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1.  INTRODUCTION

The ADP (Adaptive Digital Predictor) was implemented using
Widrow's LMS algorithm [1] as shown in Fig. 1, in connection with an
intruder detection application [2]. After the algorithm was used for
a period of time, it was abserved that the predictor would not only re-
move correlated noise, but the intruder signal as well. In other words,
it gradually became a "no pass" filter.

The above "no pass'" phenomenon is best conveyed by a simple experi-
ment that was performed in a laboratory environment. The input to a 16
weight ADP (see Fig. 1) consisted of a sum of two sinusoids of frequen-
cies 8 and 32 HZ. The sampling frequency was 128 HZ and convergence para-
meter v in Fig. 1 was 0.02. If both the sinusoids were generated by
repeatedly using the exact sample set of the single cycle, the ADP out-
put was essentially zero and the transfer function of its filter portion
remained unchanged indefiniteley. However, if the sinusoids were generated
using the FORTRAN "SIN(A)" Function, where A was varied continuously, the
transfer function was found to change slowly with time. This is depicted
in Fig. 2 via gain plots. It is apparent that the gain function changes
gradually from a narrow-band type with two peaks at 8 and 32 HZ to a more
broadband type of function. We also note that the gains at 8 and 32 HZ
remained equal to 1 throughout the transiticn period. As a result, the
corresponding ADP output was zero. A related study [31 has shown that
this bahavior is dus tc the ADP having more weights than recassary, as
was the case in the above experiment, where only 4 weights are necessary

to eliminate a sum of two sinewaves. The extra weights strive to remcve
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very low level components in the inputs, and hence could implement an
overall input-output gain function that removes the input power over

the entire passband. The predictor would then tend to become a "no pass"
filter. One way of avoiding the above no-pass phenomenon is to modify
the LMS algorithm. The pertinent modification is very simple, as dis-
cussed in Section 2.

The main objective of this report is to examine the behavior of the
transfer function of the ADP when it is implemented in the form of a
lattice (see Fig. 3) instead of the transversal filter implementation
shown in Fig. 1. This is done via a computer simulation, some details
related to which are given in Section 5, while Section 3 is devoted to
a brief discussion of linear LMS lattice algorithm. In Section 4, the
relation between lattice and transversal filters is derived. Experi-

ment results are presented in Section 5. Some conciusions are included

in Section 6.
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2. PREDICTION CONSIDERATIONS

In Fig., 1, suppose the predictor coefficient bi are fixed, and A is
the delay parameter. The optimum predictor weights are obtained by
minimizing the mean-squared error (mse)

)2} (1)

=9 21 o -
& E [em ] E{frn o

with respect to bi’ where E denotes statistical expectation. This minimi-

zation process leads to the following set of equations [4]

where Fij = B {f; fm-j} denote the covariances of the input.

Equation (2} can be written as
RB=C
T_ ¢ . . T
where B = [o], bs, b3 . bN] is the weight factor, C = [r]o, Pogs +++3

rNU] is an [N x 1) cross correlation vector

and
/ AN
Fiq Pig—————— ——— "IN
11 12 ’
22 |
[
|
R = E—-—'—-EBST; ——————— ! is an (N x N) correlation
~ . |
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Thus, the weight vector of the optimum predictor is given by
B=R1C. (4)
Substituting (2) in (1) we get

- g i
2= g [b1 riog ¥ by Tog toeee ¥ bN rNO] . (%)

Next, we consider the case when the predictor weights bn change with

time. Then, corresponding to (1), we have

+ b f {6)

9y = b1, m fm—i * b2,m fm—2 e N,m m-N

where bn m is the nth weight at time m. Using the method of steepest

descent, Widrow [1] has shown that the weights bn o can be updated via

the foliowing LMS algorithm:

b i # 1= By, @ P & T - (7)

where e is the prediction error at time m; v is a convergence parameter

which must satisfy the cendition [1]

< <
0 AY 1
na X

where Amax denotes the largest eigenvalue of R. It is known that éﬁz in
(1) is quadratic function of the weignts bj, and hence the possibility of
a tocal minimum is eliminated. However, a distributed minimum [3] is
possible,and it is this type of minimum that could result in a variety

cf transfer functions, with the same ADP output. To illustrate, we con-
sider the simple case wnen the predictor in Fig. 1 consists of two

weights [3]. Then,



Let the input be the alternating sequence
{fm} = {1, -1, 1, -1, ...}. (9)

Then
- o li -3l
P43 (-1) .
Substitution of (9} in (5) leads to

a2 = o 2 a = -
e (1 + b, bz) ,or R |1+ by sz (10)

From E} in (10), it is clear that there is a distributed minimum along

ms

the line 1 + b, - b2 = 0 rather than a single minimum [3]. As such, the

1
corresponding least-squares solution is no longer unique, which implies
that the autocorrelation matrix in (4) will not have full rank. If this

relationship is substituted into the overall function

_ E(2
HO(Z) T F{zZ)
we obtain
HO(Z) =1-Hz)=1- b}z'l + (1 - by) z72 (11)

S

It is apparent that H(z) has a zero at z = 1 and another somewhere on the
real axis of the z-plane, depending upon the value of b1. From the above
discussion it follows that it is the surplus weight b2 that causes Eﬁ in
(10} to have a distributed minimum, since only b, is sufficient to predict
the seguence {fm} in (9). One method of avoiding the distributed minimum

and hence the above problem is to modify the cost function in (1) as follows

C=Efe2 +WB " B (12)



where B ' = [bi, .. bN,m] and 0 < W < 1. Minimizing of (12) with

m bZ, m -’
respect to B_, we obtain [3]

-1
Bcpt. = [W] + R] ng (13)

where I is the identity matrix and ng represents the cross correlation
between f and g. Again, using the method of steepest descent, the corres-

ponding LMS algorithm is given by [3]

qﬂ £ 17 (7 - W) Bm tve Fm
FuBy ptvey Fn (14)
where y = 1 - W, and Fm' = [fm o 10 fm PR fm ) N] .

Equation (14) is known as the modified (MLMS) algorithm [3].

To further examine the behavior of the MLMS algorithm, let
us assume that for some m > M, the error term in (14) is negligible;
i.e., at time m = M, the weight bn has converged to some least-squares-

type solution b, Then (14) simplifies to yield

s M

S
bn, maeg= {1~ )% by, M

: K
by M+ k= (1 - W b, m.

It is apparent that bn, M+ K decays toward 0 with increasing vajues of
Ky, since (1 - W) is less than 1. This causes e, in (14) to increase
and hence the ADP begins to readapt. The adaption process causes bn to
move toward bn, M until B is negligible. Then the entire foregoing
cycle repeats. The overall effect is that a distributed minimum does

not occur, and a single solution is obtained. Hence the "no pass”

nhercmenon is avoided.
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3. THE LMS LATTICE ALGORITHM

Figure 3 shows a fixed (non adaptive) lattice predictor. The
corresponding forward prediction error is defined as the difference be-
tween the predicted value of the input one step into the future, and its

actual value, i.e.,

e, (n) = x(n) - x{n)
(16)

A N
x{n) = - 2 : d x(n -2), 2=1,2, ..., N
2:

Ts N

where ;(n) denotes an estimate of y(n), dz, N is the 2-th forward pre-
dictor coefficient weight of an N-weight predictor. On the other hand,
a backward prediction error is defined as the difference between the pre-

dicted value of the input one step into the past, and its actual value:

Ng(n)=x(n-1—1)-£(n—z-1) (17)

In {T7), i(n - & - 1) denotes an estimate of y(n ~ ¢ - 1), and is ex-
pressed as

-~ N

x(n =g -1)=-x ¢

E Sl x(n - ) (18)

Where Cz N represents the g-th backward predictor weight of an N-weight
predictor A forward and a backward ADP may be combined to obtain the
lattice structure shown in Fig. 3. DOetails of the development can be

found elsewhere; e.g., see [5]. This structure is defined recursively as
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follows:

(19)

W, (n) =W,y (n-1) - K e ; (n)

where Kl is known as the g-th lattice coefficient. MNow, the total pre-

diction error at the g-th stage is given by
S,2 (n) =e,2(n) +W 2 (n) (20)

Minimizing SQZ {n) with respect to K2 we have

3
3 S2 (n)

= g
BKE

which yields

-~

i 2E {e, (n) W (n - 1)1

S

] 21
YEe, ] (e

2 (21)

L

[f the input to the lattice predictor in Fig. 3 is nonstationary, then
the Tattice weights will have to be made time-varying. To this end,
the method cf steepest descent is used and K2 are updated as follows
(6, 7]:

)
~ 38,2 (n)

(n) - u

K o (n+1) =K —_—
- . 3K, (n)

where u is a convergence parameter.



From (19) and (20) it follows that

3522 (n) se, (n) " 3, (n)
= !
3K, (n 2 € (n) K, (n) *2 Nz (n) 3K, n) (23)
where
3 e, {n) .
3 K, )~ w2~1 (n = 1)
and "
oW, (n) . (24)
3K, (n . T (n)

Substitution of (23) and (24) in (22) leads to K2 (n+1) =K (n)+

2ule, (M)W, (n-1)+0, (n)e, ¢ (N]. (25)

Now, the power in the forward and backward error sequences decreases as
the number of stages is increased. Thus, in order to maintain the same
adaptive time constant at each stage in the lattice, the step size must
he normalized by the input power at that stage [7]. To this end, we

estimate the power of the 2-th stage using the relation

2
& - 2 (q - -
o 2 n) =82 n-1)+0-8)le_, (n)+
(26)
1 n - 1)
2-1
shere 0 < 8 < 1 is a smoothing parameter. Thus (25) becomes
- o "
K, (n+1) = K, (n) + " [el (n) W, 1 (n -1) +
o,% (n)
(27)
A p
a, (n) e, 7 {n)]
for 2 =1, 2, 3, ..., N, where o is a constant and o_2 (n) is estimated

2
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via (26). The final prediction error is e, (n) in Fig. 3, which
corresponds to e  in Fig. 1.

Comment: In practice, the algorithm in (27) has to be slightly modi-
fied to account for the case when the input to lattice is very small.
Then from {26) it follows that o£2 (n) would be essentially zero, and
hence causes the algorithm to become unstable. This undesirable condi-
tion can be avoided by not carrying out the updating in (27) if
022 (n) < & where ¢ is a small positive number whose value depends on the

word length involved. For example, if the ALP algorithm is implemented

in fixed point using a 16-bit computer, we let

=13

%)

= 000061 .

J

Then (27) becomes

K o(n+1) =K, (n) + -2 [e ()W, (n-1)+
g in g n cgz(n) e, \n) W, 4 (n
. (28)
i, (n) e, (n)]
{w=1‘ if 0,2 (n) ze
shere
W=20 if 022 (n) <e .

We refer to (28) as the LMS lattice algorithm, where 022 {n) is updated

using (26).
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4. RELATION BETWEEN LATTICE AND TRANSVERSAL
FILTER COEFFICIENTS

Given a set of lattice predictor coefficients, it is useful to
obtain the corresponding transversal filter predictor coefficients.
This would enable one to evaluate the overall input-output transfer

E.(z)
function -%TET- of the Tattice predictor in Fig. 3. Thus, from (16) we

have

x(n) = '[dl, N X (n - 1) + d2, N X (m=-2) + ...+

dN" N X (n = N)]
where

ey (n) = x(n) - x(n)
That is

Ey () = x (z) oy (2) (29)
where

N -2 .
Dy (z) = i=0 di, N 2 with do, N 1. (30)

Minimization of eN2 {n) with respect to d2 N leads to
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where

/
Rxx(o) Rxx(l) —————————— RXX(N—1)
RN = Rxx(]) Rxx(o) ~~~~~~~~~~ RXX(N—Z)
| |
{ —— e — R0 e
] Ry (0) l
~ |
| ~
~ |
I - N - |
| \\ |
| \\\ l
Ry (1) ———mmmm e e = - xx(o)/
and ry' = LRXX(1) Rxx(z) ————— Rxx(N)]
Again, Eq. (17) and Eq. (18) imply that
NN (z) = X (2) CN (z) {32)
where-
N+1
¢, (z) =1 ¢C 7%, with ¢ =1
N o= Ea M ’ N+1, N .
Minimization of E {WN2 (n)} with respect to the Coon results in
Cy = =R -1 S (33)
M N N
where
f=ly g & =emse Cy,

and
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S,' = [R

' () Ry (N1) === === R (D]

XX 9.4

From (31) and (33) the following relations are apparent

ry = MN SN SN = MN "N
(34)
Cy = My dy dy = My Cy
where
0 i
MN =
1 0
Equation (34) represents the set of equations

2, N N+1 -9, N

Next, consider an (N + 1) weight forward predictor. Then, corresponding

to {33), we obtain

SRR ey

B i dy+1° - |——~ (36)
]
Uy Rxx(O) Rxx(N+1)
|
where

dy + 1 [dl,N+1 yow+r "7 N+1,N+1]
u' =Ry MR, N=-T) — = —— Ry (1]
' = Ry (1) R (2) == ===~ Ry, ()]

Now, matrix bordering [8] enables us to write down the following
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solution for dN s in (36):
_n -1
P U R Ru” U
N+ 1 0 N+ 1 (37)
1
where
K‘ zRXX(N+1)+uN dN
N+1 o p (0) - u," R,"Y u ’
XX N N N

js a scalar. We observe that Uy = SN and hence (35) implies that the

term in {37) can be replaced by CN. Thus,
d C
_| N N
dh+er1 o] Mo T ) (38)

From (35) it follows (38) yields the recursive relation

d =d - K d

2, N + 1 L, M H+1 N+1 -2, N 7

and

d &ich

N+, N+1 - RN e

Eguation (389) is the desired relation which relates to lattice coeffi-
cients Kg and transversal filter coefficients dz,N' A computer pro-
gram which implements the LMS lattice algorithm and also converts the
lattice coefficients intoc corresponding transversal filter coefficients

via (39) is given in Appendix B,
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5. EXPERIMENTAL RESULTS

Six experiments were conducted, and in each case the input consisted
of the sum of 8 Hz and 32 Hz sinusoids with equal amplitude, The sampling

frequency was 128 sps.

Experiment 1

Widrow's LMS algorithm was used to implement & 16 weight predictor

as indicated in Fig. 1 i.e.,

b = b + ve

m, n + 1 m, n n fn -m 1 <mz<16 (40)

where bm " is the m-th weight at time n

v 15 the convergence parameter

en is the error at time n, and

fn is input to the predictor at time n.

The overall steady-state gain function

_ jonfT
(G TR ik FR I P
LGS

where T = 1/128 seconds was computed and plotted at various intervals, as
depicted in Fig. 4. The value of v in (40) was 0.02.
From Fig. 4 it is clear that the predictor adapts to the 8 and 32 H:z

compenents and removes them, since nulls appear at these two freguencies.
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Any input components at all other frequencies in the 0 - 64 HZ range will
essentially be passed unattenuated. Clearly, this is basically an "ideal"
overall transfer function. However, this desired shape of the overall
transfer function gradually deteriorates as time goes on, as evident from
Fig. 4(j}. This is because the gain function in Fig. 4{j) has several
more nulls than the desired cnes at 8 and 32 HZ. Thus input fregquencies
at the additional nulls would alsao be eliminated if they were present.
This is equivalent to the filter portion of the predictor having an
approximately "flat" gain function as verified in Fig. 5. This observa-
tion agrees with that reported in [3]. More information regarding this

experiment is summarized in Table 1 for the interested reader.

Experiment 2

In this experiment, Widrow's modified LMS (MLMS) algorithm was used,
This algorithm is given by [3]

b ub +ve f . 1em< 16 (41)

m, n+ 1 m, N n'n-m

where 0 < u < 1. The value of this constant was set equal to 0.999878 =
1 - 213 | which is the closest value to unity for a fixed-point implemen-
tation of the above algorithm in a 16 bit processor [3].

The overall gain function |Hb (f)| obtained via {41} is as shown in
Fig. 6(a). We observe that gain function in Fig. © at n = 4000 compares
ciosely with the "ideal" one in Fig. 4(a), but the basic difference in this
case is that the gain function retains its original shape as time goes on;
i.e. frequencies other than those at 8 HZ and 32 HZ are not eliminated.
This is evident from the plots related to n = 4C00 and n = 640,000 in

Fig. 6(a) and 6(j), respectively. Additional information related to this
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TABLE 1:

Iteration

4000

640000

ADAPTIVE WIDROW FILTER (U =1, FIXED V)

-

b

EXPERIMENT 1

Weights of Filter Portion of Predictor

H

H

"

"

i

.17479
.06905
07417
.17028
.08568
.28011
.13209
.00247
. 13018
. 20540
.03263
.10641
.03364
.02081
.08305
.15048

.03545
13022
+1-10386
.08408
ETE2

23



TABLE 1: Continued

Iteration Weights of Filter Portion of Predictor

640000 -.20908

h
—
1!

(7) = .69342
(8) = .44231
{

9} = ,03518
(10) = -.07804
(11) = -.15665
(12) = -.05674
(13) = ~.27485
(14) = .02987
(15) = .59242
(16) = .14589

Note: A1l filter weights were initially set to zero.
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experiment is summarized in Table 2.

Experiment 3

This experiment concerns the LMS lattice algorithm in (28). The

values of the parameters used were as follows:

a=0.02, g=20.98 and ¢ = 0.000061,

The overall gain functions obtained are displayed in Fig. 7. We note

that the gain function has additional nulls at 16, 48 and 56 HZ in Fig.7(a)
which corresponds to n = 4000. However, as time goes cn, the overall

gain function changes and these additional notches tend to disappear,

e.g. see Fig. 7(j). Some additional details related to this experiment

are given in Table 3.

Experiment 4

Here we modify the LMS lattice algorithm in (28) to obtain the follow-

ing modified algorithm:

_ o oW " B
k,Q, (n + -l) = U K_Q, (n) T 7 [ez (n) NZ"T (n ]) +
g, n
(42)
NJL (n) e)?,‘] (n)]
W =1 ifs,2 (n)>ce
2' -
where
W= 0 if 022 (n) <e

and u 1s again an additional parameter. As was the case with the MLMS

algorithm, we set 4 = 0.999873.
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TABLE 2: ADAPTIVE WIDROW FILTER (U = .999878, FIXED V); EXPERIMENT 2

[teration Weights of Filter Portion of Predictor

4000 (1) = .15168
(2) = -.05648

(3) = .06391

(4) = .15261

(5) = -.07098

(6) = -.25412

(7) = -.12545

(8) = -.00152

(9) = ~.12438

(10) = ~.20822

(11) = -.03852

(12) = .11335

(13) = .03901

(14) = -.02687

(15) = .09540

(16} = .18854

640000 (1) = 10171
(2) = -.04834

(3) = .04983

(4) = .12360

(5) = -.03388



TABLE 2: Continued

29

Iteration Weights of Filter Portion of Predictor

640000 (6) = -.20390
(7) = -.15396

(8) = .01805

(9) = -.11230

(10) = -.22540

(11) = -.03958

(12) = .12297

(13) = .02271

(14) = -.01364

(15) = .12297

(16) = .24616

Note: A1l filter weights were initially set to zero.
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TABLE 3:

Iteration

4000

640000

ADAPTIVE LATTICE FILTER; EXPERIMENT 3

Lattice Coeff.

i

.47066
44713
.813
.99764
.63556
. 35289
.08629
.06591
.438
‘1
553
<857
.593
.51295
.91

. 30489

.46147
446
812

(Equivalent Filter)

Weights

(1) = 1.0

(2) = - .5775]
(3) = - .41157
(4) = 24111
(5) = - .06796"
(6) = .268
(7) = 1.21
(8) = - .59
(9) =  .65655
(10) =  .65655
(11) = .738
(12) = - .21
(13) = .469
(14) = .26521
(15) = - .752
(16) =  .649
(17) = .305
(1) = 1

(2) = - .323
(3) = .206

32

Qutput Error

(1)
(2)
(3)

H

-1.38

-1.06

.882
.24
013
.023
.018
018
o231
et
.015
.005
.00488
.00223
.00404
.00262
00232

=1..26

-1.21

-1.32
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TABLE 3: Continued

Iteration Lattice Coeff. (Equivalent Filter) Qutput Error
Weights
640000 (4) = -.99 (4) = - .46 (4) = - .087
(5) = -.74 (8) = - .157 (5) = - .067
(6) = -.669 (6) = .133 (6) = - .095
(7) = .00040 (7) = a3T (7) = - .045
(8) = .488 (8) = .825 (8) = - .045
(9) = -.261 (9) = - .412 (9) = - .022
(10) = .077 (10) = .449 (10) = - .026
(1) = -.347 (11) = - .112 (11) = - .024
(12) = -.439 (12) = .044 (12) = - .007
(13) = -.439 (13) = - .031 (13) = - .001
(14) = -.053 (14) = .181 (14) = .003
(15) = -.192 (15) = 06T (15) = .003
(16) = -.403 (16) = .03 (16) = - .003
(17) = .403 (17) = - .003

Note: All lattice coefficients were initially set to zero.
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The resulting overall gain plots obtained with « = 0.02, g = 0.98
and e = 0.000061 are shown in Fig. 8. Examination of the plots in Fig.

7 and Fig. 8 shows that there is some difference in them at n = 4000Q.

But these plots are essentially identical beyond n = 64000.

Experiment 5

One approach used to improve the rate of convergence of Widrow's
LMS algorithm in (40) is to make the convergence parameter v time-varying.

This is accomplished by the foliowing version of the LMS algorithm [9]:

b = b +y & f

m, n + 1 m, N n& Thopme> 1smeld (43)

where

with o being a constant convergence parameter, and o2 (n) being an esti-
mate of the input variance. The variance is estimated via the relation

g2 (n) =8 o2 (n~-1)+ (1 -8) 2

n-m (44)

The basic strategy involived in this approach is that U is made inversely
proportional to the input signal energy. As was the case with fhe LMS
lattice algorithm, (see (42)), the division of « by o2 {n) in (43) is
not carried cut if ¢% (n) is Tess than some predetermined .

The results obtained by means of using the algorithm in (43) for
a =0.,02 and 8 = 0.98 are displayed in Fig. 9. The behavior of this
gain function as n increases is very similar with that in Fig. 4. We

observe that when n = 640,000, the gain function in Fig. 9(j} has
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several nulls in addition to those required at 8 and 32 HZ. Thus, .
input frequency components at which the nulls appear will be eliminated,
as was the case with the conventional Widrow algorithm whose results are

given in Fig. 4; in particular, compare Fig. 9(j) with Fig. 4(j).

Experiment 6

This final experiment concerns a simple modification of the algorithm
in (43). This modification involves the introduction of the parameter u,
as was the case with the MLMS algorithm in (41). Thus, corresponding to

(43) we have

b =ub +v a f , 1 <m< 16 (45)

m, n + 1 m, n n"n n -m

where 0 < p < 1 is chosen to be close to 1. Here we consider the case
w=1-213=10,999878.

The corresponding gain function for o = 0.02 and 8 = 0.98 are plotted
in Fig. 10, from which it s apparent that the gain function is essentially
unchanged beyond m = 32,000. Further, the shape of the gain function for
m > 32,000 is what we would desire since it has only two nulls at 8 and
32 HZ. This means that input frequency components at frequencies other
than 8 and 32 HZ will not be eliminated. This result is in agreement
with that obtained via the MLMS algorithm in (41). This is apparent if

one compares the plots in Fig. 6 and Fig. 10 for n > 32,000,
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6. DISCUSSION OF RESULTS AND COMCLUSIONS

The simulation results related to Experiments 3 and 4 demonstrate
that the LMS lattice algorithm as defined in (28) does not have the un-
desirable property that its overall gain function starts to develop an
increasing number of nulls as time goes on. We attribute this property
of the LMS Tattice algorithm to the lattice structure itself, in that
essentially all the prediction (decorrelation) error is confined to the
first four stages when the 1input is a sum of two sine waves. For example,
using the output {forward prediction) errors in Table 3 at iteration 4000,
it can be verified that about 99.94% of the squared error occurs in the
first four of the sixteen stages of the lattice. This suggests that the
corresponding prediction error surface is essentially dependent on the
first four stages. Since only four séages are necessary for exact pre-
diction of the sum of two sine waves, the error surface should be guadratic
with a single minimum, and remains that way as time goes on; i.e., a dis-
tributed minimum is avoided. It is conjectured that the surplus lattice
coefficients merely tend to = change this quadratic error surface a little,
and move it around in a local region. For example, using the output error
values in Table 3, one can verify that the total squared error is about
24.7% more at iteration 640,000, compared to that at iteration 4000. How-
ever, 99.6% of the squared error still occurs in the first four stages.
This suggests that the quadratic error surface has been moved upwards
relative to its locaticn at 4000 iterations, and its shape is now siightly
different. Thus we conclude that a distributed minimum is avoided, and
hence the "no-pass" phenomenon does not occur when the LMS lattice algorithm

in (28) 1s used for intrusion detection purposes [3].
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Again, the results obtained via Experiments 1, 2, 5 and 6 demonstrate
that it is necessary to include the parameter p in the two versions of the
Widrow algorithm defined in (41) and (43), respectively. Inclusion of
this parameter avoids the "no-pass” phenomenon which is undesirable in

applications such as instrusion detection [3].
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HE{MLY=G.0
A=0.0

OS2V 0-ROL )
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" “4IN LOOF.

Jl=0
La=d,0
o100 I=1,ITER

t READ REF INFUT.

E{1)1=8IN(FREQ1I*A)+SIN(FREQZ¥A)
A=ntl
Wily=El1)
Li=2

E . $TARGE LOOF.
ng 200 J=1.0

EiLi=E(N-KOIXWLC)

WiLlyski )y =K OIYRECD)
MOJI=BETARV I+ RETATK(EC D XEC D +W1 (I NI I
TV=1.0

IF (VLI WLTEFSF) TV=0,0

RO =UkE Y TURALPHARCE (LI U (Y FE GO RMCLLY ) /U
WifJdi=wil)

Li=iLitl

260 CONTINUG

CO®FUTE D(T)CCOEFF.OF FIR)
FEEOM KCUI(LATTICE COEFF.)

P Bt B ol

LA

NRHLl=N=-1
DiLllr= ={C1}
BFCLYy=D il
IF cfinMd1.ER.0YGD TO 1952
D 15 L=1sNKML
oo 17 M={,L
OiMe=Df W) -R(L+1)S$DF(LyL-8)
T CAUYIMUE
Dil41)==K(L+1)
I#l=L+1
o oiv Jdd=ieIF1
LE{Jdy=potd)
COMTINUE
g CONTINUE
Rt CONTINUE
J1=4141
IFL{.0i CHECNE)GO TO 100
La=lat+l
TYFE LA
WRITE(LZ,S0)LA
FORMAT(® 'S I3}

-
L]

)

DUHF VALUE OF LATTICE WEIGHT K(Lla
FIR WEIGHT D(I)Y AND
FREDIICTGR QUTFUT

oo ou

Do i0o2 I1=1.¥
WRITE(12:400)T1,K(L1)
400 FORHAT(Y K(*sI2r'3="»F15.9)
Loz CONTINUE
00 103 I2=1sMi
WRITE(12,201)12,EC(I20
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FAMLY Bl dde " 1= er 10,0}

URITEC(1Z9210KKST

U9 3 I0=lgN

FORMATC"  DO*»I2»*)="yF15.5
WRITE (1252101100117
CONTINUE

J1=9

CORTINUE

CaLl QUERY (*32x<V»RE-EXECHTE (Y/N) T " NEX)
IF (HEX.EU-1) 66 TO 33

STOF ¥x NORMALLY TERHINATED *%
END

50



TRANSFER FUNCTION CONSIDERATIONS OF AN
ADAPTIVE LATTICE PREDICTOR

by

YUNG-NING WANG

B. S., National Taiwan Institute of Technology, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1981



ABSTRACT

In this report, we study the long-term behavior of the transfer
function of an adaptive lattice predictor, and compare it with that
Widrow's LMS (least mean squares) adaptive predictor. This study and

related comparison is carried out via a computer simulation.



