

CONSISTENCY CHECKING IN MULTIPLE UML STATE DIAGRAMS

USING SUPER STATE ANALYSIS

by

MOHAMMAD N. ALANAZI

B.S., King Saud University, Riyadh, Saudi Arabia, 1999
M.S., The American University, Washington, DC, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Abstract

The Unified Modeling Language (UML) has been designed to be a full standard

notation for Object-Oriented Modeling. UML 2.0 consists of thirteen types of diagrams:

class, composite structure, component, deployment, object, package, activity, use case,

state, sequence, communication, interaction overview, and timing. Each one is dedicated

to a different design aspect. This variety of diagrams, which overlap with respect to the

information depicted in each, can leave the overall system design specification in an

inconsistent state.

This dissertation presents Super State Analysis (SSA) for analyzing UML multiple

state and sequence diagrams to detect the inconsistencies. SSA model uses a transition set

that captures relationship information that is not specifiable in UML diagrams. The SSA

model uses the transition set to link transitions of multiple state diagrams together. The

analysis generates three different sets automatically. These generated sets are compared

to the provided sets to detect the inconsistencies. Because Super State Analysis considers

multiple UML state diagrams, it discovers inconsistencies that cannot be discovered

when considering only a single UML state diagram. Super State Analysis identifies five

types of inconsistencies: valid super states, invalid super states, valid single step

transitions, invalid single step transitions, and invalid sequences.

CONSISTENCY CHECKING IN MULTIPLE UML STATE DIAGRAMS

USING SUPER STATE ANALYSIS

by

MOHAMMAD N. ALANAZI

B.S., King Saud University, Riyadh, Saudi Arabia, 1999
M.S., The American University, Washington, DC, 2003

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Approved by:

Major Professor

Dr. David A. Gustafson

Copyright

MOHAMMAD N. ALANAZI

2008

Abstract

The Unified Modeling Language (UML) has been designed to be a full standard

notation for Object-Oriented Modeling. UML 2.0 consists of thirteen types of diagrams:

class, composite structure, component, deployment, object, package, activity, use case,

state, sequence, communication, interaction overview, and timing. Each one is dedicated

to a different design aspect. This variety of diagrams, which overlap with respect to the

information depicted in each, can leave the overall system design specification in an

inconsistent state.

This dissertation presents Super State Analysis (SSA) for analyzing UML multiple

state and sequence diagrams to detect the inconsistencies. SSA model uses a transition set

that captures relationship information that is not specifiable in UML diagrams. The SSA

model uses the transition set to link transitions of multiple state diagrams together. The

analysis generates three different sets automatically. These generated sets are compared

to the provided sets to detect the inconsistencies. Because Super State Analysis considers

multiple UML state diagrams, it discovers inconsistencies that cannot be discovered

when considering only a single UML state diagram. Super State Analysis identifies five

types of inconsistencies: valid super states, invalid super states, valid single step

transitions, invalid single step transitions, and invalid sequences.

vi

Table of Contents

List of Figures .. ix

List of Tables ... xi

Acknowledgements ... xii

Dedication .. xiii

CHAPTER 1 - Introduction ...1

1.1 UML Diagrams ..1

1.1 Diagrams Description ..2

1.1.1 Class Diagram ...2

1.1.2 Object Diagram ...3

1.1.3 Component Diagram ...3

1.1.4 Composite Structure Diagram ...4

1.1.5 Deployment Diagram ..4

1.1.6 Package Diagram ..4

1.1.7 State Diagram ..5

1.1.8 Activity Diagram ..5

1.1.1 Use Case Diagram ...6

1.1.2 Sequence Diagram ..6

1.1.3 Interaction Overview Diagram..7

1.1.4 Communication Diagram ..8

1.1.5 Timing Diagram ..8

1.2 The Problem ...8

1.3 Proposed Solution ..10

1.4 The Hypothesis ..10

CHAPTER 2 - Literature Review ..12

2.1 Introduction ..12

2.2 Transformation ...13

2.3 Consistency Rules ..14

2.4 Formalism ..15

vii

CHAPTER 3 - Super State Analysis (SSA) Approach ...17

3.1 The Super State ..17

3.2 Super State Analysis ..17

3.3 Comparisons ..21

3.4 The Transition Matrix ..22

3.5 The Transition Set ..23

3.5.1 Transition Set Types ...24

3.5.2 Example ..24

3.6 Inconsistency Detection ...27

3.6.1 State Inconsistencies ...27

3.6.2 Single Step Transitions Inconsistencies ..27

3.6.3 Sequence Inconsistencies ..28

CHAPTER 4 - Case Study I (Library Example) ..30

4.1 Description ...30

4.2 The Library example invariant ..32

4.3 Analysis ...33

4.4 Some inconsistencies found in the library example ...37

CHAPTER 5 - Case Study II (University Example) ...39

5.1 Description ...39

5.2 The State Diagrams for University Model (UM) ...44

5.3 Some Invariants for UM ..45

5.4 Analysis ...46

5.5 Inconsistency Discussion for UM ..57

5.5.1 Super State Inconsistencies ...57

5.5.2 Single Step Transitions Inconsistencies ..58

5.5.3 Sequence Inconsistencies ..58

CHAPTER 6 - Scalability ..60

6.1 Paired Transitions Technique ..61

6.2 Object Reduction Technique ...63

6.3 State Reduction Technique ..64

6.4 Limit the number of steps Technique ..65

viii

CHAPTER 7 - Specification and Implementation ...66

7.1 Specification ..66

7.2 Formalization of Super State Analysis (SSA) ...66

7.3 Implementation ..78

7.3.1 Tool Description ...78

7.3.2 Tool Example ..79

CHAPTER 8 - Conclusion ...84

References ..87

ix

List of Figures

Figure 1.1 UML Diagrams .. 2

Figure 1.2 Example of State Diagram ... 5

Figure 1.3 Example of Sequence Diagram ... 7

Figure 3.1 SSA Model .. 19

Figure 3.2 State Diagram for Class X ... 22

Figure 3.3 State Diagram for Class Y ... 22

Figure 3.4 State Diagram for Customer ... 25

Figure 3.5 State Diagram for Account ... 25

Figure 4.1 Class Diagram for the library example .. 31

Figure 4.2 State Diagram for Patron ... 31

Figure 4.3 State Diagram for Book ... 32

Figure 5.1 Class Diagram for Univeristy Model .. 40

Figure 5.2 State Diagram for Enrollment ... 41

Figure 5.3 State Diagram for Teaching ... 42

Figure 5.4 State Diagram for Student ... 42

Figure 5.5 State Diagram for Instructor .. 43

Figure 5.6 State Diagram for Section ... 43

Figure 5.7 State Diagram for Room .. 44

Figure 5.8 A Sequence Diagram for a Class Enrollment .. 59

Figure 6.1 Reduced State Diagram for Student .. 64

Figure 7.1 The relationship between R and G .. 74

x

Figure 7.2 The relationship between T1, H1, and H2 ... 75

Figure 7.3 The relationship between T2, H3, and H4 ... 77

Figure 7.4 SSA Tool Architecture ... 79

Figure 7.5 Transition Set File ... 80

Figure 7.6 Sequence for returning overdue book .. 81

Figure 7.7 Tool output for Figure 7.6 sequence diagram ... 81

Figure 7.8 A corrected sequence for overdue book .. 82

Figure 7.9 Tool output for Figure 7.8 sequence diagram ... 82

Figure 7.10 Execution time for 1 Book and 2 Patrons .. 83

Figure 7.11 Execution time for 2 Books and 1 Patron .. 83

Figure 7.12 Execution time for 2 Books and 2 Patrons .. 83

xi

List of Tables

Table 3.1 Description of each component involved in SSA Model 20

Table 3.2 Super state transition matrix T1 .. 23

Table 4.1 Portion of A1 ... 34

Table 4.2 Transition set for Library Example ... 35

Table 4.3 Portion of A2 ... 36

Table 5.1 Information about the University Model .. 39

Table 5.2 Transition Set for University Model ... 47

Table 5.3 Transition Set for University Model ... 49

Table 5.4 Portion of A1 for the transition set in Table 5.2 .. 54

Table 5.5 Portion of A2 for the transition set in Table 5.2 .. 55

Table 6.1 Effect of object selection on the total number of super states 62

Table 6.2 Behavior of independent objects in transition set ... 63

xii

Acknowledgements

First of all, thanks are purely due to Allah for giving me the strength and

confidence to realize and achieve my goals.

I would like to express my deep appreciation for my major professor Dr. David A.

Gustafson for his patience, guidance, and encouragement during the journey of this

research. Thanks for all the hours of wonderful discussion and for supporting me in so

many ways. Thank you for sharing your knowledge and time with me.

I would like to thank my committee members: Dr. William J. Hankley, Dr.

Mitchell L. Neilsen, and Dr. Fayez Husseini for their support and for graciously

accepting to serve on my committee. I would also like to thank Dr. D. V. Satish Chandra

for serving as a chair for my final exam.

My heartfelt gratitude goes to my parents, brothers, and sisters for their

inspiration, support, and patience. Their love and constant support have been a great help

throughout years.

I would like to thank all the people and loved ones who have helped me during

my study in the United States. The most sincere thanks go to my dear wife and my kids

Alaa, Bassam, and Jory who made a difficult task easier through their prayers, patience

and support.

Finally, I would like to thank Imam University in Saudi Arabia for providing the

financial support throughout my graduate studies.

xiii

Dedication

To my parents

To my family

1

CHAPTER 1 - INTRODUCTION

1.1 UML Diagrams

The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems. UML is a

graphical language for represent software designs. It provides several diagram types to

capture different aspects of design. UML 2.0 specification has thirteen standard diagrams.

These diagrams can be divided into two groups: structural diagrams, which model the

organization and the structure of a system, and behavioral diagrams, which model the

behavior of a system. Figure 1.1 shows the class diagram of the UML diagrams.

Structural Diagrams

• Class Diagram

• Object Diagram

• Component Diagram

• Deployment Diagram

• Package Diagram

• Composite Structure Diagram

Behavioral Diagrams

• Use Case Diagram

• Sequence Diagram

• State Diagram

• Activity Diagram

2

• Communication Diagram

• Interaction Overview Diagram

• Timing Diagram

Figure 1.1 UML Diagrams

1.1 Diagrams Description

1.1.1 Class Diagram

A Class diagram represents the static structure of the classes and their

relationships (e.g., association, inheritance, aggregation) in a system. The class diagram

shows the operations and the attributes of each class. A class is divided into three

components: class name, attributes, and operations. The Class diagram is one of the most

3

widely used diagrams from the UML specification. Part of the popularity of class

diagrams stems from the fact that many UML case tools can auto-generate code in a

variety of languages, including Java, C++, and C#, from these models. These tools can

synchronize models and code, reducing the workload, and can also generate class

diagrams from object-oriented code.

1.1.2 Object Diagram

An Object diagram shows instances instead of classes. The object diagram

describes how the classes interact with each other at runtime in the actual system. The

object diagrams are useful for explaining small part of a system with complicated

relationships, especially recursive relationships. It shows the relationship between

instances of classes at some point in time.

1.1.3 Component Diagram

A component diagram describes how a software system is divided into physical

components and shows the dependencies between these components. The component

diagram shows the structural relationships between the components of a system. The

component diagram also describes the organization of physical software components,

including source code, run-time (binary) code, and executables. Physical components

include, for example, files, headers, link libraries, modules, executables, or packages.

Component diagrams can be used to model and document any the architecture of a

system.

4

1.1.4 Composite Structure Diagram

Composite structure diagram is a structural diagram that shows the internal

structure of a class and the collaborations that this structure makes possible. A composite

structure is a set of interconnected elements that collaborate at runtime to achieve some

purpose. Each element has some defined role in the collaboration. A composite structure

diagram is similar to a class diagram, but it describes individual parts instead of whole

classes.

1.1.5 Deployment Diagram

The deployment diagram shows the physical configurations of software and

hardware. A deployment diagram models the hardware used in implementing a system

and the association between those hardware components. Deployment diagrams give a

picture of the physical resources in a system, including nodes, components, and

connections. The deployment diagram shows the hardware for the system, the software

that is installed on that hardware, and the middleware used to connect the disparate

machines to one another.

1.1.6 Package Diagram

Packages are UML constructs that allow organizing the model elements into

groups to make UML diagrams simpler and easier to understand. A package diagram

describes how a system is divided into logical groupings by showing the dependencies

among these groupings. The package diagram is most common on use case diagrams and

class diagrams because these models have a tendency to grow.

http://en.wikipedia.org/wiki/Class_(computer_science)�

5

1.1.7 State Diagram

State diagrams, (a.k.a statechart diagrams, state machine diagrams, and state

transition diagrams), are used to describe the various states that a class can go through

and the events that cause a state transition. Each object has behaviors and state. The state

of an object depends on its current activity or condition. A state diagram shows the

possible states of the class and the transitions that can make a change in state. State

diagrams typically model the transitions within a single class. Figure 1.2 shows an

example of a simple state diagram.

Figure 1.2 Example of State Diagram

State_1 State_2

transition_2

transition_3

transition_1

1.1.8 Activity Diagram

An activity diagram shows the behavior with control structure. An activity

represents an operation on some class in the system that results in a change in the state of

the system. Activity diagrams and state diagrams are related. The Activity diagram is a

variation of the state diagram where the states represent operations, and the transitions

represent the activities that happen when the operation is complete. However, an activity

diagram focuses on the flow of activities involved in a single process. The activity

diagram shows how those activities depend on one another. UML activity diagrams are

6

the object-oriented equivalent of flow charts and data flow diagrams (DFDs) from

structured development.

1.1.1 Use Case Diagram

A use case is used to obtain system requirements from a user's perspective. Use

case diagrams describe what a system does. The use case diagram emphasizes is on what

a system does rather than how. Use Case diagrams identify the functionality provided by

the system (use cases), the users who interact with the system (actors), and the

relationship between the users and the functionality.

1.1.2 Sequence Diagram

A sequence diagram is an interaction diagram that describes interactions among

classes in terms of an exchange of messages over time. Sequence diagrams are organized

according to time. The time progresses as you go down the page. The classes involved in

the message are listed from left to right according to when they take part in the message

sequence. A sequence diagram shows, as parallel vertical lines, different objects that live

simultaneously, and, as horizontal arrows, the messages exchanged between them, in the

order in which they occur. A sequence diagram describes one possible scenario of the

system. Figure 1.3 shows an example of sequence diagram.

7

Figure 1.3 Example of Sequence Diagram

O1 : Class1O1 : Class1 O2 : Class2O2 : Class2 O3 : Class3O3 : Class3

msg1

msg3

msg2

msg5

msg4

msg6

1.1.3 Interaction Overview Diagram

The interaction overview diagram focuses on the overview of the flow of control

of the interactions. An interaction overview diagram is a variant of an activity diagram

which overviews the control flow within a system. UML interaction overview diagrams

combine elements of activity diagrams with sequence diagrams to show the flow of

program execution. The interaction overview diagrams are activity diagrams in which the

activities are replaced by little sequence diagrams.

8

1.1.4 Communication Diagram

A Communication diagram (formally known as collaboration diagrams) describes

the interactions between objects or parts in terms of sequenced messages. The

collaboration diagram is used to show how objects in a system interact over multiple use

cases. The collaboration diagram contains the same information as sequence diagrams,

but they focus on object roles instead of the times that messages are sent. Because there is

no explicit representation of time in collaboration diagrams, the messages are labeled

with numbers to denote the sending order. A communication diagram shows instances of

classes, their interrelationships, and the message flow between them. Communication

diagrams typically focus on the structural organization of objects that send and receive

messages.

1.1.5 Timing Diagram

A timing diagram is used to describe the behaviors of one or more objects

throughout a given period of time. Timing diagrams are a specific type of interaction

diagram where the focus is on timing constraints. A timing diagram is a special form of a

sequence diagram. The differences between a timing diagram and a sequence diagram are

that the axes are reversed so that the time is increased from left to right and the lifelines

are shown in separate compartments arranged vertically. Timing diagrams are often used

to design embedded software.

1.2 The Problem

Unified Modeling Language (UML) has been widely used as a standard language

for modeling the software. UML 2.0 [OM06] consists of thirteen types of diagrams: class,

9

composite structure, component, deployment, object, package, activity, use case, state,

sequence, communication, interaction overview, and timing. Each diagram is dedicated to

a different design aspect. Many different UML diagrams are usually involved in software

development. Using more than one diagram to design a system is necessary but can leave

the system in an inconsistent state and hence produce errors. Finding inconsistencies in

software design before the design is implemented is very important. “Error detection and

correction in the design phase can reduce total costs and time to market” [PI03].

A consistency problem may arise due to the fact that some aspects of the model

will be described by more than one diagram. Hence, we should pay more attention to the

consistency in the early phases of the system development and it is important that the

consistency of a system should be checked before implementing it [LI03]. To avoid such

errors, we should check the consistency among the diagrams and make sure that the

diagrams are consistent.

Many researchers found that the problem of ensuring consistency between UML

diagrams has not been solved yet [EG01]. The UML specification does not enforce many

consistency requirements between the information contained in the sequence and state

diagrams. While this does allow for greater flexibility in how UML can be used, it can

lead to inconsistent views of the system being modeled. “The problem of relating state-

based intraagent (or intraobject) behavioral descriptions with scenario-based interagent

(interobject) descriptions has recently focused much interest among the software

engineering community” [BO05]. Identifying inconsistencies between UML diagrams

can help the developers to find errors and fix them at early stages. Furthermore, current

UML CASE-tools (e.g. Rational® Software Architect [AR08]) provide poor support for

10

maintaining consistency between UML diagrams. So, helping to solve this problem can

make a great contribution to the software development process.

1.3 Proposed Solution

The information in UML diagrams are related to each other and represent

different views of a system. Hence, they can be validated against each other. Given a

state diagram, researchers [LI03] have shown how to validate it against a sequence

diagram. On the other hand, given a sequence diagram, it can be validated against a state

diagram [DU00, SH06]. In this dissertation, I am proposing a new approach to check the

consistency between multiple state diagrams and one or more sequence diagrams using

Super State Analysis (SSA) to discover the inconsistencies.

Super State Analysis is used to evaluate consistency between multiple state

diagrams and the sequence diagrams. Super State Analysis helps also to identify the

invalid sequence diagrams. The analysis discovers inconsistencies that cannot be detected

when considering only a single state diagram. This analysis gives a great contribution to

solving the consistency problem between multiple state diagrams and sequence diagrams.

1.4 The Hypothesis

The Super State Analysis (SSA) handles the inconsistencies in UML multiple state

diagrams and sequence diagrams. Super State Analysis may identify inconsistencies in

states (see 1 and 2 below), single step transitions (see 3 and 4 below), and sequences (see

5 below). Because Super State Analysis considers multiple UML state diagrams, it

discovers some inconsistencies that cannot be discovered when considering only a single

UML state diagram. Super State Analysis does not handle other inconsistencies that deal

11

with other UML diagrams other than state and sequence diagrams. The scope of this

dissertation is only UML state and sequence diagrams.

Specifically, Super State Analysis may identify the following five types of

inconsistencies that are related to state and sequence diagrams:

Inconsistency in states

1. Valid super states

2. Invalid super states

Inconsistency in single step transitions

3. Valid single step transitions

4. Invalid single step transitions

Inconsistency in sequences

5. Invalid sequences

12

CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction

There are several different approaches that have been proposed to perform

consistency checking between UML diagrams. Some approaches use transformation to

convert one diagram to another [EG01, WA05, ST04, WA03, SH06, PI03] while others

detect the inconsistencies by comparing one diagram to another using consistency rules

[LI03, EG06]. Moreover, many approaches use formalism, such as OCL and Z, to

enforce the consistency [DU00, GO03, KR00, KI04].

Almost all approaches focus on all or some of six types of UML diagrams.

Namely use case class, object, sequence, collaboration, and statechart diagram. Ludwik

Kuzniarz et al. [KU03] studies the consistency between use case, class, sequence, and

statechart diagram. Alexander Egyed [EG01] studies the consistency between class,

object, sequence, collaboration, and statechart diagram. Hassan Gomaa et al. [GO03]

studies use case, class, sequence, and statechart diagram. Ragnhild Van Der Straeten et

al. [ST04] studies the consistency between three diagrams: class, sequence, and statechart

diagram. [LI03, DU00, WA05, SH06] study the consistencies between sequence and

statechart diagram. Zs. Pap et al. [PA01] studies the class diagram and statechart

diagram.

The researchers pay the attention to enforce consistency between only two

diagrams (e.g. single sequence diagram vs. single statechart diagram). However, my

approach is unique in that I am proposing a new approach to check the consistency

13

between multiple state diagrams and one or more sequence diagrams using a transition

matrix. Moreover, the approach focuses on multiple state diagrams instead of a single

state diagram.

2.2 Transformation

The consistency checking in the transformational approach is done in two steps.

First, the UML diagrams are converted to interpreted diagrams. Second, the interpreted

diagrams are compared to each other to detect the inconsistencies.

Alexander Egyed [EG01] presents a transformation-based approach to

consistency checking. He defines a set of model transformation rules to enable the

conversion of one UML diagram into another. He also defines a set of comparison rules

to compare the transformed diagram with an existing one of the same type. For example,

to check for inconsistencies between a sequence diagram and a class diagram, they first

transform the sequence diagram into an interpreted class diagram. The interpreted class

diagram is then compared with the existing class diagram. This approach needs two sets

of rules: transformation rules and consistency rules. If one diagram cannot transform to

another, then both diagrams transformed to an intermediate diagram to make the

comparison.

Hongyuan Wang et al. [WA05] propose an approach that checks the consistency

between sequence diagrams and state diagrams. The approach converts statecharts using

Finite State Processes and transforms sequence diagram to messages trace. They use an

existing tool LTSA to support their approach. However, the approach considers only

single sequence diagram and single stateschart diagram.

14

Wuwei Shen et al. [SH06] propose to build a message graph from a statechart

diagram and then go through the graph based on the sequence of the messages retrieved

from a sequence diagram to find any inconsistency between these two diagrams. Based

on this method, a tool called ICER is developed to provide software developers with

automatic consistency checking in the dynamic aspects of a model. However, the

approach considers only single statechart vs. single sequence diagram.

Orest Pilskalns et al. [PI03] present an approach that combines structural and

behavioral UML representations in order to derive and execute test cases to validate a

UML model. They develop a method for encapsulating the behavioral aspects (i.e.

message paths between objects) that exists in sequence diagrams into a directed acyclic

graph. The objects in the graph are then associated with class attribute/parameter values

which are used to generate and execute test cases. Their approach would require OCL

object constraints to be written.

2.3 Consistency Rules

In this approach, the consistency is checked using set of consistency rules. The

diagrams are compared to each other directly without transformation or formalism.

Boris Litvak et al. [LI03] present an approach to check the consistency between

UML sequence and state diagrams. They created the BVUML (Behavioral Validator of

UML) tool which automates the behavioral validation process. Their approach associates

states with only one object lifeline in the sequence diagram so a single run of the tool

validates consistency for only one object. Therefore the tool must be run multiple times

in order to check the consistency of an entire sequence diagram.

15

Alexander Egyed [EG06] introduce an approach for quickly, correctly, and

automatically deciding what consistency rules to evaluate when a model changes. The

approach does not require consistency rules with special annotations. Instead, it treats

consistency rules as black-box entities and observes their behavior during their evaluation

to identify what model elements they access. The UML/Analyzer tool integrated with

Rational Rose are fully implements this approach. It was used to check 24 types of

consistency rules. The author found that the approach provided design feedback correctly

and required, in average, less than 9 ms evaluation time per model change with a worst

case of less than 2 seconds at the expense of a linearly increasing memory need.

However, my approach compares multi statechart diagrams with sequence diagrams.

2.4 Formalism

Since UML is not precise enough, some researchers formalize the UML diagrams

to some formal languages (e.g. Z). They then compare this formalism to detect the

inconsistencies between the diagrams.

Yves Dumond et al. [DU00] show that it is possible to integrate semi-formal and

formal methods for the dynamic behavior of the UML models. The objective is to favor

the integration of formal techniques in the actual practice of software engineering. They

introduce an approach to formalize sequence diagrams and verify coherence with the

statechart diagrams. The approach translates the UML sequence diagrams into the pi-

calculus, by preserving the object paradigms. To preserve the object notation, they name

the pi-calculus processes with the name of the objects. The consistency between sequence

16

diagrams and statechart diagrams can be checked by verifying that the messages in the

sequence diagrams trigger states in statechart diagrams.

Padmanabhan Krishnan [KR00] describes a framework in which UML diagrams

can be formalized to perform consistency checking. UML diagrams are translated into

specifications of the theorem proving tool PVS (Prototype Verification System). The

PVS is a language that allows for the introduction of abstract data types, functions etc. To

check for consistency between sequence and class diagrams, the class diagrams must first

be annotated with OCL constraints. The PVS will check if the sequence of states

described in the sequence diagram can be obtained from the class diagrams. Custom

traces (i.e. sequence of states) can also be supplied by the user to check if other properties

hold.

Soon-Kyeong Kim and David Carrington [KI04] describe how consistency

checking between different UML models can be accomplished by using a formal object-

oriented metamodeling approach. They formally define the abstract syntax and semantics

of the UML model using Object-Z as a metalanguage. They then define consistency

constraints that logically exist between semantically equivalent elements in the

metamodel but are not defined in the current UML metamodel structure. Once the

consistency constraints have been defined for each of the UML model elements,

consistency checking between different model elements can be achieved by verifying that

the combined models preserve all of the consistency constraints for the individual model

elements. They use the formal language to ensure the consistency between two diagrams.

However, in my approach I do not use formal language and I ensure the consistency

between multiple statechart diagrams and sequence diagrams.

17

CHAPTER 3 - SUPER STATE ANALYSIS (SSA) APPROACH

3.1 The Super State

My approach for consistency analysis combines the state information of multiple

state diagrams into a composite super state, SS. The super state has the form [s1, s2, …,

sn] where si is the state of object i and n is the total number of objects. A system may

have many different super states depending on the number of objects that are being

analyzed. The super state details all of the possible composite states the objects can be in

as well as the transition pairs which lead from one composite state to another. In this way

the super state provides the complete collaborative view of a set of objects in the model.

Super State may change after each message call. For every call we have <SSpre,

call, SSpost> where SSpre is the super state before call and SSpost is the super state after the

message call has been called. In SSpost, only the state of one object may change. This

object must be the destination object of the message call. The state of the other objects

remains in the same state as they were before the call. We calculate the super state of

multiple state diagrams after each valid transition and that is used to evaluate each

sequence diagram. A sequence diagram to be valid should be a subsequence of the set of

sequences that are possible in a super state. Invalid and impossible sequences can be

identified.

3.2 Super State Analysis

The information in UML diagrams are related to each other and represent

different views of a system. Hence, they can be validated against each other. Given a

statechart diagram, researchers [LI03] have shown how to validate it against a sequence

18

diagram. On the other hand, given a sequence diagram, it can be validated against a

statechart diagram [DU00, SH06].

However, I am proposing a new approach to check the consistency between

multiple state diagrams and one or more sequence diagrams. My analysis, the Super

State Analysis (SSA), focuses on multiple state diagrams instead of a single state

diagram.

The diagram on Figure 3.1 shows the complete analysis process and the

relationships between the different sources of information. Some information is known

from the domain knowledge and provided by the developer while some other information

is extracted from the existing information and generated automatically. Super State

Analysis uses the provided information to generate some information automatically.

Comparing the information from different sources allows us to detect the inconsistencies.

SSA includes some inconsistencies that can be detected by the computer and some other

faults that can be identified by the human. Super State Analysis performs five types of

comparisons to detect the inconsistencies.

19

Figure 3.1 SSA Model

The SSA model on Figure 3.1 includes the 12 information sets that are involved in

Super State Analysis. The system developer provides the UML state diagrams, the

transition set and UML sequence diagrams (D1, D2, and D3). The developer identifies

the valid super states, invalid super states, valid single step transitions, and the invalid

single step transitions (H1, H2, H3, and H4). SSA is automatically generates three large

sets: set of all generated super states, set of all generated single step transitions, and set of

all generated sequences (T1, T2, and T3). These sets are generated using the UML state

diagrams and the provided transition set. The valid sequences (S) are extracted from the

UML sequence diagram. Table 3.1 describes each component involved in the analysis

and the source of each.

20

Table 3.1 Description of each component involved in SSA Model

Box Name Description Source

N
Domain
Knowledge

The facts that are known by the developer of
the system

Known from the
domain
knowledge

H1
Valid Super
States

The set of states that are identified to be valid
super states.

Domain
Knowledge

H2
Invalid Super
States

The set of states that are identified to be
invalid super states.

Domain
Knowledge

H3
Valid single
step transitions

The set of transitions that are identified to be
valid single step transitions

Domain
Knowledge

H4
Invalid single
step transitions

The set of transitions that are identified to be
invalid single step transitions

Domain
Knowledge

T1
Set of all
generated
Super States

These super states are generated
automatically using the UML diagram and
transition set

Generated
Automatically by
SSA

T2
Set of all single
step transition

This set contains all of the single step
transitions. These transitions are generated
automatically using the transition set

Generated
Automatically by
SSA

T3
Set of all
generated
sequences

This set contains all of the legal sequences
that are allowed by the system. This set is
generated automatically using the transition
set

Generated
Automatically by
SSA

D1
UML State
Diagram

The state diagrams that are written by the
developer who specifies the system

Developer

D2 Transition Set
The set of all legal transitions that are allowed
by the system. The developer provides this set

Developer

D3
UML Sequence
Datagram

The sequence diagrams that are written by the
developer who specifies the system

Developer

S Sequences
Sequences that are extracted from the UML
sequence diagrams

Generated
Automatically by
SSA

Super State Analysis uses the UML state diagram (D1) and the transition set (D2)

to generate the set of all generated Super States (T1). Also, SSA uses the transition set

(D2) to compute the set of all generated sequences (T3). Moreover, SSA uses the

transition set to compute the set of all generated single step transitions (T2). The

developer uses the domain knowledge to identify the valid super states, invalid super

21

states, valid single step transitions, and invalid single step transitions. Furthermore, the

UML sequence diagram is used to extract the sequences which will be compared to the

set of all generated sequences.

3.3 Comparisons

The Super State Analysis consists of five types of comparisons to detect the

inconsistencies in the multiple state diagrams and sequence diagrams.

1. C1: Compares the set of all generated super states (T1) with the set of valid super

states (H1).

2. C2: Compares the set of all generated super states (T1) with the set of invalid

super states (H2).

3. C3: Compares the set of all generated single step transitions (T2) with the set of

valid single step transitions (H3).

4. C4: Compares the set of all generated single step transitions (T2) with the set of

invalid single step transitions (H4).

5. C5: Compares the set of all generated sequences (T3) with the set of sequences

(S) which are extracted from the provided UML sequence diagrams.

C1 and C2 detect the valid and invalid super states while C3 and C4 identify

the valid and invalid single step transitions. C5 detects the invalid sequences. This

comparison is fully automated since both T3 and S are generated automatically. The

other four comparisons can be automated if we formalize the four sets: H1, H2, H3,

and H4 and feed them to the system. By comparing these four sets to the generated

sets: T1 and T2 the inconsistencies can be detected automatically.

22

3.4 The Transition Matrix

The transition matrix details the possible global states of the system based on a

vector of states of individual instances of classes and the possible transitions between the

states in the super state (SS). Consider a program that has class X and class Y. Let class

X has an initial state A and two other states, B and C, while class Y has an initial state D

and a second state E. Figure 3.2 shows the state diagram for class X and Figure 3.3 shows

the state diagram for class Y. The state diagrams depict how instances of X and Y can

transition between those states. Let class Y makes the transition between state D and state

E whenever class X makes the transition from state A to state B. Table 3.2 shows

possible transitions in the super state that is the cross-product of all states with one

instance of X and one instance of Y.

Figure 3.2 State Diagram for Class X

Figure 3.3 State Diagram for Class Y

An entry in a cell in T1 (Table 3.2) shows that in one step, the system can

transition from the state of the row to the state of the column. Taking the product of T1

23

by itself gives a matrix that contains the transitions possible with two steps. The closure

of T1 is the sum of products, T1 + T1*T1 + T1*T1*T1 +…. The closure shows all possible

transitions in any number of steps. Although the closure is represented as an infinite

sum, it can be calculated in at most the number of products equal to the rank of the initial

matrix. In most cases, it is even smaller than that number.

Table 3.2 Super state transition matrix T1

T1 AD BD CD AE BE CE

AD 0 0 0 0 1 0

BD 1 0 1 0 0 0

CD 0 1 0 0 0 0

AE 0 1 0 0 0 0

BE 0 0 0 1 0 1

CE 0 0 0 0 1 0

3.5 The Transition Set

There is some essential information about the relationships between transitions in

different state diagrams that is not captured in any UML diagram. This information

includes the fact that some transitions are paired. This information is critical to

understanding the specified system because the state of one class could affect the state of

another class. Also, identifying the paired relations is important when building the system

to maintain the consistency between the state diagrams. These relations between states of

different state diagrams help the system to identify which states are paired and hence

maintain the consistency. Looking to just a single state diagram without considering the

others could leave the system in an inconsistent state.

24

3.5.1 Transition Set Types

In the transition set, there are three types of transitions: independent transitions,

paired transitions, and constrained transitions. The independent transitions are the

transitions that can happen individually without influencing states and transitions of other

state diagrams. The effect of those transitions is local within their state diagrams and they

do not consider the state of other diagrams. They may change only the state of the

diagrams that they are belongs to.

The paired transitions are those transitions that must happen together. If a

transition is paired to other transition(s), then they must happen simultaneously. The

effect of those transitions is global since they enforce other transition(s) to happen and

hence may change the super state.

The constrained transitions are the transitions that can happen only when some

other state diagrams are in specific states. The state of other diagrams may prevent the

constrained transition. This kind of transitions considers the state of other diagrams. Our

interest is the paired and constrained transitions since they interact with multiple state

diagrams.

3.5.2 Example

Consider a simple ATM system that has two state diagrams: customer state

diagram (Figure 3.4) and account state diagram (Figure 3.5). The customer will be in

good standing (G) until an overdraft transaction is happened then the customer will go to

state N (NotGoodStanding). The account stays in P (Positive) until a withdrawal

transaction happened with amount that exceed the available balance in which case the

25

account will became negative (V). We labeled the transitions in Figure 3.4 and Figure 3.5

for ease of reference.

Figure 3.4 State Diagram for Customer

Figure 3.5 State Diagram for Account

26

The proposed transition set technique links the transitions of multiple state

diagrams together to capture the relationship information of the paired transitions. The

transition set includes explicitly all legal transitions that are allowed in the system. This

set links transitions of multiple state diagrams together. The transition set allows viewing

the super state (global state) of the system rather than individual state of a single object.

The complete information that is in the transition set is not stated explicitly in any

UML diagram. Partial information could be inferred from the set of correct sequence

diagrams. In order to have the complete information inferred from the sequence

diagrams, we must have all possible correct sequence diagrams. Having the explicit

transition set is easier and more realistic than inferring them from sequence diagrams.

An entry in the transition set has the form [PreState, (transitions), PostState]

where PreState is the super state before transitions and PostState is the super state after

the transitions taken. The transitions has the form (t1, t2, …, tn) where ti are the paired

transitions. i.e. must happen together.

In the transition set of the ATM example, we have the following entries

[GP, (x1, y1), GP]

[GP, (x3, y1), GP]

[GP, (x2, y2), NV]

[NV, (x5, y4), NV]

[NV, (x4, y3), GP]

27

If we don’t consider the transition set, the system can make some illegal

transitions. For example, [GP, x2, NP] or [NV, y3, NP]. Having the correct transition set

provided for the system will prevent such inconsistencies.

3.6 Inconsistency Detection

Super State Analysis (SSA) discovers inconsistencies in super states, single step

transitions, and sequences.

3.6.1 State Inconsistencies

The valid and invalid states will possibly be identified by SSA. If a super state

(SS) is generated by Box T1, but it is not in the set of valid states (Box H1) then the state

is an invalid SS. This could happen if there is a wrong transition in the transition set. On

the other hand, if a super state is in the set of valid states (Box H1), but it is not generated

by Box T1, then this SS is a valid super state and should be generated. SS wouldn’t be

generated if there is a missing transition in the transition set or in the state diagram.

The following kinds of inconsistencies can be discovered by this analysis:

i. Valid super states

ii. Invalid super states

3.6.2 Single Step Transitions Inconsistencies

The valid and invalid single step transitions (Box H3 and Box H4) are known

from the domain knowledge. The set of all generated single step transitions (Box T2) are

generated automatically using the transition set. Comparing those sets will discover some

legal and illegal transitions.

28

If a valid transition does not appear in the set of all generated single step

transitions that means this transition is missing. Furthermore, if an invalid transition

appears in the set of all generated single step transitions that mean this transition is

illegal.

The following kinds of inconsistencies are discovered by this analysis:

i. Valid single step transitions

ii. Invalid single step transitions

3.6.3 Sequence Inconsistencies

Super State Analysis generates the sequences using the transition matrix. To

validate a UML sequence diagram, SSA extracts the sequences first (Box S), then,

compares them to the set of all generated sequences (Box T3). If there is a matching

sequence in that set, this sequence is valid. Otherwise, it is an invalid sequence.

The following kinds of inconsistencies are discovered by this analysis:

i. Illegal sequences

Super State Analysis uses the UML state diagrams and the transition set to

generate the set of all generated Super States (SS). Also, SSA uses the transition set to

compute the set of all generated sequences. Moreover, SSA uses the transition set to

compute the set of all generated single step transitions.

From the domain knowledge, we identify the sets of valid and invalid Super

States (SS) and the valid and invalid single step transitions. The UML sequence diagram

29

is used to extract the sequences which will be compared to the set of all generated

sequences.

The inconsistency can be fixed by several ways. It can be fixed by adding or

removing a fact to the domain knowledge. Another way to fix the inconsistencies is

correcting the state diagram by adding a new transition (or removing one).

30

CHAPTER 4 - CASE STUDY I (LIBRARY EXAMPLE)

4.1 Description

This case study describes the interaction between a patron of a library and the

copies of books the library holds. In order to simplify the model the library holds only

one copy of each book. Figure 4.1 shows the class diagram for this model. Figure 4.2 and

Figure 4.3 are the state diagrams for the patron and book objects. Note that the transitions

in the state diagrams are numbered for ease of reference. This example originally was

created by a team of students trying to create a correct model of a simple library system.

The patron object can be in one of three states: Good Standing, Too Many Books,

and Fines. We will call these states G, T, and F respectively for the rest of this chapter. A

patron starts in G until the number of books the patron has checked out is equal to MAX

or the patron returns an overdue book. In the former, the patron will transition to state T

where they will remain until they return a book. In the latter, the patron will transition to

F where they will not be able to do anything until they pay the fine that is owed.

A book object has six states: On Shelf, Missing, On Hold, Checked Out, Overdue,

and Returned. We will call these states O, M, H, C, D, and R respectively for the rest of

this chapter.

The two transitions from C labeled check represent the library determining if the

book is overdue. If the book is overdue it will transition to D. Otherwise, it will transition

to R where it will remain until the library places it back on the shelf.

31

Figure 4.1 Class Diagram for the library example

Loan
b : Book
p : Patron

check()
checkout()
return()

Patron
loans : Loan

check()
checkout()
return()
payFine()
lose_By_Patron()
enroll()

Book

check()
checkout()
putOnShelf()
return()
reserve()
lose()
return_late()
lose_By_Patron()
find()

GUI
l : Library

Library
books : Book []
patrons : Patron []

check()
return()
checkout()

Figure 4.2 State Diagram for Patron

Good
Standing

initialState

return checkout[n < MAX]

Too Many
Books

Fines

return

return[returnDate > DUE_DATE]

[returnDate <= DUE_DATE]

[returnDate > DUE_DATE]

payFine

checkout[n = MAX]

return

lose_By_Patron
[1]

[3]

[4]

[6]

[5]

[7]

[2]

[8]

G

TF

32

Figure 4.3 State Diagram for Book

initialState

On Shelf

Checked
Out

Returned

Over due

check

Missing

return

On Hold

putOnShelf

find

Today > Due_date

Today <= Due_date

checkout

lose

cancel/expire

expire

return

return

check

lose_By_Patron
reserve

return_late

C

D

R

M

H

O
[113/213/313]

[112/212/312]
[15/25/35]

[114/214/314]

[13/23/33]

[17/27/37]

[18/28/38][110/210/310]

[111/211/311]

[14/24/34]

[11/21/31]

[19/29/39]

[16/26/36]

[12/22/32]

4.2 The Library example invariant

1. The system starts with the initial super state SS where the patron is in G and the

Book is in O.

2. The patron can check out a book only if she/he is in G state.

3. The patron should always be able to return a book at any time.

4. When the number of books checked out by Patron is equal to MAX, the state of

patron should be changed from G to T.

5. When the number of books checked out by Patron is not equal to MAX, the state

of patron should not be in T.

6. The patron should be able to return a missing book at any time.

33

7. The number of n for a patron is increased by 1 when the patron checks out or

reserves a book.

8. The number of n for a patron is decreased by 1 when the patron returns a book.

9. n is set to 0 when the system starts.

10. When a book is lost by a patron, the state of that patron should change to F.

11. The Patron cannot be in T and at least the state of one book is in O or R.

12. If the patron loses one book, she/he cannot lose another one until the fine is paid

first.

13. If the patron loses one book, she/he cannot return another one until the fine is paid

first.

14. If the patron returns one book late, she/he cannot lose another one (until she/he

pay the fine).

15. The patron can check out and return books even if the other books are on over due

4.3 Analysis

For our analysis we will assume that the library has only one patron and three

books. We now pair the transitions from the patron and book objects that can occur

together. An ‘X’ indicates that we are not concerned about the state of the object. The

transition set is shown in Table 4.2.

The initial transition matrix A1 has column and row headings with quadruple

representing the states of the four objects. For this model there are 3*6*6*6 = 648

combinations of the four objects. Table 4.1 shows a portion of the initial transition

matrix A1.

34

Table 4.1 Portion of A1

A1 GOOO GOCO GODO GORO GCOO

GOOO 1,21 1,11

GOCO 26 23 2,22

GODO

GORO 25

GCOO 16

The row headings are the initial states and the column headings are the final

states. The numbers in the table arise from Figure 4.2 and Figure 4.3. For the purpose of

clarification we have assigned unique numeric identifiers to the transitions for each

instance of an object in our system. The book object has three numeric identifiers for

each transition since we have three instances of that object.

For example, GOOO → GOCO represents a patron in good standing checking out

the second book. The 1 indicates the patron took the transition labeled checkout [n <

MAX] and the 21 indicates the second book took the transition labeled checkout. If there

is an entry for a cell in the matrix then the transition is valid. A2 is defined as A1 * A1

which identifies all the states we can reach in two steps. Table 4.3 shows a portion of A2.

35

Table 4.2 Transition set for Library Example

SSpre SSpost Transition Description
GOXX GCXX checkout[n<MAX], checkout Check out a book (if at

least one X = O || R) GXOX GXCX checkout[n<MAX], checkout
GXXO GXXC checkout[n<MAX], checkout
GOXX TCXX checkout[n=MAX], checkout Check out a book (if X =

C || H || D) GXOX TXCX checkout[n=MAX], checkout
GXXO TXXC checkout[n=MAX], checkout
GCXX GRXX return, return

Return book on time GXCX GXRX return, return
GXXC GXXR return, return
GDXX FRXX return[returnDate>dueDate], return

Return an over due book GXDX FXRX return[returnDate>dueDate], return
GXXD FXXR return[returnDate>dueDate], return
TCXX GRXX return[returnDate<=dueDate], return Patron with MAX books

returns a book on time TXCX GXRX return[returnDate<=dueDate], return
TXXC GXXR return[returnDate<=dueDate], return
TDXX FRXX return[returnDate>dueDate], return Patron with MAX books

returns an over due book TXDX FXRX return[returnDate>dueDate], return
TXXD FXXR return[returnDate>dueDate], return
GCXX FMXX lose_by_patron, lose_by_patron

Patron lost a book GXCX FXMX lose_by_patron, lose_by_patron
GXXC FXXM lose_by_patron, lose_by_patron
GCXX GHXX reserve

Patron holds a book GXCX GXHX reserve
GXXC GXXH reserve
TCXX THXX reserve Patron with MAX books

holds a book TXCX TXHX reserve
TXXC TXXH reserve
GHXX GCXX cancel/expire Cancel/Expiration of

holding book (n < MAX) GXHX GXCX cancel/expire
GXXH GXXC cancel/expire
THXX TCXX cancel/expire Cancel/Expiration of

holding book (n = MAX) TXHX TXCX cancel/expire
TXXH TXXC cancel/expire

O M lose A book lost by the library

M O find A book found by the
library

F G payFine Patron pays fine
C D check[today>Due_date] Book becomes over due
C C check[today<=Due_date] Book remains checked out
R O putOnShelf Book is re-shelved
H R return Return an on hold book
C R Return_late Return a late book

36

Table 4.3 Portion of A2

A2 GOOO GOCO GODO

GOOO (1,21)(26) (1,21)(23)

GOCO (2,22)(25) (26)(26) (26)(23)

GODO

GORO (25)(1,21)

GCOO (2,12)(15)

 From Table 4.3 we can observe that it is possible to go from GOCO to GOOO by

first returning the second book and then shelving it.

For this model, the invalid states include two sets. The first set includes the states

where the patron is in T and one of the three books is in O or R. Clearly the patron cannot

have MAX books checked out if one of the books is not checked out. The other set of

invalid states occurs when the patron is in F and all books are in C or D. In order for the

patron to be in F, one of the three books would have had to have been returned. An

analysis of A* for this model shows that the columns for these invalid states are empty.

Some of the faults in the design of the library example can be discovered by

simply analyzing the transition matrix. One such fault was a missing transition. From

FRCO and FCRO there is no valid single step transition to FRRO. This means that if one

book is returned late, the patron goes to F status and cannot return the other book until

the fine is paid.

37

4.4 Some inconsistencies found in the library example

1. The patron cannot return the book if she/he find it later on.

 GCXX, lose_by_patron, FMXX, ? , GRXX

This can be fixed by adding the following paired transitions:

 (F,find_by _patron,G) on Patron state diagram and (M,find_by_parton,R) on

Book state diagram

2. The patron cannot return any of her/his other books until the fine is paid first.

GDDX, return(late), FRDX, ?, FRRX or GCCX, return(late), FRCX, ?, FRRX

This can be fixed by adding (F, return, F) on Patron state diagram and

pair it with (C, return, R) and (D, return, R) on Book state diagram

In general, the patron cannot do anything if she/he in on ‘F’ until she/he

pays the fine.

3. The patron cannot lose an over due book

GCXX, check, GDXX, ?, FMXX

This can be fixed by adding (D, lose_by_patron, M) on Book state

diagram and pair it with (G, lose_by_patron, F) on Patron state diagram

4. The patron cannot lose a book if he is in state ‘T’

TCXX, ?, FMXX

This can be fixed by adding (T, lose_by_patron, F) on Patron state

diagram and pair it with (C, lose_by_patron, M) on Book state diagram

5. The system reaches an invalid state when the patron checked out MAX books and

trying to return a book late. TRXX , TXRX, and TXXR are invalid states because

the patron cannot be in state T while one of the his books is returned.

38

Example: GOOO(checkout[n<MAX],checkout)

GCOO(checkout[n<MAX],checkout) GCCO (checkout[n=MAX],checkout)

TCCC(return_late) TRCC

This can be fixed by paring transition return_late in Book with transition

return[returnDate>DUEDATE] in Parton

39

CHAPTER 5 - CASE STUDY II (UNIVERSITY EXAMPLE)

5.1 Description

The case study in this chapter describes a university system. The university

consists of colleges where each college may have students, instructors, and courses. The

students can enroll to section of courses. The instructors teach section of courses. Figure

5.1 shows the class diagram for the university model. In this case study, we will study the

behavior (states) of 6 classes in the university model. Specificity, the state diagrams of

the following classes will be considered: enrollment, teaching, student, instructor,

section, and room. Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, and Figure

5.7 show the state diagrams for each class. Statistical information about the University

Model is shown in Table 5.1.

Table 5.1 Information about the University Model

Number of classes 12

Number of State Diagrams 6

State Diagram Number of states Number of transitions

Enrollment 13 20

Teaching 4 5

Student 6 13

Instructor 4 12

Section 3 5

Room 3 6

40

Figure 5.1 Class Diagram for Univeristy Model

41

Figure 5.2 State Diagram for Enrollment

42

Figure 5.3 State Diagram for Teaching

Figure 5.4 State Diagram for Student

43

Figure 5.5 State Diagram for Instructor

Figure 5.6 State Diagram for Section

44

Figure 5.7 State Diagram for Room

5.2 The State Diagrams for University Model (UM)

The enrollment object can be in one of the following states: CourseSelection,

AdvisorApproval, Ineligible, Waiting, Eligible, Withdrawal, Enrolled, InProgress,

Completed, Cancelled, Dropped, and Incomplete. We will call these states C, A, I, W, E,

T, L, P, M, K, D, and N respectively for the rest of this chapter.

A teaching object has four states Assigned, InProgress, Finished, and End. We

will call these states A, P, F, and Z respectively for the rest of this chapter.

The student object can be in one of the following states: GoodStanding, OnHold,

Graduated, OnProbation, Dismissed, and End. We will call these states G, H, R, P, D,

and Z respectively for the rest of this chapter.

45

An instructor object has four states TeachingAndResearch, TeachingOnly,

ResearchOnly, and OnLeave. We will call these states B, T, R, and L respectively for the

rest of this chapter.

The section object can be in one of the following states: Open, Closed, and

Canceled. We will call these states O, C, and N respectively for the rest of this chapter.

A room object has three states Available, Assigned, and RepairNeeded. We will

call these states A, S and R respectively for the rest of this chapter.

5.3 Some Invariants for UM

1. The system starts with the initial super state SS where the student in Good

Standing, instructor in both TeachingAndResearch, enrollment in Course

Selection, teaching in assigned, section in opened, and room in available.

Student= G, Instructor=B, Enrollment=C, Teaching=A, Section=O, Room=A

2. The student can enroll in classes only if s/he is in good standing.

3. The student can enroll in a section only if the section is open.

4. The teaching for an instructor can be assigned only if the instructor is on teaching

only or in TeachingAndResearch.

5. The teaching begins only if the room is assigned.

6. The teaching begins only if the section is not canceled.

7. If an instructor go to on leave or research only after the class is begin the teaching

must be reassigned.

8. The student graduated when all his/her classes are completed.

9. When a section is canceled, the enrollment is canceled too.

46

10. If a student tries to enroll in a closed section due to the capacity, the enrollment of

that student should be placed on waiting until the section is opened.

5.4 Analysis

For our analysis we will study the behavior of the university model in two cases.

The first case is when the system has one object of student, one object of section, one

object of enrollment, one object of instructor, one object of teaching, and one object of

room. The transition set for this case is shown in Table 5.2. In this case the total number

of possible states:

6*3*13*4*4*3 = 11232 possible states

In the second case we will study the behavior when the system has two objects of

student, two objects of section, two objects of enrollment, two objects of instructor, two

object of teaching, and two objects of room. The transition set for this case is shown in

Table 5.3. In this case the total number of possible states:

6*6*3*3*13*13*4*4*4*4*3*3 = 126157824 possible states

In the transition sets in Table 5.2 and Table 5.3, we pair the transitions from the

objects that can occur together. An ‘X’ indicates that we are not concerned about the state

of object.

Each super state in Table 5.2 consists of six states. The SS has the form (S1, S2,

S3, S4, S5, S6) where S1 is the state of student, S2 is the state of enrollment, S3 is the state

of section, S4 is the state of room, S5 is the state of instructor, and S6 is the state of

teaching.

47

Table 5.2 Transition Set for University Model

For a system with one student, one section, one instructor, and one room
S= student, E=enrollment, C=section, R=room, I=instructor, T=teaching

SSpre SSpost
Transition(s)

S,E,C,R,I,T S,E,C,R,I,T

1 G,X,X,X,X,X H,X,X,X,X,X nopayment
2 H,X,X,X,X,X G,X,X,X,X,X Pay
3 G,X,X,X,X,X R,X,X,X,X,X Finish
4 H,X,X,X,X,X R,X,X,X,X,X Pay
5 H,X,X,X,X,X D,X,X,X,X,X dismiss
6 G,X,X,X,X,X P,X,X,X,X,X checkGPA[GPA<2.0]
7 P,X,X,X,X,X P,X,X,X,X,X checkGPA[GPA<2.0]
8 P,X,X,X,X,X G,X,X,X,X,X checkGPA[GPA>=2.0]
9 P,X,X,X,X,X D,X,X,X,X,X dismiss

10 R,X,X,X,X,X Z,X,X,X,X,X inactivate
11 D,X,X,X,X,X Z,X,X,X,X,X inactivate
12 X,X,X,X,B,X X,X,X,X,T,X teach
13 X,X,X,X,T,X X,X,X,X,B,X doBoth
14 X,X,X,X,B,X X,X,X,X,R,X doresearch
15 X,X,X,X,R,X X,X,X,X,B,X doBoth
16 X,X,X,X,B,X X,X,X,X,L,X leave
17 X,X,X,X,L,X X,X,X,X,B,X doBoth
18 X,X,X,X,T,X X,X,X,X,L,X leave
19 X,X,X,X,L,X X,X,X,X,T,X teach
20 X,X,X,X,R,X X,X,X,X,L,X leave
21 X,X,X,X,L,X X,X,X,X,R,X doResearch
22 X,X,X,X,T,X X,X,X,X,R,X doResearch
23 X,X,X,X,R,X X,X,X,X,T,X teach
24 G,E,O,X,X,X G,L,O,X,X,X enroll, enroll[students<max]

25 G,E,O,X,X,X G,L,C,X,X,X enroll,enroll[students<max],
close[n<max]

26 G,E,C,X,X,X G,W,C,X,X,X enroll, enroll[students>=max]
27 G,C,X,X,X,X G,A,X,X,X,X requestApproval

48

28 G,A,X,X,X,X G,I,X,X,X,X notApproved
29 G,A,X,X,X,X G,E,X,X,X,X approve
30 G,W,C,X,X,X G,L,O,X,X,X enroll, enroll, open[n<max]
31 G,L,X,S,B,P G,P,X,S,B,P study
32 G,L,X,S,T,P G,P,X,S,T,P study
33 G,L,X,X,X,X G,D,X,X,X,X drop
34 G,L,O,X,X,X G,K,N,X,X,X cancel, cancel
35 G,P,X,X,X,X G,D,X,X,X,X drop [week<8]
36 G,P,X,X,X,X G,N,X,X,X,X grade[I]
37 G,P,X,X,X,X G,M,X,X,X,X grade[A..F]
38 G,P,X,X,X,X G,T,X,X,X,X drop[week>=8]
39 G,I,X,X,X,X G,Z,X,X,X,X end
40 G,T,X,X,X,X G,Z,X,X,X,X end
41 G,M,X,X,X,X G,Z,X,X,X,X end
42 G,N,X,X,X,X G,Z,X,X,X,X end
43 G,D,X,X,X,X G,Z,X,X,X,X end
44 G,K,X,X,X,X G,Z,X,X,X,X end
45 X,X,X,X,X,A X,X,X,X,X,P beginClass
46 X,X,X,X,X,P X,X,X,X,X,Z reassign
47 X,X,X,X,X,A X,X,X,X,X,Z cancel
48 X,X,X,X,X,P X,X,X,X,X,F complete
49 X,X,O,X,X,X X,X,C,X,X,X close[max=n]
50 X,X,O,X,X,X X,X,N,X,X,X cancel
51 X,X,C,X,X,X X,X,O,X,X,X open[n<max]
52 X,X,N,X,X,X X,X,O,X,X,X open
53 X,X,X,A,X,X X,X,X,S,X,X assign
54 X,X,X,A,X,X X,X,X,R,X,X needrepair
55 X,X,X,S,X,X X,X,X,R,X,X needrepair
56 X,X,X,S,X,X X,X,X,A,X,X release
57 X,X,X,R,X,X X,X,X,A,X,X fix

49

Each super state in Table 5.3 consists of twelve states. The SS has the form (S1,

S2, S3, S4, S5, S6 , S7, S8, S9, S10, S11, S12) where S1 is the state of first student, S2 is the

state of second student, S3 is the state of first enrollment, S4 is the state of second

enrollment, S5 is the state of first section, S6 is the state of second section, S7 is the state

of first room, S8 is the state of second room, S9 is the state of first instructor, S10 is the

state of second instructor, S11 is the state of first teaching, and S12 is the state of second

teaching.

Table 5.3 Transition Set for University Model

For a system with 2 students, 2 sections, 2 instructors, and 2 rooms
s= student, e=enrollment, c=section, r=room, i=instructor, t=teaching

 SSpre SSpost
Transition(s)

s1e1c1r1i1t1s2e2c2r2i2t2 s1e1c1r1i1t1s2e2c2r2i2t2

1 G,X,X,X,X,X,X,X,X,X,X,X H,X,X,X,X,X,X,X,X,X,X,X nopayment

2 H,X,X,X,X,X,X,X,X,X,X,X G,X,X,X,X,X,X,X,X,X,X,X Pay

3 G,X,X,X,X,X,X,X,X,X,X,X R,X,X,X,X,X,X,X,X,X,X,X Finish

4 H,X,X,X,X,X,X,X,X,X,X,X R,X,X,X,X,X,X,X,X,X,X,X Pay

5 H,X,X,X,X,X,X,X,X,X,X,X D,X,X,X,X,X,X,X,X,X,X,X dismiss

6 G,X,X,X,X,X,X,X,X,X,X,X P,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA<2.0]

7 P,X,X,X,X,X,X,X,X,X,X,X P,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA<2.0]

8 P,X,X,X,X,X,X,X,X,X,X,X G,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA>=2.0]

9 P,X,X,X,X,X,X,X,X,X,X,X D,X,X,X,X,X,X,X,X,X,X,X dismiss

10 R,X,X,X,X,X,X,X,X,X,X,X Z,X,X,X,X,X,X,X,X,X,X,X inactivate

11 D,X,X,X,X,X,X,X,X,X,X,X Z,X,X,X,X,X,X,X,X,X,X,X inactivate

12 X,X,X,X,X,X,G,X,X,X,X,X X,X,X,X,X,X,H,X,X,X,X,X nopayment

13 X,X,X,X,X,X,H,X,X,X,X,X X,X,X,X,X,X,G,X,X,X,X,X Pay

14 X,X,X,X,X,X,G,X,X,X,X,X X,X,X,X,X,X,R,X,X,X,X,X Finish

15 X,X,X,X,X,X,H,X,X,X,X,X X,X,X,X,X,X,R,X,X,X,X,X Pay

16 X,X,X,X,X,X,H,X,X,X,X,X X,X,X,X,X,X,D,X,X,X,X,X dismiss

17 X,X,X,X,X,X,G,X,X,X,X,X X,X,X,X,X,X,P,X,X,X,X,X checkGPA[GPA<2.0]

18 X,X,X,X,X,X,P,X,X,X,X,X X,X,X,X,X,X,P,X,X,X,X,X checkGPA[GPA<2.0]

50

19 X,X,X,X,X,X,P,X,X,X,X,X X,X,X,X,X,X,G,X,X,X,X,X checkGPA[GPA>=2.0]

20 X,X,X,X,X,X,P,X,X,X,X,X X,X,X,X,X,X,D,X,X,X,X,X dismiss

21 X,X,X,X,X,X,R,X,X,X,X,X X,X,X,X,X,X,Z,X,X,X,X,X inactivate

22 X,X,X,X,X,X,D,X,X,X,X,X X,X,X,X,X,X,Z,X,X,X,X,X inactivate

23 X,X,X,X,B,X,X,X,X,X,X,X X,X,X,X,T,X,X,X,X,X,X,X teach

24 X,X,X,X,T,X,X,X,X,X,X,X X,X,X,X,B,X,X,X,X,X,X,X doBoth

25 X,X,X,X,B,X,X,X,X,X,X,X X,X,X,X,R,X,X,X,X,X,X,X doresearch

26 X,X,X,X,R,X,X,X,X,X,X,X X,X,X,X,B,X,X,X,X,X,X,X doBoth

27 X,X,X,X,B,X,X,X,X,X,X,X X,X,X,X,L,X,X,X,X,X,X,X leave

28 X,X,X,X,L,X,X,X,X,X,X,X X,X,X,X,B,X,X,X,X,X,X,X doBoth

29 X,X,X,X,T,X,X,X,X,X,X,X X,X,X,X,L,X,X,X,X,X,X,X leave

30 X,X,X,X,L,X,X,X,X,X,X,X X,X,X,X,T,X,X,X,X,X,X,X teach

31 X,X,X,X,R,X,X,X,X,X,X,X X,X,X,X,L,X,X,X,X,X,X,X leave

32 X,X,X,X,L,X,X,X,X,X,X,X X,X,X,X,R,X,X,X,X,X,X,X doResearch

33 X,X,X,X,T,X,X,X,X,X,X,X X,X,X,X,R,X,X,X,X,X,X,X doResearch

34 X,X,X,X,R,X,X,X,X,X,X,X X,X,X,X,T,X,X,X,X,X,X,X teach

35 X,X,X,X,X,X,X,X,X,X,B,X X,X,X,X,X,X,X,X,X,X,T,X teach

36 X,X,X,X,X,X,X,X,X,X,T,X X,X,X,X,X,X,X,X,X,X,B,X doBoth

37 X,X,X,X,X,X,X,X,X,X,B,X X,X,X,X,X,X,X,X,X,X,R,X doresearch

38 X,X,X,X,X,X,X,X,X,X,R,X X,X,X,X,X,X,X,X,X,X,B,X doBoth

39 X,X,X,X,X,X,X,X,X,X,B,X X,X,X,X,X,X,X,X,X,X,L,X leave

40 X,X,X,X,X,X,X,X,X,X,L,X X,X,X,X,X,X,X,X,X,X,B,X doBoth

41 X,X,X,X,X,X,X,X,X,X,T,X X,X,X,X,X,X,X,X,X,X,L,X leave

42 X,X,X,X,X,X,X,X,X,X,L,X X,X,X,X,X,X,X,X,X,X,T,X teach

43 X,X,X,X,X,X,X,X,X,X,R,X X,X,X,X,X,X,X,X,X,X,L,X leave

44 X,X,X,X,X,X,X,X,X,X,L,X X,X,X,X,X,X,X,X,X,X,R,X doResearch

45 X,X,X,X,X,X,X,X,X,X,T,X X,X,X,X,X,X,X,X,X,X,R,X doResearch

46 X,X,X,X,X,X,X,X,X,X,R,X X,X,X,X,X,X,X,X,X,X,T,X teach

47 G,E,O,X,X,X,X,X,X,X,X,X G,L,O,X,X,X,X,X,X,X,X,X
enroll,

enroll[students<max]

48 G,E,O,X,X,X,X,X,X,X,X,X G,L,C,X,X,X,X,X,X,X,X,X
enroll,enroll[students<

max], close [n=max]

51

49 G,E,C,X,X,X,X,X,X,X,X,X G,W,C,X,X,X,X,X,X,X,X,X
enroll,

enroll[students>=max]

50 G,C,X,X,X,X,X,X,X,X,X,X G,A,X,X,X,X,X,X,X,X,X,X requestApproval

51 G,A,X,X,X,X,X,X,X,X,X,X G,I,X,X,X,X,X,X,X,X,X,X notApproved

52 G,A,X,X,X,X,X,X,X,X,X,X G,E,X,X,X,X,X,X,X,X,X,X approve

53 G,W,C,X,X,X,X,X,X,X,X,X G,L,O,X,X,X,X,X,X,X,X,X enroll, enroll, open[n<max]

54 G,L,X,S,B,P,X,X,X,X,X,X G,P,X,S,B,P,X,X,X,X,X,X study

55 G,L,X,S,T,P,X,X,X,X,X,X G,P,X,S,T,P,X,X,X,X,X,X study

56 G,L,X,X,X,X,X,X,X,X,X,X G,D,X,X,X,X,X,X,X,X,X,X drop

57 G,L,O,X,X,X,X,X,X,X,X,X G,K,N,X,X,X,X,X,X,X,X,X cancel, cancel

58 G,P,X,X,X,X,X,X,X,X,X,X G,D,X,X,X,X,X,X,X,X,X,X drop [week<8]

59 G,P,X,X,X,X,X,X,X,X,X,X G,N,X,X,X,X,X,X,X,X,X,X grade[I]

60 G,P,X,X,X,X,X,X,X,X,X,X G,M,X,X,X,X,X,X,X,X,X,X grade[A..F]

61 G,P,X,X,X,X,X,X,X,X,X,X G,T,X,X,X,X,X,X,X,X,X,X drop[week>=8]

62 G,I,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

63 G,T,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

64 G,M,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

65 G,N,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

66 G,D,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

67 G,K,X,X,X,X,X,X,X,X,X,X G,Z,X,X,X,X,X,X,X,X,X,X end

68 X,X,X,X,X,X,G,E,O,X,X,X X,X,X,X,X,X,G,L,O,X,X,X
enroll,

enroll[students<max]

69 X,X,X,X,X,X,G,E,O,X,X,X X,X,X,X,X,X,G,L,C,X,X,X
enroll, enroll[students<

max], close[n=max]

70 X,X,X,X,X,X,G,E,C,X,X,X X,X,X,X,X,X,G,W,C,X,X,X
enroll,

enroll[students>=max]

71 X,X,X,X,X,X,G,C,X,X,X,X X,X,X,X,X,X,G,A,X,X,X,X requestApproval

72 X,X,X,X,X,X,G,A,X,X,X,X X,X,X,X,X,X,G,I,X,X,X,X notApproved

73 X,X,X,X,X,X,G,A,X,X,X,X X,X,X,X,X,X,G,E,X,X,X,X approve

74 X,X,X,X,X,X,G,W,C,X,X,X X,X,X,X,X,X,G,L,O,X,X,X enroll, enroll, open[n<max]

75 X,X,X,X,X,X,G,L,X,S,B,P X,X,X,X,X,X,G,P,X,S,B,P study

76 X,X,X,X,X,X,G,L,X,S,T,P X,X,X,X,X,X,G,P,X,S,T,P study

77 X,X,X,X,X,X,G,L,X,X,X,X X,X,X,X,X,X,G,D,X,X,X,X drop

52

78 X,X,X,X,X,X,G,L,O,X,X,X X,X,X,X,X,X,G,K,N,X,X,X cancel, cancel

79 X,X,X,X,X,X,G,P,X,X,X,X X,X,X,X,X,X,G,D,X,X,X,X drop [week<8]

80 X,X,X,X,X,X,G,P,X,X,X,X X,X,X,X,X,X,G,N,X,X,X,X grade[I]

81 X,X,X,X,X,X,G,P,X,X,X,X X,X,X,X,X,X,G,M,X,X,X,X grade[A..F]

82 X,X,X,X,X,X,G,P,X,X,X,X X,X,X,X,X,X,G,T,X,X,X,X drop[week>=8]

83 X,X,X,X,X,X,G,I,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

84 X,X,X,X,X,X,G,T,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

85 X,X,X,X,X,X,G,M,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

86 X,X,X,X,X,X,G,N,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

87 X,X,X,X,X,X,G,D,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

88 X,X,X,X,X,X,G,K,X,X,X,X X,X,X,X,X,X,G,Z,X,X,X,X end

89 X,X,X,X,X,A,X,X,X,X,X,X X,X,X,X,X,P,X,X,X,X,X,X beginClass

90 X,X,X,X,X,P,X,X,X,X,X,X X,X,X,X,X,Z,X,X,X,X,X,X reassign

91 X,X,X,X,X,A,X,X,X,X,X,X X,X,X,X,X,Z,X,X,X,X,X,X cancel

92 X,X,X,X,X,P,X,X,X,X,X,X X,X,X,X,X,F,X,X,X,X,X,X complete

93 X,X,X,X,X,X,X,X,X,X,X,A X,X,X,X,X,X,X,X,X,X,X,P beginClass

94 X,X,X,X,X,X,X,X,X,X,X,P X,X,X,X,X,X,X,X,X,X,X,Z reassign

95 X,X,X,X,X,X,X,X,X,X,X,A X,X,X,X,X,X,X,X,X,X,X,Z cancel

96 X,X,X,X,X,X,X,X,X,X,X,P X,X,X,X,X,X,X,X,X,X,X,F complete

97 X,X,O,X,X,X,X,X,X,X,X,X X,X,C,X,X,X,X,X,X,X,X,X close[max=n]

98 X,X,O,X,X,X,X,X,X,X,X,X X,X,N,X,X,X,X,X,X,X,X,X cancel

99 X,X,C,X,X,X,X,X,X,X,X,X X,X,O,X,X,X,X,X,X,X,X,X open[n<max]

100 X,X,N,X,X,X,X,X,X,X,X,X X,X,O,X,X,X,X,X,X,X,X,X open

101 X,X,X,X,X,X,X,X,O,X,X,X X,X,X,X,X,X,X,X,C,X,X,X close[max=n]

102 X,X,X,X,X,X,X,X,O,X,X,X X,X,X,X,X,X,X,X,N,X,X,X cancel

103 X,X,X,X,X,X,X,X,C,X,X,X X,X,X,X,X,X,X,X,O,X,X,X open[n<max]

104 X,X,X,X,X,X,X,X,N,X,X,X X,X,X,X,X,X,X,X,O,X,X,X open

105 X,X,X,A,X,X,X,X,X,X,X,X X,X,X,S,X,X,X,X,X,X,X,X assign

106 X,X,X,A,X,X,X,X,X,X,X,X X,X,X,R,X,X,X,X,X,X,X,X needrepair

107 X,X,X,S,X,X,X,X,X,X,X,X X,X,X,R,X,X,X,X,X,X,X,X needrepair

108 X,X,X,S,X,X,X,X,X,X,X,X X,X,X,A,X,X,X,X,X,X,X,X release

109 X,X,X,R,X,X,X,X,X,X,X,X X,X,X,A,X,X,X,X,X,X,X,X fix

110 X,X,X,X,X,X,X,X,X,A,X,X X,X,X,X,X,X,X,X,X,S,X,X assign

53

111 X,X,X,X,X,X,X,X,X,A,X,X X,X,X,X,X,X,X,X,X,R,X,X needrepair

112 X,X,X,X,X,X,X,X,X,S,X,X X,X,X,X,X,X,X,X,X,R,X,X needrepair

113 X,X,X,X,X,X,X,X,X,S,X,X X,X,X,X,X,X,X,X,X,A,X,X release

114 X,X,X,X,X,X,X,X,X,R,X,X X,X,X,X,X,X,X,X,X,A,X,X fix

The initial transition matrix A1 has column and row headings with Super States

representing the state of each of the six objects. Table 5.4 shows portion of the initial

transition matrix A1 for the University Model. The row headings are the initial states and

the column headings are the final states. The identifiers in the table arise from Figure 5.2

- Figure 5.7.

For the purpose of clarification we have assigned unique identifiers to the

transitions for each object in the University Model. Each transition is denoted by a letter

and a number. The letter refers to the object’s name and the number refers to the

transition number within the object. For example, (GEOABA GLOABA) represents an

eligible student in good standing enrolls in a course. The e7 indicates the enrollment took

the transition labeled enroll[students<max] and s2 indicates the student took the

transition labeled enroll. If there is an entry for a cell in the matrix then the transition is

valid. If the cell is empty then there is no transition can lead from the initial SS to the

final SS. For example (GCOABA GIOABA), there is no way to go from GCOABA to

GCOABA in one step.

54

Table 5.4 Portion of A1 for the transition set in Table 5.2

Table 5.5 shows a portion of A2. Any SS that can be reached in two steps are

shown in A2. From Table 5.5 we can observe that it is possible to go from GAOABA to

GLOABA by:

• first go from GAOABA to GEOABA by doing e5

• then go from GEOABA to GLOABA by doing e7 and s2

Also, we can go from GCOABA to GIOABA by:

• first go from GCOABA to GAOABA by doing e2

• then go from GAOABA to GIOABA by doing e3

A1
G

C
O

A
B

A

G
A

O
A

B
A

G
IO

A
B

A

G
W

O
A

B
A

G
EO

A
B

A

G
TO

A
B

A

G
LO

A
B

A

G
PO

A
B

A

G
M

O
A

B
A

G
K

O
A

B
A

G
D

O
A

B
A

G
N

O
A

B
A

G
ZO

A
B

A

GCOABA e2

GAOABA e3 e5

GIOABA e16

GWOABA e6

GEOABA e4 e7,s2

GTOABA e15

GLOABA e8 e10 e11

GPOABA e9 e14 e12 e13

GMOABA e20

GKOABA e17

GDOABA e18

GNOABA e19

GZOABA

55

Table 5.5 Portion of A2 for the transition set in Table 5.2

If a cell has more than one entry, it means that there are more than one path can

lead from the initial state to the final state. For example, the system can go from

(GPOABA) to (GZOABA) in two steps by several ways: e9 then e15 or e14 then e20 or

e12 then e18 or e13 then e19.

A2
G

C
O

A
B

A

G
A

O
A

B
A

G
IO

A
B

A

G
W

O
A

B
A

G
EO

A
B

A

G
TO

A
B

A

G
LO

A
B

A

G
PO

A
B

A

G
M

O
A

B
A

G
K

O
A

B
A

G
D

O
A

B
A

G
N

O
A

B
A

G
ZO

A
B

A

GCOABA e2,
e3

GAOABA e5,
e4 e5,

(e7,s2) e3,e16

GIOABA
GWOABA e6,e8

GEOABA e4,e6 (e7,s2),
e8 (e7,s2),

e10
(e7,s2),

e11

GTOABA

GLOABA

 e8,
e9 e8,

e14 e8,e12 e8,
e13

e10,e17
||

e11,e18

GPOABA

e9,e15 ||
e14,e20

||
e12,e18

||
e13,e19

GMOABA
GKOABA
GDOABA
GNOABA
GZOABA

56

By looking to the transition set, we may figure out that there are three types of

transitions: independent transitions, paired transitions, and constrained transitions. Those

types of transitions were described earlier in chapter 3.

In the transition set of the university model (Table 5.2), we may classify the

transitions according to the above types as the following:

1. Transitions 1-23 and 45-57 are independent transitions.

2. Transitions 24, 25, 26, 30, and 34 are paired transitions.

3. Transitions 24-44 are constrained transitions.

Most of the transitions in Table 5.2 are independent transitions (36 out of 57). The

independent transition can happen at any time without considering state of the other

objects. Furthermore, the independent transitions do not change the state of other objects.

They can only change the state of objects that they are belongs to. For instance, the

student can go from GoodStanding (G) to OnHold (H) by doing the transition noPayment

(G,X,X,X,X,X H,X,X,X,X,X) regardless of the state of the other objects. Only state of

the student is changed.

The paired transitions must happen all together. If a paired transition happens

independently of the other transition(s), this could leave the system in an inconsistent

state. For example, consider transition number 34 in Table 5.2 (G,L,O,X,X,X

G,K,N,X,X,X) both transitions: cancel in student and cancel in section must happen

together. For instance, if only cancel in section happen individually, the system will

transition from (G,L,O,X,X,X) to (G,L,N,X,X,X) which is an inconsistent super state.

The student is enrolled in a cancelled section.

57

The constrained transitions are performed only when one or more objects are in a

specific state. They consider the super state when performing the transition. For example,

in transition number 29 in Table 5.2, when perform transition approve the object student

must be in GoodStanding state.

5.5 Inconsistency Discussion for UM

5.5.1 Super State Inconsistencies

We know from the domain knowledge that the student graduated when he/she

finishes all courses. This is stated in invariant number 8 in section 5.3. The student who

graduated cannot be in progress. The super state (R,P,X,X,X,X) is an invalid super state

and should not happen.

If the student is dismissed s/he should not be eligible for enrolling in a section

until the student comes back to good standing state. This condition is known from the

domain knowledge and stated in invariant number 2 in section 5.3. The super state

(D,E,X,X,X,X) is an invalid super state and should not happen.

The domain knowledge tells us that when a section is canceled, the enrollment is

cancelled too. This is stated in invariant number 9 in section 5.3. The student cannot

enroll in a canceled section. The super state (G,K,N,X,X,X) is generated and is a valid

super state. On the other hand, the super state (G,L,N,X,X,X) is an invalid and will not be

generated.

58

5.5.2 Single Step Transitions Inconsistencies

In enrollment state diagram a student cannot make the transition approve from

state AdvisorApproved to state Eligible when the student is OnHold. If a single step

transition such as (H,A,X,X,X,X) (H,E,X,X,X,X) happens, it would be an invalid

transition. This is because the transition set does not include such transition. In general,

when the student is OnHold s/he is not allowed to do any enrollment activity until the

OnHold is released by doing a payment (transition pay). This is because the enrollment

states are constrained by the student being on GoodStanding state.

Another example for the invalid single step transition is when a section is

canceled but the enrollment is not. i.e. the single step transition (G,L,O,X,X,X)

(G,L,N,X,X,X) is invalid. That is because the transition set forces the cancel transition in

enrollment to happen simultaneously with cancel transition in section. The single step

transition (G,L,O,X,X,X) (G,K,N,X,X,X) is the correction for the above invalid

transition.

5.5.3 Sequence Inconsistencies

The sequence diagram on Figure 5.8 shows that the university opens a new

section and a student enrolls successfully in this section. The section is then cancelled but

the student is still enrolled in that section. This is inconsistency because this section

should be cancelled from the student schedule too. Hence the sequence:

(G,C,O,A,B,A) (G,A,O,A,B,A) (G,E,O,A,B,A) (G,L,O,A,B,A)

(G,L,O,A,B,A) (G,L,N,A,B,A) is an invalid sequence.

59

Figure 5.8 A Sequence Diagram for a Class Enrollment

U : UniveristyU : Univeristy C : SectionC : Section E : EnrollmentE : Enrollment S : StudentS : Student

create()

requestApproval()

approve

enroll()[student<max]

enroll()

cancel()

60

CHAPTER 6 - SCALABILITY

Since Super State Analysis uses all possible combination of states to generate the

sequences, this could cause a state explosion during the generation of the sequences. The

state explosion problem is a well-known problem in the area of computation [VA98].

Many researchers have attempted to find techniques to reduce the state explosion in

different areas [GA05, RA06, HO07, ST01].

In Super State Analysis, often more than one instance of each class is involved in

the analysis to discover the inconsistencies. Using only one instance of each class in the

analysis may miss some inconsistencies that may arise when using more than one

instance of some classes. For example, assume that there is a system with two classes: C1

and C2 interacting together and having some paired transitions. Assume that class C1 can

interact with n instances of class C2. It is better to have n instances of class C2 to detect

the inconsistency that will not be detected when using only one instance of each.

However, using n instances of each class will increase the number of super states. In

general, the total number of super states involved in Super State Analysis is calculated

using the following equation:

Total number of states = S1
C1

* S2
C2

*

…*

 Sn
Cn

Where:

Ci is the number of instances of class i that involved in SSA

 Si is the number of states in class Ci

n is the number of classes

61

There are several techniques that could be applied to Super State Analysis to

reduce the state explosion. The paired transitions technique is used to select a smaller

number of instances of some objects. It is not always necessary to analyze n instances of

each object. Instead, by studying the behavior and interaction between the classes, a

smaller number may be used. This may make a large reduction in the total number of

states since we decrease the Ci in Si
Ci

.

There are some other possible techniques that will be discussed that can be

applied to super state analysis. One possible technique involves reducing the number of

objects in the system by eliminating unnecessary objects from the analysis. Another

possible technique is decreasing the number of states in some classes. Each class can be

analyzed and some of its states may be merged together to reduce the total number of

states. The final possible technique discussed is limiting the number of steps in each

sequence to reduce the number of sequences.

6.1 Paired Transitions Technique

The paired transitions are the transitions that must happen together. The paired

transitions were discussed in chapter 3. For example, in the library example in chapter

four, transition checkOut in Patron is paired with transition checkOut in Book. It is

similar for transition return in Patron and Book. The paired transitions can be used as a

guide to select the number of instances of each class. The classes that are involved in

paired transitions may have more than one instance in the analysis.

The total number of states can be reduced by analyzing a smaller number of

instances of some classes. Selection of a smaller number of instances will reduce the state

62

explosion. The selection of a smaller number of instances of each class needs some

analysis for the system to decide the selection. The interaction between the classes should

be considered to select the number of instances. For example, consider a system with two

classes: C1 and C2 with a restriction that C1 may interact with at most n instances of class

C2. Using paired transition technique, we can chose one instance of C1 and n instances of

C2 instead of analyzing n instances of each. This selection will reduce the number of

super state and therefore reduce the state explosion.

In the library example in chapter 4, there are two objects: Patron which has three

states and Book which has six states. Assume that the patron can checkout at most two

books. When using super state analysis with two instances of book and two instances of

patron, SSA will generate 324 states. However, doing first, two instances of book and one

instance of patron will generate 108 states and then doing two instances of patron and one

instance of book will generate 54 states. Doing one instance of patron and two instances

of book or one instance of book and two instances of patron may greatly reduce the state

explosion. Table 6.1 shows the effect of object selection on the total number of super

states for the library example. In general, reducing the number of instances by one

instance will reduce the state explosion by Si where Si is the number of states in class i.

Table 6.1 Effect of object selection on the total number of super states

Number of Objects Total Number of
Super States

Patron, Book1, Book2 108

Patron1, Patron2, Book 54

Patron1, Patron2, Book1, Book2 324

63

6.2 Object Reduction Technique

This technique can be applied to Super State Analysis to reduce the number of

objects. If there are some objects acting independently, they can be eliminated from the

analysis. An object is independent when it does not affect the state of the other object and

its state is not affected by other objects. The independent objects can be identified from

the transition set. If the state of an object has always ‘X’ in pre state and post state, this

object is independent from other objects and it can be eliminated from the analysis to

reduce the state explosion. The transition set on Table 6.2 shows the behavior of the

independent object. Object ‘O2’ is an independent object since its state is always ‘X’

regardless of the states of the other objects.

Table 6.2 Behavior of independent objects in transition set

SSpre SSpost
Transition(s) O1,O2,O3,…,On O1,O2,O3,…,On

S1,X,S1,… ,S1 S2,X,S2,… ,S1 t1,t3
S2,X,S2,… ,S1 S2,X,S3,… ,S1 t4
S2,X,S3,… ,S1 S3,X,S3,… ,S2 t5, t6

…

… …

For example, assume that for the library example in chapter 4 there is another

state diagram for staff. So, we have a total of three state diagrams: Patron, Book, and

Staff. If object Staff does not have any interaction with neither Patron nor Book, it will

always have ‘X’ when patron or book makes a transition. Thus, object Staff can be

eliminated from the analysis.

64

6.3 State Reduction Technique

The number of states in each state diagram involved in Super State Analysis could

be decreased by merging some states together. The state reduction is an applicable

technique and can be applied to Super State Analysis to reduce the state explosion.

Reduction will require the developer to analyze the transition set and decide which group

of states can be merged together.

The university model on chapter five has 6 state diagrams (Figure 5.2 - Figure

5.7). Some of these diagrams may have some states that can be merged together to reduce

the number of states. For Example, the student state diagram on Figure 5.4 can be

reduced to two states: GoodStanding and NotGoodStanding. This will reduce the number

of state from six states to only two states. The reduced state diagram for Student is shown

on Figure 6.1.

Figure 6.1 Reduced State Diagram for Student

GoodStanding NotGoodStanding

pay()

checkGPA()[GPA>=2.0]

noPayment()

checkGPA() [GPA<2.0]

dismiss()

finish()

checkGPA()[GPA<2.0]enroll()

65

6.4 Limit the number of steps Technique

Another applicable way to reduce the state explosion is to limit the number of

steps in each sequence. We may limit the sequence computation to a smaller number to

reduce the state explosion. For example, the Super State Analysis could be restricted to

perform the analysis up to a certain number of steps instead of doing all possible steps.

However, limiting the number of steps will not guarantee to discover all possible

inconsistencies.

66

CHAPTER 7 - SPECIFICATION AND IMPLEMENTATION

7.1 Specification

In this chapter, set notation is used to specify Super State Analysis. I use set

notation to compare the different sets formally. I identify the relationships between these

different sets. Super State Analysis contains five comparisons between eight different

sets. Specifically, using set notations, I compare the following sets of SSA model in

Figure 3.1 in page 32.

• set T1 with set H1

Set of all generated Super States vs. Set of valid Super States (SS)

• set T1 with set H2

Set of all generated Super States vs. Set of invalid Super States (SS)

• set T2 with set H3

Set of all generated single step transitions vs. Set of valid single step transitions

• set T2 with set H4

Set of all generated single step transitions vs. Set of invalid single step transitions

• set T3 with set S

Set of all generated sequences vs. Sequences

7.2 Formalization of Super State Analysis (SSA)

A system is specified by class diagrams, sequence diagrams, and state diagrams.

In the real world, a system may have more diagrams but we are here interested in these

three diagrams.

67

A system S = {Cl, Seq, St} where
Cl is a set of class diagrams,
Seq is a set of sequence diagrams, and
St is a set of state diagrams.

A class diagram describes the static structure of the system. A class diagram,

Cdig, is a set of classes. The associations between classes are not of concern for this

analysis. There are three components for each class: name, set of methods, and set of

attributes.

A class diagram, Cdig ∈ Cl, is a set of classes, Cls.
Each class, C ∈ Cls, has three elements:

C = {cname, Mthdcname, Attcname}
where
cname: the class name,
Mthdcname : the set of all methods of class C, and
Attcname: the set of all attributes of class C

A sequence diagram is a sequence of calls between classes that occur in a time

sequence. There are three components for each call in a sequence diagram:

1. The source class of the call.

The source class must be a class in the class diagram.

2. The destination class of the call.

The destination class must be a class in the class diagram.

3. The message.

To insure consistency with the class diagram, the message must be a method in

the destination class.

68

A sequence diagram, Sdig ∈ Seq, is an ordered
tuple of calls. Each call ∈ Sdig, has the form:
call = [callsrc, callmsg, calldes]
where
callsrc : the source class such that callsrc ∈ Cls
callmsg : the message call such that callmsg ∈

Mthdcalldes
calldes: the destination class such that calldes ∈ Cls

Let R be the set of all sequences that appear in a
sequence diagram of system S.
A sequence r ∈ R contains tuples of call.
 ∀ r ∈ R, r = <call0, call1,…, calln-1 > where n is the
number of calls that appear in sequence r.

The state diagram describes the different states of an abject. It contains transitions

and states. The state of an object may change by a transition. Each transition on the state

diagram has a matching method on class diagram. A state diagram has initial and

terminal states. From every initial state we can get to every state and from every state we

can get to a terminal state.

A state diagram, StDig ∈ St, is a set that has five
elements:
{Sall, Sinitial, Sterminal, transitions, T}
Where
Sall : set of all states in the state diagram StDig
Sinitial : set of all initial states such that Sinitial ⊆ Sall

Sterminal: set of all terminal states such that Sterminal

⊆ Sall
T is a tuple that has the form: [Spre, trans, Spost]
where
Spre: the state before transition trans such that Spre
∈ Sall

69

trans: the transition such that trans ∈ transitions
Spost: the state after transition trans executed such
that Spost ∈ Sall
∀ sa ∈ Sall and sl ∈ Sinitial ׌ tuples ∈ T such that
[sl, {t}, sa] and {t} ⊆ T
∀ sa ∈ Sall and st ∈ Sterminal ׌ tuples ∈ T such that
[sa, {t}, st] and {t} ⊆ T

The Super State of a system combines the state information of multiple state

diagrams into a composite state. The super state describes the state of the whole system.

The super state may be changed after a transition or after paired transitions. A system

may have many different super states depending on the selection of classes that are being

analyzed. It is not necessary to analyze all the classes. We have discussed some selection

techniques in details on chapter 6. Also, the selection of how many instances of each

class affect the super state since SS contains all individual states of each instance

involved in the analyzed system. Choosing different number of classes and instances

results in different number of super states.

Let SS be a super state of system S. i.e. the partial
state of a whole system. For system S, the super
state SS has the form [s1, s2, …, sn] where si is the
state of object i and n is the number of objects in
the system S.
SS may be changed by transitions, so we have
<SSpre, t, SSpost> where
SSpre : is the super state before transition t
t : is a transition
SSpost: is the super state after transition t executed

70

Sequence diagrams do not show states of object. However, there are implicit

Super States between the calls. We may add SS between calls by getting the appropriate

states for SS from state diagrams. Some of the states in SS may not be completely

specified. For example, when the state of some object is ‘x’. After each call we look for

the state diagram of the destination class and get all possible states for this class after this

call. After the call, the destination class may be changed to one of its states. The states of

other objects do not changed.

For every call in the sequence diagram we have
<SSpre, call, SSpost> where SSpre is the super state
before call and SSpost is the super state after the
message call has been called.

In SSpost, only state of at most one class is
changed. This class must be the destination class
of the message call, calldes. The state of other
objects remains in the same state as they were
before call.

Let R’ be the set of all sequences which have Super
States included.
For each r ∈ R, we have one or more matching r’ ∈
R’ where the message sequence of calls in r is the
same message sequence in r’.
Now we have sequence r’ ∈ R’ which has SS
included.

The sequence starts with a super state. The super state may be changed after each

call in the sequence. In each super state in the sequence, only the state of the destination

object of the call may change.

71

∀ r’ ∈ R’, r’ = <SS0, call0, SS1, call1,…, SSn-1 , calln-1,
SSn> where n is the number of calls that appear
in sequence r and SSi is the super state after
transition ti-1 and 0 ≤ i ≤ n.

The super state is changed from state to another by legal transitions. We use the

transition matrix technique to generate all sequences of legal transitions. By computing

the transition matrix closure of the legal transitions of system S we generate all possible

sequences.

Let G be the set of generated sequences. A
sequence g ∈ G contains transitions separated by
super state SS. In this sequence, the super state
SS may change after each transition. The
sequence g ∈ G starts from any valid state and
ends with any reachable state.

∀ g ∈ G, g = < SS0, t0, SS1, t1,…, SSm-1 , tm-1, SSm>
where m is the number of transitions that appear
in sequence g and SSi is the state after transition
ti-1 and 0 ≤ i ≤ m

Assume that for each message call on sequence diagram, there is at least one

matching transition t on state diagram. Furthermore, each transition t on state diagram has

a matching method on class diagram and each message call on sequence diagram has a

matching method on class diagram.

72

Claim 1:

Every valid sequence r ∈ R has a matching subsequence g ∈ G.

Any sequence in a valid sequence diagram should be a subsequence of the set of

sequences that are possible in the generated sequences. The valid sequences that appear

in a sequence diagram will have matching sequences in the generated sequences. This is

because all possible sequences are generated in the set of generated sequences. Hence,

any valid sequence must have at least one matching subsequence in the generated

sequences.

Consider an arbitrary sequence r ∈ R. For r, there is a matching sequence r’ ∈ R’.

The sequence r’ has the form <SS0, call0, SS1, call1,…, SSn-1 , calln-1, SSn>.

Let SS0 be the initial state for sequence r’. SS0 is not necessary an initial state for

system S. Then there exist a first call in the sequence, call0, which changes the state to

SS1. Because call0 is a legal message call, the super state will change from SS0 to SS1.

Because G contains all the generated sequences, G will have at least one

subsequence g ∈ G which starts with <SS0, t0, SS1> where t0 = call0 and the state of

destination class in sequence diagram is changed in SS1. Otherwise, the sequence r’ is an

invalid sequence. i.e. If there is no such subsequence in G.

Since the state diagrams may include guarded transitions and transitions that don’t

change the states (a.k.a. No-Op transitions), the generated sequences in G may have

tuples of the forms <SSpre, t, SSpost1> and <SSpre, t, SSpost2> and <SSpre, t, SSpre>. That is

because all the possibility of the guarded transitions will be generated as well as the

transitions that do not change the super state.

73

Assume that <SSi, calli, SSi+1 > in r’ has a matching tuple in g. For each tuple <

SSi+1, calli+1, SSi+2 > in r’, if calli+1 is a valid message call that changes the super state

from SSi+1 to SSi+2, we will definitely have a matching tuple in g with ti+1 = calli+1 and

state of destination class in sequence diagram is changed in SSi+2. The sequence r’ would

be an invalid sequence if it does not match any subsequence in G. This is because G

generates all possible sequences. In case of guarded transitions and No-Op transitions,

sequence r’ will include one possibility of sequences instead of having all possible

sequences. Hence, for every valid tuple in r’ we will have one or more matching tuples

in g.

Assume that in step n of the sequence r’ there is a matching tuple in g. So, we

have the tuple <SSn, calln, SSn+1 > ∈ g. Since r’ is a valid sequence and g is the matching

generated sequence, the tuple <SSn+1, calln+1, SSn+2 > ∈ g. Therefore, by induction the

sequence in r’ has matching sequence in g.

So, valid sequences in R will have matching subsequences in G. This is because G

contains all generated sequences. However, there are some generated sequences that do

not appear in R. That is because R has only the sequences that appear in the sequence

diagrams of S. If a designer draws an incorrect sequence diagram, this sequence is an

invalid sequence. The invalid sequences in R will not have matching sequences in G

because G will include only the valid sequences. Hence, we can write that R ⊆ G. The

relationship between R and G is shown in Figure 7.1.

74

Figure 7.1 The relationship between R and G

Let T1 be the set of all generated super states,

Let H1 be the set of valid super state, and

Let H2 be the set of invalid super state.

Claim 2:

Each valid super state is included in the set of all generated super

states

A valid super state should be in the set of all generated super states. This is

because all possible super states are generated in the set of generated SS.

Assume that h ∈ H1 is a valid super state but h ∉ T1. Set T1 is the set of all

generated super states. Thus, h must be generated in T1. This contradicts our assumption.

Hence, h ∈ T1.

75

Claim 3:

Each invalid super state is excluded from the set of all generated

super states

An invalid super state should not be in the set of all generated super states. This is

because only the valid super states are generated in the set of generated SS.

Assume that h ∈ H2 is an invalid super state and h ∈ T1. Set T1 is the set of all

generated super states. Thus, h must not be generated in T1 because it is an invalid super

state. This contradicts our assumption. Hence, h ∉ T1.

From Claim 2 above we can observe that H1 ⊂ T1. Similarly, from Claim 3 we

can observe that T1 and H2 are disjoint sets. The relationship between T1, H1, and H2 is

shown in Figure 7.2 . As a result we can write:

• T1 ∩ H1 = H1

• T1 ∩ H2 = φ

Figure 7.2 The relationship between T1, H1, and H2

76

Let T2 be the set of generated single step transitions.

Let H3 be the set of valid single step transitions.

Let H4 be the set of invalid single step transitions.

Claim 4:

Each valid single step transition is included in the set of all

generated single step transitions

A valid single step transition should be in the set of all generated single step

transitions. This is because all possible single step transitions are generated in the set of

generated single step transitions.

Assume that h ∈ H3 is a valid single step transition but h ∉ T2. Set T2 is the set of

all generated single step transitions. Thus, h must be generated in T2. This contradicts our

assumption. Hence, h ∈ T2.

Claim 5:

Each invalid single step transition is excluded from the set of all

generated single step transitions

An invalid single step transition should not be in the set of all generated single

step transitions. This is because only the valid single step transitions are generated in the

set of generated SS.

77

Assume that h ∈ H4 is an invalid single step transition and h ∈ T2. Set T2 is the

set of all generated single step transitions. Thus, h must not be generated in T2 because it

is an invalid single step transition. This contradicts our assumption. Hence, h ∉ T2.

From Claim 3 above we can observe that H3 ⊂ T2. Similarly, from Claim 4 we

can observe that T2 and H4 are disjoint sets. The relationship between T2, H3, and H4 is

shown in Figure 7.3. As a result we can write:

• T2 ∩ H3 = H3

• T2 ∩ H4 = φ

Figure 7.3 The relationship between T2, H3, and H4

78

7.3 Implementation

7.3.1 Tool Description

The Super State Analysis Tool checks consistency between multiple UML state

diagrams and sequence diagram. The tool is supplied with two files as a tool input. The

first file contains an XML representation of the UML state and sequence diagrams. The

XML file can be generated from a UML tool. The second file contains a transition set

that is user defined. The transition set is a text based file created by the user. The tool

performs the analysis and detects the sequence inconsistencies if there is any. The output

is displayed in text upon the completion. The tool architecture is shown in Figure 7.4.

The transition set file has the following format:

[Spre1, …, Spren > Transition(s) > Spost1, …, Spostn]

If a user has no preference of the state of a particular object in a super state, then

an ‘x’ can be used to denote “don’t care.”

79

Figure 7.4 SSA Tool Architecture

7.3.2 Tool Example

This example is based on the library example described earlier in chapter 4. We

supplied the tool with the two state diagrams shown in chapter 4 (Figure 4.2 and Figure

4.3). Also, we supplied the tool with the transition set that shown in Figure 7.5.

80

Figure 7.5 Transition Set File

We compare the state diagrams with two sequences diagrams. The first sequence

diagram in Figure 7.6 is checking out two books and returning an overdue book. The

tool’s output in Figure 7.7 shows that the sequence in Figure 7.6 was not legal since a

check action on the book must occur before a book becomes overdue.

81

Figure 7.6 Sequence for returning overdue book

l : Libraryl : Library P : PatronP : Patron b1 : Bookb1 : Book b2 : Bookb2 : Book

checkout(b1 : Book)

checkout(b2 : Book)

return(b1 : Book)

payFine()

checkout()

return()

checkout()

Figure 7.7 Tool output for Figure 7.6 sequence diagram

The second sequence diagram in Figure 7.8 is checking out two books and

returning an overdue book. Figure 7.9 shows that the tool correctly identified the

sequences in Figure 7.8 as a correct set of sequences.

The Sequence Model ‘({Logical View}test1)’ to State Models (Patron, Book, Book)
comparison does not contain the list of transitions: ‘P.checkout, b1.checkout,
P.checkout, b2.checkout, P.return, b1.return, P.payFine’.

82

Figure 7.8 A corrected sequence for overdue book

l : Libraryl : Library P : PatronP : Patron b1 : Bookb1 : Book b2 : Bookb2 : Book

checkout(b1 : Book)

checkout(b2 : Book)

checkout()

checkout()

return(b1 : Book)

return()

payFine()

check()

Figure 7.9 Tool output for Figure 7.8 sequence diagram

The Sequence Model ‘({Logical View}test2)’ to State Models (Patron, Book, Book)
comparison found no errors.

I have tested the tool with the library example (chapter 4) in three different cases.

The first case is when we have one book and two patrons. The total number of super

states in this case is 54 states. Figure 7.10 shows the execution time for this case with

different number of closure. In the second case, we pick two books and one patron. The

total number of super states in this case is 108 states. Figure 7.11 shows the execution

time for this case with different number of closure. In the third case, we tested the

83

system with two books and two patrons. The total number of super states in this case is

324 states. Figure 7.12 shows the execution time for this case with different number of

closure. The tool was tested under Microsoft Windows XP Professional with a machine

that has Intel Pentium 3.00 GHz and 2 GB of RAM.

Figure 7.10 Execution time for 1 Book and 2 Patrons

Figure 7.11 Execution time for 2 Books and 1 Patron

Figure 7.12 Execution time for 2 Books and 2 Patrons

Number of
closure

Execution time
(seconds)

1 0.078
2 0.109
3 0.141
4 0.157
5 0.188
6 0.391

Number of
closure

Execution time
(seconds)

1 0.125
2 0.156
3 0.234
4 0.422
5 2.360
6 3.922

Number of
closure

Execution time
(seconds)

1 0.251
2 1.57
3 2.141
4 3.990
5 10.331
6 50.399

84

CHAPTER 8 - CONCLUSION

Unified Modeling Language has been used as a standard language for software

modeling. It consists of 13 types of diagrams. Each diagram is used for a different design

aspect. Usually many diagrams are involved in software development. Using more than

one diagram to design a system is necessary but can leave the system in an inconsistent

state and hence produce errors. Finding inconsistencies in software design before the

design is implemented is very important. We should check the consistency among the

diagrams and make sure that the diagrams are consistent.

The information in UML diagrams are related to each other and represent

different views of a system. Hence, they can be validated against each other. n this

dissertation, I have proposed a new approach to check the consistency between multiple

state diagrams and one or more sequence diagrams using Super State Analysis (SSA).

This super state details all of the possible composite states the objects can be in as well as

the transition pairs which lead from one composite state to another. The analysis

discovers inconsistencies that cannot be detected when considering only a single state

diagram. Super State Analysis identifies the five types of inconsistencies that are related

to state and sequence diagrams:

• Valid super states

• Invalid super states

• Valid single step transitions

• Invalid single step transitions

85

• Invalid sequences

Super State Analysis model uses a transition set that captures relationship

information that is not specifiable in UML diagrams. The SSA model uses the transition

set to link transitions of multiple state diagrams together. The analysis generates three

different sets automatically. These generated sets are compared to the provided sets to

detect the inconsistencies. Comparing the information from different sources allows us to

detect the inconsistencies. Super State Analysis performs five types of comparisons to

detect the inconsistencies.

There are several techniques could be applied to Super State Analysis to reduce

the state explosion. The paired transitions technique is used to select a smaller number of

instances of some objects. It is not always necessary to analyze n instances of each

object. Instead, by studying the behavior and interaction between the objects, a smaller

number may be used. There are some other possible techniques that can be applied to

super state analysis. Some possible technique involves reducing the number of objects in

the system, decreasing the number of states in some objects, and limiting the number of

steps in each sequence to reduce the number of sequences.

In the future, the Super State Analysis can be fully automated. The comparisons

C1, C2, C3, and C4 in Super State Analysis model (Figure 3.1) can be fully automated if

we formalize the four sets: H1, H2, H3, and H4 and feed them to the system. By

comparing these four sets to the generated sets: T1 and T2 the super state inconsistencies

and single step transitions inconsistencies can be detected automatically. Moreover, the

86

Super State Analysis tool can be integrated with some UML tool (e.g. Rational®

Software Architect) to perform the consistency checking directly and instantly within the

UML tool.

87

REFERENCES

[AL06] Mohammad Alanazi, Jason Belt, and David Gustafson, “UML Analysis Using

State Diagrams”, Proceedings of the International Conference on Software

Engineering Research and Practice, Vol. 2, pp. 569-576, Las Vegas, NV,

June 2006.

[AL07] Mohammad Alanazi and David Gustafson, “Comparing Multiple State

Diagrams to Sequence Diagrams using Super State Analysis”, Proceedings of

the 11th International Conference on Software Engineering and Applications,

pp. 494-500, Cambridge, MA, November 2007.

[AL08a] Mohammad Alanazi and David Gustafson, “Inconsistency Discovery in

Multiple State Diagrams”, International Journal of Computer Science and

Engineering, pp. 153-161, Vol. 2, Number. 3, May 2008.

[AL08b] Mohammad Alanazi and David Gustafson, “Error Detection in Multiple

State Diagrams”, Proceedings of the International Conference on Software

Engineering Research and Practice, Vol. 1, pp 184-190, Las Vegas, NV, July

2008.

[AL08c] Mohammad Alanazi and David Gustafson, “Inconsistency Discovery in

Multiple State Diagrams”, Proceedings of World Academy of Science and

Technology, pp. 54-62, Vol. 28, 2008.

[AM04] Scott W. Ambler, “The Object Primer: Agile Model-Driven Development

with UML 2.0”, 3rd Edition, Cambridge University Press, 2004.

88

[AR08] IBM® , Rational® Software Architect,

http://www-01.ibm.com/software/awdtools/architect/swarchitect/index.html

[BO05] Bontemps, Y.; Heymans, P.; Schobbens, P.-Y, “From Live Sequence Charts

to State Machines and Back: A Guided Tour”, IEEE Transactions on

Software Engineering, 31(12): pp. 999--1014, December 2005.

[DU00] Yves Dumond, Didier Girardet , Flavio Oquendo, “A relationship between

sequence and statechart diagrams”, Dynamic Behaviour in UML Models:

Semantic Questions, UML 2000 Workshop.

[EG01] Alexander Egyed, “Scalable Consistency Checking between Diagrams – The

ViewIntegra Approach”, Proceedings of the 16th Annual International

Conference on Automated Software Engineering, pages 387--390, 2001.

[EG06] Alexander Egyed, “Instant consistency checking for the UML”, Proceeding

of the 28th international Conference on Software Engineering, Pages 381-390,

2006.

[ER03]

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado, “UML 2

Toolkit”, John Wiley and Sons, Inc., New York, NY, October 2003.

[GA05] Qitao Gan, Bjarne E. Helvik, “Limiting the State Space Explosion as Taking

Dynamic Issues into Account in Network Modeling and Analysis”, Norwegian

Network Research Seminar (NNRS2005), Fornebu, Norway, October 27-28,

2005.

[GO03] Hassan Gomaa and Duminda Wijesekera, “Consistency in Multiple-View

UML Models: A Case Study”, Proceeding of Workshop on Consistency

Problems in UML-based Software Development, 6th International Conference

on the Unified Modeling Language, San Francisco, October 2003.

89

[HO07] Viliam Holub, “Fighting the state explosion problem in component

protocols”, PhD Thesis, Department of Software Engineering, Charles

University in Prague, Czech Republic, 2007.

[KI04] Soon-Kyeong Kim and David Carrington, “A Formal Object-Oriented

Approach to defining Consistency Constraints for UML Models”,

Proceedings of the 2004 Australian Software Engineering Conference, pages

87--94, 2004.

[KR00] Padmanabhan Krishnan, “Consistency Checks for UML”, Proceedings of the

Seventh Asia-Pacific Software Engineering Conference, pages 162--169,

2000.

[KU03] Ludwik Kuzniarz and Miroslaw Staron, "Inconsistencies in Student

Designs", In the Proceedings of The 2nd Workshop on Consistency Problems

in UML-based Software Development, pp. 9-18, San Francisco, CA, 2003.

[LA03] C. Lange, M.R.V. Chaudron, J. Muskens, L.J. Somers and H.M. Dortmans,

“An Empirical Investigation in Quantifying Inconsistency and Incompleteness

of UML Designs”, San Francisco, October 2003.

[LI03] Boris Litvak, Shmuel Tyszberowics, and AmiramYehudai, “Behavioral

Consistency Validation of UML Diagrams”, Proceedings of the First

International Conference on Software Engineering and Formal Methods,

pages 118--125, 2003.

[OM06] OMG Unified Modeling Language Specification, UML 2.0, Object

Management Group, 2006, http://www.uml.org.

http://www.uml.org/�

90

[PA01] Zs. Pap and I. Majzik and A. Pataricza and A. Szegi, “Completeness and

Consistency Analysis of UML Statechart Specifications”, 2001.

[PI03] Orest Pilskalns, Anneliese Andrews, Sudipto Ghosh, and Robert France,

“Rigorous Testing by Merging Structural and Behavioral UML

Representations”, UML 2003 - The Unified Modeling Language: Modeling

Languages and Applications, 2863: 234--248, 2003.

[RA06] Datla Vijaya Gopala Raju, Kakarlapudi Venkata Satya Varaha Narsimha

Raju, and Avula Damodaram, “The RATG System: Reducing Time with an

Approach of Testing based on Combinatorial Design Method”, Proceedings

of the 24th International Conference on Software Engineering, pp. 361-366,

Innsbruck, Austria, February 2006.

[SH06] Wuwei Shen, Weng Liong Low, “Consistency Checking Between Two

Different Views Of a Software System”, Proceedings of the 10th IASTED

international conference software engineering and applications, Dallas, TX,

November 2006.

[ST01] Douglas A. Stuart, Monica Brockmeyer, Aloysius K. Mok, and Farnam

Jahanian, “Simulation-Verification: Biting at the State Explosion Problem”,

IEEE Transaction on Software Engineering, pp. 599-617, Vol. 27, No. 7,

July 2001.

[ST04] Ragnhild Van Der Straeten, Jocelyn Simmonds and Viviane Jonckers,

“Maintaining Consistency between UML Models Using Description Logic”,

Journal S'erie L'objet - logiciel, base de donn'ees, r'eseaux, Pages 231-244.

2004.

[VA98] Antti Valmari, “The State Explosion Problem”, Lectures on Petri Nets I:

Basic Models, Lecture Notes in Computer Science, Vol. 1491, Springer-

91

Verlag 1998, pp. 429-528.

[WA03] Robert Wagner, Holger Giese, and Ulrich Nickel, “A Plug-In for Flexible and

Incremental Consistency Management”, in Proc. of the International

Conference on the Unified Modeling Language 2003 (Workshop 7:

Consistency Problems in UML-based Software Development), San Francisco,

October 2003.

[WA05] Hongyuan Wang, Tie Feng, Jiachen Zhang, and Ke Zhang, “Consistency

check between behaviour models”, Proceedings of the International

Symposium on Communications and Information Technology, pages 486 -

489, 2005.

[WI08] Wikipedia: the free encyclopedia , http://en.wikipedia.org, 2008.

	CHAPTER 1 - INTRODUCTION
	1.1 UML Diagrams
	1.1 Diagrams Description
	1.1.1 Class Diagram
	1.1.2 Object Diagram
	1.1.3 Component Diagram
	1.1.4 Composite Structure Diagram
	1.1.5 Deployment Diagram
	1.1.6 Package Diagram
	1.1.7 State Diagram
	1.1.8 Activity Diagram
	1.1.1 Use Case Diagram
	1.1.2 Sequence Diagram
	1.1.3 Interaction Overview Diagram
	1.1.4 Communication Diagram
	1.1.5 Timing Diagram

	1.2 The Problem
	1.3 Proposed Solution
	1.4 The Hypothesis

	CHAPTER 2 - LITERATURE REVIEW
	2.1 Introduction
	2.2 Transformation
	2.3 Consistency Rules
	2.4 Formalism

	CHAPTER 3 - SUPER STATE ANALYSIS (SSA) APPROACH
	3.1 The Super State
	3.2 Super State Analysis
	3.3 Comparisons
	3.4 The Transition Matrix
	3.5 The Transition Set
	3.5.1 Transition Set Types
	3.5.2 Example

	3.6 Inconsistency Detection
	3.6.1 State Inconsistencies
	3.6.2 Single Step Transitions Inconsistencies
	3.6.3 Sequence Inconsistencies

	CHAPTER 4 - CASE STUDY I (LIBRARY EXAMPLE)
	4.1 Description
	4.2 The Library example invariant
	4.3 Analysis
	4.4 Some inconsistencies found in the library example

	CHAPTER 5 - CASE STUDY II (UNIVERSITY EXAMPLE)
	5.1 Description
	5.2 The State Diagrams for University Model (UM)
	5.3 Some Invariants for UM
	5.4 Analysis
	5.5 Inconsistency Discussion for UM
	5.5.1 Super State Inconsistencies
	5.5.2 Single Step Transitions Inconsistencies
	5.5.3 Sequence Inconsistencies

	CHAPTER 6 - SCALABILITY
	6.1 Paired Transitions Technique
	6.2 Object Reduction Technique
	6.3 State Reduction Technique
	6.4 Limit the number of steps Technique

	CHAPTER 7 - SPECIFICATION AND IMPLEMENTATION
	7.1 Specification
	7.2 Formalization of Super State Analysis (SSA)
	7.3 Implementation
	7.3.1 Tool Description
	7.3.2 Tool Example

	CHAPTER 8 - CONCLUSION
	REFERENCES

