
Expert Assistance for Database Design

by
.1'

Soger Allen Vasconcells

B.S. , Kansas State University - Manhattan, 1980

A WASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

WASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Approv.

Major Professor

TU TABLE QF CONTENTS 1119m -,,

TABLE QF CONTENTS j

1/31 LIST OF FIGURES AND TABLES iv

ACKNOWLEDGMENTS vli

CHAPTER 1 - INTRODUCTION 1

CHAPTER 2 - LITERATURE REVIEW 4

2.

1

Database Design 4

2. 1.

1

Logical Database Design 6

2.1.2 Physical Database Design 8

2.1.3 Database Loading and Operation 10

2.

2

Database Design Aids 10

2. 2. 1 Design Tools 11

2.

3

Entity-Relationship Model 16

2.

4

Expert Systems 20

2. 4.

1

Taxonomy of Expert Systems 22

2.4.2 Examples of Expert Systems 23

2.

5

Relevant Current Work 25

2.5.1 Enhancements to the Entity-Relationship Model 25

2.5.2 Applications of the Entity-Relationship Model 28

2.5.3 Artificial Intelligence and the
Entity-Relationship Model 30

CHAPTER 3 - METHOD OF APPROACH 33

3.

1

The Problem 33

3.

2

The Solution 34

CHAPTER 4 - ENTITY-RELATIONSHIP DEFINITION 38

4. 1 Entity-Relationship Diagrams 40

4.1.1 Elementary Entities 40

4.1.2 Relationships 40

4.1.3 Composite Entities 43

4. 1.

4

Properties of Entities 44

4.1.5 Identifying Entities and Relationships 46

4.1.6 Special Entities and Relationships 47

4.2 Translating E-R Diagrams into
Data-structure Diagrams 50

4. 2. 1 Translation Rules 59

4.

3

Logical Database Design Steps 63

4.3.1 An Initial E-R Diagram 65

4. 3.

2

Refine the E-R Diagram 67

4. 3.

3

Attribute Diagram for Entity Types 68

4. 3.

4

Translate the E-R Diagram 72

4. 3.

5

Design Record Format 73

4.

4

Design Considerations 78

4.

5

Hierarchical Database Design 84

CHAPTER 5 - EHYCIN aa

5.

1

KNOWLEDGE REPRESENTATION 89

5.

2

INFERENCE ENGINE 91

5.3 FACILITIES 91

CHAPTER 6 - TAX0N0HY OF THE EXPERT ASSISTANT 94

6.

1

OBJECTS 96

6.

2

DEFINITION OF RULES 97

6.

3

DIAGRAMMING RULES 99

6.4 TRANSLATION-RULES 103

- ii

6. 5 DATA-DICTIONARY RULES 108

CHAPTER 7 - APPLICATION OF THE EXPERT ASSISTANT 112

CHAPTER 8 - EVALUATION AND REMARKS 117

8. 1 FUTURE ENDEAVORS 117

SELECTED BIBLIOGRAPHY 119

APPENDIX 1 124

APPENDIX 2 126

APPENDIX 3 132

APPENDIX 4 138

APPENDIX 5 157

iii

LIST OF FIGURES AND TABLES

Figure 2. 1 File and Database Design Process 5

Figure 2.2 Database Design Tool Categories 11

Figure 2. 3 Artificial Intelligence Research 19

Figure 2. 4 Expert System Structure 21

Table 2. 1 Knowledge Engineering Categories 22

Table 2. 2 Expert System Applications 23

Figure 2. 5 Selected Expert Systems 24

Figure 4. 1 Enterprise Schema 39

Figure 4. 2 Relationship Types 41

Table 4. 1 Three-way Relationships 42

Figure 4. 3 Composite Entity Type 44

Figure 4. 4 Value and Attribute Types 45

Figure 4. 5 Composite Entity Attributes 46

Figure 4. 6 Existence Dependencies 4a

Figure 4. 7 Existence and ID Dependencies 49

Table 4. 2 ID Dependency 51

Figure 4. 8 Data-Structure Diagram 51

Figure 4. 9 Owner and Member Records 52

Table 4. 3 One-to-many Correspondence 52

Figure 4. 10 Data-Structure Set and Member Record Types 53

Table 4. 4 Cross-Reference Information 54

Figure 4. 11 Data-Structure Set Implementation as Arrays 54

Figure 4. 12 Data-Structure Set Implementation as Chains 56

Figure 4. 13 The Same Member and Owner Record Type 57

Table 4. 5 Manufacturing Relationships 53

Figure 4. 14 Implementation of Data-Structure Sets 58

Figure 4. 15 E-R and Data-Structure Diagrams for
1:1 or 1:N Relationships 60

Figure 4. 16 E-R and Data-Structure Diagrams for
M : H Relationships 61

Figure 4. 17 E-R and Data-Structure Diagrams for
Three or more Entities 62

Figure 4. 18 E-R and Data-Structure Diagrams for
1:1 or liH Binary Relationships 62

Figure 4.19 E-R and Data-Structure Diagrams for
M :N Binary Relationships 63

Figure 4.20 E-R and Data-Structure Diagrams for
Composite Entities 64

Figure 4.21 Refinement of E-R Diagrams 66

Figure 4.22 DEPT, EMP, and DEPT-EMP Types 68

Figure 4.23 Simplification of Type Assignments 69

Figure 4. 24 PRQJ and PRQJ-EMP Types 70

Figure 4. 25 SUPP, PART, and PROJ-SUPP-PART Types 71

Figure 4.26 WAREHOUSE, INVENTORY, and I1FG-REL Types 72

Figure 4. 27 Derived Data-Structure Sets 73

Figure 4. 28 DEPT Record 74

Figure 4. 29 EMP Record 75

Figure 4. 30 DEPT-EMP and PROJ Records 76

Figure 4. 31 PROJ-EMP and SUPP Records 77

Figure 4. 32 PART Record 7a

Figure 4. 33 PROJ-SUPP-PART and POTENTIAL-SUPP Records 79

Figure 4.34 WAREHOUSE and INVENTORY Records 80

Figure 4. 35 Another Derived Data-Structure Diagram ai

v -

Figure 4. 36 EHP-MASTER and EMP-DETAIL Records 82

Figure 4. 37 Data-Structure Diagrams 83

Figure 4. 38 Child Records 35

Figure 4. 39 Parent Records 8b

Figure 6. 1 Design Steps 97

Figure 6. 2 Front End to Expert Assistant 98

Figure 6. 3 Entity Incorporation Rules 99

Figure 6. 4 Entity Type and Relations 100

Figure 6. 5 Determine Entity Properties 101

Figure 6.6 Front End to Translation Rules 102

Figure 6.7 1:1 or 1:H Translation Rules 103

Figure 6.8 B:N Translation Rules 104

Figure 6. 9 Creation of Pointers 106

Figure 6. 10 Pointers for Previously Created Sets 107

Figure 6. 11 Data-dictionary Creation 110

Figure 6. 12 Parsing Rules HI

Figure 7. 1 Simple Diagram H3

Figure 7.2 Data-structure Set Implementation 114

Figure 7.3 Entering Entitles, Relationships,
and Attributes H5

VI

ACKNOWLEDGMENTS

I wish to thank my advisor, Dr. Elizabeth Unger, for the
understanding, assistance, and support she gave me with this
thesis. As always, working with her has been both an honor and a
pleasure.

The other members of my committee. Dr. Virgil Wallentine and Dr.'
David Schmidt also deserve thanks for their support and guidance.

I also wish to thank, Dr. Austin Helton, for serving In the place
of Dr. Schmidt.

Special thanks to Dennis Reith for his assistance that provided for
the typing of this thesis.

Special thanks also go to my family, Ross, Norma, Bart and Mary Jo,
and ay brother and best friend Ben, whose encouragement was always
appreciated.

Finally and most importantly, I thank my lovely wife, Joyce, whose
support, encouragement, assistance, and understanding throughout
the history of this thesis allowed me to follow through with its
completion.

Chapter 1

INTRODUCTION

Database management systems (DBMSs) have proven that they are

powerful, efficient, cost effective, and highly productive tools in

a large variety of areas. Because of growing interest in their

applications the technology and development of DBMS have reached

such intensity that various subfields have evolved. Database

integrity and security, database design, data recovery, and data

organization are some examples of this evolution. Although these

subfields have caused a diversification of expertise in DBMSs, the

knowledge necessary to create a significantly higher quality system

has increased proportionately.

The database design subfield, one of the major activities of the

system development process, requires difficult, complex, and time-

consuming tasks. Problems arising from inadequate designs caused

by vague specifications of organizational goals and requirements

produce limited or useless databases not capable of adapting to

change. High response time, high storage demands, inconsistent

data, uncontrolled redundancy, and lo» user acceptance are all

characteristics of a poorly designed DBMS. These problem-ridden

systems often impede a DBMS's effectiveness as a data processing

tool.

Many theories and practices have been applied to the design of

DBMSe to reduce the possibility of creating a problem-ridden

database. However, few efforts have produced methodologies that

alio* the design task to be supplemented Kith expertise from any

source other than what the designer could provide. If the

experience of many designers could be brought to bear on the design

process, any designer given the ability to utilize this expertise,

could reduce the possibility of creating an unusable database.

This type of formalism would allow the designer freedom to

concentrate on the design task itself and insure that a particular

design tool's rules would be enforced, providing for the creation

of a problem-free database.

Although a relatively young discipline in Computer Science,

Artificial Intelligence (AI) has recently stimulated a great amount

of research and interest. AI found its beginnings in studying

problems associated with game-playing and theorem proving. With

advancements in technology and research, vast amounts of knowledge

could be stored allowing expansion of the applications of AI.

These included the perception of vision and speech, natural

language understanding, and specialized problem solvers, such as

medical diagnosis and chemical analysis.

Much like database design, medical diagnosis and chemical analysis

are tasks not routinely performed everyday and require vast

amounts of specialized knowledge to function properly. Programs

called Expert Systems (ES) were developed that could access and use

large amounts of this type of domain-specific knowledge. ES

technology, a proven tool in the field of AI, will allow an

enhancement to the design phase of DBMS development by providing a

means of accessing large amounts of knowledge specific to DBMS

design.

A description of such an enhancement to the design of DBMSs will be

presented in this thesis. A theoretical model combining the

technology provided by Expert Systems and an existing DBMS design

tool will be proposed. This Expert Assistant will provide both a

means of storing the expertise of numerous designers and a method

of applying this expertise to the design process.

Following a review of relevant literature regarding database design

and Expert Systems, a description of how the Expert Assistant will

enhance the design of DBMSs will be presented. A presentation of

the particular DBMS design tool that will be enhanced is defined

and demonstrated. The architecture that the Expert Assistant is

based upon is discussed, and the taxonomy of the Expert Assistant

will be defined preceding a step by step example of a minimal

implementation. Finally, possible improvements, difficulties, and

further research will be discussed.

Chapter 2

LITERATURE REVIEW

2. 1 DATABASE DESIGN

One of the most crucial phases of database development is the

design of an effective database structure. [Yao S5] describes the

goal of database design as a process which organizes databases to

facilitate effective processing and to involve various activities,

beginning with definition of the problem and ending with a system

implementation. Prior to investment in an implementation, the

database design should allow for analysis of system correctness and

performance IWiederhold 83]. Producing a workable database that

makes data available to users while maintaining data integrity,

security, and minimized redundancy requires a design mechanism

which presents the data in a usable format [Turk 85].

[Cardenas 79] proposed a definition that is conceptually easy to

understand and provides for many, if not all, of the requirements

mentioned in other database design formalisms.

File and database design is the process of synthesizing
the collection and associations of data to satisfy the
information storage, retrieval, and reporting requirements
of users cost-effectively, while meeting a number of
constraints (not always mutually compatible) such as
access time, flexibility of use, storage, security,
auditing, and recovery. The design of databases is in
actual practice usually an iterative process, often
involving trial and error, Just like the design of the
information systems which the databases are intended to
support. [Cardenas 79]

Step

Logical
Database
Design

1. Statement of requirements
(information flows, data
transformation, reports, queries,
performance criteria)

2. Logical or conceptual database
structure in a given information
model

/ 3. a) Database schema definition via
the schema data description
language.

b) Subschema definition via the
subschema data description language

Physical
Database
Design

4. Access path determination (

secondary indexing)
e.g.

Mapping and representation of
logical data on physical data
structures (e.g. Database Task
Group [DBTG] areas)

Physical layout of data on storage
devices available and determination
of low level data management
parameters (e. g. buffers, blocking,
device areas)

Database
Qperation and
Reorganization

/ 7.

I 8.

Actual data
installation

base loading and

Tuning and retuning or redesign due
to changing requirements

Figure 2.

I

The file and database design process.
(Adapted from [Cardenas 793)

5 -

This definition provides for three major stages which are involved

in designing a database:

1. Logical database design,

2. Physical database design, and

3. Database loading and operation.

These stages are composed of various steps encompassing the entire

file and database design process (see Figure 2.1). CTurk 65]

presents these steps in a business application vievpoint, and

represent the same protocols. These stages have also been

represented as a conceptual level and a organizational level

CWiederhold 83]. At the conceptual level, information from the

user is dealt with, at the organizational level data representation

and data processing are defined. The taxonomy of these steps

within each stage are not always clear cut, but there usually

exists a finite separation between the particular stages.

Cardenas' step by step process of designing a database entails a

simplistic description of database design and will be presented

here to form a basic definition.

2.1.1 LOGICAL DATABASE DESIGN

As seen in Figure 2. 1 the logical database design begins with

identifying information needs within the scope of the users data,

forming a conceptual database independent of any computer

architecture. Included in this phase is criteria for expected

performance, access time, storage requirements, future

- 6 -

expectations, security needs, integrity rules, and justification of

investment returns of the application.

The next step in the design is to convert this conceptual database

into a logical database using a particular data model whether it be

network, hierarchical, or relational. Whichever model is chosen,

each have specific data structures that can be used to form a

logical database that is equivalent to the conceptual database.

The three choices of data models and database structures are

assisted by the following criteria:

1. The contents of the database,

2. The characteristics of the users' data accessing
requirements,

3. The characteristics of the particular database
structure and DBMS used, and

4. The characteristics of the hardware used.

Step three begins with the definition of the logical description of

the global database, the database schema. The schema includes the

definition of the names and data types of each field of all data

structures defined in the conceptual database as well as the

relationship of the linkage between any two data files. This

description is defined in the Data Definition Language (DDL)

supported by the particular data model chosen. Although completed

at the logical design level the physical design does influence some

of the decisions made in this step since each data model has a

unique method of locating a particular record occurrence. Each

- 7 -

data model presents its own restrictions and complications

occurring with their schema DDL and should be adhered to closely.

2.1.2 PHYSICAL DATABASE DESIGN

Physical database designs' objective is to choose among the many

file structures and methods of linking data files into a database,

and use the options available with the chosen data model for tuning

to optimum performance [Merrett 84 3. There is a definite

separation between logical and physical database design, however it

is not always clear between various steps within the physical

design stage. [Cardenas 79] begins this design phase by following

the schema definition with the definition of the subschema using

the subschema DDL (Figure 2.1 step 3a), usually a variation of the

schema DDL excluding physical structure details. This is a logical

description of a subset of the database, and any number of

subschemas may be defined over a schema. Similar to defining the

schema the subschema definition includes fields, record types, and

database relationships assigned to a particular users database

application.

Step four (as shown in Figure 2.1) initiates the physical design by

taking the logical design and defining access paths into the

database and between records. These paths are dependent upon the

particular random access method supported by the computer

architecture the implemented database will reside on. Once the

random method is chosen various alternatives based on what data

- 8 -

model is used are evaluated, e.g. if the data model chosen allovs

a choice of secondary indexing methods, then the decision of ¥hich

to use is completed in this step.

Step five describes how various record types will be grouped in

order to reduce overall access time, reduce storage fragmentation,

and enforce integrity and recovery constraints. Because of the

complexity of the access path determination in step four and the

physical layout of data in step six, the processes described in

this step may be indistinguishable. This is true for those data

models that do not provide a clear separation between the logical

and physical data structures used. Some dynamic storage mechanisms

require an overflow definition which include how the overflow areas

will be used for any particular need and what type of overflow is

needed.

The sixth step includes all the specifications of requirements

needed to allow the actual loading of the database on to the

particular installation. Included in this step is the definition

of physically mapping the record types on storage devices based on

system dependent physical parameters. This includes what hardware

addresses will be used to hold overflow and data areas, the type of

external storage device to be used, blocking factors, data field

formats, data compression schemes, etc. Each data model has its

own mechanisms and conventions for designating standard formats of

data and a language for communicating these physical details.

9 -

2. 1. 3 DATABASE LOADING AND OPERATION

Database loading starts the third phase of database design and the

seventh step as shown in Figure 2. 1. Various utilities are usually

provided by each particular system to facilitate loading the

database on a particular Installation. This process can be

complicated by the physical limitations mentioned in step six. For

databases that are complex this step can be a time consuming task

when physical limitations are overly complicated.

Step eight in Figure 2. 1, covers tuning, operation, and

reorganization of the loaded database. Although the reason for

database design is to formulate a database that will perform

satisfactorily, various testing, tuning, and redesigning steps are

needed to produce a substantial end product. Since there are so

many parameters in the design of a database and the

interrelationship between them can be so complex, the eighth step

is defined to provide for any need to reload or redesign the

database to make it viable to the user.

2.2 DATABASE DESIGN AIDS

The technology of DBMSs have become accepted and used in a wide

variety of applications. [Fry 78] maintained that the database

designer was faced with the problem of not which database system to

use but how to use it effectively. This led to the development of

tools to assist the database designer in each phase of a DBHS's

LDT
E

G S

1 I L

C G S

A N

L

HIPO •

SADT CADES
DFD CADIS

CASCADE
AUXCO '

ADS PSL/PSA
ARDI

Manual I Computer Aided I

Technique

Figure 2.2 Categorization of Logical Database Design Tools
• Formal Language Method
* Graphically-Oriented Method

life cycle, proving that the usefulness and responsiveness of a

DBMS could be enhanced.

2.2.1 DESIGN TOOLS

The initial step of any logical database design is to specify a

definition of the users requirements. Figure 2.2 lists several

logical database design tools discussed by [Kahn 85], and

categorizes them into their area of assistance. As Figure 2.

2

shows, there exists two techniques to assist in the requirements

design process: manual techniques and computer-aided techniques.

Both of these techniques should provide the designer with

assistance in what the system should eventually do, what activities

•ill be required, the data necessary to implement the system, and

other requirements typical of the database users organization.

The manual techniques are categorized into two different types of

tools, those that use some natural or formal language to produce

tables and charts, and those that are graph oriented using

pictorial representations of requirements and have little or no

language augmented. AUXCO divides each phase of the requirements

design into many minute activities, each explaining appropriate

techniques, denotation of decision points, and positive

alternatives. Developed by NCR, the Accurately Defined System

<ADS) is a forms based backward-forward analysis technique, and

provides a mechanism that determines and depicts the information

that flows through a database. A four phase system development

process: Analysis, Requirements determination. Design and

development. Implementation and valuation (ARDI) [Hartman 68], is a

planning network representing each design phase which may be

further divided into sub-steps.

The Hierarchical Input Process Output (HIPQ) technique developed by

IBM [Jones 75] and [Katzan 79] is a top-down process-oriented

approach to database design. HIPQ is intended for use by software

designers and programmers concentrating on process definition and

hierarchically decomposes the database into processes and modules,

called functions. Using an input process output diagram formalism

each function is documented as a process along with its inputs and

outputs. SofTech, Inc. developed the Structured Analysis and

Design Technique (SADT) to provide assistance in performing system

analysis and design in requirements and logical design phases of

DBMS development. Methods used with SADT allow for top-down

structured thinking, requirements documentation, project planning,

- 12 -

managing, and evolution. DFD uses Data Flow Diagrams to describe a

database system using directed graphs and is based on work

originating with [Gane 77] and [DeMarco 84]. DFD is a top-down

technique that can be utilized with either a process-oriented, a

data-oriented, or a backward-forward approach and is used initially

to diagram a systems' information flow. Then it decomposes each

diagram into a hierarchy of directed graphs that distinguish

between data entering and leaving a database system.

In most cases, computer-aided techniques are an implementation of

existing manual techniques providing both a formal language for

specifying requirements and a method for generating standard

reports. These reports range from narratives, to lists and tables,

and finally to pictorial presentations. Computer-Aided Design of

Information Systems (CADIS) developed by the Department of

Information Processing at the Royal Institute of Technology of

Stockholm, Sweden [Bubenko 72], is a tool for database

documentation analysis. CADIS includes an information storage and

retrieval system, a binary language syntax editor, and a report

generator. The Computer-Aided Systems Construction and

Documentation Environment (CASCADE) from the University of

Trondheim, Norway, includes a graphic technique for describing

database design and database requirements. Using CASCADE, the

system design process is automatically documented with flowcharts

and lists. The Computer-Aided Design and Evaluation system (CADES)

from International Computers Limited, spans the gap between design

- 13 -

and implementation in the initial design process. Using a data-

driven approach, CADES automatically generates implementation code

and code that tests the specifications of the design. PSL/PSA the

Problem Statement Language and Problem Statement Analyzer developed

by the University of Michigan as part of the ISDQS (Information

System Design and Optimization System) project, is a computer aided

system analysis and logical design formalism. PSL allows the

designer to state a users requirements in a human-machine readable

form, allowing the user to specify what will be required and not so

much as how the requirements will be satisfied. PSA takes the

analyzed components of PSL and places them into a computerized

database. PSA accesses these components to modify and update them

and uses them to generate standard reports.

Conversion of the users requirements into a schema definition or

conceptual view is a major stumbling block in the design process.

As an answer to this problem [Ruoff 84] produced an information

modeling technique called IDEF1 or ICAM Definition Method Version 1

UCAM is an acronym for Integrated Computer-Aided Manufacturing).

IDEF1 confronts areas of development that are considered most

difficult to establish, i.e. information objects, relationships

between objects, and their properties. The Information Resource

Specification and Design Language (IRSDL), is a tool for specifying

the requirements of logical database design [Konsynski 79]. Geared

towards the non-speoialist designer, IRSDL provides specifications

for user documentation, user views of the conceptual schema, and

- 14 -

reorganization of the conceptual schema.

Tying the logical database design to the hardware that will

eventually support the system, as might be expected the physical

design phase also has been supplied with design assistance tools.

The SEmantic OAtabase Constructor (SEDACO) is used to implement

logical schemas and provides protection of low-level data structure

issues from the designer and has the ability to efficiently

maintain consistency within complex semantic databases [Farmer 84].

COrlando 85] proposed two integrated tools which are used in the

physical database design phase. System EOS predicts database

performance based on various evaluation models, allowing the

precise prediction of the application workload and the performance

behavior of a completed database. System EROS is based on

optimization and uses the evaluation models of System EOS to

estimate the cost of other Implementation solutions. Many design

tools assisting with the physical structure of a database are

supplied by the particular implementation the user has purchased.

ESTIMATE, a utility program for CDC's SCOPE operating system takes

the record and key descriptions and produces suggested sizes for

data and index blocks as well as memory buffers. System 2000 from

MRI Systems Corporation provides statistical assistance to the

database designer by supplying counters which monitor accumulated

CPU time, real time, and input output operations for every data set

being used.

15

Database design tools that provide assistance to the database

designer in more than one phase of the database design process have

also been developed. IBragger 84] described a data definition

system called GAMBIT, which produces a definition of static or

physical data structures, a description of semantic integrity

constraints by using a full programming language, and a data

description language. GAHBIT assists the database designer by

graphically representing the schemas on a screen vhich can be

modified. The DATAID project [Albano 85] produced design

methodologies covering all phases of the database design process,

including interactive tools for logical data analysis, prototyping

to reduce operation and maintenance costs, and various other

automated tools that support design techniques. [Komorovski 84]

presented the advantages that are obtained by using PROLOG as a

software prototyping tool for DBMSs. He shoved that by using

PROLOG a database of parsing trees could be developed as veil as

natural language interfaces.

2.3 ENTITY-RELATIONSHIP MODEL

The variety of database design tools reviewed span a vide area of

application as well as the numerous theoretical models that they

are based on. Presenting a technique that is simple and appears to

many people to be quite natural [Chen 85] stated that the reason

for his Entity Relationship moJel being so simple vas:

that it focuses on a fundamental issue of database design:
vhat does it represent?

16 -

He went on to explain that a database is an extension of the

environment in which it is used and that real world domains can be

represented in the form of entities, relationships, and the

attributes that pertain to them. The semantic inadequacies of the

relational model, the difficulties the network model had with

achieving data independence, and the unnatural data characteristics

of the entity set (hierarchical) model led [Chen 76] to the

proposal of the Entity-Relationship (ER) model. The E-R model

encompasses most of the advantages of the three previously

mentioned models and included a more natural viev of the real

world. The original E-R model incorporated some of the significant

semantic information about the real world and could achieve a high

amount of data independence based on set theory and relation

theory.

Entity-Relationship Diagrams (ERD) were defined to allow the

graphical representation of entities, relationships, and their

respective attributes. A designer using ERDs can define all

entities and their relationships whether they be 1:1, 1:N or «:H

and maintain semantic integrity. Stipulations for data description

and data manipulation through rules for insertion, deletion, and

updating of values were defined in the original E-R model. After a

users data has been defined in a logical schema created from the

ERDs, Chen showed how each of the other three database models could

be derived from the E-R model.

In order to maintain a database design truly reflective of the

environment in which it will be used, I Chen 77] modified the E-B

model by introducing an intermediate step in the design process.

This step incorporated the enterprise vie» of data and provided for

the following advantages:

1. The enterprise schema is easier to understand than a
user schema since the former does not have the
restrictions of the underlying database management
system;

2. The enterprise schema is more stable than the user
schema, since some types of changes in the user schema
may not require any change in the enterprise schema.
If the enterprise schema needs to be changed to reflect
the changes in the enterprise environment, the changes
can be performed easily since efficiency and storage
issues are not considered.

[Chen 821 described how to use the E-R model by presenting a step

by step process of designing an order entry database. In CChen 84]

further modifications to the E-R model were introduced to

facilitate easier use of the model in a wider variety of areas by

classifying the model into two categories. The Generalized [N-ary]

Entity-Relationship model (GERM), allows relationships to be

defined on more than two entities, and the Binary Entity-

Relationship model (BERM) allows at most two entities to be

involved in a relationship. This classification allowed for many

significant effects on modeling and analysis. A designer could use

their favorite model to define a system then convert it to other

models that might be more easily understood for presentations, or

it could increase the possibility of proving that two E-R models

- 18 -

High

Low

Find general
methods for
problem-solving
and use them to
create general

-

purpose programs

Find general
methods to
improve
representation
and
search and use
them to create
specialized
programs.

Use extensive
high-quality
specific
knowledge about
some narrow
problem area to
create very
specialized
programs.

1970

TIME FRAME

1980

Figure 2.3 The shifting focus of AI research.
(Adapted from C Waterman 86])

are equivalent. [Chen 84] has prosed an E-R algebra for BERM which

included directional relationships that would be useful in

designing query languages for DBMSs based on the E-R model. The

most current modification of the E-R model removed attributes from

a relationship and created a composite entity (an entity formed by

other entities) which would obtain these attributes [Chen 85].

Removing attributes from relationships c.ears the ERDs, assisting

in the overall simplification of the E-R model.

19

2.4 EXPERT SYSTEMS

The primary goal of Artificial Intelligence has always been to

provide a means by which a computer program could solve a problem

in a manner that would be considered intelligent by humans. For

the last twenty years Expert Systems have been striving for

acceptance as well as a definition with this field. Figure 2.3

graphically represents how Expert Systems have figured historically

in Artificial Intelligence.

During the decade of the 1960 's scientists strove to create

programs which could solve problems with a general area of

application. These projects soon became frugal at best. It seems

that the more general these programs were made in their problem

solving capability, the more inept they became in solving any

particular problem. This lead to concentrating efforts on applying

these programs to specialized problems. In the early seventies a

concentrated effort on how to represent and search through the

knowledge needed to solve these specialized problems provided some

success hut there were still no major breakthroughs. In the late

seventies the realization came that the true power of a problem

solver was not found in its solving abilities but in the knowledge

it possesses. Stated simply:

To make a program intelligent, provide it with lots of
high quality specific knowledge about some problem area
[Waterman 86].

20

EXPERT SYSTEM

KNOWLEDGE BASE
(Domain Knowledge)

I FACTS I

I RULES I

/ \

I

\ /

INTERPRETER I

SCHEDULER I

INFERENCE ENGINE
(General

problem-solving
knowledge)

Figure 2.4 The structure of an expert system.
[Waterman 86]

Because of this realization, the problem solvers evolved into

programs that were "expert" in a specific domain and Expert Systems

became a viable tool in the problem solving paradigm.

At one time the ability to create an Expert System was considered

to be artistic and not scientific. The work of numerous Artificial

Intelligence scientists, brought together in Buildino Expert

Systems CHayes-Roth 331, provided for a better understanding and a

clear definition of designing Expert Systems. Knowledge

Engineering is generally accepted as the definition for building

Expert Systems. The process is best described as coordinating

- 21 -

Category Problem Addressed

Interpretation

Prediction

Diagnosis

Design

Planning

Monitoring

Debugging

Repair

Instruction

Control

Inferring situation descriptions from sensor data

Inferring likely consequences of given situations

Inferring system malfunctions from observables

Configuring objects under constraints

Designing actions

Comparing observations to plan vulnerabilities

Prescribing remedies for malfunctions

Prescribing a plan to administer a prescribed
remedy

Diagnosing, debugging, and repairing student
behavior

Interpreting, predicting, repairing, and
monitoring system behaviors

Table 2. 1 Generic categories of knowledge engineering
applications.
(Adapted from [Hayes -Roth &32)

interaction between the knowledge engineer and one or more human

experts in a particular problem area. The Knowledge Engineer

retrieves the knowledge necessary to solve a problem and uses this

to build an Expert System resulting in a problem-solver with

capabilities approaching that of humans.

2.4.1 TAXONOMY OF EXPERT SYSTEMS

Expert Systems can be categorized by the fields in which they are

used, and the by types of problems to which they are applied. The

22 -

Agriculture Manufacturing
Chemistry mathematics
Computer Systems Medicine
Electronics Meteorology
Engineering Military Science
Geology Physics
Information Management Process Control
*•» Space Technology

Table 2.2 Application areas for expert systems.
[Waterman 86]

accepted structure for all Expert System architectures can be seen

in Figure 2.4, any variation in Expert System applications can be

in the method of accessing the knowledge in the knowledge base, ho»

the knowledge is interpreted, interfacing with its users, etc.

Table 2.1 summarizes the types of Expert System applications that

exist.

2.4.2 EXAMPLES OF EXPERT SYSTEMS

The quantity of Expert System applications is proportionate to the

demand for their use. Table 2.2 demonstrates this by listing

various fields that supply a need for their use. The Expert

Systems used in the Computer Systems field discussed by

[Waterman 86 1 and illustrated in Figure 2.5, shows a wide range of

these applications.

XCQN developed by Digital Equipment Corporation and Carnegie-

Mellon University in the late 1970 's is one of the first successful

applications in the computer systems area. XCQN configures VAX

- 23 -

I
I

I Computer Systems I

— Prediction

- Diagnosis <

-< PTRANS

--< CRIB

< PTRANS

Design

Planning

-< XCQN

•- Monitoring <

Debugging

Control

-< PTRANS

< PTRANS

< YES/MVS

-< PTRANS

< TIMM/Tuner

< PTRANS

< YES/MVS

Figure 2. 5 Selected expert systems in the computer
systems domain.
(Adapted from [Waterman 863)

11/780 computer systems by combining customer order information,

site architecture, and known system physical limitations. CRIB,

developed by International Computers Limited, the Research and

Advanced Development Centre, and Brunei University, assists

engineers in searching and discovering faults in computer systems

in the field. Simple english is used to input the faults

24

discovered into the system and CRIB matches this against a

knowledge of faults that have occurred previously. Developed by

Digital Equipment Corporation and Carnegie-Hellon University,

PTRANS aids in the control of the manufacture and distribution of

Digital Equipment Corporation's computer systems. This is

accomplished by using customer order information and manufacturing

information to develop plans for building and debugging ordered

systems. YES/MVS, developed by IBH, monitors and controls

Multiple Virtual Storage <MVS> operating systems to assist computer

operators. TIMM/TUNER a commercial system developed by General

Research Corporation assists with the tuning of VAX/VMS computer

systems in order to reduce performance problems that arise in a

constantly changing computer environment.

2.5 RELEVANT CURRENT WORK

Much attention and interest has been focused on the E-R model.

Conferences centered on the E-R model have produced many insights

into its application, possible improvements, and the study of what

effects other computer science disciplines might have on it. The

following sections focus on these areas concerning the E-R model by

reviewing current literature covering them.

2.5.1 ENHANCEMENTS TO THE ENTITY-RELATIONSHIP MODEL

The original E-R model proposed by [Chen 76] was designed to assist

in logical database design and did not present a formalism for

converting the E-R model into other database models. Several

25 -

attempts have been made to form a translation formalism,

[Chung 83], [Dumpala 83], [Hwang 83], [Melkanoff 79], and

[Horgenstern 83], that are at best heuristic in their formalized

guidelines. They do not include some of the E-R concepts such as

composite attributes, weak entity types, recursive relationship

sets, and veak relationship sets.

An ansver to these simplistic attempts at E-R conversion vas

furnished by [Ling 85] who proposed a normal form for ERDs that

vould obtain the following objectives:

1. to capture and preserve all the semantics of the real
vorld of a database which can be expressed in terms
of functional, multivalued, and join dependencies, by
representing them explicitly in the E-R diagram.

2. to ensure that all the relationships represented in
the E-R diagram are non-redundant, i.e. none of the
relationships can be derived from other
relationships.

3. to ensure that all the relations translated from the
E-R diagram are in good normal form, either in 3NF or
5NF.

This normal form allowed for composite attributes, multivalued

attributes, and special types of relationship sets. An algorithm

is used that translates an ERD, in normal form, to a set of

relations, which are either in 3NF (third normal form) or 5NF

(fifth normal form).

Another formalism which modifies the original E-R model [Chen 76],

was created by [Brady 85]. A universal relation assumption vas

26

presented that removed logical navigation of the database. This

assumption provides logical and physical data independence and a

very simple data specification system. The conceptual database

created, using the E-H approach thBt incorporates the universal

relation assumption, will have a direct translation into a

relational database. [Brady 85] furthered the use of the

assumption by refining it to a E-R universal relation assumption

which alleviates some of the limitations of the original

assumption, i.e. limited applications and distortion of database

design. The new version bases its reliability on the fact that it

uses rules that rely on a widely accepted and standard model of the

real world.

CCazin 85] introduced the Fl formalism vhich allovs the description

of the conceptual schema of a database. This formalism was

designed to describe and use an Information System (IS) in a

Software Engineering Environment (SEE). The IS has as its

components the Information Base, a Conceptual Schema, and an

Information Processor. The Information Base holds real world

information descriptions, the Conceptual Schema structures the

Information Base and holds consistency rules, and the Information

Processor is the user interface which allows access and updates to

the Information Base according to rules in the Conceptual Schema.

Since [Chen 76] had presented the E-R model that best described the

real world, the structuring of the information descriptions in the

Information Base is based on the E-R model. These extensions of

27

the E-R model made the schema description easier and increased the

expression power of the language, allowed domains to be described

hierarchically, and were useful in describing integrity rules. Fl

proved to be a tool that provided a practical means of creating

information system prototypes.

2.5.2 APPLICATIONS OF THE ENTITY-RELATIONSHIP MODEL

The E-R model's ability to apply real-world views of database

design has lead to many diverse applications. [Lee 85] presented

various examples of how the ERD techniques could be applied to

pictorial database design. The results of this study provides for

future applications in knowledge engineering, pattern recognition,

Artificial Intelligence, fuzzy language theory, computer graphics.

Expert Systems, and pictorial database design.

CRITIAS introduced by [Qian 85] is a Pascal like database

programming language data definition facility that provides

syntactic structuring of a semantic data model. Based on a

formalism of the E-R model [Chen 76], this tool provides for:

1. Data definition, querying, and data manipulation,

2. A consistent means of modeling entities, reference
relationships, associations, and subtypes,

3. Integrity constraints are provided at all levels of
data abstraction.

This application provided for numerous improvements of the E-R

model in the implicit semantics of "ISA" relationships, and

28 -

improvements of the textual descriptions of the schema.

CHsu 85] developed a tvo stage E-R model that provided three

features. The model is separated into a Semantic E-R (SER) used to

define semantic entities and relationships, and the Operational E-R

(OER) used in mapping to an operational database. This separation

allows each part of the two stage model to reach its o»n high level

of modeling technique. Secondly, the OER is normalized,

facilitating easier mapping into a physical database with high

levels of integrity. Finally, much time and energy is saved by the

database designer since the model incorporates deterministic

algorithms. Applications for this nev E-R model have been used in

computer-integrated manufacturing and various other data-driven

systems.

Using the E-R Approach, [Ferrera 85] presented EASYER, a system for

designing and documenting database applications. EASYER, while

running on a personal computer, supports the database designer in

the initial stages of database design. The system stores the

documentation of the database in its own organized database giving

the designer a useful tool to keep the documentation in line with

the operating software of the database. By using personal

computers, widespread use of the system in a variety of different

environments becomes a reality.

The E-R model was used to create knowledge bases (KB) in

[Sernadas 85]. The results of this application lead to explicit

- 29

structuring of the KBs allowing for ease of access of inference

driven systems. This ties together the previous looseness of

casual inference systems with the high structured organizational

principles of the E-R model.

Based on the user view in terms of the E-R model [Chen 76], a user-

friendly interface for a DBMS was developed [Elmasri 85]. Using

the GQRDAS [Elmasri 83] query language, a hierarchical vie* of the

database is graphically presented to the user. Light pen

sensitive, the graphics can be accessed by the user to form queries

that the system converts into a natural language version of the

query. This query formalization technique allows a distinction

between select conditions and displaying attributes.

2.5.3 ARTIFICIAL INTELLIGENCE AND THE ENTITY-RELATIONSHIP MODEL

With the growing interest in the AI field, many diverse users of

this technology have been presented with database design.

Knowledge based systems, knowledge engineering techniques, and

other AI disciplines have all been reviewed in connection with the

E-R model. By combining ERD techniques and KPSP, a knowledge

programming system, [Han 85] described how knowledge bases could be

designed that better reflect the domain they represent and

produced a personnel question-answering system.

[Hawryszkiewycz C5] proposed a system that assists database

designers using the E-R model, by creating E-R model sentences that

create a dialog with the designer. Creating a database design by

- 30 -

taking user inputs, the system evaluates the design by using its

knowledge about modeling. This database design creation model uses

a heuristic set of rules to show the designer how to create a model

that better represents the environment in which it exists.

In order to automate database design using the E-R model,

CStaley 85] presented the Object-Relationship Situation (ORS)

model. This logical design tool collects information on objects

and relationships and stores them in a separate database. This

database represents the conceptual schema, giving ORS the

capability of accessing the machine readable definitions, based on

the PEARL AI programming language. This model uses an extension of

E-R modeling specifications as constructs of this logical database

representation.

[Briand 85] demonstrated how semantic networks from AI could be

used to represent ERDs. Conversion of ERDs into databases was

accomplished by using an inference engine (PROLOG) to process ERDs

represented by semantic networks. An example was presented of

using this translation to create a relational schema.

Database design is a complicated process encompassing numerous

steps, each of which include many difficult decision points.

Assistance obtained by the database designer with the advent of

database design tools insured that effective DBMS were produced.

These tools supplemented the design process through manual

techniques or computer aided techniques, either of which were a

- 31 -

relief to the designer. The Entity-Relationship Approach to

database design provided many of the assets these tools had but

added a simple and natural interface to the user by using

diagrammatic techniques.

This approach to database design has been the focus of much

interest and research. The E-R Diagramming technique has been

applied to pictorial database design, the E-R Approach has designed

and documented database applications, and it has been used to

create an interface for a developed DBMS. Artificial Intelligence

has been merged with the E-R Approach to: create knowledge bases,

represent Entity-Relationship Diagrams, and automate database

design. This thesis will define an enhancement to the Entity-

Relationship Approach to database design, by incorporating Expert

System technology provided by Artificial Intelligence.

- 32

Chapter 3

METHOD OF APPROACH

The Entity-Relationship Approach to database design (Chen 76] has

been the object of much interest within the DBMS environment. The

E-R Approach is a tool which allows the designer to create a

database that accurately reflects the enterprise or the users' viev

of the data. It captures and preserves important semantic

information of the real world, and the Entity-Relationship Diagrams

allow it to be more easily understood by the database designer.

The literature review discussed various theories that enhance this

rich database design formalism, but any attempt to encompass them

within this thesis would simply impede further enhancement

attempts. The E-R model that best suits further modification can

be found in [Chen 85], where most of the theoretical difficulties

that plagued the original model were overcome. Included were new

rules for translating an E-R logical database from ERDs to data-

structures, and new entity types were created that allowed

previously troublesome diagramming protocols to be given attribute

definitions.

3.1 THE PROBLEM

Even though the E-R model is conceptually simple to understand, an

application of the Entity-Relationship Approach to database design

can prove to be cumbersome. At any point in the database design

- 33

process a designer is faced with many difficult decisions, any one

of which compounds the possibility of creating an acceptable

database. The improvements to date make the model conceptually

simpler but do not necessarily reduce the difficulty of making the

correct decision.

Many modifications of the E-R model have included methods for

translating ERDs into various physical database architectures

whether it be relational, hierarchical, or network. A further

enhancement to these modifications should be to implement each

architecture with an automatic generation of a Data Dictionary.

The Data Dictionary provides and manages a database about databases

and related categories. It can be used by the database designer to

generate reports for unique information needs and locate data

redundancies and inconsistencies that can occur over the lifetime

of a database.

3.2 THE SOLUTION

The E-R model must be supplemented by a mechanism that will enable

a designer to eradicate decision difficulties and provide for

automatic generation of a Data Dictionary. This would free the

designer from being concerned about the possible mistakes errant

decisions would cause and concentrate on designing a DBMS that

fully reflects the particular enterprise. The creation of a Data

Dictionary would provide the designer a powerful tool for examining

the final database to maintain its' integrity.

34

This thesis describes the design of an Expert Assistant that will

monitor the progress of a database designer using the E-R Approach,

insuring that the best possible database and Data Dictionary are

obtained. Previous formalisms dealing »ith this area of E-R

improvement were only available to the designer if and when the

designer requested assistance. This Expert Assistant, in order to

be a viable assistance tool, must have the following capabilities:

Hake decisions based on the rules defined by [Chen 85].

An explanation facility, including certainty factors,
that assists the designer in understanding why a decision
should be made in a particular fashion,

Allov for the access of a knowledge base containing the
expertise of previous users of the E-R model.

The tool best suited to create an Expert Assistant design that

would meet these requirements is the EHYCIH skeletal knowledge

engineering system [Waterman 863. This system uses a rule-based

knowledge representation scheme with a rigid backward-chaining

control mechanism. The system provides sophisticated explanation

and knowledge base acquisition facilities that clearly speed Expert

Systen development.

The Expert Assistant would provide the necessary assistance needed

by a designer using the E-R Approach in various ways. Initially,

design constructs defined in the E-R model could be controlled to

insure that the final product will not become too complex. Placing

of attributes and values on entity types can be controlled to

35

insure that the minimal set of definitions are used. Translating

E-R diagrams into data-structure diagrams to be used in various

DBMS architectures can be scrutinized to maximize the probability

that the final database will be viable. Finally, by using the

information contained in the final database design, a Data

Dictionary could be created that truly reflects the information in

the actual database.

By using this formalism, the integrity of the rules could be

maintained throughout the logical database design vhich would

insure that at each critical point the designer makes the optimal

decision. An ability to give experienced suggestions to the

designer, when indecision becomes paramount, vould allow for the

explanation of the ramifications of making one decision versus

another. This experience would be represented in a store house of

knowledge which could be tapped whenever a mistake has become

apparent to the designer, the assistance tool, or both. These

protocols would allow the design process to continue smoothly from

start to finish without allowing unnecessary concern by the

designer using the E-R Approach.

After a brief definition of the E-R Approach to database design, it

will be shown how this Expert Assistant could be a valuable tool

for assisting the E-R Approach to database design. The type of

inference engine design necessary to assist this approach without

overcoming the independent thought process of the designer will be

presented. The method of knowledge representation needed to

- 36 -

properly formulate an environment of assistance will also be

discussed. A properly designed Expert System merged with the

proven attributes of the E-R Approach will provide a tool which

will ultimately define the type of formalism that will mandate

further work in this area.

Chapter 4

ENTITY-RELATIONSHIP DEFINITION

This chapter describes the Entity Relationship (ER) Approach to

database design in its entirety as described by [Chen 85]. This is

a simplistic approach because it appears to people to be very

natural to use. Since a DBMS should reflect the world it

represents, entities and relationships are the obvious choice to

represent it. Logical database design is often limiting and

restrictive since the designer is often faced with many decisions

including data-structure constraints, consideration of access

mechanisms, and efficiency of data manipulation. This approach vas

formalized to relieve the database designer from these difficult

decisions and to make the representation of the enterprise easier

to comprehend.

The E-R Approach to database design concentrates on designing the

conceptual schema, the intermediate step in database design

(Figure 4.1). A database designer using Entity Relationship

Diagrams (ERD) must produce the entities, the relationships, and

the attributes that truly reflect the enterprise. This view of the

data is called the "Enterprise Conceptual Schema" or the

"Enterprise Schema. " The database designer should keep in mind

that the enterprise schema should be a pure representation of the

real world and not incorporate physical database limitations such

as the needs of a particular application program. Figure 4.

1

- 38 -

Real Vorld Enterprise

Conceptual

scneiia

!

Objects of I / \ I

interest to) I <) I

the enterprise I \ / i

i

Hierarchical

Relational

1

User schema

I

I I

I I

*

Network I i I

> \ l~

i 1

I i

I i

i i

Figure 4. 1 Enterprise schema-an intermediate step in
logical database design.
(Adapted from [Chen 851)

illustrates that the designer must first define the enterprise

conceptual schema and then translate it into a user schema for the

particular DBMS architecture. This two-phase approach produces the

following benefits:

1. Division of functionalities and labor into two phases
makes the database design process simpler and better
organized.

- 39

2. The enterprise schema is easier to design than the
final user schema because there are no restrictions
levied by the database system (i.e., the enterprise
schema is independent of storage and efficiency
considerations)

.

3. The enterprise schema is not as susceptible to change
as the user schema. To change from one database
system to another, the user schema would probably have
to be changed but not the enterprise schema, since the
enterprise schema is in principle independent of the
database system used. All that would be required is
to remap the enterprise schema to a user schema
suitable for the new database system. Similarly, if
the user schema were changed to optimize a new
application program, the enterprise schema would not
need to be changed but the enterprise schema would be
remapped to a new user schema.

4. The enterprise schema expressed by the entity-
relationship diagram is more easily understood by non-
EDP personnel. [Chen 85]

4.1 ENTITY-RELATIONSHIP DIAGRAMS

4.1.1 ELEMENTARY ENTITIES

Elementary entities uniquely identify those objects that are of

interest to the enterprise. Represented by rectangular boxes,

elementary entities are used to diagram various objects such as

EMPLOYEE or STOCK-HOLDER. Not all of the numerous objects found

in the real world are of interest to a particular enterprise.

Defining entities which are of interest to the enterprise is the

responsibility of the database designer.

4.1.2 RELATIONSHIPS

Relationships usually exist between entities and can be classified

into different relationship types. Figure 4.2a shows two different

- 40 -

PART I
I SUPP I

Manage

N

/ Work-For \

I EBP I I PRQJ I

N

(a) Relationship types are
represented by lines.

\ H N /

\ /

\ PART-SUPP- /

\ PRQJ /

_ _/
\ /

\ /

I P

I

I PRQJ I

 PART-SUPP-PROJ as a

relationship type.

Figure 4.2 I Chen 85]

relationship types, WORK-FOR and KANAGE, between tvo entity types.

A relationship type is denoted by a connecting line between

entities. The "N" and «1" notations indicate that one or more

projects may have only one manager, and the "M" and "N" notations

designate that each project may consist of many employees and each

employee may be associated with more than one project.

Relationship types may be used to diagram more than two entity

types (Figure 4.2b). PART-SUPP-PROJ is a relationship type for

three entity types: PART, SUPP, and PROJ. This three-way

relationship (Table 4.1a), can be replaced with three binary

relationships: PART-SUPP, SUPP-PROJ, and PROJ-PART as shown in

Table 4. lb. If a three-way relationship were constructed from

these three binary relationships "nonfacts" are produced (starred

41 -

Part # I Supp t I Proj *

68 I 3 11
68 I 5 12
10 I 3 12
10 I 3 13
17 I 2 11
17 I 5 11

(a) Information about
PART-SUPP-PROJ
relationships

Part # I Supp # I Proj #

68 I 3 11
68-1 3 12
68*

I 5 11
68 I 5 12
10 I 3 12
10 I 3 13
17 I 2 11
17 I 5 11

Part # 1 Supp #

68 1 3

68 1 5

17 1 2

17 1 5

Supp # 1 Proj #

3 1 1

3 1 2

3 1 3

5 1 1

5 1 2

2 1 1

Proj # 1 Part #

1 1 68

1 1 17

2 1 10 1

2 1 68 1

3 1 10 1

(c) Information generated
from three binary
relationships in
Figure 4. lb

(b) Information about three
binary relationships
PART-SUPP, SUPP-PRQJ, &

PR0J-PART

Table 4. 1 Information concerning three-»ay relationships.
(Adapted from (Chen 85])

42

entries in Table 4.1c). There are many relationships possible in

any given enterprise, the database designer must develop only

those relationships that are relevant, and must specify the mapping

of these relationships (one-to-one, one-to-many, and many-to-many).

4.1.3 COMPOSITE ENTITIES

Composite entity types, diagrammed as special rectangular boxes,

are entities formed by other entities (i.e., elementary entities or

composite entities). To illustrate, SHIPPING is a composite entity

type formed by PRODUCT and CUSTOHEB (Figure 4.3). Although similar

to the relationship type the composite entity may have properties

and a relationship may not. The designing task becomes simpler

when the properties are removed from relationships. Previous work

with the E-R Approach allowed relationships to have properties.

Placing properties on composite entity types and removing them from

relationships provides a clear distinction between entitles and

relationships.

Composite entities may be built on top of another composite

entities, e.g. HANDLING is formed by the elementary entity type

EMPLOYEE and the composite entity type SHIPPING (Figure 4.3). To

simplify any confusion in diagramming a composite entity type

built on another composite entity type, a special diagramming

technique is used. The "component" entity type is connected to the

sides of the "composite" entity type (Figure 4.3). Using nouns

when naming elementary entity types, verbs for relationship types,

- 43 -

I / \ I

N l< HANDLING >l N

/ \

/ \ 1

/ \

/
I / \ I

/ M l< SHIPPING >l N

I I \

I / \

1 / N / \ 1

I EMPLOYEE I I PRODUCT I I CUSTOMER I

Figure 4. 3 A composite entity type can buiid on top of
other composite entity types. CChen 85]

and gerunds for composite entity types also simplifies the ERD

technique.

4.1.4 PROPERTIES OF ENTITIES

The properties of elementary and composite entity types are

expressed as attribute-value pairs. In the statement "the AGE of

employee X is 24, " "AGE" is the attribute of employee X, and "24"

is the value of the attribute AGE. The values are categorized into

different value types, such as NO-OF-YEARS, QUANTITY, and COLOR.

In the ERD technique, value types are represented by circles (in

this case parenthesized boxes), and attribute types are represented

by arrows that are directed from the entity type to the value type

(Figure 4.4). Attributes may have more than one value for any

given entity such as the "PHONE-NO" attribute of employee X could

44

SOC-SEC-NO
/

/

I

T

()

(234-55-7684)

(013-64-7777

I EMPLOYEE I

' ' 1

\I

I

AGE
I

I

I

T

()

(20)

18

PHONE-NO
\

\ n

I

T

()

(253-6606)

253-9999)

(

(

SOC-SEC-NO

) (

) (

) (

) (

) (

) (

) (

) (

>

)

AGE PHONE-NO

Figure 4.4 Value types and attributes.
(Adapted from [Chen 85])

have more than one value. These multivalued attributes are

represented in ERDs by placing a lm along the attribute arrow.

For simplicity a single valued attribute is not designated with a

1:1 notation.

Figure 4.5 shows how attribute-value pairs are diagrammed with a

composite entity. The STARTING-DATE is an attribute of the

composite entity WORKING allowing for queries such as "when did

employee X start work on project Y'. Without the addition of this

composite entity this type of query could not be resolved.

PERCENTAGE-OF-EFFQRT is also an example of another attribute

included with the composite entity since it represents the

percentage of time that an employee works on a particular project.

- 45

I / \ I
. .

I PROJ l< 1< WORKING >l >l EMP i

' ' l_\ J_\ ' '

/ \

/ \

STARTING-DATE / \ PERCENTAGE-OF-EFFQRT
/ \

/ \

I I

T T

<)

(9/15/75)

(7/22/76)

(.)

< .)

(.)

<)

STARTING-DATE

()

(20%)

< 307.)

(.)

(.)

< .)

()

PERCENTAGE-
OF-EFFORT

Figure 4.5 Attributes of a composite entity.
(Adapted from (Chen 851)

Composite entity attributes are also called the "attribute of

relationship" a concept similar to "relationship data" in netvork

database systems and "intersection data" in hierarchical database

systems.

4.1.5 IDENTIFYING ENTITIES AND RELATIONSHIPS

Since entities always have several attributes choosing attribute-

value pairs to identify entities must be considered carefully.

When placing the attribute that best suits the ERD technique, the

designer must pick the attribute that uniquely identifies an

entity. If the enterprise is a small business, the attribute NAME

would best identify the employees but not if the business is a

46

large enterprise. In some cases the attributes available are not

sufficiently descriptive and one nay have to be created to uniquely

identify the entity. Social security numbers, employee numbers,

part numbers, and project numbers are some examples of creating

unique entity identifiers. This "entity identifiers* concept is

similar to the "primary key" in conventional data processing.

Entity identifiers involved in a relation can be used to uniquely

identify their relationships. If PROJ-NO is used to identify a

project and EMP-NO is used to identify an employee, then the WORK-

FOR relationship is identified by both PROJ-NO and EMP-NO.

Relationships may be identified by occurrences of the same

entities, e. g. IS-MARRIED-TO is a relationship type defined between

different occurrences of the entity type PERSON. These

relationships are not only identified by the entity identifiers but

also by the role the entity plays in the relationship. The

relationship MARRIAGE can have role names such as HUSBAND and WIFE

attached to the entity identifier NAME, where the attached names

are the "roles* they play in the relationship.

4.1.6 SPECIAL ENTITIES AND RELATIONSHIPS

Special entity and relationship types can be encountered when using

the ERD technique. An entity may depend on the existence of

tnother entity. A CHILDREN entity exists only if associated

employees exist in the database. If an employee involved in this

relationship leaves the company there may be no need to keep a

- 47 -

1 EHP 1

1 1

1 E

T N

.

1 1 CHILDREN 1 1

1
i '

1

I EMP I

I M

I

! E

I

T N

I. I

I I CHILDREN I I

I

(a) An existence dependent (b) An existence dependent
relationship type and a relationship may also
»eak entity type. be a many-to-many mapping.

Figure 4.6 (Adapted from [Chen 85])

record of the CHILDREN entity. The diagram that represents this

"»eak" entity type is a double-rectangular box (Figure 4.6a). The

"E* in the figure indicates that the relationship is "existence-

dependent", and the arrow indicates the direction of dependency.

"Existence-dependent" relationships may be possible in a many-to-

many mapping, for instance if a father leaves a company the

CHILDREN entity may still exist if the mother is an employee of the

company (Figure 4.6b).

When an entity is identified by using relationships »ith other

entities, an "ID dependency" on the other entities is developed.

In order to uniquely identify a street address the city, state, and

country must be knonn (Figure 4.7a). This dependency is indicated

by placing an "ID" along the relationship line and, as in

"existence dependencies", the arrov indicates the direction of the

48

I COUNTRY I

I 1

I E & ID

I

T N

I 1 STATE I I

I

' '
I

I 1

I

I E & ID

I

+ N

I I CITY I I

I

' '
I

I 1

I

I E & ID

I

T N

I.— I

I I STREET I I

I

'--
'I

(a) Existence dependency and ID dependency

I EJ1P I

I 1

I

I E & ID

I

» N

I |

I I CHILDREN I I

I

' '
I

(b) Existence dependency and ID dependency

Figure 4.7 (Adapted from [Chen 85])

- 49 -

dependency. Most "ID dependencies" are associated with "existence

dependencies", but 'existence dependencies' do not always imply an

"ID dependency". The CHILDREN entity in Figure 4. 7b is identified

with its own attribute(s) and the parentis) ' ID (Table 4.2a), while

the CHILDREN entity in Figure 4.6a may be identified by its own

CHILDREN-NO (Table 4.2b).

4.2 TRANSLATING E-R DIAGRAMS INTO DATA -STRUCTURE DIAGRAMS

Logical data structures of network database systems can be

expressed in terms of data-structure diagrams as in Figure 4.8.

The rectangular boxes represent a record type such as EBP or

DEPENDENT, the arrow represents a data-structure set which connects

two record types. The owner record type of the data-structure set

is located at the originating end of the arrow, and the member

record type of the data-structure set is located at the end of the

arrow. The owner record may have zero, one, or more member records

and a member record may have only one owner record. Figure 4.

9

shows that each EMP (employee) record may he connected to many DEP

(dependent) records or to none, but each DEP record must be

associated with exactly one EMP record. A one-to-many (1:8)

association between the owner record type and the member record

type can he represented by an arrow or be illustrated in a table

format as in Table 4. 3.

Figure 4. 10 depicts an EMP record type as the owner record type in

a data-structure set with EMP-SKILL (employee skill) as the member

50

CHILDREN ID >|<-- Data about CHILDREN ->
I

l<— EMP ID —>l

Name Parent's SSN I Age I Medical Insurance

Nancy Bok 013-58-5545 I 12 I BC/BS

Lawrence Bok 172-66-6672
I 5 BC/BS

Robert Johnson I 819-36-7761 I 21 I Has its own policy

(a) ID dependency.

K CHILDREN ID >l

CHILDREN NO Name I Age I Medical Insurance

1011 Nancy Bok I 12 1 BC/BS

1025 Lawrence Bok I 21 I BC/BS

1044 I Robert Johnson I 5 I Has its own policy

<b) No ID dependency.

Table 4.2 (Adapted from [Chen 85])

I EMP I "Owner" record type

I

I

t < Data -structure-set
I

I DEPENDENT I "Member" record type

Figure 4.8 A data-structure diagram. [Chen 85]

51 -

EMP 2142 I

(a) Zero Dependent

EMP 1781 l<-

I

—
I EMP 2566 l<-

' >l DEP A I >l DEP B I-

(b) Tvo dependent

I I

I I

->l DEP C I

(c) One dependent

Figure 4. 9 An o»ner record may have zero, one
or more member records.
(Adapted from [Chen 85])

EMP-NO DEPENDENT

1781 A

1781 1 B

1781 c

2566 D

Table 4.3 One-to-many correspondence between EMPLOYEE
and DEPENDENTS. [Chen 85]

record type. EMP-SKILL is also a member record type of another

data-structure set vhose owner record is the record type SKILL. The

EMP-SKILL record type contains cross-reference information

- 52 -

I EHP I
I SKILL I

\ /

\ /

\ /

\ /

t ?

I EMP-SKILL I

Figure 4. 10 Two data-structure sets have the same
ember record type. [Chen 85

J

concerning the EHP and SKILL record types and can be represented in

tabular format as seen in Table 4.4.

Table 4.4 also shows that an employee may have more than one skill

and that a particular skill may be known by more than one employee.

This information creates a many-to-many <M:N) association betveen

employees and skills and can be derived from the data-structures in

Figure 4.10 and the cross-reference information in Table 4.4. A

1:M mapping exists between the EHP record type and the EMP-SKILL

record type, and similarly the mapping between the SKILL record

type and the EHP-SKILL is l.-H. This information shows that the

correspondence between the EMP record type and the SKILL record

type is a M:N mapping.

Implementing the data-structure diagram in Figure 4.10 can be

accomplished by using pointer arrays as shown in Figure 4.11. The

data-structure set between the EMP record type and the EMP-SKILL

record type is represented with dashed-lines, and the data-

53 -

EMP-NO 1 SKILL

2142 1 COBOL

2142 1 PL/1

1781 1 COBOL

2566 1 PL/1

Table 4.4 Cross-reference information about
EMPLOYEES and SKILLS. [Chen 85]

EMP 2566 !•!<-

\

I EMP 2142 |.|.|<— <—
| EMp 1781 |. K _

• »_,.» / y , f , ^ ,

(

' _/_ \ I \ _/
I I \ \ | \ / N

I / I \ I \ | /
I / I \ I \

+ / \ /
1 -/ . /

I EMP-SKILL I I EMP-SKILL I I EMP-SKILL I I EMP-SKILL

I

* /

-/

/

SKILL COBOL l«|«l

I I

I SKILL PL/1 I * I • I

Figure 4.11 Implementation of the data-structure sets
in Figure 4. 10 as pointer arrays.
(Adapted from [Chen 853)

54

structure set between the SKILL record type and the EMP-SKILL

record type is represented »ith dotted-lines.

Determining the skill of a particular employee (e.g., 2142) can be

accomplished in a few steps. First, locate the EMP record type

with the particular EMP-NO of interest. By using the dashed lines,

the first EMP-SKILL record type related to this employee is found.

Next the SKILL record with a skill-name equal to COBOL is located

by using the dotted-line pointers. The dashed line is used again

to locate the second EMP-SKILL record related to the same employee.

The dotted-line pointer is then used to find the SKILL record with

skill-name equal to PL/1. Finally, since no more EMP-SKILL records

can be located that correspond to the EMP record of interest, the

skills of the employee with EMP-NO = 2142 are determined to be

COBOL and PL/1.

All the employees with a particular skill can also be found using

pointer arrays. This search is started by locating the SKILL

record type with the SKILL-NAME equal to the skill of interest,

e.g., COBOL. By using the dotted-lines all the EMP-SKILL record

types are retrieved that are related to this SKILL record. From

these EMP-SKILL records the EMP records can be found by following

the dashed-lines. These EMP records represent those employees that

have the SKILL equal to COBOL and have EMP-NOs equal to 2142 and

1781.

"Chains" (Figure 4.12) may also he used to implement the data-

55

I EMP 2142 l<- I EMP 1781 l<- I EBP 2566 l<-
/--- —

' \ / ' \ /-- —
' \

\ \ \ \ \ \

I \ \ \ \ \

I \ \ \ I \

I \
I _ I /

t \ » \ » /

• "• • / • "/ .
--/

I EMP-SKILL l->l SUP-SKILL I I EMP-SKILL I I EMP-SKILL I

->l COBOL I ->l PL/1 I

Figure 4. 12 Implementation of the data-structure seta
in Figure 4.10 as chains.
(Adapted from [Chen 85])

structure diagram in Figure 4. 10. The dashed-line chains connect

all the EMP records vith the EMP-SKILL records, and the dotted-line

chains connect all the SKILL records with the EMP-SKILL records.

To find the skills of a particular employee, say the EMP record

with a EMP-NO equal to 2142, the first EMP-SKILL record must he

found for this EMP by following the dashed-line chain. Then by

following the dotted-line chain, the corresponding SKILL record can

be located. The next EMP-SKILL record can be found by using

dashed-line chain and its' corresponding SKILL record can be

located as before. Finally, since there does not exist any further

EMP-SKILL records (via the dashed-line chain), all the information

56

I MFG-REL I

I I

I I

COMPONENTS I I WHERE- USED
I I

t *

I PART

Figure 4. 13 Two data-structure sets have the same owner
and member record types. [Chen 85]

about the skills of EBP with the EMP-NO equal to 2142 have been

found. As with the pointer array implementation, each employee

with a particular skill may also be found.

Another type of data-structure diagram is shown in Figure 4. 13.

PART and MFG-REL (manufacturing-relationship) are the two record

types, where each product to be manufactured consists of many

components or parts, and each part is in turn made up of other

parts. The PART record type contains information about the

particular part. The MFG-REL record type contains information

about the relationship between parts. Table 4.5 shows that each

PART *1 is composed of five PART #2's and two PART #3's, and that

each PART #3 is used as a subpart of PART #1 and PART #4. The two

data-structure sets in Figure 4.13 can be implemented as chains

(seen in Figure 4.14) where the dashed-lines represent the

COMPONENT chain, and the dotted-lines represent the WHERE-USED

chain.

57 -

SUPER-PART-NO SUB-PART-NO QTY

Table 4. 5 Manufacturing relationship between parts
[Chen 85]

.
1 PART #1 l< .

1 PART #4 1 .

1 COMPONENT
1 CHAIN

QTY

1 COMPONENT
1 CHAIN

1

-->HFG-REL 151 --> HFG-REL 12 1 MFG-REL 11 MFG-REL 121

t

WHERE- :..

t

WHERE- :..

: t t

WHERE- :..

USED :

CHAIN :

USED
CHAIN :

USED
CHAIN

>l PART #2 1 >l PART #5 1

Figure 4. 14 Implementation of the data-structure sets
in Figure 4.13. (Adapted from [Chen 85:)

To discover the components of a particular part, the MFG-REL

records are retrieved by using the COMPONENT chain and then by

retrieving all the subparts using the WHERE- USED chain. This

reveals that PART #4 consists of one PART #3 and t»o PART #5's. To

- 58

find where a particular PART is used, the MFG-REL records related

to the PART are retrieved by using the WHERE-USED chain, and the

corresponding PART records are retrieved by using the COMPONENT

chain. This shows that two PART #5's are used in manufacturing a

PART #4. Figure 4.8, 4.10, and 4.13 are the basic representations

of data-structure set diagrams. Any database can be expressed in a

large data-structure set diagram based on these three building

blocks.

4.2.1 TRANSLATION RULES

Data-structure diagrams are closer to the actual physical

organization of the database than the Entity-Relationship diagrams.

It is recommended that the database designer first diagram the

enterprise view of the data using E-R diagrams and then translate

them into data-structure diagrams. This is much simpler than

developing the data-structure diagrams directly from the data of

interest within the enterprise. Several rules are necessary to

make this conversion from E-R diagrams to data -structure diagrams.

The following translation rules are based on the relationships

between entities:

1. Relationships defined on two different entity types:

a. A 1:1 or 1:N relationship.

The DEPT-EHP relationship type in Figure 4. 15a is a
1:N mapping and can be transformed into the data-
structure diagram in Figure 4. 15b. The entity
types DEPT and EMP in the E-R diagram are treated
as record types in the data-structure diagram.

59

DEPT

EMPLOYS

N

I EMP I

I DEPT I

I

I

I

T

I EMP I

(a) ERO (b) Data-
structure
diagram

EMP I

1

<c) ERD

I EMP I

MANAGE I

I

N T

PROJ I I PRQJ I

<d) Data-
structure
diagram

Figure 4.15 (Adapted from [Chen 85])

while the relationship type EMPLOYS is represented
by a data-structure set (an arrow) in the data-
structure diagram. Similarly, the 1:N relationship
type EMP-PROJ in Figure 4. 15c can be transformed
into the data-structure diagram in Figure 4. 15d.
The entity types EMP and PROJ in the E-R diagram
are treated as record types in the data-structure
diagram, while the relationship type MANAGE is
represented by a data-structure set.

b. A M:N relationship.

The relationship type WORK-FOR in Figure 4. 16a is a
M:N mapping and is translated into the data-
structure diagram shown in Figure 4.16b. A
relationship type with a M:N mapping will be
translated into a record type with two arrows
pointing from the related entity record types.
Therefore the relationship type WORK-FOR was not
translated into a data-structure set, but into a
record type. The PROJ-EMP record type is usually
called a "relationship record type" or a "dummy
record type. Similarly, since the relationship
type HAVE in Figure 4.16c is a M:N mapping, it is
also translated into the "relationship record
type" EMP-SKILL in the data-structure diagram.

2. Relationships defined on three or more entity types:
The relationship type in an E-R diagram is translated
into a relationship record type in the data-structure
diagram no matter whether the relationship is a 1:1,

- 60 -

I EMP

H

WORK-FOR

N

I PRQJ

PROJ I I EMP I

\ /

\ /

\ /

I I

V *

I PROJ-EMP I

(a) ERD (b) Data-structure
diagram

1 EMP 1 1 EMP 1 1 SKILL 1

1 M

1 HAVE

\

\

\

/

1

/

1 N t t

1 SKILL 1
1 EMP •SKILL 1

<c) ERD (d) Data-structure
diagram

Figure 4.16 (Adapted from [Chen 85])

llH, or M:N. The PART-PROJ-SUPP relationship type in
Figure 4. 17a is a relationship type defined by three
entity types and will be translated into a record type
in the data-structure diagram shown in Figure 4. 17b.

Binary relationships defined on the same entity types:
If a binary relationship is a 1:N association, a
relationship type such as MANAGES in Figure 4. 13a can
be transformed into at least two possible data-
structure diagrams (Figures 4.18b and c). Most
network database systems do not allow the same record
type to be used as both the owner record type and the
member record type of a data-structure set. This
makes the data-structure diagram in Figure 4. 18b
illegal. The data-structure diagram in Figure 4. 18c
can be used as an example of the data-structure

61

I PART I

\

PROJ I I PART I I PROJ I I SUPP I

\ /

\ PART-PROJ- /

V SUPP /

_ _/
\ /

\ /

I

I

I SUPP

I

Y T »

I PART-PROJ-SUPP I

(a) E-R diagram Data-structure diagram

Figure 4. 17 [Chen 85]

1 PERSON 1 1 PERSON

1 1 1 t

11 IN 1 1

\ / _/

MANAGES

(a) E-R diagram (b)

I PERSON I

I I

I I

*

I MANAGED I

(o) Data-structure
diagram

Figure 4.18 (Adapted from [Chen 851)

counterpart of the E-R diagram in Figure 4. 18a. For
binary relationships »ith other types of mapping, the
same type of data-structure diagram is used, like the
H:H relationship type CONSISTS-OF (MFG-REL) seen in
Figure 4. 19a and its equivalent data-structure diagram
shown in Figure 4. 19b.

4. Composite entity types:
All composite entity types are translated into record
types. The composite entity types SHIPPING and
HANDLING in Figure 4.20a are translated into the

62

I PART I I PART I

II II
H I I N l|II t T

\ / .
.

I HFG-REL I

CONSISTS-OF •
'

(a) (b)

Figure 4. 19 [Chen 85)

record types SHIPPING and HANDLING in Figure 4.20b.
The 'component entity types" become the "o»ners" of
the data-structure sets, and the composite entity
types become the "members* of the data-structure sets.
For example, PRODUCT and CUSTOMER are owners of the
data-structure sets in which SHIPPING is the member.
Similarly, EHP and SHIPPING are the owners of the
data-structure sets in which HANDLING is the member
(Figure 4.20b).

4.3 LOGICAL DATABASE DESIGN STEPS

[Chen 85) formalized a description of the major steps involved in

logical database design used by the E-R Approach:

1. Draw an initial E-R diagram.
a. Identify elementary entity types.
b. Identify relationships between elementary entity

types.

2. Refine the E-R diagram.
a. Convert some relationship types into composite

entity types.
b. Identify "new" relationship types and high-level

composite entity types.
c. Repeat subsets a and b until no more new

relationship types and composite entity types can
be found.

3. Draw an attribute diagram for entity types.

b3

I / \ I

l< HANDLING >l

I \

/ \

I \

I
I / \ I

/ l< SHIPPING >l
/ / I _\ I_\ \

I I \

/ /

I I \

I EBP I I PRODUCT I
I CUSTOMER 'l

(a) E-R diagram

1 E"P I
| PRODUCT I I CUSTOMER I

V \ /

\ \ /

\ \ /

\ \ /

v. \ /

\
i i

\

\

\
I SHIPPING

\

V /

V /

\ /

\ /

\ /

\ /

\ /

\ /

I I

T T

I HANDLING I

(b) Data-structure diagram

Figure 4.20 [Chen 85]

- 64 -

4. Convert the E-R diagram into one of the following:
a. A data-structure diagram for CODASYL DBMS's.
b. A hierarchical diagram for hierarchical DBMS's.
c. A set of relations (tables) for relational DBMS's.

4.3.1 AN INITIAL E-R DIAGRAM

A simple manufacturing company is used as an example of the

enterprise of interest to use with the Entity Relationship Approach

to logical database design. The elementary entity types of

interest in this enterprise are identified as: EMP, PROJ, DEPT,

PART, and SUPP (Figure 4.21a). Identifying relationship types

between elementary entity types (Step lb), begins with defining the

relationship types on only one entity type, then on two entity

types, and then on three or more entity types. In this example the

following relationship types are defined:

1 - Relationship types defined on one entity typp:
a. The CONSISTS-OF relationship type describes the

superparts and subparts of a given part. This is
the only relationship type of interest in this
category.

2. Relationship types defined on two entity tyngg ;

a. The IS-AFFILIATED-WITH relationship type describes
the employees affiliated with a given department
and is a i:N mapping.

b. The WORK-FOR relationship type describes the
project affiliations of all the employees and is a
M:N mapping. That is, an employee can work for
many projects, and a project can involve many
employees.

c. The MANAGE relationship type identifies the
managers of projects and is a 1:N mapping. That
is, a project has at most one manager, but an
employee can manage several projects.

d. The POTENTIALLY-SUPPLY relationship describes the
list of potential suppliers for a given part and is
a M:N mapping.

e. The IS-STORED-IN relationship type describes which

- 65

I DEPT

1

IS-AFFILIATED-WITH

N

. / H

I EHP I

"
\ 1

I SUPP I

I V M

I N \

I \

/ \ \

/ \ \

I \ \ POTENTIALLY
/ V \ SUPPLY

/ PRQJ- \ \

M / SUPP-PART \ P IN
N\ . . . IS-STQRED-IN

I PRQJ I I PART I -.

S_/
' '

' H I

MANAGE || N |

HI IN . .

\ / I WAREHOUSE I

WORK-FOR

CONSISTS-OF

(a) An initial E-R diagram for a manufacturing company

1 DEPT 1

1

1

1

1

1 / \ 1

1 <DEPT -EMP>I
1 \ / 1

I SUPP I-

I \

IN \ M

J \

I / \ I \ POTENTIALLY
KPROJ-SUPP>l \ SUPPLY

H /I \ -PART / l\ P \

I
I I

I I / VI \ _/ /

I N l<PROJ-EMP>l \ / /

I S_/l_\ £_'\J1 / V N /

. H I / ~[N
I EBP I

•

\ 1

MANAGE

I PROJ I I PART l---KINVENTORY>l
ji_/ . / , ,j ^n

/ I /

/ M N I . /

\ I I WAREHOUSE I

\l / \ \l

KMFG-REL>I
l\ l\

(b) An E-R diagram for a manufacturing company

Figure 4.21 (Adapted from [Chen 85])

- 66

part is stored in which warehouse and is a M:N
mapping.

3- Relationship types defined on three or more entity
types :

a. The PROJ-SUPP-PART relationship type describing
which supplier supplies which part for a particular
project is a many-to-many-to-many (three-way)
relationship. That is, for a given part, there may
be many suppliers who can supply this part to many
projects. Likewise, any project may use many parts
fron different suppliers.

4.3.2 REFINE THE E-R DIAGRAM

Step 2a requires that each relationship type be examined to see if

there is a need to record relevant data concerning it. If this is

warranted, the relationship will be converted into a composite

entity type. Figure 4.21a shows the relationship types concerning

the nanufacturing company and the following five conversions to

composite entities are done:

1. The IS-AFFILIATED-WITH relationship type is converted
into the DEPT-EMP composite entity type.

2. The WORK-FOR relationship type is converted into the
PROJ-EHP composite entity type.

3. The PROJ-SUPP-PART relationship type is converted to a
composite entity type with the same name.

4. The CONSIST-OF relationship type is converted into the
HFG-REL composite entity type.

5. The IS-STORED-IN relationship type is converted into
the INVENTORY composite entity type.

Step 2b is not necessary since there are no other relationship

types or high-level composite entity types of interest.

Figure 4. 21b shows the results of applying Step 2 to the

manufacturing company.

b7

4.3.3 ATTRIBUTE DIAGRAM FOR ENTITY TYPES

Attribute diagrams for established entity types are created in the

third step of logical database design. Figure 4. 22 sho»s the

attributes and value types for the DEPT and EMP entity types, and

the DEPT-EMP composite entity type. The entity types are shown in

the upper conceptual domain and the attribute and value types are

in the lower conceptual domain. DEPT has three attributes: DEPT-

NO, THIS-YEAR-BUDGET, and LAST-YEAR-BUDGET. EHP has five

attributes: EMP-NO, BIRTH-DATE, SALARY, HOME-PHONE, and OFFICE-

PHONE. Attributes might not have the same names as the value

. . 11/ \ I N . .

I DEPT I K DEPT-EMP >l I EMP I

/ I // '

/ / / / I

/ / / / I

III I \

\ DATE-IN- BIRTH- / / / I

Upper ' \ l_\

conceptual / \ LAST-YEAR /

domain I \ BUDGET /

t DEPT-NO \ \ STARTING-
I I /

I i THIS-YEAR / DEPT DATE / / OFFICE

I i BUDGET / / / / / PHONE
i

Lower

conceptual

t *

/ / / / /

/ / / /I
/ / / EMP-NO I

/ / / /I
/ / / SALARY

/ / / I

II / I

Y I t

Y Y Y

() _
) (DATE) (

() _
(DEPT-NO) (

<) (BUDGET) () < EMP-NO) (

() ()

HOME-

PHONE
I

I

I

I

()

) (SALARY) ()

.) (PHONE-NO)

()

Figure 4.22 Attributes and value types for DEPT, EMP, and

DEPT-EMP. (Adapted from [Chen 691)

- 68 -

. . 1 / \ N . .

I DEPT I < DEPT-EMP >— —
| EMP I

Upper • \ \ / ,, ,

conceptual / \ LAST-YEAR
domain

I I l\

1

I

I

T

Loner
conceptual
domain /

/

\ BUDGET / / / / / |

\ \ STARTING- III /I
/ \ DATE-IN- BIRTH- / / / |

THIS-YEAR / DEPT DATE / / OFFICE- I

BUDGET / / / / / phone I

/ III IIIII IIII IIII IIII IIII IIII /

I * I t \ /

*

<)
,

()

) (SALARY) ()

I

HOME-
PHONE

I

()

(DEPT-NO) () < DATE) (

<) (BUDGET) <) (EHP-NO) (

() ()

_) (PHONE-NO)

()

Figure 4. 23 A simplified version of Figure 4. 22.
(Adapted from [Chen 85])

types, and it is possible to have more than one attribute relating

to the same value type. For example, the attributes THIS-YEAR-

BUDGET and LAST-YEAR-BUDGET attributes of the entity type DEPT have

the same value type BUDGET. In order to simplify the diagram,

attribute names are omitted if they have the same name as the value

types (Figure 4.23).

Attribute and value types for the PROJ and EMP entity types and the

PROJ-EMP composite entity type in Figure 4.21b, are shovn in

Figure 4.24. There are five value types: XEFFORT, DATE, PROJ-NO,

BUDGET, and PROJ-NAME and five attributes types: XEFFORT, STARTING-

DATE-IN-PROJ, PROJ-NO, BUDGET, and PROJ-NAME. The attributes of

- 69 -

/ /

/ / /"

. . Ml/ \l N
I EMP I |< PROJ-EMP >|

| pjjQj |

Upper • '

|_Jj (_\
conceptual
domain

t / STARTING- /
I / DATE-IJJ- /

t / PROJ / /
Lower / / / , f
conceptual III

I |

domain | f j
,.

/ / 1

/ I

/ " /

/ /

/

(> () ()

(X EFFORT) () (PROJ-NO) () (PROJ-NAME)

< > < DATE) () (BUDGET) ()

< > ()

Figure 4.24 Attributes and value types for PROJ and
PROJ-EMP. (Adapted from [Chen 85])

the composite entity PROJ-EMP are STARTING-DATE-IN-PROJ < which is

the date that the employee started working for a project) and

'/.EFFORT (which is the percentage of time that an employee is

expected to spend on a particular project). The attribute and

value types for the EMP entity type have been diagrammed in

Figure 4.23. Figure 4.25 shows the value and attribute types for

the entity types SUPP and PART and the composite entity type PROJ-

SUPP-PART. The entity SUPP has the attributes SUPP-NO and ADDRESS,

and the entity PART has the attributes PART-NO, WEIGHT, AND COLOR.

The composite entity type PROJ-SUPP-PART has the attribute OTY

(which is the quantity of a certain part supplied by a certain

supplier to a certain project). The at-rlbutes of the PROJ entity

have already been shown in Figure 4.24.

I PROJ I

1

\
PART I

Upper
conceptual
domain

t

I

I

+

Lover
conceptual
domain

/

»

\

V I / \ I /

\l / PROJ-SUPP- \ 1/

/ I < PART > I

/ I \ /I
/ l_i l__\

> I

I N /

. . /

I SUPP I /
/'- ' /

/ / /

/ / /1/1 I

I / I I

_/ / / I

/ I I

I

/ /

_/ /

/

()

< OTY) <

() (SUPP-NO) (

()

()

) (ADDRESS) (

()

) (WEIGHT) ()

) (PART-NQ) () (COLOR)

() ()

Figure 4.25 Attributes and value types for SUPP, PART, and
PROJ-SUPP-PART. (Adapted from [Chen 85])

The attributes and value types for the WAREHOUSE, INVENTORY, and

HFG-REL entitles are shown in Figure 4.26. The WAREHOUSE

elementary entity has WAREHOUSE-NO and ADDRESS as attribute types,

and the INVENTORY composite entity has QTY-ON-HAND as an attribute

type (which is the quantity of a part stored in a warehouse). The

MFG-REL composite entity has an attribute type of OTY-FOR-hTG

(representing the quantity of a subpart needed to make a super-

part). The QTY-ON-HAND and QTY-FOR-HFG attribute types have the

same value type QTY. The Figures (4.23 through 4.26) illustrate

- 71

I WAREHOUSE I

•

\

\ \ \ N n
\ \ \ / _^
\ \ I / \ | H . / | / x |

\ \ l< INVENTORY >l— -I PART I l< MFG-REL >l
\ \ IJi /_l '

\ l_i /I
Upper \ \ \ N \ / |

conceptual \ \ OTY-ON-HAND QTY-FOR-MFG
domain \ \ \

I

1 V \ \ /

' V \ \ /

1
I III

* * * * t
Lo»er
conceptual <) () (j

domain <) < ADDRESS) (BTY)

< > <) ()

WAREHOUSE-
NO

Figure 4.26 Attributes and value types of WAREHOUSE,
INVENTORY, and MFG-REL.
(Adapted from CChen 85])

all the attributes and value types necessary to describe the

properties of the entities that may be of interest to the

manufacturing company.

4.3.4 TRANSLATE THE E-R DIAGRAM

First the E-R diagram in Figure 4.21b is translated into the data-

structure diagram shown in Figure 4.27. All elementary and

composite entity types become record types in the data-structure

diagram. The MANAGE relationship type is a 1:N mapping so it is

translated into a data-structure set (i.e., an arrow). Since the

relationship type PROJ-EMP is a M:N mapping, it is translated into

- 72

DEPT I

I EMP I I PROJ I I SUPP

/ \

. . I

I DEPT-EHP I I

I

\ / I I \ /II / \

I I I \

T y y \

I PART I I WAREHOUSE I

/ \ ' •

/ / I I \ \

\ \ \ \

\ \

I I

Y Y
. _ |

I PROJ-SUPP-PART I I

* »

I PROJ-EMP I

I MFG-REL I

I POTENTIAL-SUPP I I INVENTORY I

Figure 4.27 The data-structure diagram derived fro™
the E-R diagram in Figure 4.21.
(Adapted from [Chen 853)

a record type »ith arrows from the related entity record types EMP

and PROJ.

4.3.5 DESIGN RECORD FORMAT

Deciding ho» to group the attributes of entities into records and

ho» to implement the data-structure sets ("chains"?, "pointer

arrays"?, etc.) is based on the following:

All the attributes of an elementary or composite entity
»ill be put into the same record type. For example, the
attributes of DEPT .ill be treated as the names of fields
in the DEPT record type (see Figures 4.23 and 4.28).
(Adapted from [Chen 851)

After placing attributes on the record types, the next step is to

decide hov to implement the data-structure sets. In this example

- 73 -

I DEPT-NO I THIS-YEAR-BUDGET I LAST-YEAR-BUDGET 1*1
— - — — —-— — -- — - — — — — — — - — -.- — ---________+

*

I

/

/

/

I

t

To the first DEPT-EMP
record related to
this department

Figure 4.28 DEPT record. [Chen 85].

•chains" are used as the physical implementation of the data-

structure sets. Figures 4. 12 and 4. 14 .ill be used as the physical

implementation of Figures 4. 10 and 4. 13, respectively. Allowing

for the following observations on how to implement chain pointers:

1, If the record is the owner record type of a data-
structure set, it should have a pointer to the first
member record occurrence.

2. If the record is a member record type of a data-
structure set, it should have a pointer to the next
member record occurrence in the chain or, if it is the
last record in the chain, to the owner record
occurrence.

3. If a record type is involved in multiple data-
structure sets, it should contain several pointers,
one for each data-structure set. [Chen 85]

These rules define the pointers for the record types and can be

seen in Figures 4.28 through 4.34. Since the DEPT record in

Figure 4.28 is the owner record type of a data-structure set, it

has a pointer to the first DEPT-EMP record occurrence related to

this department. Figure 4.29 shows that the EMP record has three

- 74 -

To the first DEPT-EMP
record related to

this employee
1

I

\

\

I

I EHP- I BIRTH- I STARTING- I I OFFICE- I HOME- I I I I I

I HO I DATE I DATE-IN- I SALARY I PHONE I PHONE I. I. I.

I

[

I
I DEPT I | |

I I I I | |

*'

I I

. / /

//

/ /

I
I

+
To the first PROJ record To the first PROJ-EMP

managed by record related to
this employee this employee

Figure 4.29 EHP record. [Chen 85].

pointers since it is involved in three data-structure sets.

Because the EHP record type is the owner record of the data-

structure set »ith member record type PROJ, it keeps a pointer to

the first PROJ record occurrence managed by this employee. The

value of the pointer is null if the employee is not a manager of

any project. Since the EHP record type is also the o»ner record

type of the data-structure set »hose member record type is PROJ-

EMP, it must also maintain a pointer to the first PROJ-EMP record

occurrence in the chain.

The DEPT-EMP record maintains two pointers since it is the member

record type of two data-structure sets, the DEPT-EMP record

75 -

To the first DEPT-EMP
record for the

same department
t

I

, --,

I

To the next DEPT-EMP
record for the
same employee

(a) DEPT-EMP record

To the next PROJ record
managed by the
same employee

t

I PROJ-NO I PROJ-NAHE I BUDGET l»l»l*l

I I

/ I

f
I

I
I

t
To the first PROJ-EHP To the first PRQJ-SUPP-PART

record related to record related to
this project this project

(b) PROJ record

Figure 4.30 (Adapted from [Chen 85 J)

76

To the next PRQJ-EMP
record for the
same employee

1

I

I STARTING-DATE-IN-PROJ I XEFFORT l»l»l

I

t

To the next PROJ-EHP
record for the
same project

(b) PROJ-EMP record

To the first PART-SUPP-PROJ
record related to this supplier

t

I

I SUPP-NO I ADDRESS l»l»l

I

»

To the first POTENTIAL-SUPP
related to this supplier

(b) SUPP record

Figure 4.31 (Adapted from [Chen 85 J)

To the first PART-SUPP-PROJ To the first POTENTIAL-SUPP
record related to this "part- record related to this part

T t
I

I

\ /

\ /

I I

I PART-MO I WEIGHT I COLOR |.|.|.|»l»l

I I

/ I

/ /
/ /

I

*
To the first MFG-REL record
in the "WHERE-USED chain"

To the first MFG-REL record
in the "COMPONENT chain"

*

To the first INVENTORY
record related to this part

Figure 4.32 PART record. CChen 85]

occurrence for the sane department, and the DEPT-EMP record

occurrence for the same employee (see Figures 4.27 and 4.30a>. A

more complicated case can be seen with the PROJ-SUPP-PART record

type in Figures 4.27 and 4.33a. Since this record type is the

member record type of three data-structure sets, it has three

pointers, one for each chain. Similar explanations can be given

for the pointers in the other record types.

4.4 DESIGN CONSIDERATIONS

The translations rules from E-R diagrams into data-structure

diagrams that *ere discussed in Section 4.2.1 are not the only

rules of translation. A simple rule could be used to translate all

- 78 -

To the next PART-SUPP-PRQJ
record for the same part

t

1

1

1

1

1 OTY l*l«l»l

1 1

/ \

/ \

I
I

* t
To the next PART-SUPP-PROJ To the next PART-SUPP-PROJ
record for the sane supplier record for the same project

(a) PROJ-SUPP-PART record

To the next POTENTIAL-SUPP
record for the same part

1

I

I

T

To the next PQTEHTIAL-SUPP
record for the same supplier.

(b) POTENTIAL-SUPP record

Figure 4.33 (Adapted from [Chen 85 J)

79

I WAREHOUSE-NO I ADDRESS l»l

I

Too the first INVENTORY
record related to
this warehouse

(a) WAREHOUSE record

To the next INVENTORY
record for the

same part

1

I

I QTY-ON-HAND l»l»l

I

t

To the next INVENTORY
record for the
same warehouse

 INVENTORY record

Figure 4.34 (Adapted from [Chen 85])

relationship types into record types no matter what types of

mapping they are. Implementing this rule allows the E-R diagram in

Figure 4. 21 to be translated into the data-structure diagram in

Figure 4. 35 instead of the diagram shown in Figure 4. 27.

With this simplified rule the data-structure diagram will be more

complicated and be less efficient in retrieval and updating. But

it may allow for a higher level at data independence since

programs and database structures would not need to be changed when

a particular relationship type changes from a 1:N mapping to a HiN

- 80 -

I DEPT I I EMP I I PRQJ I

• . / , ,

I / / I I I \

I / / I I I \

I SUPP I I PART I WAREHOUSE I

I DEPT- I

I EMP I

I I

* \

I PROJ- I I

I MANAGER I I

/ /

I I

» *

I PROJ-EMP I

_/ I I I \

I \\ \

I POTENTIAL- I

I SUPP I

\ \

I I

* v *

PROJ-SUPP-PART I

I I INVENTORY I

\

\ \

I I

I MFG-REL

Figure 4. 35 Another data-structure diagram derived from
the E-R diagram in Figure 4. 31a.
(Adapted from CChen 851)

mapping. This type of mapping change »iil convert a data-structure

set into a record type or vice versa, based on the translation

rules discussed in Section 4. 2. 1, but no change is necessary if the

simplified rule discussed here is used.

A modification of the rules for translating E-R diagrams into data-

structure diagrams »ill provide better database performance or

better utilization of storage space. The EMP record sho»n in

Figure 4.27, 4.29, and 4.35, can be split into tiro records. The

EMP-MASTER record contains the fields EMP-NO, BIRTH-DATE, and

SALARY (Figure 4.36a). The EMP-DETAIL record contains the fields

STARTING-DATE-IN-DEPT, OFFICE-PHONE, and HOME-PHONE (Figure 4.36b).

Pointers are added that connect the occurrence of the the EMP-

MASTER and the EMP-DETAIL records. The data-structure diagrams in

81 -

To the first DEPT-EMP
record related to
this department

1

I

EMP-NO I BIRTH-DATE I SALARY |.|.|»|.|
-«._#.'

I I I

/ I I

I / /

I / /

I

To the first PRQJ record
managed by

this employee

+

To the EHP-DETAIL
record

To the first PROJ-ENP
record related to

this employee

(a) EMP-HASTER record

To the EHP-HASTER
record

t

I

I OFFICE-PHONE I HONE-PHONE l»l

 EHP-DETAIL record

Figure 4.36 (Adapted from CChen 85]

)

Figure 4.27 and 4.35 would be modified by incorporating

Figure 4. 37. One of the reasons for splitting a record into t»o or

more records would improve retrieval performance. It may be

expected that the fields in the EHP-MASTER record will be used more

often than those in the EHP-DETAIL record. Since retrieving

unnecessary data Is not a beneficial aspect of a DBMS the splitting

- 82 -

I EMP-MASTER I

I EMP-DETAIL I

I CUSTOMER I

I

I

I

T

I SHIP-TO-ADDRESS I

(a) Data-structure diagram for A data-structure diagram
EMP-MASTER and
EMP-DETAIL

for CUSTOMER and
SHIP-TO-ADDRESS.

Figure 4.37 (Adapted from [Chen 851)

of a record may be Justified. Another reason for splitting a

record is a limitation of record size, due to hardware or software

limitations. If the 'conceptual' record is larger than the maximum

length of a record, the "conceptual" record may have to be split

into two or more records.

Another common practice for increasing performance is to factor out

repeating groups. SHIP-TO-ADDRESSES for example, is a repeating

group in a customer record <i.e. , there are many data values for

this attribute). This field can be moved out and be placed into a

new record called SHIP-TO-ADDRESS (Figure 4.37b).

An E-R diagram may be translated into many different data-structure

diagrams depending on different processing needs. Therefore the

database designer should start with an E-R diagram and then

translate it into a data-structure diagram suitable for the

83

particular DBMS implementation.

4.5 HIERARCHICAL DATABASE DESIGN

Data in hierarchical database systems is organized into hierarchies

of records which only allow ltK mappings. Relationship types with

M:N mappings must be translated into hierarchical structures.

There are at least five possible logical data structures for the

E-R diagram in Figure 4.38a, that require translation:

1. The PROJ record type in Figure 4.38a may be treated as
a "child-record" for the EMP record type in
Figure 4.38b. This logical data structure will be
efficient for certain types of queries but not for
others. If a search for the employees associated with
a particular project was done there may have to be an
exhaustive search of the entire database.

2. The EMP record type in Figure 4.38a may be treated as
a "child-record" for the PROJ record type in
Figure 4.38c. If a search for all the projects
associated with a particular employee were needed, as
before an exhaustive search of the entire database
would be needed.

3. Since the logical data structures in Figure 4.38b or
Figure 4. 38c aren't efficient for all types of
queries, two databases may have to be maintained as
shown in Figure 4. 39a. But this forces storage and
maintenance of redundant data.

4. For a hierarchical database system, the logical data
structure in Figure 4.39h may be chosen so that the
EMP record type will be the "physical parent" of PROJ-
EMP, and the PROJ record type will be the "logical
parent.

"

5. An alternative, in a hierarchical database system, is
to make the EMP record type the "logical parent"
instecd of the "physical parent" of PROJ-EMP record
type (Figure 4.39c).

84

WORK-FQR
. M N .

EMP I
I PROJ

(a) Many-to-many mapping

I EMP I

I

I

I

I PROJ I

(b) PROJ as a child-record for EMP

I PROJ I

I

I EMP I

(c) EHP as a child-record for PROJ

Figure 4.38 (Adapted from [Chen 85])

85

I BMP I I PRQJ I

I I

I I

I I

I PROJ I I EMP I

(a) Maintaining two databases.

I EHP I I PROJ |

I /

I /

I I

I *

I PROJ-EHP I

(b) PRQJ as the "logical parent* of PROJ-EMP

I EMP I I PROJ

\ I

\ I

I
I

* I

PROJ-EMP I

(c) EMP as the "logical parent" of PROJ-EMP

Figure 4.39 (Adapted iron [Chen 851)

The Entity-Relationship Approach to logical database design has

attracted considerable attention in industry and the research

community. Many people have used this approach in the real-»orld

- 86

environment and have found it easy to understand and to use. The

E-R diagrammatic technique has also been found to be an effective

tool betveen the end-users of the database and its designers for

the specifications of user information requirements. The E-R

Approach is a practical approach for logical database design and it

is a valuable tool for the initial design where simplicity of

technique is required.

- 87

Chapter 5

EMYCIN

The first step in defining an Expert Assistant that assists

database design is to evaluate the reasons for choosing a

particular Expert System design tool. Since most of the tools

available are not designed for any particular class of problems the

selection process may become difficult. For every Expert System

design tool there is a problem task suited to it [Waterman 86],

the converse of this is not true. For any given problem task there

may be several tools that could possibly be used. To simplify the

decision process the sophistication, the support facilities, the

reliability, the maintenance, and the usable features of the design

tool must be examined.

The type of tool needed for assisting the Entity-Relationship

approach to database design must have the following abilities:

Make decisions based on rules defined by [Chen 85],

Explain decisions made, and

Store and access the experience of previous E-R users.

Chapter 3 explained that the EMYCIN skeletal knowledge engineering

system would provide the necessary abilities to create the Expert

Assistant for the E-R approach to database design. Following a

description of EMYCIN, the Expert Assistant will be defined by

formulating the necessary rules that will make the Expert Assistant

- 88 -

model viable, and a definition of how a Data-Dictionary could he

automatically created.

EMYCIN is a programming system used to write knowledge-based

consultation programs using production-rules to represent its

knowledge. A domain independent version of the MYCIN Expert

System, EMYCIN, developed at Stanford University as part of the

Heuristic Programming Project Cvan Melle 79], uses a rule-based

knowledge representation scheme with a rigid backward-chaining

mechanism. EMYCIN has been used to build diagnosis-type Expert

Systems in the areas of medicine, geology, engineering,

agriculture, and other areas. Its facilities include an

explanation program, a well-engineered environment for developing

the knowledge base, and tracing and debugging programs. EMYCIN is

best suited for deductive problems that are associated with large

amounts of unreliable input data that has a specifiable solution

space. This section presents the characteristics of EMYCIN

regarding its knowledge representation, problem-solving knowledge,

and other facilities.

5.1 KNOWLEDGE REPRESENTATION

EMYCIN 's knowledge is represented using production rules written in

LISP, and are comprised of a premise, which is formed by a

conjunction of predicates over triples (attribute-object-value) in

the knowledge base, and an action. If the premise is true the

action or conclusion part of the rule is evaluated. If the premise

- 89 -

is not known with enough certainty to he absolutely true, the

strength of the conclusion is modified accordingly. Uncertainty in

the data or competing hypothesis is represented by attaching a

certainty factor to each triple. This certainty factor is usually

a number between -1 (definitely false) to 1 (definitely true). The

following is a typical rule from the domain of structural analysis

[van Melle 79]:

If: 1) The material composing the sub-structure is one of
the metals,

2) The analysis error (in percent) that is tolerable
is less than 5,

3) The non-dimensional stress of the sub-structure is
greater than .5, and

4) The number of cycles the loading is to be applied
is greater than 10000

Then: It is definite (1.0) that fatigue is one of the
stress behavior phenomena in the sub-structure

Represented in LISP this rule appears as:

PREMISE: (SAND

(SAME CNTXT COMPOSITION (LIST0F METALS))
(LESSP. (VAL1 CNTXT ERROR) 5)
(GREATERP. (VAL1 CNTXT ND-STRESS) .5)
(GREATERP. (VAL1 CNTXT CYCLES) 10000))

ACTION: (CONCLUDE CNTXT SS-STRESS FATIGUE TALLY 1.0)

Each rule is intended to provide a single piece of information, the

knowledge base is therefore modular, in that it is relatively easy

to update. Rules can be added deleted or modified without

affecting the overall performance of the system. These rules are

also useful for explanation purposes and since the system has the

ability to read its own rules, the explanation program and other

- 90

routines assisting the user are used extensively.

5.2 INFERENCE ENGINE

The control structure employed by EHYCIN is a goal -directed

backward-chaining mechanism, the goal of »hich is to determine the

action to take given the premise. At any time EMYCIN is attempting

to work towards this goal by establishing the value of the action

of some premise. To accomplish this, EMYCIN retrieves a list of

rules whose conclusions are related to the goal, then

systematically attempts to apply the rules. This application

continues until the goal is satisfied with a given certainty, or

the rule list has been exhausted. If other information is needed

•hen the premises are evaluated, EMYCIN produces subgoals to find

out the information, causing other rules to be used. If no value

can be deduced, either because there were no related rules or

evaluation of the rules vas unsuccessful, the system queries the

user for the missing values. When the user cannot supply the

information, the data becomes unknovn causing future rules that

require it to fail.

5.3 FACILITIES

EMYCIN 's explanation facility allows the user to understand the

reasons why a particular conclusion was reached and to examine the

system's knowledge base. Examining the knowledge base allows the

user to discover information about inferences made in a particular

case at hand and to examine the static knowledge base in general.

- 91 -

Responding to user commands, in this case WHY a question was asked

by EMYCIN, or HOW EMYCIN reached a conclusion, EMYCIN can explain

the current, past, and possible future lines of reasoning. The

explanation program can also be useful for debugging the final

developed system. This can be accomplished without manipulating

the system at the LISP level, providing for examination of what

inferences have been made, why others failed, and allowing for

corrections of errors and omissions in the knowledge.

Knowledge acquisition constructs the rules in the knowledge base

and the object-attribute structures upon which the rules operate.

Rules can be entered into the system by using an Abbreviated Rule

Language, a formal representation mechanism which is much more like

English than LISP. Rules in the knowledge base are modified by a

high-level editor which checks each rule for syntactic validity and

insures that no contradictions exist. When a rule is created or

updated, the date, time, and user responsible are recorded with the

rule. Once properties have been given legal values they are used

by the system to prompt for omitted values and to check for errors.

Once a rule is entered into the knowledge base and checked for

validity, data structures are updated such as the data structure

responsible for telling the rule Interpreter which rules conclude

results about which premise.

EMYCIN has the capability of keeping and maintaining various

problem scenarios in libraries that are used for testing a complete

92

systen or for debugging one being built. When a library routine is

rerun, questions are answered by supplying a response that vas

given when the scenario vas run initially. Many at these cases may

be run in the background mode allowing the system to check current

results with those already obtained. This type of processing

allows new rules added to the knowledge base to be checked from

previously proven results. These features greatly facilitate the

development of a new system C Hayes-Roth 833.

- 93

Chapter 6

TAXONOMY OF THE EXPERT ASSISTANT

The Expert Assistant, designed using EMYCIN, »ill operate much the

same as if an experienced user vere peering over the shoulder of a

database designer using the E-R approach. If a mistake is made the

Expert Assistant will prompt the user accordingly. If decision

assistance is needed, the user needs only to ask the Expert

Assistant. Already knowing the history of the current design

session, the Expert Assistant can give meaningful suggestions hased

on what current rules are active in the Inference Engine and the

information found in the knowledge base.

EHYCIN's facilities allow the user to establish the validity of

each explanation much like a human consultant does. Backward-

chaining is best suited for applications when the solution to a

problem begins with a small set of states to a larger set of

states. This parallels the E-R database design process which has

an initial state of designing the conceptual schema by identifying

the entities and relationships which are of interest to the

enterprise. Subsequent states become numerous and varied when this

schema is translated into data structures for a particular database

system. The knowledge acquisition facility of EMYCIN will allow the

Expert Assistant designer to store the experience of previous users

of the E-R approach to database design.

The Expert Assistant will perform the database design process in

I*

- 94 -

three modes. Modes one, DIAGRAM, and two, TRANSLATE, are based on

the rules defined by [Chen 85]. The DIAGRAM mode will allow the

user to define the entities and relationships that are deemed

necessary to the enterprise. The TRANSLATE mode, based on the

architecture of the enterprises' DBMS, translates the E-R diagrams

into the data structures needed. After the TRANSLATE mode is

completed, the final mode of operation creates a Data-Dictionary

for future database users and will be fully automated based on the

requirements found in [Cardenas 79]. The TRANSLATE mode will be

executed by the Expert Assistant without intervention of the user.

Since once the architecture is known, the translation is straight

forward. The user may stop this automatic process in order to

monitor the progress of the Expert Assistant and to request

information as to why or how a particular result was obtained.

The Expert Assistant will incorporate all of the rules applicable

to the Entity-Relationship Approach to database design as defined

by [Chen 85]. Representation of the rules is a straight forward

process since they are conditional with a left hand side versus a

right hand side. For example, a free-form English format of a rule

for creating a composite entity might be represented as:

IF: A relation might have attributes > .5
THEN: It is definite (1.0) that the relation should be

converted to a composite entity.

And represented as an actual EMYCIN rule as:

95

PREMISE: (GREATER? (VAL1 ATTRIBUTE (LISTQF RELATIONS)) .5)
ACTION: (CONCLUDE RELATION CONVERT COMPOSITE TALLY 1.0)

This thesis presents the rules of the Expert Assistant based on the

•terse" rule format defined by fvan Melle 79] (see Appendix 3).

This format is a simplified language used to bridge the gap between

rules in free-form English text format (see Appendix 2) and LISP

input. In the "terse" rule format, the rule for diagramming a

composite entity (shovn above) might look like:

If Relation = (LISTOF ATTRIBUTES)
Then Composite Entity = RELATION

Appendix 1 defines the objects that are used in the rules of the

Expert Assistant. The following sections describe the objects and

the rules which the Expert Assistant will operate on.

6.1 OBJECTS

The DATABASE-LIST will contain the name of the database that is or

was designed by the E-R Approach. The ENTITY-LIST contains each

ENTITY and its type. The RELATION-LIST has each RELATION

identifier, its type, and any dependencies. This list will also

contain the entities that are involved with each particular

relation. The ENTITY, its properties i.e., ATTRIBUTE-VALUE pairs

including the identifier, the value(s), and the type, are found in

the ATTRIBUTE-LIST.

The translation rules require that there be a list of owner

records, member records, data structures, and pointers. The OWNER-

96

1. Create a unique entity name and its' type.
2. Create the attribute and value information for the

current entity.
3. Create a unique relation name, type and dependency.
4. Create the other entity involved in the current

relation.

Figure 6. 1 Design steps facilitating the use of the
Expert Assistant.

RECORD-LIST will contain the SET-NAME and the component ENTITY

found in a relation. The MEMBER-RECORD-LIST contains the other

ENTITYs and the SET-NAME involved in a relation. A list of all the

SET-NAMEs found in a database are stored in the DATA-STRUCTURE-

LIST. And finally, each member and owner record with their

respective pointers are located in the POINTER-LIST.

The DATABASE-RECORD-LIST, FIELD-ATTRIBUTE-LIST, and the RECORD-

FIELD-LIST contain the necessary information for the data-

dictionary, and will be stored in the DATA-DICTIONARY-LIST. The

database names and all the records contained in each database are

located in the DATABASE-RECORD-LIST. Each field name and its

attribute) s) are contained in the FIELD-ATTRIBUTE-LIST, and each

record and its corresponding fields are stored in the RECORD-FIELD-

LIST.

6.2 DEFINITION OF RULES

Based on the defined rules, the Expert Assistant model requires

that the designer create the E-R diagrams by following the steps

- 97 -

RULE Is i Obtain MODE

RULE 2:: IF: KODE is DIAGRAM
THEN: Determine DATABASE

RULE 3:: IF: NODE is TRANSLATE
THEN: Determine Data-structures

RULE 4:: IF: Determining DATABASE
THEN: 1) Obtain DATABASE

and
2) Obtain DBMS ARCHITECTURE

RULE 5:: IF: DATABASE is in DATABASE-LIST
THEN: Report Error and Stop Expert Assistant

RULE 6:: IF: DATABASE is not in DATABASE-LIST
THEN: Determine ENTITY

Figure 6.2 Rules composing the front end to the
Expert Assistant.

shown in Figure 6.1. RULE 1 through RULE 6 (see Figure 6.2) limit

the type of operations allowed and start the Expert Assistant in

its monitoring process. The RULEs are based on the premise/action

protocol needed by EMYCIN. When MODE, in RULE 1, becomes true the

premise of RULE 2 and RULE 3 become true, causing the actions (the

THEN clauses) to be evaluated. The action part of RULE 2 causes

the premise of RULE 4 to become true which obtains the DATABASE its

ARCHITECTURE. The action of RULE 4 instantiates DATABASE, causing

the premise of RULE 5 or RULE 6 to become true, etc.

RULE Dl: IF: Determining ENTITY
THEN: Obtain ENTITY

; i.e. (WHILE being entered)

RULE D2:: IF: The ENTITY is in ENTITY-LIST
THEN: Report Duplicate ENTITY

Determine RELATION

RULE D3:: IF: The ENTITY is not in ENTITY-LIST
THEN: 1) Determine ENTITY type

and
2) Determine RELATION

Figure 6.3 Rules for incorporating an ENTITY into
the database design.

6. 3 DIAGRAMMING RULES

The Diagramming rules are based on the descriptions of E-R diagrams

discussed in Section 4.1. As shown in Figure 6.3, RULE Dl through

RULE D3 are used to monitor the creation of the ENTITYs of interest

to the enterprise. RULE Dl monitors entities as they are created

by the designer (see Figure 6.1 step 1). The THEN clause of this

rule instantiates ENTITY, firing RULE D2 insuring that this entity

does not already exist. If this entity does exist, after informing

the user of this duplication, the Expert Assistant assumes that

this entity will become the component of a new relation. The

action part of RULE Dl also fires RULE D3 which establishes the

ENTITY'S type and the relation concerning it, as described in

Section 4. 1.2.

- 99 -

RULE D4:: IF: Determining ENTITY Type
THEN: 1) Obtain type

; i.e. (Binary, Composite, or Elementary)
and
2) add ENTITY and type to ENTITY-LIST
and

3) Determine ATTRIBUTE-VALUE

RULE D5:: IF: Determining RELATION
THEN: 1) Obtain Unique RELATION identifier

and

2) Obtain RELATION type
; i.e. till, I:N, or M:N)

and

3) Obtain Dependency
; i.e. (None, Existent, or ID)

and
4) Obtain Entity (s)
and
5) Determine Duplications
and
6) Obtain Entity Type
and
7) Add involved ENTITY (s), RELATION

identifier, type, and dependency
to RELATION-LIST

Figure 6. 4 Rules used to determine the ENTITY type
and the RELATION of the current ENTITY.

RULE D3 fires RULE D4 and RULE D5 (Figure 6.4) establishing the

necessary information about the current entity. Based on the

description of entities in Section 4. 1. 1 and Section 4. 1. 3, The

first action in RULE D4 is to retrieve the ENTITY type created by

the user according to Step 1 in Figure 6. 1. The second action

adds the entity to the list of entities contained in the current

DBMS design, and the third action fires RULE D6 (Figure 6.5) which

will determine the properties of the current ENTITY. Action 1, 2,

and 3 in RULE D5 retrieves a unique RELATION identifier, RELATION

- 100 -

RULE D6:: IF: Determining ATTRIBUTE-VALUE
THEN: 1) Obtain Unique ATTRIBUTE-VALUE identifier

and
2) Obtain ATTRIBUTE-VALUE type

; i.e. (1:1 or 1:N>
and
3) Obtain Value(s)
and

4) Add identifier, ATTRIBUTE-VALUE, and type
to ATTRIBUTE-LIST

Figure 6. 5 Rule to determine the properties of
the current ENTITY.

type, and any dependencies (Section 4.1.2 and 4.1.6) deemed

necessary by the designer according to Step 3 in Figure 6. 1.

Actions four through six, in RULE D5, retrieve the other entity (s)

involved in the current relation following the same entity

limitations as discussed before, and the seventh action adds this

information to the list of relations contained in the current DBMS

design.

RULE D6 (see Figure 6.5) fired by RULE D4 in Figure 6.4, insures

that the necessary properties are recorded about the current ENTITY

as described in Section 4.1.4. As with relations, the properties

of an ENTITY (i.e., ATTRIBUTES and VALUES) must be given a unique

identifier and a type and is accomplished by the first two actions

in RULE D6. The third action retrieves the value or values created

by the designer related to the current ENTITY. And the last action

of RULE D6 adds this information to a list containing the same type

of information about the other ATTRIBUTE-VALUEs in the current

design.

- 101

RULE Tin IF: Mode is TRANSLATE
THEN: 1) Parse RELATION-LIST

and
2) Implement Data-structure set
and
3) Add information to DATABASE-LIST
and
4) Process DATA-DICTIONARY
and
5) Add information to

DATA-DICTIONARY-LIST

RULET2:: IF: Parsing RELATION-LIST
; while relations exist

THEN: Obtain RELATION type
; from RELATION-LIST

Figure 6.6 Rules comprising the front end to the
translation mode.

If the current state of the Expert Assistant does not agree with

what the database designer is attempting to accomplish, the system

will prompt the designer. For example, if the system is expecting

a relation to be entered for the current entity (RULE D5 in

Figure 6.4) and this is not done, the system requests the necessary

information to fulfill the rules. Likewise, if the designer does

not know what to do next he may request assistance by asking HOW,

and the system will reply by informing the user what is expected

next. If the system initiates a prompt the user may ask for

clarification by asking WHY, forcing the Expert Assistant to

explain by chaining backward through the active rules.

:02

RULE T3:: IF: 1) RELATION type is 1:1

or

2) RELATION type is 1:N
THEN: 1) Create unique SET-NAME identifier

and
2) Add component ENTITY and SET-NAHE

to OWNER-RECORD-LIST

j from RELATION-LIST
and

3) Add second ENTITY and SET-NAME
to MEMBER-RECORD-LIST

and

4) Create RECORD <s)

and
5) Add ATTRIBUTE-VALUE(s) to RECORD
and
6) Add RECORD <s) to RECORD-LIST

Figure 6.7 Translation rule based for a 1:1 or 1:M
relationship type.

6. 4 TRANSLATION RULES

RULE Tl and RULE T2, in Figure 6.6, represent the front end of the

Expert Assistants' TRANSLATE mode. RULE Tl starts creation of the

data structures by parsing the ENTITY -LIST (created in RULE D4),

and creates the DATA-DICTIONARY. Then RULE Tl implements the data

structure sets and adds this information to the database. Finally

the data-dictionary is created and this information is added to the

DATA-DICTIONARY-LIST. Parsing in RULE T2, retrieves each piece of

information in the RELATION-LIST and uses it to fire RULEs T3

through T5.

RULE T3 through RULE T6 are based on the translation RULEs for

relationships defined on tvo entity types, three or more entity

types, binary relationship types, and composite entity types

- 103 -

RULE T4:: IF: 1) RELATION type is M:N
and

2) ARCHITECTURE type is not Hierarchical
THEN: 1) Create unique SET-NAME identifier

and
2) Add component ENTITIES and SET-NA11E

to OWNER-RECORD-LIST
and
3) Translate relation to new member record
and
4) Add created record and SET-NAME

to MEMBER-RECORD-LIST
and

5) Create RECORD(s)
and
6) Add ATTRIBUTE-VALUE(s) to RECORD
and
7) Add RECORD(s) to RECORD-LIST

RULE T5:: IF: 1) RELATION type is M:N
and

2) ARCHITECTURE type is Hierarchical
THEN: 1) Create first new 1:N OWNER-RECORD and

MEMBER-RECORD and types
and

2) Process 1:N RELATION
and

3) Create second new 1:N OWNER-RECORD and
MEMBER-RECORD and types

and

4) Process 1:N RELATION

Figure 6.8 Translation rules for a M:N relationship type.

presented in Section 4.2.1. RULE T3, in Figure 6.7, is used if

the current relation type is a 1:1 or 1:N. The data set name in

action one comprises the link between the owner record and the

member record and must be unique. The component entity in any

relation becomes the owner record of any new data structure, while

the other relationally involved entity becomes the member record

type. This method of defining owner and member records is used in

104

all of the rules found in Section 4.2.1. The information

concerning the owner and member record types are stored in lists

(action two, three, and six), facilitating the creation of a data-

dictionary. In action four, records are created from the

inforaation already obtained in this rule, and are given their

fields (variables) by retrieving the pertinent information from the

ATTRIBUTE-VALUE-LIST (RULE D6 in Figure 6.5).

RULE T4 and RULE T5 in Figure 6.8, are similar to RULE T3 except

that the type of DBMS architecture requires different processing.

As discussed in Section 4.5, hierarchical and CODASYL DBMSs do not

allow for M:N relationships. RULE T4 is used if the architecture

is not this type of architecture and RULE T5 is used if the

architecture is. As discussed in rule lb in Section 4.2.1, a M:N

mapping type is converted by making a new entity from the relation

name vith two arrows pointing from the related entity record types.

Action one in RULE T4 accomplishes this by creating unique set name

identifiers, action two adds the component entitles and the set

names to the QWNER-RECORD-LIST. The newly created member record,

action three, is added to the MEMBER-RECORD-LIST as in RULE T3.

Although not the most efficient method, for simplicity RULE T5 (in

Figure 6.8) creates two separate 1:N relations to facilitate

allowable data structure sets and records to be defined for a

hierarchical DBMS architecture. Action one and two create the new

1:N OWNER-RECORD and MEMBER-RECORD, their respective types (from

105

RULE T6: : IF: Implementing Data-structure set
; i.e. (iron RECORD-LIST)

THEN: 1) Add SET-NAME to DATA-STRUCTURE-LIST
and
2) Parse OWNER-RECORD-LIST
and
3) Parse MEMBER-RECQRD-LIST

RULE T7:: IF: Parsing OWNER-RECORD-LIST
THEN: Determine MEMBER-RECORD! s) pointer

; i.e. using SET-NAME in OWNER-RECORD-LIST

RULET8:: IF: Parsing MEMBER-RECORD-LIST
THEN: 1) Determine next MEMBER-RECORD if more

exist
; i.e. from SET-NAME in MEMBER-RECORD-LIST
or

2) Determine OWNER-RECORD if no more exist

Figure 6. 9 Rules used to begin creation of the pointers
for a DBMS.

the original M:N relation), and are given a unique identifier.

Action three adds the new relation and type to the RELATION-LIST,

the new 1:N relations are added to the RELATION-LIST (action four

and five) for later processing, and the old M:N relation is removed

from the RELATION-LIST.

RULE T6 through Til are used to generate the pointers needed to

link the records in the DBMS. RULE T6 (in Figure 6.9), adds the

current SET-NAME to the DATA-STRUCTURE-LIST in its first action.

Action two and three invoke parsing of the owner and member record

lists, RULE T7 and RULE T8, which is accomplished in much the

same fashion as the ENTITY-LIST was parsed in RULE T2. Each RECORD

is examined with these parses whether it is the first member record

RULET9:: IF: Determining MEHBER-RECORD(s) pointer
THEN: 1) Obtain first MEMBER-RECORD

and

2) Create POINTER from OWNER-RECORD
to MEMBER-RECORD

and

2) Add OWNER-RECORD, POINTER, and
MEMBER-RECORD to POINTER-LIST

RULE TIO:: IF: Determining next MEMBER-RECORD if more
exist

THEN: 1) Obtain next MEMBER-RECORD
and
2) Create POINTER from current MEMBER-RECORD

to the next MEMBER-RECORD
and
3) Add MEMBER-RECORD, POINTER, and

OWNER-RECORD to POINTER-LIST

RULE TH:: IF: Determining next OWNER-RECORD if no more
MEMBER-RECORDS exist

THEN: 1) Obtain OWNER-RECORD
and
2) Create POINTER from current MEMBER-RECORD

to the OWNER-RECORD
and

3) Add MEMBER-RECORD, POINTER, and
OWNER-RECORD to POINTER-LIST

Figure 6. 10 Rules that create the pointers necessary to
implement the previously created
data structure sets.

for a o»ner record (RULE T8), or the next member record of the same

owner record (RULE T9).

The rules in Figure 6.10 are used to establish the pointers

necessary to implement the data structure sets created in the

previous rules. RULE T9 establishes a pointer to the current ovner

records first member record found by using the SET-NAME in the

OWNER-RECORD-LIST. Action three then adds the OWNER-RECORD, the

generated POINTER, and the MEMBER-RECORD to the POINTER-LIST.

Member record pointers should indicate the next member record for

the current o»ner record. However, the last member record should

have a pointer directed to the oxner record. RULE T10 obtains the

next remaining MEMBER-RECORD for the current OWNER-RECORD and adds

the MEMBER-RECORD, the created POINTER, and the OWNER-RECORD to the

POINTER-LIST. If there does not exist more MEMBER-RECORDs in the

MEMBER-RECORD-LIST, RULE Til creates the pointer from the current

MEMBER-RECORD to the OWNER-RECORD and stores the MEMBER-RECORD, its

pointer, and the OWNER-RECORD in the POINTER-LIST.

6.5 DATA-DICTIONARY RULES

All the information recorded in the diagramming and translation

mode is all that is necessary to create the Data-Dictionary.

Knoxing the DBMS architecture from the translation step, all that

remains is to transform this information into the basic data

structures that the Data-Dictionary requires. [Cardenas 79] listed

some of the most common characteristics that a viable Data-

Dictionary must have:

1) Lists of the database names and all the record names
comprising each database.

2) Lists of the record names and all the data field names
contained in each database.

3) Lists of field names and attributes of each field.

Other characteristics required for a viable Data-Dictionary, hut

can only be created once the system is being used are:

- 108 -

4) Lists of fields and the editing assigned to them.
5) Lists of record names and the password assigned to them.
6) Lists of field names and the password assigned to them.
7) Lists of field names and the names of all application

programs which use each field.
8) Lists of system names and all application programs which

comprise each system.
9) Lists of application program names and all field names used

in each program.
10) Lists of report names and all field names used in each

report.

11) Lists of user names and all source document names
controlled or received by each user.

12) Lists of user names and all report names controlled or
received by each user.

RULE PI through RULE P4 are the necessary rules to implement the

first three of these requirements shown above. Information

contained in the DATABASE-LIST, RECORD-LIST, and the ATTRIBUTE-LIST

allow for the creation of the lists having the characteristics

mentioned. The lists, and the information they contain, created by

the data-dictionary rules are:

1) The DATABASE-RECORD-LIST will contain the names of each
database linked to the records it contains,

2) The RECORD-FIELD-LIST will contain each record in a
particular database tied to their attribute names,

3) The FIELD-ATTRIBUTE-LIST will contain each field name and
the possible values for each field.

Action four of the then clause of RULE Tl in Figure 6.6, starts the

creation of the DATA-DICTIONARY by executing RULE PI in

Figure 6.11. The action part of RULE PI fires RULE P2, which

parses the DATABASE-LIST. The first action of RULE P2 adds the

current database name to the DATABASE-RECORD-LIST, and then the

second action adds the records to the DATABASE-RECORD-LIST. Action

- 109 -

RULE PI:: IF: Processing DATA-DICTIONARY
THEN: Parse DATABASE-LIST

RULE P2:: IF: Parsing DATABASE-LIST
; while databases exist

THEN: 1) Add DATABASE to DATABASE-RECQRD-LIST
and
2) Add RECORD to DATABASE-RECORD-LIST
and

3) Parse RECORD-LIST
and

4) Parse ATTRIBUTE-LIST

Figure 6.11 Rules that begin the creation of the
Data-Dictionary

.

three parses the RECORD-LIST, and action lour parses the ATTRIBUTE-

LIST both of which vere created in the TRANSLATION mode.

RULE P3 and RULE P4 in Figure 6. 12, create the remaining lists used

by the Data-Dictionary. The first action adds the RECORD to the

RECORD-FIELD-LIST follo»ed by adding the field name to the RECORD-

FIELD-LIST. Action one of RULE P4 adds each field name encountered

in the ATTRIBUTE-LIST to the FIELD-ATTRIBUTE-LIST. Action two then

adds the values to the FIELD-ATTRIBUTE-LIST.

This Expert Assistant model fully encompasses the E-R Approach to

database design, from defining the E-R diagrams through

translating the diagrams into data structures for a DBMS and

finally creating a minimal Data-dictionary. By placing the Expert

Assistant in a monitoring mo.ie the designer has the freedom to use
a familiar tool without having to learn a new system. The Data-

Dictionary gives the E-R approach an additional advantage. When

RULE P3:: IF: Parsing RECORD-LIST
; wtiile records exist

THEN: 1) Add RECORD to RECORD-FIELD-LIST
and
2) Add Field name to RECORD-FIELD-LIST

RULE P4:: IF: Parsing ATTRIEUTE-LIST
; while records-exist

THEN: 1) Add Field name to FIELD-ATTRIBUTE-LIST
and

2) Add value to FIELD-ATTRIBUTE-LIST

Figure 6. 12 Parsing rules used to create the
Data-Dictionary.

the initial database is constructed, the designer may use the data-

dictionary reporting facility (available for a particular DBMS), to

insure that nhat was designed vas actually built.

Ill

Chapter 7

APPLICATION QF THE EXPERT ASSISTANT

In order to validate the theoretical rules presented in Chapter 6, a

minimal implementation was built that represents all of the

protocols and requirements needed by the Expert Assistant (see

Appendix 4). A simple enterprise »ith three of the entities shown

in Figure 4.10a, vas used to test this implementation, an employee

entity, a project entity, and a department entity. The

relationships between these entities is represented in Figure 7.1 as

an Entity-Relationship Diagram, and in Figure 7.2 as a data-

structure set implemented as chains.

Appendix 5 lists the output from a session using this

implementation of the Expert Assistant rules. As described in

Section 4.3, the major steps involved in logical database design is

began by drawing an initial E-R diagram. Figure 7.3a illustrates

that this is accomplished by entering "diagram" when the program is

requesting •ENTER-M0DE> ". The name of the database and its

architecture is entered next, followed by entering all of the

pertinent entity, relationship, and attribute-value information.

The "emp« entity is entered first along with its type, i.e. "e"

representing an elementary type, and "c" representing a composite

entity type (Figure 7.3b). The attribute-value for the "emp"

entity as shown in Figure 7.1, and is identified by "ssn", and has

a "1:1" attribute type, and a value of "123456789". The first

- 112 -

I DEPT I
| pRQj |

\ / .

/ 1 \ 1 / N \ 1
1

\ /I
DEPT-NO \ IS- / PROJ-NAME

I \ AFFILIATED- / MANAGES I

* 1 \ WITH / v B
\ /

1
> \ / ()

' 556 I ^ / (ACCTING)

') V N / 1 (PAYROLL)

^ / <)

I EMP I

\ 1

I

SSN
I

* 1

()

(123456789)

()

Figure 7.1 Simple E-R Diagram.

relation involved vith the "emp" entity is "is-affiliated-vith" and

is a "1:N" relation vith no dependency. Figure 7.3c illustrates

ho» the entity involved vith the "is-affiliated-vith" relation and

all of its information is entered into the system.

Figure 7.3d portrays hov the second relation involved vith the

"emp" entity is entered. After all the necessary information is

retrieved by the program for the first entities, the user is again

prompted to enter an entity. If, at this time, the user enters an

entity that already exists in the system, the program assumes that

a second relation and entity is being defined for this entity and

113

I PROJ ACCTING l< 1 PRQJ PAYROLL I

/ . .

N

^ \

\ \

N /

\ /

/

. 1

I EMP 123456789 I

— >l DEPT 556 I

Figure 7.2 Implementation of the data -structure eets
of E-R Diagram in Figure 7.1.

prompts the user with "(DUP-ENTITY ENTER NEW RELATION)". If this

occurs the new relation 'manages' for the "emp" entity is entered

as vas accomplished vith the previously discussed "is-affiliated-

with" relation. The necessary information for *proj" entity is

entered followed by its attribute-value data. Since the attribute

identifier "proj-name" has a "1:N» type, more than one value may be

entered for this entity's attribute. After entering the "accting"

and 'payroll' attribute-values, "end" is entered to inform the

program that there does not exist any more attribute-value pairs

for this entity.

When the diagramming session is completed the user enters "end"

»hen the "ENTER-ENTITY> • prompt is encountered. The system then

- 114

XLISP version 1.3, Copyright (c) 1985, by David Betz
; loading "ea.lsp*
ENTER-MODE> diagram
ENTER-DATABASE> dbl
ENTER-D8MS-ARCHITECTURE> netvork
ENTER-ENTITY> emp
ENTER-ENTITY-TYPE> e

(a)

(FQR THE EMp ENTITY ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> san
INPUT-ATTRIBUTE-TYPE> 1:1
ENTER-ATTRIBUTE-VALUE> 123456789
ENTER-UNIOUE-RELATION-IDENTIFIER> is-affiliated-with
ENTER-RELATION-TYPE> llN
ENTER-RELATION-DEPENDENCY> n

(b)

ENTER-SECOND-ENTITY> dept
ENTER-ENTITY-TYPE> e
(F0R THE DEpT ENTITy ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> dept-no
INPUT-ATTRIBUTE-TYPE> 1:1
ENTER-ATTRIBUTE-VALUE> 556

(ci

ENTER-ENTITY> emp
(DUP-ENTITY ENTER NEW RELATION)
ENTER-UNIQUE-RELATION-IDENTIFIER* manages
ENTER-RELATION-TYPE> 1:1
ENTER-RELATION-DEPENDENCY> n

ENTER-SECOND-ENTITY> proj
ENTER-ENTITY-TYPE> e
(F0R THE pR0J ENTITy ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> proj-name
INPUT-ATTRIBUTE-TYPE> 1:N
ENTER-ATTRIBUTE-VALUE> accting
ENTER-ATTRIBUTE-VALUE> payroll
ENTER-ATTRIBUTE-VALUE> end

(d)

Figure 7.3 Example of entering the entities, relationships,
and attributes for a minimal implementation.

115

translates the diagram into data-structure sets and creates a data-

dictionary. The information for each design session is stared in

various lists as described in Appendix 1, and can be seen in

Appendix 5. For documentation purposes the information stored in

these lists is printed »hen the user exits the program. The

DATABASE-LIST contains all the information contained in the lists

generated by the -TRANSLATE" process and each node in the list

contains:

1. The database name.
2. The database architecture,
3. The OWNER-RECORD-LIST,
4. The MEMBER-RECORD-LIST,
5. The DATABASE-RECORD-LIST,
6. The ATTRIBUTE-LIST,
7. The DATA-STRUCTURE-LIST, and
8. The POINTER-LIST.

The -PROCESSING DATA-DICTIONARY- step creates the DATA-DICTIONARY-

LIST which contains the necessary information defined in

Section 6.5, and is made up by:

1. The DATABASE-RECORD-LIST,
2. The RECORD-FIELD-LIST, and
3. The FIELD-ATTRIBUTE-LIST.

Although this implementation does not incorporate all of the

mechanisms that an Expert Assistant designed »ith EMYCIN would

have, it does represent the basic control structure. The certainty

factors .ere purposely omitted at this stage since the model

would have them incorporated with it when it is created with

EMYCIN.

116

.

Chapter 8

EVALUATION AMD REMARKS

This thesis has described an Expert Assistant to database design

based on the Entity-Relationship Approach. This model relieves

much of the responsibility that is placed on a designer using this

approach. The Expert Assistant would assist the designer by

controlling design constructs insuring that the final product truly

reflects the enterprise that the database represents. The

translation of the entity-relationship diagrams into data structure

diagrams and sets maximizes the probability that the database »ill

be viable. The assistance realized by creating the data-dictionary

becomes apparent when the information it contains is used by the

designer.

The integrity of the rules that [Chen 85] defined, are maintained

throughout the logical database design insuring that vith each step

of the design process the optimal decisions are made. Since the

Expert Assistant is designed based on the constructs of the EMYCIN

Expert System development tool, experienced suggestions are

available to the designer as »ell as explanations that can remove

uncertainty.

8.1 FUTURE ENDEAVORS

Further study in the diagramming stage of the Expert Assistant

would give the system the capability of graphically representing

117

the Entity-Relationship Diagrams as they are being defined. This

»ould enhance the users capabilities as the process of designing a

database is being carried out. The data-dictionary creation

process could be made to create specific structures needed for any

DBMS by incorporating this knowledge in the Knowledge Base of the

Expert Assistant. This type of improvement could also be used to

actually develop constructs which would allow the designer to

create reports and programs that would be used in the final DBMS.

Constructs that would allow for the collection of the existing

knowledge gained by other users of the Entity-Relationship approach

would also facilitate this model. This would truly make the model

a tool that could be widely used for various applications.

Formulation of knowledge collection is paramount for any Expert

System being developed since any Expert System does not truly wield

power in its area of expertise based on its abilities as a problem

solver but on the knowledge that it possesses.

Selected Bibliography

Albano, A., V. DeAntonellis, and A. Di Leva, "Computer-Aided
Database Design: The Dataid Approach" in Computer-aided
database design the DATAID project, A. Albano, V. DeAntonellis,
and A. Di Leva, eds. , Science Publishing Company, INC. , New
York, 1985, pages 1-13.

Brady, L. I. , "A Universal Relation Assumption Based on Entities and
Relationships", in Proceedings of the 4th International
Conference on Entity-Relationship Approach, IEEE Computer
Society Press, Maryland, 1985, pages 208-215.

Bragger, R. P. , A. Dudler, J. Rebsamen, and C. A. Zehnder, "GAMBIT,
An Interactive Database Design Tool for Data Structures,
Integrity Constraints and Transactions", in Proceedings of the
1984 International Conference on Data Engineering, IEEE
Computer Society Press, California, 1984, pages 399-407.

Briand, H. , H. Habrias, I.F. Hue, and Y. Simon, "Expert System for
Translating an E-R Diagram into Databases", in the 4th
International Conference on Entity-Relationship Approach, IEEE
Computer Society Press, Maryland, 1985, pages 199-206.

Bubenko, J. , and 0. Kollhammer, "CADIS - Computer-Aided Design of
Information Systems", in Computer-Aided Information Systems,
Analysis and Design, Bubenko, Langefors, and Solvberg, eds.

,

Lund, Sweden, 1972, pages 119-140.

Cardenas, A.F. , "Data Base Management Systems", Allyn and Bacon,
Inc. , Massachusetts, 1979.

Cazin, J. , R. Jacquart, and P. Michel, "The Fl Formalism An
Extension of the Entity-Relationship Model Using First Order
Logic", in the 4th International Conference on Entity-
Relationship Approach, IEEE Computer Society Press, Maryland,
1985, pages 216-223.

Chen, P.P., "The Entity-Relationship Model - Toward a Unified View
of Data", in ACM Transactions on Database Systems, V. 1, No. 1,
March, 1976, pages 9-36.

Chen, P.P., -The Entity-relationship model - A basis for the
enterprise view of data", in Proceedings of the Natural
Computer Conference, V. 46, AFIPS Press, 1977, pages 77-84.

Chen, P.P., "Applications of the Entity - Relationship Model", in
Proceedings of Database Design Techniques 1: Requirements and
Logical Structures, New York, 1978, pages 87-113.

- 119

Chen, P.P., "A Preliminary Framework for Entity Relations Models",
in Entity-Relationship Approach to Information Modeling and
Analysis, P.P. Chen, ed. , North-Holland, Amsterdam/New York,
1983, pages 19-28.

Chen, P. P. , "An Algebra for a Directional Binary Entity-
Relationship Model", in Proceedings of the 1984 International
Conference on Data Engineering, IEEE Computer Society Press,
California, 1984, pages 37-40.

Chen, P.P., "Database Design Based on Entity and Relationship", in
Principles of Database Design Volume 1 Logical Organizations,
S. Bing Yao, ed. , Printice-Hall, New Jersey, 1985, pages 174-
210.

Chung, I., F. Nakamura, and P.P. Chen, "A Decomposition of
Relations using the Entity-Relationship Approach", in Entity-
Relationship Approach to Information Modeling and Analysis,
P.P. Chen, ed. , North-Holland, Amsterdam/New York, 1983, pages
149-171.

DeMarco, T. , and A. Soceneanta, "Data Flo» Structures for System
Specification and Implementation", in Proceedings of the 1984
International Conference on Data Engineering, IEEE Computer
Society Press, California, 1984, pages 356-361.

Dumpala, S. R. , and S.K. Arora, "Schema Translation Using the
Entity-Relationship Approach", in Entity-Relationship Approach
to Information Modeling and Analysis, P. P. Chen, ed. , North-
Holland, Amsterdam/Nev York, 1983, pages 337-356.

Elmasri, R.A., and J. A. Larson, "A Graphical Query Facility for ER
Databases", in the 4th International Conference on Entity-
Relationship Approach, IEEE Computer Society Press, Maryland,
1985, pages 236-245.

Elmasri, R. A. , and G. Wiederhold, " GORDAS : A Formal High-Level
Ouery Language for the Entity-Relationship Approach", in
Entity-Relationship Approach to Information Modeling and
Analysis, P.P. Chen, ed. , North-Holland, Amsterdam/Ne» York,
1983, pages 49-70.

Farmer, D. , R. King, and D. Myers, "A Tool for the Implementation
of Databases", in Proceedings of the 1984 International
Conference on Data Engineering, IEEE Computer Society Press,
California, 1984, pages 386-393.

Ferrera, F. M. ,
" EASY ER An Integrated System for the Design and

Documentation of Database Applications", in the 4th
International Conference on Entity-Relationship Approach, IEEE
Computer Society Press, Maryland, 1985, pages 104-113.

120

Fry, J. P., and T.J. Teorey, "Design & Performance Tools for
Improving Database Usability & Responsiveness", in Databases:
Improving Usability and Responsiveness, B. Shneiderman, ed.

,

Academic Press, Inc., Nev York, 1978, pages 151-189.

Gane, C. P. , and T. Sarson, "A Structural Systems Analysis: Tools
and Techniques", Improved Systems Technologies, Nev York, 1977.

Han, S.
,

and J. W. Cho, "KPSP: A Knowledge Programming System Based
on Prolog", in the 4th International Conference on Entity-
Relationship Approach, IEEE Computer Society Press, Maryland,
1985, pages 2-9.

Hartaan, W. , H. Matthes, and A. Proeme, "Management Information
Systems Handbook - ARDI", McGrav-Hill Book Company, Nev York,
1968.

Havryszkievycz, I.T. , "A Computer-Aid for E-R Modeling", in the 4th
International Conference on Entity-Relationship Approach, IEEE
Computer Society Press, Maryland, 1985, pages 64-69.

Hayes-Roth, F. , and D.A. Waterman, and D. Lenat, eds. , "Building
Expert System", Addision-Wesley Publishing Company, Inc.,
Massachusetts, 1983.

Hvang, H. Y. , and U. Dayal, "Using the Entity-Relationship Model for
Implementing Multi-Model Database Systems", in Entity-
Relationship Approach to Information Modeling and Analysis,
P.P. Chen, ed.

, North-Holland, Amsterdam/Nev York, 1983, paqes
235-256.

Jones, M. N. , "HIPO for Developing Specifications", Datamation,
March 1975, pages 112-125.

Kahn, B.K., "Requirement Specification Techniques", in Principles
of Database Design Volume 1 Logical Organizations, S. Bing Yao,
ed., Printice-Hall, Nev Jersey, 1985, pages 1-65.

Katzan, J., Jr., "System Design and Documentation: An Introduction
to the HIPO Method", Van Nostrand Reinhold Co., Nev York, 1979.

Komorovski, H.J., "Rapid Software Development in a Database
Framework - A Case Study", in Proceedings of the 1984
International Conference on Data Engineering, IEEE Computer
Society Press, California, 1984, pages 394-398.

121

Konsynski, B.R., and Mannino, M. , "Information Resource
Specification and Design Language", in Proceedings of the
International Conference on Entity-Relationship Approach to
Systems Analysis and Design, P.P. Chen, ed. , 1979, paqes 346-
358.

Hsu, C, "Structured Database System Analysis and Design Through
Entity-Relationship Approach", in the 4th International
Conference on Entity-Relationship Approach, IEEE Computer
Society Press, Maryland, 1985, pages 56-63.

Lee, E.T.
, "Applications of Entity-Relationship Approach to

Similarity-Driven Pictorial Database Design", in the 4th
International Conference on Entity-Relationship Approach, IEEE
Computer Society Press, Maryland, 1985, pages 18-21.

Ling, T. W. , "A Normal Form For Entity-Relationship Diagrams", in
the 4th International Conference on Entity-Relationship
Approach, IEEE Computer Society Press, Maryland, 1985, paqes
24-35.

Melkanoff, M.A., and C. Zaniolo, "Decomposition of Relations and
Synthesis of Entity-Relationship Diagrams", in Proceedings of
the International Conference on Entity-Relationship Approach to
Systems Analysis and Design, P.P. Chen, ed. , 1979, pages 285-
302.

Merrett, T. H. , "Relational Information Systems", Reston Publishing
Co. , Virginia, 1984.

Morgenstern, M. , "A Unifying Approach for Conceptual Schema to
Support Multiple Data Models", in Entity-Relationship Approach
to Information Modeling and Analysis, P.P. Chen, ed. , North-
Holland, Amsterdam/Ne» York, 1983, pages 279-297.

Orlando, S.
,

P. Rullo, D. Sacco, and W. Staniszkis, "Integrated
tools for Physical Database Design in CODASYL Environment", in
Computer-aided database design the DATAID project, A. Albano,
V. DeAntonellis, and A. Di Leva, eds. , Science Publishing
Company, INC., Nev York, 1985, pages 131-153.

Oian, X., and G. Wiederhold, " Data Definition Facility of CRITIAS",
in the 4th International Conference on Entity-Relationship
Approach, IEEE Computer Society Press, Maryland, 1985, pages

Ruoff, K.L., "Practical Application of IDEF1 as a Database
Development Tool" in Proceedings of the 1984 International
Conference on Data Engineering, IEEE Computer Society Press,
California, 1984, pages 408-415.

- 122

Sernadas, A.
, and C. Sernadas, "The Use of E-R Abstraction for

Knowledge Representation", in the 4th International Conference
on Entity-Relationship Approach, IEEE Computer Society Press,
Maryland, 1985, pages 224-231.

Staley, S.M.
, and Anderson, D. C. , "Executable E-R Specifications

for Database Schema Design", in the 4th International
Conference on Entity-Relationship Approach, IEEE Computer
Society Press, Maryland, 1985, pages 160-169.

Turk, T.A., "Planning and Designing the Data Base Environment", Van
Nostrand Reinhold Company, Inc. , New York, 1985.

van Melle, W.
, "A Domain-Independent Production-Rule System for

Consultation Programs", in the Proc. of the Sixth International
Joint Conference on Artificial Intelligence, pages 923-925.

Waterman, D. A. , "A Guide to Expert Systems", Addision-Wesley
Publishing Company, Inc. , Massachusetts, 1986.

Wiederhold, G. , "Database Design", Second Edition, McGraw-Hill Book
Company, New York, 1983.

Yao, S.B., "Principles of Database Design Volume 1 Logical
Organizations", S. Bing Yao, ed. , Printice-Hall, New Jersey,
1985.

"

- 123

APPENDIX

OBJECTS

MAKE DEFINITION

ARCHITECTURE

ATTRIBUTE-LIST

ATTRIBUTE-VALUE

DATABASE

DATABASE-LIST

DATABASE-RECORD-LIST

DATA-DICTIONARY-LIST

DATA-STRUCTURE-LIST

ENTITY

ENTITY-LIST

FIELD-ATTRIBUTE-LIST

MEMBER-RECORD

Type of DBMS to be implemented e.g.
network, hierarchical, or
relational.

A list containing the unique name
of the attribute, its' value(s) and
the type of ATTRIBUTE-VALUE i. e.

(1:1 or 1:N).

The value(s) of the ATTRIBUTE-VALUE
obtained from the user.

Name of the current database.

A list of the Databases used by the
enterprise.

A list of the Databases names and
all of its records.

A list of all the information for
the data dictionary.

A list of all the data structure
sets (what owner record has what
member records).

The current entity, whether it be
elementary, binary, or composite.

A list of all the entities in the
current design.

A list of field names and the
attributes of the fields for each
record.

A record stored in the MEMBER-
RECORD-LIST that is a member in a
particular Data-Structure set.

- 124

MEMBER-RECORD-LIST

NODE

OWNER-RECORD

OWNER-RECORD-LIST

POINTER

POINTER-LIST

RECORD

RECORD-FIELD-LIST

RECORD -LIST

A list of all the member records In
the current design.

The current operating mode of the
model, i.e. (DIAGRAM, TRANSLATE)

A record stored in the OWNER-
RECORD-LIST that is an owner in a
particular data-structure set.

A list of all the ovner records in
the current design.

Used to locate: The first member
record for a owner record, the
next member record of the current
member record (if the exists more
member records in the same data-
structure set), or the owner record
of the current member record (if
this is the last member record in
this data-structure set).

A list containing either an owner
record or a member record with its'
respective pointer.

A record created for the final DBMS
architecture.

A list of record names with each of
the corresponding field names.

A list of all the records
for the particular DBMS.

created

RELATION

RELATION-LIST

SET-NAME

A unique identifier that depicts
the entities involved in a
relation.

A list containing the unique
identifier for a relation, the type
of relation, and the data
dependency.

A unique identifier that depicts
the owner and member records
involved in a data-structure set.

APPENDIX 2

FREE FORM ENGLISH TEXT FORMAT

RULE In Obtain MODE

RULE 2:: IF: MODE is DIAGRAM
THEN: Determine DATABASE

RULE 3:: IF: MODE is TRANSLATE
THEN: Determine Data-structures

RULE 4:: IF: Determining DATABASE
THEN: 1) Obtain DATABASE

and

2) Obtain DBMS ARCHITECTURE

RULE 5:: IF: DATABASE is in DATABASE-LIST
THEN: Report Error and Stop Expert Assistant

RULE 6:: IF: DATABASE is not in DATABASE-LIST
THEN: Determine ENTITY

2.1 DIAGRAMMING RULES

RULE Dl: IF: Determining ENTITY
THEN: 1) Report Duplicate ENTITY

and

2) Obtain ENTITY
; i.e. (WHILE being entered)

RULE D2:: IF: The ENTITY is in ENTITY-LIST
THEN: Determine RELATION

RULE D3:: IF: The ENTITY is not in ENTITY-LIST
THEN: 1) Determine ENTITY type

and

2) Determine RELATION

RULE D4:: IF: Determining ENTITY Type
THEN: 1) Obtain type

; i.e. (Binary, Composite, or Elementary)
and

2) add ENTITY and type to ENTITY-LIST
and

3) Determine ATTRIBUTE-VALUE

RULE D5:: IF: Determining RELATION
THEN: 1) Obtain Unique RELATION identifier

and
2) Obtain RELATION type

(i.e. (1:1, 1:N, or M:N)
and
3) Obtain Dependency

; i.e. (None, Existent, or ID)
and
4) Obtain Second Entity (s)
and

5) Determine Duplications
and
6) Obtain Entity Type
and

7) Add involved ENTITY(s), RELATION
identifier, type, and dependency
to RELATION-LIST

RULE D6:: IF: Determining ATTRIBUTE-VALUE
THEN: 1) Obtain Unique ATTRIBUTE- VALUE identifier

and
2) Obtain ATTRIBUTE-VALUE type

; i.e. (1:1 or 1:N)
and

3) Obtain Value

; Values if type is 1:N
and
4) Add identifier, ATTRIBUTE-VALUE, and type

to ATTRIBUTE-LIST

127

2.2 TRANSLATION RULES

RULE Tin IF: Mode is TRANSLATE
THEN: 1) Parse RELATION-LIST

and
2) Implement Data-structure set
and
3) Add information to DATABASE-LIST
and

4) Process DATA-DICTIONARY
and

5) Add information to DATA-DICTIONARY-LIST

RULE T2:: IF: Parsing RELATION-LIST
; while relations exist

THEN: Obtain RELATION type
; from RELATION-LIST

RULE T3:: IF: 1) RELATION type is 1:1
or

2) RELATION type is 1:N
THEN: 1) Create unique SET-NAME identifier

and
2) Add component ENTITY and SET-NAME

to OWNER-RECORD-LIST
; from RELATION-LIST

and
3) Add second ENTITY and SET-NAME

to MEMBER-RECORD-LIST
and
4) Create RECORD(s)
and

5) Add ATTRIBUTE-VALUE(s) to RECORD
and
6) Add RECORD<s) to RECORD-LIST

- 128 -

RULE T4:: IF: 1) RELATION type is M:N
and

2) ARCHITECTURE type is not Hierarchical
THEN: 1) Create unique SET-NAME identifier

and
2) Add component ENTITIES and SET-NAME

to OWNER-RECORD-LIST
and
3) Translate relation to new member record
and

4) Add created record and SET-NAME
to MEMBER-RECORD-LIST

and

5) Create RECORD (s)
and
6) Add ATTRIBUTE-VALUE(s) to RECORD
and
7) Add RECORD<s) to RECORD-LIST

RULE T5: IF:

THEN

1) RELATION type is M:N
and

2) ARCHITECTURE type is Hierarchical
1) Create first new 1:N OWNER-RECORD and

MEMBER-RECORD and types
2) Process 1:8 RELATION

and

3) Create second new 1:N OWNER-RECORD and
MEMBER-RECORD and types
and

4) Process 1:N RELATION

RULE T6: IF: Implementing Data-structure set
; i.e. (from RECORD-LIST)

THEN: 1) Add SET-NAME to DATA-STRUCTURE-LIST
and

2) Parse OWNER-RECORD-LIST
and
3) Parse MEMBER-RECORD-LIST

RULE T7:: IF: Parsing OWNER-RECORD-LIST
THEN: Determine MEMBER-RECORD(s) pointer

; i.e. using SET-NAME in OWNER-RECORD-LIST

129 -

RULE T8: IF: Parsing MEMBER -RECORD-LIST
THEN: 1) Determine next MEMBER-RECORD if more exist

; i.e. from SET-NAME in MEMBER-RECORD-LIST
or

2) Determine OWNER-RECORD if no more exist

RULE T9:: IF: Determining MEMBER-RECORD(s) pointer
THEN: 1) Obtain first MEMBER-RECORD

and

2) Create POINTER from OWNER-RECORD
to MEMBER-RECORD

and

2) Add OWNER-RECORD, POINTER, and
MEMBER-RECORD to POINTER-LIST

RULE T10:: IF: Determining next MEMBER-RECORD if more
exist

THEN: 1) Obtain next MEMBER-RECORD
and

2) Create POINTER from current MEMBER-RECORD
to the next MEMBER-RECORD

and
3) Add MEMBER-RECORD, POINTER, and

OWNER-RECORD to POINTER-LIST

RULE Til:: IF Determining OWNER-RECORD if no more
MEMBER-RECORDs exist

THEN: 1) Obtain OWNER-RECORD
and
2) Create POINTER from current MEMBER-RECORD

to the OWNER-RECORD
and
3) Add MEMBER-RECORD, POINTER, and

OWNER-RECORD to POINTER-LIST

2.3 DATA-DICTIONARY RULES

RULE PI:: IF: Processing DATA-DICTIONARY
THEN: Parse DATABASE-LIST

- 130

RULEP2:: IF: Parsing DATABASE-LIST
; while databases exist

THEN: i) Add DATABASE to DATABASE-RECORD-LIST
and
2) Add RECORDS to DATABASE-RECORD-LIST
and
3) Parse RECORD-LIST
and
4) Parse ATTRIBUTE-LIST

RULE P3:: IF: Parsing RECORD-LIST

; while records exist
THEN: 1) Add RECORD to RECORD-FIELD-LIST

and
2) Add Field name to RECORD-FIELD-LIST

RULE P4: : IF: Parsing ATTRIBUTE-LIST
j while records-exist

THEN: 1) Add Field name to FIELD-ATTRIBUTE-LIST
and
2) Add value to FIELD-ATTRIBUTE-LIST

131

APPENDIX 3

TERSE RULE FORMAT

RULE 1 : : Input MODE

RULE 2:: IF MODE = 'DIAGRAM'
THEN RULE 4

; Determine DATABASE name

RULE 3:: IF MODE = 'TRANSLATE'
THEN RULE Tl

; TRANSLATE Diagrams

RULE 4:: INPUT DATABASE
INPUT ARCHITECTURE
RULE 5 or
RULE S

RULE 5:: IF DATABASE = (LISTOF DATABASE-LIST)
THEN Report Error and Stop Expert Assistant

RULE 6:: IF DATABASE *« (LISTOF DATABASE-LIST)
THEN RULE Dl

; Input ENTITY (s)

3. 1 DIAGRAMMING RULES

RULE Dl: INPUT ENTITY
(WHILE being entered)

RULE D2 or
RULE D3

132 -

RULE D2:: IF ENTITY = LISTOFi ENTITY-LIST)
THEN Report Duplicate ENTITY

RULE D5

; Determine RELATION

and

RULE D3:: IF ENTITY »« LISTDF(ENTITY-LIST)
THEN RULE D4

; Input ENTITY type
RULE D5

(Determine RELATION

and

RULE D4:: Input ENTITY type and
; (Binary, Composite, or Elementary)

ENTITY-LIST = ENTITY-LIST ENTITY and
RULE D6

; Determine ATTRIBUTE- VALUE

RULE D5:: Input unique identifier
; (for RELATION)

Input RELATION type
; (1:1, 1:N, or M:N)

Input Dependency

j (None, Existent, or ID)
Input Second Entities
Report Duplicate Entity

; (None, Existent, or ID)
RULE D4

; (None, Existent, or ID)
RELATION-LIST = RELATION-LIST

LISTOF (ENTITY (s), RELATION: identifier,
type, and dependency)

ar.d

ana

and

and

and

and

RULE D6: Input unique identifier and
((ATTRIBUTE-VALUE)

Input ATTRIBUTE-VALUE type and
; (1:1 or 1:N)

Input ATTRIBUTE-VALUE Value and
; (1 or more- if 1:N)

ATTRIBUTE-LIST = ATTRIBUTE-LIST .

LISTOF< Identifier,
ATTRIBUTE-VALUE: type and value(s))

133

3.2 TRANSLATION RULES

RULE Tl : : RULE T2

; (Parse RELATION-LIST)
RULE T6

; (Implement data-structure set)
DATABASE-LIST = DATAflASE-LIST *

LISTOFI DATABASE, ARCHITECTURE,
OWNER-RECORD-LIST,
MEHBER-RECORD-LIST,
RECORD-LIST, ATTRIBUTE-LIST,
DATA-STRUCTURE-LIST,
POINTER-LIST)

RULE PI

((Process DATA -DICTIONARY)
DATA-DICTIONARY-LIST =

DATA-DICTIONARY-LIST • LISTOFI
DATABASE-RECORD-LIST,
RECORD-FIELD-LIST »

FIELD-ATTRIBUTE-LIST)

and

ana

and

and

RULE T2:

or

For each RELATION type in RELATION-LIST
RULE T3

; (III or liN RELATION)
RULE T4 Qr

; (M:N RELATION and Hierarchical test)
RULE T5 or

; (M:N RELATION)

RULE T3: : IF

THEN

RELATION type = 1:1 or
RELATION type « 1:N
Input unique SET-NAME identifier
OWNER-RECORD-LIST = OWNER-RECORD-LIST

LISTOFC component ENTITY, SET-NAME)
; from RELATION-LIST

MEMBER-RECORD-LIST = MEMBER-RECORD-LIST
LISTOF(ENTITY(s), SET-NAMEls))

Create RECORD(s)
Add ATTRIBUTE-VALUE! s) to RECORD
RECORD-LIST = RECORD-LIST LISTOFC RECORD)

and

and

and

ana

ana

- 134 -

RULE T4:: IF RELATION type « M:N and
ARCHITECTURE type A = 'Hierarchical'

THEN Create unique SET-NAME identifier and
OWNER-RECORD-LIST = OWNER-RECORD-LIST *

LISTOFI component ENTITY, SET-NAME) and
Translate relation to new member record and
MEMBER-RECORD-LIST = MEMBER-RECORD-LIST »

LISTOF(created RECORD, SET-NAME) and
Create RECORD (s) and
Add ATTRIBUTE-VALUE(s) to RECORD and
RECORD-LIST = RECORD-LIST » LIST0F< RECORD) and

RULE T5:; IF RELATION type = M:N and
ARCHITECTURE type = 'Hierarchical'

THEN Create first ne» 1:N OWNER-RECORD »ith
MEMBER-RECORD with types

RULE T3

; (1:1 or llN RELATION)
Create second new 1:N OWNER-RECORD with

MEMBER-RECORD with types
RULE T3

; (1:1 or 1:N RELATION)

and

and
and

RULE T6: DATA-STRUCTURE-LIST = DATA-STRUCTURE-LIST »

SET-NAME and
RULE T7 and

; Parse OWNER-RECORD-LIST
RULE T8 and

; Parse MEMBER-RECORD-LIST

RULE T7:: For each member in OWNER-RECORD-LIST
RULE T9

j Determine MEMBER-RECORD(s) pointer

RULE T8:: For each member in MEMBER-RECORD-LIST
RULE T10

; Determine next MEMBER-RECORD
; if not the last member

RULE Til

; Determine next MEMBER-RECORD
; if the last member

135

RULE T9:: Retrieve first MEMBER-RECORD for current
OWNER-RECORD and

; using SET-NAME in OWNER-RECORD-LIST
Create POINTER from OWNER-RECORD to

MEMBER-RECORD and
POINTER-LIST = POINTER-LIST

LISTOFf OWNER-RECORD, POINTER,
MEMBER-RECORD)

RULE TIO:: IF Current MEMBER-RECORD * =

LAST-MEMBER I MEMBER-RECORD-LIST

)

THEN Retrieve next MEMBER-RECORD and
; from SET-NAME in MEMBER-RECORD-LIST

Create POINTER from current MEMBER-RECORD
to the next MEMBER-RECORD and

POINTER-LIST = POINTER-LIST *

LISTOF< MEMBER-RECORD, POINTER
OWNER-RECORD)

RULE Til:: IF Current MEMBER-RECORD =

LAST-HEMBER(MEMBER-RECORD-LIST)
THEN Create POINTER from current MEMBER-RECORD

to the current OWNER-RECORD and
POINTER-LIST = POINTER-LIST »

LISTOF< MEMBER-RECORD, POINTER
OWNER-RECORD)

136

3.3 DATA-DICTIONARY RULES

RULE Plu RULE P2

RULE P2:: For each DATABASE in DATABASE-LIST
DATABASE-RECORD-LIST = DATABASE-RECORD-LIST •

DATABASE and
DATABASE-RECORD-LIST = DATABASE-RECORD-LIST »

RECORDS and
RULE P3 and

; Parse RECORD-LIST
RULE P4

; Parse ATTRIBUTE-LIST

RULE P3:: For each RECORD in RECORD-LIST
RECORD-FIELD-LIST = RECORD-FIELD-LIST •

RECORD
RECORD-FIELD-LIST = RECORD-FIELD-LIST

FIELD

RULE P4:: For each aember in ATTRIBUTE-LIST
FIELD-ATTRIBUTE-LIST = FIELD-ATTRIBUTE-LIST

Field name and
FIELD-ATTRIBUTE-LIST = FIELD-ATTRIBUTE-LIST .

value and

- 137

APPENDIX 4

IMPLEMENTATION OF RULES IN LISP

Expert Assistant Initialization

(defun initea ()

(setq database-record-list nil)
(setq data-dictionary-list nil)
(setq field-attribute-list nil)
<setq data-structure-list nil)
(setq member-record-list nil)
(setq o»ner-record-list nil)
(setq record-field-list nil)
(setq attribute-list nil)
(setq relation-list nil)
(setq database-list nil)
(setq pointer-list nil)
(setq entity-list nil)
(setq record-list nil)

)

Exiting Functions

; Print lists

(defun print-lists (db-list)
(cond <<eq db-list nil)

(terpri)
(terpri)

)

(ttprinc ' >)

(print (car db-list))
(print-lists (cdr db-list)))

)

)

138 -

; Output pertinent lists

(defun done (

)

<print 'database-record-list)
< print-lists database-record-list)

(print 'data-dictionary-list)
(print-lists data-dictionary-list)

(print 'field-attribute-list)

(print-lists field-attribute-list

)

(print 'data-structure-list)
(print-lists data-structure-list

)

(print 'member-record-list)
(print-lists member-record-list)

(print 'o»ner-record-list)
(print-lists ovner-record-list)

(print 'record-field-list)
(print-lists record-field-list)

(print 'attribute-list)
(print-lists attribute-list)

(print 'relation-list)
(print-lists relation-list)

(print 'database-list)
(print-lists database-list)

(print 'pointer-list)
(print-lists pointer-list)

(print 'entity-list)
(print-lists entity-list)

(print 'record-list)
(print-lists record-list)

Necessary Functions

; Atom Member Predicate

(defun memberp (to-find search-list)
(cond Ueq search-list nil) nil)

(< member to-find (car search-list)) t)
It (memberp to-find (cdr search-list)))

)

)

; Retrieve Attributes for an Entity

(defun get-attribute (entity-val at-list)
(cond <<eq entity-val (caar at-list))

(list (cadr (car at-list))
(car (last (car at-list)))))

<t(get-attribute entity-val (cdr at-list)))
)

)

; Determine What an Entity Points to

(defun points-to (srec slist)
(cond <(eq (cadr (car slist)) srec) (caar slist))

(tlpoints-to srec (cdr slist)))
)

)

; Does S-set exist in the M-list

(defun more-exist (s-set m-list)
(cond <(eq m-list nil) nil)

(<eq (car (cdar m-list)) s-set) t)
It (more-exist s-set (cdr m-list)))

)

140 -

Front End to Expert Assistant

; RULE 2:: IF Mode is DIAGRAM

(deiun rule2 (mode)
(if (eq mode 'DIAGRAM)

(rule4)
)

)

j RULE 3:: IF Mode is TRANSLATE

(defun rule3 (mode)
(if (eq mode 'TRANSLATE)

(ruletl)
)

)

j RULE 4:: Input DATABASE name and architeotu

(defun rule4 (

)

(princ 'enter-database)
(setq database (read))
(prino 'enter-dbms-architecture)
(setq architecture (read))
(ruie5)
(ruie6)

)

i RULE 5:: DATABASE is in DATABASE-LIST

(defun rule5 (

)

(cond ((memberp database database-list)
(print 'Existent-Database)
(exit))

(t)

)

)

; RULE 6:: DATABASE is not in DATABASE-LIST

(defun rule6 (

)

(ruled 1)

)

Diagramming Rules

; RULE Dill Input ENTITYs

(defun ruledl (

)

(prog (

)

loopdl
(princ 'enter-entity)
(setq entity (read))
(cond Knot (eq entity 'END))

(or (ruled2)
(ruied3)

)

(go loopdl)

)

(t)

)

)

; RULE D2:: ENTITY is in ENTITY-LIST

(defun ruled2 (

)

(cond ((memberp entity entity-list)

; Report Duplicate entity
(print (list 'dup-entity 'enter 'new 'relation))

; Determine Relation
<ruled5>)

; RULE D3:; ENTITY is not in ENTITY-LIST

(defun ruled3 (

)

(cond ((not (memberp entity entity-list))

; Input Entity type
<ruled4 entity)

; Determine Relation
(ruled5))

(t nil)
)

)

i RULE D4:: Determining ENTITY type

(defun ruled4 (entity)

(princ 'enter-entity-type)
(setq entity-type (read))

; Add entity to entity-list
(setq entity-list (cons (list entity entity-type)

entity-list)
)

; Determine Attribute-value
(ruledfc entity)

)

i RULE D5:: Determining RELATION

(defun ruled5 (

)

; Enter Relation name
(princ 'enter-unique-relation-identifier)

(setq relation (read))

; Enter relation type - 1:1, l:N, or il:N
(princ 'enter-relation-type)

(setq relation-type (read))

; Enter dependency - None, Existent, or ID
(princ 'enter-relation-dependency)

(setq relation-dependency (read))

J Enter the Second entity for the current relation
(prog (

)

loopdS
(princ 'enter-second-entity)
(setq second-entity (read))
(cond ((memberp second-entity entity-list)

(print (list 'no-duplicates-allowed))
(go loopd5)

)

)

)

; Input Entity type
(ruled4 second-entity)

; Add entities relation, relation-type, and
; relation-dependency to the relation-list
(setq relation-list

(cons (list entity
second-entity
relation
relation-type
relation-dependency

)

relation-list)
)

)

(RULE D6:: Determining ATTRIBUTE-VALUE

(defun ruled6 (entity)

(print (list '

'For

'the

entity
'entity

-))

; Enter attribute-value name
(princ ' Input-attribute-value-identifier

)

(setq attribute-name (read))

; Enter attribute-value type - 1:1 or 1:N
(princ 'Input-attribute-type)

(setq attribute-type (read))

- 144 -

; If the type of attribute is hH enter all values
(cond <(eq attribute-type 'lsH)

(prog (

)

loopdG
(princ 'enter-attribute-value)
(setq attribute-value (read))
(cond ((not (eq attribute-value 'END))

(setq attribute-list
(cons (list entity

attribute-name
attribute-type
attribute-value)

attribute-list)
)

(go loopd6>)
(t)

)

))

; Otherwise enter the only value
(tlprinc 'enter-attribute-value)

(setq attribute-value (read))
(setq attribute-list

(cons (list entity
attribute- name
attribute- type
attribute-value)

attribute-list)
))

145 -

Translation Rules

(RULE lis i If Mode is TRANSLATE assuming pointers

(defun ruletl <

)

; Parse relation list
<rulet2 relation-list)

; Implement data-structure set from record list
<rulet6)

i Add the database, architecture, owner record sets,
; member record sets, records, attributes,
; data structures, and pointers to the database list
(setq database-list (cons (list database

architecture
owner-record-list
member -record- list
record-list
attribute-list
data-structure-list
pointer-list)

database-list)
)

; Process data dictionary
(rulepl)

;
Add the database, database record list, record field

; list, and the field attribute list to the
; data-dictionary list
(setq data-dictionary-list (cons (list database

database-record-list
record-field- list
field-attribute-list

)

data-dictionary-list)

146

; RULE T2:: For each RELATION type in RELATION-LIST

(defun rulet2 <r-list)

<cond ((eq r-list nil) nil)

; Translate for 1:1 or 1:N relations
(t(rulet3 (car r-list))

; Translate if the relation is H:N and the
; architecture is not hierarchical
(rulet4 (car r-list))

j Translate if the relation is M:N and the
; architecture is hierarchical
<rulet5 (car r-list))

; Translate the remaining relations
(rulet2 (cdr r-list)))

)

)

; RULE T3:: IF RELATION type is 1:1 or 1:N

(defun ruleta (current-relation)

(cond ((or (eq (cadr (cddr current-relation)) '1:1)
(eq (cadr (cddr current-relation)) 'i:H)J

; Add the relation name and the data set
; to the list of ovner records
(setq set-name (gensym "SET"))
(setq ouner-record-list

(cons (list (car current-relation) set-name)
o»ner-record-llst)

)

; Add the relation name and the data set
; to the list of mesiber records
(prog (at-list)

(setq at-list attribute-list)
loopt4a
(cond <<eq at-list nil))

<(eq (cadr current-relation)
(caar at-list)

)

(setq member-record-list
(cons (list (cadr current-relation)

set-name)
member -record-list)

)

(setq at-list (cdr at-list))
(go loopt4a)

)

<t(setq at-list (cdr at-list))
(go loopt4a)

)

)

)

- 14S

; Add the ovner record name and its attributes
; to the record list
(setq record (gensytn "OWNER-RECORD"))
(setq record

(cons record
(get-attribute (car current-relation)

attribute-list)

)

)

(setq record-list (cons record record-list))

i Add the member record name and its attributes
; to the record list
(prog (at-list)

(setq at-list attribute-list)
loopt4a
(cond <(eq at-list nil))

((eq (cadr current-relation)
(caar at-list))

(setq record -list
(cons (list (gensym "MEMBER-RECORD")

(car

(get -attribute
(cadr

current-relation)
attribute-list))

(car

(last (car at-list)))

)

record-list)
)

(setq at-list (cdr at-list))
(go loopt4a)

)

(tfsetq at-list (cdr at-list))
(go loopt4a)

)

))

<t>

)

149 -

; RULE T4:: IF RELATION type is M:N and not Hierarchical

(defun rulet4 (current-relation)

(cond ((and <eq (cadr (cddr current-relation)) 'M:N>
(not (eq architecture 'hierarchical)))

; Add the relation name and the data set
; to the list of owner records
(setq set-name (gensym "SET"))
(setq owner-record-list

(cons (list (car current-relation) set-name)
owner-record-list)

)

; Translate the relation to a new member record
; and add the relation name and the data set
; to the list of member records
(setq member-record-list

(cons (list (car (cddr current-relation))
set-name)

member-record-list)
)

; Add the previous member record and the data set
; to the list of owner records
(setq set-name (gensym "SET"))
(setq owner-record-list

(cons (list (cadr current-relation) set-name)
owner-record-list)

)

; Add the relation name and the data set
; to the list of member records
(setq member-record-list

(cons (list (car (cddr current-relation))
set-name)

member-record-list)
)

; Add the first owner record name and its
; attributes to the record list
(setq record (gensym "OWNER-RECORD")

)

(setq record
(cons record

(get-attribute (car current-relation)
attribute-list))

)

(setq record-list (cons record record-list))

150

; Add the second ovner record name and its
; attributes to the record list
<setq record (gensym "OWNER-RECORD")

)

(setq record
(cons record

(get-attribute (cadr current-relation)
attribute-list)

)

)

(setq record-list (cons record record-list))

; Add the generated member record »ith no
; attributes to the record list
(setq record (cons (car (cddr current-relation))

' (none)

)

)

(setq record (cons (gensym "MEMBER-RECORD")
record)

)

(setq record-list (cons record record-list)))
(t)

)

; RULE T5:: IF RELATION type is M:N and Hierarchical

(defun rulet5 (current-relation)

(cond ((and (eq (cadr (cddr current-relation)) 'M:N)
(eq architecture 'hierarchical))

; Generate a new 1:N relation and translate it
(rulet3 (list (car current-relation)

(cadr current-relation)
(gensym "NEW-RELATION")
•1:H 'N)

)

; Generate a second 1:N relation and translate it
<rulet3 (list (cadr current-relation)

(car current-relation)
(gensym "NEW-RELATION")
'1>H 'N)

)

)

(t)

- 151

; RULE T6:: Implementing Data-structure set

(defun ruletS <

)

(prog (o-list)
(setq o-list o»ner-record-list)
looptGa
(setq data-structure-list

(cons (cdar o-list) data-structure-list)
)

(setq o-list (cdr o-list))
(if (not (eq o-list nil)) (go loopt6a))

; Parse the owner record list
(rulet7 owner-record-list)

; Parse the member record list
(ruleta taember-record-list)

)

; RULE T7:: Parsing OWNER-RECORD-LIST

(deiun rulet7 (o-list)
(cond ((eq o-list nil))

; Determine pointer to first member record
(t(rulet9 (car o-list))

; Parse remainder of the owner records
(rulet7 (cdr o-list)))

)

)

; RULE T8:: Parsing MEMBER-RECORD-LIST

(defun ruleta (m-list)
(cond ((eq (cdr m-list) nil)(ruletll (car m-list)))

((eq (more-exist (car (cdar m-list)) (cdr m-list)) t)

; Create pointers if more members exist create
(ruletlO (car m-list))

; Parse remainder of the member records
(ruleta (cdr m-list)))

; Create pointer to the owner record if the
; last member record

(tfruletll (car m-list))

152 -

; Parse remainder of the member records
(ruleta (cdr m-list)))

)

)

; RULE T9:: Create owner record pointer to member record

(defun rulet9 <o-record)
(setq pointer-list

(cons (list (car o-record)
(gensym "POINTER*)
(points-to (cadr o-record)

member-record-list)

)

pointer-list)
)

)

; RULE T10:: Create member pointer to the next member record

(defun ruletlO (m-record)
(setq pointer-list

(cons (list (car m-record)
(gensym "POINTER")
(points-to (cadr m-record)

member-record-list)

)

pointer-list)
)

)

; RULE Til:: Create member pointer to owner record

(defun ruletll (m-record)
(setq pointer-list

(cons (list (car m-record)
(gensym "POINTER")
(points-to (cadr m-record)

ovner-record-list)

)

pointer-list)
)

)

- 153

Produce Data-Dictionary

; RULE PI:: Create Data-Dictionary

(deiun rulepl <

)

(terpri

)

(print (list '-- ---PROCESSING
'DATA-DICTIONARY))

(terpri)

; Add information to database record list for each
; database
<rulep2 database-list)

)

j RULE P2:: Create Data-Dictionary

(defun rulep2 <d-list)
(cond ((not (eq d-list nil))

(setq database-record-list
(cons record-list database-record-list)

)

(setq database-record-list
(cons (caar d-list) database-record-list)

)

; Parse record list
(rulep3 record-list)

; Parse attribute list
(rulep4 attribute-list)

; Process next database
(rulep2 (cdr d-list)))

(t)

- 154

; RULE P3:: Parsing DATABASE-LIST

(defun rulep3 (r-list)
(cond ((not (eq r-list nil))

; Add a record to the record field list
(setq record-field-list

(cons (car (cdar r-list)) record-field-list)
I

j Add a field name to the record field list
(setq record-field-list

(cons (caar r-list) record-field-list)
)

; Parse the remainder of the record list
(rulepS (cdr r-list)))

(t)

)

)

; RULE P4:: Parsing ATTRIBUTE-LIST

(defun rulep4 (a-list)
(cond ((eq a-list nil))

; Add a field name to the field attribute list
(t(setq field-attribute-list

(cons (car (cddr (cdar a-list)))
field-attribute-list)

)

; Add a value to the field attribute list
(setq field-attribute-list

(cons (car (cdar a-list)) field-attribute-list)
)

; Parse the remainder of the attribute list
(rulep4 (cdr a-list)))

)

)

155

Starting the Expert Assistant

; RULE 1::

<initea)
(prog (mode)

loop
(pnnc 'enter-mode)
< setq mode < read)

)

(cond <<eq mode 'EXIT)
(done)

)

< (eq mode 'DIAGRAM)
(rule2 mode)
(terpri)

(print (list ' TRANSLATING-
(terpri

)

<rule3 'TRANSLATE))
(t)

)

(go loop)

156

APPENDIX 5

AN EXAMPLE DESIGN QF A MINIMAL DATABASE USING
RULES BASED ON THE EXPERT ASSISTANT

XLISP version 1.5, Copyright (o) 1985, by David Betz
; loading "ea.lsp"
ENTER-MQDE> diagram
ENTER-DATABASE> dbl
ENTER-DBMS-ARCHITECTURE> network
ENTER-ENTITY> emp
ENTER-ENTITY-TYPE> e
(FQR THE £j,p ENTITy ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> ssn
INPUT-ATTRIBUTE-TYPE> 1:1
ENTER-ATTRIBUTE-VALUE> 123456789
ENTER-UNIOUE-RELATION-IDENTIFIER> is-affiliated-xith
ENTER-RELATIQN-TYPE> 1:N
ENTER-RELATION-DEPENDENCY> n

ENTER-SECQND-ENTITY> dept
ENTER-ENTITY-TYPE> e
(F0R THE DEPT ENTITY ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> dept-no
INPUT-ATTRIBUTE-TYPE> 1:1
ENTER-ATTRIBUTE-VALUE> 556
ENTER-ENTITY> emp
(DUP-ENTITY ENTER NEW RELATION)
ENTER-UNIOUE-RELATION-IDENTIFIER> manages
ENTER-RELATION^TYPE> 1:1
ENTER-RELATION-DEPENDENCY> n

ENTER-SECOND-ENTITY> pro]
ENTER-ENTITY-TYPE> e
(F0H THE pR0J ENTITy ,

INPUT-ATTRIBUTE-VALUE-IDENTIFIER> proj-name
INPUT-ATTRIBUTE-TYPE> 1:«
ENTER-ATTRIBUTE-VALUE> accting
ENTER-ATTRIBUTE-VALUE> payroll
ENTER-ATTRIBUTE-VALUE> end
ENTER-ENTITY> end

(TRANSLATING)

(PROCESSING DATA-DICTIONARY)

ENTER-MODE> exit
DATABASE-RECORD-LIST— >DB1
—-X (WEMBER-REC0RD7 DEPT-NO 556)

(0WNER-REC0RD6 SSN 123456789)
(MEMBER- REC0RD4 PROJ-NAME ACCTING)
(MEMBER-RECORDS PROJ-NAME PAYROLL)
(0WNER-REC0RD2 SSN 123456789))

DATA-DICTIONARY-LIST
---><(DB1

<(MEMBER -RECORD7 DEPT-NO 556)
(QWNER-REC0RD6 SSN 123456789)
(MEMBER-REC0RD4 PROJ-NAME ACCTING)
(MEMBER-REC0RD3 PROJ-NAME PAYROLL)
(0WNER-REC0RD2 SSN 123456789)))

(0WNER-REC0RD2 SSN MEMBER-RECORDS PROJ-NAME
MEMBER-REC0RD4 PROJ-NAME OWNER-RECORDS SSN
MEMBEB-REC0RD7 DEPT-NO)
(SSN 123456789 DEPT-NO 556 PROJ-NAME ACCTING
PROJ-NAME PAYROLL)

)

FIELD-ATTRIBUTE-LIST
--->SSN
--->123456789
--->DEPT-NO
--->556

--->PROJ-NAME
--->ACCTING
--->PROJ-NAME
--->PAYROLL

DATA-STRUCTURE-LIST—XSET1)
---XSET5)

MEMBER-RECORD-LIST
-—XDEPT SET5)
---XPROJ SET1)
— -XPROJ SET1)

OWNER-RECQRD-LIST
---XEMP SET5)
---XEMP SET1)

RECORD-FIELD-LIST
--->0WNER-REC0RD2
--->SSN
--->MEMBER-REC0RD3
--->PROJ-NAME— >HE«BER-RECQRD4—>PROJ-NAME
--->0WNER-REC0RD6
--->SSN
--->MEMBER-REC0RD7
--->DEPT-NO

ATTRIBUTE-LIST
---XPRQJ PROJ-NAME llN PAYROLL)
---XPROJ PROJ-NAME 1:N ACCTING)
---XDEPT DEPT-NO 1:1 556)
---XEMP SSN 1:1 123456789)

RELATION-LIST
---XEWP PROJ MANAGES 1:N N)—XEMP DEPT IS-AFFILIATED-WITH 1:N N)

DATABASE-LIST
---XDB1 NETWORK

< (EMP SET5) (EMP SET1)

)

((DEPT SET5) (PROJ SET1) (PROJ SETU)
((MEMBER-REC0RD7 DEPT-NO 556)
(0WNER-REC0RD6 SSN 123456789)
(NEMBER-REC0RD4 PROJ-NAHE ACCTING)
(MEMBER-RECORD3 PROJ-NAHE PAYROLL)
(0WNER-REC0RD2 SSN 123456789))

((PROJ PROJ-NAME 1:N PAYROLL)
(PROJ PROJ-NAME 1:N ACCTING)
(DEPT DEPT-NO 1:1 556)
(EMP SSN 1:1 123456789))

(ISET1) (SET5))
((PROJ P0INTER12 EMP)
(PROJ POINTER11 PROJ)
(DEPT POINTERIO EMP)
(EMP P0INTER9 PROJ)
(EMP POINTERS DEPT)))

159

POINTER-LIST
---XPROJ P0INTER12 EMP)
---XPROJ POINTERU PRQJ)
---XDEPT PQINTERIO EMP)
---XEMP P0INTER9 PROJ)
---XEMP POINTERS DEPT)

ENTITY-LIST
---XPROJ E)

-—XDEPT E)

---XEMP E)

RECORD-LIST
---XMEMBER-REC0RD7 DEPT-NO 556)
---X0WNER-REC0RD6 SSN 123456789)
---XMEMBER-REC0RD4 PROJ-NAME ACCTING)—XMEMBER-REC0RD3 PROJ-NAME PAYROLL)
---X0WNER-REC0RD2 SSN 123456789)

- 160

Expert Assistance for Database Design

by

Roger Allen Vasconcells

B.S. , Kansas State University, 1980

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial full lllment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

.

ABSTRACT

The design phase of a database management system forms

the foundation of its usefulness. Various complicated

tools have been developed that assiBt the database

designer with this process. The simplistic Entity-

Relationship Approach to database design has received

much interest and use.

This thesis presents a formalism that would provide

assistance to the database designer. The Expert

Assistant, based on protocols defined by the EHYCIN

expert system construction tool, allows the knowledge of

previous users of the Entity-Relationship Approach to

database design to be stored and accessed. By monitoring

the progress of a designer using this system, the Expert

Assistant will provide assistance with decisions and

insure that a viable database management system is

developed.

