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Abstract
We have analytically discovered the existence of two global epidemic invasion thresholds

in a directed meta-population network model of the United States cattle industry. The first

threshold describes the outbreak of disease first within the core of the livestock system while

the second threshold describes the invasion of the epidemic into a second class of locations

where the disease would pose a risk for contamination of meat production. Both thresh-

olds have been verified through extensive numerical simulations. We have further derived

the relationship between the pair of thresholds and discovered a unique dependence on the

network topology through the fractional compositions and the in-degree distributions of the

transit and sink nodes.

We then addressed a major challenge for epidemiologists and their efforts to model disease

outbreaks in cattle. There is a critical shortfall in the availability of large-scale livestock

movement data for the United States. We meet this challenge by developing a method

to estimate cattle movement parameters from publicly available data. Across 10 Central

States of the US, we formulated a large, convex optimization problem to predict the cattle

movement parameters which, having minimal assumptions, provide the best fit to the US

Department of Agriculture’s Census database and follow constraints defined by scientists

and cattle experts. Our estimated parameters can produce distributions of cattle shipments

by head which compare well with shipment distributions also provided by the US Depart-

ment of Agriculture.

This dissertation concludes with a brief incorporation of the analytic models and the pa-

rameter estimation. We approximated the critical movement rates defined by the global

invasion thresholds and compared them with the average estimated cattle movement rates

to find a significant opportunity for epidemics to spread through US cattle populations.
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Chapter 1

Introduction

The cattle of the United States (US) number roughly 100 million head and supply careers,

beef and dairy products, fertilizer, and more1,2,3. These cattle and the benefits they provide

are constantly at risk for devastating epidemics, especially from foreign diseases4,5. The

US cattle industry is large and pervasive. In 2007, cattle were reported in 3060 counties of

the US1. To better understand the potential threats of new disease outbreaks, realistic and

scalable epidemic models are needed. The current resolution of available data as well as

the desire for scalability would suggest that population-level modeling would be the most

suitable approach.

This dissertation describes a two-sided effort to advance the abilities of epidemiologists to

model disease outbreaks in cattle. To model disease spread in any wide-spread popula-

tion requires information describing the disease progression within an individual or a group

of individuals and information characterizing the susceptible population, particularly how

the individuals or groups interact6,7,8. Such information could be represented through an

abstract model or a data-driven process. This dissertation focuses on the information de-

scribing the population demographics and movement parameters for cattle systems in the

US. We approach this challenge through a) extending the definition of a global epidemic

invasion threshold to a more realistic model of cattle systems and b) estimating unknown

1



parameters to describe the movements of cattle across the Central States of the US. The

first portion steps from an abstract model towards reality by increasing the complexity of

the model and analysis. The latter portion starts with a real database from the US De-

partment of Agriculture and attempts to estimate cattle mobility parameters for use in an

abstract, yet still more complicated, cattle population model. These two approaches have

yet to reach each other except for a small example which we present in chapter 5. The

remaining challenges are summarized for future work in subsection 5.1.1.

1.1 Broader impacts

The development of a modeling system capable of forecasting livestock disease and demo-

graphics on a national or global scale serves as the vision of this work6,7,8. In this dissertation,

we focus first on deriving and validating analytic results for epidemic and movement models

with increasing complexity and secondly on optimally estimating data-driven inputs for such

a modeling system. Our contributions enable county-level resolution and an initial analytic

understanding for the spread of influenza-like-illnesses (such as Foot and Mouth Disease).

This spatial resolution is the highest reasonable level considering publicly available data.

The adaptation of the models and parameter estimation to other species such as swine or

goat is not a challenging extension. The consideration of diseases with greater complexities,

such as diseases involving the environment, wildlife, or multiple species, would need further

disease model expansions5.

This modeling of epidemics in metapopulation livestock systems would serve as a platform

for in-silico policy testing and implementation by animal health administrative agencies.

This modeling system would improve scientists’ understanding of the complex, spatial and

temporal evolution of livestock disease outbreaks. Researchers could forecast the impacts

of economic decisions, veterinary regulations, and control policies on the susceptibility of

the United States cattle system to domestic and foreign diseases. With a national picture

2



Figure 1.1: A simple network composed of nodes shown as green circles which are connected
through a set of arcs represented by blue lines.

of the disease challenges, the potential arises for farmers, scientists, and administrators to

control and exterminate threats to US livestock.

1.2 Basic terminology

The solutions to a problem as complex as characterizing the cattle systems of the US can

be found through multidisciplinary efforts. Due to this, there may be basic vocabulary of

one discipline that is unfamiliar to another discipline. This section aims to define a number

of terms that may increase understanding of the dissertation content. The topics covered

include abstract structures, such as the network of figure 1.1, and the cattle systems that

provide familiar, everyday products.
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1.2.1 Cattle systems

In the United States, cattle are counted by “head.” With one head per individual, a count

of 20 head of cattle is equivalent to 20 individuals1. Depending on the gender and individual

life stage, cattle are known by a number of titles. Young offspring of cattle are “calves.”

A young female who has not given birth to a calf is called a “heifer.” Once she has had

her first calf, she is described as a “cow.” A common inaccurate description of cattle is

to refer to any and every individual as a cow. Although young male cattle have no title

equivalent to heifer, they may be castrated and known as “steers,” a common practice in

beef production. If the male is kept whole, he is called a “bull” and will likely be used

for breeding purposes. These cattle reside on premises or cattle “operations.” Farms that

focus on birthing and raising young calves are known as “cow-calf” operations9. In the

production of beef, cattle may be fattened through grazing on spreads or ranches, or more

efficiently through feeding yards called “feedlots.” In feedlots, beef cattle are raised on

a regulated diet of feed to prepare them for the end of their 15-24 month-long lives at

a “slaughterhouse”10. Cows typically live on cow-calf farms or in “dairies” where both

milk and calves are produced. Although some cattle are dedicated to become beef from

the beginning of their lives, other cattle commonly find their way to a slaughterhouse as

their usefulness expires in whichever purpose they were serving. The selection of cattle

for slaughter based on the expiration of their utility is known as “culling.” In chapter 4,

we classify cattle into three types: “Preslaughter,” representing cattle in a feed program

with their next destination being a slaughterhouse; “Dairy,” representing dairy cattle; and

“Beef,” representing a general collection of all remaining cattle.

1.2.2 Network science

Network Science studies systems through the perspective of networks11,12. A “network” can

be defined as a set of elements connected through a set of relationships, such as the circles

and lines of figure 1.1. Furthermore, a network often (always by mathematicians’ defini-

4



tion) has a set of flows moving through the relationships. A similar concept, a “graph,” is

a network without any flows. The flows of a network can represent a diffusion dynamic,

such as particles or rumors moving between nodes, or more complex dynamics, such as

economic trading12. In a network, the elements are known as “nodes” or “vertices” and

they can represent the components of nearly any system. Nodes have been used to rep-

resent individuals, geographical locations, computers, companies, economies, words, and

much more11. The relationships that connect the nodes of a network are known by a vari-

ety of discipline-dependent terms, including “arcs,” “links,” “edges,” and “lines.” Once a

system is represented as a network with nodes and arcs, one can study the static system

of relationships or further a set of dynamic processes taking place in the network12. If the

arcs between pairs of nodes or the flows taking place on them are not symmetrical, then

the arcs and the network are referred to as “directed.” One of the most basic parameters

used to describe a network is the “node degree.” The degree of a node is the count of the

number of arcs it is connected to. For directed networks, nodes have both an “in-degree,”

the number of incoming or arriving arcs, and an “out-degree,” the number of outgoing or

departing arcs. Two special cases of directed node degrees can occur. When a node has an

in-degree of zero, it is known as a “source” node because flows can only originate from it

and not arrive to it. Similarly, a node with an out-degree of zero is called a “sink” node. In

a directed network, if a node has both in- and out-degree nonzero, the node can be referred

to as a “transit” node. Although these definitions are only a few with respect to the field of

networks, they are sufficient for a majority of the network-related content of this document.

1.2.3 Metapopulation systems

A system composed of several “populations,” namely several “subpopulations” of the system

population, which are relatively separated geographically, is known as a “metapopulation”

system13,14,15. If represented through a network such as in figure 1.1, a metapopulation

system would suppose that each node (green circle) would have a population of individuals
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residing within it. These nodes represent geographical locations, but as shown in figure 1.1,

nodes may not always be visually presented in a geographical orientation. The relationships,

represented by the arcs, represent pathways for interactions among the subpopulations. For

the work of chapters 2 and 3, metapopulation networks are discussed in which the network

and its nodes do not represent any concrete physical locations in the real world, but rather

abstractions of such systems. Throughout this dissertation, the interactions that interface

the subpopulations are the movements or shipments of cattle from location to location.

If the subpopulations of a system are further divided by some criteria into different sub-

parts, they may be referred to as “stratified” subpopulations. In chapter 4, the nodes of

the considered metapopulation network represent 1034 counties in 10 States in the Central

United States. The populations within these nodes (counties) are each stratified into nine

subpopulations by the types of cattle mentioned in subsection 1.2.1 and the sizes of the

operations.

1.2.4 Classical SIR disease model

Chapters 2 and 3 study epidemics in cattle populations through a compartmental disease

model. The classical “Susceptible-Infected-Recovered” (SIR) model for disease sorts indi-

viduals into three disease states, susceptible (S), infected (I), and recovered (R)12,16. This

model assumes that the considered population is “well-mixed,” meaning that the individuals

who compose the population are all likely to interact each with all others of the population.

The classical SIR model is characterized by two parameters, the “infection rate” and the

“recovery rate.” The infection rate, β, represents the rate at which an infected individual

produces new infections in each susceptible with which he is in contact with. The recovery

rate, µ, is the rate at which each infected individual recovers and transitions to the recovered

state R. Figure 1.2 presents the state transition diagram of the classical SIR model and an

example of individuals with different disease states residing inside and moving into and out

of a node.
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Figure 1.2: (A) The state transition diagram of the classical SIR model, showing the
transition from Susceptible to Infected driven by mixing with infected individuals and the
infection rate β and the transition from Infected to Recovered driven by the recovery rate
µ. (B) A node in a metapopulation system with susceptible (purple), infected (red), and
recovered (orange) individuals residing inside and moving into and out of the node.

Given the total size Ni of a population i and the initial states of the disease described

by the number of individuals in each disease state, the progression of the SIR model can

be followed either deterministically through differential equations or numerically through a

discrete stochastic model of the processes12,16. These disease processes are modeled through

binomial processes within each subpopulation of the metapopulation models of chapters 2

and 3. To characterize the disease outbreaks across the cattle systems, three basic metrics

are used: the “epidemic duration,” the “epidemic attack rate,” and the “epidemic size”17.

The duration of the epidemic measures the time period over which the disease persists,

ending when the number of infected individuals reaches zero for all subpopulations of the

metapopulation system. The epidemic attack rate is the fraction of the total system popula-

tion which is infected during the outbreak. The third metric, the epidemic size, summarizes

the geographical impact of system-wide outbreaks and is defined as the fraction of locations
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(nodes and their respective subpopulations) which have experienced new infections.

1.2.5 Technical terms

In addition to the above terminology, a few more definitions are useful for comprehending

this dissertation. In chapters 2 and 3, epidemic results are first derived and then verified

through “stochastic” and numerical simulations. The stochastic portion of the simulations

is the generation of pseudo-random numbers to model the evolution of the demographics and

the disease through random processes. These processes create sample distributions of the

metrics with which the results are captured. To present these distributions, statistics such as

the sample median, average, and 95% “confidence interval” are employed. In these chapters,

the 95% confidence interval represents the central 95% of each distribution, in which 2.5%

has been removed from each end of the ordered distribution of samples. Similarly, chapter

4 describes a portion of results with 99% confidence intervals. In the same chapter, an

“optimization problem” is formulated18. An optimization problem is composed of a set

of “constraints” and usually an “objective function.” It is also possible that the set of

constraints is empty and only the objective is optimized. The constraints are a set of

equalities and inequalities that are expressed through the problem variables and that define

the feasible set of solutions to the problem, also known as the solution space. An objective

function serves to quantify the quality of the solution, where the set of values of the problem

variables in the solution space that produce the highest (lowest) feasible objective value

represents the optimal solution of the maximization (minimization) problem. There exist

many methods to determine solutions for different optimization problems, where the best

method depends on the nature of the constraints and the objective function18.
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1.3 Contributions and overview

In recent years a global epidemic invasion threshold R∗ has been introduced to characterize

the system level threat of disease outbreaks for metapopulation systems on undirected net-

works17,19. This parameter defines the threshold between the situation where an epidemic

is contained within one subpopulation and the situation where the epidemic spreads out

across the system. In chapter 2, we derive this threshold for directed livestock networks

without sink and source nodes. The critical movement rate pc is derived, and simulations

are used to validate the mean-field existence of epidemics only when the average movement

rate p exceeds the critical movement rate.

Not satisfied to remain at this level of abstraction, we extended the livestock model of chap-

ter 2 to include death, birth, and importation processes in chapter 3. With these additions,

we modeled cattle systems on directed networks with source and sink nodes. For this second

model, we derived the global epidemic invasion threshold R∗, discovered a second invasion

threshold RTS
∗ , determined the respective critical movement rates, pc and pTSc , and validated

these thresholds through extensive simulation. We found that the relationship between pc

and pTSc depends on the fractional composition and the in-degree distributions of the transit

and sink nodes. The second threshold of RTS
∗ and pTSc defines the criteria for an epidemic to

move from the transit to the sink nodes of a network. The spread of diseased cattle into the

sink nodes is of particular concern as these nodes represent the last feedlots before cattle

are slaughtered and move into the human food chain.

Chapter 4 examines the characterization of epidemics in metapopulation cattle systems

through an estimation of actual cattle movements. We developed a method to determine

cattle movement parameters from publicly available databases of cattle demographics1. As

described in chapter 4, we first collect and polish certain sets of parameters and then input

them into the large, convex constrained optimal estimation problem we have formulated.

This optimization maximizes the entropy of the out-going distributions of cattle movement

parameters, permitting the minimal number of assumptions to remain in the optimal solu-
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tion. We solve this problem for a set of 10 Central States in the US, yielding movement

parameters and birth, culling, and slaughter rates for the region. We conclude chapter 4

with a proposal of a set of questions that would greatly benefit future efforts to estimate

cattle movements without challenging the privacy of cattle operations.

The metapopulation cattle model and the movement estimation efforts have yet to converge

into a single data-driven model of cattle demographics and disease. In chapter 5, we out-

line the remaining steps necessary for this convergence in a discussion of future work. The

first contact between these two perspectives appears in subsection 5.1.2, where we compare

the average movement rates of the 10 Central States with the critical movement rates pc

and pTSc , computed from the networks of estimated cattle movements. We close chapter 5

and this dissertation with a short summary of the content. The contributions of the work

presented in this document are summarized as

1. The expression and numerical validation of the global epidemic invasion threshold R∗

and the related critical movement rate pc for directed metapopulation cattle movement

networks with neither source nor sink nodes,

2. The expansion of a metapopulation model of cattle movements and epidemics for

directed networks having source, sink, and transit nodes,

3. The expression and numerical validation of the global epidemic invasion threshold R∗

and the related critical movement rate pc for directed metapopulation cattle movement

networks with both source and sink nodes,

4. The expression and numerical validation of a novel epidemic invasion threshold RTS
∗

and the related critical movement rate pTSc between transit and sink nodes for directed

metapopulation cattle movement networks with both source and sink nodes,

5. The derivation of the relationship between the pair of critical movement rates pc and

pTSc ,
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6. The development of a flexible, scalable, and convex optimal estimation method to

approximate the cattle movement parameters of the United States through publicly

available data,

7. The estimation of demographic and movement parameters for cattle across 10 Central

States, and

8. The comparison between the estimated cattle movement rates and the correspond-

ing critical movement rates pc and pTSc to determine the potential for epidemics to

devastate the 10 Central States with the outbreak of an epidemic among their cattle

populations.

1.4 List of symbols

Here we present two tables of the most commonly used symbols in this dissertation sorted

by the two sides of our effort to characterize epidemics in cattle systems.

Symbol Definition

V Number of nodes (populations)

Ni (t) Number of individuals in node i at time t

N Average node population

S Susceptible individuals

I Infected individuals

R Recovered individuals

β Infection rate

µ Recovery rate

λi (t) Force of infection on each individual in node i at time t

R0 Basic reproduction number

Continued on next page
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Table 1.1 – Continued from previous page

Symbol Definition

p Movement rate of each individual

dij Per capita rate of flow of cattle from node i to node j

pβ Fraction of recycled cattle born rather than imported

δ Slaughter rate of each individual in a sink node

δx,y Kronecker Delta

kini In-degree of node i

kouti Out-degree of node i

~ki = (kini , k
out
i ) Joint node degree of node i

ηin Fraction of nodes having no out-degree (sinks)

ηout Fraction of nodes having no in-degree (sources)

~k(1) Joint node degree of a source node

~k(2) Joint node degree of a transit node

~k(3) Joint node degree of a sink node

N~k, d~k~k′ , V~k Respective degree-block variables for Ni, dij, V

Dn
~k

Number of diseased nodes with degree ~k in generation n

R∗ Global epidemic invasion threshold

pc Critical movement rate of R∗

RTS
∗ Global transit-to-sink epidemic invasion threshold

pTSc Critical movement rate of RTS
∗

Table 1.1: Commonly used symbols in chapters 2 and 3
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Symbol Definition

P tot
t Total number of cattle of type t

TypeA, T ypeB Sets of cattle types

Dairy(D) Dairy cows

Preslaughter(P ) Cattle on feed with slaughter as next destination

All Cattle All cattle of any type

Beef(B) All cattle except Dairy and Preslaughter

ShipType Set of shipment types

All Movements Cattle movements or shipments of any type

Slaughter Cattle movements or shipments for slaughter

SizeA, SizeB Sets of size ranges for populations and shipments

x Notation to denote a decision variable

R Notation to denote a result of the data pre-processing

Tcxt,c Number of cattle of type t in county c

Tzxt,i Number of cattle of type t for size range i

Popxt,c,i Number of cattle of type t in county c of size range i

Salesxt,c,i Number of cattle shipped of type t from county c for size range i

Distance Set of distances in which cattle may be shipped

pxt1,j1,t2,j2,dist Movement parameter from a subpopulation of type t1

and size range j1 to a subpopulation of type t2

and size range j2 over a distance dist

ft1,j1,t2,j2,dist Binary variable to implement industrial constraints

btxc,t,j Birth rate of subpopulation in county c of type t

and size range j

dtxc,t,j Culling rate of subpopulation in county c of type t

Continued on next page
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Table 1.2 – Continued from previous page

Symbol Definition

and size range j

slxc,t,j Slaughter rate of subpopulation in county c of type t

and size range j

RC Scaling factor for year-to-week time scale

Table 1.2: Commonly used symbols in chapter 4
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Chapter 2

Global epidemic invasion threshold in

directed subpopulation networks

Motivated by trade of livestock we have suggested a theoretical framework in order to define

the conditions for global epidemic invasion in directed subpopulation networks. Our theoret-

ical analyses are based on a metapopulation approach in which subpopulations correspond to

geographically segregated social units coupled by exchanges of individuals. Inside each sub-

population we have considered the classical infectious-susceptible-recovered compartmental

model in order to describe the spreading of the disease in the population via direct contacts.

We have derived an analytical expression for the reproduction number at subpopulation level

that determines the extinction or invasion of the disease in the metapopulation system. Our

analytical calculations show the existence of a phase transition from invasion to extinction

that is suppressed by heterogeneity in the architecture of subpopulation networks in the

thermodynamic limit. Our analytical findings have been supported by stochastic, discrete

time, and individual-based numerical simulations on synthetic subpopulation networks.
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2.1 Introduction

Dynamical processes taking place on top of complex networks have attracted a lot of at-

tention in recent years due to accumulation and availability of large-scale reliable data12,20.

Opinion dynamics in social groups and consensus formation21, propagation of failure in fi-

nancial systems22,23, spreading of infectious diseases in human communities24,25 are among

a vast number of examples where network science has substantially influenced and advanced

our research approaches and understanding. The substrate network for geographical spread

of infectious diseases corresponds to locations coupled by mobility fluxes of the host carrying

and transmitting the disease. The host population in this case is structured in relatively

isolated discrete patches or subpopulations where a contagion or reaction process takes

place. These subpopulations are connected by a diffusion process or exchanges of indi-

viduals that enables the exportation of the contagion process into naive subpopulations.

Reaction-diffusion processes have been integrated into a metapopulation modeling scheme

where different subpopulations are coupled by mobility of individuals13,14,15,26. Metapopula-

tion dynamics have been successfully applied to understand epidemics in spatially structured

populations with well defined social units (e.g., families, villages, towns, cities, regions) con-

nected though individuals’ movements27,28,29,30,31,32,33,34,35,36,37,38,39. Metapopulation dynam-

ics have generated a wealth of results and approaches that take into account the mobility

of individuals explicitly34,40,41,42,43,44,45 or implicitly by integrating the diffusion dynamics

into an effective force of infection32,35,46,47,48,49,50. Metapopulation approaches have recently

been implemented in data-driven computational models for the description of large-scale

geographical spread of infectious diseases6,39,51,52,53,54,55.

The metapopulation dynamics have been extended to complex settings by a particle-

network description in that each node populated by a certain number of individuals is

connected to a set of other nodes by mobility fluxes. The subpopulation network repre-

sentation has enabled the study of contagion processes taking place on complex substrate

network architectures and coupled by complex mobility schemes19,56,57,58. It has been shown
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in particular that, along with the usual basic reproduction number, there is a second thresh-

old parameter that depends on the parameters of the contagion process, the characteristics

of the mobility scheme and the architecture of the subpopulation network. This global in-

vasion threshold7,17,19,57,58,59,60,61 defines whether a contagion process successfully spreading

in a single subpopulation will lead to outbreaks in a nonzero fraction of subpopulations or

will die out in a finite amount of time in the thermodynamic limit.

The metapopulation approach is based on detailed knowledge of the spatial structure

of the population and the mobility scheme and network architecture8,62,63,64,65,66,67,68. In

the case of human infectious disease epidemics, the links of the mobility networks are con-

veniently regarded undirected as the individuals get back to their original subpopulations

within the timescale of the disease8 or the number of trips between origin and destination

are balanced53. However, the mobility or displacement of livestock is driven and strictly

regulated by livestock trade industry. In the case of infectious diseases of livestock, the

subpopulation network underlying the geographical spread is made of animal holdings or

premises connected by displacements of livestock among them. Recent accumulation and

availability of detailed data on livestock movements69,70,71,72,73,74,75 have enabled the char-

acterization of livestock movement networks in various European countries. In particular,

the networks are highly unidirectional due to specializations of premises (e.g., diary farms,

markets, slaughterhouses) and it is rather rare to observe an animal returning to its origin.

Conventional models for the geographical spreading of livestock infectious diseases em-

ploy mass-action laws and distance-based kernels in order to account for transmission of

infection between premises4,76. Data-driven computational models informed by livestock

movement databases have increasingly become available in the literature77,78,79. Except

for several computational studies taking mechanistic approaches within the metapopulation

framework80,81, these models consider animal holdings as their basic units, missing the reso-

lution at the level of individual animals. In this chapter, we propose a theoretical framework

based on a metapopulation approach to identify the conditions for global epidemic invasion
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of directed subpopulation networks motivated by livestock trade. In Section 2.2 we define

the metapopulation model in which subpopulations corresponding to livestock communities

are coupled by a Markovian mobility process. By introducing degree-block variables, we

obtain the quasi-equilibrium of the system driven by this mobility scheme. In Section 2.3

we introduce the infection dynamics and obtain an analytical expression for the global epi-

demic invasion threshold parameter. This novel threshold parameter determines whether an

infectious disease is going to spread to an appreciable fraction of the subpopulations or die

out before reaching high proportions. We support our theoretical findings with numerical

simulations in Section 2.4, followed by conclusions and discussions in Section 2.5.

2.2 Metapopulation model of livestock industry

In order to describe the movement of livestock of a single species, let us consider a directed

and weighted subpopulation network made of V nodes. Each node i corresponds to a

subpopulation or a community which accommodates a number of animals Ni(t) at time t.

Each directed link i→ j that will be called an arc represents the direction and the weight dij

the per capital rate of the flow of animals from node i to node j. Each node i is connected

to kini other nodes via incoming arcs which originate from those nodes in the set υini and is

connected to kouti other nodes via outgoing arcs which terminate at nodes in the set υouti .

Each node thus has a pair of degrees denoted by ~ki ≡ (kini , k
out
i ). In the continuous and

deterministic limit, the temporal change of the animal population in node i due to livestock

movement is determined by the rate equation:

dNi(t)

dt
= −Ni(t)

∑
j∈υouti

dij +
∑
`∈υini

d`iN`(t) . (2.1)

The first expression accounts for the off-movements of livestock in subpopulation i to other

subpopulations in the out-neighborhood, while the second expression corresponds to the
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on-movements of livestock to subpopulation i from the in-neighborhood. The first question

of interest then relates to the population sizes: How is the total population in the system

distributed at the equilibrium of the above Markovian mobility process? In order to answer

this question, we will rely on the assumption of the statistical equivalence of subpopulations

with similar joint-degree ~k. This is a mean-field approximation that considers all the sub-

populations with same joint-degree as statistically equivalent, thus allowing the introduction

of degree-block variables that depend only upon the subpopulation joint-degree.

While this is an obvious approximation to the system description, it has been successfully

applied to many dynamical processes on undirected complex networks7,17,19,56,57. Imagine

that the subpopulation network obeys the join-degree distribution Pv(~k). We will define

vertex-based degree-block variables and assume that all the nodes within a joint-degree-

class ~k are statistically equivalent. The average population size of nodes in degree-class ~k

at time t is expressed as

N~k(t) ≡
1

V~k

∑
i|~ki=~k

Ni(t) , (2.2)

where the sum is performed over all the nodes with joint-degree ~k, and V~k is the total number

of such nodes. Similarly, we can define arc-based degree-block variables. The average

diffusion rate d~k~k′ on arcs originating from nodes with joint-degree ~k and terminating at

nodes with joint-degree ~k′ is given by

d~k~k′ ≡
1

E~k~k′

∑
i|~ki=~k,j|~kj=~k′

dij , (2.3)

where the summation is performed over all the arcs whose origin and terminal end are

occupied by nodes with degrees ~k and ~k′, respectively, and E~k~k′ is the number of such arcs.

We can then write down the rate equations of population sizes in the mean-field description
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by using the degree-block variables as

∂tN~k(t) = −N~k(t)k
out
∑
~k′

Pa(~k, ~k′|~k)d~k~k′ + kin
∑
~k′

Pa(~k′, ~k|~k)N~k′(t)d~k′~k , (2.4)

where Pa(~k, ~k′|~k) is the conditional probability of finding a node with joint-degree ~k′ in the

out-neighborhood of nodes with joint-degree ~k, and Pa(~k′, ~k|~k) is the conditional probability

of finding such a node in the in-neighborhood. While the sum in the first expression accounts

for the off-movements of animals in subpopulation with join-degree ~k to any of the out-

neighbors, the second sum corresponds to the on-movements to the subpopulation.

In order to proceed further with analytical calculations, we need to specify the network

structure and the diffusion rates. The simplest case could be that the total per capita

diffusion rate is the same p for all the subpopulations and that the diffusion rate from a

subpopulation with joint-degree ~k to any one of the out-neighbors is equally weighted as

d~k~k′ =
p

kout
, ∀kout 6= 0 . (2.5)

In this case the rate equation becomes

∂tN~k(t) = −pN~k(t)(1− δkout,0) + pkin
∑
~k′

Pa(~k′, ~k|~k)
N~k′(t)

k′out
(1− δk′out,0) . (2.6)

From the above equation, it is obvious that the nodes with zero in-degree will act as sources

while those with zero out-degree will be sinks. We will consider that there are no sources and

sinks in the network, i.e., Pv(0, k
out) = 0 and Pv(k

in, 0) = 0, corresponding to the fact that

we are restricting our analysis to the (giant) strongly connected component of the network.

This assumption yields

∂tN~k(t) = −pN~k(t) + pkin
∑
~k′

Pa(~k′, ~k|~k)
N~k′(t)

k′out
. (2.7)
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If we assume that there are no correlations between the degrees of connected nodes, then we

have that the conditional probability Pa(~k′, ~k|~k) is independent of ~k and is just equal to the

probability of finding an arc originating from a node with joint-degree ~k′ (see Eq. (A.2)).

The rate equation for the average population size in subpopulations with degree ~k then

becomes

∂tN~k(t) = −pN~k(t) +
pkin

〈kout〉
N , (2.8)

where N =
∑

~k′ Pv(
~k′)N~k′(t) is the average node population and independent of time. It is

worth remarking that we are ignoring birth and death processes, including importation and

exportation of animals as well as their movements to slaughter houses. At the equilibrium

of the diffusion process, i.e., ∂tN~k(t) = 0, the average population size of a node with joint-

degree ~k is given by

N~k =
kin

〈kout〉
N . (2.9)

Once the system reaches this equilibrium, then the population size of each subpopulation

will no longer change over time. However, this is a quasi-equilibrium in that the population

continues moving between the subpopulations while keeping balanced the in- and out-flow of

each location. In the following we will assume that the system is already in the equilibrium

of the diffusion process and will introduce another dynamical process corresponding to the

introduction of an infectious agent.

2.3 Global epidemic invasion of livestock industry

Now let us introduce a contagion process to one of the subpopulations and discuss the

conditions for global invasion and extinction of the process. For this purpose we consider

the classic susceptible-infected-recovered (SIR) model16 in order to describe the spread of a

biological virus in the livestock population. We will assume that the population is initially

fully susceptible and also that livestock mix homogeneously in each subpopulation. Infec-
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Figure 2.1: A diagram of a branching process with labels denoting each “generation” n
of the process. Each node produces a stochastic number of offspring nodes in the following
generation.

tion is transmitted from an infectious animal to a susceptible animal upon contact at rate

β. The force of infection acting on each susceptible animal in a subpopulation at time t

assumes a mass-action law that is proportional to the prevalence of infectious animals in the

subpopulation, that is the rate at which each susceptible animal becomes infectious. Each

infectious animal recovers permanently from the disease at rate µ. The model yields the

basic reproduction number R0 = β/µ at individual-animal-level that is the average num-

ber of secondary infections generated by a typical infectious animal in its entry infectious

period16. In the thermodynamic limit (i.e., N → ∞), the basic reproduction number acts

as a threshold parameter in that the disease successfully spreads to a finite proportion of

livestock in the subpopulation only if R0 > 1. On the other hand, if R0 < 1, then the

disease fades out in a finite amount of time affecting only a tiny fraction of the animals

(that is zero in the thermodynamic limit). In the early time of the SIR epidemic, we can

consider the invasion dynamics as a branching process (see figure 2.1)7,17,19,57,59,82,83 in which

subpopulations experiencing the disease outbreak in the n− 1th generation may export the

contagion process to some of the subpopulations in their out-neighborhood. Letting Dn
~k

denote the number of diseased subpopulations with joint-degree ~k in the nth generation, we
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may relate Dn
~k

and {Dn−1
~k
} by

Dn
~k

=
∑
~j

Dn−1
~j

Pa(~j,~k|~j)joutp(~j,~k)
n−1∏
m=0

(
1−

Dm
~k

V~k

)
. (2.10)

The above equation reads as the following: Noting that we ignore bidirectional links, each

one of the diseased subpopulations with degree ~j in the n− 1th generation may export the

disease to jout other subpopulation in its out-neighborhood. The conditional probability

that a node with degree ~k exists in such an out-neighborhood is given by Pa(~j,~k|~j). Given

the existence of such a neighbor, the probability that the neighbor has not been infected in

earlier generations is given by
∏n−1

m=0

(
1−

Dm~k
V~k

)
. The probability p(~j,~k) that the diseased

subpopulation ~j during the entire course of the epidemic will initiate the outbreak in the

neighbor ~k is determined by the number of infected animals sent from ~j to ~k and the

probability that the outbreak will occur. For the SIR epidemic model84, the probability

p(~j,~k) is given by

p(~j,~k) = 1−R
−λ~j~k
0 , (2.11)

where λ~j~k is the number of infectious seeds generated in subpopulation ~j and sent to sub-

population ~k. Given the final size α of an SIR epidemic (i.e., the proportion of individuals

who contract the disease)16 and the average per capita infectious period µ−1, the average

number of exported seeds is

λ~j~k = αµ−1N~jd~j~k . (2.12)

We can assume the term
∏n−1

m=0

(
1−

Dm~k
V~k

)
' 1 in the early time of the epidemic. If we

are just above the local epidemic threshold, i.e., R0 ' 1, then the probability p(~j,~k) can

be approximated by p(~j,~k) ' λ~j~k(R0 − 1) and α by α ' 2(R0 − 1)R−20 . Under these

assumptions, the above recursion relation becomes

Dn
~k

= 2(1−R−10 )2µ−1
∑
~j

Dn−1
~j

Pa(~j,~k|~j)joutN~jd~j~k . (2.13)
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Plugging the diffusion rate Eq. (2.5) and the equilibrium population Eq. (2.9) into the above

expression yields

Dn
~k

=
2Np(1−R−10 )2µ−1

〈kout〉
∑
~j

Dn−1
~j

Pa(~j,~k|~j)jin . (2.14)

If we assume that there are no correlations between the degrees of the nearest neighbors,

then the conditional probability Pa(~j,~k|~j) reduces to the probability of finding a node with

joint-degree ~k at the terminal end of a randomly selected arc (see Eq. (A.3)), and the above

equation yields

Dn
~k

=
2Np(1−R−10 )2µ−1

〈kout〉〈kin〉
kinPv(~k)

∑
~j

Dn−1
~j

jin . (2.15)

By defining auxiliary variable Θn ≡
∑

~j D~jj
in and noting that 〈kout〉 = 〈kin〉, we obtain the

following relationship:
Θn

Θn−1 = 2Np(1−R−10 )2µ−1
〈(kin)2〉
〈kin〉2

. (2.16)

The dynamical behavior of the system is determined by the right-hand-side of the above

expression that we may call as the branching number or the basic reproduction number R∗

of the epidemic at individual-subpopulation-level. This is equivalent to defining a subpopu-

lation reproductive number7,17,19,57,59,60,61 that, in structured metapopulation systems, is the

average number of infected subpopulations generated by a typical infected subpopulation in

a fully susceptible metapopulation system. If R∗ > 1, then the epidemic is going to spread

to a finite fraction of subpopulations in the thermodynamic limit, i.e., V → ∞. On the

other hand, if R∗ < 1, then the epidemic is going to be confined to a small neighborhood

and will die out in a finite amount of time. Thus, R∗ = 1 sets the threshold values for

the disease and mobility parameters as well as the properties of the connection matrices.

The critical value pc of the per capita diffusion rate above which the epidemic will spread

globally in the subpopulation network is

pc =
1

2N(1−R−10 )2µ−1
〈kin〉2

〈(kin)2〉
. (2.17)
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One interesting feature of the above expression we like to highlight is the explicit depen-

dence of pc on the topology of the subpopulation networks through the moments 〈kin〉 and

〈(kin)2〉 of in-degree distribution. As has already been shown for several dynamical processes

on undirected subpopulation networks, heterogeneity in the network connections favors the

spreading of infectious diseases by lowering the threshold value. Interestingly, however, in

the case of directed subpopulation networks, this striking effect is caused by the heterogene-

ity of in-degrees. Indeed, for heavy-tailed in-degree distributions P in
v (k) ∼ k−γ with γ > 1

and kinmin ≤ k ≤ kinmax, the second moment scales with the maximum in-degree in case of

γ < 3. This means that the second moment of the in-degree distribution tends to diverge

at the infinite size limit of the network, as in this limit kinmax → ∞, virtually reducing the

threshold to zero.

It is worth noting that the above analyses are restricted to epidemics of animal infectious

diseases initiated in the giant strongly connected component of a synthetic livestock industry

network in which death and birth processes have also been ignored. We have relied our

analyses on the statistical equivalence of degree classes. It is also worth remarking that

we have considered that there are no correlations between the joint-degrees of connected

subpopulations. We have also made a strong simplifying assumption that the total off-

movement rates are the same across all the subpopulations and are independent of time. We

have considered only a single species of livestock and a single type of livestock subpopulation.

2.4 Stochastic simulations

In order to validate our analytical findings, we have performed Monte Carlo simulations.

We adopt mechanistic numerical simulations in which each individual-animal was tracked

in time during both the diffusion and the infection dynamics.
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2.4.1 Synthetic subpopulation networks and dynamical processes

In order to compare with theoretical calculations, the subpopulation network structure

has been generated by wiring the subpopulations according to three different random graph

topologies. We have assumed that the in-degree and out-degree of each single subpopulation

is independent from each other, meaning that there are no single-vertex degree correlations,

i.e., Pv(~k) = P in
v (kin)P out

v (kout). The random network topologies obey the following degree

distributions:

• Heterogeneous in-degree & homogeneous out-degree distribution.

• Heterogeneous in-degree & heterogeneous out-degree distribution.

• Homogeneous in-degree & heterogeneous out-degree distribution.

All the synthetic networks have been generated by an uncorrelated configuration model85,86.

The heterogeneous in(out)-degree distribution assumes a power-law function P
in(out)
v (k) ∼

k−γ confined to the interval kmin ≤ k ≤ kmax. The homogeneous out(in)-degree distribution,

on the other hand, follows a Poisson function whose mean value is set by the mean value of

the power-law in(out)-degree distribution for the sake of comparison. In all the network

topologies, we have set the minimum in(out)-degree to kmin = 1, while the maximum

in(out)-degree is fixed at kmax = V 1/(5−γ) in order to avoid topological two-vertex degree

correlations87. The exponent of the power-law in(out)-degree distribution has been fixed at

γ = 2.1.

We construct the metapopulation system of V subpopulations from a pool of NV ani-

mals. Initial population size Ni of each subpopulation i is chosen at random from a multi-

nomial distribution with probability proportional to kini , which ensures that the metapopu-

lation system obeys Eq. (2.9). Each individual animal is subject to discrete and stochastic

processes defined by the mobility and infection dynamics as detailed in appendix section A.2.

The rate dij at which each animal in subpopulation i moves to a neighboring subpopulation
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j ∈ υouti assumes Eq. (2.5):

dij =
p

kouti

. (2.18)

Each animal in subpopulation i at time t leaves its current subpopulation to join subpop-

ulation j in the out-neighborhood with probability dij∆t, where ∆t is the time interval

considered. Inside each subpopulation, we consider an SIR epidemic model in which each

animal is classified by one of the discrete disease states at any point in time. The rate at

which a susceptible animal in subpopulation i acquires the infection, the so-called force of

infection λi, is determined by interactions with infectious livestock in the subpopulation.

The force of infection λi(t) acting on each susceptible animal in subpopulation i at time t

has been assumed to follow the mass-action principle

λi(t) = β
Ii(t)

Ni(t)
, (2.19)

where β is the transmission rate of infection and Ii(t)/Ni(t) is the prevalence of infectious

livestock in the subpopulation. Given the force of infection λi(t) in subpopulation i, each

animal in the susceptible compartment (S) contracts the infection with probability λi(t)∆t

and enters the infectious compartment (I). Each infectious animal permanently recovers

with probability µ∆t and enters the recovered compartment (R).

2.4.2 Numerical results

The global epidemic invasion is determined by the disease parameters as well as the ar-

chitecture of the trade networks and the rate at which the animals diffuse on them. In

the following, we present numerical simulations focusing on the interplay between network

topology and diffusion rate, and verify the analytical result of Eq. (2.17).

In all the simulations, we have set the size of the subpopulation networks to V = 105

and the average number of animals per subpopulation to N = 104, which yields a total of

109 livestock. Note that each subpopulation with joint-degree ~k is occupied by a number of
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animals that is determined by the in-degree of the subpopulation given in Eq. (2.9). Simula-

tions have been initialized with I(0) = 10 infectious animals seeded in a single subpopulation

chosen at random with minimum out-degree, while the rest of the livestock population is

assumed to be susceptible to infection. Since the networks are directed, we have chosen the

seed subpopulation in the giant strongly connected component of the network. As our focus

is on the global invasion threshold, we have let the metapopulation system progress until

the infection dies out. Since we aim at uncovering the interplay between network topology

and diffusion rate on the global epidemic invasion, we have fixed the disease parameters

for all the simulations, setting the basic reproduction number to R0 = 1.2, the infectious

period to µ−1 = 7 day, and the unitary time scale of the simulations to ∆t = 1 day. In

the results we present here, all the realizations resulting in the outbreak of initially seeded

subpopulation (requiring an attack rate of 1%) have contributed to the statistical analysis.

For each set of parameters, we have generated at least 1, 000 system realizations. Since the

subpopulation networks and dynamical processes on them are subject to fluctuations, for

each set we have sampled 10 network realizations and 100 dynamical realizations on each of

them resulting in successful epidemics (referring to observation of outbreak in the initially

seeded subpopulation).

The expression Eq. (2.17) for the critical value of diffusion rate displays dependence

on the topology of the subpopulation networks only through the in-degree distribution.

In Fig. 2.2 we compare the results of numerical simulations performed on subpopulation

networks with the same heterogeneous in-degree distribution while varying the out-degree

distribution from heterogeneous to homogeneous. On the same plots we also show the

critical value pc of diffusion rate obtained from analytical calculations above which the

metapopulation is invaded by the disease. We clearly see that the out-degree distribution

does not alter the critical value of the diffusion rate, that is in agreement with theoretical

findings.

We now turn our attention to the impact of varying in-degree distribution. Fig. 2.3
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Figure 2.2: Average epidemic size and global attack rate as a function of p on subpopulation
networks with homogeneous and heterogeneous out-degree distributions. On the left panel we
display the fraction of subpopulation affected and on the right panel the fraction of livestock
who got infected by the end of the epidemic. Both networks show the same critical value of
the diffusion rate above which the disease spreads to an appreciable fraction of subpopulations
or livestock. The in-degree distribution of both networks is homogeneous.

displays the average fraction of subpopulations and the proportion of livestock affected

by the epidemic as a function of diffusion rate as we switch from a homogeneous to a

heterogeneous in-degree distribution while keeping the out-degree distribution fixed. The

difference between the critical values of diffusion rate are substantial in that pc in the case

of homogeneous in-degree distribution is 900% higher than that of the heterogeneous case.

The two network topologies are not just quantitatively but also qualitatively different such

that, in the thermodynamic limit V →∞, heterogeneous in-degree distribution suppresses

the phase transition, i.e., pc → 0.

2.5 Conclusions

In this chapter, we have proposed a theoretical framework in order to derive the conditions

for the global epidemic invasion of subpopulations coupled with exchanges of livestock. Our

analyses have extended the mean-field approximation based on degree-block variables7,56

to directed random graphs. This extension has allowed us to understand the impact of
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Figure 2.3: Average epidemic size and global attack rate as a function of p on subpopulation
networks with homogeneous and heterogeneous in-degree distributions. On the left panel we
display the fraction of subpopulation affected while on the right the fraction of livestock who
got infected by the end of the epidemic. The difference between the critical values of the
diffusion rate above which the disease spreads to an appreciable fraction of subpopulations
or livestock can be clearly marked as the in-degree distribution of the subpopulation networks
changes. The out-degree distribution of both networks is homogeneous.

heterogeneous network topologies on the dissemination of livestock diseases.

We have shown that there is a subpopulation reproduction number R∗ that depends not

only on the basic reproduction number, but also on the infectious period of the disease, the

diffusion rate of livestock, and the network architecture. The basic reproduction number R0

is responsible for the disease to spread in a single subpopulation, in which if R0 > 1, then the

disease can spread to a finite fraction of livestock. However, in the case of subpopulations

coupled with livestock trade, this condition is necessary but not sufficient. There is a second

threshold parameter R∗ that determines the extinction or invasion of the disease at the global

scale. In the case of structured livestock populations, the infectious period of the disease is

as important as the animal-to-animal transmission rate. This is easy to understand as the

disease finds more occasions to export itself to other subpopulations if the infectious period

is longer. If the disease parameters and network architecture are fixed, there is a critical

value of livestock diffusion rate below which the epidemic is confined to a tiny fraction

of subpopulations and dies out in a finite amount of time. We have also shown that the
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heterogeneity in the in-degrees favors the disease spread at global scale. In particular, the

phase transition is suppressed in the thermodynamic limit if the in-degree distribution is

heavy-tailed with an exponent γ < 3.

All the analyses presented in this chapter are based on several simplifications which need

to be addressed. One of the assumptions we have made is that there are no demographical

changes in the system. This means that we have ignored natural birth and death pro-

cesses as well as the importation and exportation of livestock. Even though this is a crude

approximation of the system’s description, it might be suitable for highly transmissible dis-

eases with short timescales such as Foot and Mouth Disease (FMD). We have restricted

our analyses to the giant strongly connected component of the trade network, meaning that

we have discarded the in- and out-components (must be dominated by sources and sinks,

respectively) as well as other weakly connected components. Given that the Giant Strongly

Connected Component (GSCC) covers a very high percentage of premises in livestock trade

networks aggregated over relatively large time windows, this assumption is reasonable as a

starting point. For its mathematical simplicity, we have assumed that all the livestock move

at a constant rate in that the rate of movement to a specific neighboring subpopulation is

equally weighted with the inverse of the out-degree of the subpopulation at origin. This

assumption can be relaxed, however, calling for empirical observations on the form of the

diffusion rates. Moreover, we have considered that the movement rates do not change over

time. This means that we restrict our analyses to trade networks aggregated over extended

time windows, treating the links as static objects. This assumption can be proper if the

time scale of the disease is longer than the time scale of the inter-events (the time between

consecutive movements along the very same link). There has been an increasing amount of

research on dynamical networks with the availability of data in recent years20,88. However,

there are many theoretical and technical issues to be addressed. Another assumption on

the architecture of the networks is that there are no correlations between the degrees of

connected nodes. Literature on the livestock trade network analyses does not provide any
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information on the amount and form of the correlations. One exceptional paper75 states

that there are disassortative correlations obtained by assuming no directions on the links.

The last restriction we have imposed that there is only a single species of livestock in each

subpopulation.

Some of these assumptions will be the subject of future research (including in the next

chapter) and may call for more sophisticated theoretical approaches. However, we need

the light of empirical observations. It has been demonstrated that animal registration and

movement data sets are crucial for modeling of transmissible livestock disease dissemination.

These data allow us to deploy policies for prevention and control as well as the assessment

of their effectiveness. Despite the vast number of assumptions we have made, our study

has attempted for the first time to develop a theoretical framework to address some of the

most interesting questions on the dissemination of infectious livestock diseases and suggests

a basis for future studies on this direction. We continue this work in chapter 3 where we

include source nodes, sink nodes, birth, death, and importation processes. Although the

analysis increases in complexity, it reveals a very significant second global invasion threshold

which was not previously revealed.
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Chapter 3

Global epidemic invasion thresholds

in directed cattle subpopulation

networks having source, sink, and

transit nodes

Through the characterization of a metapopulation cattle disease model on a directed network

having source, transit, and sink nodes, we derive two global epidemic invasion thresholds.

The first threshold defines the conditions necessary for an epidemic to successfully spread at

the global scale. The second threshold defines the criteria that permit an epidemic to move

out of the giant strongly connected component and to invade the populations of the sink

nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence

of an epidemic among the sink nodes is a serious threat to food security. We find that the

relationship between these two thresholds depends on the relative proportions of transit

and sink nodes in the system and the distributions of the in-degrees of both node types.

These analytic results are verified through numerical realizations of the metapopulation

cattle model.
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3.1 Introduction

Today’s computing and technological resources have enabled the compilation of large-scale

reliable data sets. Computational and network sciences have provided substantial advances

in many fields through these data12,20,21,22,23. Not the least among these fields is the study of

disease spread through human populations24,25. The spatial characterization of a spreading

disease can be captured through a division of the host population into relatively distinct

and discrete patches of subpopulations, each with a unique geographical location89,90. The

disease spread then occurs within subpopulations possessing infectious individuals, and the

transfers of individuals between pairs of locations allows the process to spread through the

system13,14,15,26. For spatially structured populations of well-defined social groups inter-

faced through individuals’ movements, epidemics have been successfully characterized using

metapopulation dynamics27,28,29,30,31,32,33,34,35,36,37,38,39. Mobility dynamics have been used

to study systems coupled by both individual movements and aggregations of movements as

effective forces of infection between subpopulations32,34,35,41,42,43,44,45,46,47,48,49,50,91. Recently,

data-driven computational models have employed such metapopulation approaches to de-

scribe the large-scale geographical spread of infectious diseases6,39,51,52,53,54,55.

The study of metapopulation systems has been adapted to complex networks where each

node hosts a subpopulation of individuals and these individuals flow between nodes on mo-

bility processes. This has led to the exploration of contagion processes taking place on

complex network structures and interconnected by complex mobility models19,56,57,58. A

global epidemic invasion threshold has been discovered that defines whether a contagion

process spreading successfully in a single subpopulation will spread to a notable fraction of

the other subpopulations or will die out in a finite amount of time in the thermodynamic

limit7,17,19,57,58,59,60,61. This threshold parameter can be determined from the characteristics

and parameters of the contagion process, the mobility model, and the subpopulation net-

work structure.

A successful metapopulation approach is based on detailed knowledge of the contagion pro-
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cess, the mobility model, and the spatial subpopulation network structure8,62,63,64,65,66,67,68.

In the study of human infectious disease outbreaks, the mobility arcs of the subpopulation

network can and have been considered undirected and symmetrical8,53. When livestock

systems are modeled in subpopulation networks, very different processes drive the move-

ments of individual cattle within the livestock industry. Recent collection, compilation,

and analyses of detailed data describing individual livestock movements have enabled the

construction of livestock movement networks in various European countries69,70,71,72,73,74,75.

These studies have found that the arcs of livestock networks are highly unidirectional due to

specializations of subpopulations (dairy farms, markets, slaughterhouses, and such) and that

an animal rarely returns to its origin92. From livestock movement databases, data-driven

computational models of geographical spread of livestock disease have increased in popular-

ity in the literature5,77,78,79. The conventional models have implemented mass-action laws

and distance-based kernels and have not been driven by the movement databases4,76,93,94.

Apart from some computational models using mechanistic approaches in the metapopula-

tion structure, these models consider livestock premises as their basic units and miss the

resolution level of individual animals80,81.

In this chapter, we design a metapopulation network model and investigate the existence

of the novel global epidemic invasion threshold for directed networks. We illustrate these

directed system results on a basic livestock industry model. Our model system includes

directed cattle movements leading to a natural division of source, transit, and sink subpop-

ulations. Within cattle systems, source nodes may represent cow-calf or dairy farms that

rarely purchase cattle, transit nodes may represent grazers or backgrounders, and sink nodes

may represent large feed/finishing operations (final waypoints prior to slaughter). In section

3.2, our metapopulation livestock system is defined on directed networks connected through

cattle movements and death, birth, and importation processes are described within each sub-

population. With the use of degree-block variables, we find the quasi-equilibrium population

levels across the network that result from this combination of population flows17. In section

35



3.3, we add a classic susceptible-infected-recovered model within each subpopulation and

determine the directed system version of the undirected global epidemic invasion threshold

R∗
17,19. This threshold defines whether a disease can be expected to spread through the sys-

tem or to quickly die out. Beyond the global invasion threshold for directed metapopulation

systems, we discover a second invasion threshold that defines whether a disease outbreak

will likely circulate within transit subpopulations or will likely spill over into the sink sub-

populations, consequently threatening food safety. We utilize computational resources to

extensively simulate this model, demonstrating the analytical observations through numer-

ical exploration in section 3.4. Section 3.5 summarizes this chapter with conclusions and

discussions.

3.2 Metapopulation model of livestock industry

We describe a generic livestock system through a directed subpopulation network where each

node i represents a premises or small, well-mixed region with a homogeneous population

of cattle Ni (t). Cattle flow between nodes on directed arcs, with each arc described by its

origin node i and its destination node j. In directed networks, each node may have a set

of arcs coming into the node from an in-neighborhood and a set of arcs leaving the node

to its out-neighborhood. The number of arcs arriving to node i is the in-degree of node i

and is represented by kini . Likewise the number of arcs departing node i is the out-degree

kouti . Each node i then has a pair of node degrees which we represent by a degree vector

~ki ≡ (kini , k
out
i ). We classify each of V nodes based on their respective node degrees. For

every node i having kini = 0, we refer to node i as a “source” node. “Sink” nodes are all

nodes such that kini 6= 0 and kouti = 0. The remaining nodes, each node i having both node

degrees non-zero, we describe as “transit” nodes. We denote the fractions of sources and

sinks in the network respectively by ηout and ηin.

The life cycle of our cattle begins as they are either born or imported into the set of source
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Figure 3.1: A simple directed network composed of source, transit, and sink nodes which are
colored orange, green, and blue, respectively. Individuals can move from source nodes into
transit or sink nodes and from transit nodes to other transit nodes or sink nodes. Individuals
of any disease state are removed from the sink nodes through a death process and recycled as
susceptible individuals into the source nodes through birth and importation processes (shown
as a green dashed arrow).

nodes. After arriving at a sink node, cattle have the possibility to terminate their life cycle

when they move off to a slaughter house at a rate of δ per individual. The journey of each

individual from its source (or the node at which the individual is initiated) can lead to either

a sink node or perpetual wandering among the transit nodes through a movement process.

These movements occur inward to each transit or sink node j from its in-neighborhood and

outward from each source or transit node i to its out-neighborhood. For each source or

transit node i, each individual moves out on one of the kouti arcs departing the node with a

uniform movement rate

dij =
p

kouti

, (3.1)

where p represents the total per capita diffusion rate from all nodes having kouti 6= 0. Let N

be the system average number of cattle per node. We maintain the total system population

of cattle NV by recycling the slaughtered cattle back into the system through the birth and

importation processes as new susceptible cattle in the source nodes. Figure 3.1 illustrates

this recycling process on a simple directed network with the nodes sorted by type. The
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fraction of recycled cattle that are selected for birth rather than importation is pβ. Further

details are available in appendix B, section B.3.

The first step in characterizing the three nodes classes, source, transit, and sink, is to

determine the equilibrium distributions of their populations. We explore a mean-field ap-

proximation to the livestock system by assuming the statistical equivalence of each group

of nodes (and their subpopulations) that share the same joint-degree vector ~ki. This allows

us to introduce “degree-block” variables which are indexed by ~ki rather than individual

node i. Such an approximation is not novel and has been successfully demonstrated in

several dynamical systems7,17,19,56,57. The degree-block variables are then defined from the

node variables and statistical equivalence is assumed for every node within the same degree-

block, that is, sharing the same degree ~ki. The average population size of nodes at time t

in degree-block ~ki is then

N~k(t) ≡
1

V~k

∑
i|~ki=~k

Ni(t) , (3.2)

where V~k is the number of nodes having degree ~k. The arc-based variables can also be

defined between degree-blocks rather than between individuals. The average diffusion rate

on arcs from nodes with degree ~k to nodes with degree ~k′ is defined to be

d~k~k′ ≡
1

E~k~k′

∑
i|~ki=~k,j| ~kj=~k′

dij =
p

kouti

∀kouti 6= 0 , (3.3)

where E~k~k′ is the number of arcs originating from nodes with degree ~k and terminating at

nodes with degree ~k′. Note that, since the movement as described in equation 3.1 depends

only on the degree, the average degree-block expression for movement is equivalent. We

present a detailed discussion and further derivations regarding these degree-block variables

in appendix section B.1. Now working with degree-block variables, we derive the average

population sizes of nodes in each class by degree ~k at the quasi-equilibrium of the collective

process of cattle movement, birth, death, and importation. At this point, let us introduce a
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notation to distinguish the degrees of each class of nodes. We denote the degrees with the

source class, transit class, and sink class as ~k(1) (kini = 0 ∀ i), ~k(2) (kini 6= 0 and kouti 6= 0 ∀ i),

and ~k(3) (kini 6= 0 and kouti = 0 ∀ i), respectively. For 0 < pβ < 1, we find the equilibrium

configuration of the source class of nodes to be

N∗~k(1) (t) =
kout(1)

〈kout〉
ηin (1− ηin) δ

ηout [(1− ηout) δ + ηinp]
N , (3.4)

where 〈kout〉 is the average out-degree of the node in the network. The quasi-equilibrium

populations of the source nodes are distributed proportional to their respective out-degrees.

This dependence arises from the assumption that the importations to source nodes depend

on the node’s out-degrees as described in appendix section B.1. The transit and sink nodes

likewise depend primarily on their node degrees, but the in-degrees determine their equilib-

rium population distributions. For transit nodes and sink nodes we have respectively

N∗~k(2) (t) =
kin(2)

〈kout〉
(1− ηout) δ

[(1− ηout) δ + ηinp]
N and (3.5)

N∗~k(3) (t) =
kin(3)

〈kout〉
(1− ηout) p

[(1− ηout) δ + ηinp]
N . (3.6)

This dependence of the equilibrium populations on the in-degrees of each node is reminis-

cent of a directed random walk process and implies a stronger dependence of the equilibrium

configurations on the cattle movement process rather than the cattle recycling processes.

The derivations of these results are included in appendix section B.1 as well as their char-

acteristic relaxation times and the boundary situations of pβ = 0 and pβ = 1. It is worth

remembering that these derivations depend on the assumption of no correlations between

the degrees of connected nodes. In the following section, we explore a disease process on

top of these mobility dynamics assuming that the system has reached the quasi-equilibrium

configurations before the introduction of the disease.
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3.3 Global epidemic invasion thresholds of livestock

model

Let us consider the addition of disease to our livestock model for the purpose of exploring

the global invasion threshold R∗ of epidemics in the livestock system7,17,19. Using the classic

Susceptible-Infected-Recovered (SIR) disease model, we study the global invasion threshold

in our directed network system16. The consideration of three classes of nodes reveals the

potential for the existence of a second global invasion threshold. This new threshold deter-

mines whether the disease will remain within one class of nodes or break out into a second

class, creating larger epidemics. Before the introduction of the disease, we assume that the

livestock populations are fully susceptible and that, within each node, the subpopulations

are well-mixed. Inside each node, an infected individual transmits infection to a susceptible

individual upon contact at rate β. The model assumes a mass-action law to describe the

force of infection acting on each susceptible individual that is proportional to the prevalence

of infected individuals in the node. This force of infection is equivalently the rate at which

each susceptible individual becomes infected. The recovery rate µ is the rate at which each

infected individual recovers from the disease. Once recovered, an individual remains in the

recovered state until and unless it happens to be recycled through the slaughter processes.

This classic model can be characterized by the basic reproductive number R0 = β/µ which is

the average number of secondary infections generated by a typical infected individual in its

first infectious time period16. The reproductive number R0 serves as a threshold parameter

at the individual level. Only if R0 > 1, then the disease can spread to a finite proportion

of the population. If R0 < 1, the disease will die out in a finite amount of time and only

impact a minuscule fraction of the susceptible population (zero in the thermodynamic limit

of N → ∞). In our case, this threshold determines the growth of the disease within each

the subpopulation of each node. Recently, a new threshold for metapopulation models has

been introduced7,17,19,57,59,82,83. This threshold considers the generations of infected nodes

40



through a branching process during the initial stages of a disease outbreak. For the branch-

ing process model, the approximated growth rate of the number of infected locations is

defined as R∗. More correctly, R∗ is a subpopulation reproductive number which is the av-

erage number of infected subpopulations generated from a typical infected subpopulation in

a fully susceptible, structured metapopulation system7,17,19,57,59,60,61. The popular title for

R∗ is the global epidemic invasion threshold because, if R∗ > 1, the epidemic will impact a

finite fraction of the subpopulations of the system (in the thermodynamic limit of V →∞).

Similarly, if R∗ < 1, the epidemic will reach only a minuscule fraction of nodes and will die

out in finite time. Thus, R∗ = 1 describes the system-level epidemic invasion threshold for

metapopulation models.

Let us consider the characterization of the three classes of nodes in this directed system

through the R∗ branching model. The branching model assumes that the epidemic is in its

early stages with a R0 value just above 1 and that a majority of the subpopulations are

uninfected and susceptible. This model considers the nth generation number of diseased sub-

populations with degree ~k(x) from node class x, Dn
~k(x)

, as a function of the three sets {Dn−1
~k(1)
},

{Dn−1
~k(2)
}, and {Dn−1

~k(3)
} of the (n− 1)th generation. The “infection” of a node occurs when

infected cattle move from one node into another fully susceptible node, wherein they serve

as a seed for the SIR process. Considering first the source nodes, we note that they possess

no incoming degrees and thus will not receive infections from inward moving, infected cattle.

Source nodes may contain disease among their subpopulations, but the number of source

nodes having infection is a non-increasing number. Within the branching model, Dn
~k(x)

is

specifically the number of nodes newly infected having degree ~k(x) and it does not count

pre-existing outbreaks. Therefore, Dn
~k(1)

is identically equal to 0 for every generation, and

the source nodes do not contribute to the global epidemic invasion threshold. Incoming

arcs to the transit nodes can arrive from both source nodes and transit nodes. Likewise for

the sink nodes, their incoming arcs arrive from both of the other node classes. However,

as Dn
~k(1)

= 0 ∀n, only the newly infected nodes of the transit nodes {Dn
~k(2)
} are considered
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in the branching model as sources of infection. Seeing that the diseased subpopulations

of the sink nodes depend only on the transit nodes and the transit nodes depend only on

themselves, we proceed to derive the global epidemic invasion threshold R∗ for the directed

metapopulation system from the system-level outbreak among the transit nodes: Dn
~k(2)

as a

function of the set {Dn−1
~k(2)
}. Thus considering the disease model described in section 3.2, we

derive the global invasion threshold for our directed metapopulation system as

R∗ =
2pδ (1− ηout) (1− ηout − ηin)N

µ [(1− ηout) δ + ηinp]

(
1− 1

R0

)2

〈(
kin(2)

)2〉
〈kin〉2

. (3.7)

The derivation of equation 3.7 is included in appendix section B.2. The most notable

trait of this system’s R∗ is its dependence on the topology degree distributions, namely

the moment 〈kin〉 of the full network and the moment
〈(
kin(2)

)2〉
of the transit nodes’ in-

degree distribution. Several dynamical processes on undirected networks have demonstrated

that heterogeneity in node degrees lowers the threshold value, encouraging the spread of

disease12. For directed subpopulation networks, this heterogeneity is particularly that of

the in-degrees of the transit nodes, which comprise the strongly connected component of

the networks. Simply stated, the greater the diversity found among the in-degrees of the

transit nodes, the larger the value will be computed for R∗, increasing the probabilities of

R∗ being greater than 1 and a disease breaking out across the metapopulation system. A

common control strategy which is often considered for the control of a disease outbreak is

movement restriction. We can explore the restriction of movement by deriving the critical

value pc of the movement rate p such that the global epidemic invasion threshold is equal

to 1. Appendix section B.2 also includes the derivation of pc with the result of

pc =
µδ (1− ηout) 〈kin〉

2

2δN (1− ηout) (1− ηout − ηin)
(

1− 1
R0

)2 〈
(kin(2))

2
〉
− ηinµ 〈kin〉2

. (3.8)
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If the movement parameter p of the livestock system is greater (less) than pc, then the value

of R∗ will be greater (less) than 1 and the epidemic can be expected to spread (die out).

The dependence of pc on the heterogeneity of the transit nodes’ in-degrees is similar to that

of R∗. If the heterogeneity is greater, pc will be lower, thus increasing the opportunities

for a disease to spread among the transit nodes. Furthermore, we consider the spread of

disease to the sink nodes and the dependence of this process on the successful arrival of

infected cattle from the transit nodes. For the sink nodes, let us define according to the

same branching model a second invasion threshold which describes whether the disease will

spread from the transit nodes into the sink nodes or not. We define a transit-to-sink invasion

threshold RTS
∗ and derive it within appendix section B.2 to be

RTS
∗ =

2pδ (1− ηout) ηinN
µ [(1− ηout) δ + ηinp]

(
1− 1

R0

)2

〈(
kin(3)

)2〉
〈kin〉2

. (3.9)

This RTS
∗ is an interesting threshold in that it describes the tipping point for a disease to

move from the primary class of disease-sustaining nodes into a second class. Primarily, RTS
∗

and R∗ differ by the dependence of RTS
∗ on the in-degree distribution of the sink nodes

rather than the transit nodes. The critical movement rate pTSc for this threshold is given by

pTSc =
µδ (1− ηout) 〈kin〉

2

2δN (1− ηout) ηin
(

1− 1
R0

)2 〈
(kin(3))

2
〉
− ηinµ 〈kin〉2

. (3.10)

The derivation of equation 3.10 is included in appendix section B.2. If the movement

parameter p of the livestock system is greater (less) than pTSc , then the value of RTS
∗ will

be greater (less) than 1 and the epidemic can be expected to (not) spread from the transit

nodes to the sink nodes. For higher levels of heterogeneity among the in-degrees of the sink

nodes, pTSc will be lower, thus increasing the opportunities for a disease to spread out of the

transit nodes into the sink nodes through the movements of infected cattle.

Let us examine the relationship between pTSc and pc. If the thresholds described by pc
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and pTSc are ordered such that pTSc < pc, the scenarios having movement rates above pc

will initiate disease outbreaks within the sink nodes as well as the transit nodes. However,

if a network’s parameters are such that pTSc > pc, then there will be a second transition

in the size of the epidemic as the mobility parameter is increased. This two transition

situation is depicted in figure 3.2. Through derivations shown in appendix section B.2, we

find that pTSc < pc when the the ratio of the second moments of the two classes’ in-degree

distributions
〈(
kin(2)

)2〉
/
〈(
kin(3)

)2〉
is less than the ratio of the sink nodes to the transit

nodes ηin/ (1− ηout − ηin). The reverse is also true, that is

〈(
kin(2)

)2〉〈
(kin(3))

2
〉 >

ηin
(1− ηout − ηin)

⇒ pTSc > pc . (3.11)

The reverse case shown in equation 3.11 is the more interesting of the two as it implies the

existence of two sequential movement thresholds. The two thresholds describe a two-step

process of disease first breaking out in the transit nodes and secondly, with a sufficiently

high movement rate, spreading successfully into the sink nodes. The results of this section

depend on the assumption of statistical equivalence within each degree block and the as-

sumption that there are no correlations between the degree vectors of connected nodes. We

have considered a simplistic set of outgoing movement rates to be uniformly p and time

independent. Within each node, only a single species of livestock and a single, well-mixed

type of livestock population have been considered.

3.4 Stochastic simulation of livestock model

We conducted numerical simulations of the described livestock model to verify our analytical

results. We track individual cattle through time as births, importations, disease spread,

and movements take place. In these Monte Carlo simulations, we explore the impacts of the

diffusion rate, the movement rate of cattle to slaughter, and the network topology on the
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Figure 3.2: Two transitions are observed as the cattle movement rate p increases past the
pair of critical movement rates, pc and pTSc . When the movement rate is less than pc, the
disease only impacts the nodes where the disease has originated (or very close by) and it is
unable to spread to a significant fraction of the nodes. When the movement rate is greater
than pc and less than pTSc , the disease will impact a significant fraction of the transit nodes
with no significant impact on the sink nodes. When the movement rate is greater than both
critical movement rates, the disease will spread to a notable fractions of both transit and
sink nodes.

resulting disease outbreaks.

3.4.1 Dynamical processes

We implemented the model described in section 3.2 and follow individual cattle through

their lives in the system. Synthetic livestock networks were generated using a modified

uncorrelated configuration model95. The populations of each node were initiated through a

multinomial distribution, allotting NV animals across V nodes, with probabilities propor-

tional to the equilibrium populations described in equations 3.4-3.6. We divide time into

discrete intervals of length ∆t. Within nodes having a non-zero out-degree, individual ani-

mals move to neighboring populations at the rate dij of equation 3.1. Considering the time

interval, dij∆t is the probability that, within the discrete time step, an individual in location

i moves to a location j within its out-neighborhood. During each time step, an individual

within a source node will replicate itself with probability βk (t) ∆t. Also, within the source
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nodes, individuals arrive through importation with a probability of εk (t) ∆t. Each animal

in a sink node leaves for a slaughter house with probability δ∆t within a time step.

On top of this system of movement, birth, and death, we simulate the Susceptible-Infected-

Recovered (SIR) disease model. We assume independence between the demographic pro-

cesses and the disease process. Each subpopulation is divided into three states, assigning

each individual to one of Si (t), Ii (t), or Ri (t). Susceptible (S) individuals are infected by

infected (I) animals that share their same node at the same time step. Assuming a homo-

geneous mixing of the subpopulation of node i, we compute the probability of a susceptible

(S) individual transitioning to the infected (I) state as

λi (t) ∆t = β
Ii (t)

Ni (t)
∆t , (3.12)

where β is the transmission rate of infection. The prevalence of infectious cattle in the sub-

population is captured as Ii (t) /Ni (t). The infected (I) individual recovers with probability

µ∆t and remains in the recovered (R) state until it passes out of a sink node on its way

to a slaughter house. The new cattle arriving through the birth and importation processes

are added to the susceptible (S) portion of their node’s subpopulation. This fresh flow of

susceptible individuals permits the existence of endemic outbreaks.

3.4.2 Numerical results

The directed subpopulation network structure has been designed with V = 104 nodes, having

fractions of sources, transits, and sinks of 0.45, 0.45, and 0.10, respectively. This allotment

of nodes to classes is similar to the observed distribution in the Italian network of cattle

premises88. Both the in- and out-degree distributions (denoted by Pv−o(k) and Pv−i(k)

in appendix section B.1) follow a power-law distribution. The exponent of the in-degree

distribution is -2.1 and all degrees are between kmin = 1 and kmax = 100. As the network

structures are generated from a stochastic model, we conduct the following experiments on
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10 realizations of this network configuration. We consider an average population size of

N = 105 and thus a system population of V N = 109 head. We study the livestock system

with a time step of ∆t = 1 day. These simulations are designed to characterize the global

epidemic invasion thresholds through their dependence on the mobility rate p of the sources

and sinks as well as their relative independence from the slaughter rate δ of the sink nodes.

Therefore, for all simulations, we have fixed the birth re-introduction fraction at pβ = 0.8732

and the disease parameters, assigning the basic reproduction number to R0 = 1.2 and the

infectious period to µ−1 = 7 days. The infection rate follows as β = µR0. In each simulation,

we initiate the populations through a multinomial distribution with the probabilities given

by equations 3.4 - 3.6. We initiate the disease with Ii (0) = 10 infected individuals within a

subpopulation of a single node i chosen at random from the nodes having minimal out-degree

in the giant strongly connected component of the network. This limits the choice of the seed

subpopulation to a transit node, and thus there is no initial infection in the source nodes nor

the sink nodes. The nature of the population recycling processes allows a potential endemic

state to occur in the system. Therefore, we let the disease progress in the metapopulation

system until it either dies out or satisfies our criteria as endemic. These endemic criteria

are twofold: a total number of new cases over time exceeding the system population of

109 and/or an epidemic duration of 100 simulation years. In the results we present here,

all realizations producing a successful outbreak in the initially seeded subpopulation have

been included in our results. A successful outbreak is considered as an outbreak resulting

in at least 1% of the node’s population contracting the disease. We conduct simulations of

each set of parameters until we collect 5000 successful outbreaks for that set, 500 per each

realization of the livestock network.

We vary the mobility rate p and describe the resulting outbreaks through four variables: the

duration of the epidemic measured in days, the number of total cases caused by the epidemic

over the total system population V N (global attack rate), the number of subpopulations

having a secondary case occur normalized by the network size V (epidemic size), and the
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fraction of outbreaks resulting in endemic situations as defined by our criteria. Figure 3.3

demonstrates the outbreaks of epidemics that take place as the movement rate p is increased

past the critical thresholds. Sub-figures 3.3.A-C further demonstrate the initial slow growth

that occurs between the first and second threshold and the much more rapid growth as the

disease explodes past the second threshold defined by pTSc . With further simulations, we

explored the impact of the death rate δ on the epidemics in figure 3.4. Although there was no

significant dependence of either of the critical movement rates on δ, we did observe variations

in the epidemic behavior. On the logarithm scale, the epidemics remain relatively small until

crossing both invasion thresholds. For intermediate ranges of δ, a smoother transition to

intense epidemics is seen, while the higher and lower values produce very sudden transitions

in epidemic strengths. Finally, we consider the composition of our criteria to classify an

outbreak realization as endemic, as shown in figure 3.5. For the higher movement rates,

endemic situations arise primarily from massive outbreaks, but for slower movement rates

and very low death rates, the endemic states result from long-lived outbreaks. Although

figure 3.5 suggests which criteria is more likely responsible for the endemic situations in

each set of parameters, figure 3.5 should not be considered independently of the fraction of

endemic cases, as shown in figure 3.4.D.

3.5 Conclusions

In this chapter, we have designed a metapopulation model of a simplified livestock system

for the purpose of exploring global invasion thresholds on directed metapopulation networks

that contain source and sink nodes. With death, birth, importation, and movement pro-

cesses, we have derived degree-block, mean-field solutions to the quasi-equilibria of the node

populations for each type of node. We added the classic SIR model to the system and have

derived directed-network version of the global epidemic invasion threshold R∗ that describes

the conditions necessary for an epidemic to emerge at the global scale in equation 3.7. Fur-
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Figure 3.3: (A) The distribution of the epidemic size as a function of the mobility rate p
(with the sample averages denoted by stars, the sample medians denoted by circles connected
on the line, and the 95% confidence interval denoted by the shaded region) rises as it passes
the two invasion thresholds where pc for global invasion is marked with a vertical dashed
line and pTSc for invasion of sink nodes is marked with a vertical dash-dotted line. The
inverted red triangles represent the average number of infected sink nodes as a fraction of
the system size V . When the average number of infected sink nodes was less than one, it
was rounded up to one for an artificial floor of log10 (1/V ) = −4. (B) The distribution of
the global attack rate follow the same notations as A. (C) The distribution of the epidemic
duration in days follows the same notations as A. (D) The fraction of successful outbreaks
that resulted in endemic situations is plotted against the movement rate p. All sub-figures
represent realizations that consider a per capita per day death rate of 0.02.
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Figure 3.4: (A) The logarithm of the average of the epidemic size as a function of the
mobility rate p and the death rate δ is colored on the third dimension through the color
scheme, where dark red represents values approaching 100 and dark blue represents values
near 10−4. The critical movement rate pc is marked with a red dashed line and, similarly,
pTSc is marked with a red dash-dotted line. (B) The logarithm of the average of the global
attack rate follow the same notations as A. (C) The averages of the logarithm of the epidemic
duration are normalized by 100 years and follow the same notations as A. (D) The logarithm
of the fraction of successful outbreaks that resulted in endemic situations is plotted against
the movement rate p and death rate δ. A small value of 10−4 has been added to the fractions
of endemic situations to avoid the impossibility of plotting 0 on the logarithmic scale.
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Figure 3.5: A system of endemic classification is plotted against the movement rate p and
death rate δ. Each circle represents a set of parameters and the color of the circle suggests
whether the endemic states were more likely due to long-lasting epidemic (100 year criteria)
or due to significant population turnover (109 total cases criteria). Grey indicates that
neither the attack rate nor the duration distributions had medians nor upper ends on the
confidence intervals meeting the endemic criteria. Light blue indicates that the upper end
of the confidence interval of the duration met the duration criteria, but neither parameter
of the attack rate met the attack rate criteria. Dark blue indicates that the median of the
duration met the duration criteria, but, at most, the upper end of the confidence interval
of the attack rate met the attack rate criteria. Dark red indicates that the median of the
median of the attack rate met the attack rate criteria, but, at most, the upper end of the
confidence interval of the duration met the duration criteria. Light purple indicates both
distributions had upper ends of their confidence intervals which met the respective criteria,
but both medians did not meet the endemic criteria. The respective colorings for light red
and dark purple are not contained within the results captured by this figure.
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thermore, our analysis of the sink node populations has produced a second, novel global

invasion threshold that describes the conditions necessary for an epidemic to break out of

the giant strongly connected component of a directed network and into the populations of

the sink nodes in equation 3.9. For these two thresholds, we have derived the critical move-

ment rates in equations 3.8 and 3.10 and extracted a unique dependence in equation 3.11

of the pair’s relationship on the ratios of the second moments of the node-type in-degree

distributions and the fractions of each type of node, respectively, for the transit and sink

nodes. The existence of this second global invasion threshold creates two transitions in

the potential significance of emerging epidemics. The first transition enables a potential

epidemic to invade the cattle populations. The second transition permits the epidemic to

move with cattle to the slaughter facilities and to pose a risk to human populations.

The analyses and results of this chapter have come with a few notable assumptions and

room remains for more general results to be derived. The most critical assumptions have

been made regarding the movements of livestock. We have considered a constant rate of

movement p that occurs uniformly to any node in the originating node’s out-neighborhood.

This has ignored both the heterogeneity and the strong seasonal components of actual live-

stock systems. Instead, we have considered static metapopulation networks interconnected

through fixed routes of cattle flows. Such assumptions would only be valid in the situation

where the disease dynamics occur on a time scale that is significantly shorter than the time

scale of the seasonal variations in the movements. Also related to the structures of cattle

movements, we have only considered networks which possess no correlations between the

degrees of connected nodes. All of the above assumptions could be relaxed if there exists

data characterizing the livestock trade network under consideration. Further restrictions we

have imposed include the importation of only susceptible individuals (see appendix section

B.3) and the study of only a single disease and single livestock species and type within the

system.

These assumptions motivate future work, especially along the lines of the construction of
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the livestock movement networks and traffic functions. The significance of these inputs for

the system model and respective analyses drives the need for real-world data to charac-

terize these movement inputs. A data-driven livestock metapopulation movement system,

when combined with the results presented in this chapter, would enable the evaluation of

different livestock disease control strategies, especially movement-restriction-based meth-

ods. Despite the simplistic livestock movements which we have considered, our work has

produced the global epidemic invasion threshold for directed metapopulation networks as

well as the second novel threshold. The consideration of epidemic control strategies through

these thresholds enables an immediate assessment of the strategy effectiveness. In the next

chapter, we develop an optimal estimation method of deducing movement parameters to

address the limited availability of data for US cattle systems. The method of chapter 4 is

flexible and can be adapted to estimate parameters for other livestock such as swine96.
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Chapter 4

Dance of the Calves: An estimation

of cattle movement parameters in the

Central States of the US

The characterization of cattle demographics, and especially movements, is an essential com-

ponent in the modeling of dynamics in cattle systems, yet for cattle systems in the United

States (US), this is missing. Through a large-scale maximum entropy optimization formula-

tion, we estimate cattle movement parameters to characterize the movements of cattle across

10 Central States and 1034 counties of the United States. Inputs to the estimation problem

are taken from the United States Department of Agriculture National Agricultural Statistics

Service database and are pre-processed in a pair of tightly constrained optimization prob-

lems to recover non-disclosed elements of data. We compare stochastic subpopulation-based

movements generated from the estimated parameters to operation-based movements pub-

lished by the United States Department of Agriculture. For future Census of Agriculture

distributions, we propose a series of questions that enable improvements for our method

without compromising the privacy of cattle operations. Our novel method to estimate cat-

tle movements across large US regions characterizes county-level stratified subpopulations
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of cattle for data-driven livestock modeling.

4.1 Introduction

Livestock systems serve significant roles for many regions across the world, yet past out-

breaks of disease have shown that they can possess a number of vulnerabilities3,4,76,77,78,79.

The livestock systems of the United States (US), though strictly regulated, may yet be

found susceptible to foreign diseases such as Rift Valley Fever5. The successful modeling

and analysis of livestock epidemics for any region relies heavily on an understanding of the

underlying system components. The three most critical elements in a practical epidemic

model are the disease progression model, the geo-spatial characterization of the susceptible

populations, and the spatial-temporal description of the interactions of individuals within

the system6,7,8. The models of disease progression are several and often independent of the

region studied12,20,25,28,97. Data-driven, spatial characterizations of populations are available

through regularly conducted censuses (censi)1,98. The third element, the interactions of in-

dividuals within the system, represents the set of spatial movements of individuals. When

considering system-wide outbreaks of disease, the impact of movement parameters has been

shown to be as significant as that of epidemic parameters in metapopulation models17,19.

Domestic livestock systems fit well in such metapopulation models because the movements

of livestock are controlled and the individuals are restricted to reside within populations

rarely defined by their choice. Within the US, livestock movements are controlled by the

cattle industries, primarily beef, dairy, breeding, and showmanship.

Within Europe, motivated by outbreaks of Foot and Mouth Disease, a number of govern-

ments have designed and implemented animal tracking systems, even including the reso-

lution of individuals’ daily movements. The databases created by these studies have gen-

erated very detailed characterizations of livestock movements for a number of European

nations69,70,71,72,73,74,75,77,78,79,80,99,100,101,102,103,104,105,106. No similar program has yet to be
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implemented for the United States, although some have long been in preparation107. In

the US, a cultural appreciation of personal privacy from the government, strong competi-

tion between meat production companies, and a US Federal privacy protection law restrict

the ability of the government to collect and release livestock data at a finer spatial resolu-

tion than is currently done through the United States Department of Agriculture’s (USDA)

Census of Agriculture1. To address this challenge, a number of survey-based methods have

been used to study livestock movements across small regions108,109,110,111,112,113. However,

the national scale of US cattle trade and the potential for livestock diseases to impact the

entire country necessitate movement data, models, or estimates to be determined for larger

regions. Recently a study has been published of a nation-wide movement estimation based

on a 10% sample of veterinary records from State border-crossing cattle shipments92. This

impressive study, although the first of its magnitude, only captured shipments of cattle that

crossed state borders. Although it offers a picture of state-to-state shipment counts, the

method used is unable to capture the livestock movements within each state.

In this chapter, we formulate a large, convex optimization problem to estimate parame-

ters describing the movements of cattle within 10 Central States of the United States. We

collect cattle population and aggregated movement data from the USDA’s database and

optimally estimate anonymous data points to construct a database of inputs for an estima-

tion of cattle movement parameters. We design the estimation method to produce a high

resolution of cattle demographic and movement parameters and to include the minimal set

of assumptions. Our results produce county-to-county movement probabilities among strat-

ified subpopulations as well as birth, slaughter, and expiration rates of cattle for 1034 US

counties. In section 4.2, we describe the USDA data structures and challenges present in the

database. We estimate non-disclosed data points and discuss the mapping of USDA data to

inputs for our estimation formulation. In section 4.3, we formulate the estimation problem

and describe the maximum-entropy objective and the flexible set of linear constraints with

parameters sculpted to the USDA data set and as few assumptions as possible. We solve
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the optimal estimation problem and display a subset of the results in section 4.4. Section

4.5 summarizes this chapter with a discussion of the results and a series of questions we

propose to be added to future agricultural census distributions.

4.2 Data collection and structure

Every five years, the United States Department of Agriculture (USDA) conducts the United

States Census of Agriculture1. The National Agricultural Statistics Service (NASS) of

USDA then summarizes and publishes a large set of data covering livestock, crops, operator

demographics, and much more114. As the most comprehensive and clean database of US

livestock statistics, the Census of Agriculture as presented in the NASS database is used

for our estimation of cattle movement parameters. In particular, we use data from the 2007

Agricultural Census as the 2012 data was not published at the time of this study. The data of

interest to this work comes from section 13, titled “Cattle and Calves”, on page 10 of the 2007

Agricultural Census. Section 13 also has a set of related instructions located on page 2 of the

instruction sheet appended to the Agricultural Census1. From the US Census Bureau and

their 2010 Census (of humans) in the United States, we use the centers of human population

for each county98. We include these geographical points to consider a basic quantification

of distance for the cattle movement estimation. Adding this geography to the data from

the NASS database, we estimate sets of parameters to characterize cattle movements in

the States of Arkansas, Colorado, Iowa, Kansas, Minnesota, Missouri, Nebraska, Oklahoma,

South Dakota, and Texas9,115. The US beef production feedlot structure produces more

frequent and larger flows of cattle than the typical grazing structure, and notably, these 10

Central States form the core of the US feedlot industry92,109. As outlined in figure 4.1, these

States contain 1034 US counties with more than 51 million head of cattle out of the 96.3

million head reported in the 2007 Agricultural Census114.
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Figure 4.1: The 10 Central States of interest are outlined with a red trace over the popula-
tion distribution of cattle in the United States, as provided by the United States Department
of Agriculture114. Each blue dot represents 10, 000 head of cattle.
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4.2.1 Data structure of USDA NASS

From section 13 of the 2007 Agricultural Census, we are primarily interested in the responses

to questions concerning the populations and movements of cattle. For cattle populations,

the Agricultural Census identifies the total number of cattle (Question 3), the number of

dairy cows kept for production of milk (Question 2.b), and the number of cattle, including

calves, who were in a preslaughter feed program (Question 5) on December 31, 2007. For

the movements of cattle, composed of all sales and shipments, the Agricultural Census cap-

tures the total number of cattle “sold or moved” during 2007 (Question 4) and the total

number of cattle shipped directly to a slaughter market from a preslaughter feed program

during 2007 (Question 6)1. Although these data are collected for each individual operation,

the statistics of the cattle populations are reported only through aggregated distributions

that are delineated by the operation’s county, the type of cattle, and the number cattle of

a particular type. The sizes of populations are sorted into seven standard ranges: 1 − 9

cattle, 10 − 19 cattle, 20 − 49 cattle, 50 − 99 cattle, 100 − 199 cattle, 200 − 499 cattle,

and 500 or more cattle. The statistics of the cattle movements sort the responses by the

total yearly movements (or slaughter) across the same 7 standard ranges, the type of cattle,

and the county of the originating operation. It is worth noting that the total dairy cattle

population and the total preslaughter population of a given county are subpopulations of

the total cattle population for that county. Similarly, the total number of cattle shipped to

slaughter from a preslaughter feed program is a fraction of the total cattle movements (sales

and shipments) for each county.

According to appendix A of the 2007 Agricultural Census Summary and State Data report,

the data presented in the NASS database has undergone some initial processing and system-

atic error correction2. This results in a very consistent database and the potential errors

induced by these methods have been quantified in the same appendix. Even with these

diligent efforts, there remain two significant challenges in utilizing the data to characterize

the movements of cattle. The first concerns the resolution of the timescale of the data.
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As a summary of the entire year 2007, these data fail to capture any seasonal fluctuations

in the cattle populations and movements116. This challenge arises from the administration

process of the Agricultural Census and we acknowledge its significance; however, we find no

comprehensive, data-driven solution to the seasonality challenge and consider only mean-

field probabilities in our estimation. The second challenge is posed by the direct sorting of

the census responses into the 7 standard ranges rather than preserving any operation-based

connections between data points. Therefore, a population of 50 dairy cattle might belong

to any operation having a total number of cattle greater than or equal to 50 (4 possible size

ranges) without having any connection to the size of its entire operation. Similarly, the sizes

of shipments have no direct connections to the size of the originating operations besides a

few loose feasibility restrictions.

The data, as it comes from NASS, has been released in such a way that the information of

individual farms and cattle operations is not revealed. This is done intentionally by USDA

to comply with Title 7 of the US Code2. To maintain this anonymity, critically selected

elements of the data have not been disclosed. We will estimate these non-disclosed data

points through a pair of tightly-constrained convex problems and then include them in the

inputs for our main problem, the estimation of cattle movement parameters across the 10

Central States.

4.2.2 Data structure for estimation problem

To estimate the non-disclosed entries in the original data, we construct a pair of optimiza-

tion problems, one for the population data and a second for the movement and slaughter

data. The objective of both formulations is a maximum entropy function. For the popula-

tion distributions and by each State, we maximize the entropy of the distributions of each

cattle type given by TypeA = {Dairy, Preslaughter, All Cattle}, where the distributions

are normalized by their respective State totals. Likewise, the entropy of the normalized

distributions describing the totals of cattle slaughter shipments and cattle movements is
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maximized across shipment type, ShipType = {All Shipments, Slaughter}, shipment size,

SizeA = {z1 9, z10 19, z20 49, z50 99, z100 199, z200 499, z500 up}, and county. We

present the formulations of these problems in appendix section C.1. These problems are

solved for each of the 10 States, filling in all non-disclosed data entries. We quantify the

dependence of our inputs on these estimations with both the fraction of cattle and the frac-

tion of populations estimated for each State in appendix section C.2.

We would prefer to represent the system of cattle through three subpopulations rather than

the two subpopulations and total population of TypeA. The mapping of the first set TypeA

to a set of three cattle subpopulation types is not trivial as it requires the expression of

a relationship among the 3 cattle types of TypeA. For the county totals of these three

types, the relationship TcxDairy,c + TcxPreslaughter,c ≤ TcxAllCattle,c holds, where Tcx·,c represents

the respective county total for county c, and x indicates that this is a variable to be esti-

mated. However, the relationship is not guaranteed if we consider the stratification of the

populations by size as

PopDairy,c,i + PopPreslaughter,c,i ≤ PopAllCattle,c,i ∀ (c ∈ County, i ∈ SizeA) , (4.1)

where Pop·,c,i represents the respective population total for operations with size i and in

county c. Rather, Broomfield County in the State of Colorado, as do a number of other

counties, reports data in violation of this relationship. Broomfield County is a irregularly

cut county on the north side of Denver, Colorado and has 2 dairy farms with total popula-

tions in the range z100 199. The county, however, reports 2 populations of Dairy cattle in

the size range z50 99 and no total (All Cattle) populations in the size range z50 99. Thus

the left-hand side of inequality 4.1 would be non-zero while the right-hand side is identically

0 for i = z50 99, c = Broomfield Colorado. This discrepancy arises from other cattle

residing at both of these operations that raise the total operation populations into the next

size range. We find that through an aggregation of the sizes into 3 ranges, SizeB = {z1 19,

z20 199, z200 up}, it becomes feasible to assume the relationship of inequality 4.1 for each
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size j in SizeB.

Let us define a new cattle type Beef , representing all cattle that are not serving as dairy

cattle nor in a preslaughter feed program, as the difference between the total population

All Cattle and the two subpopulation types, Dairy and Preslaughter. The Beef type

represents a diverse set of cattle operations, including grazing, backgrounding, and breed-

ing services. The name Beef is chosen for simplicity with the assumption that this is the

majority role served by cattle in this type. At this point, we describe the cattle subpop-

ulations Popt,c,j by cattle type t in TypeB = {Dairy, Preslaughter, Beef}, county c, and

size j in SizeB = {z1 19, z20 199, z200 up}. The set of subpopulations {PopRt,c,j} results

from the solution of the first of the data-patching optimization formulations and represents

an aggregation of all cattle type-based subpopulations fitting the subpopulation descrip-

tors, yielding only 9 subpopulations per county. County totals for sales Tc
(s),x
AllMovement,c and

slaughter Tc
(s),x
Slaughter,c, as well as the distributions of yearly totals of sales SalesxAllMovement,c,i

and slaughter SalesxSlaughter,c,i stratified by county c and size i in SizeA, were completed

through the solution of the second data-patching optimization problem of appendix section

C.1.

4.3 Cattle movement parameter estimation

We formulate a non-linear, yet convex, optimization problem with an objective to maximize

the entropy of the out-going distributions of each subpopulation117. The formulation is

nearly linear with the exception of the objective function, or equivalently stated, this for-

mulation contains only linear constraints. The choice of maximum entropy for the problem

objective aims to predict the solution having the minimal assumptions (maximum uncer-

tainty) beyond the information contained within the set of constraints117. We chose this

form of objective to not force any artificial objective in our estimation. Nevertheless, as-

sumptions have been made in the design of both the variables and the constraints. We
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Figure 4.2: The subpopulation stratification by cattle type and operation size into nine
subdivisions per county is depicted in the left pane. Given the subpopulation classifications,
cattle movements, birth, culling, and slaughter occur according to parameters estimated in
the optimization problem described in section 4.3 in the right pane.

assume that

• There are no outgoing movements from preslaughter feed programs except for the

outgoing movements of cattle for slaughter,

• Cattle classified as dairy cattle do not move into preslaughter feed programs,

• Populations of preslaughter feed cattle having population sizes of 200 head of cattle

or more are responsible for all shipments to slaughter that result in yearly totals of

500 or more head shipped from a single premise,

• All sub-populations remain constant on a year-to-year basis, and

• The counties considered form a closed system with no significant movement into or

out of the system.

4.3.1 Problem formulation

The central portion of this chapter revolves around the formulation to estimate the cat-

tle movement parameter pxt1,j1,t2,j2,dist, which is a probability that represents the movement
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process from an origin subpopulation of type t1 and size j1 to a destination subpopulation

of type t2 and size j2 with a distance falling in a discrete distance range dist between the

origin and destination counties. We mark the decision variables of this formulation with a

superscript x to distinguish them from the parameters of the problem. This formulation

also estimates the birth btxc1,t1,j1 , expiration of utility (cull) dtxc1,t1,j1 , and slaughter slxc1,t1,j1

probabilities for each sub-population of each county. The three types of cattle are now

rearranged into the set TypeB as {Dairy, Preslaughter, Beef}, with size ranges defined by

SizeB = {z1 19, z20 199, z200 up}. The set of discrete distance ranges used in this for-

mulation is called Distance and is defined as {d0, d100, d200, d500, d1000, dtoofar}. In three

adjacent counties, figure 4.2 summarizes first the subpopulation stratification and secondly

a few possible birth-to-death flows for cattle as outlined by the data structure of the follow-

ing optimization problem. The number noted in each distance range between two county

centers should be read as the maximum distance in miles of the range, with the minimum

defined by the previous level. For example, d500 indicates a distance between the two county

centers falling between 200 and 500 miles. The closest range, d0, is assigned for any pair

of counties with centers less than 10 miles apart, as well as each county with itself. The

formulation has an objective to maximize the entropy of the outgoing distributions of all

sub-populations as follows:

Maximize J
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where

J =
∑
c1

∑
t1

∑
j1

[
− stxc1,t1,j1 log

(
stxc1,t1,j1

)
− slxc1,t1,j1 log

(
slxc1,t1,j1

)
− dtxc1,t1,j1 log

(
dtxc1,t1,j1

)
+
∑
c2

∑
t2

∑
j2

−pxt1,j1,t2,j2,D(c1,c2)
log
(
pxt1,j1,t2,j2,D(c1,c2)

+ 1.0− ft1,j1,t2,j2,D(c1,c2)

) ]

and c1 ∈ County, t1 ∈ TypeB, j1 ∈ SizeB,

c2 ∈ {County|D (c1, c2) 6= dtoofar}, t2 ∈ TypeB, j2 ∈ SizeB . (4.2)

The out-going probability distribution for the cattle of each subpopulation is completed

through the inclusion of a probability to remain or stay, stxc1,t1,j1 , in the origin subpopula-

tion. The sum of the entropy of these distributions composes our objective function. We

have implemented industrial constraints with a set of parameters {ft1,j1,t2,j2,dist} described in

the following constraints, which forces a subset of the movement probabilities pxt1,j1,t2,j2,dist

to zero. We account for this by introducing a complimentary (1.0− ft1,j1,t2,j2,dist) in the

logarithm of pxt1,j1,t2,j2,dist to avoid the computation of the natural logarithm of zero.

Subject to:

Constraints on Statistical rules

pxt1,j1,t2,j2,dist ≤ ft1,j1,t2,j2,dist ∀ (t1, j1, t2, j2, dist) (4.3)

∑
c2∈County|D(c1,c2)6=dtoofar

∑
t2∈TypeB

∑
j2∈SizeB

pxt1,j1,t2,j2,D(c1,c2)
+dtxc1,t1,j1+sl

x
c1,t1,j1

+stxc1,t1,j1 = 1.0 ∀ (c1, t1, j1)

(4.4)

Inequality 4.3 serves to restrict the probabilities of movement, pxt1,j1,t2,j2,dist, to be less or equal

to 1 as ft1,j1,t2,j2,dist takes on a value of 1 in the general case. By taking a value of 0, it further
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prevents the movement of cattle from Dairy subpopulations to Preslaughter subpopula-

tions (t1 = Dairy and t2 = Preslaughter ⇒ ft1,j1,t2,j2,dist = 0) and the out-going shipments

of cattle from preslaughter subpopulations (t1 = Preslaughter ⇒ ft1,j1,t2,j2,dist = 0). Equal-

ity constraint 4.4 ensures that the sum of the out-going probability distributions, the same

distributions that are considered in the objective function, is equal to 1.

Constraints on Movement data

∑
t1∈TypeB

∑
j1∈SizeB

∑
c2∈County|D(c1,c2)6=dtoofar

∑
t2∈TypeB

∑
j2∈SizeB

PopRt1,c1,j1p
x
t1,j1,t2,j2,D(c1,c2)

+
∑

t1∈TypeB

∑
j1∈SizeB

PopRt1,c1,j1sl
x
c1,t1,j1

+ PNmov (c1) =
Tc

(s),x
AllMovements,c1

RC

∀ (c1) (4.5)

∑
j1∈SizeB

PopRPreslaughter,c1,j1sl
x
c1,P reslaughter,j1

+ PN slt (c1) =
Tc

(s),x
Slaughter,c1

RC

∀ (c1) (4.6)

PopRPreslaughter,c1,z200 upsl
x
c1,P reslaughter,z200 up + PN slt500 (c1) ≥

SalesxSlaughter,c1,z500 up

RC

∀ (c1)

(4.7)

Dmov =
∑

c1∈County

[
|PNmov (c1)|+ |PN slt (c1)|+ PN slt500 (c1)

]
(4.8)

Equality constraint 4.5 sums the total sales and shipments originating in each county

c1 and tries to equate the total to the total sales and shipments defined by USDA NASS

for county c1, allowing a small amount of discrepancy through an error or roughness term

PNmov (c1). This discrepancy is permitted due to data challenges discussed in section 4.2.

The scaling term, RC = 52.0 weeks/year, converts the timescale of the estimation prob-
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lem from a yearly to weekly basis for the estimated probabilities. Equality constraint 4.6

equates the total slaughter from preslaughter feed subpopulations in each county c1 to the

respective, scaled data value from USDA NASS, again with a discrepancy term for each

county PN slt (c1). Inequality 4.7 ensures that the largest yearly slaughter counts (500 or

more head) are accredited to the largest (200 or more head) preslaughter subpopulations.

This inequality requires a discrepancy term PN slt500 (c1) due to seasonality challenges in

the USDA NASS data set. The discrepancy terms are collected in equality 4.8. Although

we represent equality 4.8 here with absolute value operators, the actual implementation

linearizes the terms through a two-variable decomposition of the unrestricted variable that

allows us to minimize the resulting value as if it were an absolute value18. We retain the

absolute value operators for simplicity in the formulation description.

Constraints on Population conservation

Leaving (c1, t1, j1, ) = PopRt1,c1,j1

∑
c2∈County|D(c1,c2)6=dtoofar

∑
t2∈TypeB

∑
j2∈SizeB

pxt1,j1,t2,j2,D(c1,c2)
∀ (c1, t1, j1)

(4.9)

Coming (c1, t1, j1, ) =
∑

c2∈County|D(c2,c1)6=dtoofar

∑
t2∈TypeB

∑
j2∈SizeB

PopRt2,c2,j2p
x
t2,j2,t1,j1,D(c2,c1)

∀ (c1, t1, j1)

(4.10)

Leaving (c1, t1, j1, )− Coming (c1, t1, j1, ) +
(
dtxc1,t1,j1 + slxc1,t1,j1 − bt

x
c1,t1,j1

)
PopRt1,c1,j1

+PNpop (c1, t1, j1, ) = 0.0 ∀ (c1, t1, j1) (4.11)

Dpop =
∑

c1∈County

∑
t1∈TypeB

∑
j1∈SizeB

|PNpop (c1, t1, j1, )| (4.12)
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Equality constraints 4.9 and 4.10 sum, respectively, the originating and arriving flows of

cattle for each subpopulation of each county. Equality constraint 4.11 then defines the total

flux of every subpopulation in the system to be 0 with small exceptions allowed through the

discrepancy terms PNpop (c1, t1, j1, ). Equality constraint 4.12 serves to aggregate the dis-

crepancies. Here again in equality 4.12, we retain the absolute value operator for simplicity

in the formulation description18.

Constraints on Industrial insights and discrepancies

Dmov +Dpop ≤ fminP
tot
AllCattle (4.13)

rexpire−mint1 ≤ dtxc1,t1,j1 ≤ rexpire−maxt1 ∀ (c1, t1, j1) (4.14)

rslaughter−mint1 ≤ slxc1,t1,j1 ≤ rslaughter−maxt1 ∀ (c1, t1, j1) (4.15)

rbirth−mint1
≤ btxc1,t1,j1 ≤ rbirth−maxt1

∀ (c1, t1, j1) (4.16)

In inequality 4.13, we constrain the total discrepancies (counted in head of cattle) of the

movements and net population fluxes to be less than a fraction fmin of the total cattle in the

system. The value of fmin is determined by first solving the linear problem composed of the

set of constraints of this formulation with an objective to minimize the system discrepancies.

The value of fmin is then taken as the ratio of the optimal objective value to the total system

population and rounded up to the next highest thousandth. The inequality pairs 4.14, 4.15,

and 4.16 provide constraints by cattle type on the feasible probabilities used to describe the

respective expiration, slaughter, and birth processes for each subpopulation.
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4.4 Optimization results

We solved the cattle movement parameter problem of section 4.3 using the AIMMS Mod-

eling System of Paragon Decision Technology118. The complete formulation is composed

of 81142 constraints with 80107 variables and the objective function. For the error limit,

a value of fmin = 0.012 was obtained through the method described following inequality

4.13, representing a limit of 1.2% of the total number of cattle, 51, 252, 890. The limits

on the demographic probabilities attempt to capture loose bounds on feasible average rates

of birth, culling, and slaughter. We assume that dairy cattle are not sent to slaughter

houses through a slaughter rate rslaughter−maxDairy = rslaughter−minDairy = 0, but rather through

a culling process rexpire−minDairy = (312 weeks)−1, rexpire−maxDairy = (104 weeks)−1. We bound

the expected birthing rate of dairy cattle as rbirth−minDairy = (62 weeks)−1 and rbirth−maxDairy =

(36 weeks)−1. The mixed collection of cattle, Beef , are allowed a reasonable birth rate

as well rbirth−maxBeef = (52 weeks)−1, rbirth−minBeef = 0, but the Preslaughter individuals are not

rbirth−minPreslaughter = rbirth−maxPreslaughter = 0. The Beef cattle have a maximum average useful lifespan

defined by rexpire−minBeef = (520 weeks)−1 and they join the other two types in minimal useful

life as rexpire−maxBeef = rexpire−maxPreslaughter = (104 weeks)−1. The Preslaughter population is assumed

to not have a minimal expiration rate rexpire−minPreslaughter = 0, but they have the highest feasible

slaughter rate of rslaughter−maxPreslaughter = (2 weeks)−1. Lastly the Beef populations have a feasible

range for their slaughter rates of rslaughter−minBeef = 0 to rslaughter−minBeef = (13 weeks)−1. The

upper limits on the slaughter rates are quite high, but we explain the need for this later in

this section.

4.4.1 Cattle movement parameters

As the focus of this study, the cattle movement parameters pxt1,j1,t2,j2,dist express the prob-

ability that, within a week’s duration, an individual in a subpopulation of type t1 and size

j1 will move or be shipped to a subpopulation of type t2 and size j2 at a (county-to-county)
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Source → Destination d0 d100 d200 d500 d1000
D, z1 19→ B, z1 19 0.2687743 0.0390975 0.0171808 0.0807097 0.1742045
D, z20 199→ B, z1 19 0.0 0.0 0.0 0.0 0.0
D, z200 up→ B, z1 19 0.0360669 0.0076309 0.0007037 0.0 0.0
D, z1 19→ B, z20 199 0.2088205 0.0370924 0.0201817 0.1386829 0.2043643
D, z20 199→ B, z20 199 0.0 0.0 0.0 0.0004745 0.0
D, z200 up→ B, z20 199 0.0204587 0.0056272 0.0005575 0.0008731 0.0
D, z1 19→ B, z200 up 0.1948755 0.0350860 0.0159960 0.1036465 0.3731019
D, z20 199→ B, z200 up 0.0 0.0 0.0 0.0 0.0013401
D, z200 up→ B, z200 up 1.7686314 0.0004226 0.0004293 0.0241026 0.0005980

Table 4.1: Estimated movement parameters pxt1,j1,t2,j2,dist · 103, Dairy to Beef

distance of dist. Table 4.1 presents a subset of these probabilities that express the movement

of cattle from Dairy subpopulations to Beef subpopulations for 5 ranges of distance. A

complete table of the cattle movement probabilities is provided in appendix section C.2 as

table C.3. The tables in appendix section C.3 present the birth, expiration, and slaughter

probabilities of the 9 subpopulations of each county for a sample of 10 counties from each

State. The entire results of the birth, expiration, and slaughter probabilities are too large

for this chapter as we are studying 1034 counties. Once having obtained the solution, we

revisited the movement data released by the USDA NASS. A significant difference exists be-

tween the NASS movement data and these movement parameters we’ve estimated, namely,

that the movements of NASS are summarized from individual premises, but our parameters

describe movements to and from collections of premises. We simulated 30 years of virtual

cattle movements and shipments for slaughter and summarized the movements into the 3

size ranges of SizeB. We compare these results for individual counties, considering that

shipments originating from aggregated subpopulations ought to usually be larger than ship-

ments from individual operations. This means that the subpopulation-based results should

over represent for larger sizes and perhaps under represent for smaller sizes of shipments.

For Ellis County in the State of Kansas, figure 4.3 presents a comparison of our subpopula-

tion based distributions of shipments in blue against the NASS reported yearly totals in red.
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Figure 4.3: (A) The average yearly totals of All Movements originating from Ellis County,
Kansas and generated from the estimated subpopulation cattle movement parameters for the 3
size categories of SizeB are represented with blue circles and their respective 99% confidence
intervals are shown with the vertical lines. Shown in red stars are the yearly totals reported
by NASS for the same county and aggregated into the ranges of SizeB. (B) The yearly
totals of cattle shipped for slaughter originating in Ellis County are displayed from both
the estimated slaughter rates (in blue) and the NASS database (in red) following the same
notations as in A.

The three size categories represent the three ranges of SizeB, with the smallest range on

the left and the largest on the right side. Trego County, also in the State of Kansas, demon-

strates one way in which the year-long resolution of the Agricultural Census is insufficient to

express the seasonality of the cattle system. At the time of the 2007 census, Trego County

reported no large Preslaughter populations of cattle. On the year, however, Trego County

was responsible for several large shipments of cattle for slaughter. The census happened

to catch the finishing yards at a point in time in which they were empty and thus neither

the true capacity nor typical population levels of Preslaughter cattle are represented in the

NASS database. Figure 4.4.B displays the dramatic mismatch that occurs for the largest

slaughter shipment size category.
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Figure 4.4: (A) The average yearly totals of All Movements originating from Trego
County, Kansas and generated from the estimated subpopulation cattle movement param-
eters for the 3 size categories of SizeB are represented with blue circles and their respective
99% confidence intervals are shown with the vertical lines. Shown in red stars are the yearly
totals reported by NASS for the same county and aggregated into the ranges of SizeB. (B)
The yearly totals of cattle shipped for slaughter originating in Trego County are displayed
from both the estimated slaughter rates (in blue) and the NASS database (in red) following
the same notations as in A. A large discrepancy occurs in the third size category between
the NASS reported slaughter totals and the generated distribution.

4.5 Discussion and conclusions

We have designed and solved a large-scale optimal estimation problem in an attempt to

address the privacy challenges and the need for livestock movement data in the United

States. Given the resolution limitations of the data available, we do not try to estimate

very detailed parameters, but rather adopt a stratified metapopulation approach where we

shape the structure of our variables around the structure of the NASS data. Our approach is

limited by the timescale resolution of the census report. This leads to several seasonal chal-

lenges that include correctly quantifying populations, identifying periods of higher and lower

movement rates, and capturing birthing and slaughtering seasons. The demographic bounds

used in our formulation depend on advice from industry experts and are flexibly open to

further insights. We simulated and compared subpopulation-based movement distributions

with operation-based movements, however this is not a rigorous method of validation. Our

problem design includes an assumption on the relationships of cattle types and sizes that
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proved to not hold true for all counties, as demonstrated by Broomfield County in the State

of Colorado. Lastly, the parameters we estimate fail to consider individual State laws and

Veterinary practices as well as the role of wildlife in the interfacing of subpopulations.

A close examination of the results in table C.3 of appendix section C.2 reveals a relatively

unrealistic fraction of probabilities that are estimated to take on a value of 0. We believe

this to be an artifact that has arisen from the design of the formulation and the nature

of the optimization. Without a sufficiently diverse set of constraints, the dimensionality of

an optimal solution for the problem will be limited. The objective to maximize entropy

would prefer to diversify the results, making as many nonzero as possible, yet it seems too

tightly restricted in some way as to allow that to occur in the solution. If we had to select

a constraint which would most likely be the cause for these probabilities taking on a value

of 0, we would first suspect the tight error limit of inequality 4.13. All other constraints

allow a reasonable amount of flexibility in the set of parameters that would satisfy them.

As the objective strives to diversify the distributions, we predict that loosening the error

limits would result in fewer movement probabilities taking on a value of 0.

From the challenges that this problem held, a few insights were discovered that might im-

prove the success of a future version of these livestock movement estimation methods without

posing any threat to the confidentiality of the data. Having examined the design limitations

of this study, we would like to propose 3 new questions to be considered for addition to

future versions of the US Census of Agriculture. Those being

• “Of the cattle sold/moved in question 4, excluding those sold for slaughter in question

6, how many went to (a) destinations within the county, (b) destinations in a neigh-

boring county, (c) destinations within the same state, (d) destinations in neighboring

(bordering) states, (e) destinations further away?”

• “Of cattle that arrive to this operation during 20XX, how many came from (a) a

locations within the county, (b) locations in a neighboring county, (c) locations within

the same state, (d) locations in neighboring (bordering) states, (e) locations further
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away?”

• “How many cattle were born on these premises during the year 20XX?”

Although with many limitations, we have taken a significant first step in tackling the chal-

lenges of data in the United States without compromising anonymity through optimization

and computation. In chapter 5, we envision the future of this effort in the following chapter

and provide a brief example of the incorporation of these results with the results of the

previous two chapters.
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Chapter 5

Closing Thoughts

The efforts of the previous chapters are certainly not complete. In this closing chapter, we

share our ideas concerning the completion of these efforts, demonstrate a rough evaluation

of the global epidemic invasion thresholds for the 10 Central States, and summarize the

content of this dissertation.

5.1 Future Directions

Much work remains before the two sides of this characterization will fully converge. We

propose a series of future objectives that would achieve this convergence and follow it with

a brief demonstration of the initial merging of these two parts.

5.1.1 Future work

We envision a data-driven metapopulation cattle demographic and movement model for

these 10 Central States that compose the heart of the US cattle feedlot system. This model

would be built with nodes representing US counties, would include the culling processes, and

would stratify each county’s population by three farm size ranges (SizeB) and two cattle

types (Preslaughter and General). This would require further expanding the complexity

75



of the model of chapter 3 as well as revising a few constraints in the data estimation method

of chapter 4 and resolving for a new set of parameters. The objectives necessary to reach

this data-driven cattle demographic and movement model are

• to modify the single type of cattle into two types, General and Preslaughter, for the

model of chapter 3;

• to introduce 3 size ranges of cattle operations, 1− 19 head, 20− 199 head, and 200 or

more head, for the model of chapter 3;

• to replace p and the movement model with a multidimensional movement parameter

for the model of chapter 3,

• to expand the single parameter birth and slaughter processes to capture the respective

estimated rates for the model of chapter 3,

• to construct the large cattle movement network representing the 10 Central States and

determine its degree distributions and network metrics for the model of chapter 3,

• to derive expressions for the global epidemic invasion thresholds and critical movement

rates for the expanded model of chapter 3,

• to adjust the daily timescale of the expanded model to the weekly scale of the estimated

parameters from the method of chapter 4,

• to add a longer feasible distance range, allowing movements up to 2000 miles as sug-

gested by92, for the method of chapter 4,

• to revise the TypeB set of the estimation problem to include only Preslaughter cattle

and a single type, composed of the remaining cattle, General, for the method of

chapter 4,
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• to reduce the dimensionality of the birth, culling, and slaughter parameters from

estimating a triple for every subpopulation in every county for the method of chapter

4,

• to quantify the impacts of minor relaxations of the error limits for the updated method

of chapter 4,

• to estimate the model parameters through the updated method of chapter 4, and

• to design a software package for the simulation, statistics reporting, and visualization

of the data-driven cattle demographic and movement model for further testing and

validation.

The further development of this model for US cattle systems would be significantly

improved through modifications in the US Census of Agriculture, namely, the questions on

distance and direction proposed in section 4.5 of chapter 4 and an increase in the resolution of

the timescale from a yearly basis. Apart from these database expansions, another direction

of improvement would be the inclusion of additional States in the data estimation to cover

the entire United States or further. With these objectives, an initial national modeling

system of epidemics in cattle would be ready for testing and validation. This modeling

system would serve as a starting point in understanding outbreaks of different diseases

in various types of US livestock. Researchers and scientist could then use the system for

simulating the impacts of various policies and control strategies. In the next subsection, we

consider a brief glimpse at where the proper development of the efforts mentioned in this

dissertation may lead.

5.1.2 Are US cattle systems at risk?

We extrapolated the necessary parameters to compute a rough approximation of the critical

movement rates pc and pTSc from the estimated data of chapter 4 for the 10 Central States.
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The computation of the average movement rate 〈p〉 across the 10 States and the comparison

of these values to the critical movement rates reveal the potential for epidemics to break out

across these States when considering the current movement rates. We began by converting

the timescale of the disease parameters of chapter 3 to a weekly scale with µ = 1(week)−1,

R0 = 1.2 (unchanged), and β = µR0. We averaged the populations across all subpopulations

of the results of chapter 4 to yield N
approx

= 5483.8 head. To approximate the death

rate δ, we averaged the slaughter rates of all Beef and Preslaughter subpopulations to

find δapprox = 0.01516(week)−1. For the remaining parameters and the average movement

rate 〈p〉, we simulated 30 years of cattle movements in the same manner as described in

subsection 4.4.1 of chapter 4. We captured the average outward movement 〈p〉 for all Beef

and Dairy subpopulations for each week (the time step) and over each year. Concurrently,

we measured the resulting network parameters (ηin, ηout, k
in
i , kouti ) for networks representing

the weekly and yearly movements. We have considered the dynamic network measurements

as produced by the realized movements and not static networks as considered in chapters

2 and 3. Further, we have ignored the potential existence of any degree correlations in the

resulting networks from the movement-based network construction. Having collected this

approximate set of parameters, we computed the critical movement rates pc and pTSc and

plot them in comparison to the system average movement rate 〈p〉 of the estimated cattle

movement parameters in figure 5.1.

This first approximation of the incorporation of these two components suggests that the

US cattle systems are at a significant level of risk. The average cattle movement rates are 1 to

1.5 magnitudes larger than the thresholds defined by the critical movement rates. This result

suggests that an epidemic with parameters similar to the ones implemented would easily

invade US cattle populations and reach the cattle’s final destinations, possibly compromising

the security of the beef supply chain. To impede the progress of this epidemic, a reduction

in cattle movement rates of more than 90% would be required. For human influenza-like

illnesses, a reduction in mobility rates of one order of magnitude has also been proposed7.
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Figure 5.1: The weekly average and yearly average of weekly individual cattle movement
rates 〈p〉 are plotted in blue diamonds on a vertical logarithmic scale in comparison with
the approximated critical movement rate pc (shown in red squares) of the global epidemic
invasion threshold and the critical movement rate pTSc (shown in green triangles) of the global
transit-to-sink invasion threshold over 30 years.

This amount of reduction is based on an approximated comparison, and further work should

be completed prior to advising any authorities.

5.2 Recapitulation

This dissertation focuses on improving models and parameters for the characterization of

epidemics in metapopulation cattle systems. In chapter 1, we introduce the content and

a collection of basic concepts and useful vocabulary for the comprehension of this multi-

disciplinary effort. Further work remains to develop this effort into a complete modeling

system for each particular livestock species and disease combination. Chapters 2 and 3 de-

sign metapopulation cattle demographic and movement models on directed networks. They

further determine the quasi-equilibrium distributions of the cattle populations and derive

the respective versions of the global epidemic invasion threshold R∗
17,19. These global epi-
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demic invasion thresholds serve to describe the ranges of parameters which either will or will

not permit an epidemic to spread through the metapopulation cattle system. In the work of

chapter 3 through the study of a more complex directed-movement, metapopulation cattle

model, we discovered a second global invasion threshold RTS
∗ , which defines whether an

epidemic will spread beyond the set of transit nodes to the sink nodes of a network system.

These sink nodes primarily represent final feedlots that have no outgoing movements except

for slaughter. The significance of an epidemic reaching these operations is that the disease

has a better chance to reach the slaughter facilities. We have also derived the relationship

between the two invasion thresholds and discovered its dependence on the fractional com-

positions and in-degree distributions of the transit and sink nodes.

The outputs of even the best models are restricted by the quality and resolution of their data

inputs. To address this significant challenge in the movements of US cattle, we designed a

method to optimally estimate cattle movement parameters from the publicly available data

from the USDA Census of Agriculture1. We designed a data structure for metapopulation

parameters to closely match the USDA data structures. The core of our method is a large,

convex optimal parameter estimation problem. This problem constraints are defined to

match aggregated movement data, to conserve the year-to-year population levels of cattle,

and to follow a general set of industrial constraints. The objective function is based on the

maximum entropy method to yield the minimal set of assumptions in our formulation18. We

use this method to estimate cattle movement and demographic parameters for 1034 Coun-

ties of 10 Central States that compose the core of the US cattle industry. Distributions of

shipments and slaughter are generated from our estimations, and we compare these to the

aggregated farm-level shipment distributions for each County.

The two paths of this characterization effort have yet to converge, thus we outlined a po-

tential list of objectives to achieve this. To conclude this dissertation in chapter 5, we

demonstrated a small portion of the potential contributions of the convergence of these ef-

forts. We approximate a comparison of the average movement rates of the metapopulation
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cattle system from our estimates of chapter 4 with the critical movement rates of chapter 3.

This small, initial example suggests that the current movements and structure of US cattle

populations leave them vulnerable to epidemic outbreaks.
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Appendix A

Global Invasion Threshold I:

Derivations and Simulations

A.1 Basics of subpopulation networks

The degree distribution of the subpopulation network will be denoted by Pv(~k) which is

the probability that a node chosen at random has joint-degree ~k. Given the joint-degree

distribution Pv(~k), the in- and out-degree distributions can easily be computed by

P in
v (kin) =

∑
kout

Pv(k
in, kout) and P out

v (kout) =
∑
kin

Pv(k
in, kout) , (A.1)

respectively. If there are no single-node degree correlations, i.e., correlations between in-

and out- degrees of single nodes, then the joint-degree distribution is simply Pv(k
in, kout) =

P in
v (kin)P out

v (kout). We will denote the two-node degree distribution by Pa(~k, ~k′) which is

the probability that an arc chosen at random originates from a node with degree ~k and

terminates at a node with degree ~k′. The degree distribution of nodes at the origins of arcs

P out
a (~k) is the probability that there is a node with joint-degree ~k at the origin of an arc
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chosen at random and is related to the two- and single-node degree distributions by

P out
a (~k) =

∑
~k′

Pa(~k, ~k′) =
koutPv(~k)

〈kout〉
. (A.2)

The complementary distribution, the degree distribution of nodes at the terminal ends of

arcs, P in
a (~k) corresponds to the probability that the node at the terminal end of a randomly

chosen arc has joint-degree ~k and can be computed by

P in
a (~k) =

∑
~k′

Pa(~k′, ~k) =
kinPv(~k)

〈kin〉
. (A.3)

If there are no two-node degree correlations, i.e., correlations between joint-degrees of con-

nected nodes, then the two-node degree distribution is simply Pa(~k, ~k′) = P out
a (~k)P in

a (~k′).

The two-node degree correlations will play a crucial role on the dynamical processes which

will be discussed below.

A.2 Infection and mobility dynamics

Since all the individuals in the same compartment X and the same node j are identical in

terms of the dynamical processes, we are going refer to the number of such individuals at

time t by Xj(t). Then, by definition, the total number of individuals in node j at time t is

given by Nj(t) =
∑

X Xj(t). The number of individuals in compartment X and in node j

is subject to discrete and stochastic dynamical processes defined by disease and transport

operators. The disease operator Dj represents the change due to the compartment transition

induced by the infection dynamics, and the transport operator ΩX represents the variation

due to mobility.

The term Dj can be written as a combination of a set of transitions {Dj(X, Y )}, where

Dj(X, Y ) represents the number of transitions from compartment X to Y and is simulated

as an integer random number extracted from a multinomial distribution. Then the change
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due to infection dynamics reads as

Dj(X) =
∑
Y

[Dj(Y,X)−Dj(X, Y )] . (A.4)

As a concrete example, let us consider the temporal change in the infectious compartment.

There is only one possible transition from the compartment, which is to the recovered

compartment. The number of transitions is extracted from the binomial distribution

PrBinom(Ij(t), pIj→Rj) , (A.5)

which is determined by the transition probability

pIj→Rj = µ∆t , (A.6)

and the number of individuals in the compartment Ij(t) (its size). This transition causes

a reduction in the size of the compartment. The increase in the compartment size is due

to the transitions from the susceptible to infectious compartment. This is also a random

number extracted from the binomial distribution

PrBinom(Sj(t), pSj→Ij) , (A.7)

given by the chance of contagion

pSj→Ij = λj(t)∆t , (A.8)

and the number of attempts equal to the number of susceptibles Sj(t). After extracting

these numbers from the appropriate distributions, we can calculate the total change Dj(I)
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in the infectious compartment as

Dj(I) = Dj(S, I)−Dj(I, R) . (A.9)

Transport operator ΩX expresses the total change in compartment sizes due to move-

ments. The variation in Xj can be expressed as a combination of a set of variables {ΩX(i, j)},

where ΩX(i, j) corresponds to the number of individuals moving from node i to j. Then the

change due to diffusion dynamics is given by

ΩX(j) =
∑
i

[ΩX(i, j)− ΩX(j, i)] . (A.10)

The ΩX(i, j) is an integer random number extracted from the multinomial distribution

PrMultinom(Xi(t), {pXi→X` |` ∈ υouti }) , (A.11)

determined by the probability of diffusion to subpopulation j

pXi→Xj = dij∆t , (A.12)

and the number of such trails Xi(t). We have assumed that the infection does not alter

people’s behavior, i.e., all the compartments are identical in their mobility. After each

operator is applied to all the compartments, the population sizes are updated. The total

outcome of the infection and mobility dynamics during one time step ∆t can be summarized

as

Xj(t+ ∆t) = X̃j + ΩX̃(j) , X̃j = Xj(t) +Dj(X) . (A.13)

Recognize that the stochastic state variables {Sj(t), Ij(t), Rj(t)} define a multivariate

Markov chain119,120,121 in which the present state of the system is determined only by the

state of the system in the previous time step.
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Appendix B

Global Invasion Thresholds II:

Derivations and Simulations

The contents of this appendix serve to supplement the work of chapter 3.

B.1 Solutions of livestock model demographics

In the following we consider an ensemble of directed subpopulation networks that contain

“source” and “sink” nodes. We propose population dynamics on the network ensemble,

which considers birth, death, and migration processes while preserving the total population

of the system.

B.1.1 Subpopulation networks

Imagine to have a directed subpopulation network of made of V nodes. Each node can

assume one of three types or classes: source, sink, or transit. While source and sink nodes

are connected to the rest of the system via out-going and in-coming links only, respectively,

transit nodes have both out- and in-neighborhoods. The probability of finding a node of

type source (sink) when a node is chosen at random is ηout (ηin), whereas 1 − ηout − ηin is

100



the probability that we will pick a transit node if a node is selected at random.

For the sake of simplicity, we assume that all the nodes but sources obey the same in-degree

distribution P in
v−o (kin), while all the nodes except sinks follow the same out-degree distri-

bution P out
v−i (k

out). Moreover, we consider the case that there are no single-node degree

correlations between the in- and out-degrees of transit nodes. However, the formulation be-

low can be generalized to cover all the cases in which different types of nodes assume different

degree distributions and also that there are single-node degree correlations. The joint-degree

distribution Pv

(
~k
)

of the subpopulation network under the simplifying assumptions above

is thus given by

Pv

(
~k
)

= ηoutδkin,0P
out
v−i
(
kout

)
+ ηinδkout,0P

in
v−o
(
kin
)

+ (1− ηout − ηin)P in
v−o
(
kin
)
P out
v−i
(
kout

)
,

(B.1)

where

P in
v−o (0) = 0 and P out

v−i (0) = 0 . (B.2)

Note that δx,y here represents the Kronecker delta. We focus on the degree distribution in

order to obtain the relationships which are to be used in the following derivations. The

in-degree distribution P in
v (kin) of the subpopulation network is

P in
v

(
kin
)

=
∑
kout

Pv
(
kin, kout

)
= ηoutδkin,0 + (1− ηout)P in

v−o
(
kin
)

. (B.3)

We can obtain the relationship between the average in-degree of all the nodes excluding

sources and the average in-degree 〈kin〉 of the whole system by

〈
kin
〉

=
∑
kin

kinP in
v

(
kin
)

= (1− ηout)
∑
kin≥1

kinP in
v−o
(
kin
)
⇒

∑
kin≥1

kinP in
v−o
(
kin
)

=
〈kin〉

(1− ηout)
. (B.4)
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The probability that if we pick a node at random we will hit a sink with in-degree kin is

Pv (kin, 0) = ηinP
in
v−o (kin). Then it follows that

∑
kin

kinP in
v

(
kin, 0

)
= ηin

∑
kin

kinP in
v−o
(
kin
)

= ηin
〈kin〉

(1− ηout)
, (B.5)

where we have plugged in equation B.4. These last two equations are going to prove their

worth when we consider population dynamics. The out-degree distribution of the subpop-

ulation network is given by

P out
v

(
kout

)
=
∑
kin

Pv
(
kin, kout

)
= ηinδkout,0 + (1− ηin)P out

v−i
(
kout

)
. (B.6)

We obtain the relationship between the average out-degree 〈kout〉 of the whole network and

that of all the nodes excluding sinks by

〈
kout

〉
=
∑
kout

koutP out
v

(
kout

)
= (1− ηin)

∑
kout≥1

koutP out
v−i
(
kout

)
⇒

∑
kout≥1

koutP out
v−i
(
kout

)
=
〈kout〉

(1− ηin)
. (B.7)

The probability of encountering a source with out-degree kout when a node is chosen at

random is Pv (0, kout) = ηoutP
out
v−i (k

out). It then follows that

∑
kout

koutP out
v

(
0, kout

)
= ηout

∑
kout

koutP out
v−i
(
kout

)
= ηout

〈kout〉
(1− ηin)

, (B.8)

where we have plugged in equation B.7. Similarly, the last two equations are going to

be useful in the following where we consider population dynamics on the subpopulation

networks described here. Let us denote the pairwise (or joint) node degree distribution by

Pa

(
~k,~k′

)
which is the probability that an arc selected at random has its origin from a node

with degree ~k and its termination at a node with degree ~k′. The probability to find a node

102



with degree ~k at the origin of a randomly chosen arc is

P out
a

(
~k
)

=
∑
~k′

Pa

(
~k,~k′

)
=
koutPv

(
~k
)

〈kout〉
. (B.9)

Likewise, the probability to find a node with degree ~k at the destination of a randomly

chosen arc is

P in
a

(
~k
)

=
∑
~k′

Pa

(
~k′, ~k

)
=
kinPv

(
~k
)

〈kin〉
. (B.10)

With an assumption of no correlations between the degrees of connected nodes, the joint

node degree distribution becomes Pa

(
~k,~k′

)
= P out

a

(
~k
)
P in
a

(
~k′
)

. The locations of arcs in

the subpopulation network as described by Pa

(
~k,~k′

)
plays a significant role in the dynamic

processes of the system.

B.1.2 Demography in subpopulation networks

Consider now that each subpopulation of joint-degree ~k is occupied by N~k (t) individuals at

time t. Each individual in a subpopulation of joint-degree ~k moves to a subpopulation with

joint-degree ~k′ in its out-neighborhood at rate d~k~k′ ,

d~k~k′ =
p

kout
, ∀kout 6= 0 , (B.11)

yielding a total per capita diffusion rate d~k of

d~k = p , ∀kout 6= 0 . (B.12)

The above diffusion process is obviously defined for all the subpopulations except sinks.

Each individual in a sink subpopulation with joint-degree ~k, on the other hand, leaves the
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subpopulation network or dies at rate δ~k,

δ~k = δ , ∀kout = 0 . (B.13)

Each individual in a source subpopulation ~k replicates herself or gives birth to an offspring

at rate β~k (t),

β~k (t) = pβδ

∑
~j|jout=0 Pv

(
~j
)
N~j (t)∑

~l|lin=0 Pv

(
~l
)
N~l (t)

, ∀kin = 0 , (B.14)

where pβ, 0 ≤ pβ ≤ 1, represents the fraction of individuals “recycled” from the death

process into the system through the birth process. The remaining fraction, (1− pβ) re-

enters the network through an importation process to the source nodes. Notice that the

fraction term of equation B.14 is the ratio of the total population in the sink nodes to

the total population in the source nodes at time t. Each source subpopulation ~k imports

individuals from an external source at rate ε~k (t),

ε~k (t) = (1− pβ) δ
kout∑

~l|lin=0 Pv

(
~l
)
lout

∑
~j|jout=0

Pv

(
~j
)
N~j (t) , ∀kin = 0 , (B.15)

that is proportional to the out-degree of the source node. Remembering equation B.8

simplifies the importation rate to

ε~k (t) = (1− pβ) δ
(1− ηin) kout

ηout 〈kout〉
∑

~j|jout=0

Pv

(
~j
)
N~j (t) , ∀kin = 0 , (B.16)
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The rate equation of average population size N~k (t) in a subpopulation with joint-degree ~k

is then

∂tN~k (t) = −δ~kN~k (t) δkout,0 − d~kN~k (t) (1− δkout,0)

+
[
β~k (t)N~k (t) + ε~k (t)

]
δkin,0

+ kin
∑
~j

Pa

(
~j,~k|~k

)
d~j~kN~j (t) (1− δjout,0) . (B.17)

If we insert all the rates in equation B.17 and also assume that there are no correlations

between the degrees of connected nodes, we get

∂tN~k (t) = − δN~k (t) δkout,0 − pN~k (t) (1− δkout,0)

+

pβδ N~k (t)∑
~l|lin=0 Pv

(
~l
)
N~l (t)

+ (1− pβ) δ
(1− ηin) kout

ηout 〈kout〉

 ∑
~j|jout=0

Pv

(
~j
)
N~j (t)δkin,0

+p
kin

〈kout〉
∑
~j

Pv

(
~j
)
N~j (t) (1− δjout,0) . (B.18)

The first thing to consider is that the average population per node N =
∑

~k Pv

(
~k
)
N~k (t)

is kept invariant over time by the above dynamical process, i.e.,
∑

~k Pv

(
~k
)
∂tN~k (t) = 0,

which leads to

∂tN~k (t) = −δN~k (t) δkout,0 − pN~k (t) (1− δkout,0)

+

pβδ N~k (t)∑
~l|lin=0 Pv

(
~l
)
N~l (t)

+ (1− pβ) δ
(1− ηin) kout

ηout 〈kout〉

 ∑
~j|jout=0

Pv

(
~j
)
N~j (t)δkin,0

+p
kin

〈kout〉

N − ∑
~j|jout=0

Pv

(
~j
)
N~j (t)

 . (B.19)
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Now let us simplify the equations at the expense of more definitions, which are going to be

helpful in the rest of the derivations. Let us denote the total population in all source nodes

per all the nodes at time t by ψout (t),

ψout (t) ≡
∑

~k|kin=0

Pv

(
~k
)
N~k (t) . (B.20)

Similarly, we denote the total population in all sink nodes per all the nodes at time t by

ψin (t),

ψin (t) ≡
∑

~k|kout=0

Pv

(
~k
)
N~k (t) . (B.21)

Substituting equations B.20 and B.21 into the rate equation of N~k, we obtain

∂tN~k (t) = −δN~k (t) δkout,0 − pN~k (t) (1− δkout,0)

+

(
pβδ

N~k (t)

ψout (t)
+ (1− pβ) δ

(1− ηin) kout

ηout 〈kout〉

)
ψin (t) δkin,0

+p
kin

〈kout〉
(
N − ψin (t)

)
. (B.22)

It is hard to analyze the above closed system all at once. We thus consider the rate equation

for each type of node separately. To clearly distinguish the results from this point onward,

we adopt the following notation for the respective node degrees of each type of node: ~k(1)

for all source nodes (kin = 0), ~k(2) for all transit nodes (kin 6= 0 and kout 6= 0), and ~k(3) for

all sink nodes (kin 6= 0 and kout = 0).

Sink nodes

The rate equation of the average population size in a sink node with joint-degree ~k(3) =(
kin(3), 0

)
is

∂tN~k(3) (t) = −δN~k(3) (t) + p
kin(3)

〈kout〉
(
N − ψin (t)

)
. (B.23)
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If we multiply both sides of the above equation by Pv

(
~k(3)
)

and then sum over all the

joint-degrees ~k(1) =
(
kin(3), 0

)
, we obtain

∂tψin (t) = −
(
δ +

ηinp

1− ηout

)
ψin (t) +

ηinp

1− ηout
N , (B.24)

where we have substituted in equation B.5. This first order differential equation can be

solved as reported in B.1.3, yielding the equilibrium configuration ψ∗in,

ψ∗in =
ηinp

(1− ηout) δ + ηinp
N , (B.25)

and a characteristic relaxation time of
(
δ + ηinp

1−ηout

)−1
. Using the solution for ψin (t), we

similarly solve the differential equation for N~k(3) (t). The solution, in particular, leads to the

equilibrium configuration N∗~k(3) ,

N∗~k(3) =
kin(3)

〈kout〉
(1− ηout) p

(1− ηout) δ + ηinp
N , (B.26)

and the characteristic relaxation time δ−1 (see section B.1.3).

Transit nodes

The rate equation of the average population size in a transit node subpopulation with joint-

degree ~k(2) follows very closely the rate equation for sink nodes,

∂tN~k(2) (t) = −pN~k(2) (t) + p
kin(2)

〈kout〉
(
N − ψin (t)

)
, (B.27)

whose solution is reported in section B.1.3. The solution of N~k(2) (t) assumes the charac-

teristic relaxation time max

(
p−1,

(
δ + ηinp

1−ηout

)−1)
to the equilibrium configuration of the

107



populations of the transit nodes

N∗~k(2) =
kin(2)

〈kout〉
(1− ηout) δ

(1− ηout) δ + ηinp
N . (B.28)

Source nodes

The rate equation of the average population in a source node with joint-degree ~k(1) =(
0, kout(1)

)
is

∂tN~k(1) (t) = −pN~k(1) (t) +

(
pβδ

N~k(1) (t)

ψout (t)
+ (1− pβ) δ

(1− ηin) kout(1)

ηout 〈kout〉

)
ψin (t) . (B.29)

If we multiply both sides of the above equation by Pv

(
~k(1)
)

and then sum over all the

joint-degrees ~k(1) =
(
0, kout(1)

)
, we have

∂tψout (t) = −pψout (t) + δψin (t) , (B.30)

where we have substituted in equation B.8. As derived in subsection B.1.3, the solution

ψout (t) admits the equilibrium configuration

ψ∗out =
δ

p
ψ∗in =

ηinδ

(1− ηout) δ + ηinp
N , (B.31)

with a characteristic time scale of max

(
p−1,

(
δ + ηinp

1−ηout

)−1)
. Particular attention is de-

voted to the rate equation of the degree-block variable N~k(1) (t) in that we consider three

cases of pβ separately.

• If pβ = 1, meaning that we only consider birth, then the rate equation is given by

∂tN~k(1) (t) =

(
−p+ δ

ψin (t)

ψout (t)

)
N~k(1) (t) . (B.32)

108



The expression in brackets is equal to ψ−1out∂ψout (see equation B.30), yielding

∂tN~k(1) (t)

N~k(1) (t)
=
∂ψout (t)

ψout (t)
. (B.33)

Using the definition of ψin (t) in equation B.21, we obtain the solution

N~k(1) (t) =
1

ηout
ψout (t) . (B.34)

This means that the characteristic relaxation time is max

(
p−1,

(
δ + ηinp

1−ηout

)−1)
and

the equilibrium configuration is

N∗~k(1) =
1

ηout
ψ∗out =

ηinδ

ηout [(1− ηout) δ + ηinp]
N . (B.35)

• Now let us look at the other extreme of pβ = 0, meaning that we only consider the

importation process. In this case, the rate equation is

∂tN~k(1) (t) = −pN~k(1) (t) + δ
(1− ηin) kout(1)

ηout 〈kout〉
ψin (t) . (B.36)

Using the solution for ψin (t), we can solve the differential equation (see section B.1.3)

which yields the equilibrium configuration

N∗~k(1) =
(1− ηin) δψ∗in

ηoutp

kout(1)

〈kout〉
=
kout(1)

〈kout〉
ηin (1− ηin) δ

ηout [(1− ηout) δ + ηinp]
N (B.37)

and the characteristic relaxation time max

(
p−1,

(
δ + ηinp

1−ηout

)−1)
.

• On the other hand, if 0 < pβ < 1, then we have all the terms of the rate equation,

that is, equation B.29. In this case, the differential equation does not seem to be easy
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to solve. However, the equilibrium configuration can easily be evaluated, yielding

N∗~k(1) =
(1− ηin) δψ∗in

ηoutp

kout(1)

〈kout〉
=
kout(1)

〈kout〉
ηin (1− ηin) δ

ηout [(1− ηout) δ + ηinp]
N , (B.38)

that is exactly the same as the solution for the case of pβ = 0 (i.e., no birth).

B.1.3 Solutions of rate equations

In the following, we solve the differential equations for the average population sizes in

subpopulations of different types of nodes: sink, transit, and source.

Sink nodes

Remember the rate equation ∂tψin (t) in equation B.24 which expresses the change of the

total number of individuals in sink nodes. The solution of this first order differential equation

is

ψin (t) = e
−
(
δ+

ηinp

1−ηout

)
t

(
Cin +N

ηinp

1− ηout

∫
e

(
δ+

ηinp

1−ηout

)
t
dt

)
, (B.39)

ψin (t) = Cine
−
(
δ+

ηinp

1−ηout

)
t
+N

ηinp

(1− ηout) δ + ηinp
, (B.40)

where Cin is a time-independent variable determined by initial conditions. If we assume

that all the subpopulations have the same number of individuals initially, i.e., N~k(1) (0) =

N~k(2) (0) = N~k(3) (0) = N , then we have that ψin (0) = ηinN , leading to

ψin (t) = ηinN
(1− ηout) δ − (1− ηin) p

(1− ηout) δ + ηinp
e
−
(
δ+

ηinp

1−ηout

)
t
+ ηinN

p

(1− ηout) δ + ηinp
. (B.41)
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Now we turn our attention to the rate equation of the joint-degree block variable N~k(3) (t)

in equation B.23. The solution is given by

N~k(3) (t) = e−δt
(
C~k(3) + p

kin(3)

〈kout〉

∫
eδt
(
N − ψin (t)

)
dt

)
,

N~k(3) (t) = C~k(3)e
−δt + (1− ηout)N

p

(1− ηout) δ + ηinp

kin(3)

〈kout〉

+ (1− ηout)N
(1− ηout) δ − (1− ηin) p

(1− ηout) δ + ηinp

kin(3)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

, (B.42)

where C~k(3) is a constant fixed by the initial condition N~k(3) (0) = N . Inserting the initial

condition yields

N~k(3) (t) = N

(
1− (1− ηout)

kin(3)

〈kout〉

)
e−δt

+ (1− ηout)N
(1− ηout) δ − (1− ηin) p

(1− ηout) δ + ηinp

kin(3)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

+ (1− ηout)N
p

(1− ηout) δ + ηinp

kin(3)

〈kout〉
, (B.43)

Transit nodes

The solution of the rate equation of the average population size in a transit node with

joint-degree ~k(2) in equation B.27 can be similarly solved by

N~k(2) (t) = e−pt
(
C~k(2) + p

kin(2)

〈kout〉

∫
ept
(
N − ψin (t)

)
dt

)
,

N~k(2) (t) = C~k(2)e
−pt + (1− ηout)N

δ

(1− ηout) δ + ηinp

kin(2)

〈kout〉

+ηinN
(1− ηout) p [(1− ηout) δ − (1− ηin) p]

[(1− ηout) δ + ηinp] [(1− ηout) δ − (1− ηout − ηin) p]

kin(2)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

, (B.44)
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where C~k(2) is a constant fixed by the initial condition N~k(2) (0) = N . Inserting the initial

condition leads to

N~k(2) (t) = N

[
1− (1− ηout)

(1− ηout) δ + ηinp

(
δ + ηinp

(1− ηout) δ − (1− ηin) p

(1− ηout) δ − (1− ηout − ηin) p

)
kin(2)

〈kout〉

]
e−pt

+ηinN
(1− ηout) p [(1− ηout) δ − (1− ηin) p]

[(1− ηout) δ + ηinp] [(1− ηout) δ − (1− ηout − ηin) p]

kin(2)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

+ (1− ηout)N
δ

(1− ηout) δ + ηinp

kin(2)

〈kout〉
, (B.45)

Source nodes

Recall the rate equation in equation B.30 that determines the change of the total population

size in the source nodes. This first order differential equation can easily be solved by

ψout (t) = e−pt
(
Cout + δ

∫
eptψin (t) dt

)
,

ψout (t) = Coute
−pt + δe−pt

∫
eptηinN

(1− ηout) δ − (1− ηin) p

(1− ηout) δ + ηinp
e
−
(
δ+

ηinp

1−ηout

)
t
dt

+δe−pt
∫
eptηinN

p

(1− ηout) δ + ηinp
dt

ψout (t) = Coute
−pt − ηinN

(1− ηout) δ [(1− ηout) δ − (1− ηin) p]

[(1− ηout) δ − (1− ηout − ηin) p] [(1− ηout) δ + ηinp]
e
−
(
δ+

ηinp

1−ηout

)
t

+ηinN
δ

(1− ηout) δ + ηinp
, (B.46)

where the constant Cout is given by the initial condition ψout (0) = ηoutN , yielding

ψout (t) = ηoutN
(1− ηout − ηin) (δ − p)

(1− ηout) δ − (1− ηout − ηin) p
e−pt

−ηinN
(1− ηout) δ [(1− ηout) δ − (1− ηin) p]

[(1− ηout) δ − (1− ηout − ηin) p] [(1− ηout) δ + ηinp]
e
−
(
δ+

ηinp

1−ηout

)
t

+ηinN
δ

(1− ηout) δ + ηinp
. (B.47)
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Now we focus on the degree-block variable N~k(1) (t). In the following, we consider two cases

of pβ:

• pβ = 1. In this case, the rate equation leads to the solution N~k(1) (t) = η−1outψout (t).

• pβ = 0. In this case, the rate equation is given by equation B.36 and the solution

follows as

N~k(1) (t) = e−pt
(
C~k(1) + δ

(1− ηin) kout(1)

ηout 〈kout〉

∫
eptψin (t) dt

)
, (B.48)

N~k(1) (t) = C~k(1)e
−pt + δ

(1− ηin) kout(1)

ηout 〈kout〉
e−pt

∫
eptηinN

(1− ηout) δ − (1− ηin) p

(1− ηout) δ + ηinp
e
−
(
δ+

ηinp

1−ηout

)
t
dt

+δ
(1− ηin) kout(1)

ηout 〈kout〉
e−pt

∫
eptηinN

p

(1− ηout) δ + ηinp
dt

N~k(1) (t) = C~k(1)e
−pt

−ηinN
(1− ηin) (1− ηout) δ [(1− ηout) δ − (1− ηin) p]

ηout [(1− ηout) δ − (1− ηout − ηin) p] [(1− ηout) δ + ηinp]

kout(1)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

+ηinN
(1− ηin) δ

ηout [(1− ηout) δ + ηinp]

kout(1)

〈kout〉
, (B.49)

where C~k(1) is a constant set by the initial condition N~k(1) (0) = N . Using the initial

value, we obtain

N~k(1) (t) =

(
1−N ηin (1− ηin) δ

(1− ηout) δ − (1− ηout − ηin) p

kout(1)

〈kout〉

)
e−pt

−ηinN
(1− ηin) (1− ηout) δ [(1− ηout) δ − (1− ηin) p]

ηout [(1− ηout) δ − (1− ηout − ηin) p] [(1− ηout) δ + ηinp]

kout(1)

〈kout〉
e
−
(
δ+

ηinp

1−ηout

)
t

+ηinN
(1− ηin) δ

ηout [(1− ηout) δ + ηinp]

kout(1)

〈kout〉
. (B.50)

B.2 Derivation of global invasion thresholds

In this section, we present the derivations of the global epidemic invasion thresholds, their

respective critical movement rates, and the relationship between the two thresholds as seen
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through a comparison of the critical movement rates.

B.2.1 Global invasion thresholds

We consider the nth generation number of diseased subpopulations with degree ~k(x) from

node class x, Dn
~k(x)

, as a function of the three sets {Dn−1
~k(1)
}, {Dn−1

~k(2)
}, and {Dn−1

~k(3)
} of the

(n− 1)th generation. The “infection” of a node occurs when infected cattle move from

one node into another node containing only susceptible individuals. The expression for the

branching process as expressed by7,17 follows as

Dn
~k

=
∑
~j

Dn−1
~j

Pa

(
~j,~k | ~j

)
joutp

(
~j,~k
) n−1∏
m=0

(
1−

Dm
~k

V~k

)
(B.51)

This branching equation models the nth generation of newly infected nodes by considering

that each subpopulation in a node with a (out-) degree of j has the potential to infect j

other nodes by the intersection of three events. These events are that a node with degree

~k exists in the out neighborhood of a node with degree ~j, Pa

(
~j,~k | ~j

)
, that the neighbor

with degree k has not been infected in previous generations,
∏n−1

m=0

(
1−

Dm~k
V~k

)
, and that the

disease will spread from the node with degree j to the node with degree k, p
(
~j,~k
)

. For the

classic SIR model84, p
(
~j,~k
)

is given by

p
(
~j,~k
)

= 1−R
−λ~j~k
0 , (B.52)

where λ~j~k is the number of infected individuals moving from the infected subpopulation to

the fully susceptible subpopulation. The classic SIR model solves for

λ~j~k =
α

µ
N~jd~j~k , (B.53)

114



where α is the final size of an SIR epidemic. Furthermore, the probability p
(
~j,~k
)

can

be approximated as p
(
~j,~k
)
' αN~jd~j~k (R0 − 1) /µ ' 2

(
1−R−10

)2
N~jd~j~k/µ if we assume

R0 ' 1. The assumption that we are considering an epidemic in its early stages allows the

approximation
∏n−1

m=0

(
1−

Dm~k
V~k

)
' 1 and yields the approximated branching model

Dn =
2

µ

(
1−R−10

)2∑
~j

Dn−1
~j

Pa

(
~j,~k | ~j

)
joutN~jd~j~k . (B.54)

Note that this approximation of the process ignores bidirectional arcs and also has an

assumption that the next generation is only infected by the immediately previous generation

and none prior. This second assumption will remove the impact of the initial condition of

the sink and sources nodes. Let us expand this expression to correctly consider the 3 classes

of nodes. The lack of in-degrees for the source nodes and out-degrees for the sink nodes

yield three expressions for the source and sink branching model on directed networks,

Dn
~k(1)

=
2

µ

(
1−R−10

)2 ∑
~j(1)

Dn−1
~j(1)

0jout(1)N~j(1)d~j(1)~k(1) +
∑
~j(2)

Dn−1
~j(2)

0jout(2)N~j(2)d~j(2)~k(1)

 = 0, n > 0 ,

(B.55)

Dn
~k(2)

=
2

µ

(
1−R−10

)2 ∑
~j(1)

Dn−1
~j(1)

Pa

(
~j(1), ~k(2) | ~j(1)

)
jout(1)N~j(1)d~j(1)~k(2)

+
∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(2) | ~j(2)

)
jout(2)N~j(2)d~j(2)~k(2)

 , n > 0 , (B.56)

Dn
~k(3)

=
2

µ

(
1−R−10

)2 ∑
~j(1)

Dn−1
~j(1)

Pa

(
~j(1), ~k(3) | ~j(1)

)
jout(1)N~j(1)d~j(1)~k(3)

+
∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(3) | ~j(2)

)
jout(2)N~j(2)d~j(2)~k(3)

 , n > 0 . (B.57)
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From equation B.55, when n > 0 we have that Dn
~k1

= 0, and equations B.56 and B.57

simplify to expressions that only consider infections arriving from the transit class.

Dn
~k(2)

=
2

µ

(
1−R−10

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(2) | ~j(2)

)
jout(2)N~j(2)d~j(2)~k(2) , n > 1 (B.58)

Dn
~k(3)

=
2

µ

(
1−R−10

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(3) | ~j(2)

)
jout(2)N~j(2)d~j(2)~k(3) , n > 1 (B.59)

With the traffic functions as mentioned above, these simplify to

Dn
~k(2)

=
2p

µ

(
1−R−10

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(2) | ~j(2)

)
N~j(2) , n > 1 , (B.60)

Dn
~k(3)

=
2p

µ

(
1−R−10

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(3) | ~j(2)

)
N~j(2) , n > 1 . (B.61)

Inserting the quasi-equilibrium populations, N~j(2) , as derived in appendix B.1 yields

Dn
~k(2)

=
2p (1− ηout) δN

µ [(1− ηout) δ + ηinp] 〈kin〉

(
1− 1

R0

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(2) | ~j(2)

)
jin(2), n > 1 ,

(B.62)

Dn
~k(3)

=
2p (1− ηout) δN

µ [(1− ηout) δ + ηinp] 〈kin〉

(
1− 1

R0

)2∑
~j(2)

Dn−1
~j(2)

Pa

(
~j(2), ~k(3) | ~j(2)

)
jin(2), n > 1 .

(B.63)

As we are considering uncorrelated networks here,

Pa

(
~j(2), ~k(2) | ~j(2)

)
= P in

a

(
~k(2)
)

=
kin(2)Pv

(
~k(2)
)

〈kin〉
, (B.64)

Pa

(
~j(2), ~k(3) | ~j(2)

)
= P in

a

(
~k(3)
)

=
kin(3)Pv

(
~k(3)
)

〈kin〉
. (B.65)
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Inserting equations B.64 and B.65 simplifies the branching processes to

Dn
~k(2)

=
2p (1− ηout) δN

µ [(1− ηout) δ + ηinp] 〈kin〉2

(
1− 1

R0

)2

Pv

(
~k(2)
)
kin(2)

∑
~j(2)

Dn−1
~j(2)

jin(2), n > 1 ,

(B.66)

Dn
~k(3)

=
2p (1− ηout) δN

µ [(1− ηout) δ + ηinp] 〈kin〉2

(
1− 1

R0

)2

Pv

(
~k(3)
)
kin(3)

∑
~j(2)

Dn−1
~j(2)

jin(2), n > 1 .

(B.67)

Let us define, similar to the undirected analysis of17,

Θn
2 =

∑
~j(2)

Dn
~j(2)
jin(2) and Θn

3 =
∑
~j(3)

Dn
~j(3)
jin(3) . (B.68)

Combining these definition with equations B.66 and B.67, we have

Θn
2 =

∑
~j(2)

Dn
~j(2)
jin(2) =

2p (1− ηout) δN
µ [(1− ηout) δ + ηinp] 〈kin〉2

(
1− 1

R0

)2∑
~k(2)

Pv

(
~k(2)
) (
kin(2)

)2
Θn−1

2 , n > 1

(B.69)

Θn
3 =

∑
~j(3)

Dn
~j(3)
jin(3) =

2p (1− ηout) δN
µ [(1− ηout) δ + ηinp] 〈kin〉2

(
1− 1

R0

)2∑
~k(3)

Pv

(
~k(3)
) (
kin(3)

)2
Θn−1

2 , n > 1 .

(B.70)

Noting that the node-type degree distributions can be expressed as Pv

(
~k(2)
)

= (1− ηout − ηin)Pv(2)
(
~k(2)
)

and Pv

(
~k(3)
)

= ηinPv(3)
(
~k(3)
)

; we derive, from the above equations, the global epidemic

invasion threshold, R∗, and the transit-to-sink invasion threshold, RTS
∗ , respectively as

R∗ =
Θn

2

Θn−1
2

=
2p (1− ηout) (1− ηout − ηin) δN

µ [(1− ηout) δ + ηinp]

(
1− 1

R0

)2

〈(
kin(2)

)2〉
〈kin〉2

, (B.71)

RTS
∗ =

Θn
3

Θn−1
2

=
2p (1− ηout) ηinδN
µ [(1− ηout) δ + ηinp]

(
1− 1

R0

)2

〈(
kin(3)

)2〉
〈kin〉2

. (B.72)

As seen in equation B.72, the disease process in the sink nodes is driven by the disease

process in the transit nodes. This is only the uncorrelated case, with uniform movement
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rates, and further work could extend this analysis to other types of networks and mobility

patterns. We proceed next to consider the critical movement rates pc, p
TS
c that define the

tipping points for these invasion thresholds.

B.2.2 Critical movement rates

Here we extract the critical movement rates that are defined by R∗ (pc) = 1 and RTS
∗
(
pTSc
)

=

1. These critical rates express the smallest movement rates necessary for the disease to

spread among the transit nodes and from the transit nodes to the sink nodes, respectively,

as

pc =
µδ (1− ηout) 〈kin〉

2

2δN (1− ηout) (1− ηout − ηin)
(

1− 1
R0

)2 〈
(kin(2))

2
〉
− ηinµ 〈kin〉2

, (B.73)

pTSc =
µδ (1− ηout) 〈kin〉

2

2δN (1− ηout) ηin
(

1− 1
R0

)2 〈
(kin(3))

2
〉
− ηinµ 〈kin〉2

. (B.74)

Of significant interest is the relationship between these two critical movement probabilities.

If the system and disease outbreak are such that pc > pTSc , then the disease process will move

through both transit and sink nodes easily when the individuals’ movement rate exceeds pc.

However, if the reverse is true, three regions of movement rates will be defined wherein a

second outbreak situation arises where the disease may persist within the transit nodes, but
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not reach the sink nodes. The relationship is then derived as follows.

pTSc > pc

⇓

µδ (1− ηout) 〈kin〉
2

2δN (1− ηout) ηin
(

1− 1
R0

)2 〈
(kin(3))

2
〉
− ηinµ 〈kin〉2

>
µδ (1− ηout) 〈kin〉

2

2δN (1− ηout) (1− ηout − ηin)
(

1− 1
R0

)2 〈
(kin(2))

2
〉
− ηinµ 〈kin〉2

⇓

2δN (1− ηout) (1− ηout − ηin)

(
1− 1

R0

)2 〈(
kin(2)

)2〉− ηinµ 〈kin〉2
> 2δN (1− ηout) ηin

(
1− 1

R0

)2 〈(
kin(3)

)2〉− ηinµ 〈kin〉2
⇓

2δN (1− ηout) (1− ηout − ηin)

(
1− 1

R0

)2 〈(
kin(2)

)2〉
> 2δN (1− ηout) ηin

(
1− 1

R0

)2 〈(
kin(3)

)2〉
⇓

(1− ηout − ηin)
〈(
kin(2)

)2〉
> ηin

〈(
kin(3)

)2〉
⇓〈(

kin(2)
)2〉〈

(kin(3))
2
〉 >

ηin
(1− ηout − ηin)

⇐⇒ pTSc > pc . (B.75)

Note that, in this derivation, from the second line to the third, it is assumed that the

denominators are positive. If the denominators were not strictly positive, the case would

be that the critical rates would be either undefined or negative values, and the respective

thresholds would always be greater than unity. We limited our derivation to consider only
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the case of positive denominators in this step. The comparison concludes that pTSc > pc if

and only if the ratio of the second moments of the node-type in-degree distributions (transit

nodes over sink nodes) is greater than the ratio of the sink nodes to the transit nodes.

B.3 Stochastic simulation processes

Here we present the details of the numerical implementation of the dynamical processes

described in the main text. We denote the number of Susceptible, Infected, and Recovered

individuals in node i at time t respectively by Si (t), Ii (t), and Ri (t). The numbers of indi-

viduals in each of these populations is varied by discrete and stochastic dynamics describing

the demographic, diffusion, and disease processes. By definition, the number of individuals

in the population of node i at time t is given by Ni (t) = Si (t) + Ii (t) +Ri (t).

B.3.1 Disease dynamics

Susceptible individuals in the population of node i at time t receive infections from any

infected individuals also present in node i during the time interval ∆t with a probability

pSi→Ii defined as

pSi→Ii = λi (t) ∆t , (B.76)

where λi (t) is the per capita force of infection λi (t) = βIi (t) /Ni (t). The number of

individuals Qi (S, I) transferring from the susceptible state Si (t) to the infected state Ii (t)

at time t in node i is then extracted from the binomial distribution as

Qi (S, I) = PrBinom (Si (t) , pSi→Ii∆t) . (B.77)
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The number of individualsQi (I, R) transferring from the infected state Ii (t) to the recovered

state Ri (t) at time t in node i is similarly extracted from the binomial distribution

Qi (I, R) = PrBinom (Ii (t) , pIi→Ri∆t) , (B.78)

where pIi→Ri is the per capita recovery probability, pIi→Ri = µ∆t, within the time interval

∆t. The classical SIR model contains only these two transitions. After extracting Qi (S,R)

and Qi (I, R) for all nodes, we update the subpopulations of each node i as

Si → Si −Qi (S,R) ,

Ii → Ii +Qi (S,R)−Qi (I, R) ,

Ri → Ri +Qi (I, R) . (B.79)

After each iteration of the disease process, we similarly update the population dynamics.

B.3.2 Population dynamics

The number of individuals Ni (t) in subpopulation i at time t is subject to changes in the

following time interval ∆t due to death, birth, importation, and migration. These events

are assumed to occur in the following order:

1. Death. Each individual in node i dies at rate δi. The number of individuals who die

Di = DSi + DIi + DRi in subpopulation i within this time interval is a random integer

number extracted from three binomial distributions

Di = PrBinom (Si (t) , δi∆t) + PrBinom (Ii (t) , δi∆t) + PrBinom (Ri (t) , δi∆t) . (B.80)
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After the extraction of the random numbers {Di}, we update the population sizes by

Si → Si −DSi ; Ii → Ii −DIi ; Ri → Ri −DRi . (B.81)

The total number of individuals who are dropped out of the system due to death is

then given by

D =
∑
i

Di . (B.82)

Note that the death rate δi is subpopulation dependent and will be assumed to be

equal to δ for all subpopulations of sink nodes and 0 otherwise.

2. Birth and Importation. We reintroduce the total number of lost individuals D into the

system in order to keep the total population invariant over time. We consider that a

fraction pβ of these deaths are introduced back into the system as births and the rest

as importations. The total number of births B is an integer random number extracted

from the binomial distribution

B = PrBinom (D, pβ) . (B.83)

After extracting B, we calculate the number of imported individuals I by I = D−B.

Once we compute B and I, we distribute these individuals in the system as follows:

• Births. We assume that node i gets a newly born individual with probability pβi

proportional to its current population:

pβi =
rβiNi (t)∑
h rβhNh (t)

, (B.84)

where rβi is going to take values of 0 or 1 and is introduced for normalization

purposes. For now, we will assume that rβi = 1 for all the source nodes and 0

for the rest of the nodes. The number of newly born individuals Bi in node i is
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extracted from the multinomial distribution

PrMultinom (B, {pβi}) . (B.85)

• Importation. Each node i receives an imported case with probability pIi propor-

tional to its out-degree:

pIi =
rIik

out
i∑

h rIhl
out
h

, (B.86)

where rIi is introduced for the purpose of normalization, similar to rβi , and will

take values of 1 for all the source nodes and 0 otherwise. Then, the total number

of importations for each (source) subpopulation is given by an integer random

number extracted from the multinomial distribution

PrMultinom (I, {pIi}) . (B.87)

After the extraction of the sets {Bi} and {Ii}, the source node populations are updated

with the addition of susceptible cattle by

Si → Si + Bi + Ii . (B.88)

In this implementation, we have assumed that imported individuals are not entering

with the system with any infection. This permits the study of a single source of the

outbreak, but in general this may not be an accurate representation of a livestock

system.

3. Migration. Outward migration occurs from both transit and source node subpopula-

tions as they have non-zero out-degrees. Individuals in node imigrate to subpopulation
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j in the out-neighborhood vouti at per capita rate dij:

dij =
p

kouti

, kout 6= 0 (B.89)

yielding the probability of migration pij within the time interval ∆t, pij = dij∆t. The

number of individuals MX
ij leaving node i and arriving to node j among each disease

state X is an integer random number extracted from the multinomial distributions

PrMultinom
(
Xi, {pij|j ∈ vouti }

)
. (B.90)

After the extraction of all the integer numbers {MX
ij}, the population sizes of each

subpopulation is updated according to

Si → Si +
∑
j

[
MS

ij −MS
ji

]
,

Ii → Ii +
∑
j

[
MI

ij −MI
ji

]
,

Ri → Ri +
∑
j

[
MR

ij −MR
ji

]
. (B.91)
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Appendix C

Dance of the Calves: Formulations

and Results

The contents of this appendix serve to supplement the work of chapter 4.

C.1 Data Estimation

Following the discussion of section 4.2, we formulated a pair of maximum entropy estimation

problems that are constrained by straightforward rules defined by the US Department of

Agriculture database. The maximum entropy method does not recover a significant amount

of diversity with the estimated values, but selects the sets of values that are as homogeneous

as possible while obeying all constraints. This method seeks such values because the homo-

geneity of maximum entropy represents the minimal assumptions possible in the problem

design.

C.1.1 Population data estimation

With the following formulations, we estimate any undisclosed data elements, namely sub-

populations Popxt,c,i, County totals Tcxt,c, and State totals for each size category Tzxt,i. We
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defined the sets County as the Counties of the considered State, t ∈ TypeA = {Dairy,

Preslaughter, All Cattle}, i ∈ SizeA = {z1 9, z10 19, z20 49, z50 99, z100 199, z200 499,

z500 up}, and j ∈ SizeB = {z1 19, z20 199, z200 up}. From the USDA NASS database, for

each State, we collected the numbers of operations nt,c,i of cattle type t having subpopula-

tions with their sizes falling within size range i in county c, the published populations counts

Poprt,c,i representing all cattle of type t with subpopulations within size range i in county c,

the total numbers of cattle Tcrt,c of type t in county c, the total numbers of cattle Tzrt,i of

type t in size range i in the State, and the total counts of cattle in each type t for the entire

State P tot
t . To these parameters, we have added upper limits on the subpopulations ut,i for

each cattle type t and size range i, lower limits on the subpopulations lt,i for each cattle type

t and size range i, and data indicator parameters, datPopt,c,i, datTct,c, and datTzt,i, that

express the existence of data elements for their respective parameters (The data indicators

for non-disclosed data elements are assigned a value of 0 and the remainder are set to 1).

The lower and upper limits are set by the limits of the size ranges (lt,z1 9 = 1, ut,z1 9 = 9,

...), with the exception of the upper limits on the largest size range, z500 up. The largest

upper limit ut,z500 up is set to Tzrt,z500 up if datTzt,z500 up = 1, else we set ut,z500 up = P tot
t . For

the population data of each State, we solve

Maximize
∑

t∈TypeA

∑
c∈County

∑
i∈SizeA

(
−
Popxt,c,i
P tot
t

log

[
Popxt,c,i
P tot
t

+ 1.0− datPopt,c,isign
(
Poprt,c,i

)])
.

(C.1)

The objective function maximizes the entropy of the three (by cattle type) population dis-

tributions and includes additional terms in the logarithm argument similar to the objective

function of the formulation of section 4.3. We include the sign function to consider the case

when the published data Poprt,c,i = 0, which would otherwise result in log (0). Thus, the 1.0

is removed from the logarithm argument if and only if datPopt,c,i = 1 and the corresponding

data value Poprt,c,i is strictly positive.
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Subject to

Constraints on Population values

Popxt,c,i ≤ datPopt,c,iPop
r
t,c,i + (1.0− datPopt,c,i)nt,c,iut,i ∀ (t, c, i) (C.2)

Popxt,c,i ≥ datPopt,c,iPop
r
t,c,i + (1.0− datPopt,c,i)nt,c,ilt,i ∀ (t, c, i) (C.3)

The constraints form bounds for the complete set {Popxt,c,i} even if the data element

Poprt,c,i is known from the NASS database. We use datPopt,c,i to represent the existence of

the data element. Observe that, when datPopt,c,i = 1, inequalities C.2 and C.3 converge to

act as an equality constraint Popxt,c,i = Poprt,c,i. When datPopt,c,i = 0, the upper (lower)

bound is defined by the number of subpopulations in Popxt,c,i and the upper (lower) limit of

the size range. Although these bounds have the potential to be very loose, they help shape

the feasible set of values for Popxt,c,i.

Constraints on County totals

Tcxt,c ≤ datTct,cTc
r
t,c + (1.0− datTct,c)uTct,c ∀ (t, c) (C.4)

Tcxt,c ≥ datTct,cTc
r
t,c + (1.0− datTct,c) lT ct,c ∀ (t, c) (C.5)

uTct,c =
∑

i∈SizeA

[
datPopt,c,iPop

r
t,c,i + (1.0− datPopt,c,i)nt,c,iut,i

]
∀ (t, c) (C.6)

lT ct,c =
∑

i∈SizeA

[
datPopt,c,iPop

r
t,c,i + (1.0− datPopt,c,i)nt,c,ilt,i

]
∀ (t, c) (C.7)
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∑
i∈SizeA

Popxt,c,i = Tcxt,c ∀ (t, c) (C.8)

Inequalities C.4 and C.5 follow the same data indicator controlled constraint structure

as inequalities C.2 and C.3. The upper and lower limits for the county totals Tcxt,c are

constructed in equality constraints C.6 and C.7. Given constraints C.2, C.3, and C.8, the

bounds computed in C.6 and C.7 are redundant; however, we included them to help describe

the solution space.

Constraints on Size totals

Tzxt,i ≤ datTzt,iTz
r
t,i + (1.0− datTzt,i)uTzt,i ∀ (t, i) (C.9)

Tzxt,i ≥ datTzt,iTz
r
t,i + (1.0− datTzt,i) lT zt,i ∀ (t, i) (C.10)

uTzt,i =
∑

c∈County

[
datPopt,c,iPop

r
t,c,i + (1.0− datPopt,c,i)nt,c,iut,i

]
∀ (t, i) (C.11)

lT zt,i =
∑

c∈County

[
datPopt,c,iPop

r
t,c,i + (1.0− datPopt,c,i)nt,c,ilt,i

]
∀ (t, i) (C.12)

∑
c∈County

Popxt,c,i = Tzxt,i ∀ (t, i) (C.13)

Constraints C.9 through C.13 repeat the structure of constraints C.4 through C.8 for

the totals Tzxt,i of each size category.
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Constraints on State totals

∑
c∈County

Tcxt,c = P tot
t ∀ (t) (C.14)

∑
i∈SizeA

Tzxt,i = P tot
t ∀ (t) (C.15)

Equality constraints C.14 and C.15 state that the totals of the sub-totals must equal the

State total P tot
t of the respective population type.

Constraints on Population relations

PopRt,c,z1 19 = Popxt,c,z1 9 + Popxt,c,z10 19 ∀ (t) (C.16)

PopRt,c,z20 199 = Popxt,c,z20 49 + Popxt,c,z50 99 + Popxt,c,z100 199 ∀ (t) (C.17)

PopRt,c,z200 up = Popxt,c,z200 499 + Popxt,c,z500 up ∀ (t) (C.18)

PopRDairy,c,j + PopRPreslaughter,c,j ≤ PopRAllCattle,c,j ∀ (c ∈ County, j ∈ SizeB) (C.19)

Constraints C.16-C.18 aggregate the populations from the size ranges of SizeA to those

of SizeB. Inequality C.19 defines the relationship discussed in section 4.2 and enables us to

assemble the third cattle type of TypeB, Beef , as PopRBeef,c,j = PopRAllCattle,c,j−PopRDairy,c,j−

PopRPreslaughter,c,j for every county c and j ∈ TypeB.
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C.1.2 Sales and shipments data estimation

For Sales, Movements, and Slaughter data, we consider another a set of shipment types

ShipType = {All Shipments, Slaughter}. We formulated the parallel problem for the non-

disclosed data elements which describe the movements and slaughter of cattle. To estimate

shipments Salesxq,c,i, County totals Tc
(s),x
q,c , and State totals for each size category Tz

(s),x
q,i we

solve

Maximize
∑

q∈ShipType

∑
c∈County

∑
i∈SizeA

(
−
Salesxq,c,i
Stot
q

log

[
Salesxq,c,i
Stot
q

+ 1.0− datSalesq,c,isign
(
Salesrq,c,i

)])
.

(C.20)

Subject to

Constraints on Population values

Salesxq,c,i ≤ datSalesq,c,iSales
r
q,c,i+(1.0− datSalesq,c,i)n(s)

q,c,iu
(s)
q,i ∀ (q ∈ ShipType, c ∈ County, i ∈ SizeA)

(C.21)

Salesxq,c,i ≥ datSalesq,c,iSales
r
q,c,i + (1.0− datSalesq,c,i)n(s)

q,c,il
(s)
q,i ∀ (q, c, i) (C.22)

Constraints on County totals

Tc(s),xq,c ≤ datTc(s)q,cTc
(s),r
q,c +

(
1.0− datTc(s)q,c

)
uTc(s)q,c ∀ (q, c) (C.23)

Tc(s),xq,c ≥ datTc(s)q,cTc
(s),r
q,c +

(
1.0− datTc(s)q,c

)
lT c(s)q,c ∀ (q, c) (C.24)
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uTc(s)q,c =
∑

i∈SizeA

[
datSalesq,c,iSales

r
q,c,i + (1.0− datSalesq,c,i)n(s)

q,c,iu
(s)
q,i

]
∀ (q, c) (C.25)

lT c(s)q,c =
∑

i∈SizeA

[
datSalesq,c,iSales

r
q,c,i + (1.0− datSalesq,c,i)n(s)

q,c,il
(s)
q,i

]
∀ (q, c) (C.26)

∑
i∈SizeA

Salesxq,c,i = Tc(s),xq,c ∀ (q, c) (C.27)

Constraints on Size totals

Tz
(s),x
q,i ≤ datTz

(s)
q,i Tz

(s),r
q,i +

(
1.0− datTz(s)q,i

)
uTz

(s)
q,i ∀ (q, i) (C.28)

Tz
(s),x
q,i ≥ datTz

(s)
q,i Tz

(s),r
q,i +

(
1.0− datTz(s)q,i

)
lT z

(s)
q,i ∀ (q, i) (C.29)

uTz
(s)
q,i =

∑
c∈County

[
datSalesq,c,iSales

r
q,c,i + (1.0− datSalesq,c,i)n(s)

q,c,iu
(s)
q,i

]
∀ (q, i) (C.30)

lT z
(s)
q,i =

∑
c∈County

[
datSalesq,c,iSales

r
q,c,i + (1.0− datSalesq,c,i)n(s)

q,c,il
(s)
q,i

]
∀ (q, i) (C.31)

∑
c∈County

Salesxq,c,i = Tz
(s),x
q,i ∀ (q, i) (C.32)
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Constraints on State totals

∑
c∈County

Tc(s),xq,c = Stot
q ∀ (q) (C.33)

∑
i∈SizeA

Tz
(s),x
q,i = Stot

q ∀ (q) (C.34)

Constraint on Shipment relations

Tc
(s),x
Slaughter,c ≤ Tc

(s),x
AllMovement,c ∀ (c, i) (C.35)

The primary structural difference in this pair of optimization problems is the aggrega-

tions and relations of the last constraints of each. The shipment formulation only relates

the two types through county totals Tc
(s),x
q,c and not through the sub-elements as in the

population formulation. For the objectives of this chapter, there is not a need to add any

assumptions to the relationship between the slaughter shipments and the total shipments

beyond the assumption-less relationship of inequality C.35. The aggregated populations

PopRt,c,j, the county shipment totals Tc
(s),x
q,c , and the largest category of slaughter shipments

SalesxSlaughter,c,z500 up compose the set of inputs for the estimation of cattle movement pa-

rameters described in section 4.3.

C.2 Results of Optimization

In the appendix 4.A, the formulations of two optimization problems that estimate all non-

disclosed elements of the particular USDA NASS data sets which are used in this chapter.

We quantify the amount of estimated data for each State in tables C.1 and C.2. Table C.1
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presents the numbers of populations estimated for each State by count and percentage as

well as the number (head) of cattle assigned across these populations. The populations are

counted by summing over all three types of TypeA = {Dairy, Preslaughter, All Cattle}.

This method of counting induces double counting since cattle in the first two types also be-

long to the third type, but offers a systematic quantification of the amount of data estimated.

The percentage of cattle assigned through the estimation demonstrates that in situations

where many populations are estimated the significance of these populations is less < 7%.

The States of Kansas and Texas are exceptions to the trend of small fractions of the total

cattle being assigned through estimation. These two States appear to have relatively similar

percentages of estimated populations when compared to the other States, yet they assign

larger percentages of the cattle totals. These larger numbers of cattle suggest that a higher

number of counties in these States possess only a few large cattle operations, where the

sparsity and the size of the operations necessitate the non-disclosure of their data elements.

Table C.2 presents a parallel quantification for the estimations of the shipment distribu-

tions with counts similarly aggregated over ShipType = {All Shipments, Slaughter}. The

results of table C.2 are comparable to those of table C.1.

State Count Count % Head Head %

Arkansas 170 10.79 55, 748 3.06

Colorado 221 16.44 178, 472 4.46

Iowa 391 18.81 149, 802 2.52

Kansas 524 23.76 1, 153, 577 12.20

Minnesota 387 21.18 132, 701 3.83

Missouri 500 31.33 112, 753 2.51

Nebraska 399 20.43 552, 159 5.89

Oklahoma 330 20.41 381, 148 6.55

South Dakota 282 20.35 112, 648 2.62

Continued on next page
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Table C.1 – Continued from previous page

State Count Count % Head Head %

Texas 697 13.07 1, 513, 115 8.81

Table C.1: Totals and percentages of estimated cattle

populations

State Count Count % Head Head %

Arkansas 139 13.24 75, 326 7.56

Colorado 160 17.86 165, 694 3.20

Iowa 165 11.90 163, 735 2.75

Kansas 327 22.24 1, 958, 683 13.71

Minnesota 182 14.94 108, 631 4.74

Missouri 334 20.93 213, 464 8.18

Nebraska 242 15.16 1, 144, 166 8.98

Oklahoma 200 18.55 407, 340 8.74

South Dakota 156 16.88 155, 108 4.37

Texas 720 20.25 3, 055, 251 17.38

Table C.2: Totals and percentages of estimated cattle

shipments

Table C.3 displays the solution for pxt1,j1,t2,j2,dist sorted by the origin and destination pairs

in the left column and the distances between the county centers in the rows. The cattle

types of Dairy, Beef , and Preslaughter are denoted respectively by D, B, and P to be

brief.
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Source → Destination d0 d100 d200 d500 d1000

D, z1 19→ D, z1 19 0.3748829 0.2107100 0.0732444 0.1286620 0.2043053

D, z20 199→ D, z1 19 2.6880019 0.0551637 0.0144204 0.0026045 0.0

D, z200 up→ D, z1 19 0.3308997 0.0030519 0.0024367 0.0067531 0.0050407

D, z1 19→ D, z20 199 0.0142987 0.0078986 0.0004281 0.0012359 0.0051593

D, z20 199→ D, z20 199 0.0 0.0 0.0 0.0 0.0

D, z200 up→ D, z20 199 0.0 0.0 0.0 0.0 0.0

D, z1 19→ D, z200 up 0.1359276 0.0187450 0.0155348 0.0996421 0.1292015

D, z20 199→ D, z200 up 0.0 0.0 0.0 0.0 0.0

D, z200 up→ D, z200 up 0.0 0.0 0.0 0.0 0.0

D, z1 19→ B, z1 19 0.2687743 0.0390975 0.0171808 0.0807097 0.1742045

D, z20 199→ B, z1 19 0.0 0.0 0.0 0.0 0.0

D, z200 up→ B, z1 19 0.0360669 0.0076309 0.0007037 0.0 0.0

D, z1 19→ B, z20 199 0.2088205 0.0370924 0.0201817 0.1386829 0.2043643

D, z20 199→ B, z20 199 0.0 0.0 0.0 0.0004745 0.0

D, z200 up→ B, z20 199 0.0204587 0.0056272 0.0005575 0.0008731 0.0

D, z1 19→ B, z200 up 0.1948755 0.0350860 0.0159960 0.1036465 0.3731019

D, z20 199→ B, z200 up 0.0 0.0 0.0 0.0 0.0013401

D, z200 up→ B, z200 up 1.7686314 0.0004226 0.0004293 0.0241026 0.0005980

B, z1 19→ D, z1 19 0.1549233 0.0 0.0 0.0 0.0

B, z20 199→ D, z1 19 0.3219837 0.0046190 0.0 0.0 0.0

B, z200 up→ D, z1 19 0.0093844 0.0 0.0 0.0 0.0

B, z1 19→ D, z20 199 0.0 0.0 0.0 0.0 0.0

B, z20 199→ D, z20 199 0.0 0.0 0.0 0.0 0.0

B, z200 up→ D, z20 199 0.0 0.0 0.0 0.0 0.0

Continued on next page
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Table C.3 – Continued from previous page

Source → Destination d0 d100 d200 d500 d1000

B, z1 19→ D, z200 up 0.0 0.0 0.0 0.0 0.0

B, z20 199→ D, z200 up 0.0 0.0 0.0 0.0 0.0

B, z200 up→ D, z200 up 0.0 0.0 0.0 0.0 0.0

B, z1 19→ B, z1 19 0.0 0.0 0.0 0.0 0.0

B, z20 199→ B, z1 19 0.0 0.0 0.0 0.0 0.0

B, z200 up→ B, z1 19 0.0116617 0.0 0.0 0.0 0.0

B, z1 19→ B, z20 199 0.0 0.0 0.0 0.0 0.0

B, z20 199→ B, z20 199 0.0 0.0 0.0 0.0 0.0

B, z200 up→ B, z20 199 1.4740526 0.0 0.0 0.0 0.0

B, z1 19→ B, z200 up 0.0 0.0 0.0 0.0 0.0

B, z20 199→ B, z200 up 0.0 0.0 0.0 0.0 0.0

B, z200 up→ B, z200 up 0.8815763 0.0 0.0 0.0 0.0

B, z1 19→ P, z1 19 0.0934555 0.0015552 0.0005454 0.0 0.0044008

B, z20 199→ P, z1 19 0.0 0.0 0.0 0.0 0.0

B, z200 up→ P, z1 19 0.0018910 0.0 0.0 0.0002278 0.0

B, z1 19→ P, z20 199 0.2044223 0.0084513 0.0004080 0.0001565 0.0005884

B, z20 199→ P, z20 199 0.0 0.0 0.0 0.0 0.0

B, z200 up→ P, z20 199 0.1459641 0.0 0.0007071 0.0002750 0.0

B, z1 19→ P, z200 up 0.0 0.0 0.0 0.0 0.0

B, z20 199→ P, z200 up 0.0 0.0 0.0 0.0 0.0

B, z200 up→ P, z200 up 0.6325839 0.0 0.0 0.0008162 0.0

Table C.3: Estimated movement parameters pxt1,j1,t2,j2,dist·
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C.3 Further Results

Tables C.4, C.5, and C.6 display the solutions of the slaughter, expiration, and birth proba-

bilities for the first 10 alphabetical counties in each of the 10 States. To receive an electronic

copy of the full set of these results, or of the full solutions of the two formulations described

in appendix A, please contact the author to place your request.

County State Type z1 19 z20 199 z200 up

Allen Kansas P 0.5 0.036512368 0.033738401

D 0 0 0

B 0.009230631 0.010457562 0.007486202

Anderson Kansas P 0.110336388 0.093087101 0.023255814

D 0 0 0

B 0.009626369 0.011963276 0.007258185

Atchison Kansas P 0.329837167 0.1932723 0.023255814

D 0 0 0

B 0.008852841 0.006444239 0.00806116

Barber Kansas P 0.495192308 0.172171946 0.035871536

D 0 0 0

B 0.015204733 0.016840585 0.013123124

Barton Kansas P 0.495192308 0.185803167 0.043736865

D 0 0 0

B 0.011760191 0.013612247 0.004658081

Bourbon Kansas P 0.119362722 0.039255861 0.048816568

D 0 0 0

B 0.008461298 0.015055827 0.007137421

Brown Kansas P 0.5 0.030375102 0.025395369
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D 0 0 0

B 0.012261904 0.01085365 0.008656168

Butler Kansas P 0.083982065 0.040468081 0.041906406

D 0 0 0

B 0.016454385 0.022280143 0.014439649

Chase Kansas P 0.5 0.06873808 0.040341958

D 0 0 0

B 0.019976392 0.019796885 0.013368885

Chautauqua Kansas P 0.5 0.031011781 0.495192308

D 0 0 0

B 0.01133813 0.015032186 0.008972601

Arkansas Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.017942335 0 0.019670195

Ashley Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.009037572 0.006588376 0.076923077

Baxter Arkansas P 0.5 0.495192308 0.495192308

D 0 0 0

B 0.015777869 0.01046699 0.013148033

Benton Arkansas P 0.5 0.495192308 0.495192308

D 0 0 0

B 0.007363092 0.006957121 0.00704525
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Boone Arkansas P 0.172865974 0.040994943 0.495192308

D 0 0 0

B 0.007423113 0.010207347 0.007849095

Bradley Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.010429088 0.001657369 0.017421946

Calhoun Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.013839735 0.009905294 0.076923077

Carroll Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.007834269 0.010446174 0.008222271

Chicot Arkansas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.027957615 0.000620787 0.015409635

Clark Arkansas P 0.023255814 0.495192308 0.495192308

D 0 0 0

B 0.009266604 0.007784026 0.009533164

Adams Colorado P 0.051547394 0.049326205 0.495192308

D 0 0 0

B 0.008948174 0.013501349 0.003481196

Alamosa Colorado P 0.397373165 0.495192308 0.495192308

D 0 0 0
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B 0.032068358 0.012498428 0.003606102

Arapahoe Colorado P 0.086108753 0.495192308 0.495192308

D 0 0 0

B 0.008733645 0.020601471 0.002244155

Archuleta Colorado P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.076923077 0.017150424 0.021813076

Baca Colorado P 0.495192308 0.028683181 0.038064109

D 0 0 0

B 0.017125729 0.012592866 0.006278118

Bent Colorado P 0.235839423 0.201277225 0.031941835

D 0 0 0

B 0.019648351 0.016180213 0.001168923

Boulder Colorado P 0.12099356 0.495192308 0.023255814

D 0 0 0

B 0.009161603 0.005428329 0.004044157

Broomfield Colorado P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.076923077 0.076923077 0.076923077

Chaffee Colorado P 0.5 0.495192308 0.495192308

D 0 0 0

B 0.013937867 0.014442408 0.006391623

Cheyenne Colorado P 0.385232552 0.041487515 0.023255814
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D 0 0 0

B 0.032230188 0 0

Adair Iowa P 0.08044667 0.037194898 0.023255814

D 0 0 0

B 0.010715823 0.008675187 0.007509519

Adams Iowa P 0.118137402 0.023255814 0.023255814

D 0 0 0

B 0.012379519 0.006601231 0.007812842

Allamakee Iowa P 0.031380403 0.02430315 0.023255814

D 0 0 0

B 0.011822923 0.008790575 0

Appanoose Iowa P 0.212919265 0.023255814 0.023255814

D 0 0 0

B 0.008550749 0.008732926 0.007911649

Audubon Iowa P 0.023255814 0.023255814 0.023255814

D 0 0 0

B 0.010317745 0.011199666 0.008207629

Benton Iowa P 0.202356581 0.023255814 0.036682697

D 0 0 0

B 0.011218631 0.002839699 0.008215449

Black Hawk Iowa P 0.024470922 0.023255814 0.023255814

D 0 0 0

B 0.012815887 0.008196206 0.010250613

Continued on next page

141



Table C.4 – Continued from previous page

County State Type z1 19 z20 199 z200 up

Boone Iowa P 0.076327051 0.048974686 0.023255814

D 0 0 0

B 0.009852973 0.006226539 0.003807872

Bremer Iowa P 0.023255814 0.023255814 0.023255814

D 0 0 0

B 0.018062367 0.001609874 0.008413108

Buchanan Iowa P 0.095232698 0.023255814 0.023255814

D 0 0 0

B 0.01658426 0 0.010008496

Aitkin Minnesota P 0.094095988 0.495192308 0.495192308

D 0 0 0

B 0.009414384 0.003805876 0.008915079

Anoka Minnesota P 0.026166117 0.044030492 0.495192308

D 0 0 0

B 0.017678372 0 0.076923077

Becker Minnesota P 0.040570189 0.023255814 0.023255814

D 0 0 0

B 0.01027713 0.000147299 0.006313001

Beltrami Minnesota P 0.192810937 0.033838393 0.495192308

D 0 0 0

B 0.010125093 0.011269042 0.004419177

Benton Minnesota P 0.256082008 0.023255814 0.023255814

D 0 0 0
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B 0.009303556 0 0

Big Stone Minnesota P 0.14106771 0.023255814 0.023255814

D 0 0 0

B 0.026281989 0.011251358 0.020637848

Blue Earth Minnesota P 0.023255814 0.025909508 0.025031289

D 0 0 0

B 0.012861263 0.006442737 0.000144225

Brown Minnesota P 0.23404349 0.023255814 0.024324221

D 0 0 0

B 0.010990401 0.014762487 0.002716561

Carlton Minnesota P 0.095296062 0.107508242 0.495192308

D 0 0 0

B 0.008897847 0 0.001764042

Carver Minnesota P 0.023255814 0.023255814 0.023255814

D 0 0 0

B 0.012989327 0.014215573 0

Adair Missouri P 0.113873759 0.023255814 0.495192308

D 0 0 0

B 0.015949232 0.010638529 0.007637658

Andrew Missouri P 0.208097364 0.183503826 0.023255814

D 0 0 0

B 0.008233105 0.003147495 0.00953856

Atchison Missouri P 0.5 0.029339206 0.028649477
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D 0 0 0

B 0.012527719 0.009438482 0.013123369

Audrain Missouri P 0.242757101 0.023255814 0.028213303

D 0 0 0

B 0.009932618 0 0

Barry Missouri P 0.180302112 0.029109465 0.034977089

D 0 0 0

B 0.007603623 0.005135756 0.00702282

Barton Missouri P 0.031466518 0.036964084 0.050047837

D 0 0 0

B 0.00858394 0.00491464 0.007555362

Bates Missouri P 0.281939475 0.023255814 0.050304968

D 0 0 0

B 0.00832711 0.010737224 0.001841125

Benton Missouri P 0.142049026 0.023255814 0.023255814

D 0 0 0

B 0.008294364 0.005774341 0.007584192

Bollinger Missouri P 0.059999129 0.042487346 0.032044741

D 0 0 0

B 0.007385009 0.007971676 0.008206904

Boone Missouri P 0.218554343 0.103200221 0.495192308

D 0 0 0

B 0.00792694 0.008447651 0.007660508
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Adams Nebraska P 0.201144758 0.041179405 0.042548066

D 0 0 0

B 0.020900713 0.024872508 0.014937561

Antelope Nebraska P 0.074839164 0.056532324 0.033339779

D 0 0 0

B 0.016399335 0.017640911 0.006322647

Arthur Nebraska P 0.495192308 0.091503327 0.341841758

D 0 0 0

B 0.076923077 0.046621832 0

Banner Nebraska P 0.5 0.5 0.026193458

D 0 0 0

B 0.043763141 0.015056123 0.001422003

Blaine Nebraska P 0.495192308 0.495192308 0.023255814

D 0 0 0

B 0.063652728 0.028987279 0.006018489

Boone Nebraska P 0.081795671 0.04860457 0.032027837

D 0 0 0

B 0.020898201 0.012793252 0.006304617

Box Butte Nebraska P 0.5 0.060151633 0.039079407

D 0 0 0

B 0.019690691 0.016087895 0.011842795

Boyd Nebraska P 0.5 0.057585913 0.033045794

D 0 0 0
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B 0.025353629 0.014851542 0.00373573

Brown Nebraska P 0.5 0.034195102 0.04378072

D 0 0 0

B 0.0242513 0.02096682 0.008992986

Buffalo Nebraska P 0.220161259 0.023255814 0.038124145

D 0 0 0

B 0.011184891 0.012502991 0.007065253

Adair Oklahoma P 0.0859375 0.495192308 0.495192308

D 0 0 0

B 0.007818441 0.014269724 0.007138971

Alfalfa Oklahoma P 0.495192308 0.037011834 0.078730238

D 0 0 0

B 0.014818868 0.015349528 0.003717114

Atoka Oklahoma P 0.484475001 0.023255814 0.495192308

D 0 0 0

B 0.007946291 0.011040068 0.001014804

Beaver Oklahoma P 0.140429312 0.039618098 0.028946517

D 0 0 0

B 0.01953867 0.021694779 0.016281579

Beckham Oklahoma P 0.463181287 0.096744207 0.495192308

D 0 0 0

B 0.009249394 0.011239221 0.00716536

Blaine Oklahoma P 0.482273065 0.028375258 0.028619376
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D 0 0 0

B 0.017861551 0.012601011 0.01085919

Bryan Oklahoma P 0.073464254 0.023255814 0.025800989

D 0 0 0

B 0.007666567 0.011135779 0.002225489

Caddo Oklahoma P 0.241503031 0.038457463 0.495192308

D 0 0 0

B 0.008644533 0.011702546 0.005810811

Canadian Oklahoma P 0.241394806 0.403693352 0.049321851

D 0 0 0

B 0.008612362 0.012283982 0.010959348

Carter Oklahoma P 0.093753108 0.104225157 0.495192308

D 0 0 0

B 0.007525577 0.014768178 0.007132077

Aurora SouthDakota P 0.1553729 0.025934539 0.023255814

D 0 0 0

B 0.029418367 0.014039367 0.004550125

Beadle SouthDakota P 0.290465625 0.023255814 0.023255814

D 0 0 0

B 0.022776183 0.018050471 0.006241368

Bennett SouthDakota P 0.221462035 0.023255814 0.495192308

D 0 0 0

B 0.02942767 0.018426908 0.006482326
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Bon Homme SouthDakota P 0.089939776 0.036915117 0.023255814

D 0 0 0

B 0.016629124 0.012038847 0.004723059

Brookings SouthDakota P 0.311031245 0.023255814 0.023255814

D 0 0 0

B 0.016648927 0.013362236 0.008401178

Brown SouthDakota P 0.5 0.080357143 0.025677008

D 0 0 0

B 0.013674176 0.014563087 0.005185603

Brule SouthDakota P 0.141412544 0.039371962 0.023255814

D 0 0 0

B 0.028170523 0.024201846 0.004269409

Buffalo SouthDakota P 0.495192308 0.023255814 0.074527789

D 0 0 0

B 0.047489304 0.032072039 0

Butte SouthDakota P 0.5 0.042644015 0.495192308

D 0 0 0

B 0.011151988 0.01633013 0.009699981

Campbell SouthDakota P 0.190711884 0.023255814 0.032997901

D 0 0 0

B 0.076923077 0.020677038 0.005531828

Anderson Texas P 0.205991536 0.032203105 0.036288044

D 0 0 0
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B 0.006823256 0.009094842 0.007365105

Andrews Texas P 0.495192308 0.095961538 0.495192308

D 0 0 0

B 0.023982103 0.040550594 0.004026146

Angelina Texas P 0.064148406 0.02804128 0.495192308

D 0 0 0

B 0.007051296 0.008145837 0.008589059

Aransas Texas P 0.5 0.495192308 0.495192308

D 0 0 0

B 0.012332315 0.020462644 0.004441283

Archer Texas P 0.463581851 0.023255814 0.076579896

D 0 0 0

B 0.011354851 0.014409959 0.006038685

Armstrong Texas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.030039875 0.015952475 0.01240551

Atascosa Texas P 0.078324742 0.040192143 0.023255814

D 0 0 0

B 0.006404975 0.002946461 0.001532337

Austin Texas P 0.023255814 0.118222788 0.495192308

D 0 0 0

B 0.006394747 0.008172323 0.007622772

Bailey Texas P 0.5 0.024905863 0.054255332
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D 0 0 0

B 0.020569594 0.027219799 0.013538062

Bandera Texas P 0.495192308 0.495192308 0.495192308

D 0 0 0

B 0.006923185 0.004045219 0.016307025

Table C.4: Estimated slaughter probabilities slxc1,t1,j1

County State Type z1 19 z20 199 z200 up

Allen Kansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009066039

B 0.009615385 0.009615 0.009615385

Anderson Kansas P 0.009615385 0.009615 0.005621609

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Atchison Kansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Barber Kansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.003282366

Barton Kansas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.007749956
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B 0.009615385 0.009615 0.009615385

Bourbon Kansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.005741 0.009615385

Brown Kansas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009166129

Butler Kansas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.001923077 0.001923 0.001923077

Chase Kansas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.003246176

Chautauqua Kansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.007775092

Arkansas Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Ashley Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Baxter Arkansas P 0.009615385 0.009615 0.009615385
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D 0.009615385 0.009615 0.009615385

B 0.001923077 0.009615 0.004650145

Benton Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.007070624

B 0.009615385 0.009615 0.009615385

Boone Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.008950444

Bradley Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Calhoun Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Carroll Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.008470125

Chicot Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Clark Arkansas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385
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Adams Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Alamosa Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Arapahoe Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Archuleta Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.00434 0.001923077

Baca Colorado P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bent Colorado P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Boulder Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Broomfield Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385
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B 0.009615385 0.009615 0.009615385

Chaffee Colorado P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Cheyenne Colorado P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Adair Iowa P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Adams Iowa P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Allamakee Iowa P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Appanoose Iowa P 0.009615385 0.003894 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Audubon Iowa P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Benton Iowa P 0.009615385 0.009615 0
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D 0.009615385 0.009615 0.008770647

B 0.009615385 0.009615 0.009615385

Black Hawk Iowa P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Boone Iowa P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bremer Iowa P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Buchanan Iowa P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Aitkin Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Anoka Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Becker Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385
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Beltrami Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Benton Minnesota P 0.009615385 0.000765 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Big Stone Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Blue Earth Minnesota P 0.003578613 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Brown Minnesota P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Carlton Minnesota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Carver Minnesota P 0.009615385 0.009615 0.006773745

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Adair Missouri P 0.009615385 0.005991 0.009615385

D 0.003205128 0.009615 0.009615385
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B 0.001923077 0.009615 0.009311731

Andrew Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Atchison Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Audrain Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Barry Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.008907378

B 0.009615385 0.009615 0.009615385

Barton Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bates Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Benton Missouri P 0.009615385 0.009615 0.009615385

D 0.003205128 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bollinger Missouri P 0.007325991 0 0.009615385
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D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Boone Missouri P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Adams Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.001923077 0.001923 0.001923077

Antelope Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.007830446

B 0.009615385 0.009615 0.009615385

Arthur Nebraska P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Banner Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Blaine Nebraska P 0.009615385 0.009615 0.001017718

D 0.009615385 0.009615 0.009615385

B 0.001923077 0.009615 0.009615385

Boone Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385
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Box Butte Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.005118296

Boyd Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Brown Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.007625446

Buffalo Nebraska P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.005460091

B 0.009615385 0.009615 0.009578172

Adair Oklahoma P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.007656286

B 0.009615385 0.006286 0.009615385

Alfalfa Oklahoma P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Atoka Oklahoma P 0.009615385 0.003566 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Beaver Oklahoma P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385
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B 0.001923077 0.001923 0.001923077

Beckham Oklahoma P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009484965

Blaine Oklahoma P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.006758381

B 0.001923077 0.009615 0.005528052

Bryan Oklahoma P 0.009615385 0.002592 0.009615385

D 0.009615385 0.009615 0.007019634

B 0.009615385 0.009615 0.009615385

Caddo Oklahoma P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Canadian Oklahoma P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.005396559

Carter Oklahoma P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.006145 0.009615385

Aurora SouthDakota P 0.009615385 0.009615 0.000425186

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Beadle SouthDakota P 0.009615385 0.009615 0
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D 0.009615385 0.009615 0.009615385

B 0.001923077 0.009615 0.009615385

Bennett SouthDakota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bon Homme SouthDakota P 0.009615385 0 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Brookings SouthDakota P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.008689305

Brown SouthDakota P 0.009615385 0.009615 0

D 0.003205128 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Brule SouthDakota P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Buffalo SouthDakota P 0.009615385 0.00528 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Butte SouthDakota P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.007202598
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Campbell SouthDakota P 0.009615385 0.009615 0.007468162

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Anderson Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Andrews Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Angelina Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Aransas Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Archer Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.007896358

B 0.009615385 0.009615 0.009615385

Armstrong Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.00447016

Atascosa Texas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009615385
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B 0.009615385 0.009615 0.009615385

Austin Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Bailey Texas P 0.009615385 0.009615 0

D 0.009615385 0.009615 0.009547419

B 0.009615385 0.009615 0.003742052

Bandera Texas P 0.009615385 0.009615 0.009615385

D 0.009615385 0.009615 0.009615385

B 0.009615385 0.009615 0.009615385

Table C.5: Estimated culling probabilities dtxc1,t1,j1

County State Type z1 19 z20 199 z200 up

Allen Kansas P 0 0 0

D 0.016129032 0.018662672 0.027777778

B 0.019230769 0.019230769 0.018348469

Anderson Kansas P 0 0 0

D 0.016129032 0.018910942 0.025254026

B 0.019230769 0.019230769 0.019230769

Atchison Kansas P 0 0 0

D 0.016129032 0.019542332 0.016129032

B 0.019230769 0.015502172 0.019230769
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Barber Kansas P 0 0 0

D 0.016129032 0.017449682 0.025009062

B 0.019230769 0.019230769 0.019230769

Barton Kansas P 0 0 0

D 0.016129032 0.018100417 0.027777778

B 0.019230769 0.019230769 0.016904635

Bourbon Kansas P 0 0 0

D 0.016129032 0.019026778 0.016129032

B 0.019230769 0.019230769 0.019230769

Brown Kansas P 0 0 0

D 0.016129032 0.01954821 0.016129032

B 0.019230769 0.019230769 0.019230769

Butler Kansas P 0 0 0

D 0.016129032 0.016129032 0.025777242

B 0.019230769 0.019230769 0.019230769

Chase Kansas P 0 0 0

D 0.016129032 0.018304191 0.025574486

B 0.019230769 0.019230769 0.019230769

Chautauqua Kansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Arkansas Arkansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

Continued on next page

164



Table C.6 – Continued from previous page

County State Type z1 19 z20 199 z200 up

B 0.018594586 0.006592623 0

Ashley Arkansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.015163695 0

Baxter Arkansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Benton Arkansas P 0 0 0

D 0.016129032 0.018729768 0.027777778

B 0.019230769 0.015884904 0.019230769

Boone Arkansas P 0 0 0

D 0.016129032 0.018321971 0.016129032

B 0.019230769 0.019230769 0.019230769

Bradley Arkansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.009386676 0.019230769

Calhoun Arkansas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.016786466 0

Carroll Arkansas P 0 0 0

D 0.016129032 0.018713055 0.023531374

B 0.019230769 0.019230769 0.019230769

Chicot Arkansas P 0 0 0

Continued on next page

165



Table C.6 – Continued from previous page

County State Type z1 19 z20 199 z200 up

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.007529768 0.019230769

Clark Arkansas P 0 0 0

D 0.016129032 0.017251212 0.016129032

B 0.019230769 0.016591987 0.019230769

Adams Colorado P 0 0 0

D 0.027777778 0.016129032 0.026169606

B 0.019230769 0.019230769 0.016593653

Alamosa Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.013140765

Arapahoe Colorado P 0 0 0

D 0.016129032 0.017750992 0.016129032

B 0.019230769 0.01467602 0.007398824

Archuleta Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Baca Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.018235219

Bent Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.013021909
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Boulder Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.012726451 0.012445706

Broomfield Colorado P 0 0 0

D 0.016129032 0.0178693 0.016129032

B 0 0 0

Chaffee Colorado P 0 0 0

D 0.027777778 0.016129032 0.016129032

B 0.019230769 0.019230769 0.015094119

Cheyenne Colorado P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.00643659 0.011153653

Adair Iowa P 0 0 0

D 0.016129032 0.019286284 0.016129032

B 0.019230769 0.017229809 0.019230769

Adams Iowa P 0 0 0

D 0.016129032 0.019452005 0.016129032

B 0.019230769 0.014771435 0.019230769

Allamakee Iowa P 0 0 0

D 0.016129032 0.016845997 0.027021995

B 0.019230769 0.014632652 0.011804873

Appanoose Iowa P 0 0 0

D 0.016129032 0.018996018 0.016129032
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B 0.019230769 0.017831937 0.019230769

Audubon Iowa P 0 0 0

D 0.016129032 0.019231784 0.016129032

B 0.019230769 0.019230769 0.018719666

Benton Iowa P 0 0 0

D 0.016129032 0.018137318 0.027777778

B 0.019230769 0.011288747 0.019230769

Black Hawk Iowa P 0 0 0

D 0.016129032 0.018219969 0.023410277

B 0.019230769 0.01664206 0.019230769

Boone Iowa P 0 0 0

D 0.016129032 0.019055274 0.016129032

B 0.019230769 0.014082176 0.014294893

Bremer Iowa P 0 0 0

D 0.016129032 0.018072216 0.024570503

B 0.019230769 0.009798775 0.019230769

Buchanan Iowa P 0 0 0

D 0.027777778 0.017809639 0.016129032

B 0.019230769 0.009075366 0.019230769

Aitkin Minnesota P 0 0 0

D 0.027777778 0.016129032 0.016129032

B 0.019230769 0.011744888 0.019230769

Anoka Minnesota P 0 0 0
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D 0.016129032 0.016679414 0.016129032

B 0.019230769 0.0072468 0

Becker Minnesota P 0 0 0

D 0.027777778 0.016129032 0.023296426

B 0.019230769 0.00892994 0.015886639

Beltrami Minnesota P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.015370458

Benton Minnesota P 0 0 0

D 0.027777778 0.017039124 0.024490055

B 0.019230769 0.007218229 0.011040238

Big Stone Minnesota P 0 0 0

D 0.016129032 0.016883226 0.019252458

B 0.019230769 0.019230769 0.019230769

Blue Earth Minnesota P 0 0 0

D 0.016129032 0.020952834 0.016129032

B 0.019230769 0.005815579 0.010069174

Brown Minnesota P 0 0 0

D 0.016129032 0.018419416 0.024182449

B 0.019230769 0.019230769 0.014454431

Carlton Minnesota P 0 0 0

D 0.027777778 0.016129032 0.016432883

B 0.019230769 0.009034055 0
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Carver Minnesota P 0 0 0

D 0.016129032 0.017495302 0.024388714

B 0.019230769 0.019230769 0.01146673

Adair Missouri P 0 0 0

D 0.027777778 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Andrew Missouri P 0 0 0

D 0.016129032 0.019765496 0.016129032

B 0.019230769 0.012484502 0.019230769

Atchison Missouri P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.018624682 0.019230769

Audrain Missouri P 0 0 0

D 0.027777778 0.01817127 0.016129032

B 0.019230769 0.008879543 0.011629212

Barry Missouri P 0 0 0

D 0.027777778 0.018639334 0.027777778

B 0.019230769 0.013886066 0.019230769

Barton Missouri P 0 0 0

D 0.027777778 0.018786645 0.016129032

B 0.019230769 0.013918873 0.019230769

Bates Missouri P 0 0 0

D 0.027777778 0.019215486 0.027777778
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B 0.019230769 0.019230769 0.014056776

Benton Missouri P 0 0 0

D 0.027777778 0.018928524 0.016129032

B 0.019230769 0.014885147 0.019230769

Bollinger Missouri P 0 0 0

D 0.027777778 0.016129032 0.016129032

B 0.019230769 0.017367646 0.019230769

Boone Missouri P 0 0 0

D 0.016129032 0.017179028 0.02158095

B 0.019230769 0.0171166 0.019230769

Adams Nebraska P 0 0 0

D 0.016129032 0.016129032 0.02516782

B 0.019230769 0.019230769 0.019230769

Antelope Nebraska P 0 0 0

D 0.016129032 0.018539226 0.027777778

B 0.019230769 0.019230769 0.018592555

Arthur Nebraska P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0 0.019230769 0.011942628

Banner Nebraska P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.012373642

Blaine Nebraska P 0 0 0
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D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.018236777

Boone Nebraska P 0 0 0

D 0.016129032 0.018639569 0.016129032

B 0.019230769 0.019230769 0.018473283

Box Butte Nebraska P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Boyd Nebraska P 0 0 0

D 0.016129032 0.017388702 0.026580313

B 0.019230769 0.019230769 0.015781254

Brown Nebraska P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Buffalo Nebraska P 0 0 0

D 0.027777778 0.01828023 0.027777778

B 0.019230769 0.019230769 0.019230769

Adair Oklahoma P 0 0 0

D 0.027777778 0.018647217 0.027777778

B 0.019230769 0.019230769 0.019230769

Alfalfa Oklahoma P 0 0 0

D 0.016129032 0.017098853 0.016129032

B 0.019230769 0.019230769 0.016251749
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Atoka Oklahoma P 0 0 0

D 0.027777778 0.01731787 0.016129032

B 0.019230769 0.019230769 0.013325167

Beaver Oklahoma P 0 0 0

D 0.027777778 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Beckham Oklahoma P 0 0 0

D 0.016129032 0.017058426 0.016129032

B 0.019230769 0.019230769 0.019230769

Blaine Oklahoma P 0 0 0

D 0.016129032 0.017714165 0.027777778

B 0.019230769 0.019230769 0.019230769

Bryan Oklahoma P 0 0 0

D 0.027777778 0.017917387 0.027777778

B 0.019230769 0.019230769 0.014477112

Caddo Oklahoma P 0 0 0

D 0.016129032 0.017698719 0.016129032

B 0.019230769 0.019230769 0.018342818

Canadian Oklahoma P 0 0 0

D 0.016129032 0.017855236 0.016129032

B 0.019230769 0.019230769 0.019230769

Carter Oklahoma P 0 0 0

D 0.027777778 0.016129032 0.016129032
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B 0.019230769 0.019230769 0.019230769

Aurora SouthDakota P 0 0 0

D 0.027777778 0.017128887 0.02732635

B 0.019230769 0.019230769 0.016435762

Beadle SouthDakota P 0 0 0

D 0.016129032 0.01734951 0.024956718

B 0.019230769 0.019230769 0.01854649

Bennett SouthDakota P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.018476057

Bon Homme SouthDakota P 0 0 0

D 0.016129032 0.018333642 0.016129032

B 0.019230769 0.019230769 0.016575628

Brookings SouthDakota P 0 0 0

D 0.016129032 0.01801976 0.026643809

B 0.019230769 0.019230769 0.019230769

Brown SouthDakota P 0 0 0

D 0.027777778 0.016129032 0.024472893

B 0.019230769 0.019230769 0.017270986

Brule SouthDakota P 0 0 0

D 0.016129032 0.016584687 0.023963025

B 0.019230769 0.019230769 0.016535861

Buffalo SouthDakota P 0 0 0
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County State Type z1 19 z20 199 z200 up

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.011762894

Butte SouthDakota P 0 0 0

D 0.027777778 0.016129032 0.022173289

B 0.019230769 0.019230769 0.019230769

Campbell SouthDakota P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0 0.019230769 0.017426546

Anderson Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.018076724 0.019230769

Andrews Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.014787344

Angelina Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.017048314 0.019230769

Aransas Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.012774542

Archer Texas P 0 0 0

D 0.016129032 0.017661326 0.027777778

B 0.019230769 0.019230769 0.018030699
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Armstrong Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.019230769 0.019230769

Atascosa Texas P 0 0 0

D 0.016129032 0.016129032 0.016282208

B 0.019230769 0.011278516 0.013382048

Austin Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.017532657 0.019230769

Bailey Texas P 0 0 0

D 0.016129032 0.016129032 0.027777778

B 0.019230769 0.019230769 0.019230769

Bandera Texas P 0 0 0

D 0.016129032 0.016129032 0.016129032

B 0.019230769 0.013295198 0.019230769

Table C.6: Estimated birth probabilities btxc1,t1,j1
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