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INTRODUCTION

The discovery of all abstract groups of a preassigned order has been

of interest to algebraists since the conception of group theory. No suc-

cessful method has yet been discovered for constructing all possible

abstract groups of a preassigned order, nor do we know in advance how

many such groups exist, except in a few relatively simple cases. This

report contains four of these elementary cases; Cases considered are

2 3
abstract groups of order p, p , pq, and p where p and q are primes.

A basic understanding of the properties of integers and elementary

group theory will be assumed on the part of the reader.

In the initial pages of this report definitions, theorems, and a corol-

lary are stated that will be used in proving theorems of major interest in

the body of the report.

Throughout the paper "e" will be used to represent the unit element/

the "identity". The notation and nomenclature of multiplication will be

adopted to express the composition of abstract group elements. Groups

and subgroups will be denoted by capital letters G, H, K, . . . , while the

elements will be denoted by lower case letters a, b, c, . . . Thus for any

two elements a and b, equal or unequal, belonging to a group G there

exists a unique element c belonging to G such that ab = c.

The symbol (a, b) = d will be used to mean that d is the greatest com-

mon divisor of a and b where a, b, d are integers. In the special case



when d = 1 we say that a and b are relatively prime. The symbol /"\ will

be used to indicate the usual set intersection but L/ will not denote ordi-

nary set union. Let H and K be subgroups of a group G. Then the symbol

H U K will represent that subgroup of G, called the union of H and K,

consisting of the set of all finite products, g^g-," ' ' g » where each g. belongs
i. £ S 1

to H or K.

On the following pages will be found a list of definitions, theorems and

a corollary which will be used throughout the paper.

DEFINITION A : If a is an element of a group G, then the least posi-

tive integer h for which a' = e is called the order of the element a. If no

such h exists, a is said to have zero order.

DEFINITION B : The order of a group G is the cardinal number of

elements in G.

DEFINITION C : A group whose elements can all be expressed as pow-

ers of a single element is called a cyclic group. In general a cyclic group

2 c - 1C of order c consists of the c elements e, a, a , • • •
, a where c is the

least positive integer such that a = e. We say that C is generated by a

and write C = [a].

DEFINITION D : An abstract group is an equivalence class of all groups

isomorphic to a given group.

THEOREM A: There is one and only one (abstract) cyclic group for

any given order.

DEFINITION E : A subset H of elements of a group G is called a



subgroup of G if it forms a group with respect to the product as defined in

G. A subgroup H of G is called a proper subgroup of G if H is not G itself

and if K has at least one element other than the unit element.

THEOREM B : (Lagrange). If H is a subgroup of G where the orders

of these groups are h and g respectively, then h is a factor of g, g = nh

for n a positive integer.

COROLLARY B-l : If G is a group of order g, the order of every ele-

ment of G is a factor of g.

THEOREM C : (Fermat). If p is a prime then nP = n(mod p).

DEFINITION F : Given any two abstract groups A and B of orders g

and h respectively, we may form from these the set of ordered pairs (a, b),

a e A, b £ B. These ordered pairs will be the elements of a new group of

order gh called the direct product of A and B, denoted AxB, if we define

product by the rule (aj.bjHa^^) = (a.a , b b ).

THEOREM D : If G = AxB then G contains subgroups A* and B* iso-

morphic to A and B respectively such that every element of A* commutes

with every element of B*.

THEOREM E : The direct product of Abelian groups is Abelian.

THEOREM F : If A and B are subgroups of a group G such that,

i) ab = ba for every element a £ A and every element b £ B, and

ii) A D B - e, then AxB is isomorphic to a subgroup of G.

DEFINITION G: A subgroup H of a group G is said to be a normal

subgroup of G if x" Hx = H for all x £ G.



THEOREM G : A group G is isomorphic to the direct product of two

subgroups A and B if A and B are normal subgroups such that A A B = e,

A (JB = G.

THEOREM H : If m and n are relatively prime, then a cyclic group of

order mn is isomorphic to the direct product of cyclic groups of orders m

and n; [mn] •& [m] x jn]

.

DEFINITION H: The aggregate of those elements of a group G which

commute with all elements of G is called the center Z of G.

THEOREM I : The center Z of a group G is a normal subgroup of G.

DEFINITION I : The kernel of a homomorphism of a group G onto a

group H is that subset T of G that is mapped onto the identity element of H.

THEOREM J : The kernel T of a homomorphism of a group G is a nor-

mal subgroup of G.

DEFINITION J : Given a group G and a subgroup H, the set of elements

hx, h £ H, x s G, x fixed, is called a right coset of H. We write Hx to des-

ignate this set. Similarly, the set of elements xh, h £ H is called a left

coset xH of H.

THEOREM K : Two left (right) cosets of H in G are either disjoint or

identical sets of elements.

THEOREM L : A left (right) coset of H contains the same cardinal num-

ber of elements as H.

DEFINITION K : The cardinal number r of left (right) cosets of a sub-

i

group H in a group G is called the index of H in G.

DEFINITION L : If the index of a subgroup H in a group G is r, we will



write G = H+ Hx_ + • • • + Hx , to indicate that the cosets H, Hx.,, • ' •
, Hx

2 r Z r

are disjoint and exhaust G. Here the indicated addition is only a convenient

notation and not to be regarded as an operation.

DEFINITION M : If G is a group and T is a normal subgroup, then the

group H, consisting of the cosets Tx. as elements under the product

(Tx )(Tx.) = Tx if x.x. £ Tx, in G, is called the factor group of G with re-
1 j k 1 j k

spect to T written H = G/T.

THEOREM M : The order of H = G/T is r, the index of T in G.

THEOREM N : Given a group G and a normal subgroup T, then if

H = G/T, there is a homomorphism G -V H whose kernel is T. This homo-

morphism is given by g —^ Tx., if g £ Tx. in G.

DEFINITION N: If p is a prime, a group G is a p-group in case every

element x £ G except the identity has order some power of p.

THEOREM O : (Cauchy). If G is a finite group whose order is divis-

ible by a prime p, then G contains an element of order p.

DEFINITION O: If H is a given subgroup of G, any subgroup of the form

aHa where a £ G is said to be conjugate with H relative to G.

DEFINITION P: Let H be a subgroup of G. The normalizer of H in

G is the set of all a 6 G such that aHa" C H.

THEOREM P : The number of distinct subgroups of a group G conjugate

with a given subgroup H is equal to the index of the normalizer of H in G.

DEFINITION Q : A subgroup S of a group G is a Sylow subgroup of G



if it is a p-group and is not contained in any larger p-group which is a sub-

group of G.

THEOREM Q : (First Sylow Theorem). If G is of order n = p s where

p does not divide s, p a prime, then G contains subgroups of orders p ,

i = 1, • • •
i
m, and each subgroup of order p , i = 1, • • •

, m - 1, is a normal

subgroup of at least one subgroup of order p

THEOREM R: (Second Sylow Theorem). Let G be a finite group with

p-Sylow subgroup P. All p-Sylow subgroups of G are conjugate to P, and

the number of these subgroups is = l(mod p), and is a divisor of the order

of G.

THEOREM S : Every proper subgroup of a p-group P of order p is

contained in a maximal proper subgroup of order p , and all the maxi-

mal subgroups of P are normal subgroups.

C
l °rTHEOREM T : A finite Abelian group of order n = p • • -p

r
, the p.

being distinct primes, is the direct product of Sylow subgroups S(p ),
• •

,

c.

S(p ). Here S(p.) is of order p. and is the direct product of cyclic groups

c c.
il is

of orders p. ,
• • •

, p.
" where c., + • • • + c =c.

i i il is i

DEFINITION R : If A is an Abelian p-group which is the direct product

°1 C
r

of cyclic groups of orders p ,
• • •

, p , then these numbers are called

the invariants of the group.



THEOREM U : Two finite Abelian p-groups are isomorphic if and only

if they have the same invariants.

GROUPS OF ORDER p

THEOREM I : There exists exactly one group of order p for any prime

p and it is necessarily cyclic.

PROOF : If G is a group of prime order p, then by the Lagrange theo-

rem, the order of any subgroup of G must either be 1 or p. Hence the only

subgroups of G are the improper subgroups; a subgroup of G is either just

the unit element e or all p of the elements of G.

If a is an element of G other than e, its order, being greater than 1

must be p since the order of elements of G must divide the order of G by

~?
T\ \ TV

Corollary B-l. Hence e, a, a , . . . , aP (a = e) are the p elements of

G. Thus G is cyclic. Since G must be cyclic, there exists exactly one

abstract group of order p for any prime by Theorem A.

GROUPS OF ORDER p
2

-^ 2THEOREM II: A group of order p where p is a prime is Abelian and

is either cyclic or isomorphic to the direct product of two distinct cyclic

subgroups of order p whose intersection is the identity of the group.

PROOF : Let G be a group of order p . Then, according to the First

2Sylow Theorem, G contains subgroups of orders p and p and each subgroup



2
of order p is a normal subgroup of the subgroup of order p . Since the sub-

2 2
group of order p is G, G can be the cyclic group of order p . Let a be an

2 2 2
element of G of order p . Then G consists of the p elements e, a, a , . . . ,

2 2

a (a = e).

2
If G is not the cyclic group of order p , then G contains no element of

2
order p". Since G is a p-group, the elements of G must have order p or 1

.

2
Obviously not all elements of G can be of order 1 since G is of order p .

Hence elements of G other than the identity e must be of order p. Since G

2
is of order p , G will contain two distinct cyclic subgroups of order p, say

jb] and jcj, where b = e, c = e and [bj f~\ [cj = e - According to Theorem S

[bj and [c] are maximal subgroups and both subgroups are normal subgroups

of G. Hence, by Theorem G, G» [bixfcl. Since it is true that G is the direct

product of the subgroups [b] and (c], all elements of G commute with all other

elements of G. Hence in this case, also, G is Abelian.

GROUPS OF ORDER pq

THEOREM III : A group of order pq, where p > q are primes, is either

cyclic or a non-Abelian group generated by two elements a and b satisfying

the following relations:

b = e; a = e; a ba = b

. qwhere r =£ l(mod p) but r == l(mod p). The second possibility occurs if and



only if q divide s p - 1

.

PROOF: Let G be a group of order pq where p > q are primes. Accord-

ing to the theorem of Cauchy, since G is a finite group, G contains an ele-

ment of order p. Let b be an element of order p in G. Then b generates a

cyclic subgroup S = [b] of G. S consists of the p elements e, b, b , . . . ,

p - 1 p
b (b = e). Since the highest power of p that divides pq is one, S is a

p-Sylow subgroup of G. The number of p-Sylow subgroups of G conjugate to

S, according to the Second Sylow Theorem, is congruent to l(mod p) and is

also a divisor of pq. Hence the number of conjugates to S is 1 + vp for some

integer v > 0. Since 1 + vp and p are relatively prime and 1 + vp divides pq,

1 + vp must divide q. Hence v = since p > q. Thus the index of the nor-

malizer of S in G is one by Theorem P. Therefore aSa C S for every

a £ G so that S is a normal subgroup of G.

According to the Cauchy theorem G also contains an element of order

q. Let this element be a. Thus a generates a cyclic subgroup T = [a] of G.

T consists of the q elements e, a, a , . . . , a (a = e). The highest

power of q that divides pq is one, hence T is a q-Sylow subgroup of G. The

number of q-Sylow subgroups of G conjugate to T is 1 + kq for some integer

k > since, according to the Second Sylow Theorem the number is congruent

to l(mod q). The number of conjugates of T divides pq. Since 1 + kq and q are

relatively prime and 1 + kq divides pq, 1 + kq must divide p. Two possibilities

thus result. Either k = or p - 1 is divisible by q.

Case 1: If k = the index of the normalizer of T in G is one by Theorem
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P. Hence aTa £ T for every element a e G. Thus in this case T and S

are both normal subgroups of G. Hence for every prime p that divides the

order of G, every p-Sylow subgroup is normal. Since S and T are of prime

orders p and q respectively, where p > q, S H T = e. The elements of the

subgroup S UT are all the finite products of elements of S with elements of

T. However, all these finite products are equivalent to products of two

elements, one from S and one from T, since both S and T are cyclic normal

subgroups of G. Also, a b = a b implies i = k and j = h. Thus the sub-

group S UT has pq elements so that SUT= G. Therefore, according to

Theorem G, G^SxT, G is isomorphic to the direct product of the two cy-

clic subgroups S and T of orders p and q respectively. Since p y q are prim-

es they are relatively prime. Hence by Theorem H, SxT is isomorphic to

the cyclic group of order pq. Thus for this case G is a cyclic group of

order pq.

Case 2: If p - 1 is divisible by q, then T could still be normal. If T is

normal, G is a cyclic group of order pq as discovered above.

Assume T is not a normal subgroup of G. Since S is a normal subgroup

of G, S commutes with every element of G. Hence ba = ab for some inte-

ger r less than p. If r = 1, then all elements of S commute with all elements

of T (elements of T commute with elements of T since T is cyclic). Thus

for r = 1, T would be a normal subgroup of G and G would be the cyclic

group of order pq found in Case 1 above. Hence r ± 1 and G is non-Abelian.

Since r i 1, ba = ab implies a" ba = b
r

. Consider a" b*a
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-1 -1 -1 -1 rrrir
= a bbb- • • ba = (a ba)(a ba)- • • (a ba) = b b • • • b = b . Hence

.
n

.
- 1 , i . ir .

(1) a b a = b for any integer l.

In particular

2
- 1 r r r r

(2) a b a = b = b .

-1 r
Upon substituting a ba for b in equation (2) the equation becomes

-2 r
2

a ba = b .A similar statement is needed for all powers of r. Consider

the proposition

. n

P(n): a b a = b for all positive integers n and any
(3)

integer i.

-1 ir
1

Then P(l) is a b a = b which was proved above, equation (1). Assume

P(k) is true:

i • i •
k

i a\ -K, i k ir
(4) a b a = b

Then multiplying on the left by a and on the right by a on each side of

-1 -k i k
equation (4) the following equations are obtained: a a baa

-k- 1, i k+1 -1 ir
k

o .
-1 i ir-a ba -ab a. Since a b a = b for any integer i,

i
•
k

•
k .k+1 ,,.i,, .k+1

-i ir ir r ir -k-1 i k+1 ir
a b a = b = b . Hence a b a = b so that

P(k+ 1) holds. Therefore P(n) is true for all positive integers n and any

integer i.

q
In particular let n = q and i = 1. Then a'^ba = b

r
. Since a £ T is
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1-q q r
of order q, a ba = b. Hence b = b from which it follows that

q
r = l(mod p) if G is a group satisfying the conditions of the second half of

the theorem.

Sufficiency of the condition r = l(mod p), and r == l(mod p) is now to

be proved. Assume G is a group defined by elements a and b satisfying

relations: b" = e; a = e; a ba = b where r -^ l(mod p) but r
q = l(mod p).

It will be shown that these conditions are sufficient to prove that G has

order pq.

. n
It was shown in equation (1) above that a b a = b for all integers

n and any integer i. Let u, v, x, and y represent integers. Then in par-

x
i

"x
i_
v x

T_
vr n-n ,

u
t
vw x.y, u x -x, v x, yticular, a b a = b . Thus (a b )(a b' ) = a a a b a b'

utx, -xv x.
n y u + x,vr +y

= a (a b a )b
7 = a b y

. Hence

x
ic\ i

u
i-
vw x vY\ u + x, vr +y

(5) (a b )(a b ) = a b y

is a general rule for multiplying any two elements of G. Consider the

proposition

. (n - l)u (n - 2)u
u

,
v

x
n nu,v(r +r v +---+1

P(n): (a b ) = a b ' for all

(6) positive integers n, any integers u and v, and for the

particular positive integer r.

v 1 /
)Letting n = 1, P(l) becomes (a

U
b
V

) = a
U
b
V(r

' = a
U
b
V

. Assume P(n) is

true for n = k:
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,
(k- l)u (k-2)u

(7) (a b ) = a b

Multiplying on both sides of equation (7) by (a b ) yields the equations:

i i , , i ,
(k- l)u (k- 2)uu vk u v u,v.k+l ku,v(r v + r

v
' + • • • + 1 , u, v,

(a b ) (a b ) = (a b ) = a b (a b )

, (k- l)u
,

(k-2)u
, _, u

,ku + u.v(r +r +---+l)r 4-

v

= a b

it i » ,
ku (k -l)u

(k+ l)u_v(r + r ' + • • • + 1)
- a b . Thus it follows from these equations

*u 4./ u vv \
k+1 (k+l)u

1
v(r +r x

' + ---+1)
that (a b ) = a' b which is P(k+ 1 ).

Therefore P(n) is true for all positive integers n.

, (P<1 - l)u
, (pq - 2)u

In particular (a b y = a b '. Note

4.1. «. (P3 - l)u (pq - 2)u
that r -r r + • • • + 1 is just a geometric progression with

/

,

r
(pq-l)u_

r
-u <

1 - r
-U I"common ratio r . The sum of the first pq terms is \

. fry. A v(i^i) V^ -A
"UU

-1 A Hence (a
U
b
V

)

Pq
= a

pC1U
b

Vr "^(a^b I *
- 1 '

V K-^j /pqu.A
= b v

. Thus what must be shown is that p divides \ r
U

- 1 J.

If (p, r - 1) 4 li then (p, r - 1) = p since p is a prime. Hence p

divides r - 1. Thus r ~ l(mod p). Since q is a prime satisfying

q > u > 1, (u, q) = 1. Thus there exist integers s and t such that

l=us+qt. Since r
Us 1 (mod p) and r

q = 1 (mod p), r = r
US + qt

. us q>t-_
- (r

) (r ) s l(mod p). However r = l(mod p) contradicts the original
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condition on r. Hence (p, r - 1) = 1.

Let M = r
(P^" Du + r

(pq-2)u
+> . . , ^ + x B

^HT^ M =
(^7x7^

is obviously an integer since the integers are closed under multiplication

and addition. Since r
Pq = (r

q
)

pU ~ l(mod p), p divides r
PqU

- 1. Hence

fr
PqU

- A
p divides \ r - 1 /as was desired to be proved. Thus M = hp for some

1 j i » r _ 1 < 1 vhp „ P v
vh _,integer h and b = b ^ = (b1

)
= e. Therefore for all integers

, , u, v^pq pqu,vhp
u and v, (a b y^ = a^ d r = e. Hence the order of G is a divisor of pq.

Since p >q are primes, the only divisors of pq are 1, p, q, and pq.

G is not of order 1 since G is generated by two elements by assumption.

Since a is of order q, (ea)P = aP ± e. Hence G is not of order p. Simi-

q qiarly (eb) = b 4 e since b is of order p. Hence G is not of order q either.

Thus the order of G must be pq. Also, since ba = ab
r

4 ab, G is non-

Abelian and hence non-cyclic. G is thus a non-Abelian group of order pq

defined by two elements a and b satisfying the relations bP = e; aq = e;

-1 r
a ba = b if and only if r =£ l(mod p) but r

q = l(mod p). Thus two distinct

groups of order pq have been found.

As an example of when Theorem III may be applied, consider the groups

of order 6. According to this theorem, an abstract cyclic group of order 6

does exist. Since 6 = 2-3, let p = 3 and q = 2. Then since 2 divides 3-1,

an abstract non-Abelian group of order 6 exists with defining relations
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3 2 -12
b = e, a = e, and a ba = b . Thus two abstract groups of order 6 exist

and these are the only abstract groups of order 6.

Consider the groups of order 15. They serve as a contrasting exam-

ple of what this theorem purports. Again an abstract cyclic group of order

15 exists. However since 15 = 3- 5, letting p = 5, and q = 3, we see that 3

does not divide 5-1. Hence, only one abstract group of order 15 exists.

GROUPS OF ORDER p
3

3THEOREM IV : A group of order p where p is a prime must be one

of the following five types:

A) Abelian

1) aP -«

P P
2) a^ = e, b^ = e, ba = ab

3) a =b = c = e, ba = ab, ca = ac, cb =,bc

3
B) Non-Abelian of order 2=8

4 2 -1
4) Dihedral: a = e, b = e, ba = a b

4 Z Z -1
5) Quaternion: a =e,b = a , ba = a b

3
C) Non-Abelian of order p , p odd

4) aP =e, bP = e, b"
1 ab-a1+p

5) a = b = c
1

= e, ab = bac, ca = ac, cb = be.
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3PROOF : Let G be a group of order p where p is a prime. Clearly the

3 2
set of invariants for G is (p ), (p , p), or (p, p, p). Hence by Theorem T,

G might be one of the three Abelian types with invariants respectively

3 2
(P )> (P > p)» and (p, p, p). Theorem U requires that the groups with these

sets of invariants are distinct Abelian groups (not isomorphic). Thus G

might be one of the three Abelian types listed under A) of the theorem. Since

3
exactly three sets of invariants exist for p , by Theorem U exactly three

3
types exist of order p . Tables I, II, and III on pages 27 and 28 give these

distinct Abelian groups for p = 2.

3The discussion of non-Abelian groups of order p naturally divides into

two cases, one when p is the even prime, 2, and the other when p is an odd

prime.

3Case 1: Let H be a non-Abelian group of order 2=8. Factors of 8 are

1, 2, 4, and 8. Hence by Corollary 1 of Theorem B, all the elements of H

are of order 1, 2, 4, or 8. No element of H can be of order 8 since if such

an element did exist, H would be the cyclic group of order 8 and thus Abelian.

Obviously not all the elements of H are of order 1. If all the elements of H

2 2
are of order 2, then for a s H and b & H, a = e, b = e, and (ab) = e or

equivalently

(1) abab = e.

Thus if both sides of equation (1) are multiplied on the left by a and on the

2 2 2 2right be b the result is a bab = ab. Since a = e and b = e, it is also true
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2 2
that a bab = ebae = ba. Thus the assumption that all elements of H are of

2 2order 2 leads to the conclusion that ab = a bab = ba. This is a contradic-

tion of the fact that H is non-Abelian. Hence, not all the elements of H are

of order 2; H must contain an element of order 4, say a = e.

If be H but b^[aj = A, then the eight elements of H are e, a, a , a ,

2 3 2
b, ab, a b, a b. The closure property of a group demands that b £ H;

2 2 2 3hence b £ A since a and b are independent. If b -aorb = a , then b

2 2 2would be of order 8. Hence b = e or b = a . According to Theorem S, A

is a normal subgroup of H. Hence b" ab £ A. If we assume that b" ab = e

then we must conclude that a = e, hence b" ab i e. If b" ab = a, then H

-

1

12 1would be Abelian. Hence b ab £ a. Similarly if b ab = a , then b ab

is of order 2. Thus (b" ab) = e. However, (b~ ab) = b" abb
_1

ab

= b a b. Hence it follows that b a b = e or equivalently a b = b. Thus

the assumption that b ab = a leads to the false conclusion that a bb"
1

= bb = e; a is of order 4, not 2. Therefore it must be true that

b ab = a .

Thus it follows that exactly two non-Abelian groups of order 8 exist.

One of these groups is called the dihedral group and has defining relations

4 _ 2 -1 3
a - e, b - e, and b ab = a . The other is called the quaternion group

and has defining relations a = e, b = a , and b"
1
ab = a

3
. Tables IV and
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V on pages 28 and 29 give the respective multiplication properties of these

groups. It is clear from the tables that these two groups are distinct. Note

that the inverse of b for the dihedral group is b, while for the quaternion

2
group, the inverse of b is a b. Similar comparisons can be made for the

2 3
elements ab, a b, and a b.

3
Case 2: Finally, let K be a non-Abelian group of order p where p is

2 3
an odd prime. The elements of K will have order 1, p, p , or p accord-

3
ing to Corollary 1 of Theorem B, since these are the only factors of p .

3
No element can be of order p since non-Abelian groups are now being con-

sidered.

2 p
2

Suppose K has an element a of order p . Then a" = e and a generates

2
a cyclic subgroup [a] = A of K having p elements. According to the Theo-

rem S, A is a maximal and normal subgroup of K.

Let b be an element of K not in A, b ^ A. Then b ± e since e £ A.

3
Hence b is not of order 1. It is also true that b is not of order p since

K is non-Abelian.

According to Theorem K, two left cosets of A in K are either disjoint

or identical sets of elements and all cosets of A contain the same number

of elements as A. Assume two left cosets of A are identical; assume

Ab = Ab for i and j integers such that < i <j < p - 1. Then since both

cosets have the same number of elements, each element in Ab must be
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equal to an eleme: in Ab . Hence, in particular,

i k i
(2) ab = a b for some integer k, 1 < k £p .

Multiplying on the left by a and on the right by b on each side of

equation (2) yields b = a "
. Then bJ

'^ A. Since £ i <i j 5 p - 1,

it follows by manipulation of the inequality that < j - i < p. Thus

(j - i, p )
= 1 and t(j - i) = 1 + sp for some integers t and s. Then (b "

)

2 2

= b ' = b = b(b ) = be = b since b must be of order p or p .

Hence

(3) (b^V^b.

If b £ A, then also (b ) £ A since A is a subgroup. Thus by equa-

tion (3), b s A but this contradicts the original choice of b. Therefore

cosets of A of the form Ab , where < i < p - 1, are disjoint if the powers

of bare not identical.

3
Since K must contain p elements, it must be true that

(4) K = A + Ab + Ab
2

-r- • • +AbP " l
.

Each of these p cosets of K obviously has p elements since A has p ele-

3ments. This representation does exhaust K since p elements are repre-

sented symbolically. Thus it must be true that AbP = Ab J for j integer

such that < j < p - 1 . In particular

(5) ab = a b for k an integer such that 1 1 k £ p .
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Multiplying on both sides of equation (5) by a on the left and b on the

right yields bP -a ; bP £ A. Since < j £ p - 1, ^ j <£ p and

2 2<p-j <p. If p - j < p, then (p - j, p )
= 1 and u(p - j) = 1 + vp for some

2 2

integers u and v. Then (bP ' j
)

U
= b

u(p ~^ = b
1 T V?

= b(bP )

V
= be = b since

2
b must be of order p or p . Thus

(6) (b
p "

J

)

u
= b.

However if bP £ A, then (b
P " J

)

U
€ A. Hence by equation (6) if bP " J

£ A

for p - j < p, then b € A which contradicts our choice of b. Hence p - j = p;

j = 0. Thus bP_J = bP e A and AbP = A.

-1 -1 r
Since A is a normal subgroup of K, b abe A, hence b ab = a .

2
Here 1 < r < p since K is non-Abelian.

Consider the proposition

n

(7) P(n): b ab = a" for all positive integers n.

-1 r
For n - 1, P(l): b ab = a is true. Assume the proposition is true for

n = k:

(8) b"
k
ab

k
= a

r
.

Then by multiplying on the left by b and on the right by b on each side

_k

of equation (8), b " b ~ab~b = b ^ " A
ab^ = b"

x
a
x

b
. -1 -k , k -k- 1 k+ 1 -1



21

k .
r factors

Hence P(k+1) is true. Therefore P(n) is true for all positive integers.

In particular, for p

(9) b"P abP = a
r

.

Since bP 6 A, bP commutes with a S A. Thus b"P abp = b"P bP a = a.

p
Thus by equation (9) a = b ab = a . Therefore r

P ==l(mod p ) or

equivalently

(10) r = 1 + kp for some positive integer k.

It is also true by Fermat's theorem that r — r(mod p) or equivalently

(11) r = r - mp for some positive integer m.

p 2Thus by equations (10) and (11) r = r^ - mp = 1 + kp - mp = 1 + (kp - m)p;

hence

(12) r = l + (kp-m)p

2
and r == l(mod p). Since 1 < r < p , equation (12) implies that < kp - m <p.

Let s = kp - m. Then < s < p and r = 1 + sp. Thus (s, p) = 1;

(13) sx + py = 1 for some integers x and y.

Hence sx=T(mod p). If x <. p, let j = x. If x > p, x=Qp + R where

0<R<p(R9t0 since (x, p) = 1 by equation (13)) . Then sx = sQp+ sR

= l(mod p) but sQp~ 0(mod p). Hence sR= l(modp). Thus if x > pin

equation (13), let j = R. Hence a j always exists such that j c p and
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js ~ l(mod p); js - 1 = hp for some integer h. Then by equation (7),

K"J J - ^ (
1 + SP)

J

„b ab = a = a r
. Hence

„. J /J. ..Mlii), .2 x fj(j-D(j-2)\ 3 A
(1 + sp) l + spj+[ T^/(sp) +- g i(sp) +...J

2) 3 2A , . fjtJ' 1
)) 2 2 /j(j-D(j

^lTSjp +
\ 2 js p +

^

g

/s pp +•••/ 2

" a
. Since a = e,

(l + sp)J
1 + sip „. 2a = a Ji\ Since sj = 1 + hp, 1 + sjp = 1 + ( 1 + hp)p = 1 + p + hp .

_, (l + sp) J
1 + sjp 1+p + hp 1+p . p

2

Thus a ^ = a J^ = a * r = a v since a^ = e. Therefore

(14) b" j abj =a 1+P .

Since js - hp = 1, j and p are relatively prime. Since j < p, bJ = ebJ

so that b is obviously an element of one of the right cosets Ab
,

16ii.p-l, of K in equation (4). ThusbJ </A.

It is now necessary to make a notational change. Since bJ
d A, we may

replace b by b. Then equation (4) becomes

(15) K = A + Ab + Ab
2
+ - • • +AbP " 1

where the respective right cosets have been reduced to simplest form and

the equation has been written in an orderly fashion. Note Ab 1
of equation

(4) may not be the same coset as Ab in equation (15) even though the two

equations do appear the same. Also note that equation (14) now becomes

(16) b
_1

ab = a1+P .
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Keeping in mind the change in notation, we see that bP in the new nota-

J\Ption is equal to (by in the old notation. However, (by = (b ) £ -A since
J\P _ ,.PJ

in the old notation bP £ A; bP = a for an integer k such that Uk ^p .

Since in the new notation b £ K, the order of b must be p or p since K is

2
k

non-Abelian and b f e £ A. Thus in either case, e = b = (b ) = (a )

= a . Since elements of A are of order p and a = e, p must divide kp.

P k
Hence k must be a multiple of p, say k = up. Thus since b = a we may

* vP UPwrite b = a .

Since b" ab = a +P
, (a

1 + P
)

X
= (b

_1
ab)

1
= (b"

1

ab)(b
_1

ab)- • • (b"
1

ab)

= b^abb^abb^ab- • • b"
1
abb"

1
ab = b^a'b. Thus (a

1 "*"
15

)

1
= a

l(1+p)

-1 i
= b a b. Hence, as a general rule,

(17) a
ib-bai<14* >

.

Thus (ba"
U

)

P = (ba"
U
)(ba"

U
)- • • (ba"

U
) = b(a"

U
b)(a"

U
b)- • • (a"

U
b)a"

U

p factors p - 1 factors

= bi^*^^^
p - 1 factors

= b
2
/a

_U(1 +P)b)(a"
u(1 +P)

b)- • • (a"
u(1 +P)b)a"

u(1 +p)
a"

U

p - 2 factors

= bi(ba-
u(1+p)Z

)(ba-
U(1+p)2

)...(ba-
u(1+p)2 ^-u (

1+ P).- u =)a

p - 2 factors
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= b
p-l

(a
-u(l + p)P-

2

b)a
-u

(
l+p)p

- 2

a
-u

(
l+p)p

- 3

>>ia
-u(l+p

)a
-u

= bP-Vba-u(1+ *»
P "

v -u(l+p)P
"

-u(l+p)P
~

-u(l+p) -u
7 a- a •

• a a

= bP a
-u (1 + <l+ P) + (l + p)

2
+---+(l+p)P

" 1

)7
. Therefore

(18) (ba"
u

)

p = bP a
-u(l + (l+p) + (l+p)

2 +... +(i +p )P- 1

)

Upon expanding, l + (l+p) + (l+p)
2
+ - • • +(l+p)P

" l

= p + p + 2p + 3p+--- +
2 2

(p - l)p + p Q where Q is an integer. Since aP = e,

from equation (18) (b;i
-^

)

P _ bP a
-u(p + p + 2p+3p + . • • +(p- l)p)

/p(p-l>\

= bP a"
Up " Up

(
1+2 + 3 + '•• +(P-D)_ ,P

"UP- UP\ 2 J .

' - o a v since

/p(p-d) p-1
1 + 2 + 3 + • • • +(p- 1) =

\ 2 /. Note that 2 is an integer since p is an

odd prime. Thus bP a
l 2

= bP a~
Up

(aP )^
2 /= bP a~

Up
e

= a
Up

a-
Up

= e. There:fore

(19) (ba~
U

)

P = e.

Now let b
l

= ba"
U

. Thenb
1

" 1
ab

1

= (ba"
U

)

_1
a(ba"

U
) = (a

U
b
_1

)a(ba"
U

)

- a (b ab)a = a a P a~
U
by equation (16). Thus b^ab = a

U
a

1 +P a"
U

u-ul+p 1+p
= aa a r = a .

2Hence when K has an element of order p , K has

the defining relations

2
P T,P T-" 1

, 1 +P m , .a = e, b^ = e, b ab = a . This group is of

type C) 4) in the theorem.
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For the last part of Case 2, assume K has no element of order p ;

then all elements of K other than e have order p. Assume the center Z pi

2
K is of order p . Since Z is a subgroup of K, Z contains no elements of

2
order p . Hence by Theorem II, Z is generated by two elements s and t

satisfying the relations s
P

= t - e, [s] f) D3= e» and CSJ x DO ^ z - Let r be

an element of K not contained in Z, rf Z. Then r generates a cyclic sub-

group [r] = R of K of order p. Obviously all the elements of R commute

with all the elements of Z since Z is the center of K. If rJ
£ Z for j an

integer such that 1 < j < p, then by the closure property of Z, (r
J

)

U
g Z

for all integers u. However since 1 c j < p, (j, p) = 1. Thus there exist

integers u and v such that ju = 1 +pv. Hence (r ) = r = r = rr

p v j j u
= r(r ) = re = r. Thus if r £ Z, (r ) = r £ Z but this contradicts our

choice of r. Therefore R fl Z = e. By Theorem F the direct product RxZ

is isomorphic to a subgroup of K, RxZ C K. By the Lagrange theorem,

2 3
subgroups of K must be of order 1, p, p , or p . Since it was assumed

2
that Z was of order p and r £ Z but reRxZ, RxZ must have order

2 3
greater than p . Hence RxZ is of order p and KiiRxZ, However,

since Z ^ [s] x [t] , K^[r]x[s]x[t], Thus by Theorem E, if the center Z of

K is of order p , K is Abelian. Hence Z is of order p.

Consider the factor group K/ Z of Z in K. Since Z is the center of K,

Z is a normal subgroup of K by Theorem I. Hence we are assured by
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Theorem N that K/Z is a group and since Z is of order p, K/ Z is of order

2 2
p by Theorem M. Since any group of order p is Abelian and K has no

2
elements of order p , K/Z will be, according to Theorem II, of the type

p _ px - e, y - e, xy = yx. By Theorem N there exists a homomorphism of

K -* K/Z. For a e K and b £ K assign the mapping a —> x and b -* y. Then

p p pa -r x - e; a is in the kernel of the homomorphism. Since the kernel

of this particular homomorphism is Z, a S Z. Thus because elements of

Z are of order p since Z is of order p, aP = e . Similarly, bP = e since

b -^ y = e implies b £ Z. Also a b ab -^ x y xy = x" xy" y = e

since K/Z is Abelian. Thus a" b" ab = c £ Z. If a" b" ab = e, then

ab = ba. Recall that elements of Z commute with all the elements of K.

Thus since a, b, and Z generate K, if ab = ba K is Abelian. Hence c f e.

Since all the elements of K other than e are of order p, c
P = e and jc] = Z.

Furthermore, since a b ab = c, ab = bac. Obviously ac = ca and

be = cb since c £ Z. Thus if K has no elements of order p , K is defined

by the relations aP = bP = c
P = e, ab = bac, ca = ac, and cb = be. Thi

group is of type C) 5) in the theorem.

s
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e a
2

a
3

a
4

a
5

a
6

a
7

a

e e a
2

a
3

a
4

a
5

a
/

a
7

a

a a
2

a
3

a
4

a
5

a
6

a
7

a e

a

Table I

4

4 k 2a = b = e

e a
2

a
3

a b ab
2.

a b

a
2
b

a
3
b

e e a
2

a
3

a b ab a
3
b

a a
2

a
3

a e ab 2,
a b a

3
b b

2
a

2
a

3
a e a

2
a b

3
a b b ab

3
a

3
a e a

2
a a

3
b b ab

2
a b

b b ab
2

a b a
3
b e a

2
a

3
a

ab ab a
2
b a

3
b b a

2
a

3
a e

2Ka b a
Z
b a\ b ab

2
a

3
a e a

a
3
b a b b ab

2Ka b

Table II

3
a e a

2
a
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e a b c ab ac be abc

e e a b c ab ac be abc

a a e ab ac b c abc be

b b ab e be a abc c ac

c c ac be e abc a b ab

ab ab b a abc e be ac c

ac ac c abc a be e ab b

be be abc c b a

abc abc be ac ab

Table III

c

ao

Dihedral Group a =b =e,b ab = a

e a a

e e a
2

a

a a
2

a
3

a

2
a

2
a

3
a e

3
a

3
a e a

b b a
3
b a

2
b

ab ab b
3

a b

a
2
b a

2
b ab b

a
3
b a

3
b

a

ab

a
2
b

a\

b ab
2

a b a\

b ab
2

a b
3

a b

ab
2

a b
3

a b b

a
2
b a

3
b b ab

3,
a b b ab a

2
b

3 2

a
2
b ab

Table IV



Quaternion Group a =e,a = b , b ab = a

29

e a
2

a
3

a b ab

ab

a
2
b

a
2
b

3,
a b

e e a
2

a
3

a b
"

a
3
b

a a
2

a
3

a e ab a
2
b a

3
b b

2
a

2
a

3
a e a

2
a b

3
a b b ab

3
a

3
a e a

2
a

3
a b b ab

2,
a b

b b
3.

a b a
2
b ab

2
a a e

3
a

ab ab b
3

a b a
2
b

3
a

2
a a e

2
a b

2
a b ab b

3
a b e

3
a

2
a a

a
3
b a\ a

2
b ab b

Table V

a e
3

a
2

a
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The discovery of all abstract groups of a preassigned order has been

of interest to algebraists since the conception of group theory. No suc-

cessful method has yet been discovered for constructing all possible

abstract groups of a preassigned order, nor has a method been devel-

oped to know in advance how many such groups exist, except in a few rel-

atively simple cases. In this report knowledge of four elementary cases

is gathered and theorems stating the nature and number of abstract groups

for these cases are formulated. Cases considered are abstract groups of

orders p, p , pq, and p where p and q are primes.

In the initial pages of the report are stated definitions, theorems, and

a corollary used in proving theorems formulated about the four above

mentioned cases.

Groups of order p where p is a prime are considered first. Only one

abstract group of order p exists and it is cyclic.

2
Next groups of order p where p is a prime are considered. All

groups of order p are Abelian and two basic types exist; one is the cyclic

2
group of order p and the other is isomorphic to the direct product of two

distinct cyclic subgroups, each of order p, whose intersection is the iden-

tity element.

Groups of composite order pq where p and q are primes are consid-

ered next in the report. Two abstract groups of order pq may exist. One

always exists and is the cyclic (Abelian) group of order pq. The other is



a non-Abelian group and exists if and only if the smaller prime divides

one less than the larger prime.

3
Finally, groups of order p are considered. For each prime p, there

exist three abstract Abelian groups and two abstract non-Abelian groups

3 3
of order p . Multiplication tables for the groups of order 2 are exhib-

ited to emphasize the differences between the five types of groups of

order p .


