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. INTRODUCTION ,'..'• -

Multi-phase sampling is a technique employed by researchers to obtain

estimates of parameters using information from previous samples of the same

popxilation. The most familiar agency to employ these techniques is the

United States Government. There, samples are drawn year after year from

the same group of elements, the people of the United States. Multi-phase

samrpling finds perhaps its widest application in censuses used to estimate

totals, average values, and the change in both.

This report is concerned with estimation of parameters in a population

using data from field surveys. Problems examined include estimation of the

mean of a character, when its procurement is highly expensive, or very dif-

ficult and determination of the change in a mean over a time interval. The

first problem involves a static population, the second involves a changing

population. The first is resolved using double sampling techniques, in

which estimates of parameters for one character are made more precise using

information from a second, correlated character. The second is resolved

using successive sampling techniques, in which information is used from

more than the two occasions to be used to estimate the change in the parameter.

Several methods for the latter are developed using estimates from totally

new samples, fixed samples, and slightly altered samples.

In both areas of multi-phase sampling, methods are developed to obtain

the highest precision possible under certain constraints. Methods are also

developed to ease sampling and calculation difficulties while maintaining

reasonably high precision.



DOUBLE SAMPLING

Sample Allocation: A Simple Case

Suppose in collection of data expensive techniques must be employed

to obtain sample values which are used to estimate a certain parameter.

The high cost involved precludes a large sanrple. In turn, a small sample

precludes extremely precise estimates. Suppose the character of interest

has a known relationship to another character more cheaply evaluated.

With methods developed in the following work more precise estimates may be

obtained using the relationship thaja would have been obtained had the ap-

propriation been expended in estimating the parameter of the character of

interest alone. Throughout this report one of the primary concerns will be

to obtain highest precision with a certain cost.

In the case of double sampling, the most important problem is the proper

allocation of sample elements to the two samples. The first sample is involved

in estimating the parameter of the character Y of secondary interest. The

population is then stratified according to Y_. From the strata thus established

a subsample is drawn which is used to find an estimate of X the mean of the

character of primary interest X.

The population is of size N with N. elements in each of the i_,

i = 1, 2, . . . , s_, strata. The proportion P, of the population in stratum i_

is

P. = N./K .

The first step in double sampling consists of randomly drawing n elements

from the N elements of the popvilation. A proportion of this sample p. , falls

into each of the i_ strata where

Pi = n^/n ,



with n. elements in each such stratum. The second step in the process

consists of randomly choosing m. elements from the n. elements in each

stratum. The second sample is of size m where

m = m^ + m-, + . . . + m .12 s

Let C^ be the total expenditure of the survey alloted for sampling and A

and B he the cost of obtaining a sample value for character X and Y_

respectively, then

Am + Bn = C .

In each stratum a sample meaxi for character X will be obtained, denoted

as X. . The overall sample mean x for X will be

X = y p. X. .

An individual sample value j_ for character X stratum i_ will be denoted by

X. . . An vinbiased estimate of x. is
ij 1

To find the optimum allocation for n and m a linear function of the x. . smd- - ij

p. must be found which is an unbiased estimates of X with variance smaller

than any other like fxmction. There are infinitely many functions whose

expected value is X, of the form

s s m.

Where the variance of F is given by:

s s m.

= y y y c... p. x.^
i=l j=l k=l ^^^ ^ ^^

i=l i ^ i=l ^ ^



the requirement of minimxim variance necessitates that the initial sample

size n_ be estimated by

n' = Cb/{a /aB + bB),

and the second sample size m be estimated by

m' = Ca/(aA+b /aB) .

Where,

s

a = y p.s.

b =
J p (x -x) .

i=l

Denote the variation of x within stratum i as s. , where, as before.

£ is the total appropriation for the sxirvey while A and 3_ are the amounts

to be allocated to collecting data on X and Y_ respectively. Since the

values for n^' and m' above are estimates and n and m are integers, these

estimates are improved by vising a^' £is defined by

V 2 ^ -1
^ 1 s. p. + p.q.n

i=l ^ ^ ^^

instead of a in n' and m' . Then substitute these values back into V(f) and

check whether the variance is smaller than with the original values.

*
Sample Allocation: A General Case

Jambunathan (i960) has considered the more special case where the cost

of taking an observation varies from stratum to stratvun. Denote the cost of

sampling from stratum i_ as A^, then Keyman's optimum allocations become



m^ = C p. s^/(a^+Bb) /a^

and

n' = Cb/(a.+Bb) /b

in the general case, where

a. = p. s. A.
1 111

and

t> = I P^ (x^-x)'

Under this general case of optimum allocation, the minimum variance V ism

given approximately by .
-

(a.+b /E)'^

V = —^
m C

However, it is possible to have m. greater than n. the expected size of

the i-th stratum. In which case no subsampling occiirs in that stratum in the

second sample. This occurs when

s. , 2

A. B
"

.- . 1

In this event optimxam allocation to the remaining strata must be reworked

vising new population and sample sizes deleting all such strata sizes.

Efficiency of Double Versvis Simple Random Sampling

No proof has been presented nor any estimate been made as to the ad-

vantages of using double sampling over simple random sampling. To compare



the two their relative efficiency must be calculated as though they were

applied with the same expenditure. To begin, redefine A., the cost of

sampling from stratum i_, as the product of B the cost of measuring Y_, and

the cost of measuring X in the i-th stratxim

2
A. = BD11

2
where D. is the unit cost of measuring x. .. The minimum variance, V , then

1 ij ' m

becomes

y p. s. D, + I p.(x.-x)^^111 ^11
V = B
m

_ 2
(s_ + r s)

= B —^

where s is a weighted mean of strata standard errors; that is.

s_ = y p. D. s.
D ^-^111

and r is the correlation coefficient of X and Y. How efficient this is in

relation to the varieince under simple random sampling, remains to be shown.

Employing simple random sampling to estimates X means that the cost

A of each sample element x determines a sample of size (C/A). Therefore,

vinder random sampling.

V = s^A/C = B^D^s^/C
ran

2
where D is the ratio of A to B. Denote by E the relative efficiency of

double sampling to random sampling, then



ran .
-^

,

Double Sampling, with subsequent stratification, will produce gains

in precision if E < 1, or if r < D-(s /s). If all the D.'s are the same,

i.e., the cost of sampling in all strata is the same, and commonly equal to

D, the efficiency becomes

where s is the weighted mean of strata standard deviations and s_ is the overall

sample standard deviation. In this case, gains will take place when

r < D(l--) or if D > -^
1-^

s

Thus the efficiency of the design is dependent upon the correlation of the

two characters, X and Y_. The efficiency is also a function of the relative

cost of measuring X as compared to the cost of measuring Y and the ratio

of the weighted meaji of strata standard deviations gind the overall sample

standard deviation.

This is as one would have suspected beforehand. If the correlation of

the two characters were small, Y would give no information about X and

stratification according to Y after the first sample would be ambiguous as

to X. Also, if the cost of measuring character Y is approximately the same

as that for character X, there woiild be little point in stratifying and

introducing additional complications. This also applies to the standard

error ratio. If the two stsmdsird errors are not sufficiently diverse, the



cost differential must of necessity be great, perhaps larger than is

practically possible.

Ratio Estimates in Double Sampling

In Neyman's (1938) original discxassion, only one estimate of the

parameter of high cost, X was explored. Suidiatme (19^2) explored the pos-

sibility of more than the one estimator. The three proposed by Sukhatme

are all of the ratio type. Recall that from a population of size K, n sample

elements were randomly chosen which served to determine the parameter of the

less expensive character, Y. Using these sample estimates to stratify the

popiolation as to levels of Y_, m. elements were randomly chosen from the

n. in the i-th stratim, for a total of n elements in the second phase. From

these m elements the parameter X was estimated.

Let the ratio r. be defined as
1

X.

and the means y , y , x and r as
'n *^m*

,n 1™ 1 ^ 1™
i^n = nJ ^i' ^m=m.^ ^i' ^ = m.I ^» =^ = m .^ ^'

1=1 1=1 1=1 1=1

where y is the sample mean of the y. included in the second sample and

y is that of the y in the first. Consider the following ratio-type

estimates



- X -

^2 = ^ • ^m'

_ _ m(n-l) /- - - \

The first two are biased, while x is an unbiased estimate of X, the

popiilation parameter.

Using methods developed by Tukey (1956) and extended by Robson (1957)

and assviming that JH is infinitely large, Sukhatme (1962) shows that the

variances of the three esLimates are given by

-2 - - -2
2 ^ X 2 _ X „ x X 2

S + -—7- S - 2 — S 2 =— S - "—rr S

,- ,
^ y^ y ^m ^ ym ^ y/ y

-2 2 -2 2^ ^—
y s r s + 2ry s

v(x2) = -^^-^ + ^ 2L_Z21
,

.
Bi n

— —2 2 — —2 2 —

—

_ _ _s+rs-2rs rs+ 2ry s + 2r E(y-y )(r-r)

m n

In each of the variance equations the estimate is composed of two terms.

The first term represents the error contributed by the m sample elements

form the strata as though ri, the initial sample size, were exactly N, the
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population size. The second term represents the error due to the initial

sample which is a simple random sample of the population of size It.

Since x_ is an unbiased estimate of X, and x, and x„ are biased, one
3 JL 2 *

might wish to find the relative efficiency of x- as compared to x^ ajad x^.

Define

— 2 —
E(r-r) (y-y )

b, = ^

^ E(r-r) (y-y^)

and

E(r-?) (y-y„)^

^2= —
2(r-r)(y-y„)m

Sukhatme shows from the difference between variances that v(x_) will be

smaller than v(xp) when

b < - —— and b < - — .

2y ,2?

If these conditions are satisfied, x_ is superior to x in that x^ is

\inbiased and its variance is smaller. When these conditions are not

satisfied, x^ is not, of necessity, preferrable to x_ because x is biased.

The amount of the bias must be weighed against the gain in precision to

decide which is preferrable.

Comparing the difference in variances, x is more precise than x if
•^ 1

< x/y^ < r <_ b , and b < .
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Regression Estimates in Double Sampling

To utilize more fully available information, Cochran (1963) turned

to estimates of the regression of X on Y, where X is the more difficxilt

and costly variable to measure. Assume that a random sample of size n

is chosen from an infinite population and that the relation R between

X and Y is linear. The model will be

x.^ = X + B(y. - Y) ^ e.^ ,

with the subscript c_ used as a reminder that for fixed y , the random

variate e. is distributed with mean and variance
ic

S^ = S^(l - R^) .

e X

Measuring only character Y in the first sample of size n and characters X

and Y in the second saorple of size m, the estimate of X becomes

x' = X + b(y^ - y^) .

Here, x is the estimate of X from the second sample only, y and y are

the mean values of character Y from the first and second samples respectively,

and b is the least squares regression coefficient of x. on y. . From the

model, the error mean square MSE(x' ) becomes

s2(1-r2) S^(l-R2)(y.-y2)^
2

MSE(x') = -^ + -^ i^^— + B(y. - yf

If the samples are independent and assumed normally distributed the ap-

proximate variance of x involves two terms ; the first consists of the
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variance in the second sample and the second consists of the variance in

the first sample with respect to X. The variance of x' is approximated

by

S^(l-R^) rV
V(X') = -^ x ^

,
. m n '

The problem of finding the optimum allocation of n_ and m is the same as in

double sampling for stratification. The cost of including an element from

the original sample to measure character Jf, is c and that for including an

element in the second sample, used to measure character X and the relation

between X and Y^, is C and C_ is the total expenditiire . Thus,

C = nc + mc
n m

For fixed cost the minimum variance is given by:

V . = S^ f/(l-R'^)C + r/c~ }^ / C ,min X *• m n •' ' '

assuming R positive.

If all the allocation is used to measure X alone, the sample size will

be (m' = C/C ) and the variance V of the estimate of X under simple randomm s

sampling will be

V^ = S^/m' = C S^/C
S X m X

V is superior to V_ ifmin S
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C /C > R^ / (1 - A - R^)'
m n

or

f

R^ > UC C /(C + C )^
m n m n

If the relation between X and Y_ is known, the first of these eq.uations

reveals the critical ratio of the costs, below which no gain in precision

is made by double sampling with regression. If one knows the respective

costs associated with measiuring X and Y, the second equation reveals the

critical value of the square of the relation between X and Y, below which

no gain in precision is made with double sampling with regression.

Recall that ,

^

S^(l-R^) rV
V(x') = ~ + ^

m n

if the terms in (l/m) are negligible. With a model of linear regression

2 (n-1) s^ - b (n-1) s y^
'^•y

n-2 .

2 2 2
is an unbiased estimate of S (l-R ) . Since, s is an unbiased estimate

X ' X

2 2 2 ^ "^ ^
of S then (s - s ) is an \inbiased estimate of R S .X X x«y X

An unbiased estimate of V(x' ) is

^2 2 2

m n
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Double Sampling Generalized

The case of two phase san^ling with the first phase used to stratify

the popxilation with respect to the first and ine^qpensive variable Y, ajid

the second san^jle used to estimate a parameter of a more expensive variable

JC, can be expanded further. The next logical progression is to the case of

three variables, X, Y, _Z. Suppose that character _Z is the most expensive

and/or difficult of the three to measure followed by X, then Y. The

sampling is carried out upon a finite population of size M, each element

of which can be expressed with respect to character X,, Y. , Z as M. ., .

J 1 h ijh

The initial sample consists of N elements which serves to stratify the N

elements with respect to _Y into s_ strata of size N. ,i = 1, 2, . . .
, S .

From these s_ strata n. elements are chosen randomly from the i-th strata

composing the second sample of size n. The n. elements of sample two,

in the i-th stratum, are stratified with respect to X. Within the j-th

substratum of stratum i_, m^, j = 1, 2, ..., n., elements are randomly

chosen from the n elements to measure character Z. The fixed sample

sizes N_, n^, and m are determined by

m = m.. , n. = n.. , n = n. , N = N.

The dot notation indicates summation over all values of the subscript

replaced. Appropriate strata proportions are p. an estimate of the proportion

of the population in stratum i after the first sample and p an estimate

of the proportion in the j-th substratum of stratum i_ after the second

sample . Thus

,

p. = n./K^ = n/N . p.^ = m.^/:,/m .
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In general equaility does not exist in the above sampling rate estimates

since the rates are integers. Define the statistic z^ as an imbiased
h

estimate of the mean of the h-th attribute of character Z, i.e.,

K.n. ,m. ., /Nn.m. ^1 ij ijh 1 ij

K - 1 1 ^- ^- 1 21- .T./Nn m. . ,h
^ J

1 ij ijh' ij '

subject to the condition that n. = if and only if K. = 0, and m =0
1 1 ' ij

if and only if n. .
= 0. Define z, the unbiased estimate of Z, as the

average of the z^

.

h

Because of the inexactness of the strata proportion estimates p. and

^ij ' ^ exact formiila for the variance of z cannot be written. If one pro-

ceeds under the assumption of equality of the strata proportion estimates

and the exact values, the only bias in the estimate of the variance of z

will be the error due to the assumption. Under this assumption Robson

and King (1952) obtained very, con^lex estimates of the variance of z which

will not be stated here because of its complexity. If k were the size of

a single sample taken to measure z and the cost of taking this sample were

the same as that for a measure of z using three phase sampling, then a

comparison of the precision of the two dictates that

i> 1 (N-n)4)^ (n-m)R^
k -^ ~

AT " ^ >

,2
where ^'^ is Pearsons mean square contingency and g^ the multiple coefficient

of association, both at least zero, but no greater than 1. •
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From the three phase sampling for stratification and substratification,

one can generalize to multi-phase sampling with four or more variables.

Exan^jle

An example of the latter, three-phase, sampling scheme is the Curtis

Study. This was a sxirvey conducted to evalixate the effect magazines have

on their readers. The three characters to he measured in the order of their

increasing complexity of measurement were: (l) characteristics of reader

families (interests, possessions, buying habits, etc.), (2) characteristics

of the readers, and (3) the effect the magazines have upon the readers.

The sampling for the survey consisted of multi-stage probability samples

of about 31,300 households. These were based upon 833 sampling units

averaging 37 households per unit. The primary sample served to stratify the

popxilation with regard to open country, village, or city. This primary

sample was the United States Census of 1950 which yielded the appropriate

strata proportions. These strata were substratified, to improve precision

by using more homogenous groups, by size of city and geographic area under

the city stratum and by livelihood, soil type, and agriculture type under

both village and open country strata. Double sampling was employed to

measure the family and individual characteristics. Under this scheme, the

sample units of 37 households were chosen randomly from each of the substrata

derived from the primary sample and from this secondary sample of households,

individuals were chosen rajidomly to be interviewed.
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SUCCESSIVE SAMPLING

Explanation

Another area of multi-phase sampling is the sampling of the "same"

population on successive occasions. Many tables are published monthly,

yearly, or every decade, consisting of data concerning single populations.

Every civilized coimtry conducts sxirveys and censuses about everything

from artichoke heart consumption to zipper life expectancy. The United

States Bureau of the Census devotes many millions of dollars to compiling

figures gleaned from a representative sample of the people of the United

States about many subjects. More reliance is put on these figures, due to

the wider acceptance of sampling and its advantages. But a census every

ten years is of limited use because the population of this coiontry is not

static since a new person is added every 10-20 seconds and one deleted

every 20-30 seconds. i-

When one samples a population repeatedly, much useful insight is gained

about population parameters. This is gained by finding estimates of the

mean and variances and perhaps other parameters , time and again which allows

the surveyer to project or extrapolate to some future time. But how often

and how much should the sample be changed to maintain reliable estimates of

the present population's parameters? People are often reluctant to be

interviewed repeatedly concerning the same subject. There is a certain

amount of feedback from the survey, and the interview itself, which tends to

bias the sample. Hence the sample is not necessarily a cross-section of the

population. In opposition is the case where the second, amd successive,

interviews yield more precise estimates than the first, where little inter-

action between interviewer and subject is possible.
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Apso-t from double sampling techniques already discussed, which are

applicable to this discussion as veil, there are three kinds of quantities

for which estimates may be desired: (l) the chamges in Y from occasion

to occasion, (2) the average of Y over all occasions, and (3) the average

value of Y for the last survey. If the character of interest changes

rapidly with time, case three is most applicable. If the change is slow

with respect to time, case two is most applicable, using averages of several

up-to-date surveys. When the change might be due to some new stimuliis or

a change in some attribute effecting the population, case one is more

relevant.

If it is possible to change the composition of the sample, while

maintaining constant sample size, greatest precision will result for the

individual cases when; for case (l), to estimate the change in Y, retain

the same sample; for case (2), to estimate the average over aJLl occasions,

draw a new sample; for case (3), to estimate the most current Y, either

retain the same sample for all occasions or replace it entirely with a

new sample. In the latter case, partial replacement may be more advajatageous

than either of those above. Partial replacement, because of its complexity,

has been considered at length by Yates (i960) and Patterson (1950).

Sampling on Two Occasions With Partial Replacement

To estimate values of the population mean on two separate occasions,

the simplest procediire is to sample the population separately on each oc-

casion. One mvist follow whatever methods are appropriate for sampling on

the particular occasion, regardless of the method used previously. These

estimates are overall estimates as per case (2) above, ^^en the two

samples are independent of each other, the overall estimate will contain
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nearly all the information available. If the second is a subsan^le of the

first, or if there is partial replacement of the original sample in the

second, the matter of utilization of available information becomes more

complex.

If the second sample is a subsample of the first, the simplest estimate

of a change in Y will be obtained from elements common to both sacroles,

that is, elements included in the Boolean intersection of the subsample

and the original. An estimate of the population mean on the second occasion

is obtained by adding the estimated change to the estimate of the value in

the original sample. A more precise estimate for the population mean on

the second occasion will be obtained using estimates of regression from the

first to the second sample. To accomplish this, one calcvilates regression

estimates of the second sample on the first, using sanrple estimates from

the first sample as supplementary information. A more precise estimate of

change is the difference between the vsilue found in the original sample and

the regressed value fovind in the second.

The execution of the latter procedure is outlined as follows. Denote

values obtained in the first saii5)le as x and those in the second as ^. The

values belonging to elements included in both are denoted as x' and y' , and

those included on the first occasion only as x' . If a fraction, f , of all

the units included in the first sample are included in the second, a random

sample produces estimates

X = fx' + (l-f)x" ,

y = y' + b(x-x'

)

= y' + b(l-f)(x"-x').
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where x is the overall estimate for the first occasion and y is the regressed

estimate for the second. The change froa occasion one to occasion two is esti-

mated by

y - X = y' - X' - (l-b)(l-f)(x"-x') .

Calculation of the sample regression coefficient b is based on the

values of the elements included on both occasions.

The sampling error associated with y then becomes

v(y) = v( y') -b^(i-f) v(x)
^

fn

where r_ is the correlation coefficient between values in the first and

second samples. The variance associated with the change (y-x) becomes

v(y_x) = v(y') •*• ff-2fb - (l-f)b^] V(x)

fn

If r, the sample correlation coefficient, is close to +1; that is,

if the values in the first and second samples are very similar, b will be

nearly unity. This is usually the case under a scheme of subsampling.

When this is the case, the overall change is nearly that between elements

common to both samples, or

y - X = y' - x' .

Under a scheme of having both samples the same size, when a fraction,

_f , is retained and (l-f ) is replaced, the previously discussed procedures



21

may be applied to obtain a sample estimate (y, ). Another estimate (yp)

equal to y" will be derived from elements included in the second sample

only; that is, those used to replace the n(l-f) elements discarded from

the first sample. A weighted meaji of y, and y^ will yield the most acciirate

estimate y of the population mean. The weights, w^ and Wp will be

w^ = f/(l - (1-f)^ r^)

w^ = (l-f)(l-(l-f) r2)/(l-(l-f)2 r^)

where r^ is the correlation coefficient between the values of the elements

included in both the first and second samples.

Thus y isw

^w = Vl -" ^2^2 •

where

y = y' + b(x-x') and y = y"

The variance of y , for the case where both samples are of equal size and

partial replacement occurs from the first to the second, becomes

' '

V(y^) = (l-(l-f) r^) V(y)/n(l-(l-f)2 r^) .

with variance

v(y') = (i-(i-f) r^) v(y)

"^ n- + n" il-{l-ff r^)



22

Here n' is the number of elements resampled on the second occasion, n" is

the number of new elements, and (l-f) is the proportion of elements sampled

on the first occasion but not on the second.

An estimate of the change can be obtained using the weighted average

of the change (y-x' ) discx;issed previously and that discussed above (y"-x")

with weights w' and w" where

w' = f/(l-(l-f)r) ,

w" = (l-f)(l-r)/(l-(l-f)r)

Hence

Change =w'(y'-x') + w" (y"-x")

with

V(Change)= (l-r)(V(y)+r(x) )/n(l-(l-f )r) .

This estimate of chsmge is not what one would be lead to believe.

The natural choice would seem to be the difference between y and the overallw

estimate on the first occasion. The reason is that a more accurate estimate

for the population mean on the first occasion is possible once the second

is taken. The information on the second occasion as supplementary infor-

mation. If this adjusted estimate, call it x , is made, the differencew

y^ - X is approximately the change formulated above. The estimate for

change above, has as a condition that the variance on both occasions must

equal. If they are not, it is not the more accurate of the two, but

equality of variances is usually a reasonable assumption.
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When the correlation is perfect between the elements in the first and

second occasions; that is, r=l, the formiila for change above becomes

which is the difference in values for elements included in both samples.

If there is no correlation between the values of the elements on the first

and second occasions, the change becomes the difference of the overall

means on the two occasions. In this case, also, y, will be the overall
w

mean on the second occasion. And if the values of each element are xmchanged

from the first to the second occasion, that is (x' = y'), r=l, b=l, than

y is the mean of all values in both samples when each value is included

only once.

In regard to the estimation of the regression coefficient b, if the

assun^jtion of the equality of variamce is reasonable the regression of

X and ^ and that of y. andx are both equal to the correlation coefficient r_.

It is best to replace b by r wherever b appears in the formiilae, as r^ is

less sensitive to errors of estimation.

Sampling on h Occasions With Partial Replacement

In the preceeding discussion formulae were developed to accomodate

the case when the experimenter sampled on two occasions to estimate the

amount of chsinge from one occasion to another. The discussion to follow

considers the work of Patterson (1950) who developed procedures to sample

on more than two occasions with partial replacement. If no replacement is

allowed, the estimates for change discussed previously will apply in the

general case. The condition that the two occasions sampled are consecutive

can be modified to mean that several appropriate occasions may occur
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between the two actually sanipled. With the case of partial replacement,

which is the most reasonable and often encoxmtered situation, no such

simple generalization is possible from the two sample case to the multi-

sample case.

Before developing the methods of analysis for sampling on successive

occasion, conditions for the efficiency of the estimate must be set forth.

Suppose a group of sample elements are divided into sets of possibly unequal

size. Denote the i-th element of the j-th set as y. with set j having n.
ij -— J

elements and a total of h sets. The population mean in the m-th set,

Y is estimated by y defined by

^" ' 1 1 ''« '^^

'

with the condition that >

1^J=^' -5

=

i=l ^J

= Oi 5^ m ,

which condition minimizes the variance of y . Minimizing

V(J w. V ) - 2 ^(k . ^ w. J

leads to a set of h equations where the undetermined constants k are
mj

defined by

^mj = ^°^ (^ij'^m^
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for all i and j. Three necessary and sufficient conditions for an estimate

of Y , E , to be efficient are:
m' m'

(1) Gov (y^., E^) = k for all i and j,

(2) E is an unbiased estimate of Y ,m m

(3) E is a linear function of the y...
m ij

The above conditions will be used to derive estimates when sampling on

successive occasions with partial replacement of elements. Assume equal

variances on slII occasions. Assume that partial correlation coefficients

for values of an element more than one occasion removed are zero so that

the coefficient of correlation for values of an element one, two, three,

2 3
etc. occasions apart are r, r , r , etc. Consider the case where the

fraction of elements retained is f, the same on each occasion. On each

of the h_ saaipling occasions numbered successively, n_ elements are included.

So, on the (m-l)st occasion (nf ) are in the m-th occasion while (un) are

replaced, where (u=l-f). Define x' , as the mean on the(m-l)st occasion^ m-l

for the values of the nf elements common to occasions m-l and m. Define

y' is the mean of the values on the m-th occasion for the same elements.

Similarly x" , and y" are the means of values belonging to the (xxn) elements
m-l m >j "

not common to both samples.

Using conditions previously established, an efficient estimate of Y ,h

the population mean on occasion h is of the form

\ = Vh-1 -^ ^2^-1 - ^v^2^^A-i * ^^-^K ^K* .
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where a , a , (J»
are restricted as follows for j_ not greater than (h-2)

a^ = r(l - *) ,

and y is a linear function of the y. .. For (j=h-l), the efficiency

conditions impose the following restrictions on the constants

u(r(l -<;,)- a^) = ,

where the subscript on (p is introduced to differentiate between values of

<|> associated with each h . So E is identically y . The most efficient

estimator of Y, is
n

^h = ^^-*h) ^^i * (^h-1 - ^-1^-) * *h ^h »

where

S^(l-r^) + fnr^ V(y^ J + ^^
n—X u

^ S^d-r^) + fnr^ V(y^_^)

The associated variance is

V(y^) = <}.^S^/un
,
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with a similar expression for the variance associated with y ^

The equation for ({) may he rewritten as

1 -
<{>^^

= f/[l-(l+f+f<)^_^)r^)

Under the initial condition that (J", is u, and given r and u, ^. may be

calculated for successive values of h^. Algebraic expressions for (|>. may

be obtained, the simplest being that for (h=2) which is

<^^ = u(l-ur )/(l-u r )

The limiting value of ij), is reached when ((}»,- (}i,
^ ) is zero, or

(<j>, =
'f'h-i

~ *^) ^^ 'the limit so that <{>, the value of <{), at the limit becomes

- (r -1) + (l-r^)fl-r^(l-2f)^}
2

2fr

The limit is reached within the second or third occasion, allowing one to

use (<j> = (i)^) instead of calculating (J^, for h larger than 2. This shortcut

generates two types of error. The weights a , ap, (J), used to calculate y,

will be slightly incorrect, giving rise to a loss of information. A more

serious kind of error is propagated from the fact that the variance of

y is proportional to ()>.

The fractional loss of information is (l-cl) /P ) and the fractional bias

is (<{>S /un) the variance (which is too small anyway) is (l-<j>/P, ). This is
h
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2
the case when the true variance is (P, S / un) where

h

fP.
h

= (1 - ^f (ud-r^) + fr\_J + f4>^ ,

when Pp is (^^ if the correct weights a^, a^, <j» are used or P^ is ^^ if

such is not the case.

Since estimates of Y, will "be calciLLated at each occasion for sampling,
h

the most logical choice for values to detect change will be y.^ and y^ 3_'

The variance of their difference, the change in y , is

V(yj^ -
^h-l^

" ^*^^ (l-(l-(l))r)/un ,

for two consecutive occasions. For two occasions not consecutive, y, and

y, , , when (h-k) is large enough so that <i>^^_^ is <}», the variance in the

limiting case is

V(y^ -
^h-k^

= 2*^^ (l-(l-*)V)/un .

For future use, , y, , , the efficient estimate based on observations from
' h"'h-k*

the h occasions could have been used in place of y, .

Most Efficient Estimates

The efficient estimate of y ^
may be found for the case when there

are h occasions sampled. Denote this by y , the mean of (h-l) occasions

when h occasions have occurred. This serves to avoid confusion with y, ,~ h-l

which is the mean of (h-l)-st occasion. Consider a linear fionction of the

variables used to estimate y, . Recall
h
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y^ = (1 - ^^) (y; - r(y^_3_ - ^_^)) . *^ y;; .

with the same criteria on the variable as before; namely

,

that

cov(y.., E ) = k . and E is an imbiased estimate of y„ withm E„ a linearm

function of the y. .. The most simple expression leading bo
h^h-l

^^

: .. \-i = \-i - ^h ^ ^^h
•

Upon application of the criteria, E is y^y^ •,
i^:

" = ^Vi •

The efficient estimate of the mean of (h-l) occasions when h occurred is

hi^h-i = ^h-i-^Vi^^h-^h^'

with variance

^^h^h-l^ = *h-l
^'^^ - \-l^^ - ^h^

)r2)/un •

An efficient estimate of the change from occasion (h-l) to h is the dif-

ference between the efficient estimates on occasion h and occasion (h-l)

when h occasions have occxirred. Thus

Change = y^ -
^y^^,^

= (l + r*^_^) y^ - ^Vi ^h - ^h-l
•

Its variajice is

2 2

V(Change)= '^ . "^'^ (^ " ^\.l(l -V- 2r(- - ^h))
•



30

As before, vhen h is more than 2 or 3, <{>, becomes constant and

V(change) = (f)S^ (2 - (l-<i))(2+r^)r)/un .

The preceeding discussion was concerned with the anoxmt of change

occurring from one occasion to the next. In the general case when h occasions

have occiirred, information from preceeding and later occasions can be used

for an efficient estimate of y . Once more the efficient estimate assimes

the form. .y.!-

Vk = h-A-k - A -^ < •

When the criteria for efficient estimates are applied, K satisfies them

if

"
k ^-^

"

V = <^ r n (1 - A . ) .h-k . _^ '^h-i

Therefore

- k ^-^
h^h-k = h-i^h-k - *h-k ^ ^^h - ^h^ .^^

^^ - -i-h-i^
•

This is a lengthy process requiring many calculations. It might be more

economical to give up some efficiency in the estimate and gain some ease of

calculation and saving of time and money. These less efficient estimates

were considered earlier as y.^_^. The efficiency of the unweighted mean

h^h-k ^^ "^/(Su - <^) while that for y^_^ is u/(2u - «). For high correlation

the efficiency of y^_^ is low and tends to 0.5 as the correlation approaches

unit.

The derivation of the variance of the efficient estimate is quite complex

and will only be stated as a result by Patterson (1950). When (h-k) is
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sufficiently large then ^^ . , thus 4), , is <J>, in the limit and the appropriate
h-k n

expression for the variance of
, y, , is

^S^ (l -^ (1 - (1 - <^)^V^))/un; ^ =

or, when k is large enough

V(j^y^_j^) = (j.S^/n(2u-(i>) .

When the efficient estimate of the change between occasions, k units apart,

^^ ^h^h 1
~

h^h k 1 ^ ^^^ appropriate expression for the variance of the esti-

mate is • ' -.

^^h^h-1 " h^h-k-1^ " ^^ ^^^^ " ""^^ " *)r)/n(2u-4.)

The experimenter may find it desirable to test for no change, or, equality

of meains from one occasion to the next. Let x. be the mean of the h-th oc-
n

casion. When x, = y the estimate R of the correlation coefficient becomes

R = r(l - (J>), and for x = (uy, + fy, ), R = rf. Then the terms
n h h

x^ , x^ - Rx, , x„ - Rx_ , etc

.

are independent. So

\ ~ ^1' ^2 ~ 1^ (xg-RXj^), z^ =
J3^ (x^-RXg), etc.,

implies that the z are independent variables, each an estimate of the mean

of the h-th occasion. The variance of z^ is v and the variance of the others is

V . (l+R}/(l-R), where v is the variance of the x's. Weighting the z's, the
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best estimate of the mean Z becomes

(1+R)z^ + (1-R)(z2+Z3+...)

^ " n-(h-2)K

and has variance

^^^' h-(h-2)R '

where, in both expressions, h_ is the number of z's lised. If the x's are

normally distributed then

„, 2v S^(wz)

is distributed as a Chi-square with (h-l) degrees of freedom where

w = (1-R)/(1+R).

Efficient Estimates: A General Case

Thus far, the discussion has been concerned with samples where the

variance from occasion-to-occasion, sample size, and the proportion replaced

were of equal size. The next step in generalizing the equation for change,

is to obtain the estimate and its variance when the above conditions of

equality do not hold. The equations derived for y^ and , y^ , still hold,
h h h-K.

except a new value $' for ^ must be obtained. Let the number of elements

sampled on occasion h be n^ of which n,' are from occasion (h-l) and n/J

are new elements. Then i' is calculated from
h

. 1 —
"^h

= 1 - ^K-1

-^"i-i - '^XK-i-»A-i"i)
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The appropriate variance for y, , when n," r 0, is

If n" = the proper expression of the variance is

9 1
^2 r <5>'

If n, = a -, for all h, V is identical to <>, . By using the efficient
h n-i — h n

estimate , y, . as
h*^h-l

h^h-l = ^h-l - ^h ^ "^h '

where

^ = ^*h-i KK-1

the variance becomes

^(h^h-i) = *h-i
^'(^ - ^^ - <^h)-)/";;-i

•

A simpler method was proposed by Yates (196O) to adjust sample estimates

when xinequal numbers of elements were sarrpled on different occasions. He

suggested vising a weight on the mean of the elements not common to both

sainples with

where u' is the average fraction of elements replaced for the h occasions.
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An immediate question concerns the method of selecting the number of

elements to be included in a sample and the number of these vhich are new

in the sample vhen going from occasion h to (h+l). Assume that results up

to occasion (h-l) are known. Suppose y, is to be estimated such that

^(^h^ = ^^^h-1^ '

with cost held to a minimum on the h-th occasion. Since

•' V^=*h-l/^n-l = ^/^'

and the cost of including any element in the sample is the same, and the

population variances are equal, then (n/ + n^') is minimized when

n^ = N(l-4.^)(l-r^)/(l-(l-<i,^)r^)

and

-; = «*h
•

This leads to a constant n/ , for all h, as

n^ = N(l - /II?' ) ^1^ I r^

when h > 1. Therefore n* = n" for all h > 1 .

The sampling scheme is to choose K elements on the first occasion, and

retain n,' elements, as above, from the preceeding sample, choosing em equal

number of new elements from the population for the second. On all succeeding

occasions use a (retain: replace) ratio of (l:l), where f = u = *5 .
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The experimenter may be interested in arranging for a given acciiracy

in y, , as veil as in setting some botrndary on (p' . The procedure for

sampling in this case will be to choose <J)' such that
n

- 1 < ^ • < n^ / IS .

On the second occasion retain n/ elements, choosing n" new ones, and follow

in succeeding samples with the proportion retained as

,^ *'M(i-^;;)

l+r^(l-<S.^)^ - 2r^(l-<^j^)

ROTATIOK SAMPLING

The preceeding discussions were concerned with the case where the sample

on an occasion consisted of a certain number of elements carried over from

the preceeding sample and a number of new elements. The values of these

new elements, which were used in estimating the mean on that occasion, were

teiken on the specified occassion.

To be more general, Eckler (1955) considers the case where these "new"

element's values are also allowed to be taken from the preceeding sample

occasion. Denote the value of the j-th element on the i-th occasion as

h^
, with values y^_^ and y^ allowed to enter the sample on occasion

h. Eckler (1957) termed this rotation sampling, in this case two-level

rotation sampling. One level rotation sampling is the name applied to the

method of Patterson disci;ssed previo^isly.

The sample on occasion h is built by selecting n elements from occasion

(h-1) and h. Using the same technique as Patterson and with the same
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criteria for the minimum variance, the iterative form for y, \mder two

level rotationaJ. sampling, yoj^j is

y2,h = ^h -
"^h ^h-i * *h y2.h-i

'

where d), is
h

^h = ^/^2-^Vl^ '

with <j), = initially. The notation is slightly different because of the

way the same elements are used in both h-1 and h, with only the values,

thus the means, changing. Here y denotes the mean value of the elements

in san5)le h on occasion h and y ^ the mean value of the elements in

sample h on occasion h-1. The associated variance of jFp , is

S^(l-«,r)

^^^2.h) =—IT^ •

The sequence of (j) converges to <j> where

^ = (l - iZ^ ) /r ,

so that in the limiting case

V(y_ . ) = S^ A-r^ / n .

From two level rotational sampling the next step is to three level.

Under this scheme n_ elements are chosen on occasion h^. Their values on

occasions h_, (h-l), and (h-2) are used to build the sample. To find a
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minimum variance, xmbiased estimator y^ , for tiie mean on occasion h under
3,ii —

three level rotational sampling a linear combination of the y' for occasions

h, (h-l), (h-2) must be foimd. The coefficients of the y' m-ost be such that

not all are zero and the number of these unknown coefficients must be equal

to the niimber of covariance conditions as stated by Patterson (1950). The

appropriate estimate is

^3.h = ^h - Vh-1 ^ V3,h-1 - Vh-2 - ^^h-'^h^^h-2 ^ ^V^h^i^h-2

- VA-3 - Vh-3 * \^%K.3 -^ V3.h-2 •

Define y, as the mean of the n samnle values on occasion h, y' as the
h — * — h

mean on occasion h of the n values samTiled on occasion (h-l), y" as the_ _ - ' "h

mesin of the n_ values on occasion h_ which were sampled on occasion (h-2) and

y"' as the mean on the h-th occasion of those sampled on (h-3). No elements

are retained in the sample from one occasion to the next ; that is , the n_

elements sampled on occasion h are not the n_ elements sampled on occasion

(h-l), (h-2), etc., and vice versa.

When the condition for y_ , to be a minimum variance unbiased estimi.torj,n

is applied, the coefficients become

\ = ^/2

\ = r2((3+r)2 - 2b^_2(l-r2)}/2((9-r2) - 2bj^_2 ( S+r^
)

)

c^ = (b^(l+r2)-f^)/(l.r2) -:

^ = - (V^h^^ = - ^h

^h = ^^"-^^b^^/^s-sb^.^)
.
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for h greater than 3. The b are the only truly \inknown coefficients, and

Eckler found the limit h of the D to be

• Itb = (3-r^) - /(l-r^)(9-r^) .

The variance of y_ , in the above limiting case, regardless of h_, is

n

= V(y)
,

which holds vinless r is nearly unity. Generalization from three to four,

and further, levels of rotation sampling is now somewhat obvious. Now the

experimenter must ask how long information is still valid. That is, if one

were sampling on economic characters, how valid is the estimate of the

average wage based on ten or twelve years previous when these figures are

compiled every year. Is it worth the computational difficulties to get an

estimate very slightly better than one based on the last two or three years

figures? Usually not.

The question of how many levels to use, becomes one of choosing among

one, two, or three levels. Assume that it costs c_ to include a sample value

on occasion h and c(l+k) to obtain both values y, and y, ^
for a particular

element where <_ k <_ 1. In other words, cost is not linear in multi-level

sampling for values from different occasions for a particulsLr element.

Likewise, for three level sampling the associated cost for the three values
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of an element is c(l+2k),

then

If the total appropriation for the survey is T,

n^ = T/c ,

n^ = T/cd+k),

n^ = T/c(l+2k), ,:

where the subscript on r_, the sample size, is the level of sampling being

consider. The retaining proportion is lisually near ^ for one level sampling.

To find when one level and two level sampling yield equal precision, ecuate

the variances of the two plans and substitute appropriate quantities for

n, and n^ getting

Ic = (r - /!=?")W .

For k greater than the quantity on the right , use one level rotational

sampling, for k less than the quantity use two level to obtain greatest

precision.

To decide whether to use two or three level sampling, equate the ap-

propriate variances and substitute the values for n- and n-, as before. The

constant k will be used as the critical value for determining which level to

use. For k smaller, \ise three level; for k greater, use two level rotational

sampling. For four level or higher rotational sampling to be most advantageous,

k_ must be very small with a high correlation.



i|0

ACKNOWLEDGMENT

The author wishes to express his appreciation for the suggestions

and assistance provided by Dr. A. M. Feyerherm. These aids were most

helpful in preparing this report, as well as in preparing the author

academically for futxire research.



kl

REFERENCES

Cochran, W.G.

Sampling Techniques. New York: John Wiley and Sons Inc., 19d3.

Eckler, A.R.

Rotation Sampling. Annals of Mathematical Statistics. 26:b6k-6Q^. 1955.

Jambunathan, M.V.

A Note on the Efficiency of Double Sampling for Stratification. Sankhya.

22:365-367. i960.

Jessen, R.J.

Statistical Investigation of a sample survey for Obtaining Farm Facts.

Iowa State College of Agriculture and Mechanical Arts Research Bvilletin.

304:5i*-59. 19^2.

Neyman , J

.

Contribution to the Theory of Sampling Human Populations. Journal of the

American Statistical Association. 33:101-116. 1938.

Patterson, K.D.

Sampling on Successive Occasions with Partial Replacement of Units.

Journal of the Royal Statistical Society, Series B. 12:2iil-255. 1950.

Robson, D.S.

Application of Multivariate Polykays to the Theory of Unbiased Ratio Type

Estimation. Journal of the American Statistical Association 52:511-522.

, and King, A.J.

Multiple Sampling of Attributes. Journal of the American Statistical

Association. i+7:203-215. 1952.

Sukhatme, B.V.

Some Ratio-type Estimates in Two Phase Sampling. Journal of the American

Statistical Association. 57:628-632. 1962.

Tukey, J.W.

Keeping Moment-like Sampling Computations Simple. Annals of Mathematical

Statistics. 27:37-5^. 1956.

Yates, F.

Sampling Methods for Censuses and Surveys. London: Griffin and Co., I96O.



MULTI-PHASE SAMPLING IN CENSUSES AND SURVEYS

by

CHARLES ALBERT BENDER

B.S., Kansas State University 19^5

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial f\ilfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Statistics

KANSAS STATE UNIVERSITY
Manhattaja, Kansas

1967



Multi-phase sampling is a technique employed to obtain estimates of

parameters using information from previous samples. The widest application

of multiphase sampling is in censuses and siirveys such as those conducted

by United States Government agencies. Two problems best resolved using

multi-phase sampling are the estimation of the mean value of a character

when sampling is difficult or expensive and the estimation of a mean and

its change over a time interval.

In the estimation of the mean when sanrpling is expensive or difficult,

double, or two-phase sampling is employed. The technique of double sampling

was first set out by Neyman in 1938 using the sample mean as an estimate

of the population mean. For this method to produce a more precise estimate

than one produced by simple random sampling, the character of interest miist

by correlated to some other more easily sampled character. The amount of

advantage gained by double sampling is in direct proportion to the strength

of the correlation and the degree to which the correlated character is more

eaisily or cheaply sampled. Neyman developed methods for allocation of

expenditures used to sample on the primary character and on the correlated

character which produced minimum variance for a fixed cost. Neyman 's al-

location method was generalized by Jambunathan in I96O.

In 1962, Sukhatme developed ratio estimates to estimate the population

mean. In I963, Cochran and Cox turned to estimates of the regression of

the primary character on the secondary to more fully utilize available

information. The gain in precision over simple random sampling using

regression estimates is directly proportional to the square of the regres-

sion and the degree to which the secondary character is more inexpensively

measured. .

'



Double sanrpling was extended to triple, or three-phase sampling by

Robson and King in 1952. Instead of one correlated character, two ad-

ditional characters are sampled which are correlated to the primary character.

Between the two secondary characters there exists a correlation also. As

before, there is a hierarachy of cost involved in sampling on the primary

character, the secondary, and tertiary, the last two of which are the two

additional characters correlated to the first. An application of this is

found in the Curtis Impact Survey.

The second general area of application of multi-phase sampling is that

of finding a mean and its change over successive sampling occasions. When

a population is sampled on several occasions there are three quantities for

which estimates are desired: (l) changes in the mean from one occasion to

another, (2) the average of the means over several occasions and (3) the

mean on the last occasion. Due to its complexity, partial replacement of

sample elements when finding estimates for the third quantity above was

considered at length. Yates, in I960, and Patterson, in 1950, derived

minimum variance estimates for the mean on the most recent sampling occasion

under a scheme of partial, replacement of sample elements. They derived

several estimates for the change in the mean using information from one or

more previous occasions.

In 1955, Eckler considered the case where elements were carried over

from the previous occasion to contribute to the sample to the next, but

some not sajnpled on one occasion are included in the next. Double sanqpling

discussed previously became one level rotation sampling and further extensions

were made to two and three level.


