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Abstract 

The Unified Modeling Language (UML) has been designed to be a full standard 

notation for Object-Oriented Modeling. UML 2.0 consists of thirteen types of diagrams: 

class, composite structure, component, deployment, object, package, activity, use case, 

state, sequence, communication, interaction overview, and timing. Each one is dedicated 

to a different design aspect. This variety of diagrams, which overlap with respect to the 

information depicted in each, can leave the overall system design specification in an 

inconsistent state. 

This dissertation presents Super State Analysis (SSA) for analyzing UML multiple 

state and sequence diagrams to detect the inconsistencies. SSA model uses a transition set 

that captures relationship information that is not specifiable in UML diagrams. The SSA 

model uses the transition set to link transitions of multiple state diagrams together. The 

analysis generates three different sets automatically. These generated sets are compared 

to the provided sets to detect the inconsistencies. Because Super State Analysis considers 

multiple UML state diagrams, it discovers inconsistencies that cannot be discovered 

when considering only a single UML state diagram. Super State Analysis identifies five 

types of inconsistencies: valid super states, invalid super states, valid single step 

transitions, invalid single step transitions, and invalid sequences. 
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Abstract 

The Unified Modeling Language (UML) has been designed to be a full standard 

notation for Object-Oriented Modeling. UML 2.0 consists of thirteen types of diagrams: 

class, composite structure, component, deployment, object, package, activity, use case, 

state, sequence, communication, interaction overview, and timing. Each one is dedicated 

to a different design aspect. This variety of diagrams, which overlap with respect to the 

information depicted in each, can leave the overall system design specification in an 

inconsistent state. 

This dissertation presents Super State Analysis (SSA) for analyzing UML multiple 

state and sequence diagrams to detect the inconsistencies. SSA model uses a transition set 

that captures relationship information that is not specifiable in UML diagrams. The SSA 

model uses the transition set to link transitions of multiple state diagrams together. The 

analysis generates three different sets automatically. These generated sets are compared 

to the provided sets to detect the inconsistencies. Because Super State Analysis considers 

multiple UML state diagrams, it discovers inconsistencies that cannot be discovered 

when considering only a single UML state diagram. Super State Analysis identifies five 

types of inconsistencies: valid super states, invalid super states, valid single step 

transitions, invalid single step transitions, and invalid sequences. 
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CHAPTER 1 - INTRODUCTION 

1.1 UML Diagrams 

The Unified Modeling Language (UML) is a standard language for specifying, 

visualizing, constructing, and documenting the artifacts of software systems. UML is a 

graphical language for represent software designs. It provides several diagram types to 

capture different aspects of design. UML 2.0 specification has thirteen standard diagrams. 

These diagrams can be divided into two groups: structural diagrams, which model the 

organization and the structure of a system, and behavioral diagrams, which model the 

behavior of a system. Figure 1.1 shows the class diagram of the UML diagrams. 

Structural Diagrams 

• Class Diagram  

• Object Diagram  

• Component Diagram  

• Deployment Diagram  

• Package Diagram  

• Composite Structure Diagram 

Behavioral Diagrams  

• Use Case Diagram  

• Sequence Diagram  

• State  Diagram  

• Activity Diagram  
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• Communication Diagram  

• Interaction Overview Diagram 

• Timing Diagram 

Figure 1.1 UML Diagrams 

 

1.1 Diagrams Description 

1.1.1 Class Diagram 

A Class diagram represents the static structure of the classes and their 

relationships (e.g., association, inheritance, aggregation) in a system. The class diagram 

shows the operations and the attributes of each class. A class is divided into three 

components: class name, attributes, and operations. The Class diagram is one of the most 
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widely used diagrams from the UML specification. Part of the popularity of class 

diagrams stems from the fact that many UML case tools can auto-generate code in a 

variety of languages, including Java, C++, and C#, from these models. These tools can 

synchronize models and code, reducing the workload, and can also generate class 

diagrams from object-oriented code.  

1.1.2 Object Diagram 

An Object diagram shows instances instead of classes. The object diagram 

describes how the classes interact with each other at runtime in the actual system. The 

object diagrams are useful for explaining small part of a system with complicated 

relationships, especially recursive relationships.  It shows the relationship between 

instances of classes at some point in time. 

1.1.3 Component Diagram 

A component diagram describes how a software system is divided into physical 

components and shows the dependencies between these components. The component 

diagram shows the structural relationships between the components of a system. The 

component diagram also describes the organization of physical software components, 

including source code, run-time (binary) code, and executables. Physical components 

include, for example, files, headers, link libraries, modules, executables, or packages. 

Component diagrams can be used to model and document any the architecture of a 

system. 
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1.1.4 Composite Structure Diagram  

Composite structure diagram is a structural diagram that shows the internal 

structure of a class and the collaborations that this structure makes possible. A composite 

structure is a set of interconnected elements that collaborate at runtime to achieve some 

purpose. Each element has some defined role in the collaboration. A composite structure 

diagram is similar to a class diagram, but it describes individual parts instead of whole 

classes. 

1.1.5 Deployment Diagram  

The deployment diagram shows the physical configurations of software and 

hardware. A deployment diagram models the hardware used in implementing a system 

and the association between those hardware components. Deployment diagrams give a 

picture of the physical resources in a system, including nodes, components, and 

connections. The deployment diagram shows the hardware for the system, the software 

that is installed on that hardware, and the middleware used to connect the disparate 

machines to one another. 

1.1.6 Package Diagram 

Packages are UML constructs that allow organizing the model elements into 

groups to make UML diagrams simpler and easier to understand. A package diagram 

describes how a system is divided into logical groupings by showing the dependencies 

among these groupings. The package diagram is most common on use case diagrams and 

class diagrams because these models have a tendency to grow. 

http://en.wikipedia.org/wiki/Class_(computer_science)�
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1.1.7 State Diagram 

State diagrams, (a.k.a statechart diagrams, state machine diagrams, and state 

transition diagrams), are used to describe the various states that a class can go through 

and the events that cause a state transition. Each object has behaviors and state. The state 

of an object depends on its current activity or condition. A state diagram shows the 

possible states of the class and the transitions that can make a change in state. State 

diagrams typically model the transitions within a single class. Figure 1.2 shows an 

example of a simple state diagram. 

Figure 1.2 Example of State Diagram 

State_1 State_2

transition_2

transition_3

transition_1

 

1.1.8 Activity Diagram 

An activity diagram shows the behavior with control structure. An activity 

represents an operation on some class in the system that results in a change in the state of 

the system. Activity diagrams and state diagrams are related. The Activity diagram is a 

variation of the state diagram where the states represent operations, and the transitions 

represent the activities that happen when the operation is complete. However, an activity 

diagram focuses on the flow of activities involved in a single process. The activity 

diagram shows how those activities depend on one another. UML activity diagrams are 
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the object-oriented equivalent of flow charts and data flow diagrams (DFDs) from 

structured development. 

1.1.1 Use Case Diagram 

A use case is used to obtain system requirements from a user's perspective. Use 

case diagrams describe what a system does. The use case diagram emphasizes is on what 

a system does rather than how. Use Case diagrams identify the functionality provided by 

the system (use cases), the users who interact with the system (actors), and the 

relationship between the users and the functionality. 

1.1.2 Sequence Diagram 

A sequence diagram is an interaction diagram that describes interactions among 

classes in terms of an exchange of messages over time. Sequence diagrams are organized 

according to time. The time progresses as you go down the page. The classes involved in 

the message are listed from left to right according to when they take part in the message 

sequence.  A sequence diagram shows, as parallel vertical lines, different objects that live 

simultaneously, and, as horizontal arrows, the messages exchanged between them, in the 

order in which they occur. A sequence diagram describes one possible scenario of the 

system. Figure 1.3 shows an example of sequence diagram. 
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Figure 1.3 Example of Sequence Diagram 

O1 : Class1O1 : Class1 O2 : Class2O2 : Class2 O3 : Class3O3 : Class3

msg1

msg3

msg2

msg5

msg4

msg6

 

1.1.3 Interaction Overview Diagram  

The interaction overview diagram focuses on the overview of the flow of control 

of the interactions. An interaction overview diagram is a variant of an activity diagram 

which overviews the control flow within a system. UML interaction overview diagrams 

combine elements of activity diagrams with sequence diagrams to show the flow of 

program execution. The interaction overview diagrams are activity diagrams in which the 

activities are replaced by little sequence diagrams. 
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1.1.4 Communication Diagram 

A Communication diagram (formally known as collaboration diagrams) describes 

the interactions between objects or parts in terms of sequenced messages. The 

collaboration diagram is used to show how objects in a system interact over multiple use 

cases. The collaboration diagram contains the same information as sequence diagrams, 

but they focus on object roles instead of the times that messages are sent. Because there is 

no explicit representation of time in collaboration diagrams, the messages are labeled 

with numbers to denote the sending order. A communication diagram shows instances of 

classes, their interrelationships, and the message flow between them. Communication 

diagrams typically focus on the structural organization of objects that send and receive 

messages.  

1.1.5 Timing Diagram 

A timing diagram is used to describe the behaviors of one or more objects 

throughout a given period of time. Timing diagrams are a specific type of interaction 

diagram where the focus is on timing constraints. A timing diagram is a special form of a 

sequence diagram. The differences between a timing diagram and a sequence diagram are 

that the axes are reversed so that the time is increased from left to right and the lifelines 

are shown in separate compartments arranged vertically. Timing diagrams are often used 

to design embedded software. 

1.2 The Problem 

Unified Modeling Language (UML) has been widely used as a standard language 

for modeling the software. UML 2.0 [OM06] consists of thirteen types of diagrams: class, 
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composite structure, component, deployment, object, package, activity, use case, state, 

sequence, communication, interaction overview, and timing. Each diagram is dedicated to 

a different design aspect. Many different UML diagrams are usually involved in software 

development.  Using more than one diagram to design a system is necessary but can leave 

the system in an inconsistent state and hence produce errors. Finding inconsistencies in 

software design before the design is implemented is very important. “Error detection and 

correction in the design phase can reduce total costs and time to market” [PI03].  

A consistency problem may arise due to the fact that some aspects of the model 

will be described by more than one diagram. Hence, we should pay more attention to the 

consistency in the early phases of the system development and it is important that the 

consistency of a system should be checked before implementing it [LI03]. To avoid such 

errors, we should check the consistency among the diagrams and make sure that the 

diagrams are consistent. 

Many researchers found that the problem of ensuring consistency between UML 

diagrams has not been solved yet [EG01]. The UML specification does not enforce many 

consistency requirements between the information contained in the sequence and state 

diagrams.  While this does allow for greater flexibility in how UML can be used, it can 

lead to inconsistent views of the system being modeled. “The problem of relating state-

based intraagent (or intraobject) behavioral descriptions with scenario-based interagent 

(interobject) descriptions has recently focused much interest among the software 

engineering community” [BO05].  Identifying inconsistencies between UML diagrams 

can help the developers to find errors and fix them at early stages. Furthermore, current 

UML CASE-tools (e.g. Rational® Software Architect [AR08]) provide poor support for 
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maintaining consistency between UML diagrams. So, helping to solve this problem can 

make a great contribution to the software development process. 

1.3 Proposed Solution 

The information in UML diagrams are related to each other and represent 

different views of a system. Hence, they can be validated against each other. Given a 

state diagram, researchers [LI03] have shown how to validate it against a sequence 

diagram. On the other hand, given a sequence diagram, it can be validated against a state 

diagram [DU00, SH06]. In this dissertation, I am proposing a new approach to check the 

consistency between multiple state diagrams and one or more sequence diagrams using 

Super State Analysis (SSA) to discover the inconsistencies. 

Super State Analysis is used to evaluate consistency between multiple state 

diagrams and the sequence diagrams. Super State Analysis helps also to identify the 

invalid sequence diagrams. The analysis discovers inconsistencies that cannot be detected 

when considering only a single state diagram. This analysis gives a great contribution to 

solving the consistency problem between multiple state diagrams and sequence diagrams.  

1.4 The Hypothesis 

The Super State Analysis (SSA) handles the inconsistencies in UML multiple state 

diagrams and sequence diagrams. Super State Analysis may identify inconsistencies in 

states (see 1 and 2 below), single step transitions (see 3 and 4 below), and sequences (see 

5 below). Because Super State Analysis considers multiple UML state diagrams, it 

discovers some inconsistencies that cannot be discovered when considering only a single 

UML state diagram. Super State Analysis does not handle other inconsistencies that deal 
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with other UML diagrams other than state and sequence diagrams. The scope of this 

dissertation is only UML state and sequence diagrams. 

Specifically, Super State Analysis may identify the following five types of 

inconsistencies that are related to state and sequence diagrams: 

Inconsistency in states 

1. Valid super states 

2. Invalid super states 

Inconsistency in single step transitions 

3. Valid single step transitions 

4. Invalid single step transitions 

Inconsistency in sequences 

5. Invalid sequences 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Introduction 

There are several different approaches that have been proposed to perform 

consistency checking between UML diagrams.  Some approaches use transformation to 

convert one diagram to another [EG01, WA05, ST04, WA03, SH06, PI03] while others 

detect the inconsistencies by comparing one diagram to another using consistency rules 

[LI03, EG06]. Moreover, many approaches use formalism, such as OCL and Z, to 

enforce the consistency [DU00, GO03, KR00, KI04]. 

Almost all approaches focus on all or some of six types of UML diagrams. 

Namely use case class, object, sequence, collaboration, and statechart diagram. Ludwik 

Kuzniarz et al. [KU03] studies the consistency between use case, class, sequence, and 

statechart diagram. Alexander Egyed [EG01] studies the consistency between class, 

object, sequence, collaboration, and statechart diagram. Hassan Gomaa et al. [GO03] 

studies use case, class, sequence, and statechart diagram. Ragnhild Van Der Straeten et 

al. [ST04] studies the consistency between three diagrams: class, sequence, and statechart 

diagram. [LI03, DU00, WA05, SH06] study the consistencies between sequence and 

statechart diagram. Zs. Pap et al. [PA01] studies the class diagram and statechart 

diagram.  

The researchers pay the attention to enforce consistency between only two 

diagrams (e.g. single sequence diagram vs. single statechart diagram). However, my 

approach is unique in that I am proposing a new approach to check the consistency 



13 

 

between multiple state diagrams and one or more sequence diagrams using a transition 

matrix. Moreover, the approach focuses on multiple state diagrams instead of a single 

state diagram. 

2.2 Transformation 

The consistency checking in the transformational approach is done in two steps. 

First, the UML diagrams are converted to interpreted diagrams. Second, the interpreted 

diagrams are compared to each other to detect the inconsistencies. 

Alexander Egyed [EG01] presents a transformation-based approach to 

consistency checking. He defines a set of model transformation rules to enable the 

conversion of one UML diagram into another. He also defines a set of comparison rules 

to compare the transformed diagram with an existing one of the same type. For example, 

to check for inconsistencies between a sequence diagram and a class diagram, they first 

transform the sequence diagram into an interpreted class diagram. The interpreted class 

diagram is then compared with the existing class diagram. This approach needs two sets 

of rules: transformation rules and consistency rules. If one diagram cannot transform to 

another, then both diagrams transformed to an intermediate diagram to make the 

comparison. 

Hongyuan Wang et al. [WA05] propose an approach that checks the consistency 

between sequence diagrams and state diagrams. The approach converts statecharts using 

Finite State Processes and transforms sequence diagram to messages trace. They use an 

existing tool LTSA to support their approach. However, the approach considers only 

single sequence diagram and single stateschart diagram. 
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Wuwei Shen et al. [SH06] propose to build a message graph from a statechart 

diagram and then go through the graph based on the sequence of the messages retrieved 

from a sequence diagram to find any inconsistency between these two diagrams. Based 

on this method, a tool called ICER is developed to provide software developers with 

automatic consistency checking in the dynamic aspects of a model. However, the 

approach considers only single statechart vs. single sequence diagram. 

Orest Pilskalns et al. [PI03] present an approach that combines structural and 

behavioral UML representations in order to derive and execute test cases to validate a 

UML model. They develop a method for encapsulating the behavioral aspects (i.e. 

message paths between objects) that exists in sequence diagrams into a directed acyclic 

graph. The objects in the graph are then associated with class attribute/parameter values 

which are used to generate and execute test cases. Their approach would require OCL 

object constraints to be written. 

2.3 Consistency Rules 

In this approach, the consistency is checked using set of consistency rules. The 

diagrams are compared to each other directly without transformation or formalism. 

Boris Litvak et al. [LI03] present an approach to check the consistency between 

UML sequence and state diagrams. They created the BVUML (Behavioral Validator of 

UML) tool which automates the behavioral validation process. Their approach associates 

states with only one object lifeline in the sequence diagram so a single run of the tool 

validates consistency for only one object. Therefore the tool must be run multiple times 

in order to check the consistency of an entire sequence diagram. 
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Alexander Egyed [EG06] introduce an approach for quickly, correctly, and 

automatically deciding what consistency rules to evaluate when a model changes. The 

approach does not require consistency rules with special annotations. Instead, it treats 

consistency rules as black-box entities and observes their behavior during their evaluation 

to identify what model elements they access. The UML/Analyzer tool integrated with 

Rational Rose are fully implements this approach. It was used to check 24 types of 

consistency rules. The author found that the approach provided design feedback correctly 

and required, in average, less than 9 ms evaluation time per model change with a worst 

case of less than 2 seconds at the expense of a linearly increasing memory need. 

However, my approach compares multi statechart diagrams with sequence diagrams. 

2.4 Formalism 

Since UML is not precise enough, some researchers formalize the UML diagrams 

to some formal languages (e.g. Z). They then compare this formalism to detect the 

inconsistencies between the diagrams. 

Yves Dumond et al. [DU00] show that it is possible to integrate semi-formal and 

formal methods for the dynamic behavior of the UML models. The objective is to favor 

the integration of formal techniques in the actual practice of software engineering. They 

introduce an approach to formalize sequence diagrams and verify coherence with the 

statechart diagrams. The approach translates the UML sequence diagrams into the pi-

calculus, by preserving the object paradigms. To preserve the object notation, they name 

the pi-calculus processes with the name of the objects. The consistency between sequence 
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diagrams and statechart diagrams can be checked by verifying that the messages in the 

sequence diagrams trigger states in statechart diagrams. 

Padmanabhan Krishnan [KR00] describes a framework in which UML diagrams 

can be formalized to perform consistency checking. UML diagrams are translated into 

specifications of the theorem proving tool PVS (Prototype Verification System). The 

PVS is a language that allows for the introduction of abstract data types, functions etc. To 

check for consistency between sequence and class diagrams, the class diagrams must first 

be annotated with OCL constraints. The PVS will check if the sequence of states 

described in the sequence diagram can be obtained from the class diagrams. Custom 

traces (i.e. sequence of states) can also be supplied by the user to check if other properties 

hold. 

Soon-Kyeong Kim and David Carrington [KI04] describe how consistency 

checking between different UML models can be accomplished by using a formal object-

oriented metamodeling approach. They formally define the abstract syntax and semantics 

of the UML model using Object-Z as a metalanguage. They then define consistency 

constraints that logically exist between semantically equivalent elements in the 

metamodel but are not defined in the current UML metamodel structure. Once the 

consistency constraints have been defined for each of the UML model elements, 

consistency checking between different model elements can be achieved by verifying that 

the combined models preserve all of the consistency constraints for the individual model 

elements. They use the formal language to ensure the consistency between two diagrams. 

However, in my approach I do not use formal language and I ensure the consistency 

between multiple statechart diagrams and sequence diagrams.  
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CHAPTER 3 - SUPER STATE ANALYSIS (SSA) APPROACH 

3.1 The Super State 

My approach for consistency analysis combines the state information of multiple 

state diagrams into a composite super state, SS. The super state has the form [s1, s2, …, 

sn] where si is the state of object i and n is the total number of objects. A system may 

have many different super states depending on the number of objects that are being 

analyzed. The super state details all of the possible composite states the objects can be in 

as well as the transition pairs which lead from one composite state to another.  In this way 

the super state provides the complete collaborative view of a set of objects in the model.   

Super State may change after each message call. For every call we have <SSpre, 

call, SSpost> where SSpre is the super state before call and SSpost is the super state after the 

message call has been called. In SSpost, only the state of one object may change. This 

object must be the destination object of the message call. The state of the other objects 

remains in the same state as they were before the call. We calculate the super state of 

multiple state diagrams after each valid transition and that is used to evaluate each 

sequence diagram. A sequence diagram to be valid should be a subsequence of the set of 

sequences that are possible in a super state. Invalid and impossible sequences can be 

identified. 

3.2 Super State Analysis 

The information in UML diagrams are related to each other and represent 

different views of a system. Hence, they can be validated against each other. Given a 

statechart diagram, researchers [LI03] have shown how to validate it against a sequence 
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diagram. On the other hand, given a sequence diagram, it can be validated against a 

statechart diagram [DU00, SH06].   

However, I am proposing a new approach to check the consistency between 

multiple state diagrams and one or more sequence diagrams.  My analysis, the Super 

State Analysis (SSA), focuses on multiple state diagrams instead of a single state 

diagram.  

The diagram on Figure 3.1 shows the complete analysis process and the 

relationships between the different sources of information. Some information is known 

from the domain knowledge and provided by the developer while some other information 

is extracted from the existing information and generated automatically. Super State 

Analysis uses the provided information to generate some information automatically. 

Comparing the information from different sources allows us to detect the inconsistencies.  

SSA includes some inconsistencies that can be detected by the computer and some other 

faults that can be identified by the human. Super State Analysis performs five types of 

comparisons to detect the inconsistencies. 



19 

 

Figure 3.1 SSA  Model 

 

The SSA model on Figure 3.1 includes the 12 information sets that are involved in 

Super State Analysis. The system developer provides the UML state diagrams, the 

transition set and UML sequence diagrams (D1, D2, and D3). The developer identifies 

the valid super states, invalid super states, valid single step transitions, and the invalid 

single step transitions (H1, H2, H3, and H4). SSA is automatically generates three large 

sets: set of all generated super states, set of all generated single step transitions, and set of 

all generated sequences (T1, T2, and T3). These sets are generated using the UML state 

diagrams and the provided transition set. The valid sequences (S) are extracted from the 

UML sequence diagram. Table 3.1 describes each component involved in the analysis 

and the source of each.  
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Table 3.1 Description of each component involved in SSA Model 

Box Name Description Source 

N 
Domain 
Knowledge 

The facts that are known by the developer of 
the system 

Known from the 
domain 
knowledge 

H1 
Valid Super 
States 

The set of states that are identified to be valid 
super states.  

Domain 
Knowledge 

H2 
Invalid Super 
States 

The set of states that are identified to be 
invalid super states.  

Domain 
Knowledge 

H3 
Valid single 
step transitions 

The set of transitions that are identified to be 
valid single step transitions 

Domain 
Knowledge 

H4 
Invalid single 
step transitions 

The set of transitions that are identified to be 
invalid single step transitions 

Domain 
Knowledge 

T1 
Set of all 
generated 
Super States 

These super states are generated  
automatically using the UML diagram and 
transition set 

Generated 
Automatically by 
SSA 

T2 
Set of all single 
step transition 

This set contains all of the single step 
transitions. These transitions are generated 
automatically using the transition set 

Generated 
Automatically by 
SSA 

T3 
Set of all 
generated 
sequences 

This set contains all of the legal sequences 
that are allowed by the system. This set is 
generated automatically using the transition 
set 

Generated 
Automatically by 
SSA 

D1 
UML State 
Diagram 

The state diagrams that are written by the 
developer who specifies the system 

Developer 

D2 Transition Set 
The set of all legal transitions that are allowed 
by the system. The developer provides this set 

Developer 

D3 
UML Sequence 
Datagram 

The sequence diagrams that are written by the 
developer who specifies the system 

Developer 

S Sequences 
Sequences that are extracted from the UML 
sequence diagrams 

Generated 
Automatically by 
SSA 

 

Super State Analysis uses the UML state diagram (D1) and the transition set (D2) 

to generate the set of all generated Super States (T1). Also, SSA uses the transition set 

(D2) to compute the set of all generated sequences (T3). Moreover, SSA uses the 

transition set to compute the set of all generated single step transitions (T2). The 

developer uses the domain knowledge to identify the valid super states, invalid super 
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states, valid single step transitions, and invalid single step transitions. Furthermore, the 

UML sequence diagram is used to extract the sequences which will be compared to the 

set of all generated sequences. 

3.3 Comparisons 

The Super State Analysis consists of five types of comparisons to detect the 

inconsistencies in the multiple state diagrams and sequence diagrams. 

1. C1: Compares the set of all generated super states (T1) with the set of valid super 

states (H1).  

2. C2: Compares the set of all generated super states (T1) with the set of invalid 

super states (H2). 

3. C3: Compares the set of all generated single step transitions (T2) with the set of 

valid single step transitions (H3). 

4. C4: Compares the set of all generated single step transitions (T2) with the set of 

invalid single step transitions (H4). 

5. C5: Compares the set of all generated sequences (T3) with the set of sequences 

(S) which are extracted from the provided UML sequence diagrams. 

C1 and C2 detect the valid and invalid super states while C3 and C4 identify 

the valid and invalid single step transitions. C5 detects the invalid sequences. This 

comparison is fully automated since both T3 and S are generated automatically. The 

other four comparisons can be automated if we formalize the four sets: H1, H2, H3, 

and H4 and feed them to the system. By comparing these four sets to the generated 

sets: T1 and T2 the inconsistencies can be detected automatically. 
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3.4 The Transition Matrix 

The transition matrix details the possible global states of the system based on a 

vector of states of individual instances of classes and the possible transitions between the 

states in the super state (SS). Consider a program that has class X and class Y.  Let class 

X has an initial state A and two other states, B and C, while class Y has an initial state D 

and a second state E. Figure 3.2 shows the state diagram for class X and Figure 3.3 shows 

the state diagram for class Y. The state diagrams depict how instances of X and Y can 

transition between those states. Let class Y makes the transition between state D and state 

E whenever class X makes the transition from state A to state B. Table 3.2 shows 

possible transitions in the super state that is the cross-product of all states with one 

instance of X and one instance of Y. 

Figure 3.2 State Diagram for Class X 

 

 

Figure 3.3 State Diagram for Class Y 

 

 

An entry in a cell in T1 (Table 3.2) shows that in one step, the system can 

transition from the state of the row to the state of the column.  Taking the product of T1 
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by itself gives a matrix that contains the transitions possible with two steps.  The closure 

of T1 is the sum of products, T1 + T1*T1 + T1*T1*T1 +…. The closure shows all possible 

transitions in any number of steps.  Although the closure is represented as an infinite 

sum, it can be calculated in at most the number of products equal to the rank of the initial 

matrix. In most cases, it is even smaller than that number. 

Table 3.2 Super state transition matrix T1 

T1 AD BD CD AE BE CE 

AD 0 0 0 0 1 0 

BD 1 0 1 0 0 0 

CD 0 1 0 0 0 0 

AE 0 1 0 0 0 0 

BE 0 0 0 1 0 1 

CE 0 0 0 0 1 0 

 

3.5 The Transition Set 

There is some essential information about the relationships between transitions in 

different state diagrams that is not captured in any UML diagram. This information 

includes the fact that some transitions are paired. This information is critical to 

understanding the specified system because the state of one class could affect the state of 

another class. Also, identifying the paired relations is important when building the system 

to maintain the consistency between the state diagrams. These relations between states of 

different state diagrams help the system to identify which states are paired and hence 

maintain the consistency. Looking to just a single state diagram without considering the 

others could leave the system in an inconsistent state.  
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3.5.1 Transition Set Types 

In the transition set, there are three types of transitions: independent transitions, 

paired transitions, and constrained transitions. The independent transitions are the 

transitions that can happen individually without influencing states and transitions of other 

state diagrams. The effect of those transitions is local within their state diagrams and they 

do not consider the state of other diagrams. They may change only the state of the 

diagrams that they are belongs to. 

The paired transitions are those transitions that must happen together. If a 

transition is paired to other transition(s), then they must happen simultaneously. The 

effect of those transitions is global since they enforce other transition(s) to happen and 

hence may change the super state. 

The constrained transitions are the transitions that can happen only when some 

other state diagrams are in specific states. The state of other diagrams may prevent the 

constrained transition. This kind of transitions considers the state of other diagrams. Our 

interest is the paired and constrained transitions since they interact with multiple state 

diagrams.  

3.5.2 Example 

Consider a simple ATM system that has two state diagrams: customer state 

diagram (Figure 3.4) and account state diagram (Figure 3.5). The customer will be in 

good standing (G) until an overdraft transaction is happened then the customer will go to 

state N (NotGoodStanding). The account stays in P (Positive) until  a withdrawal 

transaction happened with amount that exceed the available balance in which case the 
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account will became negative (V). We labeled the transitions in Figure 3.4 and Figure 3.5 

for ease of reference.  

 

Figure 3.4  State Diagram for Customer 

 

 
 

Figure 3.5  State Diagram for Account 
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The proposed transition set technique links the transitions of multiple state 

diagrams together to capture the relationship information of the paired transitions.  The 

transition set includes explicitly all legal transitions that are allowed in the system. This 

set links transitions of multiple state diagrams together. The transition set allows viewing 

the super state (global state) of the system rather than individual state of a single object.  

The complete information that is in the transition set is not stated explicitly in any 

UML diagram. Partial information could be inferred from the set of correct sequence 

diagrams. In order to have the complete information inferred from the sequence 

diagrams, we must have all possible correct sequence diagrams. Having the explicit 

transition set is easier and more realistic than inferring them from sequence diagrams. 

An entry in the transition set has the form [PreState, (transitions), PostState] 

where PreState is the super state before transitions and PostState is the super state after 

the transitions taken. The transitions has the form (t1, t2, …, tn) where ti are the paired 

transitions. i.e. must happen together. 

In the transition set of the ATM example, we have the following entries 

[GP, (x1, y1), GP] 

[GP, (x3, y1), GP] 

[GP, (x2, y2), NV] 

[NV, (x5, y4), NV] 

[NV, (x4, y3), GP] 
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If we don’t consider the transition set, the system can make some illegal 

transitions. For example, [GP, x2, NP] or [NV, y3, NP]. Having the correct transition set 

provided for the system will prevent such inconsistencies. 

3.6 Inconsistency Detection 

Super State Analysis (SSA) discovers inconsistencies in super states, single step 

transitions, and sequences. 

3.6.1 State Inconsistencies 

The valid and invalid states will possibly be identified by SSA. If a super state 

(SS) is generated by Box T1, but it is not in the set of valid states (Box H1) then the state 

is an invalid SS. This could happen if there is a wrong transition in the transition set. On 

the other hand, if a super state is in the set of valid states (Box H1), but it is not generated 

by Box T1, then this SS is a valid super state and should be generated. SS wouldn’t be 

generated if there is a missing transition in the transition set or in the state diagram. 

The following kinds of inconsistencies can be discovered by this analysis: 

i. Valid super states 

ii. Invalid super states 

3.6.2   Single Step Transitions Inconsistencies 

The valid and invalid single step transitions (Box H3 and Box H4) are known 

from the domain knowledge. The set of all generated single step transitions (Box T2) are 

generated automatically using the transition set. Comparing those sets will discover some 

legal and illegal transitions. 
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If a valid transition does not appear in the set of all generated single step 

transitions that means this transition is missing. Furthermore, if an invalid transition 

appears in the set of all generated single step transitions that mean this transition is 

illegal.  

The following kinds of inconsistencies are discovered by this analysis: 

i. Valid single step transitions 

ii. Invalid single step transitions 

3.6.3   Sequence Inconsistencies 

Super State Analysis generates the sequences using the transition matrix. To 

validate a UML sequence diagram, SSA extracts the sequences first (Box S), then, 

compares them to the set of all generated sequences (Box T3). If there is a matching 

sequence in that set, this sequence is valid. Otherwise, it is an invalid sequence.  

The following kinds of inconsistencies are discovered by this analysis: 

i. Illegal sequences 

Super State Analysis uses the UML state diagrams and the transition set to 

generate the set of all generated Super States (SS). Also, SSA uses the transition set to 

compute the set of all generated sequences. Moreover, SSA uses the transition set to 

compute the set of all generated single step transitions. 

From the domain knowledge, we identify the sets of valid and invalid Super 

States (SS) and the valid and invalid single step transitions. The UML sequence diagram 
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is used to extract the sequences which will be compared to the set of all generated 

sequences. 

The inconsistency can be fixed by several ways. It can be fixed by adding or 

removing a fact to the domain knowledge. Another way to fix the inconsistencies is 

correcting the state diagram by adding a new transition (or removing one). 
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CHAPTER 4 - CASE STUDY I (LIBRARY EXAMPLE) 

4.1 Description 

This case study describes the interaction between a patron of a library and the 

copies of books the library holds. In order to simplify the model the library holds only 

one copy of each book. Figure 4.1 shows the class diagram for this model. Figure 4.2 and 

Figure 4.3 are the state diagrams for the patron and book objects. Note that the transitions 

in the state diagrams are numbered for ease of reference. This example originally was 

created by a team of students trying to create a correct model of a simple library system. 

The patron object can be in one of three states: Good Standing, Too Many Books, 

and Fines. We will call these states G, T, and F respectively for the rest of this chapter. A 

patron starts in G until the number of books the patron has checked out is equal to MAX 

or the patron returns an overdue book. In the former, the patron will transition to state T 

where they will remain until they return a book. In the latter, the patron will transition to 

F where they will not be able to do anything until they pay the fine that is owed. 

A book object has six states: On Shelf, Missing, On Hold, Checked Out, Overdue, 

and Returned. We will call these states O, M, H, C, D, and R respectively for the rest of 

this chapter.   

The two transitions from C labeled check represent the library determining if the 

book is overdue. If the book is overdue it will transition to D. Otherwise, it will transition 

to R where it will remain until the library places it back on the shelf. 
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Figure 4.1 Class Diagram for the library example 

Loan
b : Book
p : Patron

check()
checkout()
return()

Patron
loans : Loan

check()
checkout()
return()
payFine()
lose_By_Patron()
enroll()

Book

check()
checkout()
putOnShelf()
return()
reserve()
lose()
return_late()
lose_By_Patron()
find()

GUI
l : Library

Library
books : Book []
patrons : Patron []

check()
return()
checkout()

 

Figure 4.2 State Diagram for Patron 
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Figure 4.3 State Diagram for Book 
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O
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[14/24/34]
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[16/26/36]
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4.2 The Library example invariant 

1. The system starts with the initial super state SS where the patron is in G and the 

Book is in O. 

2. The patron can check out a book only if she/he is in G state. 

3. The patron should always be able to return a book at any time. 

4. When the number of books checked out by Patron is equal to MAX, the state of 

patron should be changed from G to T. 

5. When the number of books checked out by Patron is not equal to MAX, the state 

of patron should not be in T. 

6. The patron should be able to return a missing book at any time. 
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7. The number of n for a patron is increased by 1 when the patron checks out or 

reserves a book. 

8. The number of n for a patron is decreased by 1 when the patron returns a book. 

9. n is set to 0 when the system starts. 

10. When a book is lost by a patron, the state of that patron should change to F. 

11.  The Patron cannot be in T and at least the state of one book is in O or R. 

12. If the patron loses one book, she/he cannot lose another one until the fine is paid 

first. 

13. If the patron loses one book, she/he cannot return another one until the fine is paid 

first. 

14. If the patron returns one book late, she/he cannot lose another one (until she/he 

pay the fine).  

15. The patron can check out and return books even if the other books are on over due 

4.3 Analysis  

For our analysis we will assume that the library has only one patron and three 

books.  We now pair the transitions from the patron and book objects that can occur 

together.  An ‘X’ indicates that we are not concerned about the state of the object. The 

transition set is shown in Table 4.2. 

The initial transition matrix A1 has column and row headings with quadruple 

representing the states of the four objects. For this model there are 3*6*6*6 = 648 

combinations of the four objects.  Table 4.1 shows a portion of the initial transition 

matrix A1.  
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Table 4.1 Portion of A1 

A1 GOOO GOCO GODO GORO GCOO 

GOOO  1,21   1,11 

GOCO  26 23 2,22  

GODO      

GORO 25     

GCOO     16 

 

The row headings are the initial states and the column headings are the final 

states. The numbers in the table arise from Figure 4.2 and Figure 4.3. For the purpose of 

clarification we have assigned unique numeric identifiers to the transitions for each 

instance of an object in our system. The book object has three numeric identifiers for 

each transition since we have three instances of that object.  

For example, GOOO → GOCO represents a patron in good standing checking out 

the second book. The 1 indicates the patron took the transition labeled checkout [n < 

MAX] and the 21 indicates the second book took the transition labeled checkout. If there 

is an entry for a cell in the matrix then the transition is valid. A2 is defined as A1 * A1 

which identifies all the states we can reach in two steps. Table 4.3 shows a portion of A2. 
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Table 4.2 Transition set for Library Example 

SSpre  SSpost Transition Description 
GOXX  GCXX checkout[n<MAX], checkout Check out a book (if  at 

least one X = O || R ) GXOX  GXCX checkout[n<MAX], checkout 
GXXO  GXXC checkout[n<MAX], checkout 
GOXX  TCXX checkout[n=MAX], checkout Check out a book (if  X = 

C || H || D) GXOX  TXCX checkout[n=MAX], checkout 
GXXO  TXXC checkout[n=MAX], checkout 
GCXX  GRXX return, return 

Return book on time GXCX  GXRX return, return 
GXXC  GXXR return, return 
GDXX  FRXX return[returnDate>dueDate], return 

Return an over due book GXDX  FXRX return[returnDate>dueDate], return 
GXXD  FXXR return[returnDate>dueDate], return 
TCXX  GRXX return[returnDate<=dueDate], return Patron with MAX books 

returns a book on time TXCX  GXRX return[returnDate<=dueDate], return 
TXXC  GXXR return[returnDate<=dueDate], return 
TDXX  FRXX return[returnDate>dueDate], return Patron with MAX books 

returns an over due book TXDX  FXRX return[returnDate>dueDate], return 
TXXD  FXXR return[returnDate>dueDate], return 
GCXX  FMXX lose_by_patron, lose_by_patron 

Patron lost a book GXCX  FXMX lose_by_patron, lose_by_patron 
GXXC  FXXM lose_by_patron, lose_by_patron 
GCXX  GHXX reserve 

Patron holds a book GXCX  GXHX reserve 
GXXC  GXXH reserve 
TCXX  THXX reserve Patron with MAX books 

holds a book TXCX  TXHX reserve 
TXXC  TXXH reserve 
GHXX  GCXX cancel/expire Cancel/Expiration of 

holding book (n < MAX) GXHX  GXCX cancel/expire 
GXXH  GXXC cancel/expire 
THXX  TCXX cancel/expire Cancel/Expiration of 

holding book (n = MAX) TXHX  TXCX cancel/expire 
TXXH  TXXC cancel/expire 

O  M lose A book lost by the library 

M  O find A book found by the 
library 

F  G payFine Patron pays fine 
C  D check[today>Due_date] Book becomes over due 
C  C check[today<=Due_date] Book remains checked out 
R  O putOnShelf Book is re-shelved 
H  R return Return an on hold book 
C  R Return_late Return a late book 
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Table 4.3 Portion of A2 

A2 GOOO GOCO GODO 

GOOO  (1,21)(26) (1,21)(23) 

GOCO (2,22)(25) (26)(26) (26)(23) 

GODO    

GORO  (25)(1,21)  

GCOO (2,12)(15)   

 

  From Table 4.3 we can observe that it is possible to go from GOCO to GOOO by 

first returning the second book and then shelving it. 

For this model, the invalid states include two sets. The first set includes the states 

where the patron is in T and one of the three books is in O or R. Clearly the patron cannot 

have MAX books checked out if one of the books is not checked out. The other set of 

invalid states occurs when the patron is in F and all books are in C or D. In order for the 

patron to be in F, one of the three books would have had to have been returned. An 

analysis of A* for this model shows that the columns for these invalid states are empty. 

Some of the faults in the design of the library example can be discovered by 

simply analyzing the transition matrix.  One such fault was a missing transition.  From 

FRCO and FCRO there is no valid single step transition to FRRO.  This means that if one 

book is returned late, the patron goes to F status and cannot return the other book until 

the fine is paid. 
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4.4 Some inconsistencies found in the library example 

1. The patron cannot return the book if she/he find it later on. 

     GCXX, lose_by_patron, FMXX, ? , GRXX 

This can be fixed by adding the following paired transitions: 

 (F,find_by _patron,G) on Patron state diagram and (M,find_by_parton,R)  on 

Book state diagram 

2. The patron cannot return any of her/his other books until the fine is paid first. 

GDDX, return(late), FRDX, ?, FRRX or GCCX, return(late), FRCX, ?, FRRX 

This can be fixed by adding  (F, return, F) on Patron state diagram and 

pair it with (C, return, R) and (D, return, R) on Book state diagram 

In general, the patron cannot do anything if she/he in on ‘F’ until she/he 

pays the fine. 

3. The patron cannot lose an over due book 

GCXX, check, GDXX, ?, FMXX  

This can be fixed by adding (D, lose_by_patron, M) on Book state 

diagram and pair it with (G, lose_by_patron, F) on Patron state diagram 

4. The patron cannot lose a book if he is in state ‘T’ 

TCXX, ?, FMXX 

This can be fixed by adding (T, lose_by_patron, F) on Patron state 

diagram and pair it with (C, lose_by_patron, M) on Book state diagram 

5. The system reaches an invalid state when the patron checked out MAX books and 

trying to return a book late. TRXX , TXRX,  and TXXR are invalid states because 

the patron cannot be in state T  while one of the his books is returned.  
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Example: GOOO(checkout[n<MAX],checkout)  

GCOO(checkout[n<MAX],checkout)  GCCO (checkout[n=MAX],checkout)  

TCCC(return_late)  TRCC 

This can be fixed by paring transition return_late in Book with transition 

return[returnDate>DUEDATE] in Parton 
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CHAPTER 5 - CASE STUDY II (UNIVERSITY EXAMPLE) 

5.1 Description 

The case study in this chapter describes a university system. The university 

consists of colleges where each college may have students, instructors, and courses. The 

students can enroll to section of courses. The instructors teach section of courses. Figure 

5.1 shows the class diagram for the university model. In this case study, we will study the 

behavior (states) of 6 classes in the university model. Specificity, the state diagrams of 

the following classes will be considered: enrollment, teaching, student, instructor, 

section, and room. Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6, and Figure 

5.7 show the state diagrams for each class. Statistical information about the University 

Model is shown in Table 5.1. 

 
Table 5.1 Information about the University Model 

Number of classes 12 

Number of State Diagrams 6 

State Diagram Number  of states Number of transitions 

Enrollment 13 20 

Teaching 4 5 

Student 6 13 

Instructor 4 12 

Section 3 5 

Room 3 6 
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Figure 5.1 Class Diagram for Univeristy Model 
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Figure 5.2 State Diagram for Enrollment 
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Figure 5.3 State Diagram for Teaching 

 

 
Figure 5.4 State Diagram for Student 
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Figure 5.5 State Diagram for Instructor 

 

 
Figure 5.6 State Diagram for Section 
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Figure 5.7 State Diagram for Room 

 

5.2 The State Diagrams for University Model (UM) 

The enrollment object can be in one of the following states: CourseSelection, 

AdvisorApproval, Ineligible, Waiting, Eligible, Withdrawal, Enrolled, InProgress, 

Completed, Cancelled, Dropped, and Incomplete. We will call these states C, A, I, W, E, 

T, L, P, M, K, D, and N respectively for the rest of this chapter. 

A teaching object has four states Assigned, InProgress, Finished, and End. We 

will call these states A, P, F, and Z respectively for the rest of this chapter. 

The student object can be in one of the following states: GoodStanding, OnHold, 

Graduated, OnProbation, Dismissed, and End. We will call these states G, H, R, P, D, 

and Z respectively for the rest of this chapter. 
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An instructor object has four states TeachingAndResearch, TeachingOnly, 

ResearchOnly, and OnLeave. We will call these states B, T, R, and L respectively for the 

rest of this chapter. 

The section object can be in one of the following states: Open, Closed, and 

Canceled. We will call these states O, C, and N respectively for the rest of this chapter. 

A room object has three states Available, Assigned, and RepairNeeded. We will 

call these states A, S and R respectively for the rest of this chapter. 

5.3 Some Invariants for UM 

1. The system starts with the initial super state SS where the student in Good 

Standing, instructor in both TeachingAndResearch, enrollment in Course 

Selection, teaching in assigned, section in opened, and room in available. 

Student= G, Instructor=B, Enrollment=C, Teaching=A, Section=O, Room=A 

2. The student can enroll in classes only if s/he is in good standing. 

3. The student can enroll in a section only if the section is open. 

4. The teaching for an instructor can be assigned only if the instructor is on teaching 

only or in TeachingAndResearch. 

5. The teaching begins only if the room is assigned. 

6. The teaching begins only if the section is not canceled. 

7. If an instructor go to on leave or research only after the class is begin the teaching 

must be reassigned. 

8. The student graduated when all his/her classes are completed.  

9. When a section is canceled, the enrollment is canceled too. 
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10. If a student tries to enroll in a closed section due to the capacity, the enrollment of 

that student should be placed on waiting until the section is opened. 

5.4 Analysis 

For our analysis we will study the behavior of the university model in two cases. 

The first case is when the system has one object of student, one object of section, one 

object of enrollment, one object of instructor, one object of teaching, and one object of 

room.  The transition set for this case is shown in Table 5.2. In this case the total number 

of possible states: 

6*3*13*4*4*3 = 11232 possible states 

In the second case we will study the behavior when the system has two objects of 

student, two objects of section, two objects of enrollment, two objects of instructor, two 

object of teaching, and two objects of room.  The transition set for this case is shown in 

Table 5.3. In this case the total number of possible states: 

6*6*3*3*13*13*4*4*4*4*3*3 = 126157824 possible states 

In the transition sets in Table 5.2 and Table 5.3, we pair the transitions from the 

objects that can occur together. An ‘X’ indicates that we are not concerned about the state 

of object.  

Each super state in Table 5.2 consists of six states. The SS has the form (S1, S2, 

S3, S4, S5, S6) where S1 is the state of student, S2 is the state of enrollment, S3 is the state 

of section, S4 is the state of room, S5 is the state of instructor, and S6 is the state of 

teaching.  
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Table 5.2 Transition Set for University Model 

For a system with one student, one section, one instructor, and one room 
S= student, E=enrollment, C=section, R=room, I=instructor, T=teaching 

SSpre  SSpost 
Transition(s) 

S,E,C,R,I,T  S,E,C,R,I,T 

1 G,X,X,X,X,X  H,X,X,X,X,X nopayment 
2 H,X,X,X,X,X  G,X,X,X,X,X Pay 
3 G,X,X,X,X,X  R,X,X,X,X,X Finish 
4 H,X,X,X,X,X  R,X,X,X,X,X Pay 
5 H,X,X,X,X,X  D,X,X,X,X,X dismiss 
6 G,X,X,X,X,X  P,X,X,X,X,X checkGPA[GPA<2.0] 
7 P,X,X,X,X,X  P,X,X,X,X,X checkGPA[GPA<2.0] 
8 P,X,X,X,X,X  G,X,X,X,X,X checkGPA[GPA>=2.0] 
9 P,X,X,X,X,X  D,X,X,X,X,X dismiss 

10 R,X,X,X,X,X  Z,X,X,X,X,X inactivate 
11 D,X,X,X,X,X  Z,X,X,X,X,X inactivate 
12 X,X,X,X,B,X  X,X,X,X,T,X teach 
13 X,X,X,X,T,X  X,X,X,X,B,X doBoth 
14 X,X,X,X,B,X  X,X,X,X,R,X doresearch 
15 X,X,X,X,R,X  X,X,X,X,B,X doBoth 
16 X,X,X,X,B,X  X,X,X,X,L,X leave 
17 X,X,X,X,L,X  X,X,X,X,B,X doBoth 
18 X,X,X,X,T,X  X,X,X,X,L,X leave 
19 X,X,X,X,L,X  X,X,X,X,T,X teach 
20 X,X,X,X,R,X  X,X,X,X,L,X leave 
21 X,X,X,X,L,X  X,X,X,X,R,X doResearch 
22 X,X,X,X,T,X  X,X,X,X,R,X doResearch 
23 X,X,X,X,R,X  X,X,X,X,T,X teach 
24 G,E,O,X,X,X  G,L,O,X,X,X enroll, enroll[students<max] 

25 G,E,O,X,X,X  G,L,C,X,X,X enroll,enroll[students<max], 
close[n<max] 

26 G,E,C,X,X,X  G,W,C,X,X,X enroll, enroll[students>=max] 
27 G,C,X,X,X,X  G,A,X,X,X,X requestApproval 
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28 G,A,X,X,X,X  G,I,X,X,X,X notApproved 
29 G,A,X,X,X,X  G,E,X,X,X,X approve 
30 G,W,C,X,X,X  G,L,O,X,X,X enroll, enroll, open[n<max] 
31 G,L,X,S,B,P  G,P,X,S,B,P study 
32 G,L,X,S,T,P  G,P,X,S,T,P study 
33 G,L,X,X,X,X  G,D,X,X,X,X drop 
34 G,L,O,X,X,X  G,K,N,X,X,X cancel, cancel 
35 G,P,X,X,X,X  G,D,X,X,X,X drop [week<8] 
36 G,P,X,X,X,X  G,N,X,X,X,X grade[I] 
37 G,P,X,X,X,X  G,M,X,X,X,X grade[A..F] 
38 G,P,X,X,X,X  G,T,X,X,X,X drop[week>=8] 
39 G,I,X,X,X,X  G,Z,X,X,X,X end 
40 G,T,X,X,X,X  G,Z,X,X,X,X end 
41 G,M,X,X,X,X  G,Z,X,X,X,X end 
42 G,N,X,X,X,X  G,Z,X,X,X,X end 
43 G,D,X,X,X,X  G,Z,X,X,X,X end 
44 G,K,X,X,X,X  G,Z,X,X,X,X end 
45 X,X,X,X,X,A  X,X,X,X,X,P beginClass 
46 X,X,X,X,X,P  X,X,X,X,X,Z reassign 
47 X,X,X,X,X,A  X,X,X,X,X,Z cancel 
48 X,X,X,X,X,P  X,X,X,X,X,F complete 
49 X,X,O,X,X,X  X,X,C,X,X,X close[max=n] 
50 X,X,O,X,X,X  X,X,N,X,X,X cancel 
51 X,X,C,X,X,X  X,X,O,X,X,X open[n<max] 
52 X,X,N,X,X,X  X,X,O,X,X,X open 
53 X,X,X,A,X,X  X,X,X,S,X,X assign 
54 X,X,X,A,X,X  X,X,X,R,X,X needrepair 
55 X,X,X,S,X,X  X,X,X,R,X,X needrepair 
56 X,X,X,S,X,X  X,X,X,A,X,X release 
57 X,X,X,R,X,X  X,X,X,A,X,X fix 
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Each super state in Table 5.3 consists of twelve states. The SS has the form (S1, 

S2, S3, S4, S5, S6 , S7, S8, S9, S10, S11, S12) where S1 is the state of first student, S2 is the 

state of second student, S3 is the state of first enrollment, S4 is the state of second 

enrollment, S5 is the state of first section, S6 is the state of second section, S7 is the state 

of first room, S8 is the state of second room, S9 is the state of first instructor, S10 is the 

state of second instructor, S11 is the state of first teaching, and S12 is the state of second 

teaching. 

Table 5.3 Transition Set for University Model 

For a system with 2 students, 2 sections, 2 instructors, and 2 rooms 
s= student, e=enrollment, c=section, r=room, i=instructor, t=teaching 

 SSpre  SSpost 
Transition(s) 

# s1e1c1r1i1t1s2e2c2r2i2t2  s1e1c1r1i1t1s2e2c2r2i2t2 

1 G,X,X,X,X,X,X,X,X,X,X,X  H,X,X,X,X,X,X,X,X,X,X,X nopayment 

2 H,X,X,X,X,X,X,X,X,X,X,X  G,X,X,X,X,X,X,X,X,X,X,X Pay 

3 G,X,X,X,X,X,X,X,X,X,X,X  R,X,X,X,X,X,X,X,X,X,X,X Finish 

4 H,X,X,X,X,X,X,X,X,X,X,X  R,X,X,X,X,X,X,X,X,X,X,X Pay 

5 H,X,X,X,X,X,X,X,X,X,X,X  D,X,X,X,X,X,X,X,X,X,X,X dismiss 

6 G,X,X,X,X,X,X,X,X,X,X,X  P,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA<2.0] 

7 P,X,X,X,X,X,X,X,X,X,X,X  P,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA<2.0] 

8 P,X,X,X,X,X,X,X,X,X,X,X  G,X,X,X,X,X,X,X,X,X,X,X checkGPA[GPA>=2.0] 

9 P,X,X,X,X,X,X,X,X,X,X,X  D,X,X,X,X,X,X,X,X,X,X,X dismiss 

10 R,X,X,X,X,X,X,X,X,X,X,X  Z,X,X,X,X,X,X,X,X,X,X,X inactivate 

11 D,X,X,X,X,X,X,X,X,X,X,X  Z,X,X,X,X,X,X,X,X,X,X,X inactivate 

12 X,X,X,X,X,X,G,X,X,X,X,X  X,X,X,X,X,X,H,X,X,X,X,X nopayment 

13 X,X,X,X,X,X,H,X,X,X,X,X  X,X,X,X,X,X,G,X,X,X,X,X Pay 

14 X,X,X,X,X,X,G,X,X,X,X,X  X,X,X,X,X,X,R,X,X,X,X,X Finish 

15 X,X,X,X,X,X,H,X,X,X,X,X  X,X,X,X,X,X,R,X,X,X,X,X Pay 

16 X,X,X,X,X,X,H,X,X,X,X,X  X,X,X,X,X,X,D,X,X,X,X,X dismiss 

17 X,X,X,X,X,X,G,X,X,X,X,X  X,X,X,X,X,X,P,X,X,X,X,X checkGPA[GPA<2.0] 

18 X,X,X,X,X,X,P,X,X,X,X,X  X,X,X,X,X,X,P,X,X,X,X,X checkGPA[GPA<2.0] 
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19 X,X,X,X,X,X,P,X,X,X,X,X  X,X,X,X,X,X,G,X,X,X,X,X checkGPA[GPA>=2.0] 

20 X,X,X,X,X,X,P,X,X,X,X,X  X,X,X,X,X,X,D,X,X,X,X,X dismiss 

21 X,X,X,X,X,X,R,X,X,X,X,X  X,X,X,X,X,X,Z,X,X,X,X,X inactivate 

22 X,X,X,X,X,X,D,X,X,X,X,X  X,X,X,X,X,X,Z,X,X,X,X,X inactivate 

23 X,X,X,X,B,X,X,X,X,X,X,X  X,X,X,X,T,X,X,X,X,X,X,X teach 

24 X,X,X,X,T,X,X,X,X,X,X,X  X,X,X,X,B,X,X,X,X,X,X,X doBoth 

25 X,X,X,X,B,X,X,X,X,X,X,X  X,X,X,X,R,X,X,X,X,X,X,X doresearch 

26 X,X,X,X,R,X,X,X,X,X,X,X  X,X,X,X,B,X,X,X,X,X,X,X doBoth 

27 X,X,X,X,B,X,X,X,X,X,X,X  X,X,X,X,L,X,X,X,X,X,X,X leave 

28 X,X,X,X,L,X,X,X,X,X,X,X  X,X,X,X,B,X,X,X,X,X,X,X doBoth 

29 X,X,X,X,T,X,X,X,X,X,X,X  X,X,X,X,L,X,X,X,X,X,X,X leave 

30 X,X,X,X,L,X,X,X,X,X,X,X  X,X,X,X,T,X,X,X,X,X,X,X teach 

31 X,X,X,X,R,X,X,X,X,X,X,X  X,X,X,X,L,X,X,X,X,X,X,X leave 

32 X,X,X,X,L,X,X,X,X,X,X,X  X,X,X,X,R,X,X,X,X,X,X,X doResearch 

33 X,X,X,X,T,X,X,X,X,X,X,X  X,X,X,X,R,X,X,X,X,X,X,X doResearch 

34 X,X,X,X,R,X,X,X,X,X,X,X  X,X,X,X,T,X,X,X,X,X,X,X teach 

35 X,X,X,X,X,X,X,X,X,X,B,X  X,X,X,X,X,X,X,X,X,X,T,X teach 

36 X,X,X,X,X,X,X,X,X,X,T,X  X,X,X,X,X,X,X,X,X,X,B,X doBoth 

37 X,X,X,X,X,X,X,X,X,X,B,X  X,X,X,X,X,X,X,X,X,X,R,X doresearch 

38 X,X,X,X,X,X,X,X,X,X,R,X  X,X,X,X,X,X,X,X,X,X,B,X doBoth 

39 X,X,X,X,X,X,X,X,X,X,B,X  X,X,X,X,X,X,X,X,X,X,L,X leave 

40 X,X,X,X,X,X,X,X,X,X,L,X  X,X,X,X,X,X,X,X,X,X,B,X doBoth 

41 X,X,X,X,X,X,X,X,X,X,T,X  X,X,X,X,X,X,X,X,X,X,L,X leave 

42 X,X,X,X,X,X,X,X,X,X,L,X  X,X,X,X,X,X,X,X,X,X,T,X teach 

43 X,X,X,X,X,X,X,X,X,X,R,X  X,X,X,X,X,X,X,X,X,X,L,X leave 

44 X,X,X,X,X,X,X,X,X,X,L,X  X,X,X,X,X,X,X,X,X,X,R,X doResearch 

45 X,X,X,X,X,X,X,X,X,X,T,X  X,X,X,X,X,X,X,X,X,X,R,X doResearch 

46 X,X,X,X,X,X,X,X,X,X,R,X  X,X,X,X,X,X,X,X,X,X,T,X teach 

47 G,E,O,X,X,X,X,X,X,X,X,X  G,L,O,X,X,X,X,X,X,X,X,X 
enroll, 

enroll[students<max] 

48 G,E,O,X,X,X,X,X,X,X,X,X  G,L,C,X,X,X,X,X,X,X,X,X 
enroll,enroll[students< 

max], close [n=max] 
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49 G,E,C,X,X,X,X,X,X,X,X,X  G,W,C,X,X,X,X,X,X,X,X,X 
enroll, 

enroll[students>=max] 

50 G,C,X,X,X,X,X,X,X,X,X,X  G,A,X,X,X,X,X,X,X,X,X,X requestApproval 

51 G,A,X,X,X,X,X,X,X,X,X,X  G,I,X,X,X,X,X,X,X,X,X,X notApproved 

52 G,A,X,X,X,X,X,X,X,X,X,X  G,E,X,X,X,X,X,X,X,X,X,X approve 

53 G,W,C,X,X,X,X,X,X,X,X,X  G,L,O,X,X,X,X,X,X,X,X,X enroll, enroll, open[n<max] 

54 G,L,X,S,B,P,X,X,X,X,X,X  G,P,X,S,B,P,X,X,X,X,X,X study 

55 G,L,X,S,T,P,X,X,X,X,X,X  G,P,X,S,T,P,X,X,X,X,X,X study 

56 G,L,X,X,X,X,X,X,X,X,X,X  G,D,X,X,X,X,X,X,X,X,X,X drop 

57 G,L,O,X,X,X,X,X,X,X,X,X  G,K,N,X,X,X,X,X,X,X,X,X cancel, cancel 

58 G,P,X,X,X,X,X,X,X,X,X,X  G,D,X,X,X,X,X,X,X,X,X,X drop [week<8] 

59 G,P,X,X,X,X,X,X,X,X,X,X  G,N,X,X,X,X,X,X,X,X,X,X grade[I] 

60 G,P,X,X,X,X,X,X,X,X,X,X  G,M,X,X,X,X,X,X,X,X,X,X grade[A..F] 

61 G,P,X,X,X,X,X,X,X,X,X,X  G,T,X,X,X,X,X,X,X,X,X,X drop[week>=8] 

62 G,I,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

63 G,T,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

64 G,M,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

65 G,N,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

66 G,D,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

67 G,K,X,X,X,X,X,X,X,X,X,X  G,Z,X,X,X,X,X,X,X,X,X,X end 

68 X,X,X,X,X,X,G,E,O,X,X,X  X,X,X,X,X,X,G,L,O,X,X,X 
enroll, 

enroll[students<max] 

69 X,X,X,X,X,X,G,E,O,X,X,X  X,X,X,X,X,X,G,L,C,X,X,X 
enroll, enroll[students< 

max], close[n=max] 

70 X,X,X,X,X,X,G,E,C,X,X,X  X,X,X,X,X,X,G,W,C,X,X,X 
enroll, 

enroll[students>=max] 

71 X,X,X,X,X,X,G,C,X,X,X,X  X,X,X,X,X,X,G,A,X,X,X,X requestApproval 

72 X,X,X,X,X,X,G,A,X,X,X,X  X,X,X,X,X,X,G,I,X,X,X,X notApproved 

73 X,X,X,X,X,X,G,A,X,X,X,X  X,X,X,X,X,X,G,E,X,X,X,X approve 

74 X,X,X,X,X,X,G,W,C,X,X,X  X,X,X,X,X,X,G,L,O,X,X,X enroll, enroll, open[n<max] 

75 X,X,X,X,X,X,G,L,X,S,B,P  X,X,X,X,X,X,G,P,X,S,B,P study 

76 X,X,X,X,X,X,G,L,X,S,T,P  X,X,X,X,X,X,G,P,X,S,T,P study 

77 X,X,X,X,X,X,G,L,X,X,X,X  X,X,X,X,X,X,G,D,X,X,X,X drop 
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78 X,X,X,X,X,X,G,L,O,X,X,X  X,X,X,X,X,X,G,K,N,X,X,X cancel, cancel 

79 X,X,X,X,X,X,G,P,X,X,X,X  X,X,X,X,X,X,G,D,X,X,X,X drop [week<8] 

80 X,X,X,X,X,X,G,P,X,X,X,X  X,X,X,X,X,X,G,N,X,X,X,X grade[I] 

81 X,X,X,X,X,X,G,P,X,X,X,X  X,X,X,X,X,X,G,M,X,X,X,X grade[A..F] 

82 X,X,X,X,X,X,G,P,X,X,X,X  X,X,X,X,X,X,G,T,X,X,X,X drop[week>=8] 

83 X,X,X,X,X,X,G,I,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

84 X,X,X,X,X,X,G,T,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

85 X,X,X,X,X,X,G,M,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

86 X,X,X,X,X,X,G,N,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

87 X,X,X,X,X,X,G,D,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

88 X,X,X,X,X,X,G,K,X,X,X,X  X,X,X,X,X,X,G,Z,X,X,X,X end 

89 X,X,X,X,X,A,X,X,X,X,X,X  X,X,X,X,X,P,X,X,X,X,X,X beginClass 

90 X,X,X,X,X,P,X,X,X,X,X,X  X,X,X,X,X,Z,X,X,X,X,X,X reassign 

91 X,X,X,X,X,A,X,X,X,X,X,X  X,X,X,X,X,Z,X,X,X,X,X,X cancel 

92 X,X,X,X,X,P,X,X,X,X,X,X  X,X,X,X,X,F,X,X,X,X,X,X complete 

93 X,X,X,X,X,X,X,X,X,X,X,A  X,X,X,X,X,X,X,X,X,X,X,P beginClass 

94 X,X,X,X,X,X,X,X,X,X,X,P  X,X,X,X,X,X,X,X,X,X,X,Z reassign 

95 X,X,X,X,X,X,X,X,X,X,X,A  X,X,X,X,X,X,X,X,X,X,X,Z cancel 

96 X,X,X,X,X,X,X,X,X,X,X,P  X,X,X,X,X,X,X,X,X,X,X,F complete 

97 X,X,O,X,X,X,X,X,X,X,X,X  X,X,C,X,X,X,X,X,X,X,X,X close[max=n] 

98 X,X,O,X,X,X,X,X,X,X,X,X  X,X,N,X,X,X,X,X,X,X,X,X cancel 

99 X,X,C,X,X,X,X,X,X,X,X,X  X,X,O,X,X,X,X,X,X,X,X,X open[n<max] 

100 X,X,N,X,X,X,X,X,X,X,X,X  X,X,O,X,X,X,X,X,X,X,X,X open 

101 X,X,X,X,X,X,X,X,O,X,X,X  X,X,X,X,X,X,X,X,C,X,X,X close[max=n] 

102 X,X,X,X,X,X,X,X,O,X,X,X  X,X,X,X,X,X,X,X,N,X,X,X cancel 

103 X,X,X,X,X,X,X,X,C,X,X,X  X,X,X,X,X,X,X,X,O,X,X,X open[n<max] 

104 X,X,X,X,X,X,X,X,N,X,X,X  X,X,X,X,X,X,X,X,O,X,X,X open 

105 X,X,X,A,X,X,X,X,X,X,X,X  X,X,X,S,X,X,X,X,X,X,X,X assign 

106 X,X,X,A,X,X,X,X,X,X,X,X  X,X,X,R,X,X,X,X,X,X,X,X needrepair 

107 X,X,X,S,X,X,X,X,X,X,X,X  X,X,X,R,X,X,X,X,X,X,X,X needrepair 

108 X,X,X,S,X,X,X,X,X,X,X,X  X,X,X,A,X,X,X,X,X,X,X,X release 

109 X,X,X,R,X,X,X,X,X,X,X,X  X,X,X,A,X,X,X,X,X,X,X,X fix 

110 X,X,X,X,X,X,X,X,X,A,X,X  X,X,X,X,X,X,X,X,X,S,X,X assign 
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111 X,X,X,X,X,X,X,X,X,A,X,X  X,X,X,X,X,X,X,X,X,R,X,X needrepair 

112 X,X,X,X,X,X,X,X,X,S,X,X  X,X,X,X,X,X,X,X,X,R,X,X needrepair 

113 X,X,X,X,X,X,X,X,X,S,X,X  X,X,X,X,X,X,X,X,X,A,X,X release 

114 X,X,X,X,X,X,X,X,X,R,X,X  X,X,X,X,X,X,X,X,X,A,X,X fix 

 

The initial transition matrix A1 has column and row headings with Super States 

representing the state of each of the six objects. Table 5.4 shows portion of the initial 

transition matrix A1 for the University Model.  The row headings are the initial states and 

the column headings are the final states. The identifiers in the table arise from Figure 5.2 

- Figure 5.7.  

For the purpose of clarification we have assigned unique identifiers to the 

transitions for each object in the University Model. Each transition is denoted by a letter 

and a number. The letter refers to the object’s name and the number refers to the 

transition number within the object. For example, (GEOABA  GLOABA) represents an 

eligible student in good standing enrolls in a course. The e7 indicates the enrollment took 

the transition labeled enroll[students<max] and s2 indicates the student took the 

transition labeled enroll. If there is an entry for a cell in the matrix then the transition is 

valid. If the cell is empty then there is no transition can lead from the initial SS to the 

final SS. For example (GCOABA  GIOABA), there is no way to go from GCOABA to 

GCOABA in one step. 
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Table 5.4 Portion of A1 for the transition set in Table 5.2 

 
 

Table 5.5 shows a portion of A2. Any SS that can be reached in two steps are 

shown in A2.  From Table 5.5 we can observe that it is possible to go from GAOABA to 

GLOABA by: 

• first go from GAOABA to GEOABA  by doing e5 

• then go from GEOABA to GLOABA by doing e7 and s2 

Also, we can go from GCOABA to GIOABA by: 

• first go from GCOABA to GAOABA  by doing e2 

• then go from GAOABA to GIOABA by doing e3 
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Table 5.5 Portion of A2 for the transition set in Table 5.2 

 

If a cell has more than one entry, it means that there are more than one path can 

lead from the initial state to the final state. For example, the system can go from 

(GPOABA) to (GZOABA) in two steps by several ways: e9 then e15 or e14 then e20 or 

e12 then e18 or e13 then e19.  
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By looking to the transition set, we may figure out that there are three types of 

transitions: independent transitions, paired transitions, and constrained transitions. Those 

types of transitions were described earlier in chapter 3. 

In the transition set of the university model (Table 5.2), we may classify the 

transitions according to the above types as the following:  

1. Transitions 1-23 and 45-57 are independent transitions. 

2. Transitions 24, 25, 26, 30, and 34 are paired transitions.  

3. Transitions 24-44 are constrained transitions. 

Most of the transitions in Table 5.2 are independent transitions (36 out of 57). The 

independent transition can happen at any time without considering state of the other 

objects. Furthermore, the independent transitions do not change the state of other objects. 

They can only change the state of objects that they are belongs to. For instance, the 

student can go from GoodStanding (G) to OnHold (H) by doing the transition noPayment 

(G,X,X,X,X,X  H,X,X,X,X,X) regardless of the state of the other objects. Only state of 

the student is changed.  

The paired transitions must happen all together. If a paired transition happens 

independently of the other transition(s), this could leave the system in an inconsistent 

state. For example, consider transition number 34 in Table 5.2 (G,L,O,X,X,X  

G,K,N,X,X,X) both transitions: cancel in student and cancel in section must happen 

together. For instance, if only cancel in section happen individually, the system will 

transition from (G,L,O,X,X,X) to (G,L,N,X,X,X)  which is an inconsistent super state. 

The student is enrolled in a cancelled section. 
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The constrained transitions are performed only when one or more objects are in a 

specific state. They consider the super state when performing the transition. For example, 

in transition number 29 in Table 5.2, when perform transition approve the object student 

must be in GoodStanding state. 

5.5 Inconsistency Discussion for UM 

5.5.1 Super State Inconsistencies 

We know from the domain knowledge that the student graduated when he/she 

finishes all courses. This is stated in invariant number 8 in section 5.3. The student who 

graduated cannot be in progress. The super state (R,P,X,X,X,X) is an invalid super state 

and should not happen. 

If the student is dismissed s/he should not be eligible for enrolling in a section 

until the student comes back to good standing state. This condition is known from the 

domain knowledge and stated in invariant number 2 in section 5.3. The super state 

(D,E,X,X,X,X) is an invalid super state and should not happen. 

The domain knowledge tells us that when a section is canceled, the enrollment is 

cancelled too. This is stated in invariant number 9 in section 5.3. The student cannot 

enroll in a canceled section. The super state (G,K,N,X,X,X) is generated and is a valid 

super state. On the other hand, the super state (G,L,N,X,X,X) is an invalid and will not be 

generated. 
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5.5.2 Single Step Transitions Inconsistencies 

In enrollment state diagram a student cannot make the transition approve from 

state AdvisorApproved to state Eligible when the student is OnHold. If a single step 

transition such as (H,A,X,X,X,X)  (H,E,X,X,X,X) happens, it would be an invalid 

transition. This is because the transition set does not include such transition. In general, 

when the student is OnHold s/he is not allowed to do any enrollment activity until the 

OnHold is released by doing a payment (transition pay). This is because the enrollment 

states are constrained by the student being on GoodStanding state. 

Another example for the invalid single step transition is when a section is 

canceled but the enrollment is not. i.e. the single step transition (G,L,O,X,X,X)  

(G,L,N,X,X,X)  is invalid. That is because the transition set forces the cancel transition in 

enrollment to happen simultaneously with cancel transition in section. The single step 

transition (G,L,O,X,X,X)  (G,K,N,X,X,X) is the correction for the above invalid 

transition. 

5.5.3 Sequence Inconsistencies 

The sequence diagram on Figure 5.8 shows that the university opens a new 

section and a student enrolls successfully in this section. The section is then cancelled but 

the student is still enrolled in that section. This is inconsistency because this section 

should be cancelled from the student schedule too. Hence the sequence:    

(G,C,O,A,B,A)  (G,A,O,A,B,A)  (G,E,O,A,B,A)  (G,L,O,A,B,A)  

(G,L,O,A,B,A)    (G,L,N,A,B,A)  is an invalid sequence. 
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Figure 5.8 A Sequence Diagram for a Class Enrollment 

U : UniveristyU : Univeristy C : SectionC : Section E : EnrollmentE : Enrollment S : StudentS : Student

create()

requestApproval()

approve

enroll()[student<max]

enroll()

cancel()
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CHAPTER 6 - SCALABILITY 

Since Super State Analysis uses all possible combination of states to generate the 

sequences, this could cause a state explosion during the generation of the sequences. The 

state explosion problem is a well-known problem in the area of computation [VA98]. 

Many researchers have attempted to find techniques to reduce the state explosion in 

different areas [GA05, RA06, HO07, ST01].  

In Super State Analysis, often more than one instance of each class is involved in 

the analysis to discover the inconsistencies. Using only one instance of each class in the 

analysis may miss some inconsistencies that may arise when using more than one 

instance of some classes. For example, assume that there is a system with two classes: C1 

and C2 interacting together and having some paired transitions. Assume that class C1 can 

interact with n instances of class C2.  It is better to have n instances of class C2 to detect 

the inconsistency that will not be detected when using only one instance of each. 

However, using n instances of each class will increase the number of super states. In 

general, the total number of super states involved in Super State Analysis is calculated 

using the following equation: 

Total number of states = S1
C1

* S2
C2 

*
 
…* 

  Sn
Cn 

Where:   

Ci is the number of instances of class i that involved in SSA 

 Si is the number of states in class Ci 

n is the number of classes 
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There are several techniques that could be applied to Super State Analysis to 

reduce the state explosion. The paired transitions technique is used to select a smaller 

number of instances of some objects. It is not always necessary to analyze n instances of 

each object. Instead, by studying the behavior and interaction between the classes, a 

smaller number may be used.  This may make a large reduction in the total number of 

states since we decrease the Ci in Si
Ci

. 

There are some other possible techniques that will be discussed that can be 

applied to super state analysis. One possible technique involves reducing the number of 

objects in the system by eliminating unnecessary objects from the analysis. Another 

possible technique is decreasing the number of states in some classes. Each class can be 

analyzed and some of its states may be merged together to reduce the total number of 

states. The final possible technique discussed is limiting the number of steps in each 

sequence to reduce the number of sequences. 

6.1 Paired Transitions Technique 

The paired transitions are the transitions that must happen together. The paired 

transitions were discussed in chapter 3. For example, in the library example in chapter 

four, transition checkOut in Patron is paired with transition checkOut in Book. It is 

similar for transition return in Patron and Book. The paired transitions can be used as a 

guide to select the number of instances of each class. The classes that are involved in 

paired transitions may have more than one instance in the analysis.  

The total number of states can be reduced by analyzing a smaller number of 

instances of some classes. Selection of a smaller number of instances will reduce the state 
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explosion. The selection of a smaller number of instances of each class needs some 

analysis for the system to decide the selection. The interaction between the classes should 

be considered to select the number of instances. For example, consider a system with two 

classes: C1 and C2 with a restriction that C1 may interact with at most n instances of class 

C2.  Using paired transition technique, we can chose one instance of C1 and n instances of 

C2 instead of analyzing n instances of each. This selection will reduce the number of 

super state and therefore reduce the state explosion. 

In the library example in chapter 4, there are two objects: Patron which has three 

states and Book which has six states. Assume that the patron can checkout at most two 

books. When using super state analysis with two instances of book and two instances of 

patron, SSA will generate 324 states. However, doing first, two instances of book and one 

instance of patron will generate 108 states and then doing two instances of patron and one 

instance of book will generate 54 states.  Doing one instance of patron and two instances 

of book or one instance of book and two instances of patron may greatly reduce the state 

explosion. Table 6.1 shows the effect of object selection on the total number of super 

states for the library example.  In general, reducing the number of instances by one 

instance will reduce the state explosion by Si where Si is the number of states in class i.  

Table 6.1 Effect of object selection on the total number of super states 

Number of Objects Total Number of  
Super States 

Patron, Book1, Book2 108 

Patron1, Patron2, Book 54 

Patron1, Patron2, Book1, Book2 324 
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6.2 Object Reduction Technique 

This technique can be applied to Super State Analysis to reduce the number of 

objects. If there are some objects acting independently, they can be eliminated from the 

analysis. An object is independent when it does not affect the state of the other object and 

its state is not affected by other objects. The independent objects can be identified from 

the transition set. If the state of an object has always ‘X’ in pre state and post state, this 

object is independent from other objects and it can be eliminated from the analysis to 

reduce the state explosion. The transition set on Table 6.2 shows the behavior of the 

independent object. Object ‘O2’ is an independent object since its state is always ‘X’ 

regardless of the states of the other objects. 

 

Table 6.2 Behavior of independent objects in transition set 

SSpre  SSpost 
Transition(s) O1,O2,O3,…,On  O1,O2,O3,…,On 

S1,X,S1,… ,S1  S2,X,S2,… ,S1 t1,t3 
S2,X,S2,… ,S1  S2,X,S3,… ,S1 t4 
S2,X,S3,… ,S1  S3,X,S3,… ,S2 t5, t6 

…

 

… …

 

For example, assume that for the library example in chapter 4 there is another 

state diagram for staff.  So, we have a total of three state diagrams: Patron, Book, and 

Staff.  If object Staff does not have any interaction with neither Patron nor Book, it will 

always have ‘X’ when patron or book makes a transition. Thus, object Staff can be 

eliminated from the analysis. 
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6.3 State Reduction Technique 

The number of states in each state diagram involved in Super State Analysis could 

be decreased by merging some states together. The state reduction is an applicable 

technique and can be applied to Super State Analysis to reduce the state explosion. 

Reduction will require the developer to analyze the transition set and decide which group 

of states can be merged together. 

The university model on chapter five has 6 state diagrams (Figure 5.2 - Figure 

5.7). Some of these diagrams may have some states that can be merged together to reduce 

the number of states. For Example, the student state diagram on Figure 5.4 can be 

reduced to two states: GoodStanding and NotGoodStanding. This will reduce the number 

of state from six states to only two states. The reduced state diagram for Student is shown 

on Figure 6.1.  

 
Figure 6.1 Reduced State Diagram for Student 

GoodStanding NotGoodStanding

pay()

checkGPA()[GPA>=2.0]

noPayment()

checkGPA() [GPA<2.0]

dismiss()

finish()

checkGPA()[GPA<2.0]enroll()
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6.4 Limit the number of steps Technique 

Another applicable way to reduce the state explosion is to limit the number of 

steps in each sequence. We may limit the sequence computation to a smaller number to 

reduce the state explosion. For example, the Super State Analysis could be restricted to 

perform the analysis up to a certain number of steps instead of doing all possible steps. 

However, limiting the number of steps will not guarantee to discover all possible 

inconsistencies. 
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CHAPTER 7 - SPECIFICATION AND IMPLEMENTATION 

7.1 Specification 

In this chapter, set notation is used to specify Super State Analysis. I use set 

notation to compare the different sets formally. I identify the relationships between these 

different sets. Super State Analysis contains five comparisons between eight different 

sets. Specifically, using set notations, I compare the following sets of SSA model in 

Figure 3.1 in page 32. 

• set T1 with set H1  

Set of all generated Super States vs. Set of valid Super States (SS) 

• set T1 with set H2  

Set of all generated Super States vs. Set of invalid Super States (SS) 

• set T2 with set H3  

Set of all generated single step transitions vs. Set of valid single step transitions 

• set T2 with set H4  

Set of all generated single step transitions vs. Set of invalid single step transitions 

• set T3 with set S  

Set of all generated sequences vs. Sequences 

7.2 Formalization of Super State Analysis (SSA) 

A system is specified by class diagrams, sequence diagrams, and state diagrams.  

In the real world, a system may have more diagrams but we are here interested in these 

three diagrams. 



67 

 

 
A system S = {Cl, Seq, St} where  
Cl is a set of class diagrams,  
Seq is a set of sequence diagrams, and  
St is a set of state diagrams. 

 

A class diagram describes the static structure of the system. A class diagram, 

Cdig, is a set of classes.  The associations between classes are not of concern for this 

analysis. There are three components for each class: name, set of methods, and set of 

attributes. 

A class diagram, Cdig ∈ Cl, is a set of classes, Cls. 
Each class, C ∈ Cls, has three elements: 

C = {cname, Mthdcname, Attcname} 
where  
cname: the class name,  
Mthdcname : the set of all methods of class C, and    
Attcname: the set of all attributes of class C 

 

A sequence diagram is a sequence of calls between classes that occur in a time 

sequence. There are three components for each call in a sequence diagram: 

1. The source class of the call.  

The source class must be a class in the class diagram. 

2. The destination class of the call.  

The destination class must be a class in the class diagram. 

3. The message.  

To insure consistency with the class diagram, the message must be a method in 

the destination class. 
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A sequence diagram, Sdig ∈ Seq, is an ordered 
tuple of calls. Each call ∈ Sdig, has the form: 
call = [callsrc, callmsg, calldes]  
where  
callsrc : the source class such that callsrc ∈ Cls 
callmsg : the message call such that callmsg ∈ 

Mthdcalldes 
calldes: the destination class such that calldes ∈ Cls 
 
Let R be the set of all sequences that appear in a 
sequence diagram of system S.  
A sequence r ∈ R contains tuples of call.  
 ∀ r ∈ R, r = <call0, call1,…, calln-1 >    where n is the 
number of calls that appear in sequence r. 

 

The state diagram describes the different states of an abject. It contains transitions 

and states. The state of an object may change by a transition. Each transition on the state 

diagram has a matching method on class diagram. A state diagram has initial and 

terminal states. From every initial state we can get to every state and from every state we 

can get to a terminal state. 

A state diagram, StDig ∈ St, is a set that has five 
elements: 
{Sall, Sinitial, Sterminal, transitions, T} 
Where 
Sall : set of all states in the state diagram StDig 
Sinitial : set of all initial states such that Sinitial  ⊆ Sall 

Sterminal: set of all terminal states such that Sterminal 

⊆ Sall 
T is a tuple that has the form: [Spre, trans, Spost]  
where  
Spre: the state before transition trans such that Spre 
∈ Sall 
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trans: the transition such that trans ∈ transitions 
Spost: the state after transition trans executed such 
that Spost ∈ Sall 
∀ sa ∈ Sall  and  sl ∈ Sinitial  ׌ tuples ∈ T such that  
[sl, {t}, sa]  and  {t} ⊆ T 
∀ sa ∈ Sall  and  st ∈ Sterminal  ׌ tuples ∈ T such that 
[sa, {t}, st]  and  {t} ⊆ T 

 
The Super State of a system combines the state information of multiple state 

diagrams into a composite state. The super state describes the state of the whole system. 

The super state may be changed after a transition or after paired transitions.  A system 

may have many different super states depending on the selection of classes that are being 

analyzed. It is not necessary to analyze all the classes. We have discussed some selection 

techniques in details on chapter 6. Also, the selection of how many instances of each 

class affect the super state since SS contains all individual states of each instance 

involved in the analyzed system.  Choosing different number of classes and instances 

results in different number of super states. 

 
Let SS be a super state of system S. i.e. the partial 
state of a whole system. For system S, the super 
state SS has the form [s1, s2, …, sn] where si is the 
state of object i and n is the number of objects in 
the system S. 
SS may be changed by transitions, so we have 
<SSpre, t, SSpost> where  
SSpre : is the super state before transition t  
t : is a transition  
SSpost: is the super state after transition t executed 
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Sequence diagrams do not show states of object. However, there are implicit 

Super States between the calls. We may add SS between calls by getting the appropriate 

states for SS from state diagrams. Some of the states in SS may not be completely 

specified. For example, when the state of some object is ‘x’. After each call we look for 

the state diagram of the destination class and get all possible states for this class after this 

call. After the call, the destination class may be changed to one of its states. The states of 

other objects do not changed. 

For every call in the sequence diagram we have 
<SSpre, call, SSpost> where SSpre is the super state 
before call and SSpost is the super state after the 
message call has been called.  
 
In SSpost, only state of at most one class is 
changed. This class must be the destination class 
of the message call, calldes. The state of other 
objects remains in the same state as they were 
before call. 
 
Let R’ be the set of all sequences which have Super 
States included. 
For each r ∈ R, we have one or more matching r’ ∈ 
R’ where the message sequence of calls in r is the 
same message sequence in r’. 
Now we have sequence r’ ∈ R’ which has SS 
included.  
 

The sequence starts with a super state. The super state may be changed after each 

call in the sequence. In each super state in the sequence, only the state of the destination 

object of the call may change.  
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∀ r’ ∈ R’, r’ = <SS0, call0, SS1, call1,…, SSn-1 , calln-1, 
SSn>  where n is the number of calls that appear 
in sequence r and SSi  is the super state after 
transition  ti-1 and 0 ≤ i ≤ n.  

 

The super state is changed from state to another by legal transitions. We use the 

transition matrix technique to generate all sequences of legal transitions. By computing 

the transition matrix closure of the legal transitions of system S we generate all possible 

sequences. 

Let G be the set of generated sequences. A 
sequence g ∈ G contains transitions separated by 
super state SS. In this sequence, the super state 
SS may change after each transition. The 
sequence g ∈ G starts from any valid state and 
ends with any reachable state. 
 
∀ g ∈ G, g = < SS0, t0, SS1, t1,…, SSm-1 , tm-1, SSm>  
where m is the number of transitions that appear 
in sequence g and SSi is the state after transition  
ti-1 and 0 ≤ i ≤ m 

 

Assume that for each message call on sequence diagram, there is at least one 

matching transition t on state diagram. Furthermore, each transition t on state diagram has 

a matching method on class diagram and each message call on sequence diagram has a 

matching method on class diagram. 
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Claim 1: 

Every valid sequence r ∈ R has a matching subsequence g ∈ G. 

Any sequence in a valid sequence diagram should be a subsequence of the set of 

sequences that are possible in the generated sequences. The valid sequences that appear 

in a sequence diagram will have matching sequences in the generated sequences. This is 

because all possible sequences are generated in the set of generated sequences. Hence, 

any valid sequence must have at least one matching subsequence in the generated 

sequences. 

Consider an arbitrary sequence r ∈ R. For r, there is a matching sequence r’ ∈ R’. 

The sequence r’  has the form <SS0, call0, SS1, call1,…, SSn-1 , calln-1, SSn>. 

Let SS0 be the initial state for sequence r’. SS0 is not necessary an initial state for 

system S. Then there exist a first call in the sequence, call0, which changes the state to 

SS1. Because call0 is a legal message call, the super state will change from SS0 to SS1.  

Because G contains all the generated sequences, G will have at least one 

subsequence g ∈ G which starts with <SS0, t0, SS1> where t0 = call0 and the state of 

destination class in sequence diagram is changed in SS1.  Otherwise, the sequence r’ is an 

invalid sequence. i.e. If there is no such subsequence in G. 

Since the state diagrams may include guarded transitions and transitions that don’t 

change the states (a.k.a. No-Op transitions), the generated sequences in G may have 

tuples of the forms <SSpre, t, SSpost1> and <SSpre, t, SSpost2> and <SSpre, t, SSpre>. That is 

because all the possibility of the guarded transitions will be generated as well as the 

transitions that do not change the super state.  
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Assume that <SSi, calli, SSi+1 > in r’ has a matching tuple in g. For each tuple < 

SSi+1, calli+1, SSi+2 > in r’, if calli+1 is a valid message call that changes the super state 

from SSi+1 to SSi+2, we will definitely have a matching tuple in g with ti+1 = calli+1 and 

state of destination class in sequence diagram is changed in SSi+2. The sequence r’ would 

be an invalid sequence if it does not match any subsequence in G. This is because G 

generates all possible sequences. In case of guarded transitions and No-Op transitions, 

sequence r’ will include one possibility of sequences instead of having all possible 

sequences.  Hence, for every valid tuple in r’ we will have one or more matching tuples 

in g. 

Assume that in step n of the sequence r’ there is a matching tuple in g. So, we 

have the tuple  <SSn, calln, SSn+1 > ∈ g. Since r’ is a valid sequence and g is the matching 

generated sequence, the tuple  <SSn+1, calln+1, SSn+2 > ∈ g. Therefore, by induction the 

sequence in r’ has matching sequence in g. 

So, valid sequences in R will have matching subsequences in G. This is because G 

contains all generated sequences. However, there are some generated sequences that do 

not appear in R. That is because R has only the sequences that appear in the sequence 

diagrams of S. If a designer draws an incorrect sequence diagram, this sequence is an 

invalid sequence. The invalid sequences in R will not have matching sequences in G 

because G will include only the valid sequences. Hence, we can write that R ⊆ G. The 

relationship between R and G is shown in Figure 7.1. 
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Figure 7.1 The relationship between R and G 

 

 

Let T1 be the set of all generated super states, 

Let H1 be the set of valid super state, and 

Let H2 be the set of invalid super state.  

 

Claim 2:  

Each valid super state is included in the set of all generated super 

states 

 
A valid super state should be in the set of all generated super states. This is 

because all possible super states are generated in the set of generated SS.  

Assume that h ∈ H1 is a valid super state but h ∉ T1. Set T1 is the set of all 

generated super states. Thus, h must be generated in T1. This contradicts our assumption. 

Hence, h ∈ T1. 
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Claim 3:  

Each invalid super state is excluded from the set of all generated 

super states  

 
An invalid super state should not be in the set of all generated super states. This is 

because only the valid super states are generated in the set of generated SS.  

Assume that h ∈ H2 is an invalid super state and h ∈ T1. Set T1 is the set of all 

generated super states. Thus, h must not be generated in T1 because it is an invalid super 

state. This contradicts our assumption. Hence, h ∉ T1. 

From Claim 2 above we can observe that H1 ⊂ T1. Similarly, from Claim 3 we 

can observe that T1 and H2 are disjoint sets. The relationship between T1, H1, and H2 is 

shown in Figure 7.2 . As a result we can write:  

• T1 ∩ H1 = H1 

• T1 ∩ H2 = φ 

                                              
Figure 7.2 The relationship between T1, H1, and H2 
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Let T2 be the set of generated single step transitions. 

Let H3 be the set of valid single step transitions.  

Let H4 be the set of invalid single step transitions.  

Claim 4:  

Each valid single step transition is included in the set of all 

generated single step transitions 

 

A valid single step transition should be in the set of all generated single step 

transitions. This is because all possible single step transitions are generated in the set of 

generated single step transitions.  

Assume that h ∈ H3 is a valid single step transition but h ∉ T2. Set T2 is the set of 

all generated single step transitions. Thus, h must be generated in T2. This contradicts our 

assumption. Hence, h ∈ T2. 

 

Claim 5:  

Each invalid single step transition is excluded from the set of all 

generated single step transitions 

 

An invalid single step transition should not be in the set of all generated single 

step transitions. This is because only the valid single step transitions are generated in the 

set of generated SS.  
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Assume that h ∈ H4 is an invalid single step transition and h ∈ T2. Set T2 is the 

set of all generated single step transitions. Thus, h must not be generated in T2 because it 

is an invalid single step transition. This contradicts our assumption. Hence, h ∉ T2. 

From Claim 3 above we can observe that H3 ⊂ T2. Similarly, from Claim 4 we 

can observe that T2 and H4 are disjoint sets. The relationship between T2, H3, and H4 is 

shown in Figure 7.3. As a result we can write:  

• T2 ∩ H3 = H3 

• T2 ∩ H4 = φ 

 

Figure 7.3 The relationship between T2, H3, and H4 
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7.3 Implementation 

7.3.1 Tool Description 

The Super State Analysis Tool checks consistency between multiple UML state 

diagrams and sequence diagram.  The tool is supplied with two files as a tool input. The 

first file contains an XML representation of the UML state and sequence diagrams. The 

XML file can be generated from a UML tool. The second file contains a transition set 

that is user defined.  The transition set is a text based file created by the user. The tool 

performs the analysis and detects the sequence inconsistencies if there is any. The output 

is displayed in text upon the completion. The tool architecture is shown in Figure 7.4. 

The transition set file has the following format:  

[ Spre1, …, Spren > Transition(s) > Spost1, …, Spostn ] 

If a user has no preference of the state of a particular object in a super state, then 

an ‘x’ can be used to denote “don’t care.”   
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Figure 7.4 SSA Tool Architecture 

 

7.3.2 Tool Example  

This example is based on the library example described earlier in chapter 4. We 

supplied the tool with the two state diagrams shown in chapter 4 (Figure 4.2 and Figure 

4.3). Also, we supplied the tool with the transition set that shown in Figure 7.5.  
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Figure 7.5 Transition Set File 

 

We compare the state diagrams with two sequences diagrams. The first sequence 

diagram in Figure 7.6 is checking out two books and returning an overdue book.  The 

tool’s output in Figure 7.7 shows that the sequence in Figure 7.6 was not legal since a 

check action on the book must occur before a book becomes overdue. 
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Figure 7.6 Sequence for returning overdue book 

l : Libraryl : Library P : PatronP : Patron b1 : Bookb1 : Book b2 : Bookb2 : Book

checkout(b1 : Book)

checkout(b2 : Book)

return(b1 : Book)

payFine( )

checkout( )

return( )

checkout( )

 

Figure 7.7 Tool output for Figure 7.6 sequence diagram 

 

The second sequence diagram in Figure 7.8 is checking out two books and 

returning an overdue book. Figure 7.9 shows that the tool correctly identified the 

sequences in Figure 7.8 as a correct set of sequences. 

 

The Sequence Model ‘({Logical View}test1)’ to State Models (Patron, Book, Book)  
comparison does not contain the list of transitions: ‘P.checkout, b1.checkout, 
P.checkout, b2.checkout, P.return, b1.return, P.payFine’.  
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Figure 7.8 A corrected sequence for overdue book 

l : Libraryl : Library P : PatronP : Patron b1 : Bookb1 : Book b2 : Bookb2 : Book

checkout(b1 : Book)

checkout(b2 : Book)

checkout( )

checkout( )

return(b1 : Book)

return( )

payFine( )

check( )

 

Figure 7.9 Tool output for Figure 7.8 sequence diagram 

The Sequence Model ‘({Logical View}test2)’ to State Models (Patron, Book, Book) 
comparison found no errors. 

 
 
I have tested the tool with the library example (chapter 4) in three different cases. 

The first case is when we have one book and two patrons.  The total number of super 

states in this case is 54 states. Figure 7.10 shows the execution time for this case with 

different number of closure. In the second case, we pick two books and one patron. The 

total number of super states in this case is 108 states.  Figure 7.11 shows the execution 

time for this case with different number of closure.  In the third case, we tested the 
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system with two books and two patrons. The total number of super states in this case is 

324 states. Figure 7.12 shows the execution time for this case with different number of 

closure. The tool was tested under Microsoft Windows XP Professional with a machine 

that has Intel Pentium 3.00 GHz and 2 GB of RAM. 

Figure 7.10 Execution time for 1 Book and 2 Patrons 

 

 

 

 

 

 

Figure 7.11 Execution time for 2 Books and 1 Patron 

 

 

 

 

 

 

Figure 7.12 Execution time for 2 Books and 2 Patrons 

 

Number of 
closure 

Execution time 
(seconds) 

1 0.078 
2 0.109 
3 0.141 
4 0.157 
5 0.188 
6 0.391 

Number of 
closure 

Execution time 
(seconds) 

1 0.125 
2 0.156 
3 0.234 
4 0.422 
5 2.360 
6 3.922 

Number of 
closure 

Execution time 
(seconds) 

1 0.251 
2 1.57 
3 2.141 
4 3.990 
5 10.331 
6 50.399 
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CHAPTER 8 - CONCLUSION 

Unified Modeling Language has been used as a standard language for software 

modeling. It consists of 13 types of diagrams. Each diagram is used for a different design 

aspect. Usually many diagrams are involved in software development. Using more than 

one diagram to design a system is necessary but can leave the system in an inconsistent 

state and hence produce errors. Finding inconsistencies in software design before the 

design is implemented is very important. We should check the consistency among the 

diagrams and make sure that the diagrams are consistent. 

The information in UML diagrams are related to each other and represent 

different views of a system. Hence, they can be validated against each other. n this 

dissertation, I have proposed a new approach to check the consistency between multiple 

state diagrams and one or more sequence diagrams using Super State Analysis (SSA).  

This super state details all of the possible composite states the objects can be in as well as 

the transition pairs which lead from one composite state to another. The analysis 

discovers inconsistencies that cannot be detected when considering only a single state 

diagram. Super State Analysis identifies the five types of inconsistencies that are related 

to state and sequence diagrams: 

• Valid super states 

• Invalid super states 

• Valid single step transitions 

• Invalid single step transitions 
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• Invalid sequences 

Super State Analysis model uses a transition set that captures relationship 

information that is not specifiable in UML diagrams. The SSA model uses the transition 

set to link transitions of multiple state diagrams together. The analysis generates three 

different sets automatically. These generated sets are compared to the provided sets to 

detect the inconsistencies. Comparing the information from different sources allows us to 

detect the inconsistencies. Super State Analysis performs five types of comparisons to 

detect the inconsistencies. 

There are several techniques could be applied to Super State Analysis to reduce 

the state explosion. The paired transitions technique is used to select a smaller number of 

instances of some objects. It is not always necessary to analyze n instances of each 

object. Instead, by studying the behavior and interaction between the objects, a smaller 

number may be used.  There are some other possible techniques that can be applied to 

super state analysis. Some possible technique involves reducing the number of objects in 

the system, decreasing the number of states in some objects, and limiting the number of 

steps in each sequence to reduce the number of sequences.  

In the future, the Super State Analysis can be fully automated. The comparisons 

C1, C2, C3, and C4 in Super State Analysis model (Figure 3.1) can be fully automated if 

we formalize the four sets: H1, H2, H3, and H4 and feed them to the system. By 

comparing these four sets to the generated sets: T1 and T2 the super state inconsistencies 

and single step transitions inconsistencies can be detected automatically. Moreover, the 
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Super State Analysis tool can be integrated with some UML tool (e.g. Rational® 

Software Architect) to perform the consistency checking directly and instantly within the 

UML tool.  
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