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ABSTRACT
The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct
environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and
Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass
Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to
influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also
influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data
loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3
ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters
and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand
Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand
Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2)
nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest
survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than
348C and vapor pressure deficit was less than�23 mmHg during the day (about 0600–2100 hours). Our major finding
confirmed microclimate thresholds for nest survival under natural conditions across the species’ distribution, although
Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand
Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management
actions that promote cooler, more humid nest microclimates.

Keywords: empirical distribution functions, humidity, Kansas, Lesser Prairie-Chicken, microclimate, nest survival,
New Mexico, temperature, Texas, Tympanuchus pallidicinctus

Los efectos de la interacción entre el microclima de los nidos y la estructura de la vegetación confirman
los umbrales microclimáticos en la supervivencia de los nidos de Tympanuchus pallidicinctus

RESUMEN
La distribución geográfica de Tympanuchus pallidicinctus incluye 4 ecoregiones únicas a lo largo de 2 gradientes
ambientales distintos. La ecoregión de Sand Shinnery Oak Prairie en el sur del altiplano de Nuevo México y Texas está
ambientalmente aislada y es más cálida y seca que las ecoregiones de Short-Grass Prairie, Sand Sagebrush Prairie y
Mixed-Grass Prairie en Colorado, Kansas, Oklahoma, y el noreste de Texas. Se sabe que el clima influye en la
supervivencia de los nidos de T. pallidicinctus en la ecoregión de Sand Shinnery Oak Prairie; la variación regional
también podrı́a afectar el microclima de los nidos y su supervivencia durante la incubación. Para abordar esta
pregunta, pusimos medidores automáticos junto a los nidos durante la incubación para cuantificar las funciones de
distribución de la temperatura y la humedad en 3 ecoregiones. Desarrollamos un conjunto de modelos a priori sobre la
supervivencia de los nidos que incorporó parámetros microclimáticos derivados y obstáculos visuales como
covariables en el programa MARK. Monitoreamos 49 nidos en la ecoregión de Mixed-Grass, 22 nidos en Sand Shinnery
Oak y 30 nidos en Short-Grass entre 2010 y 2014. Nuestros resultados indicaron que 1) la ecoregión de Sand Shinnery
Oak Prairie fue más cálida y seca durante la incubación que las ecoregiones de Mixed-Grass y Short-Grass; 2) el
microclima de los nidos varió entre años en las ecoregiones; 3) los obstáculos visuales estuvieron asociados
positivamente con la supervivencia de los nidos; pero 4) la probabilidad de supervivencia diaria de los nidos disminuyó
10% cada media hora cuando la temperatura era mayor a 348C y el déficit en la presión de vapor era menor a �23
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mmHg durante el dı́a (06:00 a 21:00 h). Nuestro resultado más importante confirmó los umbrales microclimáticos para
la supervivencia de los nidos bajo condiciones naturales a través de la distribución de T. pallidicinctus, aunque la
especie es más propensa a experimentar las condiciones microclimáticas que resultan en el fracaso de los nidos en la
ecoregión de Sand Shinnery Oak Prairie. La especie podrı́a beneficiarse de la identificación de paisajes térmicos y
acciones de manejo que promuevan microclimas más frescos y húmedos en los nidos.

Palabras clave: funciones de distribución empı́rica, humedad, Kansas, microclima, Nuevo México, supervivencia
de los nidos, temperatura, Texas, Tympanuchus pallidicinctus.

INTRODUCTION

Egg production is energetically costly, and additional

energy is expended to protect eggs from unfavorable

environmental conditions and predators at nests. Behav-

ioral (e.g., nest-site selection) and physiological (e.g., gular

flutter; Table 1) mechanisms may be combined to protect

eggs. For precocial, ground-nesting birds (e.g., Galli-

formes), unfavorable environmental conditions during

incubation (e.g., extreme heat) likely influence egg and

nest survival in 2 ways. First, precocial species do not

incubate eggs until the entire clutch is laid, thus exposing

eggs to environmental stressors before the parents begin

incubation. Second, unfavorable environmental conditions

may cause stress on incubating parents, resulting in

additional trips off the nest for water or food, leading to

decreased nest attentiveness or even abandonment. Energy

expenditure is exacerbated in extreme nesting environ-

ments, due to increased time spent maintaining body and

egg temperature (via gular fluttering or shivering; Andreev

1999, Piersma et al. 2003, Saalfield et al. 2012). Concom-

itantly, nest survival may be affected by the incubating

parent’s ability to choose nest vegetation that conceals

nests from predators while simultaneously protecting eggs

from the elements (Martin and Ghalambor 1999, Mayer et

al. 2009).

Environmental stressors on incubating parents and eggs

are likely an important component of nest survival in

mating systems in which the female is solely responsible

for incubation, as in the Lesser Prairie-Chicken (Tympa-

nuchus pallidicinctus). Nest survival is critical to popula-

tion persistence in Lesser Prairie-Chickens because

survival of juveniles from hatch to the following breeding

season has been identified as the key demographic

parameter associated with population declines (Hagen et

al. 2009). Despite the wavering status of the species on the

U.S. Endangered Species Act (U.S. Fish and Wildlife

Service 2016), and attention to habitat management and

conservation, evidence suggests that Lesser Prairie-Chick-

en populations have not recovered (McDonald et al. 2015).

Therefore, understanding the role of environmental

stressors on nest survival may identify fine-scale interac-

tions between nest vegetation and microclimate that have

not been incorporated into previous assessments of nest

ecology (Pitman et al. 2006, Davis 2009, Grisham et al.

2014, Fritts et al. 2016) and thus improve conservation

actions for the species.

Microclimate at nests, and the role of microclimate on

nest survival, is important for this species because timing

of breeding varies little throughout the range (Boal et al.

2014), despite inconsistent environmental conditions

among ecoregions during this time (Grisham et al.

2016a). According to 30 yr climate means, the Sand

Shinnery Oak Prairie ecoregion (Figure 1) receives less

precipitation, has lower humidity, and is warmer at the

start of incubation in early May than the other 3

ecoregions (‘‘ecoregion’’ sensu McDonald et al. 2012).

Greater Prairie-Chickens (T. cupido) nesting in the

southern part of their range in Oklahoma apparently

select nest sites on the basis of vegetation cues, nest failure

being associated with nests with higher temperatures

(Hovick et al. 2014). Similar relationships among nest

microclimate, nest vegetation, and nest survival might be

expected for Lesser Prairie-Chickens, especially in the

hottest part of their distribution.

A recent meta-analysis of nesting habitat selection by

Lesser Prairie-Chickens suggests that females across all

4 ecoregions select nesting habitats that have similar

vegetation structure (Hagen et al. 2013). Visual obstruc-

tion is supported as an indicator of Lesser Prairie-

Chicken nest-site selection (Davis 2009, Grisham et al.

2014) and nest survival (Pitman et al. 2005, Grisham et

al. 2014). However, simultaneous comparisons of visual

obstruction and microclimate on nest survival are

lacking for this species, despite contemporary evidence

that microclimate (Hovick et al. 2014) and seasonal

weather patterns (Grisham et al. 2013) may be critical

components of nest survival for prairie grouse. The goal

of the present study was to quantify nest microclimate

conditions and assess the influence of microclimate and

nest vegetation on nest survival for Lesser Prairie-

Chickens among 3 ecoregions.

Our first objective was to compare microclimate

(temperature and humidity) at nests (i.e. within 5–10 cm

of the edge of the nest bowl) (1) among ecoregions

(Mixed-Grass, Short-Grass Prairie/CRP Mosaic [hereafter

‘‘Short-Grass’’], and Sand Shinnery Oak Prairies); (2)

among years within ecoregions (2010–2012 in Sand

Shinnery Oak Prairie, 2013–2014 in Mixed-Grass and

Short-Grass); and (3) between nest attempts (first and
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renest). We hypothesized that conditions during incuba-

tion would be hottest and least humid in Sand Shinnery

Oak Prairie, following the latitudinal temperature trends.

We also expected considerable interannual variability in

microclimate within the 3 ecoregions, with more pro-

nounced temperature extremes in the Sand Shinnery Oak

Prairie (Grisham et al. 2013). We expected nest temper-

ature and humidity to differ between first and renest

attempts within and among ecoregions.

Our second objective was an ecoregion-level assessment

of the influence of microclimate on nest survival. We

expected microclimate to influence nest survival similarly

among the 3 ecoregions. We hypothesized that humidity

would explain nest survival to a greater extent than other

microclimate parameters for all 3 ecoregions (Grisham et

al. 2013, Dunn and Milne 2014). We expected nest survival

probabilities to decrease as temperatures increased and

humidity decreased across all ecoregions (Grisham et al.

TABLE 1. Description and notation of 9 derived microclimate parameters and the mechanistic basis of their potential influence on
Lesser Prairie-Chicken nest survival at 101 nest locations in the Mixed-Grass Prairie, Sand Shinnery Oak Prairie, and Short-Grass Prairie
ecoregions, 2010–2014. Data were derived from ibutton data loggers placed within 5–10 cm of each nest.

Parameter Description Notation Mechanism

DayTemp Mean temperature (8C) outside of
nest during daylight hours (about
0600–2100 hours)

DayTemp Increased energy expenditure
and potential water loss to
incubating female due to
gular flutter (hyperthermia)
or shivering (hypothermia)

DayVPD Mean vapor pressure deficit (VPD;
mmHg) outside of nest during
daylight hours (about 0600–2100
hours)

DayVPD Egg desiccation, attracting
olfactory nest predators

NightTemp Mean temperature (8C) outside of
nest during nighttime hours
(about 2101–0559 hours)

NightTemp Increased energy expenditure
and potential water loss to
incubating female due to
gular flutter (hyperthermia)
or shivering (hypothermia)

NightVPD Mean VPD (mmHg) outside of nest
during nighttime hours (about
2101–0559 hours)

NightVPD Evaporative water loss to
incubating female, attracting
olfactory nest predators

Percent extreme heat and arid
values

Percentage of recordings where
temperature was .348C and VPD
was less than �23 mmHg during
daylight hours (about 0600–2100
hours)

HotandArid Increased energy expenditure
and potential water loss to
incubating female due to
gular flutter (hyperthermia),
egg desiccation and death,
decreased female
attentiveness, and increased
time spent off nest

Percent extreme negative cold
and arid values

Percentage of recordings where
temperature was ,158C and VPD
was less than �23 mmHg during
all hours

ColdandArid Increased energy expenditure
of incubating female due to
shivering (hypothermia)

Percent extreme heat and
humid values

Percentage of recordings where
temperature was .348C and VPD
was less than �23 mmHg during
daylight hours (about 0600–2100
hours)

HotandHumid Increased energy expenditure
to incubating female due to
gular flutter (hyperthermia)

Percent extreme cold and
humid values

Percentage of recordings where
temperature was ,158C and VPD
was .0.27 mmHg during all hours

ColdandHumid Increased energy expenditure
of incubating female due to
shivering (hypothermia)

Percent most frequent nest
conditions

Percentage of recordings where
outside conditions matched the
most frequent nest conditions
(26–318C; �11 to �3.69 mmHg)

Mean If microclimate conditions
outside of nest are similar to
conditions inside nest, then
energy allocation to gular
flutter or shivering is
reduced

Visual obstruction reading 100% visual obstruction at nest
(Robel et al. 1970)

VOR Concealment from potential
nest predators and
environmental conditions
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FIGURE 1. Historically, the range of Lesser Prairie-Chickens encompassed the entire western portion of the Southern Great Plains,
but the current distribution is restricted to 4 distinct geographic ecoregions.
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2013, Dunn and Milne 2014, Hovick et al. 2014). Our final

hypothesis was that microclimate would be more impor-

tant for nest survival than vegetation around the nest site

as measured by visual obstruction reading (VOR; Pitman

et al. 2005, Hagen et al. 2013, Grisham et al. 2014, 2016a).

Our goal was to rank microclimate parameters in the

context of the most supported measurement of nest

survival for the species (i.e. VOR) while simultaneously

assessing whether (1) microclimate influenced nest sur-

vival differentially among ecoregions, (2) VOR and

microclimate had additive effects on nest survival, and

(3) VOR and microclimate have interactive effects on nest

survival.

METHODS

Study Areas
The Mixed-Grass Prairie ecoregion study areas in Kiowa

and Comanche counties in south-central Kansas consist of

mixed-grass prairie on loamy soils. The Sand Shinnery Oak

Prairie ecoregion study areas in New Mexico and Texas are

a matrix of grassland, cropland, and gently undulating

sandhills dominated by sand shinnery oak (Quercus

havardii) and sand sagebrush (Artemisia filifolia) with

mixed grasses and forbs. The Short-Grass Prairie ecoregion
study area in Logan and Gove counties in northwest Kansas

area is a mosaic of short-grass and mixed-grass prairies,

Conservation Reserve Program (CRP) grasslands, and row-

crop agriculture on silt loam soils. Relevant weather data

and drought severity rankings for each ecoregion are

included in the Appendix. Wolfe et al. (2016), Dahlgren et

al. (2016), and Grisham et al. (2016b) provide comprehen-

sive reviews of the key plant species, climate data,

population size, species management, and land cover and

land use for Lesser Prairie-Chickens in the 3 ecoregions.

Capture
We captured females with walk-in funnel traps (Haukos et

al. 1989, Schroeder and Braun 1991, Grisham et al. 2015)

and magnetic drop-nets (Wildlife Capture Services,

Flagstaff, Arizona, USA). Upon capture, we assessed sex

by pinnae length, presence of eye comb, and other

plumage characteristics (Copelin 1963). We identified

second-year birds as those having white spotting within

2.5 cm of the tip of the 9th and 10th primaries, whereas the

absence of white spotting indicated after-second-year birds

(Copelin 1963). We affixed a uniquely numbered alumi-

num leg band to all captured birds and equipped each

female with a 9 g, necklace-style, very-high-frequency

(VHF) radio-transmitter (American Wildlife Enterprises,

Monticello, Florida, USA); a 15 g, necklace-style, VHF

radio-transmitter (Advanced Telemetry Systems, Isanti,

Minnesota, USA); or a 22 g, rump-mounted, platform

terminal transmitter (PTT; Microwave Transmitters, Co-

lumbia, Maryland, USA) and then released the bird at the

capture site. Preliminary data from the Mixed-Grass

Prairie and Short-Grass Prairie ecoregions indicated no

differences in female and nest survival among transmitter

types (D. Haukos personal observation).

Nest Location
We determined nest locations of VHF radio-tagged

females by approaching the female via homing when their

approximate locations remained unchanged for �3 days

(Pitman et al. 2006). For females with PTTs, we waited

until GPS locations indicated that the female had begun

incubation (when downloaded data indicated the female

was stationary for �3 days) and used the GPS locations to

locate the nest. We wore rubber boots and latex gloves to

reduce scent and scent trails when we approached the nest.

We spent as little time as possible at the nest (,5 min) and

avoided leaving dead-end scent trails at nests. We revisited

a nest to assess nest fate only when we verified that the

female was off the nest. At each nest, we counted the

number of eggs present at first discovery and remotely

monitored nests daily until fate was evident, categorizing

each nest as successful (�1 egg hatched) or unsuccessful

(all eggs depredated or nest abandoned).

At first nest check, we placed one Maxim Integrated

Semiconductor data logger (Maxim Integrated Products,

Sunnyville, California, USA; hereafter ‘‘ibutton’’) outside

the nest bowl, but in the same vegetative substrate that

constituted the nest bowl. Each data logger recorded air

temperature and relative humidity at 10 min intervals until

nest fate was determined. For example, if the nest bowl was

located in bluestem (Andropogon spp.), we placed the

ibutton within 5–10 cm of the edge of the nest bowl in a

random direction in the same plant. We positioned each

ibutton on the ground in the plant substrate and concealed
it with camouflage duct tape and plant substrate. We

collected each ibutton within 3 days of nest failure or

success. We calibrated ibuttons in an Envirotronics System

Plus HRZ environmental control chamber (Weiss Envir-

otronics, Grand Rapids, Michigan, USA) prior to deploy-

ment in the field. For each 10 min measurement, we

calculated the vapor pressure deficit (VPD), which is the

difference between the amount of moisture in the air and

how much moisture the air can hold when saturated

(mmHG), by using the paired temperature and relative

humidity measurements from each data logger (Anderson

1936). VPD is a better measure of aridity than relative

humidity, which is not a reliable measure of atmospheric

moisture unless the temperature and relative humidity

measurements are identical (Anderson 1936). We quanti-

fied nest vegetation structure within 3 days following nest

failure or success (Pitman et al. 2005, Grisham et al. 2014).

We estimated VOR from a distance of 4 m and a height of

1 m, using a Robel pole at the nest bowl (Robel et al. 1970).
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Statistical Analysis
Microclimate conditions.We compiled ibutton data by

ecoregion (Mixed-Grass Prairie, Short-Grass Prairie, and

Sand Shinnery Oak Prairie), year (2010–2014), and nest

attempt (first, renest) and then calculated summary

statistics for temperature and VPD using Proc Means in

SAS 9.3 (SAS Institute, Cary, North Carolina, USA). We

compared empirical distribution functions of nest tem-

perature and VPD (1) among ecoregions, (2) among years

within an ecoregion, and (3) between nest attempts among

and within ecoregions. Empirical distribution functions are

defined as the distribution of the cumulative data points in

the sample and converge to a probability of 1 (Zar 2010).

We used a Kolmogorov-Smirnov test to assess differences

in empirical distribution functions for temperature and

VPD for each comparison.

For each assessment, we reported the Kolmogorov-

Smirnov statistic, the asymptotic Kolmogorov-Smirnov

statistic, the maximum deviation (MD), and the percentage

of observations that fell to the left of the MD. The MD was

the value that maximized differences in the empirical

distribution function among parameters. A greater pro-

portion of observations to the left of the MD for

temperature meant that the distribution function was

cooler. Conversely, more observations to the left of the MD

for VPD meant that the distribution function was more

arid.

We did all pairwise comparisons (i.e. 2 class levels) for

each objective using a 2-sample Kuiper statistic in PROC

NPAR1WAY in SAS 9.3. For all pairwise comparisons, we

report the Kuiper statistic, asymptotic Kuiper statistic, P
value, MD, and percentage of observations that fell to the

left of the MD for temperature and VPD.

Nest survival.We assessed nest survival using the logit-

link function in the nest survival model (Dinsmore et al.
2002) in Program MARK (White and Burnham 1999). Our

data met the assumptions of the nest survival model

because we used radio-telemetry to find and accurately age

and check nests. Nests in this assessment were aged

correctly, we correctly determined the nest fates, our nest

checks did not influence nest survival, and we assumed

that nest fates were independent because each nest was

�500 m from any other nest we monitored (Dinsmore et

al. 2002). We used the date when the female’s location had

remained the same for 3 consecutive days as the date the

nest was found (i); the day before the nest hatched or failed

as the last day the nest was checked alive (j); and the date

of hatch or failure as the last day the nest was checked (k;

Dinsmore et al. 2002). During our study, nests were active

from April 16 to July 7, which resulted in 83 estimates of

daily nest survival. However, we eliminated the first 3 days

of every nest from this analysis because we did not place

ibuttons in the nest until the female had incubated the nest

�3 consecutive days. April 19 was the first day in our field

assessment when an ibutton was collecting data. There-

fore, nests for both stages of this analysis were active

during April 19–July 7, which resulted in 80 estimates of

daily nest survival. We used the mean incubation period of

28 days (Hagen and Giesen 2005, Boal et al. 2014) to

estimate nest survival across the incubation period

(Grisham et al. 2014).

We developed 29 a priori models using 9 derived

microclimate parameters (Table 1) from the ibuttons. Boal

et al. (2014) found that nest microclimate in the Sand

Shinnery Oak Prairie ecoregion was (1) consistent and

predictable with time of day (i.e. night was cooler and

more humid than midday), (2) warmer as the nesting

season progressed, and (3) without a temporal pattern of

relative humidity as the nesting season progressed. Thus,

we did not include time-varying microclimate parameters

(i.e. parameters specific to a given nest-exposure day at

each nest) in the nest survival assessment to avoid model

over-parameterization and facilitate comparison between

microclimate data (multiple values at each nest location)

and VOR (one measurement per nest). Our derived

parameters reduced temporal autocorrelation in the data-

set by combining 10 min data points into trends. Our

derived parameters are appropriate for drawing an
inference about the relationship between microclimate

and nest survival because nests initiated later in the year

are more likely to have higher mean values as well as a

larger proportion of extreme temperature values (Boal et

al. 2014), and these trends are naturally built into the nest

survival model because nests included in the analysis are

standardized by the first nest found in the dataset

(Dinsmore et al. 2002).

We grouped all nests by ecoregion to assess whether

microclimate disproportionately affected nest survival

across ecoregions. We did not separate first nest from

renests in this analysis because of the low sample size of

renests. Our microclimate candidate models were devel-

oped using information presented in Flanders-Wanner et

al. (2004), Fields et al. (2006), Grisham et al. (2013), Dunn

and Milne (2014), and Hovick et al. (2014) that suggested

temperature and humidity as limiting factors for various

aspects of Holarctic grouse reproductive ecology. We also

included several exploratory models that included the

proportion of extreme temperature and VPD measure-

ments to assess whether extreme microclimate conditions

influenced nest survival (Table 1). We included one model

for each derived microclimate parameter (n ¼ 9), one

model that included VOR as a predictor of nest survival,

one model that incorporated variation in nest survival

among ecoregions, 9 models that included VOR and each

microclimate parameter as additive effects, and 9 models

that included VOR and each microclimate parameter as

interactive effects. We included VOR as a main additive

and interactive covariate in our nest survival models
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because VOR is strongly supported as the critical indicator

of nest-site selection (Hagen et al. 2013) and nest survival

for the species (Grisham et al. 2014).

We used second-order Akaike’s Information Criterion

for small sample sizes (AICc), DAICc values, and Akaike

weights (wi) to select the best-approximating model

(Burnham and Anderson 2002) for our analysis. We

considered any model with DAICc � 2 to be competitive.

We model-averaged parameter estimates across competing

models and used the delta method (Powell 2007) to

calculate standard errors and 95% confidence intervals

(CIs) in instances with multimodel support (no single

model with wi . 0.90).

RESULTS

Capture

We located 56 nests (17 in 2013, 32 in 2014; 4 renests)

from 45 radio-tagged females in the Mixed-Grass Prairie

ecoregion; 26 nests (17 in 2010, 3 in 2011, 6 in 2012; 3

renests) from 41 radio-tagged females in the Sand

Shinnery Oak Prairie ecoregion; and 32 nests (7 in 2013,

25 in 2014; 8 renests) from 31 radio-tagged females in the

Short-Grass Prairie ecoregion. The low sample size of nests

from radio-tagged females in the Sand Shinnery Oak

Prairie was primarily due to few nest attempts in 2011 (3 of

15 radio-tagged females initiated nests; Grisham et al.

2014) and subsequent population declines following the

drought of 2011.

Microclimate Conditions

We collected 159,362 recordings of temperature and VPD

from 49 nests in 2013–2014 in the Mixed-Grass Prairie

ecoregion; 40,256 recordings of temperature and VPD

from 22 nests in 2010–2012 in the Sand Shinnery Oak

Prairie ecoregion; and 113,310 recordings of temperature

and VPD from 30 nests in 2013–2014 in the Short-Grass

Prairie ecoregion. We eliminated 7, 4, and 2 nests from the

Mixed-Grass Prairie, Sand Shinnery Oak Prairie, and

Short-Grass Prairie ecoregions, respectively, because of

lost or damaged ibuttons.

Ecoregion. Empirical distribution functions of temper-

ature followed the latitudinal gradient, indicating that

temperature during incubation was hotter for incubating

females in the Sand Shinnery Oak Prairie ecoregion

compared to the northern ecoregions (Table 2; Figure 2).

Likewise, empirical distribution functions for VPD fol-

lowed the longitudinal gradient, and the Mixed-Grass

Prairie ecoregion was the most humid ecoregion during

incubation, followed by the Short-Grass Prairie and Sand

Shinnery Oak Prairie ecoregions (Table 2; Figure 2).

Year. There was considerable interannual variability in

empirical distribution functions for temperature and VPD

between and among years in all ecoregions (Table 3;

TABLE 2. Evaluation of ecoregion-specific empirical distribution functions for Lesser Prairie-Chicken nest temperature and vapor
pressure deficit (VPD) in Mixed-Grass Prairie (Mixed; n¼ 42 nests), Sand Shinnery Oak Prairie (SSOP; n¼ 18 nests), and Short-Grass
Prairie (Short; n ¼ 28 nests) ecoregions, 2010–2014.

Parameter Assessment Pairwise KS KSa K Ka P MD a

Percentage of
observations

Mixed SSOP Short

Temperature Ecoregion 0.09 51.76 – – – 298C 82%b 58% 88%
SSOP-Mixed – – 0.27 49.29 ,0.001 298C – 58% 88%
Mixed-Short – – 0.08 20.16 ,0.001 178C 12% – 20%
SSOP-Short – – 0.29 51.31 ,0.001 298C – 58% 88%

VPD Ecoregion 0.09 52.71 – – – �13.70 mmHg 20%c 45% 15%
SSOP-Mixed – – 0.26 47.01 ,0.001 �12.53 mmHg 19% 46% –
Mixed-Short – – 0.10 28.01 ,0.001 �18.39 mmHg 14% – 7%
SSOP-Short – – 0.26 47.01 ,0.001 �13.77 mmHg – 45% 15%

Abbreviations: KS¼Kolmogorov-Smirnov critical value, KSa¼Kolmogorov-Smirnov test statistic, K¼Kuiper critical value, Ka¼Kuiper
test statistic, MD ¼maximum deviation.
a MD is the value where the empirical distribution function among ecoregions differs the most.
b Interpretation: 82% of the temperature observations in the Mixed-Grass Prairie ecoregion were located to the left of the MD (298C),

58% of the temperature observations in the SSOP ecoregion were located to the left of the MD (298C), and 88% of the temperature
observations in the Short-Grass Prairie ecoregion were located to the left of the MD (298C), where a greater percentage of
observations to the left of the MD indicates that the ecoregion was cooler.

c Interpretation: 20% of the VPD observations in the Mixed-Grass Prairie ecoregion were located to the left of the MD (�13.70
mmHg), 45% of the temperature observations in the SSOP ecoregion were located to the left of the MD (�13.70 mmHg), and 15%
of the temperature observations in the Short-Grass Prairie ecoregion were located to the left of the MD (�13.70 mmHg), where a
greater percentage of observations to the left of the MD indicates that the ecoregion was more arid.
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Figures 3–5). Conditions at nests in the Mixed-Grass

Prairie ecoregion were cooler and less arid in 2013

compared to 2014 (Table 3; Figure 3). The Sand Shinnery

Oak Prairie ecoregion was cooler and less arid in 2010

compared to 2011 and 2012 (Table 3; Figure 4); 2011 in the

Sand Shinnery Oak Prairie ecoregion was the hottest, most

arid year across all ecoregions (Figure 4). The Short-Grass

Prairie ecoregion was cooler and less arid in 2014

compared to 2013 (Table 3; Figure 5).

Nest attempt. Temperature and VPD distributions

differed between nest attempts and among ecoregions

(Table 4; Appendix Figures 6 and 7). In general,

temperatures were cooler during first nest attempts in

the Mixed- and Short-Grass Prairie ecoregions, but not in

FIGURE 2. Empirical distribution of temperature (left column) and vapor pressure deficit (right column) recordings from Lesser
Prairie-Chicken nests in the Mixed-Grass Prairie (n ¼ 159,362), Sand Shinnery Oak Prairie (n ¼ 40,256), and Short-Grass Prairie (n ¼
113,310) ecoregions. Vertical lines indicate the lower 10th percentile, mean, and upper 90th percentile of observations.
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the Sand Shinnery Oak Prairie ecoregion (Table 4;

Appendix Figure 6). Empirical distribution functions of

VPD differed between first and renest attempts in all

ecoregions, but microclimate conditions during renest

attempts in the Sand Shinnery Oak Prairie and Short-

Grass Prairie ecoregions were more humid (Table 4;

Appendix Figure 7). By contrast, microclimate conditions

during renest attempts in the Mixed-Grass Prairie

ecoregion were more arid compared to first nest attempts

(Table 4; Appendix Figure 7).

Nest Survival
There was a high degree of model-selection uncertainty

across our suite of 29 candidate models (Table 5). The top

competing model (SVOR*HotandArid) received 40% of the

AICc weight. In this model, the proportion of extreme hot

and arid measurements had a negative effect on survival

(bHotandAird¼�0.05) whereas VOR had a positive effect on

survival (bVOR¼ 0.003). However, the interactive effect was

negative (bVOR*HotandArid ¼�0.0007), which suggests that

VOR was unable to compensate for extreme hot, arid

conditions at nests. The model that incorporated interac-

tive effects of VOR and VPD during the daylight hours

(SVOR*DayVPD) received some model support (DAICc ¼
1.31), as did the model that incorporated additive effects of

VOR and the proportion of hot and arid measurements

(DAICc ¼ 1.92). The model that incorporated only VOR

received minimal support within our candidate set (DAICc

¼ 7.09) but explained nest survival to a greater extent than

all microclimate parameters, aside from hot and arid

conditions and mean daily temperature. However, the

effect size for VOR was an order of magnitude smaller

(bVOR ¼ 0.001) than the effect size for proportion of hot

and arid observations (bHotandArid ¼�0.04), but not mean

daily VPD (bHotandArid¼�0.002). There was no evidence of

an ecoregion-level difference in nest survival (DAICc ¼
8.27). Based on our model-averaged parameter estimates,

the probability of daily nest survival (6 SE) was 0.971 6

0.007 (95% CI: 0.95–0.98) for the Mixed-Grass Prairie

ecoregion, 0.973 6 0.008 (95% CI: 0.95–0.98) for the Sand

Shinnery Oak Prairie ecoregion, and 0.970 6 0.01 (95% CI:

0.95–0.98) for the Short-Grass Prairie ecoregion. Assum-

ing a 28-day exposure period (i.e. the incubation period),

the probability of a nest surviving the incubation period

was 44% in the Mixed-Grass Prairie ecoregion, 43% in the

Short-Grass Prairie ecoregion, and 46% in the Sand

Shinnery Oak Prairie ecoregion (0.970–0.97328) .

DISCUSSION

Our study was the first fine-scaled, range-wide assessment

of nest microclimate and the interactive effects between

microclimate and visual obstruction on nest survival of a

prairie grouse species. Our major finding was that visual

obstruction was a good predictor of nest survival, but daily

survival probabilities decreased dramatically when tem-

TABLE 3. Evaluation of yearly empirical distribution functions for Lesser Prairie-Chicken nest temperature and vapor pressure deficit
(VPD) in Mixed-Grass Prairie (n ¼ 42 nests), Sand Shinnery Oak Prairie (SSOP; n ¼ 18 nests), and Short-Grass Prairie (n ¼ 28 nests)
ecoregions, 2010–2014.

Parameter Assessment Pairwise KS a KSa K Ka P MD a

Percentage of observations

2010 2011 2012 2013 2014

Temperature Mixed-Grass 2013–2014 – – 0.19 39.32 ,0.001 268C – – – 82%b 68%
SSOP 0.04 9.18 – – – 318C 62% 41% 73% – –

2010–2011 – – 0.36 6.66 ,0.001 228C 37% 0.01% – – –
2010–2012 – – 0.21 15.05 ,0.001 318C 62% – 73% – –
2011–2012 – – 0.37 6.75 ,0.001 228C – 4% 43% – –

Short-Grass 2013–2014 – – 0.14 21.87 ,0.001 238C – – – 57% 70%
VPD Mixed-Grass 2013–2014 – – 0.18 35.74 ,0.001 �13.98 mmHg – – – 9%c 27%

SSOP – – – �15.19 mmHg 40% 99% 46% – –
2010–2011 – – 0.59 10.90 ,0.001 �15.19 mmHg 40% 99% – –
2010–2012 – – 0.12 9.29 ,0.001 �4.70 mmHg 73% – 86% – –
2011–2012 – – 0.53 9.47 ,0.001 �15.19 mmHg – 99% 47% – –

Short-Grass 2013–2014 – – 0.09 14.53 ,0.0001 �8.05 mmHg – – – 52% 43%

Abbreviations: KS¼Kolmogorov-Smirnov critical value, KSa¼Kolmogorov-Smirnov test statistic, K¼Kuiper critical value, Ka¼Kuiper
test statistic, MD ¼maximum deviation.
a The MD is the value where the empirical distribution function among years differs the most.
b Interpretation: 82% of the temperature observations in 2013 in the Mixed-Grass Prairie ecoregion were located to the left of the MD

(268C), and 68% of the temperature observations in 2014 in the Mixed-Grass Prairie ecoregion were located to the left of the MD
(268C), where a greater percentage of observations to the left of the MD indicates that the year was cooler.

c Interpretation: 9% of the VPD observations in 2013 in the Mixed-Grass Prairie ecoregion were located to the left of the MD (�13.98
mmHg), and 27% of the VPD observations in 2014 in the Mixed-Grass Prairie ecoregion were located to the left of the MD (�13.98
mmHg), where a greater percentage of observations to the left of the MD indicates that the year was more arid.
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perature was .348C and VPD was less than �23 mmHg

during the day (about 0600–2100 hours). Daily nest

survival probability decreased by 1% as the proportion of

extreme hot and arid conditions increased by 4%. Based on

this relationship, the daily nest survival probability

decreased by 10% every half-hour when conditions were

beyond the estimated threshold of 348C. Hyperthermia is a

severe risk for developing embryos (Webb 1987); Ring-

necked Pheasant (Phasianus colchicus) and chicken

(Gallus gallus domesticus) eggs can typically survive

exposures of ~2 hr to temperatures between 168C and

418C, or several hours of exposure to temperatures

between 368C and 398C (Webb 1987). Evidence from our

study suggests that during the drought years of 2011 and

2012 in the Sand Shinnery Oak Prairie ecoregion, 2013 in

the Short-Grass ecoregion, and 2014 in the Mixed-Grass

FIGURE 3. Empirical distribution of temperature (left column) and vapor pressure deficit (right column) recordings from Lesser
Prairie-Chicken nests in the Sand Shinnery Oak Prairie ecoregion in 2010 (n¼ 33,882), 2011 (n¼ 341), and 2012 (n¼ 6,033). Vertical
lines indicate the 10th percentile, mean, and upper 90th percentile of observations.
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ecoregion, Lesser Prairie-Chickens were exposed to

temperatures and humidity that exceeded not only their

own tolerance levels, but likely that of their eggs. Although

we were unable to identify the exact mechanism respon-

sible for nest failures when microclimate conditions were

beyond what is suitable for eggs and females, multiple

scenarios for nest failure exist for precocial, ground-

nesting birds like Lesser Prairie-Chickens.

The first scenario is egg death prior to incubation, while

eggs were left unprotected until the entire clutch was laid

and the female did not attempt incubation. Second, eggs

could have survived the laying period, but thermal stress

on females during incubation caused abandonment and

subsequent egg death (Boal et al. 2014). Third, egg death

could have occurred prior to incubation, with females

attempting incubation, only to abandon nests later in the

incubation period (Blomberg et al. 2015). In 2 drought

years, Grisham et al. (2014) reported 6 nest abandonments

in 2009, and only 3 incubation attempts out of 15 radio-

marked females in 2011 in the Sand Shinnery Oak Prairie

ecoregion (both drought years). Grisham et al. (2014)

confirmed that females abandoned nests during incuba-

tion, but they were unable to determine whether nest

failures were a result of egg death prior to incubation or

thermal stress on the incubating female.

Video evidence from 3 Lesser Prairie-Chicken nests and

camera-trap data at water sources in Texas suggest that

Lesser Prairie-Chickens have developed 2 unique behav-

ioral mechanisms to help alleviate thermal stress on

themselves and their nests (Boal et al. 2014, Gicklhorn

2015). First, video and ibutton data fromTexas suggest that

female Lesser Prairie-Chickens left the nest when ambient

FIGURE 4. Empirical distribution of temperature (left column) and vapor pressure deficit (right column) recordings from Lesser
Prairie-Chicken nests in the Mixed-Grass Prairie ecoregion in 2013 (n¼ 69,488) and 2014 (n¼ 89,731). Vertical lines indicate the 10th
percentile, mean, and upper 90th percentile of observations.
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thermal conditions did not put the eggs at risk (Boal et al.

2014). Females monitored by Boal et al. (2014) left the nest

twice a day, once at dawn and again at dusk. Time spent off

nest ranged from 20 min to 1 hr. While females were off

the nest, temperature and relative humidity inside the nest

tended to decrease, with more noticeable changes in

microclimate conditions in the evenings. Second, video-

monitored females engaged in gular flutter, indicating

thermal stress (Weathers and Schoenbaechler 1976). Gular

flutter started when temperature outside of the nests was

�238C (range: 23–358C) and relative humidity was �77%
(range: 39–77%; Boal et al. 2014). Because these behaviors

were consistent among years and in various environmental

conditions, Boal et al. (2014) suggested that gular flutter

was likely a mechanism used to prevent and regulate

hyperthermia via evaporation of water in the trachea.

Gular flutter is energetically costly to incubating females

because of associated water loss, especially if female

prairie-chickens obtain water largely through metabolic

processes, as has been suggested (Snyder 1967). However,

Gicklhorn (2015) reported that female Lesser Prairie-

Chickens’ use of water sources was highest before and

during the breeding season. We confirmed multiple visits

to water sources, including visits at dawn and dusk, by

nesting females in the present study. Robinson et al. (2016)

empirically linked water use and embryo development in

nesting Lesser Prairie-Chickens, which explained visits to

water before incubation. Our studies now suggest that

females’ continued visits to water during incubation were

likely due to thermal stress. We speculate that one indirect

benefit of free water use and gular flutter is a subsequent

increase in nest relative humidity when water is evaporated

FIGURE 5. Empirical distribution of temperature (left column) and vapor pressure deficit (right column) recordings from Lesser
Prairie-Chicken nests in the Short-Grass Prairie ecoregion in 2013 (n¼ 28,672) and 2014 (n¼ 84,638). Vertical lines indicate the 10th
percentile, mean, and upper 90th percentile of observations.
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out of the trachea to reduce heat stress (Grisham 2012,

Boal et al. 2014, Grisham et al. 2014, Gicklhorn 2015).

Although it appears that Lesser Prairie-Chickens benefited

from the addition of free water on the landscape, our

major finding indicated that visual obstruction was a good

predictor of nest survival except in extreme microclimate

conditions. Among the multiple nest-failure scenarios

listed above, the available evidence suggests that egg death

prior to incubation was the most likely cause of nest

failures in extreme conditions (i.e. drought), due to lack of

cover that protected eggs from direct sunlight and

desiccating winds.

Vegetation in Texas failed to foliate during the 2011

drought, leaving eggs exposed to the elements prior to

incubation (Grisham et al. 2013). Lack of suitable cover

via vegetation explained why visual obstruction was not

supported over extreme microclimate conditions. Birds

with lek-centric breeding systems select nest sites within

3–5 km of leks. Female Lesser Prairie-Chickens, Greater

Prairie-Chickens, and Greater Sage-Grouse (Centrocercus

urophasianus) all selected nest sites within close prox-

imity to brood-rearing habitat while avoiding anthropo-

genic structures (Haukos and Smith 1989, Pitman et al.

2005, Dinkins et al. 2014, Grisham et al. 2014). At finer

scales (i.e. within 2–4 m of nest plant) within 3–5 km of

leks, females of the same species selected for nesting

cover that protected eggs from the elements (Hovick et al.

TABLE 4. Evaluation of empirical distribution functions for Lesser Prairie-Chicken first-nest and renest temperature and vapor
pressure deficit (VPD) in Mixed-Grass Prairie (MG; n¼ 38 nests, 4 renests), Sand Shinnery Oak Prairie (SSOP; n¼ 15 nests, 3 renest),
and Short-Grass Prairie (SG; n ¼ 20 nests, 8 renests) ecoregions, 2010–2014.

Parameter Assessment Pairwise KS KSa K Ka P MD a

Percentage of observations

MG
First

MG
Renest

SSOP
First

SSOP
Renest

SG
First

SG
Renest

Temperature Nest Attempt 0.09 37.22 – – – 298C 82%b 85% 56% 76% 89% 83%
Mixed-Grass First-Renest – – 0.17 12.33 ,0.001 218C 47% 32% – – – –
SSOP First-Renest – – 0.44 16.68 ,0.001 198C – – 30% 7% – –
Short-Grass First-Renest – – 0.16 17.25 ,0.001 188C – – – – 31% 14%

VPD Nest Attempt 0.09 36.87 – – – �12.74 mmHg 23%c 12% 47% 49% 19% 15%
Mixed-Grass First-Renest – – 0.2 14.11 ,0.001 �6.15 mmHg 51% 32% – – – –
SSOP First-Renest – – 0.27 10.25 ,0.001 �5.50 mmHg – – 70% 89% – –
Short-Grass First-Renest – – 0.13 13.79 ,0.001 �1.10 mmHg – – – – 79% 87%

Abbreviations: KS¼Kolmogorov-Smirnov critical value, KSa¼Kolmogorov-Smirnov test statistic, K¼Kuiper critical value, Ka¼Kuiper
test statistic, MD ¼maximum deviation.
a The MD is the value where the empirical distribution function among nests within and among ecoregions differs the most.
b Interpretation: 82% of the temperature observations for first nests in the Mixed-Grass Prairie ecoregion were located to the left of

the MD (298C), 85% of the temperature observations for renests in the Mixed-Grass Prairie ecoregion were located to the left of the
MD (298C), 56% of the temperature observations for first nests in the SSOP ecoregion were located to the left of the MD (298C), 76%
of the temperature observations for renests in the SSOP ecoregion were located to the left of the MD (298C), 89% of the
temperature observations for first nests in the Short-Grass Prairie ecoregion were located to the left of the MD (298C), and 83% of
the temperature observations for renests in the Short-Grass Prairie ecoregion were located to the left of the MD (298C), where a
greater percentage of observations to the left of the MD indicates that conditions at nests were cooler.

c Interpretation: 23% of the VPD observations for first nests in the Mixed-Grass Prairie ecoregion were located to the left of the MD
(�12.74 mmHg), 12% of the VPD observations for renests in the Mixed-Grass Prairie ecoregion were located to the left of the MD
(�12.74 mmHg), 47% of the VPD observations for first nests in the SSOP ecoregion were located to the left of the MD (�12.74
mmHg), 49% of the VPD observations for renests in the SSOP ecoregion were located to the left of the MD (�12.74 mmHg), 19% of
the VPD observations for first nests in the Short-Grass Prairie ecoregion were located to the left of the MD (�12.74 mmHg), and 15%
of the VPD observations for renests in the Short-Grass Prairie ecoregion were located to the left of the MD (�12.74 mmHg), where a
greater percentage of observations to the left of the MD indicates that conditions at nests were more arid.

TABLE 5. Model ranking of 29 a priori candidate models used to
estimate nest survival for 101 Lesser Prairie-Chicken nests in the
Mixed-Grass Prairie, Sand Shinnery Oak Prairie, and Short-Grass
Prairie ecoregions, 2010–2014.

Model DAICc
a wi

Model
likelihood K Deviance

VOR*HA b 0 0.40 1 6 513.60
VOR*DayVPD 1.31 0.20 0.5 6 514.91
VORþHA 1.92 0.15 0.38 5 517.54
HA 3.16 0.08 0.20 4 520.79
DayTemp 5.98 0.02 0.05 4 523.62
VORþDayTemp 6.53 0.01 0.03 5 522.16
VORþNightTemp 6.88 0.01 0.03 5 522.50
VOR 7.09 0.01 0.02 4 524.72
VOR*NightTemp 7.78 0.01 0.02 6 521.39

a Lowest AICc value ¼ 525.65, DAICc ¼ differences in AICc, wi ¼
model weights, K¼ number of parameters.

b For parameter notation and definitions, see Table 1. Models
with wi , 0.01 are not shown.
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2014, present study) while facilitating protection and

escape from predators (Conover et al. 2010, Hovick et al.

2014, Fritts et al. 2016). Our findings, when combined

with information in Hagen et al. (2013), suggest that

visual obstruction and microclimate were both important

components of nest habitat and survival. We argue that

visual obstruction was the selection cue for nesting

females at finer scales, and our findings indicate that

except in severe drought, vegetation was capable of

protecting the nest from the elements. Hovick et al.

(2014) implied that nest temperature was the causal

mechanism in nest success for Greater Prairie-Chickens,

although vegetation structure was likely the nest selection

cue. Therefore, environmental conditions are likely to

affect vital rates, and thus demography and persistence, of

Lesser Prairie-Chickens in the Sand Shinnery Oak Prairie

ecoregion more than in the other ecoregions, because

~50% of all temperature and VPD observations were

�308C and less than or equal to �15 mmHg.

Admittedly, differences in empirical distribution func-

tions among ecoregions were influenced by the historic

drought in the Sand Shinnery Oak Prairie ecoregion in

2011 (Huber and Gulledge 2011, Nielsen-Gammon 2012,

Rupp et al. 2012), as well as drought in the Mixed-Grass
and Short-Grass Prairie ecoregions, but overlapping 95%

CIs for nest survival suggested no difference in daily nest

survival probabilities among all 3 ecoregions. The dynamic

interannual variation we found in nest survival is

consistent with the boom–bust reproductive strategy of

the species (Hagen et al. 2009), in that each ecoregion in

our assessment had 1 yr of high nest survival with 1 yr

(Mixed-Grass Prairie and Short-Grass Prairie) or 2 yr

(Sand Shinnery Oak Prairie) of poor nest survival (Grisham

et al. 2014, Lautenbach 2015). We suspect that regional

and interannual variation in microclimate may explain the

boom–bust productivity pattern of the species (Hagen et

al. 2009), given that the limited number of years of our

assessment was adequate to capture the range of

environmental conditions the species was exposed to in

all 3 ecoregions and the subsequent effects on nest

survival. Current climate-change forecasts predict hotter

and drier conditions on the Great Plains during incubation

and brood rearing (Grisham et al. 2016a). Our results offer

fine-scale, nest-location-specific support to earlier evi-

dence that Lesser Prairie-Chicken productivity has the

potential to decrease with changes in spring phenology and

warmer, more arid conditions due to climate change

(Fields et al. 2006, Grisham et al. 2013). However, nest

survival in the eastern and northern portions of the the

species’ range is less likely to be affected by naturally

cooler, more humid climates that decrease the probability

of egg death or nest abandonment.

Our study is the first to identify the approximate

environmental thresholds for nest survival in Lesser

Prairie-Chickens in relation to nest vegetation. Our major

finding confirms that except during extreme drought,

visual obstruction was a good predictor of nest survival.

We also confirmed a positive relationship between visual

obstruction and nest survival in all 3 ecoregions. This

finding was consistent with most previous research

(Haukos and Smith 1989, Pitman et al. 2005, Davis

2009, Grisham et al. 2014; but see Fritts et al. 2016).

Visual obstruction was an important predictor of nest

survival in studies when the majority of nests were

located in either sand sagebrush or shinnery oak (Davis

2009, Grisham et al. 2014) but not in studies in which the

majority of nests were located in grasses (Fritts et al.

2016). Fritts et al. (2016) suggested that native grasses

provide greater visual obstruction than shrubs, thus

increasing the amount of potential nesting locations

when grasses are widely available. In the present study,

grasses were unavailable for nesting during drought years

in the Sand Shinnery Oak Prairie ecoregion (Grisham et

al. 2014), although residual grasses were available in the

Mixed- and Short-Grass ecoregions (Lautenbach 2015).

In the Sand Shinnery Oak Prairie ecoregion, shrubs

provided thermal refugia (Patten et al. 2005, Bell et al.

2010) and visual obstruction (Davis 2009, Hagen et al.

2013, Grisham et al. 2014) for nesting females during

drought years, but grasses were selected for nesting over

shrubs when available (Grisham et al. 2014, Fritts et al.

2016). Thus, in the final synthesis, latitudinal and

longitudal differences in microclimate conditions (pre-

sent study), interannual plant composition (Grisham et al.
2014, Lautenbach 2015, Fritts et al. 2016), and subsequent

vegetation composition and structure among ecoregions

(Hagen et al. 2013, present study) explain the conflicting

relationships between nest survival and visual obstruction

among previous studies.

Management Implications and Future Directions
Lesser Prairie-Chicken populations would benefit from

research that identifies thermal landscapes (i.e. distribu-

tion of temperature and relative humidity at multiple

spatial scales; Johnson 1980) and land management

techniques (e.g., prescribed fire, grazing, tree removal,

herbicide application) that promote cooler, more humid

microclimates for nesting and brood-rearing activities

(Patten et al. 2005, Bell et al. 2010). Populations would

also benefit from improving and maintaining suitable

visual obstruction (about 3.7–4.4 dm; Hagen et al. 2013,

Fritts et al. 2016) for nesting activities (Hagen et al. 2013).

Our results indicate that identification of thermal refugia

has higher priority in the Sand Shinnery Oak Prairie

ecoregion, but our recommendation for identification of

thermal landscapes is warranted for all populations, given

expected climate change throughout the distribution

(Grisham et al. 2016a).
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Sand shinnery oak provides critical nesting habitat and

thermal refugia and promotes high adult survival (Patten

et al. 2005, Bell et al. 2010, Fritts et al. 2016). The herbicide

tebuthiuron is commonly used to reduce or eliminate

shinnery oak in favor of grasses and forbs for cattle forage

(Peterson and Boyd 1998). Although Haukos (2011)

recommended best management practices for tebuthiuron

application in the Sand Shinnery Oak Prairie ecoregion,

widespread misuse (e.g., spraying during drought, doses

�1.0 kg ha�1; Haukos 2011) of tebuthiuron continues (P.

McDaniel personal communication), killing sand shinnery

oak. Our results stress the importance of sand shinnery

oak to this system. Lesser Prairie-Chicken populations in

the Sand Shinnery Oak Prairie ecoregion would benefit if

tebuthiuron application were completely avoided during

drought years (including prolonged drought), because

otherwise plants are defoliated during incubation and

brood-rearing activities (Peterson and Boyd 1998), reduc-

ing the availability of thermal refugia.
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APPENDIX

Study Area Descriptions

Mixed-Grass Prairie ecoregion. Dominant vegetation

within the region included little bluestem (Schizachyrium

scoparium), blue grama (Bouteloua gracilis), hairy grama

(B. hirsuta), sideoats grama (B. curtipendula), buffalograss

(Buchloe dactyloides), sand dropseed (Sporobolus crypt-

andrus), Louisiana sagewort (Artemisia ludoviciana),

western ragweed (Ambrosia psilostachya), sand sagebrush

(Artemisia filifolia), and eastern red cedar (Juniperus

virginiana; Lauver et al. 1999). The study area in Clark

County in south-central Kansas was located along the

ecotone of the Mixed-Grass and Sand Sagebrush Prairie

ecoregions; the study area also included considerable alkali

flats along drainages. Dominant vegetation in the area

included little bluestem, sideoats grama, blue grama, hairy

grama, big bluestem (Andropogon gerardii), alkali sacaton

(Sporobolus airoides), Russian thistle (Salsola sp.), kochia

(Kochia scoparia), annual sunflower (Helianthus annuus),

and sand sagebrush (Lauver et al. 1999).

Average high temperatures for the study area during the

nesting season were 228C (range: 8–348C) in April; 298C

(range: 14–408C) in May; and 328C (range: 19–398C) in

June. Average low temperatures were 38C (range: �68C to

188C) in April; 88C (range:�48C to 208C) in May; and 178C

(range: 10–248C) in June. Total precipitation in 2013 was

14.47 cm in April, 21.32 cm in May, and 22.41 cm in June

(annual precipitation ¼ 41.0 cm). Total precipitation in

2014 was 10.41 cm in April, 11.67 cm in May, and 13.5 cm

in June (annual precipitation ¼ 41.16 cm). The study area

was listed as ‘‘mid-range’’ on the Palmer Drought Severity

Index at the end of the nesting season in 2013 (June 7;

http://www.ncdc.noaa.gov/temp-and-precip/us-weekly/

20130601) and 2014 (http://www.ncdc.noaa.gov/temp-

and-precip/us-weekly/20140607). The region was primar-

ily used for ranching/pastureland, with row-crop agricul-

ture interspersed throughout the region.

Sand Shinnery Oak Prairie ecoregion. Strahan (2008)

provides a complete floristic survey of the plants located in

sand shinnery oak prairies. Average high temperatures for

the study area during the nesting season were 258C (range:

22–278C) in April; 298C (range: 27–308C) in May; and

358C (range: 34–378C) in June. Average low temperatures

were 98C (range: 8–108C) in April; 138C (range: 12–158C)

in May; and 198C (range: 19–218C) in June. In general,

2010 was the wettest year during the study, with 3.17 cm in

April, 3.00 cm in May, and 13.56 cm in June (annual

precipitation ¼ 53.34 cm); whereas 2011 was the driest

year, with 0.00 cm in April, 0.05 cm in May, and 0.00 cm in

June (annual precipitation ¼ 0.60 cm); and 2012 received

1.24 cm in April, 1.70 cm in May, and 5.86 cm in June
(annual precipitation ¼ 27.56 cm) (http://www.mesonet.

ttu.edu; Mallet Station). The study area was listed as

‘‘moderately moist’’ on the Palmer Drought Severity Index

at the end of the nesting season in 2010 (June 7; http://

www.ncdc.noaa.gov/temp-and-precip/us-weekly/

20100605) and as ‘‘extreme drought’’ in 2011 (http://www.

ncdc.noaa.gov/temp-and-precip/us-weekly/20110604) and

2012 (http://www.ncdc.noaa.gov/temp-and-precip/us-

weekly/20120602).

The major land uses in this region were cattle

production, row-crop agriculture, and oil and natural gas

extraction. Although the New Mexico and Texas study

areas were separated by a political boundary, there were no

genetic or other biological differences between Lesser

Prairie-Chickens in these states; thus, the study sites

consisted of a single population (Corman 2011, Oyler-

McCance et al. 2016).

Short-Grass Prairie ecoregion. Dominant vegetation in

the region included blue grama, hairy grama, buffalograss,

little bluestem, sideoats grama, big bluestem Illinois

bundleflower (Desmanthus illinoensis), prairie sunflower

(Helianthus petiolaris), annual buckwheat (Eriogonum

annuum), sand milkweed (Asclepias arenaria), 9-anther

dalea (Dalea enneandra), and western ragweed (Lauver et

al. 1999). The grass species planted within the CRP fields

included little bluestem, sideoats grama, big bluestem,

switchgrass (Panicum virgatum), blue grama, buffalograss,

and Indiangrass (Sorghastrum nutans; Fields et al. 2006).

After original planting, the fields were interseeded with

forbs, including white sweetclover (Melilotus alba), yellow
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sweetclover (M. officinalis), Maximillian sunflower (Heli-

anthus maximiliani), Illinois bundleflower, purple prairie
clover (Dalea purpurea), and prairie coneflower (Ratibida

columnifera; Fields et al. 2006).

Average high temperatures for the study area during the

nesting season were 188C (range: 0.6–338C) in April; 268C

(range: 4–378C) in May; and 328C (range: 15–438C) in June.

Average low temperatures were 0.698C (range: �88C to

118C) in April; 88C (range:�38C to 188C) in May; and 158C

(range: 5–228C) in June. Total precipitation in 2013 was 1.65
cm in April, 5.54 cm in May, and 5.00 cm in June (annual

precipitation ¼ 52.67 cm). Total precipitation in 2014 was

2.33 cm in April, 0.41 cm in May, and 27.82 cm in June
(annual precipitation¼ 55.93 cm). The study area was listed

as ‘‘severe drought’’ on the Palmer Drought Severity Index at

the end of the nesting season in 2013 (June 7; http://www.

ncdc.noaa.gov/temp-and-precip/us-weekly/20130601) and

2014 (http://www.ncdc.noaa.gov/temp-and-precip/us-

weekly/20140607). The dominant land uses in this region

were livestock grazing, row-crop agriculture, and CRP.

Wheat (Triticum aestivum), sorghum (Sorghum bicolor),
and corn (Zea mays) were the major crops in the region.

APPENDIX FIGURE 6. Empirical distribution of temperature recordings from Lesser Prairie-Chickens’ first (n¼267,888; top row) nests
and renests (n¼45,041; bottom row) in the Mixed-Grass Prairie (n¼ 12,426), Sand Shinnery Oak Prairie (n¼ 3,297), and Short-Grass
Prairie (n ¼ 29,318) ecoregions. Vertical lines indicate the 10th percentile, mean, and upper 90th percentile of observations.
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APPENDIX FIGURE 7. Empirical distribution of vapor pressure deficit recordings from Lesser Prairie-Chickens’ first (n¼ 267,888; top
row) nests and renests (n¼45,041; bottom row) in the Mixed-Grass Prairie (n¼ 12,426), Sand Shinnery Oak Prairie (n¼ 3,297), and
Short-Grass Prairie (n ¼ 29,318) ecoregions. Vertical lines indicate the 10th percentile, mean, and upper 90th percentile of
observations.
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