-) from aqueous phase to 

organic phase was achieved, and the reduction of salt was carried by sodium 

borohydride. The formed nanoparticles were then quickly stabilized by alkanethiol ligand 

present in the organic phase. Indeed, a sulfur atom is a softer base and has a better 

interaction with the soft noble metal atoms compared to citrate stabilized particles by 

Turkevich method.  

1.2.4 Sonochemical Method  

In recent years a sonochemical method has emerged as an alternate method for the 

synthesis of nanoparticles. By employing ultrasonication in a liquid environment, 

enormous temperatures and pressures are created in a localized area within the 

solution and a unique reaction environment is induced by acoustic cavitation. These 

extreme conditions cause shock wave generation, and radical formation that can drive 

the reactions in unique ways.11  Franz Grieser and co-workers found that the rate of 

sonochemical reduction of Au (III) to produce gold nanoparticles was strongly 

dependent upon the ultrasound frequency.12  
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1.2.5 Microwave Irradiation  

The use of microwave for the synthesis of nanoparticles has gained attention beginning 

in 1986 due to its rapid heating and energy penetration, thereby reducing the reaction 

time.13  Many microwave based synthesis routes were developed to synthesize gold 

nanoparticles, nanowires, nanoplates, and nanorods. 14-16 Recently, Kundal et al has 

achieved size-controlled gold (Au) nanoparticles in the presence of poly (N-vinyl-2-

pyrrolidone) (PVP) under microwave heating for just 60 s in aqueous solutions by 

adjusting the PVP to Au (III) molar ratio, and by using different molecular weight PVP 

molecules. The reduction of Au (III) to Au (0) by PVP was attributed to favorable 

thermodynamics. 17   

1.2.6 Vaporization methods 

 There are several ways to create nanoparticles from atoms: In Physical Vapor 

Deposition (PVD) the source metal will be thermally heated under inert atmosphere 

using tungsten crucible and the evaporated metal atoms or clusters can be cooled by a 

carrier gas (such as helium), and then deposited on a cold finger. When the reaction is 

completed the powder can be scraped from the cold finger. 18   

Gram -scale synthesis of metal and semiconductor nanoparticles is possible by a 

modified vaporization technique known as the Solvated Metal Atom Dispersion (SMAD) 

developed by Klabunde et al.19-22 in this technique the vaporized atoms / cluster were 

co-condensed with excess solvents (solvated at low temperature) and upon gentle 

warming and matrix melts, allowed to react with stabilizing ligands. The initial as-

prepared SMAD product generally yields poly-dispersed particles due to little control 
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over the vaporization and condensation. But it is remarkable that these poly-dispersed 

particles can be converted into highly mono-dispersed particles by a unique post-

preparative digestive ripening process. 9,19-22    

1.3 Digestive Ripening – a Post-Preparative process 

 Nanomaterials can be synthesized either by bottom-up or top-down approaches as 

described above. Though, there are many synthesis approaches, synthesizing metal 

nanoparticles with narrow size distribution, uniform shape, and good crystalline nature 

represents a significant challenge.  Digestive ripening is a unique post-preparative 

process, where a poly-dispersed colloid material upon heating at or near the boiling 

temperature of the solvent in the presence of excess surface active ligand will bring 

these particles to an thermodynamically equilibrium size distribution.9  This digestive 

ripening process was discovered in our laboratory, which is a simple, yet effective route 

to convert poly-dispersed nanoparticles into highly mono-disperse.  

In contrast to the well-known Ostwald ripening process, where larger particles grow at 

the expense of smaller ones, in digestive ripening smaller particles will grow bigger and 

bigger particles will break down / dissolve and finally the system reaches a 

thermodynamic equilibrium size.  This process could be more advantageous in 

synthesizing nanomaterial on gram-scale for practical applications. Further, this 

procedure was successfully employed to other metal nanoparticles silver, copper, 

magnesium, and palladium 21,23,24 25 and in fact, different functional group ligands and 

ligand chain lengths have also been investigated by Stoeva and Prasad et al. 26,27   
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1.4 Surface Plasmon Resonance  

Metal nanoparticles like gold and silver posses a plasmonic band in the visible region of 

the electromagnetic spectrum. Thus spherical gold nanoparticles have a characteristic 

red color, while silver spheres are yellow. The d-electrons in these metals are free to 

travel through the material and the mean free path is ~ 50 nm. Therefore, in metal 

nanoparticles smaller than this mean free path, no scattering of light is observed, as in 

the case of bulk, larger particles. Thus, the interactions of light in resonance with the 

surface free electrons of metal nanoparticles create oscillations.28 As a result of this 

optical effect, a new type of resonance called plasmon or surface plasmon resonance 

(SPR) localized between the metal nanoparticles and the surrounding dielectric medium 

produces an enhanced electromagnetic field at the interface and experimentally these 

resonances can be monitored by absorption spectroscopy.28  The wavelength of the 

absorption peak maximum is found to depend on the shape, size and dielectric constant 

of the surrounding environment. 29  In fact, the capping material or stabilizing ligands, 

does influence the shift of the plasmon resonance, for example, thiol stabilized gold 

nanoparticles will give a surface plasmon resonance at 530 nm, whereas amine 

stabilized gold nanoparticles exhibit SPR at 540 nm. 27,29  If the particle size is smaller 

than the wavelength of the absorption light, the  shift  in SPR will be in a narrow range. 

In case of larger plasmonic metal nanoparticles they exhibit red shift. 30,31  
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The purpose of this work is to evaluate the effect of ligand concentration on digestive 

ripening of the gold-dodecanethiol system and to explore possible intermediates, and a 

part of this work was devoted to ligand exchange reactions through digestive ripening.   

1.5 Experimental Procedure  

In a typical experiment, 0.104 gram (mol) of didodecylammonium bromide (DDAB, 

FLUKE) was dissolved in 10 mL of distilled and degassed toluene to form a 0.02 M 

inverse micelle solution and the entire solution was stirred continuously for 30 minutes 

to ensure complete dissolution of DDAB in toluene. After 30 minutes 0.034 g (mol) of 

AuCl3 (99.99%, Sigma-Aldrich) was dissolved in the DDAB-toluene solution by vigorous 

stirring, followed by sonication. At this stage the solution becomes clear with a deep 

orange-red colored AuCl3 –DDAB – toluene was obtained.  Freshly prepared aqueous 

NaBH4 solution (40 µl, 9.4 M) was then added by drop wise addition to the AuCl3 –

DDAB – toluene solution with continuous stirring for to ensure completed reduction. 

Upon complete reduction the solution turns into a deep purple-red in color.26,27 

These particles were then precipitated by the addition of 30 mL of ethanol (200 proof, 

Fisher) and the system was left undisturbed overnight. On the following day particles 

were found precipitated. The supernatant was decanted and the solid precipitate was 

then vacuum dried and re-dissolved in 10 mL of distilled and degassed toluene solvent.  

In order to understand the effect of ligand concentration on digestive ripening, different 

molar ratios of gold to ligand (1:8, 1: 16, 1:30 and 1:60.) were employed and then the 

samples were subjected to “Digestive Ripening”.  Note: These ratios were employed to 
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replace the DDAB ligand and the same ligand ratio was added to the precipitated / re-

dissolved particles before subjecting to digestive ripening.  

Another set of reactions was carried out to understand the effect of digestive ripening on 

ligand exchange reactions. Mono-dispersed gold-dodecanethiol stabilized ~ 5 nm 

particles were prepared by the standard inverse micelle method, followed by digestive 

ripening.  In order to remove the excess unbounded thiol ligand, the particles were 

precipitated with the addition of ethanol and then vacuum dried. The dry particles were 

then re-dissolved in 10 mL of distilled and degassed toluene. (I) One example, an 

exchange reaction with by dodecylamine ligand was carried by adding an excess of the 

amine, followed by digestive ripening again under argon. A similar procedure was 

adopted for gold-dodecylamine stabilized particles, where digestively ripened particles 

were precipitated, vacuum dried and re-dissolved in toluene but in this case excess 

dodecanethiol ligand was added. Scheme 1.1 shows the ligand-exchange procedure 

and digestive ripening.  

1.6 Characterization  

Ultraviolet-Visible-Near Infra Red (UV-Vis- NIR) spectra were collected on a Carry 500 

Scan spectrophotometer equipped with a dual cell peltier accessory that allows 

temperature control of both the reference and the sample compartment. 

Transmission electron microscopy (TEM) was performed with a Philips CM 100 

operating at 100 kV. Particle size distribution was determined from a pool of minimum 

300 particles from different parts of the TEM grid were observed.   
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A flash vaporization technique was used so as to quickly evaporate toluene solvent to 

restrict self-assembly of these particles (See Figure 1.3).  

 

 

Scheme 1.1 Schematic representation of ligand-exchange and digestive ripening   
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Figure 1.3 Flash vaporization of toluene from the Gold @ DDT colloid using a hot 
plate. The arrow showing the tweezers with the sample on TEM grid, placed near 
to the hot plate. The sample dries within 5 seconds, this procedure helps in 
restricting particles from aggregation, before examination by TEM.   

1.7 Results and Discussion  

Typically, before digestive ripening the surface plasmon resonance (SPR) peak of a 

poly-dispersed colloidal gold appears broad with a low absorption maximum, but as 

digestive ripening progresses, the SPR peak becomes sharper and the absorption 

maximum increases and finally reaches an equilibrium when the particles attain 

monodispersity as shown in the Figure 1.4.   First we will discuss the gold: ligand ratios 

that were found not to be ideal, as can be observed in Figure 1.5 and 1. 6.  
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Figure 1.4 The surface plasmon peak of gold nanoparticles before digestive 
ripening is broad but as digestive ripening progresses, the surface plasmon peak 
becomes much sharper. Once particles attain a thermodynamic equilibrium size, 
the SPR also attains equilibrium.  The increase in intensity is due to either 
breaking or dissolving of big crystals in solution.  
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Figure 1.5 Comparison of SPR of colloidal gold with different ligand ratios with 
digestive ripening time and corresponding intensities of absorption maximums 
with digestive ripening time. 
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Figure 1.6 Corresponding TEM images colloidal gold with different ligand ratios 
with the histogram.   
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The corresponding absorption maxima versus digestive ripening time plot indicates that 

the particles described in Figure 1.4 and 1.5 did not yield an equilibrium size even after  

a period of 3 hrs of digestive ripening. The average particle size measured after 3 hrs of 

digestive ripening with 1:8 ligand ratio is ~ 6 to 6.5 nm, whereas with 1: 16 ratio the 

average particle size is found to be 5 nm ± . 5 nm and with 1: 60 ratio they all tend to 

form smaller particles < 5 nm in size. This variation is size distribution with change in 

ligand ratio could have resulted from a change in the stability of these particles. For 

example, when glutathione- stabilized gold nanocrystals were etched in a hot solution in 

the presence of excess ligand; smaller particles were completely etched away leaving 

an Au (I): thiol polymer, where as larger particles reached a size that were especially 

thermodynamically stable.32 Similar results have also been reported with different gold 

clusters. 33,34   It is worth noting that the particle size reported by Brust, et al10 and 

Whetten, et al.35 have produced multiply-peaked size.  Figure 1.7 and Table 1.1 shows 

an overall comparison of the effect of ligand concentration on the absorption maxima of 

gold-dodecanethiol digestive ripening system.     
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Figure 1.7 Overall comparison of the effect of ligand concentration on the 
absorption maxima of gold-dodecanethiol digestive ripening system. 

Table 1.1 Overall comparison of the effect of ligand concentration on the 
absorption maxima of gold-dodecanethiol digestive ripening system. 

To investigate longer digestive ripening times, three different ligand ratios were 

investigated 1: 8, 1: 30, and 1:60, and were subjected to reflux for a period of 24 hrs 

(Figure 1.8). From the data it is evident that the 1:30 ligand ratio works best, and the 

absorption maxima attained equilibrium within 3 hrs of digestive ripening and it stays at 

equilibrium even after 24 hrs of reflux under the protection of argon. However, note that 

the 1:8 and 1:60 ratios did not achieve equilibrium. These results reaffirm that gold: 

ligand ratio is important in order to achieve a final thermodynamically stable state.    
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Figure 1.8 Comparison of corresponding intensities of absorption maximums 
with digestive ripening time for a period of 24 hrs for 1: 6, 1:30, and 1: 60 gold to 
dodecanethiol ratio. Where 1: 30 ration has reached an equilibrium absorption 
maximum.       

From the absorption maxima data the 1:30 ligand ratio works best for the gold-

dodecanethiol system so, in order to substantiate this, a complete particle size 

distribution with digestive ripening time was studied by analyzing particles from various 

parts of the TEM grid. Further, to eliminate the possibility of self-assembly of these 

digestively ripened particles, a flash vaporization technique was adopted. During this 

process 0.1 mL of hot colloid was initially diluted by 0.9 mL of hot toluene and from this 

diluted hot colloid .3µL was placed on the TEM grid, and the TEM grid was dried by 

flash vaporization as shown in Figure 1.3.  A complete particle mean size distribution 

with digestive ripening is shown in Figure 1.9 with the corresponding TEM images.  
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Figure 1.9 Particle mean size distribution after the addition of 1st dose, 2nd dose of 
dodecanethiol ligand at room temperature and with the progress of digestive 
ripening time with the error bars shows the particle size distribution analyzed 
from different parts of the TEM grid.  The DDAB stabilized particles were also 
shown. (Please find the appendix 1 for additional TEM images 

By analyzing the TEM image profile of the gold-dodecanethiol (1: 30), it is evident that 

the initial DDAB stabilized particles are polydispersed with particle size ranging 2-50 nm 

but when the first DDT ligand is added, the particles break down into a bi-model size 
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distribution with particles size ranging from 1 to 5 nm. After a few processing steps 

(precipitation, vacuum drying, and re-dissolving in toluene) when a second dose of DDT 

ligand (1:30) was added, the particle size was re-adjusted even at room temperature but 

upon digestive ripening the particles were further re-adjusted and such re-adjustment is 

possible because alkane thiols are well know etchants of the noble metal surface. 36 and 

thus DDT can enable mass transfer of atoms between particles and thereby adjusting 

overall narrowing of the particle size distribution, and eventually leading to a 

thermodynamic equilibrium size.  

It is further interesting to note the interaction between the particles with digestive 

ripening time. Metal nanoparticles tend to self-organize into 2-D and 3-D super lattice 

structures and these interactions are found to depend on particle size, the nature, and 

the size of the organic ligand on the surface of the particle.37-39 For example, when 

different chain lengths of thiol ligands are used, it was only thiols with C10, C12 chain 

length were found to form super lattices of gold, 26,27   Initially,  tend to form some fractal 

structures form and with the progress of digestive ripening they tend to eventually form 

3D super lattice structures and finally leading to more and more 3D super lattice 

formation, especially under slow evaporation conditions as shown in Figures 1.10 (a- f).  
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Figure 1.10 (a-f) are the samples collected at different interval of digestive 
ripening time for 1: 30 gold-dodecanethiol system, (a) after 10 min, (b) 30, (c) 60 
min, (d) 90 min, (e) 120 min, and (f) 180 min of digestive ripening. Where the initial 
colloid show only fractal aggregations but with digestive ripening, more and more 
3D super lattice structures were formed. The samples were prepared by slow 
evaporation.   

1.7.1 Ligand Exchange reactions 

It has been found that when thiol or amine ligand is added to a didodecyldimethyl 

ammonium bromide (DDAB) stabilized polyhedral gold nanoparticles (> 50 nm), the 

large polyhedral particles led to the break-up  even at room temperature leading to  

small ( 2- 10 nm) spherical particles 40 and these smaller particles upon digestive 
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ripening  spontaneously transform into monodispersed particles. Further it has been 

also found that the final particle size depends on the nature of the functional group. If 

thiol ligands were used, then the particle size adjusts to ~5 nm, whereas with amine, 

the polydispersed particles yield 9 nm. 40  Interestingly, a reversible transformation of 

gold nanoparticle morphology was achieved by nanomachining upon addition of DDAB 

to highly monodispersed gold nanoparticles, followed by digestive ripening. 41 Based 

on these observations; will it be possible to further adjust the particles size ~5 nm to ~9 

nm and vice versa by ligand exchange through digestive ripening?  Though there is no 

conclusive answer at this time, however some reasonable suggestions can be given. 

Starting with a highly monodispersed ~ 5 nm gold-dodecanethiol stabilized ligands 

(Figure 1.11), an excess (1:30) dodecayl amine ligand was added and then the system 

was subjected to digestive ripening. Figure 1.11 show the ligand exchange reaction of 

AU-DDA to Au-DDT ligand through an intermediate Au-DDA-DDT.  
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Figure 1.11 (a) DDT-stabilized gold nanoparticles,(b) corresponding histogram of 
particles, (c) TEM image of gold- DDT-DDA ligand exchange after 14 hrs, (d) UV-
Vis before and after ligand exchange ,(e) TEM image of gold-DDT-DDA ligand 
exchange after 24 hrs of digestive ripening in toluene and (f) corresponding 
histogram. 
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Figure 1.12  (a) DDA-stabilized gold nanoparticles,(b) corresponding histogram of 
particles, (c) TEM image of gold- DDA-DDT ligand exchange after 14 hrs, (d) UV-
Vis before and after ligand exchange ,(e) TEM image of gold-DDA-DDT ligand 
exchange after 24 hrs of digestive ripening in toluene and (f) corresponding 
histogram. 
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In first ligand exchange reaction when gold-dodecanethiol stabilized gold nanoparticles 

were subjected to a ligand exchange with dodecylamine ligand by digestive ripening for 

4 hours in toluene the particles were found to coalesce (Figure 1.11 c) but upon 24 hrs 

reflux at the boiling point of toluene, the particle size was adjusted from 5 nm (Figure 

1.11b) to an 6.5 nm, a growth of 1.5 nm was achieved (Figure 1.11 f). The particles 

were well dispersed but there was no significant change in the surface plasmon 

absorption peak (Figure 1.11d). 

In the second exchange reaction when gold-dodecylamine stabilized gold nanoparticles 

were subjected to a ligand exchange reaction with dodecanethiol ligand by digestive 

ripening, the well dispersed 9 nm (Figure 1.12a, b) gold particles were found coalesced 

as in the case of first ligand exchange reaction (Figure 1. 11c) but upon 24 hrs digestive 

ripening they yield smaller size particles, which are polydispersed with particle size 

ranging from 2-5 nm (Figure 1.11 e, f) and there was no significant change in the SPR 

before and after ligand exchange.  

Based on previous finding with particle size adjustment (5 nm and 9 nm) with 

dodecanethiol and dodecylamine ligands, the metal to ligand interactions play an 

important role in adjusting the final size. Compared to nitrogen in amine ligands, sulfur 

in thiol ligand binds more strongly with the gold surface. Now, in ligand exchange 

reactions it’s possible that atoms on different crystallographic facets might have different 

interaction strengths leading to different growth as found with polymeric and surfactant 

capping agent. 42,43  Therefore the leading to different particle size adjustments.  

 



25 

 

1.8 SUMMARY 

1.  Before digestive ripening the gold colloid has a broad UV-Vis SPR absorption 

peak, but during digestive ripening the SPR becomes sharper with an increase in 

intensity in the absorption maximum (Figure 1.4) and finally when particles 

attains an equilibrium size regime, the SPR reaches an equilibrium.  

2.  When 1:6 ligand ratio was employed, the average particle size was found to be 

6.5 nm (Figure 1.5b) and it is possible that due to less ligand concentration the 

coalescence of neighboring crystals due to particles collisions might have 

resulted in particle size growth. However, they did not yield monodisperse 

particles as expected from digestive ripening.  

3. In the case of 1: 16 gold to ligand ratio, though the average particles were found 

to be 5 nm but it is evident that still there are smaller particles (< 2nm) as could 

be seen from the TEM image (Figure 1.4 C). These results also emphasize the 

importance of ligand concentration on the digestive ripening. 

4. When a higher ligand concentration was used (1:60) the particles were more 

polydispersed with < 5nm size.  

5. Whereas when with 1:30 ligand ratio was used, highly monodispersed particles 

resulted.  Upon a careful examination of particle size distribution upon the first 

DDT addition the system appear to be a bi-model.  



26 

 

6. Hence it can now be summarized that during digestive ripening the system 

transforms from a bi-model size distribution to a thermodynamically stable 

monodispersed size regime.  

7. It is further interesting to note the interaction between the particles depending on 

the digestive ripening time under slow evaporation, where the initial digestive 

ripened particles formed fractal structure but with the progress of digestive 

ripening more and more superlattices were formed.  

8. Flash vaporization techniques allowed better images of individual particles. 

9.  In ligand exchange reactions (With DDT to DDA and with DDA to DDT) the 

colloidal particles appear to coalescence upon initial digestive ripening process, 

and upon prolonged reflux the particle size was adjusted, and the intermediate 

coalescence might be due to difference in the crystallographic energies of the 

facets of the gold nanocrystal and the interaction of ligands with those facets.   
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1.10 APPENDIX 

 

Figure 1.13  DDAB stabilized gold nanoparticles- Different morphology and show 
bigger particles.   
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Figure 1.14  : Bi-model distribution of gold nanoparticles after addition of 1st dose 
of dodecanethiol ligand (metal to ligand ratio 1:30). Insert is particle histogram.  
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Figure 1.15 After 2nd dose of dodecanethiol ligand addition (metal to ligand ratio 
1:30). Insert is particle histogram.   
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Figure 1.16 Gold-dodecanethiol stabilized nanoparticles after 30 minutes of 
digestive ripening in toluene. Insert is particle histogram.    
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Figure 1.17 Gold-dodecanethiol stabilized nanoparticles after 60 minutes of 
digestive ripening in toluene, particles tend to form superlattice structure upon 
slow evaporation.  Insert is particle histogram.     
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Figure 1.18 Gold-dodecanethiol stabilized nanoparticles after 90 minutes of 
digestive ripening in toluene.  Insert is particle histogram.  Re-appearance of ~ 
2nm particles might be due to transformation of cluster of gold particle during 
digestive ripening?    
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Figure 1.19 Gold-dodecanethiol stabilized nanoparticles after 120 minutes of 
digestive ripening in toluene.  Insert is particle histogram.  
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Figure 1.20 Gold-dodecanethiol stabilized nanoparticles after 24 hours of 
digestive ripening in toluene.  Insert is particle histogram with an average particle 
size of ~ 5 nm.  
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CHAPTER 2 -  Synthesis of Indium nanoparticles: A 
study of Digestive Ripening and Stabilizing Ligands 

* A part of this work has been submitted to the Nanoscale journal 201021, 1248–1252. 

2.1 Introduction 

In recent years, metal nanoparticles have received significant attention due to their 

unique properties such as melting point, conductivity, magnetism, specific heat, surface 

plasmon resonance (SPR), color.1  These nanoparticles are used in diverse fields 

including catalysis,2 magnetic recording media,3,4 microelectronics,5,6 sensing, clinical 

diagnostics, surface-enhanced Raman scattering (SERS), and energy conversion.7,8 

Hence, synthesizing metal nanoparticles with narrow size distribution, uniform shape, 

and good crystalline nature represents a significant challenge.  There are many reports 

and reviews on the synthesis of noble and transition metal nanoparticles, but not on 

indium nanoparticles synthesis. Indium is widely used in the field of electronics including 

single electron transistor,9 in nanoelectro-mechanical resonators,10 electronic switchs,11 

as a component in low melting solders,12 solid-state lubricants,13 detection of DNA and 

protein,14-16  and as printing nanoparticle building blocks in nanoxerography.17  Silica-

encapsulated indium nanoparticles were used as a phase-change material for 

enhancing heat capacity 18 and as a growth promoter for the III-V semiconductor rods.19-

21  Indium acts as a catalyst in various organic reactions as well.22-25 

In general, indium nanoparticles have been synthesized by physical and chemical 

methods. Physical methods involve dispersion of molten  metal in paraffin oil,26 

ultrasound irradiation,13 laser ablation,27 thermal evaporation followed by  aerosol 
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formation,28  emulsification  by top-down and bottom- up approaches,29,30 and 

oleylamine-driven phase transfer synthesis. 31 Unfortunately these methods offer  little 

control over particle size.13,26 Chemical methods involve reduction of metal salts  by  

strong reducing agents like sodium metal, 32  sodium borohydride in ionic liquids,33 zinc 

powder,34,35  alkalides and electrides,36 and decomposition of organometallic 

complexes.37-40  More recently, it has been reported that the morphology of indium 

nanoparticles can be kinetically controlled by borohydride reduction at room 

temperature.41  There are a few other reports on controlling the morphology of indium 

nanoparticles, which involves synthesis of hollow spheres and nanotubes,34,42  

nanowires, 43 and protein cavities as the reaction chamber for the fabrication.44 In 

general, to control the particle size and size distribution, a variety of protecting agents 

have been investigated, which includes thiols,45 phosphines,46 amines,47 

alkanecyanides, 48 and thioethers. 49  

This chapter describes synthesis of indium nanoparticles by metal evaporation / 

condensation “SMAD” technique. Toluene and methylene chloride were tested as a 

digestive ripening solvents and to control the particle size; amines, phosphines and 

mixed ligand systems were investigated.  

2.2 Experimental Section  

2.2.1 Chemicals 

Indium shot (99.9 %, Strem Chemicals Inc), Hexadecylamine (98%), oleylamine 98%, 

Trioctylphosphine oxide (Reagent Plus 99%), and trioctylphosphine were purchased 
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from Sigma-Aldrich and used without further purification. Toluene, methylene chloride, 

acetone, and methanol (Fisher Scientific) were used for the synthesis of nanoparticles. 

Toluene, acetone and methylene chlorides solvents were distilled and degassed four 

times by the standard freeze-thaw procedure prior to use.   

2.2.2 Preparation Procedures 

Typically, indium shot (0.3 g) was placed in a C9 boron nitride crucible (R.D. Mathis # 

C9-BN) resting in a metal basket (R. D. Mathis # B8B # x.030 w), which was in turn 

connected to water cooled copper electrodes and then the SMAD reaction chamber was 

charged with ligand (we chose 1:30 metal to ligand ratio based on previous work 50 ) 

and vacuum sealed. After complete evacuation, a liquid N2 Dewar was placed around 

the sealed SMAD reactor. Once the vacuum reached 4 X 10-3 torr, 50 mL of distilled 

and degassed either acetone or methylene chloride solvent was evaporated through the 

solvent shower head. The evaporated solvent was condensed on the wall of the SMAD 

reactor by external liquid N2 cooling, which formed a uniform solvent matrix. Then the 

metal was heated gradually using water cooled electrodes. The vaporized metal was 

co-condensed with the continuous flow of co-condensing solvent vapor and this co-

condensing restricts vaporized atoms from aggregation. The temperature required for 

the metal vaporization is ~ 900°C, and it took nearly 2-3 hrs based on the amount of 

starting material and a total of 100-125 mL of solvent. [Note about safety and 

cleanliness; before starting this procedure, the SMAD reactor was cleaned with aqua 

regia, base bath, acid bath and finally with copious amount of water, followed by drying. 

Special personal protection is necessary while working with a vacuum line, which 
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includes eye protection. Also acids and bases used for cleaning can cause severe 

burns, so proper acid proof gloves and clothing protection is necessary].  Once all the 

metal was vaporized, the liquid N2 Dewar was removed. The solvent matrix along with 

the condensed metal appeared black in color and the matrix was allowed to melt and 

warm to room temperature, and the molten matrix along with the co-condensed metal 

slowly reaches the bottom of the SMAD reactor and mixes with the ligand.  A 

homogeneous single phase as-prepared colloid was obtained after vigorous stirring for 

30 minutes with a magnetic stirrer. Later, the as-prepared colloid was siphoned into a 

Schlenk glass tube under the protection of argon. This as-prepared SMAD product was 

then subjected to digestive ripening under the protection of argon.  

2.2.3 Sample prepared in two- solvent system 

 In two-solvent system, acetone was used as a co-condensing solvent for condensing 

the evaporated indium metal and toluene as a digestive ripening solvent.  After 

siphoning Indium –ligand- acetone- toluene SMAD product into a Schlenk glass tube; 

acetone was removed under dynamic vacuum leaving indium-ligand -toluene colloid, 

which was then digestively ripened in toluene at 110 °C.  

2.2.4 Samples prepared in single solvent system 

 In this system, methylene chloride was used as a single solvent, which served as   co-

condensing solvent as well as digestive ripening solvent and digestive ripening was 

carried at the boiling point (38° C) of the solvent.   
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2.2.5 Digestive Ripening 

 Two solvents were used to determine the influence of the solvent boiling point on the 

indium nanoparticles and three colloids were  produced by carrying digestive ripening in 

toluene (BP, 110 °C) and methylene chloride (BP, 38°C).  

2.3 Characterization 

 Analyses of the particles were carried before and after the digestive ripening. UV-Vis 

absorption spectra were recorded using an in situ UV-Vis optical fiber, assisted by a 

DH-2000 UV-Vis optical spectrophotometer instrument (Ocean Optics Inc). The powder 

X-ray diffraction (PXRD) samples were prepared by the evaporation of solvent from the 

Indium/ toluene or indium/ methylene chloride dispersion loaded on XRD glass plates 

and PXRD patterns were recorded by a Bruker D8 X-ray diffractometer with CuKα 

radiation. The samples were scanned from 20< 2θ < 70° at an increment of 0.02°/ min 

and the total acquisition time period was more than 2 hrs. A drop of washed and re-

dispersed colloid was suspended on a transmission electron microscopy (TEM) carbon 

coated grid and allowed to dry under vacuum. TEM and selective- area electron 

diffraction (SAED) were performed on a Philips CM100 operating at 100kV. The yields 

were calculated based on a previously reported method for gold-dodecanethiol SMAD 

digestive ripening system,50 and were 80 ± 5 % .  
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2.4 Results and Discussion  

2.4.1 Trioctyl Phosphine Protected Particles - Digestive Ripening in toluene  

 Most metal nanoparticles are stabilized by the trioctyl phosphine ligand because the 

phosphorous head group binds strongly with the nanoparticles and the three octyl units 

of carbon chains acts as an insulating material, which not only protects nanoparticles 

from aggregation but also aids solubility in organic solvents.  

The as-prepared SAMD colloid produced with trioctyl phosphine stabilized particles 

appeared black in color but upon digestive ripening in toluene, the color of the sample 

was slightly changed from black to light brown. Addition of ethanol caused precipitation 

and these precipitate was easily re-dissolved in toluene and chloroform. The UV-Vis 

absorption spectrum of the as-prepared SMAD product was broad and after digestive 

ripening the peak was narrowed considerable (Figure 2. 1) but unfortunately, due to 

interference of the UV-Vis of toluene,  the expected surface Plasmon peak of indium 

nanoparticles could not be observed. The as-prepared indium nanoparticles are 

polydispersed (Figure 2. 2A) and upon digestive ripening in toluene, the particle size 

was narrowed but digestive ripening did not yield monodispersity as can be seen in 

Figure 2.2B. The XRD data in Figure 2.3a shows all the characteristic peak of indium 

and it matches with the literature data.26  
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Figure 2.1 Surface Plasmon absorbance resonance peak for trioctyl phosphine 
indium nanoparticles. The Black line represents the as-prepared SMAD colloid 
and the red line represents particles after digestive ripening. 
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Figure 2.2 TEM images of Trioctyl phosphine coated indium nanoparticles (A) 
before digestive ripening and (B) after digestive ripening.   
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Figure 2.3 XRD of indium nanoparticles (a) stabilized with trioctyl phosphine and 
(b) with trioctyl phosphine oxide. There is no evidence of indium oxide formation. 
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as-prepared indium nanoparticles and Figure 2.5b after digestive ripening. Compared to 

trioctyl phosphine stabilized particles, trioctyl phosphine oxide stabilized nanoparticles 

yield more spherical particles. The XRD data (Figure 2.3b) reveals that the formed 

particles are indium and there were no signs of indium oxide.  

 

 

 

 

 

 

 

 

 

Figure 2.4 Surface Plasmon absorbance resonance peak for trioctyl phosphine 
oxide coated indium nanoparticles (Black) before digestive ripening and (Red) 
after digestive ripening.  

 

200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ab
so

rb
an

ce

Wavelength (nm)

 Undigested 
  Digested

4 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 TEM images of Trioctyl phosphine oxide coated indium nanoparticles 
(a) before digestive ripening and (b) after digestive ripening in toluene solvent.  
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2.4.3 Oleyl amine Protected Particles - Digestive Ripening in toluene  

The UV-Vis absorption spectrum of oleyl amine stabilized indium nanoparticles before 

digestive ripening is broad (Figure 2.6) but after digestive ripening the peak become 

narrow and from the TEM images the particles look amorphous but after digestive 

ripening the particles appear more crystalline (Figure 2.7a and 2.7b), but the particles 

did not yield special particles and the XRD data (Figure 2.8) shows all characteristic 

futures of tetragonal crystalline indium.  

 

 

 

 

 

 

 

 

Figure 2.6 Surface Plasmon absorbance resonance peak for oleyl amine 
protected indium nanoparticles. The Black line represents the as-prepared SMAD 
colloid and the red line represents particles after digestive ripening. 
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Figure 2.7 TEM images of Oleyl amine coated indium nanoparticles (a) before 
digestive ripening and (b) after digestive ripening in toluene solvent. 
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Figure 2.8 Powder XRD data of indium nanoparticles stabilized with oleyl amine 
ligand after digestive ripening in toluene was recorded without any beam slits. 
These patterns represent the tetragonal crystalline diffraction patterns from 
indium nanoparticles.  
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2.4.4 Trioctyl Phosphine Oxide Protected Particles - Digestive Ripening 

in methylene chloride   

In general, in the SMAD technique two solvents were employed where one solvent was 

used for solvation of vaporized particles and another solvent for digestive ripening. 49-51  

However, in the current synthesis methylene chloride worked well for both purposes. 

The SMAD technique allows the synthesis of polydispersed colloidal particles by 

vaporization and co-condensation.2,49-53  As discussed in an early chapter, a 

polydispersed colloidal solution were made monodispersed by a unique process known 

as “Digestive ripening”.54  Digestive ripening is a post preparative process which 

involves heating of polydispersed colloid particles at the boiling point of solvent in the 

presence of excess surface active ligands.49-52  Previously, it was reported that highly 

monodispersed magnesium nanoparticles were achieved by digestive ripening at room 

temperature.55  Hence, controlling of particle size can be achieved even at room 

temperature by digestive ripening under appropriate conditions. 

Figure 2.9 shows the UV-Vis absorption spectrum of indium nanoparticles stabilized by 

TOPO. The as- prepared SMAD particles exhibit a little hump around 280 nm in the 

absorption spectrum, but during digestive ripening a new peak appeared around 400 

nm, and this peak gradually vanished but reappeared at 280 nm after 24 hrs of digestive 

ripening.  This sharp stable absorption peak after 24 hrs of digestive ripening indicates 

that the particles attained an equilibrium size distribution. The temporal evolution of 

particles was shown in Figure 2.10 (a- d).  
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The estimated particle sizes deduced from the TEM are in the range of ~ 5 nm ± 0.6 

(Figure 2.11(a - b)), and the selective area electron diffraction shows evidence of 

crystalline nature (Insert in Figure 2.10 d).  The appearance of the new peak around 

400 nm might be due to either dissolving or breaking down of bigger particles in the 

initial digestive ripening time. Indeed, digestive ripening causes bigger particles to break 

down into very small particles and these smaller particles tend to grow and finally the 

system reaches to an equilibrium size regime.49  Further, the absorption phenomenon in 

indium nanoparticles due to SPR is found to be both solvent and morphology dependent 

and hence its absorption shifts in-between 240-370 nm.26,32,33,40  The little hump of the 

as- prepared sample can be explained by the fact that the initial particles are 

polydispersed (25- 50 nm in diameter) according to TEM images (Figure 2.10 a).  The 

XRD patterns (Figure 2.12) of all three indium colloids (TOPO, HDA, and TOPO/ HAD 

stabilized indium nanoparticles) exhibit prominent peaks at scattering angles (2Θ) of 

32.96, 36.31, 39.17, 54.48, 56.58, 63.21, 67.04 and 69.10, which are assigned to 

scattering from the 101, 002, 110, 112, 200, 103, 211 and 202 crystal planes, and all 

these peaks can be indexed to the body-centered tetragonal indium phase of indium. 

These XRD peaks were verified from the XRD data file (SS-NNN 85-1409) and match 

with the published literature.34  
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Figure 2.9 Temporal evolution of surface Plasmon absorbance resonance peak 
for trioctylphosphine oxide protected indium nanoparticles. The Black line 
represents the as-prepared SMAD colloid and the red line represents sample after 
1 hr of digestive ripening, green line after 4 hrs, and blue line represents the 
surface Plasmon of indium after 12 hrs of digestive ripening in methylene 
chloride. 
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Figure 2.10 (a) TEM image of as-prepared polydispersed SMAD product of trioctyl 
phosphine oxide stabilized particles (b) after 1 hr of digestive ripening (c) after 12 
hrs of digestive ripening and (d) after 24 hrs of digestive ripening in methylene 
chloride solvent.  
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Figure 2.11 TEM image after 12 hrs of digestive ripening and corresponding 
histogram of particle size (~ 5 nm in diameter).   

 

 

 

 

 

 

 

Figure 2.12 The XRD patterns of all three indium colloids  exhibit prominent peaks 
at scattering angles (2Θ) of 32.96, 36.31, 39.17, 54.48, 56.58, 63.21, 67.04 and 
69.10, which are assigned to scattering from the 101, 002, 110, 112, 200, 103, 211 
and 202 crystal planes, and all these peaks can be indexed to the body-centered 
tetragonal indium phase of indium. 
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2.4.5 Hexadecyl amine stabilized indium nanoparticles: Digestive ripening 

in methylene chloride.  

The UV-Vis absorption spectrum of as-prepared  hexadecyl amine stabilized indium  

particles is broad but upon digestive ripening the UV-Vis peak becomes much sharper 

(Figure 2.13) at 290 nm wavelength.  

    

 

 

 

 

 

 

 

 

Figure 2.13 Temporal evolution of surface Plasmon absorbance resonance peak 
for hexadecyl amine protected indium nanoparticles. The Black line represents 
the as-prepared SMAD colloid and the red line represents sample after 1 hr of 
digestive ripening, green line after 4 hrs, and blue line represents the surface 
Plasmon of indium after 12 hrs of digestive ripening in methylene chloride. 
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Figure 2.14 TEM image of (a) as -prepared polydispersed indium nanoparticles 
stabilized with hexadecyl amine ligand (b) after 1 hr of digestive ripening (c) after 
12 hrs of digestive ripening and (d) after 24 hrs of digestive ripening in methylene 
chloride. 
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The particles attained an equilibrium size regime within 24 hrs of digestive ripening 

(Figure 2.14 (a-d)) and the particle mean size measured on the TEM images lie in the 

range of ~ 9 nm ± 0.5 nm,  histogram of particles after 24 hrs of digestive ripening is 

shown in Figure 2.15 a a -b; whereas TOPO stabilized particle mean size measured 

from TEM is ~ 5 nm± 0.6 % (histogram of TOPO stabilized particle mean size 

distribution ( Figure 2.11 b) and the XRD data of HDA stabilized particles is free from 

indium oxide (Figure 2. 12).   

 

Figure 2.15 TEM image of hexadecyl amine stabilized indium colloid after 24hrs of 
digestive ripening in methylene chloride and (b) histogram of corresponding 
sample.  
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2.4.6 Trioctyl phosphine oxide / Hexadecyl amine (20:10) mixed ligand 

stabilized indium nanoparticles: Digestive ripening in methylene 

chloride.  

Compared to neat ligands (Either TOPO or HDA), the mixed ligand system has a strong 

UV-Vis absorption peak even before  digestive ripening, but after digestive ripening the 

peak further strengthens (Figure2.16) and stabilizes at 280 nm. Further comparison on 

as- prepared SMAD particles of TOPO or HDA stabilized particles, the mixed ligand 

particles are relatively more soluble and quasi-monodispersed size distribution was 

achieved at relatively shorter time (4 to 6 hrs). Figure 2.17 (a-d) shows the TEM images 

of particles with the progress of digestive ripening. The mean size measured from TEM 

is ~ 5 nm, histogram of TOPO and HDA mixed ligand stabilized particle mean size 

distribution is shown in Figure 2.18a-b. This indicates that the mixed ligand system 

works best for the digestive ripening of indium nanoparticles and the XRD shows all the 

characteristic features of indium as could be seen in Figure 2.12.  
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Figure 2.16 Temporal evolution of surface Plasmon absorbance resonance peak 
indium nanoparticles stabilized with mixed ligands (Trioctyl phosphine oxide and 
hexadecyl amine in 20: 10 ratio). The Black line represents the as-prepared SMAD 
colloid and the red line represents sample after 1 hr of digestive ripening, green 
line after 2 hrs, and blue line represents the surface Plasmon of indium after 4 hrs 
of digestive ripening in methylene chloride 
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Figure 2.17 TEM image of (a) as -prepared polydispersed indium nanoparticles 
stabilized with trioctyl phosphine oxide and hexadecyl amine ligand (b) after 1 hr 
of digestive ripening (c) after 2 hrs of digestive ripening and (d) after 4 hrs of 
digestive ripening in methylene chloride. 
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Figure 2.18 Histogram of mixed ligand stabilized indium colloid after 24hrs of 
digestive ripening in methylene chloride.   

2.5 Control Experiment   

Surprised with the controlling phenomenon by ligands at this low temperature, a control 

experiment was carried out to understand the effect of ligands on bulk metal. In this 

control experiment all reaction parameters were kept constant (metal to ligand ratio, 
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amount of solvent, and digestive ripening time) and the process was carried under the 

protection of argon but with bulk indium pieces.  Even after 3 days of digestive ripening 

there was no evidence of nanoparticles formation (Figure 2.19). So, this suggests that 

the metal vaporization is necessary and this vaporization under dynamic vacuum leads 

to the formation of small crystallites or aggregates of small crystallites, and that these 

small particles are much more reactive than bulk indium.  Along with other factors, 

formations of these crystallites are crucial in attaining narrow size distribution of 

particles.  

 

 

 

 

 

Figure 2.19 In controlled experiment all the reaction parameters were kept 
constant but with bulk indium pieces. Even after 3 days of digestive ripening in 
methylene chloride, there was no evidence of formation of indium nanoparticles.   

2.6 Summary  

 Gram scale synthesis of indium nanoparticles from bulk metal has been achieved, and 

size adjusted by Digestive Ripening. Added ligands stabilize and solubilize the 

nanosized material. 
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Three new features have been uncovered: (1) Digestive ripening of indium can be 

carried out using very low boiling point solvent. (2) In fact, higher boiling solvent 

(toluene), where the indium nanoparticles at reflux temperature are probable molten, do 

not allow the best result, and less monodispersity is achieved; (3) Nanoparticle size can 

be varied by choice of stabilizing ligand; with TOPO in methylene chloride, 5 nm, but 

with hexadecylamine (HDA), 9 nm (See Figure 2.1, and 2. 15). Obviously, ligand choice 

and solvent choice are important and help control this thermodynamic phenomenon.  

 

 

 

 

 

 

 

 

Figure 2.20 Schematic Representation of Overall Synthesis of Indium 
Nanoparticles 
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CHAPTER 3 -  Transformation of Indium Nanoparticles 
to β-Indium Sulphide: Digestive Ripening and Visible 

Light-Induced Photocatalytic Properties 
3.1 Introduction  

 The properties of nanomaterial depend not only on their structure, shape, size, size 

distribution but also on the chemical composition of the material. Indium sulfide is a III – 

VI group semiconductor and it has two composite forms, InS and In2S3, with band gaps 

of 2.44 eV1 and 2.0-2.2 eV 2 respectively. At atmospheric pressure, In2S3 is found to 

crystallize into three different structural forms. Among them, defective cubic structure, α-

In2S3; a defective spinel structure, β-In2S3; and a layered hexagonal structure, γ - In2S3. 

However, among these three forms β-In2S3 has gained much attention because of its  

unique electronic, 3 optical,4 optoelectronic, 5 and semiconductor sensitization 6 

properties. Perhaps this may be due to its defective spinel structure.  β-In2S3 has 

inspired its applications in the preparation of green and red phosphors for color 

televisions displays units,7 as a buffer layer in solar cells, 8  as a heterojunction for use 

in photovoltaic electric generators, 9 as a photocatalytic material for hydrogen 

evolution,10-13 as a biological imaging sensor, 14 and as photocatalytic material for 

degradation of dyes. 15,16 

There are several ways of synthesizing β-In2S3, one direct way is by high temperature 

treatment of sulfur and indium elements in a quartz vessel.17  Other ways are by heat  

treating In2O3 by H2S gas, 18 sonochemical,19  solvent reduction,20 thermal 
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decomposition of a single-source precursor,21 hydrothermal,22 and by laser induced 

synthesis. 23   And usually the sulfur is provided either by sulfides, (for example Li2S,24 

Na2S3,25 NaHS,26 H2S27 ) or sulfur powder,9 sodium thiosulfate,20 dimethyl sulfoxide, 28 

thioacetamide,19 thioglycolic acid,7 sulfonate,29 CS2,30 thiourea,31 L-cystine,32 sulfur-

oleylamine complex, 33 and thiols. 34   

In recent years, metal alkanethiolates are used as precursor molecules for the synthesis 

of metals and metal sulfides by thermal decomposition at moderately low temperature 

(120 -200° C) either in solvents or solventless conditions. For example, Carotenuto et al 

reported a general method to synthesize metal or metal sulfide clusters embedded in 

polymer matrices.35  Korgel et al reported the solventless synthesis of nickel sulfide and 

copper sulfide by decomposing corresponding thiolate precursors in the presence of 

octanoate,36,37 and Nakamoto et al reported the synthesis of gold nanoparticles by 

thermal decomposition of gold tholate precursors 38,39   

In current work, a novel way of synthesizing indium sulfide is reported. The as-prepared 

dodecanethiol stabilized indium nanoparticles were transformed into β-indium sulfide 

(In2S3) upon a post-preparative digestive ripening treatment with high boiling point (190° 

C) t-butyl toluene under the protection of argon, and its visible light photcatalytic 

properties were investigated with methylene blue and Rhodamine B dye degradation.  
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3.2  Experimental 

3.2.1 Materials required 

 Indium shot (99.9 %, Strem Chemicals Inc), Dodecanethiol ≥98% (Sigma –Aldrich), t-

butyltoluene (TBT) 99% (Alfa Aesar), methylene chloride, Acetone (Fisher Scientific) 

and Ethanol (Absolute, 200 Proof, Aaper Alcohol and Chemical Co.), were used as 

received without further purification but, TBT was purged with argon for 2 hrs prior to  

use and methylene chloride was distilled and degassed four times by the standard 

freeze – thaw procedure prior to the reaction.  

3.2.2 Synthesis of as- prepared Indium Nanoparticles by Evaporation and 

Co-condensation SMAD technique 

In a typical synthesis, a stationary reactor was used as described in reference( 40). 0 .3 

g of indium shot was charged into a C9 boron nitride crucible (R.D. Mathis # C9-BN) 

resting in a metal basket (R. D. Mathis # B8B # x.030 w) and the entire setup was then 

covered with insulating packing material (Zircar product, Inc.) to dissipate the heat 

generated during the metal evaporation.   This crucible was then connected to water 

cooled copper electrodes. The SMAD reactor was then charged with dodecanethiol 

ligand (1:30 metal to ligand ratio) and 60 mL of t-butyl toluene. The entire setup was 

then vacuum sealed. A liquid N2 Dewar was placed around the sealed SMAD reactor 

and once the vacuum attains 4 X 10-3 torr, 50 mL of distilled and degassed methylene 

chloride (Fisher chemicals) was evaporated through a solvent shower head, which was 

inserted into the reactor.  The evaporated solvent was condensed on the wall of SMAD 
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reactor by external liquid nitrogen cooling. The metal was heated resistively by gradual 

increase of heat and the temperature required for the metal vaporization is ~ 900°C, 

and it took nearly 2 hrs of time for complete vaporization, this vaporized metal was co-

condensed along with the solvent, ( a total of 100 mL of methylene chloride solvent was 

used) which restricts particles form aggregation. The matrix was then allowed to melt 

room temperature and by vigorous stirring, the molten matrix and the vaporized indium 

was mixed with dodecanethiol stabilized ligand. The as-prepared indium colloid appears 

black in color. The as-prepared SMAD product was then siphoned into a Schlenk tube 

under argon and the solvent methylene chloride was vacuum evaporated leaving 

indium-dodecanethiol-TBT colloid.  

3.2.3 Digestive Ripening: 

 The as-prepared indium-dodecanethiol-TBT was then subjected to digestive ripening at 

the boiling point of the solvent (190 °C) under the protection of argon for 4 hrs. Digestive 

ripening is a post preparative treatment used to make monodispersed particles from 

polydispersed colloidal particles in the presence of excess ligands, upon heating the 

colloid near or at the boiling point of the solvent. In current work, we adopted the same 

technique for the transformation of as-prepared polydispersed indium nanoparticles to 

highly monodispersed indium sulfide semiconductor.  

3.2.4 Visible light Photocatalytic activity:  Degradation of Methylene blue 

(Me B) and Rhodamine B (RhB) dye.  

In order to investigate the visible light photocatalytic activity of β-In2S3, Methylene blue 

and Rhodamine dyes were chosen as probe molecules,  photocatalytic experiments 
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were performed in a cylindrical glass reactor (capacity of the glass cylinder is 300 mL ) 

as shown in Figure 3. 1 with a quartz window was used.  The light source was an Oriel 

1000-W high-pressure Hg arc lamp. The combination of a vis-NIR long-pass filter (400 

nm) and colored glass filter (>420 nm) was used to eliminate ultraviolet radiation. At 

first, 0.39 mg of β-In2S3 was placed at the bottom of the glass reactor. Then, 100 mL of 

2 X 10-5 M ethanol solution of Methylene blue dye was added to the catalytic present in 

the cylinder glass reactor. Before shining visible light, the catalyst and methylene blue 

dye solution was stirred vigorously, 3 mL of sample was collected periodically (every 10 

minutes) to monitor the absorption and deabsorption of dye by the catalyst material and, 

the absorbance was monitored by Cary 500 UV- Vis-NRI spectrometer.  After reaching 

equilibrium (It took 120 minutes), then the light source was turned on. The reactor was 

cooled by water circulation, and the experiments were performed at 25 ◦C.   After each 

UV-vis analysis, the sample was returned to the reactor.  

After completion of the experiment, 0.29 mg of catalyst was recovered by filtration (Note 

0.039 mg of catalyst was used). Then, the recovered catalyst was vacuum dried and re-

used for the degradation of Rhodamine B (Rh B) dye (100 mL of 2 X 10-5 M ethanol 

solution of Rh B dye was used) and the same procedure was adopted.  
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Figure 3.1 Visible light photocatalytic dye degradation experimental set up. (a) 
Methylene blue dye and (b) glass filter (>420 nm) used to eliminate ultraviolet 
radiation during visible light experiments 

3.3 Characterization  

3.3.1  UV – Vis Spectroscopy 

UV-vis absorption spectra were obtained using a Cary 500 Scan UV–vis–NIR 

spectrophotometer. All samples were washed with absolute ethanol, acetone, and were 

dried under vacuum. The dried samples were then re-dissolved in toluene for analysis.  

3.3.2 Transmission Electron Microscopy (TEM) 

 TEM studies were performed on a Philips CM100 operating at 100kV. The TEM 

samples were prepared by placing a few micro liters of precipitated, washed, vacuum 

dried and re-dissolved sample in toluene onto a carbon-coated Formvar copper grid and 

the grids were allowed to dry overnight.  The facilities were provided by the Microscopy 

and Analytical Imaging Laboratory at Department of Biology, Kansas State University.    

b 

a 
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3.3.3  Powder X-ray diffraction (PXRD) 

Powder X-ray diffraction patterns were recorded by a Bruker D8 X-ray diffractometer 

with CuKα radiation. PXRD samples were prepared by the evaporation of toluene from 

the sample / toluene dispersion loaded on XRD glass plates. The samples were 

scanned from 10< 2θ < 70° at an increment of 0.01°/ min and the total acquisition time 

period was more than 6 hrs.       

3.3.4  Scanning Electron Microscope (SEM) with Energy-Dispersive X-Ray 

(EDX) analyzing system.   

SEM analysis was performed using a Scanning Electron Microscope-S3500N, Hitachi 

Science System, Ltd.  at the Entomology Department of Kansas State University, and 

were used to measure the EDX spectrum to determine the surface composition of the 

samples under conditions of 20 keV.  

3.3.5  X-ray photoelectron spectroscopy (XPS)  

XPS data were recorded using a Perkin–Elmer PHI 5400 electron spectrometer using 

acrochromatic Al Kα radiation (1486.6 eV) with Ar+ sputtering to remove the surface 

layer of the sample. Analysis was carried under vacuum (2.0 × 10−9 Torr). The XPS 

binding energies were measured with precision of 0.1 eV. The analyzer pass energy 

was set to 17.9 eV, and the contact time was 50 ms.  The spectrometer was calibrated 

by setting the binding energies of Au 4f7/2 and Cu 2p3/2 to 84.0 and 932.7 eV, 

respectively. The facility was provided by Prof. Keith Hohn of Department of Chemical 

Engineering at Kansas State University.  
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3.4 Results and Discussion   

The as-prepared SMAD product is black in color and turns lighter dark, then to yellow; 

dark yellow with digestive ripening and finally a dark brown precipitate (Figure 3.2) was 

obtained after 4 hrs of digestive ripening.  At room temperature, these samples appear 

like gel, upon addition of ethanol, the precipitated sample appears like a polymer fiber 

(Figure 3.2 (insert figure)), and they easily re-dissolved in toluene. 

  

 

 

 

 

 

 

 

 

Figure 3.2 Transformation of as-prepared indium-dodecanethiol sample color 
from black to dark yellow. (a) as-prepared SMAD product, (b) after 30 min, (c) 60 
min, (d) 120 min, (e) after 180 minutes, and after 4 hrs  of digestive ripening in t-
butyl toluene. Note, the final product (f) is brown color precipitate. Insert picture 
is the polymer like fiber obtained upon addition of ethanol to sample (c). Same 
kind of material was obtained for (d) and (e) samples too.  
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Figure 3.3 shows the absorption spectrum of the samples in toluene.  The as-prepared 

SMAD indium-dodecanethiol-TBT has a broad UV-Vis absorption peak ranging from 

550 to 610 nm but, within 15 minutes of digestive ripening the UV-Vis peak shifts to 

375nm and stabilizes at the same wavelength. This spectral shift indicates a strong 

quantum confinement of the excitonic transmission expected for the In2S3 

nanoparticles.41 The position (375 nm) of the absorption band correlate well with the 

UV-vis characteristic of In2S3 nanoparticles prepared by other groups. 14  

 

 

     

 

 

 

 

 

 
Figure 3.3 UV-Vis absorption peaks before digestive ripening appears at 550 and 
610 nm but upon digestive ripening the peak stabilizes at 375 nm. The samples 
were measured in toluene solvent. 
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 The TEM images shown in Figure 3.4 (a), the as-prepared SMAD-Indium-

dodecanethiol sample before digestive ripening is polydispersed, Figure 3.4 (b –c) are 

the polymer like fibers (Note: Polymer like fiber shown in figure 3.2 (Insert) after 

precipitation with ethanol) obtained after precipitation with ethanol, vacuum dry, and re-

dispersion in toluene. The intermediate samples are amorphous (Figure 3. 4d) But, 

upon prolonged digestive ripening (4 hrs), the final product (Brown precipitate in Figure 

3.2 f) formed superlattice structure (Figure 3.4 e), which are crystalline in nature (Figure 

3.4f).  The XRD patterns of the final brown product shown in Figure 3.5 revealed the 

formation of In2 S3.  
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Figure 3.4 (a) As-prepared SMAD indium-dodecanethiol, (b) intermediates 
obtained after 30 minutes of digestive ripening, (c) intermediates obtained after 1 
hr of digestive ripening,(d) corresponding electron diffraction showing 
amorphous nature of the intermediate, (e) after 4 hrs of digestive ripening and, (f) 
corresponding ED of the final product.   
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Figure 3.5 The XRD patterns of the final product. All the diffraction peaks can be 
indexed to the cubic β- In2S3 with a= 10. 77°A (JCPDS 65-0459)    

The XRD diffraction peaks obtained from final product can be indexed to the cubic- 

In2S3 with a = 10. 77°A (JCPDS 65-0459).  In order to further demonstrate the 

transformation of In2S3, SEM images of samples collected at different intervals of 

digestive ripening time are presented in Figure 3.5 and Figure 3.6 are the results of 

EDX analysis of corresponding samples.  
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Figure 3.6 Figure 3.6 SEM image of samples obtained during the digestive 
ripening of polydispersed indium-dodecanethiol. (a) Intermediate obtained after 
30 minutes of digestive ripening, (b) intermediate obtained after 1 hour of 
digestive ripening, (c) after 2 hrs of digestive ripening, (d) after 3 hrs of digestive 
ripening and, (e) the final product obtained after 4 hrs of digestive ripening. (f)  
Phase map of the intermediate showing the elemental arrangement within the 
intermediate (Red-In, Green-S, and Blue- C)  
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Figure 3.7(a) as- prepared indium-dodecanethiol showing mainly indium metal, (b) 
intermediate cmpound obtained after 30 minutes of digestive ripening, (c) after 1 
hr of digestive ripening (Note- Appearance of carbon and sulfur peaks) and, (d) 
final product showing both sulfur and indium.   

The energy dispersive X-ray analysis (Figure 3.7 (a-d)) results suggest that the as-

prepared SMAD product mainly consist of Indium. After 30 minutes of digestive 

ripening, appearance of sulfur along with carbon indicate the formation of an 

intermediate and after 1 hr of digestive ripening, carbon is found to be more 

predominant and true to predominance of carbon, during the SEM image analysis  

c 

a 

  d 

b 
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samples (Figure 3.6 (b-c)) acquired more charge. The final product was composed of 

sulfur and indium, and the ratios of sulfur to indium atoms were 1: 1.58 and this value is 

close to the theoretical values of 1.5 expected for In2S3. Further, this value matches with 

group 12 sulfides formed by thermal decomposition of metal-complexes in high-boiling 

point solvents. 42-44   

   To further investigate the surface composition and chemical state of the as-prepared 

SMAD product, intermediate(s), and In2S3, XPS measurements were carried out. Figure 

3.8 shows the observed binding energy spectrum for the In d electron and Figure 3. 9 

show the S2p electron of as-prepared SMAD indium-dodecanethiol product, 

intermediate(s) and the final product (In2S3).  The observed binding energy of 443.5 eV 

and 452.1 eV were related to In 3d5/2 and In 3d3/2 of the as-prepared indium-

dodecanethiol product, while there was no evidence (Figure 3.9) of binding energy of 

sulfur. Indeed, the starting material has only indium metal stabilized with thiol (Note-the 

EDX data (Figure 3.7a) of as-prepared indium-dodecanethiol consist of mainly indium, 

there was no evidence of sulfur presence in starting material). The standard binding 

energy of pure metal was found to be 443.49 and 451.18 eV 45, however, Balamurgan 

et.al have found an increase in binding energy of core electrons of indium with a 

decrease in the particle size. 46  The observed binding energy of In 3d5/2 and In 3d3/2 for 

intermediates are slightly higher in energy compared to In 3d5/2 and In 3d3/2 of the as-

prepared indium-dodecanethiol product, Further, the  S 2p3/2 binding energy value for 

intermediate compounds  is at 162.3 eV, which is typical for metal thiolate bonds 47 and 

this value matched with the reported literature for indium thiolates. 48  Hence, the formed 
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intermediates are most likely indium thiolates. The binding energy values at 445 and 

452.5 eV of In 3d5/2 and In 3d3/2 and 162.5 eV to S 2p agreed well with the reported data 

for In2S3. 22,49-51 

   

 Figure 3.8 Binding energy spectrum of as-prepared indium-dodecanethiol (before 
digestive ripening), intermediate compounds (Obtained during the digestive 
ripening 30, 60 minutes) and, final product (In2S3). (a) In3d 5/2 and In3d 3/2, and S 
2p.   
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Figure 3.9 Binding energy spectrum of as-prepared indium-dodecanethiol (before 
digestive ripening), intermediate compounds (Obtained during the digestive 
ripening 30, 60 minutes) and, final product (In2S3) of S 2p.   

The overall picture that emerges is that, owing to the high reactivity of indium, it reacts 

with the dodecanethiol ligand and spontaneously transforms into an intermediate 

thiolate and eventually into In2S3 via thermally activated digestive ripening and indium-

catalyzed interfacial C-S cleavage reactivities. Based on the solubility, the formed 

intermediate might be a cyclic (tiara) alkanethiolate compound because metal 

alkanethiolates, which are found to be insoluble in organic solvents have been found to 
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have layered structures ( for example, Ag ,52-54 Pb, 55,56 Cu57 ) and those, which are 

soluble in organic solvents have cyclic structures. 58-61  Efforts to grown crystals from 

these intermediates were not successful, and only amorphous structures were obtained 

(Figure 3.2 (d)).   

A possible reaction sequence for the transformation of indium to In2S3 is as follows.  

 

3.4.1 Visible light photodegradation of organic dyes 

Methylene blue (MeB) is a organic dye, and often is used as a model pollutant to study 

the photocatalytic activity.43,62  We chose MeB as a probe molecule to investigate 

photocatalytic degradation property of the final product (In2S3) with the help of UV-vis 

absorption spectrum. The maximal absorption energy of MeB is at 655 nm, the 

decrease in the absorbance at 655 nm reflects the degradation of MeB, which can 

therefore be used as an indicator of the photocatalytic activity. Figure 3.10 

demonstrates the absorbance spectral change of MeB in the presence of In2S3.  Based 

on other research group findings with the MeB degradation, it is possible that upon 

photoexciment, electrons injection from MeB molecule to β- In2S3 lead to reduction of 

molecular oxygen and thereby oxidation decomposition of the electron deficient Me B. 

In (0) + 3 HS-CH2- CH2 - R       In (S-CH2- CH2- R) 3   + ½ H2 

2 In(S-CH2- CH2- R)3         In2S3 + 3 R CH2 CH2S CH2 CH2 R (a) 
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62,63 It took  120 minutes for the complete degradation of 100 mL of 2 X 10-5 M ethanol 

solution of Methylene blue dye under visible light.  

 

 

 

 

 

 

 

 

Figure 3.10 3.9 Room-temperature UV-Vis absorption spectrum of methylene blue 
in β- In2S3 (Black line the pure dye) suspensions irradiated for different times. 

Further to investigate the visible light photocatalytic activity of β- In2S3, the recovered 

(0.029 mg) catalyst was re-used for photodegradation of Rhodamine B (RhB). Many 

research groups have used RhB as a model pollutant because it exhibits absorbance 

maxima at 552 nm and the decrease in the absorbance at 552 nm reflects the dye 

degradation. However, Zhao et al 64,65have reported that RhB de-ethylation (300 nm) is 

mainly a surface reaction, whereas RhB chromophore ring degradation (552 nm) is 

mainly due to a solution bulk process. 64,65 Hence, the fast de-ethylation of RhB 

indicates the photodegradation of dye molecule by the catalytic material as shown in 
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Figure 3.11,after being illuminated under visible light for 60 minutes, the RhB decreases 

by 96%.   

 

 

 

 

 

 

 

 

Figure 3.11 shows the spectral change of RhB / In2S3 dispersion under visible 
light irradiation    

These results revealed that the final product obtained was indeed In2S3 and it has good 

photocatalytic activity for both methylene blue and Rhodamine B dye degradation. 

However, the intermediate(s) obtained were not clealyr understood. More in depth 

analysis is needed.    

3.5 SUMMARY 

1. Synthesis of highly monodispersed β-IndiumSulphide (In2S3) by evaporation/ 

condensation of indium shots using the solvated metal atom dispersion (SMAD) 
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technique, followed by digestive ripening in high boiling point t-butyltoluene (190° C) 

solvent was achieved.  

2.  The as-prepared polydispersed indium nanoparticles were stabilized by 

dodecanethiol and the sample looks black in color but upon digestive ripening the color 

of the sample changed from black to cream; pale yellow to yellow and finally to brown 

in color, suggesting the transformation of indium to β -In2S3. 

3.   The crystallite size distribution of the transformed product was obtained from 

the XRD diffraction profile and particle size measurement on the transmission electron 

microscopy (TEM) grid is found to be ~ 5nm. Further these particles organize in to 2D 

and 3D super lattices.   

4. The optical absorbance of as-prepared sample showed an absorption peak 

around 538 and 613 nm but upon digestive ripening,  these two peaks disappears and 

stabilized at 366 nm. This is further for the transformation to In2S3, and is also evidence 

of strong quantum confinement of excitons transmission expected for the In2S3 

nanoparticles 

5. The visible light-induced photo -catalytic activity of In2S3 was performed on 

Rhodamine B (RhB) and methyleneblue dye, in which 95% of both dyes were 

photodegraded after 60 min.  

6. This is a unique work, where thermally activated digestive ripened indium 

clusters might catalyze the C- S bond cleavage to convert indium nanoclusters towards 
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the formation of In2S3 semiconductor. This post preparative digestive ripening is highly 

effective for tuning size, and composition.  
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CHAPTER 4 -   Synthesis and Characterization of 
Cadmium Selenide Quantum Dots by Evaporation of 

Bulk Cadmium Selenide using the Solvated Metal 
Atom Dispersion Technique and Digestive Ripening  

*This work has been published in Chemistry of Materials 2009, 21, 1248–1252.  

4.1 Introduction 

Semiconductor quantum dots of groups II - VI have been intensively studied due to 

their size-tunable optical properties and their applications, primarily involving CdSe NCs 

in photostable luminescent biomedical labeling,1,2  solar cells,3,4 and light emitting 

devices (LEDs).5-7 Over the past few years, several synthetic routes have been 

established to synthesize CdSe NCs and one such synthetic route is the use of  

(CH3)2Cd as a source of Cd , SeTOP as a source of Se, trioctylphosphine (TOP) and 

trioctylphosphine oxide (TOPO) as capping agents.8 An alternate method was 

established by Peng et al., where they used CdO with hexylphosphonic acid or 

tetradecylphosphonic acids and SeTOP to synthesize high-quality CdSe NCs.9  A single 

source precursor composed of both Cd and Se has also been employed for the 

synthesis of CdSe NCs.10,11 Porous CdSe aerogels have also been synthesized,12 

where thiolated-capped CdSe nanoparticles were transformed into aerogels by CO2 

supercritical drying,12,13. In many of these procedures there is an effect of ligand choice, 

ligand amount, solvent chosen and temperature.14,15  that allows the control of particle 

size and resultant optical properties. Besides TOP and TOPO, hexadecylamine (HDA) 

has also been used as a third coordinating ligand for surface passivation, and for aid in 

particle size adjustment. 16  
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This chapter focuses on the synthesis of cadmium selenide quantum dots by 

evaporation of bulk CdSe using the solvated metal atom dispersion (SMAD) technique.  

For the very first time, a two-ligand strategy has been employed as coordinating ligands, 

which facilitated the “digestive ripening” of CdSe QDs in toluene (B.P 110 °C) and in t-

butyltoluene (B.P 190 °C) solvent.  

4.2 Experimental Section 

4.2.1 Chemicals  

Bulk Cadmium Selenide (99.9 %, Strem Chemicals Inc), Hexadecylamine (98%), 

Trioctylphosphine oxide (Reagent Plus 99%), and trioctylphosphine were purchased 

from Sigma-Aldrich and used without further purification. Toluene, tetrahydrofuran, 

acetone, and methanol were purchased from Fisher Scientific. Toluene and tetrahydro- 

furan solvents were distilled and degassed four times by the standard freeze-thaw 

procedure prior to use. T-butyl toluene was purchased from ACROS Organic chemicals 

and it was purged with argon for 2 hrs prior to use.  

4.2.2 Preparation of CdSe – THF –TOP – HDA -Toluene as-prepared SMAD 

Colloid  

A stationary reactor described in detail in ref.17 was used for the synthesis of CdSe – 

THF – Toluene – TOP – HDA colloid. Typically, 0.3 g of bulk CdSe powder was 

evaporated using a C9 boron nitride crucible  (R.D. Mathis # C9-BN) resting in a 

tungsten wire basket (R. D. Mathis # B8B # x. 030 w), which was in turn connected to  

water – cooled copper electrodes. CdSe is carcinogenic, while handling this chemical a 
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protective gloves are necessary. During the vaporization process, heat transfer from the 

hot crucible to the walls of the SMAD reactor was minimized by covering the crucible 

and the basket with a fibrous alumina ceramic insulator (Zircar product, Inc.).  A solvent 

shower head was inserted into the reaction vessel for THF solvent vapor delivery. 

Coordination ligands (TOP and HDA in 60:40 molar ratios) were dissolved in 60 mL of 

toluene and were placed at the bottom of a 3 L reactor vessel along with a stirring bar. 

The above crucible connected to electrodes was then vacuum sealed within the reactor 

vessel using a vacuum line with a liquid nitrogen trap and diffusion pump. The reactor 

vessel was then surrounded by a liquid nitrogen Dewar and cooled to 77K.  When the 

vacuum reached 4 X 10-3 torr, 50 mL of THF was initially condensed onto the reactor 

vessel, then the bulk CdSe was vaporized by gradually increasing the heating 

temperature approximately up to 900°C using the water-cooled electrodes. 

 During vaporization 50 mL of THF was allowed to co-condense with the evaporated 

CdSe.  A total sum of 100 mL of THF was used for co-condensation.  In this way the 

aggregation of evaporated CdSe was restricted. It took ~ 2 hrs for complete vaporization 

of CdSe. The frozen matrix had a deep brown color. The liq. N2 Dewar was removed, 

and the matrix was warmed with a heat gun. Upon melting, the CdSe-THF matrix was 

allowed to mix with the coordination ligands in toluene by vigorous stirring for 45 min 

and the color became yellow-orange with a single phase. The as prepared SMAD 

product was then siphoned into a Schlenk tube under argon. Caution: While working 

with vacuum line, eye protection is necessary.  



102 

 

4.2.3 Preparation of CdSe– TOP – HDA – Toluene Colloid 

 The Schlenk tube containing the as-prepared SMAD product was connected to a 

vacuum and the THF was evaporated along with a small amount of toluene. The 

remaining product, now CdSe -TOP – HDA-Toluene colloid was deep yellow-orange in 

color.    

4.2.4 Digestive Ripening   

Digestive ripening 18  involves heating of the CdSe– TOP – HDA-Toluene solution under 

reflux at the boiling point of toluene (109°C) under argon. It is the key step for the 

formation of monodispersed and highly fluorescent QDs. Isolation of CdSe QDs was 

carried out by precipitation in anhydrous methanol, then washed with acetone and 

anhydrous methanol, this process was repeated three times to remove excess ligands, 

and then re-dispersion in toluene. No post-preparative size-selective precipitation 

process was carried out.  

4.2.5 Preparation of CdSe – TOP – HDA – t- Butyltoluene (TBT) Colloid  

In order to achieve a higher temperature for digestive ripening, instead of toluene, TBT 

was used while keeping all other parameters constant.   

4.2.6 Yield Calculations 

 Based on a previous calculations on gold-dodecanthiol SMAD preparation system 19 

(See reference 17 in that paper), the yield is about 78% based on CdSe.  

Based on gold-dodecanthiol system, each QD have Cd3000, Se 3000, (TOP) 325, and 

(HDA) 325. Based on this the empirical formula of QD is (CdSe) (TOP) 0.11 (HDA) 0.11 ; 
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80% of CdSe (0.3g) weight is available during QD synthesis. So, CdSe used for QD is 

0.24g. 

Total number of CdSe molecules present in 0.24g = 0.24g X (6.023 X 1023 mol -1) / 

(191.36 g mol-1) = 7.554 X 10 20 

Total number of TOP in the system = 7.554 X 10 20 X 0.11 = 8.31 X 1019 

Total number of HDA in the system = 7.554 X 10 20 X 0.11 = 8.31 X 1019 

Therefore, total number of ligands = 1.662 X 10 20  

Converting the number of molecules into weight (grams), weight of CdSe = 0.24g 

Weight of TOP = (8.31 X 1019) X (370.65 g mol-1) / (6.023 X 1023 mol-1) = 0.0511 g 

Weight of HDA = (8.31 X 1019) X (241.46 g mol-1) / (6.023 X 1023 mol-1) = 0.0333g 

Total weight of QDs (theoretical yield) = 0.24g + 0.0511 g + 0.0333 g = 0.3244 g 

Experimental Yield = 0.2547 g 

Percentage yield = (Experimental Yield) / (Theoretical Yield) X 100  

                             = (0.2547g) / (0.3244g) X 100 = 78.5%  

  

4.3 Characterization 

4.3.1 UV – Vis Spectroscopy 

  UV-Vis absorption spectra were obtained using an in situ UV-Vis optical fiber, assisted 

by a DH-2000 UV-Vis optical spectrophotometer instrument (Ocean Optics Inc).  
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4.3.2 Photoluminescence Spectroscopy 

 Fluorescence spectra were measured by using a Fluoro Max- 2 instrument from 

HORIBA Jobin Yvon Company. These samples were all excited at 400 nm. 

Photoluminescence quantum yields value (Ф em) of CdSe were measured relative to 

Rhodamine 6G in methanol, assuming it’s PL QYs as 95% by following the previous 

procedures11,20  and were calculated by using equation 1. 

          Фem = ФS (I / IS) (AS /A) (n2/nS
2)……………….eq -1 

In equation 1, I (sample) and IS (standard) are the integrated emission peak areas, up to 

480 nm excitation. A (sample) and AS (standard) are the absorption (<.1) at 480 nm; n 

(sample) and nS (standard) are the refractive indices of the solvents; and the Фem and 

ФS are the PL QYs for the sample and the standard respectively.   

4.3.3 Transmission Electron Microscopy 

 TEM studies were performed on a Philips CM100 operating at 100kV. The TEM 

samples were prepared by placing a few micro liters of precipitated, washed and re-

dissolved sample in toluene onto a carbon-coated Formvar copper grid. The grids were 

allowed to dry under ambient conditions for 4-5 hrs.    

4.3.4 Powder X-ray Diffraction (PXRD) 

 Powder X-ray diffraction patterns were recorded by a Bruker D8 X-ray diffractometer 

with CuKα radiation. PXRD samples were prepared by the evaporation of toluene from 

the CdSe/toluene dispersion loaded on XRD glass plates. The samples were scanned 
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from 20< 2θ < 80° at an increment of 0.02°/ min and the total acquisition time period was 

more than 2 hrs.  

4.4 Results and Discussion 

4.4.1 CdSe – TOPO - Toluene   

Initial attempts to synthesize CdSe QDs by adopting our previous bulk material to ligand 

ratio (1:30),19 were not satisfactory. A higher ligand ratio (1:40) produced particles in 

different shapes as shown in Figure 4.1(a-d), and this procedure lacked reproducibility. 

Such results were not uncommon especially when using TOPO.21  

4.4.2 CdSe – TOP – HDA – Toluene  

Hexadecyl amine as a coordination ligand in addition to TOP or TOPO worked best 

when the molar ratio was 60:40 for TOP: HDA. It is believed that HDA, being a weaker 

ligand than TOP/TOPO, helps in nanocrystal growth kinetics.15,16  Figure 4.2A shows 

the UV-Vis absorption spectra of “as prepared CdSe– TOP – HDA – Toluene colloidal 

SMAD product”, after 1 hr of reflux and 24 hrs of reflux in toluene and Figure 4.2B 

shows the corresponding emission data, all the samples being excited at 400 nm. . The 

as - prepared SMAD product is poly-dispersed in size and the narrow size distribution of 

these quantum confined particles was achieved by the digestive ripening. The as-

prepared SMAD product has a broad fluorescence band, (Figure 4.2B (a)) but upon 

digestive ripening, the fluorescence narrowed significantly (Figure 4.2B (b, c)). The TEM 

(Figure 4.3 (a-c) images also support the formation of quasi monodispersed particles, 
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showing narrowing of the size distribution after digestive ripening, even after just one 

hour.  The measured QY of these samples after reflux are 6 – 11%.   

 

 

 

 

 

 

 

 

 

 

Figure 4.1(a-d) are the Transmission Electron Microscopy images of two different 
batches of CdSe QDs stabilized with TOPO in 1:40 ratio and insert picture shows 
the corresponding samples under UV-Vis illuminator. Large crystals are TOPO 
crystals and CdSe QDs can be seen as small dots in background.  
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Figure 4.2(A) UV-Vis absorption spectra of CdSe with TOP and HDA in 60: 40 ratio 
(a) as prepared SMAD product, (b) after 1 hr of reflux and (c) after 24 hr of reflux 
in toluene and (B) shows the corresponding photoluminescence spectra. Insert 
are the corresponding samples without and with UV-Vis illuminator. 
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Figure 4.3 Transmission Electron Microscopy images of Cadmium Selenide 
stabilized with trioctylphosphine and hexadecyl amine (a) before reflux, (b) after 1 
hr of reflux, (c) after 16 hr of reflux in toluene, and (d) after 24 hrs of reflux in 
toluene.  
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4.4.3 CdSe – TOP – HDA – t – Butyl toluene  

 In toluene (b.p 109°C), only smaller size particles were synthesized. A possible 

explanation for the smaller size of CdSe QDs in toluene is, when the boiling point is 

lower (109°C), lower kinetic motion for CdSe QDs and hence fewer collisions, thus 

slower particle size adjustment. So, we used TBT (b. p 190°C) to achieve higher 

temperature for reflux. Figure 4.4 (A) shows the UV-Vis and Figure 4.4 (B) shows the 

fluorescence spectra of the sample heated at 120°C for 6 hrs, heated at 150°C for 6hrs 

and after 6 hrs of reflux at 190°C in TBT. The measured QY of these samples are 16- 

28%. The increased QY can be attributed to the larger; more monodisperse particles 

with fever defects and surface traps than in smaller particles. The broad band from 650 

nm to 700 nm in Figure 4.4 (B) might be due to the loss of some of the surface ligands 

during the washing process.22 The TEM images (Figure 4. 5 (a- d)) shows narrowing of 

the particles size distribution after 16 hrs of reflux in TBT at 190°C. It took 16 hr to see a 

considerable increase in fluorescence intensity and to form quasi monodispersed QDs 

in toluene; in TBT it took 6 hrs. UV-Vis and PL spectral data in Table 4.1 show a red 

shift in absorption as well as in emission with raise in temperature.  

 
6hrs of heating and reflux in TBT 

 
UV-Vi absorption wavelength ( λ max)  

 
Emission spectra 

Before reflux 410 nm Broad band 

120°C 446 nm 528 nm 

150°C 488 nm 536 nm 

After reflux at 190°C 518 nm 552 nm 

Table 2 Comparison of UV-Vis absorption and emission spectra of CdSe with TOP 
and HDA in 60: 40 ratio at various temperatures in t-butyl toluene solvent.  
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Figure 4.4(A) UV-Vis absorption spectra of CdSe with TOP and HDA in 60: 40 ratio 
(a) as prepared SMAD product, (b) after 6 hrs at 120°C, (c) after 6 hrs at 150°C and 
(d) after 6 hr of reflux at 190°C in TBT. (B) Corresponding photoluminescence 
spectra.  Insert are the corresponding samples upon UV-Vis illumination.     
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Figure 4.5 Transmission Electron Microscopy images of (a) as prepared SMAD 
product of CdSe with TOP and HDA in 60: 40, (b) after 6 hrs at 120°C, (c) after 6 
hrs at 150°C and (d) after 6 hr of reflux at 190°C in TBT 
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The powder XRD data (Figure 4.6) revealed the wurtzite structure of CdSe QDs, the 

same as the bulk material. The transformations from narrow peaks (bulk) to broad 

peaks are indicative of smaller crystallite. Powder XRD data are consistent with the 

published PXRD data.23    

 

Figure 4.6 Powder XRD patterns of (a) starting bulk CdSe and (b) CdSe QDs with 
TOP and HDA after 6 hrs of reflux at 190°C in t- butyltoluene. Wurtzite lines are 
shown from reference 26   
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4.5 Summary   

Firstly, the polydispersed CdSe QDs were synthesized by using the SMAD technique 

that involved the vaporization of the bulk CdSe followed by co-condensation with THF 

solvent at Liq. N2 temperature. Secondly, quasi monodispersed CdSe QDs were 

obtained after subjecting the SMAD prepared polydispersed CdSe QDs to digestive 

ripening as a successful post-synthesis treatment.24  The XRD data revealed that these 

CdSe QDs have the wurtzite structure of   bulk CdSe. Moreover, we observed very 

significant effects of the solvents (Toluene and TBT) and mixed ligands system (TOP 

and HDA) on the narrowing of the particles size distribution, UV-Vis, 

Photoluminescence properties and QY of CdSe QDs. We found TBT as a more 

preferable solvent for the synthesis of monodispersed CdSe QDs in a shorter digestive 

ripening time (6 hrs), compared with toluene (24 hrs). This is likely due to the higher 

boiling point of TBT that makes digestive ripening more effective. Likewise, we 

observed better fluorescence properties of CdSe QDs with an appropriate combination 

of TOP and HDA ligands. Samples prepared by using TOPO as a protecting ligand in 1: 

40 ratio yield particles with different morphology and unfortunately these results were 

not reproducible.  
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Figure 4.7 Schematic Representation of Overall Synthesis Procedure  
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CHAPTER 5 -   Improvised Synthesis of CdSe and 
CdTe Quantum Dots by Evaporation/ Condensation 

SMAD Technique:  Refined Digestive Ripening 
5.1 Introduction   

The solvated metal atom dispersion (SMAD) technique allows the synthesis of 

nanomaterial from the bulk material by vaporization and co-condensation.1-7 The as-

prepared polydispersed SMAD colloid products were made monodispersed in size by a 

unique process known as digestive ripening.8 Digestive ripening involves the heating of 

polydispersed colloidal material at the boiling point (BP) of solvent in the presence of 

excess surface active ligand. 1-9 In the present work; we employed trioctylphosphine 

oxide (TOPO) and oleylamine (OA), which served both as capping agent as well as 

digestive ripening solvent. The general procedure for the synthesis of high quality 

crystalline II-VI semiconductor material is by the hot injection method, where cadmium 

precursor (CH3)2Cd or CdO  is dissolved in coordination ligands like trioctylphosphine 

oxide, hexylphosphonic acid or tetradecylphosphonic acids, and then the selenium 

precursor (Se dissolved in TOP) was quickly injected into the hot coordination reaction 

mixture, which initiated the nucleation process, and subsequent growth was carried out 

at a relatively lower temperature and this process was initially reported by Murray et al, 

and  10 later,  Peng et al and Talapin et al have developed the hot injection procedure.11-

16  

One of the advancements in this process was selecting an injection temperature and a 

growth temperature. This high reaction temperature (>150 - 350°C) facilitates the 
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removal of crystalline defects and allows enhancement in the photoluminescence. In 

semiconductor QDs, high emission efficiency from band-edge state is required 

especially when these are used in laser or imaging.  In general, a high band gap 

inorganic material coating over the QD core has been proven to enhance the QY by 

passivating surface nonradiative recombination sites. Typically, II-VI semiconductor 

QDs are covered with a high band gap ZnS shell, which was initially developed by 

Hines and Guyot-Sionnest.17 These two methods (hot injection and ZnS shell covering) 

have been widely used to achieve narrow size particle distribution and enhance QY. In 

addition to the above method, other routes like layer by layer ZnS passivation,18 CO2 

gas expanded liquids, 19surface treatments with polymers,20 and sonochemical process 

21  were used. In current work we adopted the sonochemical procedure for the growth of 

ZnS shell over CdSe and CdTe QD core.   

5.1.1 Advantages  

The outcomes of the digestive ripening process we have developed for semiconductors 

are :  (1) the reduction of particle growth time period (digestive ripening time) by 

employing ligands (Trioctylphosphine oxide (TOPO) and oleylamine (OA) ) as capping 

agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence 

(PL) from 410 nm to 670 nm,  (3) demonstrate the versatility of the SMAD synthesis 

technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth 

with CdTe QDs growth based on digestive ripening time , and (5) enhanced PL 

quantum yield (QY) of CdSe QDs and CdTe QDs upon ZnS shell. Also the merit of this 

synthesis is the use of bulk CdSe and CdTe as the starting material, which avoids 
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usage of toxic organometallic compounds, eliminates the hot injection procedure, size 

selective precipitation process, and  makes scale-up to large amount of material quite 

feasible. 

5.2 Experimental Section 

5.2.1 Chemicals  

Bulk Cadmium Selenide(CdSe) and bulk Cadmium Telluride (CdTe) (99.9 %, Strem 

Chemicals Inc), Oleylamine (98%) from ACROS Organic chemicals, Trioctyl phosphine 

oxide (TOPO) (Reagent Plus 99%), trioctyl phosphine (TOP), tributyl phosphine (PBu3),  

Zinc nitrate hexahydrate, and potassium ethylxanthate were purchased from Sigma-

Aldrich and used without further purification. Tetrahydrofuran (THF), acetone, and 

methanol were purchased from Fisher Scientific. Tetrahydrofuran solvents were distilled 

and degassed four times by the standard freeze-thaw procedure prior to use. Oleyl 

amine was purged with argon for 2 hrs prior to use.   

5.2.2 Synthesis of as-prepared SMAD Colloid 

 As described in reference(22) a stationary reactor was used for the evaporation and co-

condensation of bulk CdSe or CdTe. Briefly, 1g of either bulk CdSe or bulk CdTe was 

evaporated using water cooled copper electrodes and the generated heat during the 

evaporation was passivated by water cooled copper electrodes and insulating packing 

material (Zircar product, Inc.) around the crucible and metal basket. The optimum 

temperature required for the evaporation of bulk CdSe is ~ 900°C, whereas, for bulk 

CdTe it is less than 900°C. Initially the bulk material was charged in C9 boron nitride 
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crucible (R.D. Mathis # C9-BN) resting in a metal basket (R. D. Mathis # B8B # x.030 w) 

and the ligands were placed at the bottom of the SMAD reactor and the entire setup 

was then vacuum sealed. After complete evacuation, a liquid N2 Dewar was placed 

around the sealed SMAD reactor. Once the vacuum attains 4 X 10-3 torr, initially 50 mL 

of distilled and degassed THF was evaporated through a solvent shower head, which 

was inserted into the reactor.  The evaporated solvent was condensed on the wall of 

SMAD reactor by external liquid nitrogen cooling. After the formation of condensed 

solvent matrix on the walls, the metal crucible was heated by water cooled copper 

electrode and the heat was ramped slowly and the evaporated material was co-

condensed along with the solvent on to the walls of reactor, co-condensation of 

evaporate material along with the solvent restricts aggregation and allows formation of 

small crystallites.  It took nearly 3 hrs for the complete evaporation of 1g of bulk 

material. The frozen matrix appears like a reddish brown (Figure 5.1).  Upon warming 

up of the frozen matrix with a heat gun, the matrix melts and slowly reaches to the 

bottom of the reactor and mixes well with the coordinating ligands (TOPO with OA). To 

ensure homogeneous colloid formation the system was vigorously stirred for 45 minutes 

with a magnetic stirrer. Figure 5.1(a) shows the as-prepared CdSe-THF-TOPO-OA 

colloidal solution after vigorous stirring. The as-prepared SMAD product was then 

siphoned into a Schlenk glass tube under the protection of argon (Figure5.1 (b)).  Safety 

and cleanliness: Prior to synthesis the SMAD reactor was cleaned with aqua regia, base 

bath, acid bath and finally with copious amount of water. While working with vacuum 

lines it’s a must to wear protective eye glasses. Both CdSe and CdTe are carcinogenic 

so, proper protection is necessary while handing these chemicals. Also, the acid and 
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base bath used in cleaning may cause severe burns, so proper acid proof gloves and 

protecting clothing are necessary.   

5.2.3 Preparation of CdSe-TOPO-OA colloid 

   The THF from the as- prepared CdSe-THF-TOPO-OA colloidal solution was vacuum 

evaporated, leaving a THF solvent free semisolid CdSe-TOPO-OA colloid (Figure 

5.1(c)).  Upon gentle warming, CdSe –TOPO-OA colloid was obtained (Figure5. 1(d)). 

This as-prepared product was then subjected to digestive ripening. The same procedure 

was adopted for the synthesis of the as-prepared CdTe-TOPO-OA system.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1(a) as-prepared SMAD CdSe-THF-TOPO-OA colloidal solution after 
vigorous stirring for a period of 45 minutes (b) as-prepared siphoned CdSe-THF-
TOPO-OA colloidal solution (c) Semi-solid CdSe –TOPO-OA after complete 
vacuum evaporation of THF solvent (d) CdSe –TOPO-OA colloid after gentle 
warming.     
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5.2.4 Refined Digestive Ripening 

 Digestive ripening is the key step for the formation of quasi monodispersed core QDs. 

In previous work we used toluene and t-butyl toluene as a digestive ripening solvent for 

CdSe-TOPO-HDA system. However, for the current work TOPO and OA were used as 

digestive ripening solvent, as well as capping ligands.   

5.2.5 ZnS Shell Formation on Core Quantum Dots 

ZnS shell formation over a core QD (CdSe or CdTe) was carried out by a reported 

sonochemical procedure using zinc ethylxanthate as precursor.21,23 In a typical ZnS 

shell growth, aliquots (5 mL) of freshly synthesized core QDs were placed in a reaction 

vessel and the reaction vessel was then placed in 100 W sonicator (Fisher Scientifics), 

to which freshly prepared zinc ethylxanthate (0.15 g)  in tributylphosphine (3 mL)  

(PBu3) solution was mixed when the sonication temperature was 60°C. The sonication 

was continued until the temperature of the reaction mixture reached 120°C to ensure 

complete passivation of the QD core with the ZnS shell. During this process aliquots of 

reaction mixture were collected to monitor the shell growth, and no purification steps 

were involved on the core solution before use. Isolation of core-shell QDs was carried 

out by precipitation with anhydrous methanol, followed by washing with acetone and 

methanol. This process was repeated to remove any un-reacted zinc ethylxanthate and 

excess ligands. The core-shell QDs were then vacuum dried and re-dispersed in 

toluene for transmission electron microscope (TEM) sample preparation. No size 

selective precipitation step was carried out.  The yield of core QDs is about ~78-80 %. 
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5.3 Characterization 

5.3.1 UV – Vis Spectroscopy 

 UV-vis absorption spectra were obtained using an in situ UV-vis optical fiber, assisted 

by a DH-2000 UV-vis optical spectrophotometer instrument (Ocean Optics Inc) for core 

QDs. The absorption spectra of core-shell QDs were obtained using a Cary 500 Scan 

UV–vis–NIR spectrophotometer.  All samples were washed with absolute ethanol, 

acetone, and were dried under vacuum. The dried samples were then re-dissolved in 

toluene for analysis.  

5.3.2 Photoluminescence Spectroscopy 

Fluorescence spectra of both core QDs (CdSe and CdTe) and core-shell QDs (CdSe-

ZnS and CdTe-ZnS) were measured by using a Fluoro Max- 2 instrument from HORIBA 

Jobin Yvon Company. These samples were all excited at 400 nm. Photoluminescence 

quantum yields ( Q.Y) value (Ф em) of QDs (CdSe and CdTe) and core-shell  QDs 

(CdSe-ZnS and CdTe-ZnS) were measured relative to Rhodamine 6G in methanol, 

assuming it’s PL QYs as 95% 24,25  and the % yield  were calculated by using equation 

1. 

                       Фem = ФS (I / IS) (AS /A) (n2/nS
2)……………….eq -1 

In equation 1, I (sample) and IS (standard) are the integrated emission peak areas, up to 

480 nm excitation. A (sample) and AS (standard) are the absorption (<.1) at 480 nm; n 

(sample) and nS (standard) are the refractive indices of the solvents; and the Фem and 

ФS are the PL QYs for the sample and the standard respectively.    
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5.3.3 Transmission Electron Microscopy (TEM)  

 TEM studies were performed on a Philips CM100 operating at 100kV. The TEM 

samples were prepared by placing a few micro liters of precipitated, washed, vacuum 

dried and re-dissolved sample in toluene onto a carbon-coated Formvar copper grid and 

the grids were allowed to dry overnight.   

5.3.4 High Resolution Transmission Electron Microscopy / Energy 

Dispersive X- Ray Spectroscopy 

High resolutions images were performed with FEI Tecnai F20 XT Field Emission 

Transmission Electron Microscopy operated at 300 kV. The Energy Dispersion X-ray 

(EDX) analysis was carried on scanning electron microscope (SEM) mode, which is an 

integral part of FEI Tecnai F20 XT. The experimental conditions are as follow: Energy 

Resolution: 134 eV, Reference Energy: 5.9 keV, Minimum Energy: 100 eV. Detector 

Thickness: 3 mm, Detector Distance: 11.8 mm, Detector Angle: 14.6 deg. The facilities 

were provided by the Microscopy and Analytical Imaging Laboratory at University of 

Kansas. Washing procedure was same as described above. However, a Lacey carbon 

coated TEM grid was used.  

5.3.5 Powder X-ray diffraction (PXRD) 

 Powder X-ray diffraction patterns were recorded by a Bruker D8 X-ray diffractometer 

with CuKα radiation. PXRD samples were prepared by the evaporation of toluene from 

the core or core-shell QDs /toluene dispersion loaded on XRD glass plates. The 
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samples were scanned from 20< 2θ < 80° at an increment of 0.01°/ min and the total 

acquisition time period was more than 7 hrs.          

5.3.6 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy is a powerful analytical tool, which determines the 

chemical composition of a surface. The chemical analysis is done by irradiating a 

sample with soft x-rays to ionize atoms and releasing core-level photoelectrons. The 

kinetic energy of the escaping are collected and analyzed by the instrument to produce 

a spectrum of emission intensity versus electron binding energy. Since each element 

has a unique set of binding energies, XPS can be used to identify the elements on the 

surface. Also, peak areas at nominal binding energies can be used to quantify 

concentration of the elements. Small shifts in these binding energies (chemical shifts) 

provide powerful information about sample chemical states and short-range chemistry. 

XPS is suitable for the analysis of both conductors and insulators.  

XPS data were collected on a Kratos Axis 165 x-ray photoelectron spectrometer 

operating in the hybrid mode using Al Kα (1486.6 eV) radiation at 300 W. Charge 

neutralization was used to minimize sample charging, and the charge neutralizer 

settings were 2.0 amps, 1.7 V charge balance, 1.1 V bias. Survey spectra were 

collected with a pass energy of 160 eV, while high resolution spectra were collected 

with a pass energy of 20 eV.  Peak fitting was performed using CASA XPS software, 

using peaks with a 50% Gaussian, and 50% Lorentzian line shape on a Shirley 

background.  The facilities were provided by the Shared Experimental Facilities (SEF) at 

University of Maryland.    
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5.4 Results and Discussion  

5.4.1 Cadmium Selenide – Oleyl Amine – Trioctyl Phosphine Oxide  

The as-prepared SMAD product generally yields polydispersed colloid material due to 

little control over the particle size during vaporization and co-condensation. In previous 

work, the synthesized fluorescent CdSe QD from bulk by vaporization / co-

condensation, followed by digestive ripening in toluene or in t-butyl toluene, yield 

particles which emits either green or yellow orange fluorescence in the wavelength 

ranging from 410 nm to 550 nm, and it took nearly 24 hr of digestive ripening time in 

toluene and 16 hrs of digestive ripening time in t-butyl toluene. In the current,  refined 

digestive ripening we used  TOPO and OA in 30:20 ratio to the bulk starting material 

and these ligands act as both digestive ripening solvent as well as capping agent. The 

as-prepared CdSe-TOPO-OA-THF (Figure5.1 (a)) colloid material is a homogeneous 

single phase. In order to obtain CdSe-TOPO-OA colloid, the THF solvent was vacuum 

evaporated resulting a semi-solid CdSe-TOPO-OA (Figure 5.1(b)) and the semi-solid 

nature of the CdSe-TOPO-OA can be explained by the fact that TOPO exists as a solid 

at room temperature, whereas OA is liquid. The yield of CdSe QD is nearly ~80% with 

variations in batch to batch synthesis and the 20% loss was due to either condensation 

of vaporized material onto copper electrodes, or possibly to losses in handling.  In 

previous work, we used TOPO and HDA as coordinating ligands, where as in current 

work we replace HDA with OA.  Compared to TOPO, OA is a weaker ligand and binds 

less strongly to the CdSe, and thereby affects the growth process.  25,26 In this work we 

also employed OA as a solvent, as others have done.15,27 In the present work, the as-
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prepared CdSe exhibited a broad fluorescence,  but within 90 minutes of digestive 

ripening, the PL becomes sharper and  can be tuned  to 670 nm.  The reduction of 

digestive ripening time is attributed to the higher boiling point of these ligands /Solvents. 

The poor-fluorescence behavior of the as-prepared CdSe is due to aggregation of small 

crystallites, which is evident from the TEM image (Figure 5.3(a)).  

During digestive ripening these aggregates of small crystallites (Figure 5.3(a)), 

breakdown or dissolve completely to form small particles (Figure 5.3(b)) and grow into 

quasi monodispersed particles (Figure 5.3 (b- d) and Figure 5.4 (e-f)).  It is important to 

note that in digestive ripening bigger particles will break down into smaller particles and 

the smaller particles will tend to grow bigger and finally the system will reach a 

thermodynamic equilibrium size, and the PL data of CdSe can be correlated with the 

digestive ripening phenomenon.  Figure 5.4 (g) are the samples of CdSe collected at 

various times with progress of digestive ripening and then exposed to UV-Vis.  

 Table 5.1 tabulates the UV-Vis, PL of CdSe and particle mean size with respect to 

digestive ripening time. The UV-Vis spectra are broad, but show small absorption 

features that slowly shifts to longer wavelength. The PL peaks sharpen and also shifts 

to longer wavelength with time (Figure 5.2 (a-f) and Table 5.1).    
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Table 3 Change in the wavelength of UV-Vis, photoluminescence and particle size 
of CdSe QDs with digestive ripening time   

Digestive Ripening 
Time  (Min) 

 

10 

 

20 

 

30 

 

40 

 

50 

 

60 

 

70 

 

80 

 

90 

UV-vis absorption    
wavelength  λ max (nm) 

 

487 

 

495 

 

507 

 

515 

 

531 

 

549 

 

576 

 

591 

 

651 

PL  wavelength  λ max  
(nm) 

 

539 

 

542 

 

551 

 

557 

 

566 

 

572 

 

586 

 

600 

 

667 

Particle mean size  

 ( nm) 

 

2.4 

 

2.6 

 

2.8 

 

3.0 

 

3.4 

 

3.6 

 

4.0 

 

5.0 

 

7.3 
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Figure 5.2(a- i) UV-Vis absorption spectrum and corresponding PL of CdSe QD 
samples collected at 10, 20, 30, 40, 50, 60, 70, 80 and 90 minutes of digestive 
ripening.     
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Figure 5.3 TEM images of (a) as-prepared SMAD product, (b) after 10 min (c) after 
20 Min and (d) after 40 Min of digestive ripening. 
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Figure 5.4 TEM images of CdSe QDs, (e) after 60 Min and (f) after 90 Min of 
digestive ripening and (g) Corresponding CdSe QDS samples upon exposure to 
UV-Vis illuminator. 
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5.4.2 Cadmium Telluride – Oleyl Amine – Trioctyl Phosphine Oxide 

In case of CdTe, a similar trend was observed where; the as- prepared SMAD product 

has broad fluorescence but upon digestive ripening the fluorescence narrows and shifts.  

Under the same reaction conditions (Like that of CdSe-OA-TOPO) the PL of CdTe can 

be tuned to 667 nm but compared to CdSe it took only 60 minutes. The as - prepared 

SMAD product is light yellow and turns brighter yellow color, then red and, finally into 

dark red color, which indicates rapid breakdown of aggregated crystallites and dramatic 

growth of CdTe nanocrystals in the first 30 minutes of digestive ripening. After 30 

minutes the growth rate decreased, indicating the formation of larger particles. The as- 

prepared SMAD product absorption spectrum (Figure 5.5) reveals broad electronic 

transitions, indicating high crystallinity of CdTe. Upon digestive ripening these electronic 

transitions merge into a broad peak, which implies formation of larger particles, and this 

phenomenon has been observed when mixed ligands were employed. 28,29  Figure 5.6 

shows the PL of CdTe QDs with the progress of digestive ripening time. As observed 

with CdSe, CdTe also reaches an equilibrium size; where the initial FWHM was broad 

but as digestive ripening time progresses the FWHM has narrowed. Figure 5.7(a-b) 

shows the as-prepared SMAD product TEM images. Note the aggregated small 

crystallites, but upon digestive ripening these aggregates breakdown into smaller 

particles and then grow in size (Figure5. 7(c-d) and Figure 5.8(e-h).  Figure 5.9 shows 

the corresponding samples collected at various time intervals from the same batch and 

these samples were exposed to the UV-Vis illuminator. Table 5.2 shows the progressive 

growth of particle size and the PL of CdTe with digestive ripening time. 
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Figure 5.5 UV-Vis absorption spectrum of CdTe QD samples collected at 10, 20, 
30, 40, 50, and 60 minutes of digestive ripening. 
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Figure 5.6 Photoluminescence spectrum of CdTe QD samples collected at 5, 10, 
20, 30, 40, 50, and 60 minutes of digestive ripening. 
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Figure 5.7 TEM images of CdTe QDs, (a, b) as- prepared SMAD product before 
digestive ripening, (c) after 10 Min of digestive ripening, and (d) after 20 Min of 
digestive ripening. 
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Figure 5.8 TEM images of CdTe QDs, (e) after 30 Min and (f) after 40 Min of 
digestive ripening, (g) after 50 min and (h) after 60 min of digestive ripening.   
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Figure 5.9 Corresponding CdTe QDS samples upon exposure to UV-Vis 
illuminator   

 

Table 4 Change in wavelength of UV-Vis, photoluminescence and particle size of 
CdTe QDs with digestive ripening time 

 

Digestive Ripening  

Time (Min) 

 

5 

 

10  

 

20 

 

30 

 

40 

 

50 

 

60 

 

PLwavelength λ max 
(nm) 

 

549 

  

560 

 

592 

 

602 

 

620 

 

635 

 

663 

 

Particle Mean Size 
(nm)  

 

2.9 

 

3.2 

 

4.5 

 

5.0 

 

5.2 

 

5.3 

 

7.2 
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5.4.3 Cadmium Selenide Core – Zinc Sulfide Shell QDs  

Over coating of semiconductor QDs with a high band gap inorganic material enhances 

the photoluminescence QY by passivating surface recombination sites.17 Surface 

coating not only protects the core nanomaterial from photooxidation but also from 

physical and chemical stress. Figure 5.10 illustrates a schematic representation of shell 

coating on semiconductor QDs.17  

  

Figure 5.10 Schematic illustrates of shell coating on semiconductor QDs. 17    
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  The evolution of the PL from the CdSe-ZnS is depicted in Figure 5.11- 13. It is clearly 

shown that the PL peak becomes sharp and more symmetrical than that of the core. 

The red-shift is due to the further growth in the shell thickness.  

 

Figure 5.11 Shell coating on digestively ripened CdSe QDs. The broad emission 
band from 625-700 nm wavelength in core CdSe QDs is due to surface traps but 
upon ZnS shell growth, the emission due to surface traps was reduced and 
simultaneously enhanced PL can be seen. The PL shift from 540 nm to 545 nm 
and then to 555 nm indicates the growth of shell material on the CdSe Core. 
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 Figure 5.12 shell coating on digestively ripened CdSe QDs (568 nm emission) 
and after ZnS shell growth the PL peak is not only enhanced, but also there is a 
considerable shift (577). 

The initial broadening in PL (Figure 5.13) is obviously from the growth of shell material, 

which is due to increase in particle size and further shell growth resulted in a  red-shift    

( from 568 nm to 577 nm) of PL. 30 
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Figure 5.13 Photoluminescence of CdSe QDs (617 nm emission) core and 
enhanced photoluminescence from the CdSe-ZnS Core-Shell.  

Figure 5.13 – 15 are the HRTEM images of CdSe and CdSe/ZnS core-shell quantum 

dots.  The lattice mismatch between the CdSe and ZnS is 12%, and resolving this by 

using TEM is challenging, 30-33  but by measuring the average particle size on the 

HRTEM images of core, and by subtracting the average particle size measured on the 

HRTEM images of the core-shell will give an estimated shell thickness.  
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Figure 5.14 HRTEM image of CdSe QDs showing the crystalline nature after 30 
minutes of digestive ripening. 
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Figure 5.15 HRTEM image of CdSe/ ZnS Core-Shell QDs. CdSe QDs were obtained 
after 30 minutes of digestive ripening. 
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Figure 5.16 HRTEM image of CdSe/ ZnS Core-Shell QDs showing the crystalline    
             lattice. CdSe QDs was obtained after 40 minutes of digestive ripening 
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Figure 5.17 HRTEM image of CdSe/ ZnS Core-Shell QDs showing the crystalline    
             lattice.The CdSe QD was obtained after 90 minutes of digestive ripening. 

The average diameter of particle size measured on HRTEM image of CdSe/ZnS core-

shell (Figure 5.15) is 4.8 nm and the average diameter measured on the core (Figure 

5.14) is 3.6 nm. Therefore, the average shell thickness on these particles is 1.2 nm.  

Both core and core-shell QDs were characterized by Energy Dispersion spectroscopy 

(EDX) as show in Figure 5. 18 -19 and the EDX measurements were measured in the 

scanning transmission electron microscopy (STEM) mode.  

10 nm 
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Figure 5.18 Energy Dispersion spectroscopy (EDX) spectrum of CdSe QDs, which 
shows all the characteristic peaks of cadmium and selenide and the rest of the 
peaks are from the lacey copper coated TEM grid. 
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Figure 5.19 Energy Dispersive spectroscopy (EDX) spectrum of CdSe- ZnS core- 
shell QDs. All the characteristic peaks of cadmium, selenide, zinc and sulfur are 
present. The rest of the peaks are from the lacy carbon coated copper TEM grids.  
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Figure 5.20 The XRD patterns of CdSe ( Black lines) showing the characteristic 
features of zinc blend crystalline structure and CdSe/ZnS (Red lines) showing the 
characteristic features of zinc blend structure and the vertical bars (bottom) 
corresponds to  JCPDS file No. 77-2100 and (top ) JCPDS file No. 19-0191. 

After ZnS shell growth the XRD patterns of CdSe core was slightly shifted to higher 2-

theta angle, which supports the formation of ZnS shell over the CdSe core. Further, 

broadening in XRD patterns (Figure 5.20) represents the finite crystalline size of the 

core.  It is interesting to note that when lower boiling point solvents (toluene (BP 110° 

C), t-butyl toluene (BP 190°C)) were used to digest as-prepared SMAD product, the 

particles retain the crystalline nature of the bulk starting material i.e wurtzite (hexagonal) 

crystalline structure. 1   
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 However, when digestive ripening was carried out at an elevated temperature (250 °C) 

in presence of ligands, the particles attained a Zinc blend (cubic) crystal structure. 34  

Further, the measured quantum yield was enhanced from 36 % to 60 % upon adding a 

ZnS shell.  It is important to note that when toluene was used as digestive ripening 

solvent the measured QY was 11% and a 28% QY was achieved with t-butyltoluene. 1 

With the higher temperature, the higher QY must be due to removal of crystalline 

defects. The HRTEM images (Figure 5.14- 17) do show that the particles have good 

crystalline nature of both core and core-shell particles, and these were synthesized 

under the higher temperature digestive ripening conditions.  

To further characterize the core-shell structure, we carried out the XPS studies to 

investigate the surface composition of CdSe and CdSe/ZnS QDs.  In Figure 5.21(a), the 

two strong peaks located at 405.2 and 412 eV correspond to Cd 3d binding energy of 

CdSe, and the peak at 54. 3 eV in Figure 5.21(b), correspond to Se 3d binding energy 

of CdSe.35,36  The XPS spectrum of CdSe/ZnS core/shell NCs shows typical peaks for 

ZnS, with Zn 2p3/2 and S 2p3/2 located at 1022 and 161.5 eV, respectively. Based on 

XPS data, the growth of ZnS shell on CdSe core is conformed.  
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Figure 5.21(a) XPS spectra of Cd, (b) Se, (c) Zn and, (d) S binding energy (eV) of 
CdSe-ZnS QDs respectively 

The lattice parameters for CdTe c = 6.477 Å, and for ZnS c = 6.257 Å 37 and the lattice 

mismatch CdTe  core and ZnS shell is found to 19.8 %. 38 Figure 5.22 is the PL of the 

CdTe/ZnS core shell. The measured QY of CdTe and CdTe/ZnS is 38 % and 60% 

respectively.   
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 In order to confirm the formation of ZnS shell on CdTe, energy dispersive X-ray 

spectroscopy (EDX), and the powder XRD measurements were made. The EDX 

spectrum in Figure 5.23 shows the existence of Cd and Te and Figure 5.24 shows the 

existence of Te, Cd, Zn and S in CdTe/ZnS sample. The sulfur peak at 2.3 keV and the 

Zn peak at 8.9 keV in EDX spectrum indicate the existence of a ZnS shell layer on the 

CdTe core. These results of the EDX spectrum further confirm the formation of the 

core/shell QDs.   

   

 

 

 

 

 

 

 

 

Figure 5.22 Photoluminescence spectrum of CdTe core and CdTe/ZnS shell with 
sonication time.               
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Figure 5.23 The energy dispersive X-ray spectroscopy (EDS) measurement 
showing the existence of cadmium and tellurium. 

 

 

 

 

 

 

Figure 5.24 The energy dispersive X-ray spectroscopy (EDS) measurement 
showing the existence of cadmium, tellurium, zinc and sulfur.   
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The powder XRD patterns of CdTe and CdTe/ZnS core-shell are shown in Figure 5.25. 

The characteristic zinc blend planes of 111, 220, and 311 located at 24.40°, 41.60°, and 

47.90° for CdTe core and at 24.94°, 41.72°, and 48.76° for CdTe/ZnS in 10–60° 2Θ 

range are observed. The position of the XRD peaks of CdTe cores matched well with 

those of bulk CdTe cubic structure (JCPDS NO. 15-0770). After growth of ZnS shell on 

the CdTe core, the peak position shifted to higher angles towards the positions of bulk 

ZnS cubic structure peaks (JCPDS NO. 05-0566), which substantiates  the formation of 

CdTe/ZnS core-shell.  

 

 

 

 

 

 

Figure 5.25 The characteristic zinc blend planes of 111, 220, and 311 locating at 
24.40°, 41.60°, and 47.90° for CdTe core and at 24.94°, 41.72°, and 48.76° for 
CdTe/ZnS in the 10–60° 2Θ range.      

To further characterize the CdTe/ ZnS core-shell structure, we carried out the XPS 

studies to investigate the surface composition of CdTe and CdTe/ZnS QDs.  In Figure 
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5.25(a), the two strong peaks located at 404.89 and 412 eV correspond to Cd 3d 

binding energy of CdTe QD, and the peak at 571.77, 581.91eV in Figure 5.25(b), 

correspond to Te 3d binding energy of CdTe. In Figure 5.25(c) the strong peaks 

1020.84, 1044.08 eV correspond to Zn 2p and 161.48 eV in Figure 5.25 (d) correspond 

to S binding energy of CdTeZnS QDs. These data of XPS provide the direct evidence of 

the formation of CdTe/ZnS QDs. 

  

 

 

 

 

 

 

 

 

  

Figure 5.26(a) XPS spectra of Cd, (b) Te, (c) Zn and, (d) S binding energy (eV) of 
CdTe-ZnS QDs respectively 
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5.5 SUMMARY 

1.   Demonstration of the ability of SMAD technique for the gram-scale synthesis of 

semiconductor cadmium selenide and cadmium telluride. 

2.  Extending the digestive ripening phenomenon for cadmium telluride. 

3. By employing ligands as capping agent and digestive ripening solvent, high 

temperature (250 °C) was achieved and more rapid digestive ripening occured 

4.  Compared to CdSe, the digestive ripening of CdTe was much faster.   

5.  Enhanced QY was obtained due to high digestive ripening condition, and promoted 

the more crystalline nature of the particles, and thereby enhanced QY. 

6. Further enhancement of QY (40 to 60%) was achieved by coating core nanoparticles 

with a high band gap inorganic ZnS shell.  

7. Formation of ZnS over the core is evident from PL, XRD, EDX, and XPS analysis. 
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Figure 5.27 Schematic Representation of Overall Synthesis Procedure 
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