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CHAPTER I
•

THE PROBLEM

INTRODUCTION

This paper is concerned with the following type of optimal control prob-

lem:

For a given topological configuration of a linear control
system and a given input f(t), the parameter values are to
be found which optimize some performance measure.

Traditionally problems of this type have been solved by trial and error

(Bach, 1965). However this is time consuming, costly, and impractical on

large systems. In recent years considerable interest has developed in using

computers as a design tool to simulate the control system and find the most

desirable system parameters. This is done by defining a performance measure

or measures in terms of a distance function. A distance function relates

quality of performance to the least distance from the origin. Any number of

performance measures can be combined in a single distance function. An exam-

ple of a commonly used distance function is the square root of the sum of the

squares of the performance criterion (Levine, 1964).

In control systems the performance measure usually involves the integral

of some form of error between the input and the output. Other criterion that

may be used are overshoot, undershoot, time delay, and settling time (Kuo,

1962). These measures are defined in Appendix A.
"

Most other treatments of this problem are restricted to step inputs.

This approach allows a more general f(t) that has a constant final value after



some time T^ . The assumption is made in this paper that the input f (t) never

exceeds the final value. If the input f(t) is larger than the final value for

some time T_ less than T^ , then the performance measures must be redefined to

' take this into account. '

This paper describes a general FORTRAN program to solve the above prob-
'-

lem. The program is written to find the optimal parameters of any control

system that can be described by an W^ order (2<N<8) linear differential eq-

uation with constant coefficients. The computation time increases very rap-

idly however, as the order of the system increases. To demonstrate the prog-

ram, a specific problem is considered and the performance measure criterion

are evaluated for two distance functions and three different error definitions.

STATEMENT OF THE PROBLEM

The program to be solved is as follows. The parameters of a third order

linear differential equation are to be found which minimize a distance func-

tion involving settling time T and the integral of some form of error. The

input to the system is a modified step function consisting of a unit ramp to

time one and unit step from one to infinity. Thus the system has the follow-

ing form.

•y + A^y + A^y + y = f(t)

f(t)=0 -(»>t>Q

t ^ t > 1

1 1 ^ t

The distance function is the square root of the sum of the squares of T
s

and ERROR where T is defined as the time required for the response to de-

crease to and stay within five percent of the final value. Three different



ERROR definitions are used and compared.

1. lAE = / ERR dt

Integral of the absolute value of error.

Note: ERR is the difference between the input and output,

T can either be a fixed value designated by the

user or the value of T .

s

T
2. lES = f ERR^dt

Integral of the error squared.

T

3. ITES= / t*ERR^dt

Integral of time multiplied error squared.



CHAPTER II

THEORETICAL ANALYSIS,

DISCUSSION

Because of the difficulties in generalizing analytical methods of opti-

mization, search techniques are used to find the optimal parameter values.

The distance function is evaluated each time the parameters are changed by

solving the differential equation that describes the system. The distance

function is then minimized by adjusting the parameters in some optimal way.

For efficiency two search methods, steepest descent and relaxation, are

used. Steepest descent works best in adjusting the parameters from the ini-

tial values to somewhere near the optimum values. This method has problems

with step sizes near the minimum and doesn't work when there are discontin-

uities in the solution space.

Due to the definition of T , the solution space for the distance func-
s'

tion is discontinuous. Near the optimal parameter values, a slight change

will move the solution outside the allowed range and markedly increase the

value of T . This in turn increases the ERR and because it is integrated

over a longer time.

In this problem the minimum values occur right next to a discontinuity

in the solution space. (See Fig. 1) This is quite understandable when one

looks at the definition of the distance function. The program will first try

and make the response converge as soon as possible to minimize both T and

ERR. Then once T is relatively constant, the program will move the overshoot
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as close to the Limit as possible without exceeding it. Thus it can be seen

why a very small increment will suddenly cause a great change in the value of

the distance function. This causes problems in the search technique because

proper adjustments must be made when this happens. It is also easy to get

caught on a relative minimum near a discontinuity.

This brings up questions as to the validity of the choice of performance

measure. One of the requirements for an optimum system is mathematical trac-

tability (Hancock, 1966). Obviously the choice of the performance measure is

purely subjective. Therefore to be effective it must be based on good engi-

neering judgement. This particular performance measure should only be used

when necessary. In most problems, other measures that have continuous solu-

tion spaces would be more satisfactory.

As noted above the optimum parameter values represent a relative minimum

and not necessarily an absolute minimum. When there are several minima it is

necessary to run the program several times from different starting points to

determine the absolute minimum.

Because the parameters represent physical components the accuracy is lim-

ited to one part in a thousand. It would be senseless to obtain optimal para-

meter values with greater accuracy than this because the components would

change with time or temperature. The parameters should not be picked too near

a discontinuity in the solution space for the same reason.

This paper assumes there should be no steady state error. This con-

strains the parameter on y to the value 1. Thus for an ISF'' order differential

equation there will be N-1 adjustable parameters.

Analysis of Methods Used

Three numerical methods are used in this paper. Two are search tech-



niquGS and the other is a method for finding the solution to a differential

equation. The methods are reviewed briefly here.

Relaxation

In this search technique a single parameter is varied with all others

held constant until a local minimum is reached. Slope is used to determine

the direction of descent. Each time the slope changes, the stepsize is re-

duced by an order of magnitude. This continues until some termination crit-

erion is satisfied. When the solution space is discontinuous some additional

checks are made to insure convergence.

Steepest Descent

The distance function is defined as B(k^, . . .
,A^) . This function can be

minimized in a region R of the N- dimensional rectilinear parameter space if

one starts from an arbitrarily selected point in the region and follows a

path which leads to decreasing values of D. The rate of. change dD/dt is

greatest if the path chosen in the parameter space is tangential to the grad-

ient vector in this same space (Levine, 1964). This may be written as an in-

ner product as follows: dD/dt = ( grad D ) • (A)

where A = A^u^+A u + ... A ii— 1—1 z—z n—

n

The u.'s are unit vectors along the coordinate axis. The minimum occurs when

the two vectors are parallel and point in opposite directions (Levine, 1964).

This may be written as follows:

dA./dt = -(5D/^A.) i = l,2,...n

This may be approximated by the following difference equation:

AA. = -(AD/AA,)At i = 1,2, ...n

One variation on steepest descent that saves some computer time is to



calculate the steepest descent stepsizes at a point and increment with those

same stepsizes until a local minimum is reached. The local minimum is taken

as the new starting point and the process is repeated.

Euler's Method

Euler's Method is used to solve the differential equation because of its

simplicity and minimal computation time. If higher accuracy would be needed

some other method such as Runge-Kutta could be used (Conte, 1965). The

choice of the time increment has an important part in the accuracy of the sol-

ution, the accuracy of the settling time T , and the computation time re-

quired to find the solution. The value 0.01 seems to be a good tradeoff be-

tween time and accuracy. Euler's Method can be stated in the following gen-

eral form. y = y + vy.^t
n+1 'n ^

To solve the differential equation y + y + f (t) where f(t) is the input, the

following difference equations are solved repeatedly.

t
,

, = t + Atn+1 n

y =-y +f(t)
•'n •'n ^ '

n+1 •'n •'n
**

The method can be generalized to solve an W^ order differential equation

by changing it to a set of N first order differential equations.



CHAPTER III

PROCEDURE

The description of the program can be divided into six main parts.

These are Input, Phase I, Phase 2, Phase 3, Output, and System Simulation.

Through the input the user can specify the order of the differential equa-

tion, the initial parameter values and the initial stepsize values. By

changing the appropriate FUNCTION Subroutines the user can specify the input

f(t) and the distance function. Phases 1 and 2 are used to insure the con-

vergence of the response so there will be a solution for the settling time.

Phase 3 makes the final parameter adjustments and makes adjustments to dis-

continuities in the solution space. A simplified distance function defined

as the integral from zero to twenty-five seconds of the absolute value be-

tween the input and output is used in Phases 1 and 2. This is a continuous

function that simplifies the search procedure. Phase 1 uses steepest descent

search technique. Phases 2 and 3 use a relaxation search method. Each time

the distance function is evaluated pertinent information is printed out so

the user can know where the search procedure has been. When the optimal par-

ameters are found they are printed out with the message PARAMETERS OPTIMIZED.

The system simulation obtains the necessary information for calculating the

distance function and uses a generalized Euler's Method for solving N^'' order

differential equations.

The program is basically written in FORTRAN II. The single exception to

this is the IMPLICIT statement which makes all floating point variables
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double precision. This means that every time the ABS, or SQRT Library Sub-

routines are used they must be specified as DABS and DSQT. The program was

run on an IBM 360/50 using the FORTRAN IV Level G compiler on Release 12.

The execution time for a typical run on the third order problem described '

in this paper is 6 minutes. This time increases with increasing order of the

differential equation and decreasing stepsize.

INPUT

The user must specify the order of the differential equation, the intial

parameter values, and the initial stepsizes. The program has a default so

that if the user has no idea what values the parameters should be the program

will arbitrarily set them to 1 and the initial stepsize to one tenth. JJ re-

presents the order of the differential equation and KJ is the default code.

JJJ is set equal to JJ-1. This is the number of adjustable parameters. lERR

is a code that determines which ERROR definition is to be used (see page 33).

AA is the time of integration in seconds used in Phase 1 and 2. DELTX is the

time increment used in Phase 1 and 2. The input list JJ,KJ, IERR,AA,DELTX is

read in on a 3ll,2X,2F5.0 format. JJ must be assigned a value (2<JJ<8) but

all the other variables will take on a default value if left blank. The de-

fault values are KJ=0, IERR=1, AA=25., DELTZ=.05. If JJ is 9 the program

will terminate. If KJ is positive two more cards are read with a 8F10.5 for-

mat. The first card should have parameter values A. in ascending order. The

second card should have stepsizes DELT. in ascending order. If KJ is positive

the program goes directly to Phase 3. The default occurs if KJ is zero or

blank. The input f(t) and distance furction are modified by changing the ap-

propriate FUNCTION Subroutines. (see Appendix B)
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PHASE 1

This Phase used steepest descent to adjust the parameters A. from their

initial value of 1 to a set of parameters whose response converges to the in-

put with minimal error. All parameters are adjusted simultaneously along a

straight line tangent to the gradient at the starting point. This continues

until a local minimum is reached or the parameters are adjusted 15 times.

The parameter values are taken as a new starting point and the process is re-

peated two times. DELT. is defined to be the stepsize. The interval of in-

tegration, AA, is 25 seconds. When the DELT. are calculated only one para-

meter is varied at a time. ERR is the absolute value of the difference be-

tween the input and output ]y - f (t)] .

STEP 1

The following quantities are evaluated.

- S:

ERR dt

ERR dt

for A. - DELT. /lO
1 1

for A.

for A. + DELT. /lO
1 1

H3= JeRR dt

From these values four cases are obtained as follows:

The resulting curves are shown in Fig. 2.

CASE

HI H2

lA Hl> H2> H3

IB Hl< H2< H3

IC H2> HI, H3

ID H2< HI, H3

H3

Fig. 2 Sample Curves Showing Cases
lA, IB, IC, and ID.
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PI IAS K 1

I

N =

1 =

T
1 = 1 + 1

CALCULATE
AND TEST
HI H2 H3

CASE 1 CASE 2 CASE 3 CASE 4

DELT ( I ) =F/ABS (DELT ( I )

)

.005£DELT(I) S .38

A(I)= min(Hl,H3 DELT(I)/10
A li li

no

DIST(1)=H3

P(I)=P(I)+DELT(I) 1=1, JJJ

DIST(2)= /err dt

yes
DIST =DIST2

P(r)=P(l)-DELT(l) 1=1, JJJ
N = N + 1

no

RETURN

Fig. 3 Flowchart of Phase 1



F is defined as (ill - 112).

After testing to sec which case exists the following action is taken.

Case lA and ID DELT. is redefined as F/ DELT.. The program then goes

to sfep 2.
^

Case IC A. is redefined to that parameter value corresponding
to the smaller of HI or H2. STEP 1 is then repeated.

Case ID DELT. is decreased by an order of magnitude and STEP 1

is repeated

STEP 2

The resulting DELT. is tested as follows:

If DELT. > 0.38 DELT. is set equal to 0.38
1 1 ^

If DELT. < 0.005 DELT. is set equal to 0.005
1 1 ^

If all the DELT. have been calculated the program goes to STEP 3. If

not I is incremented by 1 and the program goes to STEP 1.

STEP 3

After all the DELT. are calculated each A. is incremented by the corres-

ponding DELT.. ^ERR dt is then evaluated repeatedly, incrementing the par-

ameters each time. When the value of the integral is larger than the pre-

vious value a local minimum has been reached. All A. are then decremented

by DELT^, I is set to one, and the counter KJJ is incremented by one. If KJJ

is three the program goes to Phase 2. Otherwise the program goes to STEP 1.

See Fig. 3 for a flow diagram of Phase 1.

PHASE 2

This phase uses a relaxation search method to make the parameter re-

sponse converge even more quickly. A single parameter is varied with all

others held fixed. The parameter is varied until one of three things occur.

ii
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First, the dificrcncc between the two distance functions is negligible, se-

cond, the stepsize may get too small, or third, the parameter has been varied

more than 15 times. If one of these criterion is true the next parameter is

then varied. Each parameter is varied in turn until the change in the dis-

tance function for JJJ successive parameter changes is negligible. The dis-

tance function used is the integral from zero to AA seconds of the absolute

value of the difference between the input f(t) and the output. AA is 25 sec-

onds in this report.

The initial parameter values A. are those calculated in Phase One. The

initial stepsize DELT. are one tenth. All changes in stepsize are by orders
^ 1

of magnitude. CODE is plus or minus one corresponding to positive or neg-

ative slope of the distance function. DIST(K) corresponds to the most recent

value of the distance function, DIST(K-l) the previous value, etc. Each time

the simplified distance function is evaluated it is done twice, once for A^,

and once for A + DELT." CODE/10. By this means the slope can be determined
i 1

and CODE set to the proper value. The parameter A. is then incremented by

DELT." CODE. Two more distance functions are then evaluated corresponding to

the new A and A + DELT." CODE/IO. When this is done one of the followingill
Cases will result. CODE is taken to be plus one in this example. This im-

plies that DIST(l) is greater than DIST(2). See Fig. 4 for sample curves.

CASE 2A DIST(1)> DIST(2)> DIST(3)>DIST(4)

This case is a desirable result. It means the search is

continuing down a slope in the parameter space.

CASE 2B DIST(l) >DIST(3), DIST(4) > DIST(3)

This case shows the minimum has been crossed and that it

is nearest DIST(3).
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CASE 2C DIST(3)> DIST(l), DIST(4) > DIST(3)

This case shows the minimum has been crossed and that It is
probably nearest DIST(2).

CASE 2D DIST(3)>DIST(1), DIST(3) > DIST(4)

This case indicates that a discontinuity has been crossed
in the solution space or that the stepsize is very large.

DIST

CASE 2A

CASE 2B

CASE 2C

CASE 2D

Fig. 4 Sample Curves Showing Cases 2A, 2B , 2C, and 2D.

The above cases are tested for and the following action is taken.

CASE 2A A. is incremented by DELT .

CASE 2B DELT^ is decreased by an order of magnitude and 3*C0DE>'fDELT

.

is subtracted from A.

.

^
1

CASE 2C DELT^ is decreased by an order of magnitude and 7*C0DE>'fDELT.
is subtracted from A.. ^

1

CASE 2D DELT
the p

^
is decreased by an order of magnitude and A. is set to

parameter value corresponding to DIST(2). ^

If one of the following criterion are not satisfied, the program sets

DIST(1)= DIST(3) and DIST(2)= DIST(4). The program then sets CODE to the

proper value or finds DIST(3) and DIST(4) corresponding to the new A and A
i i

DELT(l)^vcODE/10.

1. |disT(3)-DIST(4)| <DMIN This means negligible improvement from
the change in parameter.
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I i'liASK 1

T = L

DALOW=.0001
DTKKM=. 00005
IW I N=. 000001
C()D1';=1

M=l
ICONT=0

IC0NT=IC0NT+1

no

CALL C

A . =A . +DELT . -'.-CODE/1011 1

CALL C

A . =A . -DELT . -"-CODE/ 111 1

F=DIST -DIST
G=DIST^-DIST^

DKi.T =r)F';L'iyvio

LCONT=0
PRINT
DELT.=.l
D.=DtsT„
1 3

I=T-H

I-JJ-1 /^
1

1 = 1

- \/(J

M=I .

JJJ

M=2

Fig. 5 Flowchart of Phase 2



DELT <DALOW

3. IC0NT>15

17

This indicates that the stcpsizc is less

than that allowed by the user.

This means a single parameter has been
adjusted more than 15 times successively.
Levine(1965) shows that by limiting
the number of adjustments of a single
parameter the minimum is found more
quickly.

When one of the above criterion is satisfied D. is defined to be equal
1

to the last DIST. calculated. The following overall termination criterion

is then tested.

JJJ
If T~ Id. .-d.

h-y, I 1-1 1
i=2

< DTERM The program goes to Phase 3.

If this inequality is not satisfied I is changed so the next parameter

will be adjusted. The program returns to set CODE to the proper value and

the process is repeated until the termination criteria is satisfied. See

Fig. 5 for a flow diagram of Phase 2.

PHASE 3

This phase is very similar to Phase 2. However there are three impor-

tant differences. First the required difference function Jt +ERROR is

used, second a smaller stepsize DELTX is used, and third some additional

tests are made to determine when the search has crossed a discontinuity.

When a discontinuity is detected, the stepsize is decreased by an order of

magnitude and the parameter is adjusted so it is on the small side of the

discontinuity. If the termination criterion is satisfied while on the wrong

side of a discontinuity, A^ is set to its previous value and D. is set equal

to DIST^ instead of DIST . The action taken after testing for the four

cases (see Phase 2) is different for cases 3B and 3C.
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1=1

DALOW=.0001
DTERM=. 00005
DMIN=. 000001
P1=0.

P2=0.

ML=0
C0DE=1
M=l
ICONT=0

CALL C

P1=P2
P2=A.

Ai=AJ;+DELT^'VCODE/l0
CALL C

Ai=Ai-DELT^>vcODE/10
F=DISTo-DIST,

A.=A.+DELT.VcCODE
1 1 1

A. =A. -DELTi-'.-CODE'VlO
1 ^ J:

M=l

Ai=Aj^+DELTj_-A-CODE

A£=A^-DELTi*C0DEVf2
DELTi=DELTi/10
M=l

Fig. 6 Flowchart of Phase 3

continued on next page
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DF,LT.=DELT.*10
PR I N't ^

ICONT=0

I-JJ+1 >—

\y^ 1=1
— 1^

1

1

M=1

Fig. 6 Continued Flowchart of Phase 3
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Case 3B DELT. is decreased by an order of magnitude.

Case 3C DELT, is decreased by an order of magnitude and
10Vcc4dEV.-DELT. is subtracted from A .

1 1

When Phase 3 is terminated the program prints PARAMETERS OPTIMIZED

and prints out the optimal parameter values. See Fig. 6 for a flow diagram

of Phase 3.

OUTPUT

The program will terminate in one of three ways. The desired termina-

tion is taken when the parameters are optimized. If the parameters have a

response that does not converge within 25 seconds the program will also term-

I 2 2"mate. It the distance function -^T +ERROR is evaluated more than 400

times for the same input data, the program will terminate and print out the

message PROGRAM TERMINATED AFTER 401 LOOPS. Because of the possibility of

these undesired terminations the user needs to know what the program has

done up to the time of the termination. Each phase prints pertinent infor-

mation applicable to that Phase.

In Phase 1 the new DELT^ are printed each time they are evaluated.

Each time the parameters are incremented the program prints out the corres-

ponding distance function and the parameter values. In Phase 2 the program

prints DIST3, DIST^, CODE, I, A., and DELT.. In Phase 3 the program prints

the same as in Phase 2 plus the values for AREA and T. Whenever I is incre-

mented in Phases 2 and 3, the parameter values and DELT. are printed. At

the end of the program if the proper termination criterion is satisfied the

program prints PARAMETERS OPTIMIZED and prints the parameter values.

SYSTEM SIMULATION
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The actual mathematics of the simulation is described in the theoretic-

al analysis. Interwoven with this are all the necessary checks to evaluate

the distance functions. Some problems are encountered here because of round

off error and the inability of a binary computer to represent decimal numbers

exactly. Double precision is used on all floating point variables to try and

improve the accuracy. The round off error can be most readily seen in the

value representing time. Because it is determined by repeatedly adding small

increments a large number of times the roundoff error becomes very apparent.

This also affects the accuracy of the solution to the differential equation.

If the value of time exceeds 30 seconds when using the required distance

function, T is set equal to 25, the distance function calculated, and control

is returned to Phase 3.

LLL is the key used to determine which distance function is to be eval-

uated. LLL is equal to one for Phases 1 and 2. This causes the subroutine

to evaluate the continuous distance function. LLL is equal to two in Phase 3.

This causes the assumed distance function to be used. LLL is equal to three

when a listing is made of the response of the differential equation versus

time.



CHAPTER IV

RESULTS AND CONCLUSION

RESULTS

The problem to be solved is repeated as follows. The parameters of a

third order differential equation are to be found which minimize the distance

function -aT +ERROR with a modified step input. T is the time required for

the response to decrease to and stay within five percent of the final value

of the input. ERR is defined to be the difference between the input and the

output. Three different ERROR definitions are used as follows.

1. lAE Integral of the absolute value of ERR.

2. lES Integral of ERR squared.

3. ITES Integral of time times ERR squared.

In addition to solving the above problem, optimal parameter values were

found for the simplified distance function ERROR for each of the three defi-

nitions. This was done for a comparison of the performance measures of the

distance functions for each ERROR definition. See Table 1 for the tabulation

of the performance data and optimal parameter values.

For clarity the distance functions -JT^+ERROR^ and ERROR are hereafter

referred to as DFl and DF2 respectively.

Because of the definition of DFl the optimal parameters are the same for

all three ERROR definitions. This result is caused by the high sensitivity

of DFl to the settling time T^ for this order differential equation. There

is only one set of parameters that cause the output to respond most quickly

22
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with no more than five percent overshoot or undershoot. Because of this the

values of ERROR have little or no effect in determinimg the optimum parameter

values with DFl. See Fig. 7 for a plot of the optimal response versus time

for DFl.

When DF2 is used there are no constraints on overshoot and undershoot.

The time of integration must be specified as twenty-five seconds because it

is not implied in the definition of DF2 as it is in DFl. The performance

values for DF2-IAE are nearly the same as those obtained from DFl. DF2-IES

and DF2-ITES have faster response times but the settling time and overshoot

are increased. From the data in Table 1 it can be seen that when one per-

formance measure improves one or more of the others get worse. Thus there

is a tradeoff between performance measures and good engineering judgment must

be used to select the distance function that emphasizes the most desirable

combination of performance measures. See Fig. 8 for a plot of the optimal

response versus time for the three ERROR definitions for DF2.

A small change in the stepsize DELTX can cause rather significant

changes in the calculated optimum parameter values. This is caused by the

accuracy limitations of Euler's Method with large stepsize values. If higher

accuracy is needed some other method such as Runge-Kutta should be used for

solving the differential equation. In most cases however, high accuracy is

not needed. With good judgment fairly large stepsizes can be used to deter-

min rough optimum values with very little computation time.

The weakest part of the program is the time required to solve the diff-

erential equation. Since the system must be simulated many times in order to

find the optimum values, most of the computer time is used in doing this sim-

ulation. In order to reduce the cost of finding the solution the simulation
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routine must either be used less or a cheaper method of simulation used.

Better prediction or extrapolation methods would help reduce the number of

times the routine must be used. A high order system could be simulated more

cheaply on a hybrid computer. For this reason, the program was written so

it could be adapted to a hybrid computer.

CONCLUSION

The program presented in this paper is a practical approach to the

optimal parameter design problem. With the use of the program and a judi-

cious choice of a distance function that emphasizes the desired performance

measures, the user can quickly determine the optimal parameter values for

an N^*^ order (2i N<8) differential equation. The distance function should,

if at all possible, be chosen so it is a continuous function. Only when

the system must have special response characteristics should a discontinuous

distance function be used.

The next step in the development of the program should be to generalize

it so the program could simulate systems with both poles and zeros. This

would greatly increase the usability of the program.
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APPENDIX A

DEFINITION OF PERFORMANCE MEASURES

These terms are defined somewhat differently than usual because they

are not limited to step inputs. Any input f(t) can be used that has a con-

stant final value after some time T-, and never exceeds the final value.

Overshoot Percent overshoot is defined as the difference between

the maximum response r(t) after T-^ and the final value

of f(t) times 100 divided by the final value.

Undershoot Percent undershoot is defined as the difference between

the final value of f(t) and the minimum response after

the first negative slope crossing of the final value

line after T, , multiplied times 100 and divided by the

final value.

Time Delay Time delay is defined as that time Tj required for the

response to reach 50 percent of its final value.

Rise Time The rise time T^ is defined as the time required for

the response to rise from 10 percent of its final

value to 90 percent of its final value.

Settling Time The settling time Tg is defined as the time required

for the response to decrease to and stay within 5

percent of its final value.
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APPENDIX B

COMPUTER PROGRAM

The following pages contain a listing of the Fortran program described

in this paper. The program consists of a main calling routine, four subrou-

tines, and three FUNCTION subroutines. The program was written in this

manner so the user could easily change it to meet his needs. If a faster

execution time is desired, the FUNCTION subroutines should be incorporated

into the calling routine. Comment statements are interspersed throughout

the program to help the user understand what the program does.

The following are explanations of the three FUNCTION subroutines.

FUNCTION AINPUT(Z)

This routine calculates the value of the input as a function of

time. Z is the variable that represents time. The user can change

this routine as desired.

FUNCTION DISTFN(AREA,T)

This routine calculates the value of the distance function called

for in the problem described in this paper. If this routine is changed

to use other values in the distance function, SUBROUTINE C should be

changed accordingly to supply needed values or delete uneeded values.

The user can change this routine as desired.

FUNCTION RRR(ERR,Z)

This routine is used to allow several different ERROR definitions

to be evaluated in the same program run. The program keys off the value

of lERR to determine the ERROR definition. Care shoula be taken when

changing this routine because of the COMMON statement.



//CPTIMI2F JC i 0?F/t0A08G00?»-3WlTZER-»MSGLEVFL = l OlO»OAO»000
// EXEC FTGCLGKS.PARM.FCRT=-BCD-
//FCRT.SYSIN DD
C

C

C *********************** 4; *-^f * ^( -1^ ^--K ^{»^^^;• «**«***** *******«*»«»#i(*#»***#
C ***PARAMET€R OPTIMIZATION OF A JJ TH ORDER DIFFERENTIAL EQUATION**
C ***KFNNETH SWITZFR 1968***
C **«****-^**«K ***«•* ^<•*****^<'*•***^;*-^^«*»***•»*^f***^t*^<.^^s.)(.^^.^^»^^^(^^^^#^(^^^^^f^^^^>^^^^f

r ** THIS PROr-RAM WILL FIND THF OPTIMUM PaRAMFTFRS SURJFCT TO **
C ** A SPECIFIED DISTANCE FUNCTION AND INPUT. THE INPUT MUST HAVE**
C **- A CONSTANT FINAL VALUE AFTER SOME TIME TO AND NEVER EXCEED **
C *^^ THAT FINAL VALUF. THF DISTANCE FUNCTION IS THE SQUARE ROOT **
C ** OF THE SUM OF THE SQUARES OF THE SETTLING TIME T(S) AND THE **
C ** VALUE OF THE INTEGRAL FROM ZERO TO T(S) OF SOME FORM OF THE **
C «* ERROR BETWEEN THE INPUT AND THE OUTPUT. T(S) IS DEFINED AS **
C ** THE TIME REQUIRED FOR THF RFSPONSE TO DECREASE TO AND STAY **
C ** WITHIN .C5 OF THE FINAL VALUE. IF lERR IS 1 EER IS EQUAL TO**
C ** ERR. IF lERR IS ? FFR IS ERR SQUARED. IF IFRR IS 3 EER IS **
C ** T TIMES (^RR SQUARED. THF APPROPRIATE FUNCTION SUBROUTINES **
C ** CAN RF CHANGE TO SUIT THF USERS NEEDS. EULFRS METHOD IS USFD**
C ^< TO SOLVE THE DIFFERENTIAL EQUATION. THE PROGRAM GOES THROUGH**
C ** TWO PHASES TO INSURE A SOLUTION TO T(S) IN PHAS^ 3. **
C ** INPUT #*
r ** THE ONLY VALUE REQUIRED IS JJ. ALL OTHER VALUES WILL DEFAULT**
C ** THE INPUT IS OF THE FORM J J , K J , I ERR , AA DELTX . THIS IS READ **
C ** ON A 3n,2F5.0 FORMAT. IF JJ IS 9 THE PROGRAM WILL TERMINATE**
C ^^ DEFAULT VALUES IF THE LOCATIONS ARE LEFT BLANK ARE AS FOLLOWS**
C ** KJ = l> IERR = 1 AA = ??. DFLTX = .OS. KJ=1 IS A CODE USED IF**
C ** THF STARTING POINT IS TO RE SPECIFIED. TWO MORF CARDS ARE **
C ** READ IN WITH A aFlO.O FORMAT. THE FIRST CARD MUST CONTAIN **
c ** iH^ Parameter values a(i) in ascending order, the second **
C *^ CARD MUST CONTAIN THE INITIAL STEPSIZE IN A SIMILAR MANNER. **
r ******^****^<^*-"-»-'«^^*>i***^^*^^^^^<^^^t^**K«»^^**-s.^(*Jt^(.^^^^(^(.^f^^(.^f^f^^^{.^J.^^^^^^^^^^

C

^ *^' PROGRAM VARIABLES *#
^ "* AA INTEGRATION TIME DELT(I) STEPSIZE **
C ** JJ ORDER OF DIFF EQ KJ CODE FOR DATA READ IN **
C <* Ml) PARAMETERS OF DIFFERENTIAL EQUATION **
C ** ALOW vLOWARLF DEVIATION FROM INPUT FOR SETTLING TIME **
C ** IFRR CODE FOR RRR FUNCTION SUBROUTINE **
C ** LLL CODE FOR WHICH PHASE IS USING SUBROUTINE C **
C ** LKK CODE FOR THF STATUS OF SETTLING TIME **
C ** KKK rCUNTPR FOR MAXIMUM NUMBER OF DISTANCE FN EVALUATIONS**
C ** DFLTX TIME INCREMENT THIS IS REDEFINED LATER FOR PHASE 3 **
C ** DIST(I) THE FOUR STORED DISTANCE FUNCTION POINTS **
C ** D(I) USED IN TERMINATION OF PHASES 2 AND 3 **
r ******^***** ****** ******i;«****^)tic<r-^*>.(}^.**^-;t^Hj.^i.^t^^f^^t^(^f^^f^^^^^^^^^^^
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«* MAIN CR CALLING PROGRAM
IMPLICIT REAL^'aCA-H.vO-Z)
niMrNf. iCN Y( i>) ) ,n( 1 c) ) ,A ( ]() ) »nELT ( 1 u) ,niM ( )

COMMON AA»ALOW,nrLTX,n»nF» IFRR,LKK,,LLL,J,JJ»JJJ,<<<,K, I

** INPUT ARFA AND DFFAULT CHFCK
SO Rf An98,JJ,KJ,IFRR»AA»DFLTX

PRINTIC5
PRINT 99,JJ,IFRR "

QO F0RMAT(?I5')
9i FORMATOn .2X,?F5.0)

IF( JJ)80,£ D,81
81 IF(JJ-9)83. 82.82
S? STOP
83 IF( IFRR)84.84»85
64 IFRR=1
8 5 IF(AA)88,88,89
88 AA=25.
89 IF(DFLTX) 92,92,87
^2 DFLTX=.05
87 no 809 1 = 1 ,JJ

A ( I )=3.
DFLT( I )=.l

809 D( I )=0.

K = U

AL0W=.05
LLL = 1

LKK = 1

<KK =

105 FORMAT( IHl )

no 743 I 1=] ,4
74^ nT?T( I n = ".

A

{

JJ)=1.
IF(KJ)802,802,803

80-^ RFADIOO, (A( I ) , 1 = 1 ,JJ)
RFADlOv.,(DFLT( I ) ,1 = ] ,JJ)

ICO F0RMAT(8F1C,5)
GO TO 1

802 J=JJ+1
JJJ=JJ-1
CALL PHASl

(

A,DIST,DELT)
DO 8011 = 1,

J

801 DFLT( I )=.l
CALL PHAS2

(

A,DIST,nrLT)
PRINT 300 .

300 FORMAT(/,2X,31HSWITCH TO NFW DISTANCE FUNCTION,//)
** RFSFT DFLTX FOR PHASE 3

DFLTX=.G1
] LLL=2
CALL PHAS3{ A,DIST,DELT)
LLL = 3

DE = 0.
** CALL FOR LISTING OF RESPONSE VALUES
CALL C( A,DTST,OFLT)
GO TO 8

END

#»

#»

«

**
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FLiNCTION AINPUT(Z)
IMPLiriT RFAL*B( A-H,C-Z

)

C X* THIS FUNCTION SUPRCUTINF SPFCIFIFS T^iF INPUT AG A FUNCTION ««

C ** OF Z WHICH HFPRESFNTS TIME IN SECONDS **

IF(Z-1. ) 1»2»2
] AINPUT=Z
RFTURN

? AINPUT=1.
RFTURN
END

FUNCTION DISTFN(ARFA»T)
J.VPLICIT RFAL*8(A-H,0-Z)

C ** THIS FUNCTION SUBROUTINE SPECIFIES THE DISTANCE FUNCTION USED**
C *•* IN PHASE 3 IN TERMS OF SETTLING TIME T AND AREA *»

DlSTf^N = DSQRT(AREA*ARFA + T*T)
RFTURN
END

FUNCTION RRR(ERR,Z)
IMPLICIT REALV.-8(A-H,0-Z)

DIMENSION Y(10),D(10),A(10),DELT(10),DIST(5)
COMMON AA,ALOW»OFLTX,r>,nF»IFRR,LKi<,LLL»J,JJ»JJJ»KK<,K,I

C ** THIS FUNCTION SUBROUTINE KEYS OFF lERR AND LLL TO SPECIFY THE**
C ** VALUE OF RRR AND IN TURN EER.
C *•* INTEGRAL OF ABSOLUTE VALUE OF ERROR lAE «*
C ^-* INTEGRAL OF ERROR SQUARED lES
C ** INTEGRAL OF TIME MULTIPLIED ERROR SQUARED ITES

GO TO ( 1 .2, 2), LLL
1 RRR=FRR

r^rjURN

? 30 TO C.A.'i) » IFRR
•^ PPR = FRR

RFTUR^'
4 RRR=rRR*rqR

RFTURN
5 RRR=ERR*ERR*Z
RETURN
END
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SUBROUTINF PHAS ] ( A , D I ST , OFLT )
•

IMPLICIT RFAL*8 ( A-H»C-Z )

nI^'FN?IC^J A( If. ) ,COnF(]0) ,0(10) ,nFLl (]0),rM5T{^),Y(lO)
rOMKCN AA,ALCW,orLTX,n»nr,TFRR,LK:<,LLL,J,JJ,JJJ,<.KK,K,I

PHASf 1 USFS A STFFPf^^T DFSCFNT SEARCH JFCHNIO'JF
IINT=^RS KJJ MAXIMUM ITFRATICNS ALONG LINF KJ

H2 H3

C **
c ** c

900 KJJ=0
<J =

1=1
C ** EVALUATION OF HI

1 CALL C( A,niST,nFLT)
CC=DABS(DFLT( I ) )/10.
A ( I )=A{ I) +CC
CALL C( A,DIST,nFLT)
A (

I

)=A ( I) -p,vcr
CALL r( A,niST,PFLT)
A ( I )-A

( n +rc
H1=DIST{K>
H3=DIST(K-1 )

H?=DIST (K-2)
F=H1-H2
G=H2-H3
H = F-G

99 FORMAT( 15

)

PPIMT99, I

PPINT71 tA {

n

PRINT??, HI ,H?,H^
71 FC^VATI 5H A( I) ,F9.6 )

7? FrRNiAT( 1X,?HH1 ,F12.8
I F( F)40,OP ,5

'^'O IF(C)51 ,98,55
51 '>FLT( I )=DFLT( I)/10.

GO TO 1

40 IF(G)55 ,98 ,42
42 IF(Hl-i-t3) 47,47,48
47 A{

I

)=A( I ) +CC
GO TO 1

48 A (

I

)=A { I

)

-CC
GO TO 1

C *^; f^VALUATION OF nFLT(I)
5*^ OFLTC n =F/nAPS(r^c-LT( I ) )

PPINT80,oc|_T( I )

C ** CONSTRAIN nFLT{ I

)

IF(DABS(DE LT( I ) )-.38)61 ,61 ,60
60 DFLT( I )=.38*(F/DARS( F)

)

GO TO 300
61 IF(DABS(DFLT( I))-. 005)62, 300, 300
62 DFLT( I) = .0C5*(F/DABS(F) )

300 PRINT80,DELT( I )

1 = 1 + 1

MAX RUNS

«•*

,?X,?HH?,F1?.8,2X,2HH3,F]2.8)



?{

172
171

B

80

75

81

Oft

IF( I-JJ) i ,70.70
1 = 1

** INCREML ^T ON STRAIGHT LINE
no 17] I T = l ,JJJ
A { I n=A( IT )+OPLT( I I)

CALL C{ A,OIST,nELT)
PRTNTRO,niST(K),(A(II),II=l,JJ)
FORMAT ( 8F] 5.8

)

KJJ=KJJ+1
IF(KJJ-15 )?8A,?73,?73
I F{ DIST(

K

)-DrST(<-l )) 172 273,273
KJJ =

DC 75 I 1 = 1 ,JJJ
A ( I I )=A( II )-OELT( I I

)

** TFRf^INATICN CCHNTER
KJ=KJ+1
IF(KJ-3) 1,7A,74
PPI MT81
-CRMAT{2X,6HSWITCH)
RFTURM
STOP
END
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SUF-ROUTINF PHAf-? ( A , n I ST n>FLT )

IwPLiriT Rf AL.;<-8( A-H,C-7 )

DIN' FN SI ON niSTC^) »nFL T( 10) ,A ( 10) »n( ]n)
CCMMCN AA,ALCW«DFLTX.D,DF, IFRR,LKi<s,LLL,J.JJ»JJJ»fCKK. ,K,I

C ** PHASF 7 USES RELAXATION FOR OPTIMIZING THE PARAMETERS
C *<^ SEE PHASE THREE FOR AN EXPLANATION OF SOME OF THE VARIABLES

1 = 1

DALOW=.00 0l
DTFPM=. 00005
nviN!=.cooooi
CCDE=i

.

y = 1

irONT=0
1 irONT=irOMT+l

IF( irOMT-16) 3,-^0,-^0

3 CALL r( A,r)IST,nFLT )

A ( I )=A( I) +DElT( I)*C0DE/10.
CALL C(A,DIST»nELT)
A( I)=A( I )-DELT( I )*C0DE/l0.
-0RMAT(2X,7(F16.Q>?X) j'SHCODF F3.n'»I5»2X»F16.9»2X,F16.0)
PR I NT 1-7, 01 ST (K-1 ) »DIST(K) CODE 'I » A ( I ) , DFLT ( I )

GO TO ( 10 ,70 ) ,M
TF(niST(K-l )-niST(K) )1 1 ,1?,1 ?

crnF=conp*(-i .

)

IF(nAqS(niST(K-i )-niST(K))-0MlM)30.1'. ,1?

A ( i)=A ( I) +nFLT( I )*ror>F
GO TO 1

IF(DIST (K-l)-OIST(K) )21 »26»26
DFLT( I )=DELT{ I) /lO.
IF(DIST(;<-3)-DIST(K-l ) ) 2 3. 2 2, 22

22 A ( I )=A( I
) - 3ELT( I)*C0DE*3. • •

GO TO 2A
23 A

(
I)=A( I)-DELT( I )*rODF*7.

2 4 M = l

IF(DflT ( I )-r>ALOW)3n,3 0,7 5

2 "5 IF{DIST(K )-DIcT(K-1 )-DVIN) 3 0,30,]
26 A ( I )=A( I) +DELT( n^CODF

IF(nFLT{ I )-D ALOW) •^0,2 7,27
2 7 IF(DIST(.K-1 )-DIST(K)-DMIN) 30,30,1

**

**

102
06

10
1 1

1 2

1 ^

2C
21
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-^n

10]

40
4]

2

A?

43
91

9:

PFLT( I )=nrLT{ I )*10.
irc\'T = o

PRINT! ui n^^LK I ) (,A( I n 11=1 ,JJ)
F0PMAT(?X,F16.6»6F12.6)
OFLT( I )=.]
D( I )=niST(K-l )

1 = 1 + 1

IF( I-JJ+1 )41 ,41 ,40
1=1
v = l

DO 2 11 = 1, JJ
DFLT( I I ) = ,].

SUN' = 0.
nn 4-> TI=?,JJJ
SUM = ,SUN^ +DAPS(n( II-l )-D( II ) )

IF(Suy-DT^Ry)43,l,l
RFTURiN!

ML=ML+i
IF(ML-9) 1 ,92,92
DFLT( I )=DFLT( I )*10.
ML = C

GO TC 1

FND
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MAXIMUM NUMBER CF INCRFMENTS

;F A( I

SUBROUTINE PHAS3 ( A »D I ST ,nELT

)

IMPLICIT RFAL*8(A-H»G-Z)
niMFMSTCN niST( 5) »nFLT ( 10) ,A ( ] 0) »[)( 10 )

rCMMCN AA,ALCW»nFLTX,n,DF»IFRR»lXfC,LLL»J,JJ»JJJ»KKK,<,I
C «•* PHAS!^ 3 USFS A MCDIFFP RELAXATION METHOD

1=1

C ** DALOW ALLOWABLE MINIMUM STEPSIZE
C ** DTERM PHASE TFRMINATION VALUE
C ** HMIN PARAMETER TERMINATION VALUE

nALOW=.OOC 1

DTERM=.CGCG5
DVIN=.UC0 0C1
P 1 = o .

P? = 0.

ML = C

conF=i.
M = l

C *-* COUNTER FOR
ICONT=0

1 IC0NT=IC0NT+1
IE( IC0NT-16)3»30»30

3 CALL C( A,DIST,DELT)
C ** STORE PREVIOUS VALUE

P1 = P2
P2=A( I

)

A ( I )=A( I ) +nELT( I )*C0DE/10,
CALL C( A,DlST,nELT)
A(I)=A(I)-nELT(I )*C0DE/10.
F0RMAT(7X,?(F16.9»?X ) ,SHCOnF ,F3.G»I^,2X,E16.9,2X,F16.9)
PRTNTl07,nrST(K-l ) r)IST(i<) ,CODE»I »A( I ) ,DELT( I )

GO TO ( 10,20) ,M
** TEST FOP SLOPE
IF(niST(K-l)-niST(K) ) 11 12^1?
CODr=CODE*(-l.

)

IE(DARS(DIST(K-1 )-DlST(K) ) -DMI N ) 30 , 13 , 1

3

M = 2

^L = C

A{ I )=A( I ) +DELT( I )^*-CODE

GO TO 1 .
.

** TEST FOP CASE 3A THROUGH 3D
TF(ni^T(l<r-1 )-niST(X) )21 ,26,26
f^f^LT( I )=DELT( I.) /lO, .

IF(niST(K-^)-niST(i<-l )) 73,2^,24
A( n=A( I )-DELT( I )*C0DE*10.
M = l

IF(DELT( I
) -DALOW) 30,30,25

102
o6

10
11

1 2

13

2^

2^
24
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31

32
?7

30

101

^ :, 3 1

32

IF(PL-.8)51,51,52

IF(nTST(K l-ni.'^KK-T )-niMIN)
A ( T )=A( I ) +OFLT (

I

)*rC0F
IF(DIST(K-3)-niST(K-l ) )31»31
A{ I )=Ai

I

)-DELT{ I )*CCDE*?.
DFLT( I )=DFLT( I

)

/lO. . ;

^ = 1

IF{DFLT( n-DALCW)30»2 7,27
IF(DIST !K-] )-niST(<)-DMIN) 30,30»91
«--' TFRMINATF PARAMETER
PFLT( I )=DFLT( I )^^1C.

PRINT! 01 ,nPLT{ T ) (A ( I n ,1 1=1 ,JJ)
FCP^;AT(2X,F15.66F^?.6)
irCNT=0

C «* THIS CHECKS FOR A HIGH LAST VALUE CF THE DISTANCE FUNCTION
C ^* IF THIS IS SC P(I) IS SET EOUAL TO THF PREVIOUS VALUE

IF(DIST{K-^)-niST(K-l))50»51,51
DIST(<-1 )=DIST(K-3)
A{ I )=P1
D( I )=DIST(K-1)
1 = 1 + 1

IF( I-JJ-i-1 )41 »A1 ,40
1 = 1

M=
]

** PHASE TERMINATION TEST
S I IN' = .

DO 4? I I = ? ,JJJ
5UM=SUM+nA8S(n(

I

I-l )-D( II) )

IF(SUM-DTERM)43,1,1
PRINT 110
F0RM;.T(?X,2CHPARAMFTERS OPTIMIZED)
PRINT 101.CODE»{A( I ) ,I = 1,JJ)
RETURN
** THIS ROUTINE WILL INCREASE DELT(I) IF IT IS TOO SMALL
Ml =ML + 1

IF(ML-n ) 1 ,92,92
D'^LT( I )=DFLT( I )*lC.
ML = C

«-«

50
52

51

AO
41

42

43
110

91

92

**

END



40

SUPPnUTINF C(.A .nTST»nFL.T)
U'PLICIT RFAL*8( A-H,C-Z)
PIN'FN?ICN Y( l>n ,n( 10 ) ,A( 10 ) f^FLK lO) ,nTST( "^

)

CC^'^'.CN AA. ALCW,nFLTX»D»nF, IFRR»LKK»LLL»J »JJ »JJJ»KKi<;,K,I

LKK=1
1 ARFA=0.

C ** COUNTING LOOP FOR TERMINATION AFTER C IS CALLED 400 TIMES **

KKK=KKK+1
816 IF{KKK-400)91»'51 ,89
,«9 PRINT911.KKK

911 -ORMAT(2X,?5HPROGRAM TFRMINATED AFTER»I4.6H LOOPS)
STOP

C ** FULERS METHOD
91 Z=OFLTX

C ^* X REPRESENTS THE INPUT F(T)
X=DELTX
Y(J;=DELTX
DO 925 I I = 1,JJ

925 Y( I I )=w.

C ^* Yd) I-l DERIVATIVE OF THE DIFFERENTIAL EQUATION
2 DO 926 I 1 = 1 , JJ

92( Yd I )=Y( I I )+Y{ I I + l )^!-DFLTX

S = 0.

KL = J

D'^ 977 I 1 = 1 Jj
KL=KL-1

927 S = S + Y( I I ) *A( KL

)

Y( J)=X-S
C ** ERR ABSOLUTE VALUE OF ERROR BETWEEN INPUT AND OUTPUT **

ERR=DABS(Y( 1 ) -X

)

C ** EER MODIFIED ERR USED IN CALCULATING AREA. SEE RRR SUB **
EFR=RRR(ERR»2)

C ** AREA AREA UNDER CURVE DEFINED IN RRR FUNCTION SUBROUTINE **
76 ARFA=ARFA+EER*DELTX

Z=Z+DELTX
X=AINPUT(Z)

C ** LLL 1 PHAS=^ 1 OR ?. 2 PHASE 3. 3 PRINT OUT OF RESPONSE**
GO TO (210,220,400) ,LLL

220 GO TO (221 ,222) ,LKK
221 IF(ERR-AL0W)230,230,223

C ** T SETTLING TIME T(S)



Al

?^0 T=7.

C !^^<- ARFA? ST.CRES ARFA UP TO TIMF T IN CA5F T IS T(S) •

ARFA2=AREA
L MM = . '

LKK = 2

GO TO 228
222 IF(FRR-ALCW)231 »231 »223
231 IF(DARS{Y(2) )-.00]05)232»232»228
232 L'^^M = LVM + 1

IF(L'^M-80'':')2»?»23 5

23"=^ ARFA:=ARFA2
GO TO 241

22: LKK=1
228 IF(Z-35.); ,2»234
234 T=2?.

C ** FVALUATICN OF OIATANCF FUNCTION FOR PHASE 3

241 DIS=DISTFN( AREA»T )

127 FORMAT(2X,5HAREA » F 1 5 . 6 » 2X » 2H T »Fl0.6»2X, F16.9)
PRINT127»AREA,T,A( I

)

GO TO 847
2] IF(2-AA )2 »2»4

C *- EVALUATION OF HIATANCE FUNCTION FOR PHASES 1 AND 2
4 riS=ARFA

847 DO 867 I I=2»4
867 PIST( I I-l )=DIST( IT

)

DIST(4)=DIS
RETURN

C 'f^^ LISTING OF FINAL RESPONSE FOR OPTIMAL PARAMETERS
400 DF=DE+DELTX

IF(DE-1. )2»401 ,401
401 DE=C.

PRINT50C,Z »AREA,ERR,Y( 1 ) ;

500 F0PVAT(6(2X,F16.9) )

IF(20.-Z)600,2,2
600 RETURN

END

//GO.SYSIN DD *

3 1 30. .04

»*

**
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Traditionally the design of linear control systems has been based on

trial and error methods. In recent years considerable interest has devel-

oped in using computers as a design tool to simulate the control system and

find the most desirable system parameters. This is done by defining per-

formance measures in terms of a distance function that relates quality of

performance to the least distance from the origin.

This paper presents a FORTRAN computer program that finds the control

system parameters that minimize a distance function for a specified topolog-

ical configuration and input f(t). The input f(t) must reach a constant

final value after some time T^ and never exceed that value. The system must

be described by an N^*- order (2 N 8) linear differential equation with con-

stant coefficients.

The optimal parameters are found for a third order system to demonstrate

the program. A modified step input is used with a performance measure that

involves settling time and the integral of several forms of the error between

the input and the output. The results are compared and analyzed.

The choice of the distance function is purely subjective and must be

based on good engineering judgment. On this basis it is desirable that the

distance function be chosen so that the solution space is continuous. This

simplifies the search procedure and reduces the computation time required.


