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INTRODUCTION
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The aims of this work were: first, to recognize and define the appli-

cability and the deficiency of the existing solid-liquid separation tech-

nologies for the removal of solid residues from liquefied coal; second,

to determine the conditions of liquefaction which would lead to easier

separation; third, to improve the existing theories and/or design equations

relating to solid-liquid separations; and finally, to make recommendations

on the direction of future research.

Chapter II contains the survey of the recent developments in the

field of solid-liquid separation. Special emphases are given to filtration

and centrifugation. In those two techniques, some theoretical considerations

leading to the design equations are presented. This chapter also includes

the results of pilot plant and/or bench scale studies with coal liquids by

other investigators on the separation techniques including filtration,

centrifugation, separation by hydroclones, sedimentation, floatation, and

magnetic separation. The conditions of maximum efficiency, the extent

of separation, and the limitations of the above techniques are also discussed.

Chapter II also discusses briefly new separation concepts, such as semi-

fluidized bed filtration and cross flow filtration, that could have possible

applications in coal liquefaction processes.

Chapter III and Chapter IV contain the experimental portion of this

work. In Chapter III, experimental data of the atmospheric liquefaction

of a Texas lignite through the solvolysis process are presented. The effect

of the reaction conditions on the yields of product liquids and gases and

residual solids is discussed. Chapter IV presents results of the filtration

study with the liquefied lignite slurries obtained in the work described

in Chapter III.



1-2

Chapter V describes a computer simulation of a continuous liquefied

coal filtration process. The simulation has been performed with filtration

parameters determined in the work given in Chapter IV. Chapter V also

presents an efficient numeric scheme for solving systems of highly coupled

and stiff partial differential equations frequently encountered in moving

boundary problems.

Finally, future research areas relating to the work presented here

are recommended in Chapter VI.
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SOLID-LIQUID SEPARATION IN COAL LIQUEFACTION
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1

INTRODUCTION

In spite of recent advances in coal liquefaction processes, all of

them including Synthoil, COED, SRC, H-Coal and CSF have a common barrier

toward commercialization, that is, solid residue removal from the product

stream is costly. Batchelor and Shih (1975) estimated the cost of solids

separation to be in the range of $1.53 to $3.24 per barrel of coal liquid

based on a 15% discounted cash flow rate of return on capital investment.

The difficulty in separation arises from the high viscosity of the

coal liquid, the high solids concentration, and the high concentration of

small residue particles. For example, the so-called solvent refined coal

is a solid at room temperature; and 50 number % of the solids in the H-Coal

liquid have diameters less than 0.11 microns while 50 volume % have diameters

less than 0.98 microns (Oak Ridge National Laboratory, 1975b). Therefore,

to effectively remove the solids, the separation processes must be performed

at an elevated temperature and pressure which lead to high cost.

Solids removal is essential in order for coal liquids to satisfy the EPA

requirements of 0.96% Sulfur and 0.15% ash for a 16,000 BTU/lb (3.7 x 10 J/Kg)

pollution-free solid combustion product (Rodgers and Westmoreland, 1976).

In other words, solids removal eliminates the need for stack gas clean-up.

This paper surveys the recent literature and the state-of-the-art on

the solid residue-liquid product separation in coal liquefaction processes.

Theoretical background leading to the design equations is discussed, and

separation techniques used in different coal liquefaction processes are

described.
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COAL LIQUEFACTION PROCESSES

It is not the primary purpose of this report to exhaustively review the

available coal liquefaction processes, as numerous review articles have been

written on the subject (e.g. Friedman, _et. al
. , 1974; Taylor and Hall, 1975;

ERDA, 1975; Huebler, 1974; Squires, 1974; Klass, 1975; Wen, 1974). However,

a brief summary of the major liquefaction processes will be given to facili-

tate the understanding of the associated solids separation problems.

Coal liquefaction processes can generally be classified into four cate-

gories: pyrolysis, indirect hydrogenation, direct hydrogenation, and solvent

extraction. Pyrolysis processes are those that pyrolyze coal to obtain gas,

liquid, and char. As expected, the liquid yield of the pyrolysis process,

though significant, is not as high as that of the gas product. The liquid

product generally accounts for 15-30% of the total product BTU's (Klass, 1975).

Some of the available pyrolysis processes are COED, Coalcon, TOSCO, and Garret.

In indirect hydrogenation processes, steam and hot coal are reacted to

produce carbon monoxide and hydrogen, and carbon monoxide is then hydrogen-

ated in the presence of catalysts to form a mixture of aliphatic hydrocarbons

via the Fischer-Tropsch synthesis. The most successful commercial operation

of the indirect hydrogenation process is the Synthol process operated by the

South African Coal, Oil and Gas Corporation.

In the direct hydrogenation processes, coal is slurried in a process

derived liquid and liquefied in the presence of a catalyst. Synthoil and

H-Coal are two direct hydrogenation processes.

Distinction between the direct hydrogenation and solvent extraction pro-

cesses is vague. In an extraction process, coal is dissolved in the absence

of a catalyst by a process derived solvent. The process derived solvent may
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be catalytically hydrogenated before recycling; however, no direct contact

between coal and catalysts is made. Solvent Refined Coal, Consol Synthetic

Fuel, Exxon Donor Solvent, and Kyushu-Koshi Soivolysis are solvent extraction

processes. Operating conditions of major coal liquefaction processes are

summarized in Table 1.
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FILTRATION

Theory

Flow of filtrate through the accumulated cake can be visualized

as flow of liquid through numerous pores, with the pressure drop through

the cake equal to the sum of all drag forces on the pores (McCabe and

Smith, 1956). Incorporation of the definition of friction factor, ft

in a force balance on the pores will yield the following relationship:

(P - P )g r
x- _ a b en ,

.J

x

P - P, = pressure drop between a and b as shown in Figure 1.
a d

g conversion factor

r = average hydraulic radius
rl

L = cake depth or thickness

p = density of filtrate

v = average velocity through the pores

For a bed with a given porosity of e, the average hydraulic radius,

r , is defined as the total void volume divided by the total surface area,
H

Nv e/(l-£)
P

*H NS
E„ -—^ (2)

where

P

N = total number of particles

v = volume per particle

S = surface area per particle
P

Rearrangement of equation (2) results in
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(3)

EV

r = E—
H (1-0 S

P

Substitution of equation (3) and the relationship between v and the

specific velocity, u,

into equation (1) yields

(P -P )g t\

Lpu (l-e)Sp

This known as : the Kozeny-Carman Eq;lation (McCabe and Smith, 1956). S ince

the ReynoIds number is generally defined as

Re
_

VPr
H

(5)

we have

Re
upv

p
USp(l-E) '

For a flow at a low Reynolds number, the friction factor is inversely

proportional to it (Bird, e_t. . al., I960;1, i.e.,

f
1

Re •
(6)

Substitut ing equations (5) and (6) into equation (A) and rearranging the

resultant expression, we obtain

dp
dL

kuu(l- E )

2
(S /v )

2

P P
(7)

3
g E
c

where k is a proportionality constant. For randomly packed particles of

definite size and shape, k is 5 (McCabe and Smith , 1956)

.
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Filter depth can be related to the weight of the cake accumulated as

follows:

dm = p (l-s)AdL (8)
P

where p is the density of the particles. Substituting equation (8)

P

into equation (7) and rearranging the resultant expression we obtain the

following equation:

k Mu(S /v )

2
(l-£)

dP - E—=r dm
,

(9)

g P Ac
c P

For incompressible cake,

2
kuu(S /v ) (l-e)m

AP
C

- E-JS C- (10)

8
c
P
p
A£

where

AP = P 1 - P , pressure drop across the cake as shown in Figure 1
c a

m = mass of the accumulated cake
c

For compressible cake, c, P , k, s , and v vary within the cake. These
P P P

are lumped into a single variable termed the local specific cake resistance,

k(S /v )

2
(1-e)

JE P^ (11)
L A£P

p

which depends only on pressure drop. Substitution of this result into

equation (9) gives

pun

dP = 71 dm
•

(12)

Since

d(P - P ) = dP -
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we then have

d(P - P )

(13)

(14)

a
L g

c
A

where

P " pressure at the upstream cake face as shown in Figure 1.

Integration of equation (13) over the accumulated cake yields

AP d(P - P ) m
c a uu . c ,

/ = / dm
o a g A o

L C

uum
c

=
g
c
A •

The average specific cake resistance, a, is defined as follows:

AP 4P d(P-P)— " / ° —
(15)a o a ' '

and equation (14) can be written as

AP uum
c _ c

a g
c
A •

The filter medium resistance is defined analogous to the cake resis-

tance as

P 1 - P. AP
b m

(16)

R
m

uu

g
c

(17)

where

P 1 - P, - pressure drop across the medium as shown in Figure 1

R = filter medium resistance.
m

Equations (16) and (17) can be combined to find the pressure drop through

the cake and the medium:



II-8

AP = AP + AP
c m

(18)
a a

= ^ (-f- + R )

g
c

A m •

The specific velocity, It, of the filtrate can be expressed in terms

of the volume of the filtrate collected as

_ dV/d9
(19)

where

V = volume of filtrate collected

6 = time

A = filter area

Substitution of equation (19) into equation (18) and subsequent rearrangement

result in a form of Ruth's equation:

M - " C¥ * * > (20)dV Ag AP v
A

where

yv, the mass of particles deposited in the filter per unit

volume of filtrate.

For constant pressure filtration, as in most of the tests made in coal lique-

faction, equation (20) can be integrated and rearranged to obtain

(V/A) g AP l 2
VA

c

Equation (21) is used to find the average specific cake resistance and

it also serves as a design equation. In the determination of the average

specific cake resistance from experimental data obtained at constant

temperature and pressure, jrr is plotted against V/A, as shown in Figure

i ..u i Vica . _ . . uRm
Z; the slope is

.,, , and the intercept is --tj—.With experimental measurements

of u, AP and c in hand, both a and Rm can be calculated.



11-9

Tiller (1962) has shown that for most compressible cakes, the average

specific cake resistance, a, can be expressed by

a » a AP for AP > AP

.

(22)

and

• a AP . for AP _< AP

.

(23)

where

a particle size constant
o

AP - pressure drop across the cake and medium

AP . ~ critical pressure
l

s compressibility

The average specific cake resistance, as represented by equations (22)

and (23), is shown in Figure 3 as a function of pressure drop. The

compressibility, s, of the cake ranges between and 1, with the com-

pressibility of an incompressible cake equal to 0.

Applications in Liquefaction Processes

Only a few of the commercial filters presently available can operate

at the conditions required by coal liquefaction processes. Rotary precoat

drum filters and precoat leaf filters have been closely studied in many

liquefaction pilot plants. Some have been tested at temperatures as

high as 700° F (371° C) and pressures as high as 200 psig (14.6 atm. )

.

The size of these pilot plant filters in terms of filter area ranged

2 2approximately from 5 sq ft (0.46 m ) to 80 sq ft (7.43 m ). The average

2highest sustained filtration rate of approximately 10 gal/(hr - ft )

(0.41 m/hr) was observed (Oak Ridge National Laboratory, 1975a; Rodgers,

et. al., 1976).
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Filtration tests conducted for some coal liquefaction processes are sum-

marized in Table 2. In the Char Oil Energy Development (COED) process,

solids concentration of 3^17 wt% in the feed was consistently reduced

to 0.01^-0.09 wt% in the filtrate with a Goslin-Birmingham rotary precoat

2
drum filter. The filtration rate which varied from 4.1^-9.5 gal/hr-ft

(0.17^-0.39 m/hr) was dependent on the type of coal liquefied as shown

in Table 3 (Schoemann, e_t ^1_, 1974) . A similar filter used in the H-Coal

2 2
process resulted in a filtration rate of 160 lb/hr-ft (781 kg/hr-m )

2
based on the submerged area, which is equivalent to 9.7 gal/hr-ft (0.40 m/hr)

(Katz, et. al. , 1976a)

.

In the Consol Synthetic Fuel (CSF) process, a Dorr-Oliver rotary

drum filter was studied at 150 psig (11.2 atm) and 600° F (316° C)

(Oak Ridge National Laboratory, 1975a). Unlike Goslin-Birmingham rotary

precoat drum filters used in most liquefaction processes, the Dorr-Oliver

rotary drum filter has an inside-out flow pattern which made observation

of cake build-up and cutting blade advancement impossible. This and other

mechanical problems in addition to the fact that the equipment could not

operate under leak-free conditions caused the filtration studies to be

terminated (Wheeler Corp., 1971; Consolidation Coal Co., 1973).

In the Solvent Refined Coal (SRC) process, (Rodgers, et. al . , 1976;

Oak Ridge National Laboratory, 1975a), rotary drum filters, one with a

2
filter area, of 40 sq ft (3.7 m ) and the other with a filter area of 80

sq. ft. (7.4 m ), are expected to be operated at 100^200 psig (7.18M.4.6 atm)

and 500 c-v700°F (288°^371°C) . No data were reported due to minor mechanical

problems. These are the largest filters in testing. It is believed that the

results from these units can be used in direct scale-up to commericial liquefaction
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2
plants with filter areas as large as 500^700 sq ft (46.5^65 m ) per filter.

2
A Funda horizontal leaf filter with a filter area of 5A sq ft (5.0 m ) was

also tested at the same conditions as the two Goslin-Birmingham filters. The

Funda filtering process consisted of 90 minute cycles, each including 40

minutes of filtration and 50 minutes of cleaning and precoat . Filtration

2
rates of 12 r-14 gal/hr-ft (0.49MJ.57 m/hr) based on actual filtration time

was reported. This is equivalent to rates obtained with rotary drum filters

on a per-cycle basis. Ash and Sulfur concentrations were reduced to 0.11%

and 0.82%, respectively (Oak Ridge National Laboratory, 1975a; Wright,

1975; Lewton, 1975; Rodgers, et. al. , 1976). Problems with screen tearing

were encountered. Although the filtration rate of a Funda leaf filter was

similar to that of the corresponding rotary drum filter, the capital cost

of the former is higher than that of the latter. Batchelor and Shih (1975)

showed that the cost of solids removal to be 22% higher for leaf filters.

Design parameters of filtration for the SRC process was determined by Katz

and Rodgers (1976). Filtration data, plotted according to equation (21),

are shown in Figure 2. For filtration approximately at 300° F (150° C)

,

the compressibility of the filter cake as defined by equation (22) was

determined to be 0.49, and the particle size constant, a , was determined to
I i

be 2.5 hr-ft
4
/gal-in-Cp-lb

2
(92 m-hr

2
/kg

2
) . Akhtar et. al. (1974) reported

that centrifugation is effective in removing ash from liquefied coal of

the Synthoil process. The early filtration studies were, therefore, aimed at

improving the centrifuged product to an ultra-low-ash gas turbine fuel.

In recent studies, however, direct filtration of solids from liquefied

coal has been investigated. Weintraub, et. al. (1976) reported the success

of direct filtration in consistently reducing the ash content from 5.7% to

below 0.1%.

Similar problems were encountered in all processes discussed above.

For example, mechanical failures were experienced due to thermal stress;
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leak-free systems were hard to maintain; angle and advancement of the cake

cutting knife were difficult to control. These problems, however, do not

appear to be insurmountable. What should be of concern here is that the

high filtration cost be reduced to a level where commercialization of

liquefaction plants is possible.

Methods of improving the filtration rate, which lead to lower filtration

cost, are being investigated. The work being carried out at the Oak

Ridge National Laboratory has lead to two approaches of improving solids

removal from coal liquids (Rodgers and Westmoreland, 1976; Katz and

Rodgers, 1976b). The first involves the substitution of ground coal for

diatomaceous earth as precoat and body feed. Rodgers and Westmoreland (1976)

reported the effectiveness of using ground coal as a precoat. In their

laboratory filtration tests, filtration rates obtained with coal precoat

were consistently higher than those obtained with a standard diatomaceous

earth precoat as shown in Figure 4. The maximum coal precoat particle size

which will still produce a filtrate satisfying EPA requirements for a

16,000 BTU/lb (3.7 x 10
7

J/kg) solid fuel appears to be 100 to 120 mesh.

One limitation of using a bituminous coal precoat is that coal liquids can

only be filtered at a temperature no higher than 450°F (232°C) due to

the softening characteristics of bitiminous coals. Fortunately, most

liquefaction process filtrations can be performed at or below this temp-

erature. For those that require higher process temperatures, it was sug-

gested that anthracite coal or coke be used. The addition of coal as body

feed also increased the filtration rate as can be seen in Figure 5. The

most efficient method of increasing the filtration rate, however, is to

maintain an ultra- thin cake. It was shown that the filtration rate doubled

as cake thickness was reduced from 1/4 inch to 1/8 inch and that the rate
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increased ten times when the cake thickness was reduced to "zero". An

ultra- thin cake can be achieved by advancing the blade of a rotary drum

filter at a rate equal to or slightly greater than the rate of solids

deposition. The use of coal as a precoat and body feed will permit the

filtration process to be operated at "zero" cake thickness without creat-

ing contamination problems, as diatomaceous earth would, when solids are

fed to a gasifier to produce hydrogen and carbon monoxide. With the low

cost of coal (coal is only one tenth as expensive as diatomaceous earth)

and increased filtration at "zero" cake thickness, Rodgers and Westmoreland

(1976) calculated a 90% reduction in solids removal cost.

The other approach of Rodgers and Westmoreland (1976) and Katz and

Rodgers (1976b) in improving solid-liquid separation is the addition of

solvents. They found that the filtration rates could be increased by the

agglomeration of solids by toluene, the addition of process solvent, and

the settling of the unfiltered oil before filtration. In both optical

micrograph observation and settling rate measurements, agglomerates of 100

particles or more were confirmed for a mixture of 20% toluene and 80% SRC

unfiltered oil. As a result of this agglomeration, an increase in the

filtration rate of three and one-half times was measured for a 5% toluene/

95% SRC unfiltered oil mixture as compared to that of the SRC unfiltered

oil alone in tests at 100°C (212°F) and 50 psi (3. A atm) . Significant in-

creases were also observed when the SRC process derived solvent was added

to the SRC unfiltered oil prior to filtration. For example, a thirty per-

cent dilution with process derived oil approximately doubled the filtration

rate. Similar results were also observed in the Synthoil product diluted

with light oil (Newman, e_t. al . , 1976).
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In filtration tests with the upper 20 to 30% portion from a sedimen-

tation column, and increase in the filtration rate of up to 30 times was

observed. This increase was attained only when sedimentation was carried

out at 250° " 310°C (482° " 590°F), showing its temperature dependence.
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CENTRIFUGATION

Theory

A particle settling in a constant force field has a terminal velocity

given by Stoke's solution (see, e.g., Bird, et. al. , 1960)

D,
2

f(p - p)
V
~ - ^T*^ (24)

where

D diameter of the particle
P

f = force field

P = density of the particle

p = density fo the fluid

u = viscosity of the fluid

The force field, f, is replaced by g, the gravitational acceleration, for

sedimentation.

Although in a centrifuge the force on a particle is increasing as the

particle travels away from the axis of rotation and thus never reaches the

terminal velocity, equation (24) can still be used to estimate the instant-

aneous settling velocity of a particle at a distance, r, from the axis of

rotation:

2 2
D a) r(p - p)

\ - ^Ts^ «W

where

uj = angular velocity, rad./time

The design equation for a tubular centrifuge can be developed as

follows (Perry, 1973):
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When a dilute suspension of uniform particles is fed to a centrifuge,

the time, t, in which half the solids would settle is given by

« - f (26)

where s is the liquid thickness* provided that the liquid thickness is thin.

For e continuous process this would correspond to a feedrate of

V
q

=
7

(27)
2Vv

CO

S

where V is the volume of liquid in the centrifuge. Substitution of equation

(25) into equation (27) gives the rate at which half the solid is removed:

(p - p) D V ui R

« -^r1
< 28 >

where R is the radius of the centrifuge bowl.

For a slurry of non-uniform particles being bed to a centrifuge at a

constant rate q, the critical diameter, D , is obtained by the rearrange-

ment of equation (28):

Scjis
(29)

2
(p - p) V u R

Most particles with diameters larger than D will be in the settled cake;
sc

most particles with diameters smaller than D will stay in the effluent;
sc

and particles with diameter D will be divided equally between the effluent

and settled cake. With the particle size distribution known, equation (29)

can be sued to establish a flow for the desired separation.
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It should be noted that an accurate determination of all the parameters

and variables in the equations presented in the preceding sections is ex-

tremely difficult, if not impossible, for a complex mixture of the solid

residue and product oil from any coal liquefaction process.

Applications in Liquefaction Processes

Applications of centrifugation in coal liquefaction processes were

not investigated as thoroughly as were applications of filtration. The

reason is that solids separation in early centrifugation tests was not

satisfactory. In all but the Synthoil process, filtration has been con-

sidered as the primary separation process. For example, in the COED

process no testing with the centrifuge was reported.

In the CSF process, a 6- in. Bird continuous solid-bowl centrifuge

was tested at 100 psig (7.8 atm) and 600" F(316° C), however, no useful

data were obtained due to the seal problem (Wheeler Corp., 1971). In the

SRC process, a centrifuge system was included in the pilot plant design

(Pittsburg and Midway Coal Mining Co., 1971). The design included a

primary nozzle-disc centrifuge which was intended to deliver a solid-free

coal solution, and a secondary nozzle-disc centrifuge and a solid-bowl

centrifuge, both for concentration of solids in the underflow from the

primary centrifuge. The nozzle-disc centrifuge was selected because it has

the highest separating power of any centrifuge available in the size range

considered. In an in-house test made by the Sharpies Centrifuge Company,

centrifugation of the SRC liquid at 200°F (93°C) showed poor solids sepa-

ration (Oak Ridge National Laboratory, 1975a) . This and other factors caused

the centrifuge system to be eliminated from the plans for the construction

of the pilot plant in which a filtration system was selected for solid-

liquid separation (Pittsburgh and Midway Coal Mining Co., 1975).
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In the H-Coal process, clean liquid was obtained with a Westfalia-

Centrico centrifuge operating in a batch mode at 250°i-350° F (121°^177° C).The

solid concentrate contained oil and dry cake in the ratio of 1.3. Operating

in a continuous mode with nozzle rejection of solids, 90% reduction in

solids content was observed in the overflow. Operation with greater than

20% solids in the solid concentrate plugged the nozzles. Tests were also

made with a Sharpies 1660 Super-D-Canter horizontal conveyor type

centrifuge with continuous slurry feed. The test slurry consisted of 10

wt% Illinois #6 coal ground to pass 100 mesh in 10.1° API TCC catalytic

cracking syntower bottoms. The best result gave a solids reject containing

68.6% coal with overflow containing 0.9% coal (Hydrocarbon Research, Inc.,

1968).

In the Synthoil process, a Sharpies Supercentrifuge with a 4-in (0.10 m)

-I.D. x 30- in. (0.76 m) long vertically placed bowl was tested. The centri-

fuge was capable of producing a separational force of 13,200 g (129,000

Newtons/Kg) at the wall at 15,000 rpm. Operating in a continuous mode,

solids reduction of less than 50% was observed (Oak Ridge National Lab-

oratory, 1975a) . However, when operated in a batch mode, centrifuged

liquid containing 0.2% sulfur and 0.1% ash was obtained for a feed oil containing

11.7% residue from a 4000 psi operation. Poorer separation was observed

with the product from a 2000 psi operation. Centrifugation was conducted

at 80°C with a load of 90^95 lb. (41>43 Kg) of liquified coal per batch.

Outlet from the centrifuge was continuously recirculated through the

3
bowl at a rate of 1.5 gpm (0.34 m /hr) . Thirty minutes of centrifugation

was allowed per batch. Longer batch periods resulted in negligible

increases in the amount of solids removed (Akhtar _et_ al. . 1974) . A

summary of the centrifugation test is shown in Table 4.
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OTHER SEPARATION TECHNIQUES

Several solid-liquid separation techniques which have not been

applied extensively in coal liquefaction processes are described in

this section.

Hydroclone

Hydroclones are similar to centrifuges in that both utilize centri-

fugal force in separating solids from liquid. Unlike centrifuges,

however, hydroclones have no moving parts; thus, they are not prone

to mechanical failures. In general, hydroclones have much smaller

separating forces compared to centrifuges.

In the CSF process, mechanical difficulties which plagued the fil-

tration unit led to the abandonment of filtration and to the investigation

of the separational capability of the mechanically simpler hydroclones.

Early tests with a 3-in. Heyl and Patterson hydroclone at 500°^600°F

(260°^316°C) indicated a satisfactory removal of solids. More specifi-

cally, an average solids concentration of 9.1% in the feed was consis-

tently reduced to an average concentration of 1.3% in the overflow with

the underflow containing an average of 17% of the feed liquid (Consolidation

Coal Co., 1969; 1971). Typical inlet velocity of 30 ft/sec (32,900 m/hr)

resulted in a separational force of about 200 g (1,960 Newtons/kg)

(Shroeder and Associates, 1970).

A system of three hydroclones was installed and tested at 600°F

(316°C) . It consisted of two 3-in. hydroclones in parallel and a single

3-in. wash hydroclone. The overflow from the first two hydroclones
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contained 0.5 to 1.0% solids which amounted to about 2% solids in the

product oil with the removal of recycle solvent (Wheeler Corp., 1971).

The underflow from the first two hydroclones then passes through the wash

hydroclone for further concentration resulting in a bottoms slurry con-

taining 55% solids (Shroeder and Associates, 1970).

In scaling up, efficiencies of the hydroclones are usually lowered.

The so-called Consol correlations, which are the summarized results of CSF

hydroclone experiments, show that the maximum acceleration of an 8-in.

(0.2 m) hydroclone is 77% less than that of a 3-in. (0.08 m) hydroclone

(Wheeler Corp., 1971). It was also observed that the hydroclone

separated particulate solids on a density basis since the solids in the

overflow contained only about half as much ash as the solids in the feed.

Thus, with the lower acceleration in the larger hydroclones, the ash con-

tent in the overflow would be expected to increase, requiring a second

3
stage removal. A commercial plant of 50,000 barrels/day (1950 m /day)

would require an impractically large number of hydroclones.

Sedimentation

Solids separation by sedimentation is controlled by temperature and/or

the addition of deasphalting solvent. The deasphalting solvent reduces the

solubility of a small fraction of coal extract, mainly the asphaltenes,

thereby producing agglomerates of asphaltene and residue which separate

rapidly. Gorin ^t ^1. (1977A) considered n-decane, other n-paraffins, and

cyclohexane to be effective deasphalting solvents; while toluene
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and other aromatic hydrocarbons are recommended by Rodgers and Westmoreland

(1976) for agglomeration of solids.

Gorin et_ al_. , (1977a and b) investigated the settling characteristics

of several different coals liquefied by the CSF and H-Coal processes. They

observed the optimum settling temperature to be 600°F (316°C), with coking

taking place at higher temperatures and wail deposition at lower tempera-

tures (500°F or 260°C) . This seems to be in good agreement with the results

obtained by Rodgers and Westmoreland (1976), where settling was observed to

occur at 250°~310°C (482°~590°F) for the SRC oil with toluene added.

In their study, Gorin et_ al_. (1977a) found that the highly caking

Eastern coal required no deasphalting solvent while the non-caking Western

coal required the addition of n-decane in the weight ratio of decane to

extraction solvent between 0.1 and 0.3 to achieve the desirable separation

in a continuous settler. They attributed the low settling rate of the

Western coal to the smaller particle size and to the fact that unlike the

Eastern coal, little or no extract precipitation occurred during cooling

to 600°F (316°C). The settling rate was also seen to be a function of

the extent of coal conversion. For example, the initial settling rate was

reduced from 2.0 in/min (3.0 m/hr) to 0.4 in/min (0.6 m/hr) as conversion

on a moisture-ash-free basis is increased from 77% to 86%. This could be

due to the smaller particles produced at higher conversions.

Good separation was obtained with the continuous settlers. Average

ash content of 0.2 wt.% was consistently observed in the clarified extract

2 2
at an overflow rate of about 250 and 500 lb/hr-ft (1220 and 2440 kg/hr-m )

corresponding to solvent-to-coal ratios of 1.5 and 2.0 in the liquefaction

reactor.
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Floatation

Floatation solids removal is a process in which a gas is injected into

a hot slurry of liquefaction product through a perforated plate, called

the diffuser. As the gas bubbles travel through the slurry, they retain

on their interfaces with the liquid some of the solids that come in contact

with them; solids are carried by the bubbles to the surface of the liquid

where a layer of foam is produced. Removal of the foam gives rise to

removal of the solids that are retained in the foam.

Experiments were carried out to investigate solids removal from the

coal liquefaction product by floatation (Kermode, 1975). A synthetic mix-

ture composed of refinery light-cycle oil with 6% cresol and coal solids

was used. The coal solid was the bottoms from a vacuum still used in a

liquefaction process. It contained the ash from the original coal, uncon-

verted coal and some high molecular weight liquefaction products. Thus, the

synthetic mixture closely approximated the actual coal liquefaction product.

CO, was used as the foaming gas. Tests were made at several different

temperatures: 70°, 95°, 110°, 125°C, with different heating arrangements

and different preheating times. It was found that 30 minutes of preheating

resulted in the optimum separation; with shorter preheating times, poor

separation was observed while at longer preheating times, no improvement

in separation was observed as compared to the preheating period of 30

minutes. The tests also showed that the heating of C0_ gas and the foam

section resulted in poorer separation. No separation was achieved without

the addition of cresol. The pore size of the diffuser was also a deter-

mining factor in the degree of separation. For example, with a 40 micron

diffuser, a maximum of 60% ash removal was measured at 110°C and 30 minutes
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of preheating; with the same conditions a 60 micron diffuser resulted in a

maximum of 30% ash removed; a 4 micron and an 8 micron diffuser showed

poorer separation, and diffusers with pore size greater than 150 micron

resulted in no separation at all. Further tests such as the determination

of particle size distribution of the ash removed need to be completed before

the effectiveness of the floatation process can be evaluated. For example,

if the particles to be removed are in the range of the sub-micron size,

the floatation process, when used in conjunction with a process which can

easily remove the larger particles, i.e. centrifugation, sedimentation, or

separation by hydroclone, may increase its effectiveness.

Magnetic Separation

The high gradient magnetic separation technology was developed to

remove micron size mineral particles from highly dispersed kaolin clay

slurry. The separator is in essence an electromagnet. The electromagnet

consists of an iron box enclosing the energyzing coils. The coils in

turn enclose a cylindrical, highly magnetized working volume which is

loosely packed with fine strands of filamentary magnetic material such

as stainless steel wool. When these fibers become magnetized by the high

intensity background magnetic field, capture sites of intense magnetic

forces are created over the surfaces of the fibers. This acts as a mag-

netic filter (Oder, 1976).

Magnetic separation is being studied in the H-Coal process and the SRC

process (Oak Ridge National Laboratory, 1975a; Johnson, 1976; Maxwell, e_£_

aX, , 1976). The basis of separation is the magnetic susceptibility of

the solids to be eliminated. If the susceptibility is high, magnetic sep-

aration is feasible. The susceptibility of FeS„ and FeS is relatively low.
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However, when the average atomic ratio of Fe to S is approximately 1.0:1.1,

i.e., Fe_S„, the magnetic susceptibility is improved by a factor of 100
7 o

(Oak Ridge National Laboratory, 1975a; Maxwell, et al. , 1976). By con-

trolling the process conditions, mainly the hydrogen pressure, the H-Coal

process has been able to produce the desired ratio.

In tests made at 300°-350°F (149°-177°C) with a 20,000 gauges unit

manufactured by the Pacific Electric Motor Company of Oakland, California,

80 to 90% of the inorganic sulfur and about 30% of the ash were removed

from the SRC product (Johnson, 1976) . It was observed that at this temper-

ature range, capture sites were rapidly saturated for the less susceptible

ash, while no significant decrease in inorganic sulfur removal was detected.

The degree of solids removal by magnetic separation is also a function

of the temperature as shown by the substantial increase in magnetic suscepti-

bility of Fe S in the range of 500°~600°F (260°~316°C) . Tests made in this

temperature range showed a maximum reduction of about 60% ash and 50% sulfur

(Maxwell, ct al., 1976).

Other Systems

New separation systems that can have possible applications in lique-

faction process are: cross (field) flow filtration, convertible (semi-

fluidized) bed filtration, ultrasonic-aided filtration, and hot water washing

with surface active agents.

In cross flow filtration (Henry, et al., 1976; Yang, et al., 1976;

Porter, 1975; Lewton, 1975), a separation field and a filtration flux

normal to an axial flow between two flat plates are established. A

schematic drawing of a cross flow filter is shown in Figure 6. The most
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important aspect of cross flow filtration is the migration of particles

away from the filter due to fluid shear and the imposed gradient; thus,

the cake build-up is minimized and filtration rate is maximized. The

imposed field could be magnetic, electric, thermal, or gravitational in

nature.

Convertible (Semlfluidized) bed filters utilize the novel concept of

semifluidization (Wen and Fan, 1977; Fan, et. al. , 1959; 1961; 1968). In

essence, the maximum filtration rate is maintained by careful, but simple,

control of the cake thickness. This is accomplished by controlling the

degree of fluidization in the filter (see Chapter VI) . The device is

mechanically simple, thus, easy to maintain, operate, and control. It

has all the advantages of continuous leaf or rotary precoat filters but

none of operation difficulties, such as screen tear, improper blade

advancement, leakage problem, etc., that are associated with these costly

filters. A more detailed description of the convertible or semif luidized

bed filter is presented in Chapter VI.

The filtration rate of conventional filters can be significantly in-

creased with the introduction of ultrasonic waves (Murry, 1975) . Ultrasonic

waves have no significant control on the thickness of the cake formed, but

instead, ultrasound improves the filtration rate by its influence over the

passage of filtrate through the cake.

Solids in liquefied coal may also be separated by hot water or steam

washing. The addition of surface active agents may change the interfacial

property of the interface between water and liquified coal such that solids

may be preferentially retained on the interface, and thus may be easily

removed.
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CONCLUDING REMARKS

The present review indicates that much remains to be done to determine

the suitability of different processes for separation of the solid residue

from liquefied coal, and to derive governing and design equations for each

separation process. This is due to the peculiar properties and complex

structures of the solid residue-liquid product mixture and its components.

It appears that no single separation technique can be effective and econom-

ical for the solid residue-liquid product separation in a coal-liquefaction

process. Therefore, development of a hybrid or combined separation process

containing more than one separation process by means of available system

synthesis techniques is highly desirable.
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Table 3. Filtration Results on Various Coals

in COED Process (Schomann, et al., 1974)

,

Colorado
Bear coal

Wyoming Big

Horn Coal

Illinois No. 6

seam coal

Period of operation 30 weeks 5 weeks 44 weeks

Oil filtered 1290 bbl 90 bbl 1800 bbl

Solids in feed 6-17 wt% 9-11 Vt% 3-9.5 wt%

Solids in filtrate 0.01-0.09 wt% 0.03-0.04 wt% 0.01-0.09 wt%

Highest filtration
rate

9.5 gal/hr-fL
2

4.1 gal/Ur-ft
2

9.4 gal/hr-ft

Maximum number of

precoats during

one run

14 3 17
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CHAPTER III

SOLVOLYSIS LIQUEFACTION OF TEXAS LIGNITE:

An Experimental Study
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INTRODUCTION

The Kyushu-Koshi solvolysis process of coal liquefaction (Honda and

Yamada, 1974a; 1974b) involves atmospheric and non-catalytic dissolution

of ground coal in a heavy solvent, e.g., petroleum derived oil such as

vacuum residue, asphalt or coal tar. It is believed (Honda and Yamada,

1974a) that when the solvent is thermally treated at a temperature near

400°C (approx. 750°F) , the long aliphatic chains not only undergo thermal

cracking, but simultaneously, they also become polymerized. It is this

thermal polymerization which produces ring and aromatic structured hydro-

carbons that are necessary to liquefy the coal.

The solvolysis process has been found to be fairly specific in

the type of coal liquefied (Osafune, et. al. , 1976b) . Osafune, _et. al.

,

(1976b) have reported the conversion of solid coal to liquid and gaseous

products to be as high as 90% for a particular Japanese coal with 82-83%

carbon. This compares favorably to other liquefaction processes in which

both high hydrogen pressure and catalysts are needed (Wen and Han, 1975).

However, for other coals, investigators (Osafune, et. al. , 1976b; Kruse,

1976; Interess, «t, al. , 1977) have found much lower conversions.

In the present work, the conversion of solid Texas lignite to liquid

or gaseous products by means of the solvolysis process was determined under

a variety of different reaction conditions using asphalt as solvent. The

facts that all previous works on the solvolysis process involved the use of

sub-bituminous, bituminous or other higher rank coals, and that lignite

deposits constitute a major portion of this country's readily usable

energy reserve should make this study significant.
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EXPERIMENTAL

The experimental apparatus and procedure eruployed in the present study

are described below.

Apparatus

The experimental apparatus used in this work is shown in Figure 1. The

set-up included: a 1000 ml glass reaction flask; a heating mantle rated

at 650°C; a variable transformer to control the temperature of the mantle;

a thermocouple, which was connected to a temperature recorder, to contin-

uously monitor the reaction slurry temperature; a motor driven anchor-

type stirrer; a constant-speed controller for the stirrer motor; reflux

and water cooled condenser columns; and asbestos insulation.

Procedure

Lignite, from Hopkins County, Texas, was ground to -50 mesh «300 *».
dried in a convective oven at 10 4 ~110°C, and then stored in air-tight containers.

This lignite has a carbon content of approximately 55%.

Approximately 100 grams of dried lignite and 200 grams of Phillips

85-100 penetration asphalt from the Kansas City refinery were charged to

the reaction flask. The mixture was then heated at a rate of 30°C/minute

to the desired reaction temperature and held there for a pre-determined

length of time. The slurry was continuously stirred at a rate of 100 rpm.

The condensed portion, containing water and overhead oil, of the lighter

components which evolved during heating and reaction, was collected and

weighed. The non-condensed portion, containing gas, was permitted to

escape to the atmosphere. At the end of the reaction, the reaction flask

was cooled and its contents were removed. Finally, the reaction slurry

was washed with benzene in a soxlet extractor to remove the benzene solubles.
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The benzene insoluble residue was then dried at 104~110°C and weighed. Ash

and moisture determinations were performed on representative samples of

the feed lignite and on the benzene insoluble residue in accordance with

ASTM D 3174-73 and D 3173-73 procedures.

The two largest sources of error were the control of reaction slurry

temperature, + 7°C (+13°F) , and the extent of solid residue recovery. As

a consistency test, 90% or better recovery of the tie component, ash, must

be made for the run to be considered meaningful. Runs with less than 90%

ash recovery were discarded.

The effects of reaction time, reaction temperature, and lignite-to-asphalt

ratio on the conversion of solid lignite to liquid and gaseous products were

determined.



III-4

RESULTS AND DISCUSSION

Experimental data obtained are shown in Figures 2 through 11. Figures

2 through 7 show the results of runs with a lignite-to-asphalt ratio of 1:2.

Figures 8 and 9, on the other hand, show the results of runs with a lignite-

to-asphalt ratio of 1:1. All calculations have been performed on a

moisture-ash- free (maf) basis, and all yields expressed in terms of per-

centage, except those in Figures 10 and 11, refer to the quantity of maf

lignite initially charged to the reaction flask. The yields in Figures

10 and 11 refer to the quantity of asphalt charged. The size of the data

points in these figures, unless otherwise indicated, is an indication of

experimental error due to uncertainties in the measurement and analysis.

These, of course, do not reflect errors due to variations in the feed

sample and errors due to failure to control the temperature.

The discussion given below includes: the effect of reaction temperature

on the yields of benzene insolubles, overhead oil, gas, and water in 30

and 60 minute runs with a lignite-to-asphalt ratio of 1:2, s"hown in Figures

2 and 3; the effect of reaction time on the yields at 380 and 400°C

with a lignite-to-asphalt ratio of 1:2, shown in Figures 4 through 7; and

the effect of varying the lignite-to-asphalt ratio on the yields, shown

in Figures 8 through 11.

Effect of Reaction Temperature

In Figure 2, the benzene insolubles, calculated with the formula

on a maf basis (e.g., see, Weller, et. al
. , 1951; Ruether, 1977), i.e.,

% Benzene Insolubles (BI) = Mt
- gj §1 from soxlet extractor

wt. of lignite x iUU '

is plotted against the reaction temperature, in the range of 300 - 410°C

(approx. 575 ~ 775°F) , for 30 minute and 60 minute reaction times. The
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benzene insolubles consist of unreacted lignite, ash in the lignite and

coke formed during the reaction. Because of coke formation, which occurred

simultaneously while solid lignite was being converted to gaseous and

liquid products, it was possible to obtain a greater amount of benzene

insolubles than the initial lignite charge. This was the case with the

400°C, 60 minute run where the %BI was approximately 108. Coke formation

was very pronounced at temperatures > 400°C (approx. 750°F) as can be seen

in the sharp rises in the curves of Figure 2. Coke formation was appar-

ently catalyzed by lignite (Wright and Severson, 1972); little or no coke

was formed when asphalt was heated under the conditions of this experiment.

At lower temperatures, below 380°C (approx. 720°F) , no appreciable amount

of coke was formed as can be seen from the closeness in the amount of BI

obtained in 30 minute and 60 minute runs. It appears that the amount of

benzene insolubles obtained was a linearly decreasing function of reaction

temperature in the range where coke formation was not significant. For

higher temperatures (> 380°C) , the extent of coke formation increased

exponentially with the increase in the reaction temperature. The pseudo-

conversion scale on the right hand side of Figure 2 is the extent of

solid lignite conversion to liquid and gaseous products in terms of

percentage based on the assumption that there sas no coke formation. It

can be seen in Figure 2 that the data were fairly reproducible.

Figure 3 shows the percent yield of overhead oil, gas, and water for

reaction times of 30 and 60 minutes as functions of the reaction temperature.

These percent yields were calculated as

(weight of sample/weight of maf lignite) x 100

For water,

weight of sample = weight of water collected - (% moisture) (weight
of lignite )

.

"
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The ranges of measurement uncertainties were typically ±1Z for overhead

oil, ±1.5% for gas, and ±1% for water. It appears that the quantity

of water produced was a linear function of the temperature, and that the

reaction time had no effect on the water yield. The latter observation

was also verified in Figures 6 and 7. The yield of gas appears to be a

linear function of the temperature for reactions below 350°C. For higher

temperatures, gas yield became a mildly exponential function of the

temperature. No appreciable quantity of overhead oil was produced in

reactions below 350°C; above 350°C, the yields at 30 and 60 minute runs

were sharp exponential functions of the temperature.

Effect of Reaction Time

Figures 4 and 5 show the yield of benzene insoluble residues as a

function of the reaction time at 380°C (716°F) and 400°C (752°F),

respectively. It is apparent that some conversion of lignite to

products occurred during the heating-up period, that is, at the onset of

reaction at the specified temperature, the amount of benzene insolubles was

less than 100%. These two figures also give evidence of parallel and perhaps

interacting reactions: one being the conversion of solid lignite to liquid

and gaseous products, and the other being the conversion of the reaction

slurry to coke. This may explain the existence of an optimal reaction

period of approximately 25 minutes, during which the amount of benzene

insolubles obtained was minimum, or during which the pseudo conversion was

maximum. This observation can probably be extended to coal of other ranks

when liquefied under similar conditions.

No significant difference could be detected when the quantities of

benzene insolubles obtained at 380°C (716°F) with different reaction
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times were compared, as can be seen in Figure 4. This is probably a good

indication that no appreciable coking occurred at 380°C. In contrast, coking

was very extensive at a higher temperature of 400°C. The relatively constant

yield, about 75%, of benzene insolubles at 380°C, shown In Figure 4, corre-

sponded to the minimum yield of benzene insolubles in the atmospheric

solvolysis liquefaction of this Texas lignite.

Figures 6 and 7 show the yields of overhead oil, gas, and water as

functions of the reaction time at reaction temperatures of 380°C and 400°C,

respectively. The yield of water was, again, independent of the reaction

time. The yield of gas was linearly dependent on reaction time for both

temperatures. The yield of overhead oil at 400°C, again, was almost linear

with respect to the reaction time; however, at 380°C, it asymptotically

approached to 26% after proportionally increasing with the reaction

time in the initial 60 minutes. This difference might be due to the

fact that coking was predominant at 400°C while it was insignificant at

380°C, as can be observed in Figures 4 and 5.

Effect of Varying the Lignite- to-Asphalt Ratio

Figure 8 shows the yield of benzene insolubles for 30 and 60 minute

runs in the temperature range of 350 - 400"C for a lignite-to-asphalt ratio of

1:1. In contrast to runs with a lignite-to-asphalt ratio of 1:2, no

significant differences were observed between runs at different temperatures

and with different reaction times. It also appears that coking, which was

the predominant reaction at higher temperatures in runs with a lignite to

asphalt ratio of 1:2, was insignificant here. The yield of benzene

insolubles in runs with a lignite-to-asphalt ratio of 1:1 runs was 83±3.4%

of the initial lignite charged on a maf basis. The deviation of + 3.4% was

approximately within the range of measurement and analysis uncertainties.
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Figure 9 shows the yields of overhead oil, gas, and water for 30 and

60 minute reaction runs in the temperature range of 350 - 400°C for a

lignite-to-asphalt ratio of 1:1. General trends observed with a lignite-to-

asphalt ratio of 1:2 (Figure 5) were also observed here, that is, the over-

head oil and gas yields appear to be exponential functions of the temper-

ature, and the yield of water was linearly dependent on the reaction

temperature.

Figure 10 plots the yield of overhead oil, calculated on the basis of

asphalt (i.e., weight of overhead oil collected/weight of feed asphalt),

against reaction temperature; no significant difference can be observed

among runs with different lignite to asphalt ratios. This suggests that

overhead oil was a product from cracking of asphalt. However, no signifi-

cant yield of overhead oil was obtained when asphalt was heated alone in

this temperature range, thus showing the catalytic effect of lignite

(Wright and Severson, 1972). On the other hand, Figure 11 shows that the

yield of gas from runs with a lignite/asphalt ratio of 1:1 was significantly

higher than those with a ratio of 1:2. This is a good indication that,

unlike overhead oil, gas was the product of both asphalt cracking and coal

conversion.
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CONCLUSION

The results of the bench-scale experimental study indicate that the

highest conversion of the Texas lignite to liquid and gaseous products

obtained in the range of reaction condition studied was 23%. The results

also show that parallel reactions which converted solid lignite to gaseous

and liquid fuels, and coked the reaction slurry, interacted; however,

coking predominated at higher temperatures, ^_ 400°C (> 750 °F) . Because

of these two parallel reactions, there existed an optimal reaction time

at which the yield of benzene insoluble residues was minimum. It also

appears that overhead oil was produced from cracking of asphalt which was

catalyzed by the presence of lignite. The presence of lignite also promoted

coking which did not occur to any significant extent when asphalt was heated

alone in the range of conditions studied. The amount of coking was also

significantly reduced when the lignite-to-asphalt ratio was increased from

1:2 to 1:1; however, an increase in the lignite-to-asphalt ratio did not

enhance the conversion of lignite to liquid and gaseous products under the

optimal conditions. The results of the present study show that the solvolysis

process may be suitable for producing low quality coke because of the catalytic

effects of lignite and other coals (Wright and Severson, 1972).
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CHAPTER IV

CONSTANT PRESSURE FILTRATION OF LIQUEFIED LIGNITE
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INTRODUCTION

It is well-known that the separation of solid residues from liquefied

coal constitutes the bottleneck in the commercialization of liquefaction

processes (Batchlor and Shih, 1975; Oak Ridge National Laboratory, 1975;

Rodgers and Westmoreland, 1976; also see Chapter ' II) . Conventional solid-

liquid separation systems, such as filtration, centrif ugation, and sedimen-

tation, have been found to be unsuitable because of the high cost and/or low

efficiency in the removal of solids. Therefore, it is imperative that

1. a combination of the existing separation systems be determined

so that the solid residues may be removed with relative ease;

2. a new separation system be developed; and/or

3. the conditions of liquefaction which will lead to easier separation

be identified.

In the present work, the effect of reaction conditions on the separa-

bility of solid residues from lignite liquefied through the solvolysis process

(Honda and Yamada, 1974) has been investigated. Filterability of liquefied

lignite was chosen as the measure of the ease of separation.

The theory of constant pressure filtration has been adequately developed

(see, e.g., McCabe and Smith, 1956; Tiller, 1966). The general filtration

equation, stated as

vTa -1 If $ * *»] «>

where

6 = filtration time

V = volume of filtrate collected

A = filter area

U = viscosity of filtrate

P = imposed filtration pressure
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C = mass of solid particle deposited in the filter per unit volume
of filtrate

a = average specific cake resistance

R = resistance of the filter medium,m '

can be derived by considering all drag forces created as the filtrate flows

around the cake solids (McCabe and Smith, 1956). Equation (1) indicates that

=77 is a linear function of V/A with a slope of ~j-. Therefore, the magnitude

of the slope is a measure of the difficulty of separation.



IV-3

EXPERIMENTAL

The experimental apparatus, shown in Figure 1, included a Gelman

pressure filtration funnel, an electric heat tape, asbestos insulation,

a variable auto transformer, a thermocouple, a temperature recorder, a

volumetric filtrate receiving flask, and a hot plate. The stainless steel

batch filter had a capacity of 200 ml (0.053 gal) and an effective filter

2 2
area of 9.62 cm (0.010 ft ). The filter could be operated at a pressure

2
as high as 137.2 N/cm (200 psi) and, because of the viton 0-ring seal,

at temperatures between -7°C (20°F) and 205°C (400°F) . The filter medium

used was made of glass fiber and had pore sizes 0.2 to 10 urn. The filter

was wrapped with the electric heat tape and the asbestos insulating tapes.

The thermocouple, which was located near the filter medium, was connected

to the temperature recorder to monitor the filter temperature.

The liquefied lignite slurries used in the present study were obtained

from a bench-scale investigation of the solvolysis liquefaction process

(Honda, 1974; also see chapter II). In the investigation, experiments were

carried out to determine the effects of the reaction temperature (300~410°C),

the reaction time (0"120 min) and the lignite- to-solvent (asphalt) ratio

ranging from 1:2 to 1:1 on the conversion of solid lignite to gaseous and

liquid products.

The liquefied lignite slurry was first heated to the filtration temper-

ature, 180°C (356°F), and was then introduced to the filter which was also

maintained at the same temperature. The filter was then pressurized to 20 psi

2
(13.7 N/Cm ) with a nitrogen cylinder, and the accumulated filtrate volume

was recorded as a function of filtration time.
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RESULTS AND DISCUSSION

The results of filtration of liquefied lignite at 180°C (356 °F) and 13.7

2
N/cm (20 psi) are shown in Figures 2 through 9.

Figure 2 shows the typical filtration data plotted according to equation

(1). The plot will be henceforth referred to as a filtration curve. The

highest (initial) filtration rates obtained in this study were in the range

2 2of 0.05-1.56 ml/cm -min (0.7-23.0 gal/ft -hr) . These rates were comparable

to those obtained by other investigators with the Solvent Refined Coal,

2
4-14 gal/ft -hr (Rodgers, et. al. , 1976; Katz, et. al. , 1975; Schoemann, et.

al. , 1974). Photographs of a typcial filter cake obtained is shown in Figure

3.

Effect of the Extent of Conversion on Separability

Figure 4 plots the degree of separation difficulties, expressed in

terms of the slope of the filtration curve, against the quantity of benzene

insolubles obtained under different liquefaction conditions. Intuitively,

one would suspect the magnitude of the slope of the filtration curve to be

inversely proportional to the extent of conversion of lignite to products;

that is, as the extent of conversion increases (less benzene insolubles), the

particle size decreases, and as particle size decreases, the degree of the

binding of the filter rises, leading to a higher cake resistance and, therefore,

a steeper slope. In Figure 4, however, no easily identifiable relationship

exists between the difficulty of separation and the extent of conversion

from solid lignite to liquid and gaseous products. This was probably due

to many factors. Among them is the fact that the conversion of lignite to

products through the solvolysis process was too low (< 23%) to have an
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appreciable reduction in particle size. It was also possible that other

physical properties such as viscosity, had a greater 'effect than did particle

size on the difficulty of separation. In general, the magnitude of the slope

2 2 2 9
fell below 2 Min/ (Ml/cm ) or 0.5 Hr/ (Gal/Ft ) , which corresponded to a

relatively low cake resistance for an extractive coal liquid.

Effect of the Reaction Conditions on Separability

Figure 5 shows the effect of liquefaction temperature while Figure 6

shows the effect of liquefaction time on the difficulty of separation. No

significant differences in the difficulty of separation were observed for

lignite liquefied under various conditions with a lignite-to-asphalt (L/A)

ratio of 1:1. For lignite liquefied with a L/A ratio of 1:2, separability

of solid residues from liquefied lignite was highly dependent on the condition

of liquefaction. For example, it appears that as the liquefaction time

was increased, separation of solids became more difficult. This observation

is particularly true for slurries obtained at a liquefaction temperature of

350°C (662°F) or lower. It also appears that solid-liquid separation was

relatively easy for slurries obtained at a liquefaction temperature of

380-400°C (716-752°F). This temperature range corresponded to the maximum

conversion of lignite to liquid and gaseous products.

Roles of Viscosity and Cake Resistance on Separability

In order to determine the magnitude of the average specific cake

resistance, a, it was necessary to know the viscosity of the filtrate at a

filtration temperature of 180°C. But, because of the limited amount of

liquefied slurry and also because of the high temperature involved, it

was not possible to measure the viscosity of the opaque lignite liquids

directly. The viscosity of one specific lignite liquid, obtained at 380°C
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with a lignite-to-asphalt ratio of 1:2 and a reaction time of 60 minutes,

was measured at 120, 121 and 132°C. The viscosity at 180°C was then determined

by extrapolation as illustrated in Figure 7. With viscosity known, it was

possible to calculate the resistance of the filter medium, Rm, from the

intercept of the filtration curve [see equation (1)]. The value of Rm

for the glass fiber medium employed in this study was found to be 1.05 x 10 m

(3.20 x 10 ft ). Viscosity of lignite liquids liquefied at different

conditions was then back calculated from the intercept of the filtration curve

assuming a constant Rm of 1.05 x 10 m . This assumption would not be valid

when working with precoat filters in which the resistance of the laid precoat

would be highly variable. However, with laboratory filters that use relatively

uniform filter media of controlled quality, the assumption of constant

medium resistance at a given filtration condition should be acceptable.

The following discussions are based on the assumption of constant filter

medium resistance.

Figure 8 shows the viscosity, at 180°C (356°?), of the lignite liquid

obtained under various liquefaction conditions, and Figure 9 shows the average

specific cake resistance, a, of the liquefied lignite slurries filtered at

o o 2
180 C (356 F) and 13.7 N/cm (20 psi) . The average specific cake resistance

was determined from the slope of the filtration curve using the calculated

viscosity. As a check, the viscosity of one lignite liquid liquefied at

300°C with a L/A ratio of 1:2 and a liquefaction time of 30 minutes was measured

at 110, 116 and 122°C, and the viscosity at the filtration temperature of

180°C was then determined by extrapolation as shown in Figure 7. The value

of viscosity thus obtained was 38.4 cp, while the value calculated from the

filtration data shown in Figure 8 was 38.6 cp, showing an excellent'
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agreement. It appears that the viscosity of the liquefied lignite was

highly dependent on the conditions of liquefaction. For example, the

viscosity of the lignite liquids liquefied with a L/A ratio of 1:2 and a

reaction time of 60 minutes showed no significant dependency on the liquefaction

temperature. On the other hand, viscosity of the lignite liquids liquefied

with the same L/A ratio but with a shorter reaction time of 30 minutes was

parabolically dependent on the liquefaction temperature with a minimum in

the 350-400°C range. The values of the average specific cake resistance

were generally low and independent of liquefaction conditions. Exceptions

to this were two runs liquefied with a L/A ratio of 1:2, a liquefaction time

of 60 minutes and at temperatures below 380°C. The high values of the average

specific cake resistance determined in these two runs contributed heavily to

the large values of the slope of the filtration curve, as seen in Figure 5.

Also in Figure 5, filtration of the lignite slurry, obtained with a temperature

of 410°C,.a liquefaction time of 30 minutes and a L/A ratio of 1:2, showed a

high degree of difficulty in separation. This, on the other hand, was because

of high viscosity of the lignite liquid, as can be seen in Figures 8 and 9.
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CONCLUSION

The results of the present study on separability by filtration of lignite

liquids obtained through the solvolysis process show that the ease of

separating the solid residues from the product slurry was to some extent

dependent on the condition of liquefaction. High average specific cake

resistances were encountered in the filtration of lignite liquids obtained

at the condition of 60 minute liquefaction time, a lignite- to-solvent ratio

of 1:2, and liquefaction temperatures below 380°C (716°F) . On the other

hand, at high liquefaction temperatures, _>. 410°C (770°F) , separation of solids

from the liquefied lignite slurry was hampered by high viscosity. It

appears that separation was best accomplished when lignite was liquefied

in the temperature range of 380-400°C (716~770°F) which was also the conditions

of optimal conversion.
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CHAPTER V

FILTRATION WITH VARIABLE SLURRY CONCENTRATION AND SLURRY
DISPERSION: Solution of a Moving Boundary Problem
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INTRODUCTION

The development of filtration theories and models to date has been

concentrated on constant pressure filtration (Tiller, 1966; 1977). Al-

though several works have been published on constant rate filtration (see,

e.g., Machej, 1974; Silverblatt, et. al. , 1974; Tiller and Crump, 1977),

it appears that little has been published on variable pressure, variable

rate filtration. Furthermore, previous works were almost entirely concerned

with situations where slurry concentrations are maintained constant. It

was not until recently that Tiller and Anantharamakrishnan (1977) presented

their analysis of filtration involving variable slurry concentration.

The study of variable concentration filtration is important in

view of the semi-continuous industrial filters where a layer of precoat

is layed and a filtration cycle is initiated with clear liquid in the

filtration chamber (Perry and Chilton, 1973; Himes, et. al
. , 1977). As the

slurry feed is introduced, the solids concentration in the chamber increases

simultaneously. Tiller and Anantharamakrishnan (1977), have derived

analytical expressions relating the filtrate volume and the filtration time

for both slug (or plug) flow and completely mixed flow systems. The present

work deals with the constant pressure filtration system with longitudinal

dispersion of slurry. This gives rise to the filtration chamber with a

temporally and spatially variable slurry concentration. The resultant

governing equation of the parabolic partial differential equation type, to-

gether with its boundary conditions and the coupled filtration equation,

yields a unique and complex moving boundary problem; the governing equation

contains a convective term with variable coefficients. The convective terms
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are usually missing or remain constant in conventional moving boundary

problems, e.g., those encountered in dealing with heat and mass transport

accompanied by phase changes or chemical reaction of solid substances

(Bankoff, 1964; Wilcox, 1967; Chalmers, 1964). Whereas Tiller and

Anantharamakrishnan were able to obtain analytical solutions, it appears

that we have to resort to an approximate analytical or numerical method

to solve the present problem.
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THEORY

The filter cake is viewed as a separate entity as shown in Figure 1

which depicts only the slurry section of the filtration chamber. The

volume of the cake increases, and the length of the slurry section of the

filtration chamber decreases from the initial value of L to £ with the

increase in filtration time. A solids material balance around a differential

volume between z and z + Az in the slurry section of the filtration chamber

yields the following partial differential equation under the assumption

that the contents in the chamber are continuous and homogeneous (Tojo,

et. al., 1975):

3C 3
2
c 3C

s s , . s

dZ

where

C volume fraction of solids
s

t = time

u.(t) the convective velocity of the slurry

z axial coordinate

D " dispersion coefficient of the solids

The initial condition is

C = at t =

The following boundary conditions are obtained under the assumption that

no dispersion of the solids occurs outside the slurry section of the filtration

chamber (Levenspiel and Bishoff, 1963; Wen and Fan, 1975);

3C

Vsin =u
£
C
s| -VjTl _ at z " ° (3)

1 z+0+ I z-KH-

and

8C

W '
v at z =

* w
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where

C . = volume fraction of the solids in the feed slurry.

A solids balance at the slurry-cake interface gives

Vs| -
" (1 - * ft t5)

where

£ • average porosity of the cake

J » position of the slurry-cake interface or the length of the

slurry section.

Equation (5) can be integrated to give the position of the slurry-cake

interface at any time t as

The slurry velocity, u , is also the filtration rate. It can be determined

from the Ruth filtration equation (McCabe and Smith, 1956) in the form of

U
£

= —m^ (7)

V (-— + S )A m

where

p = applied filtration pressure

M = viscosity of liquid

m
i

= mass of the accumulated cake

a = average specific cake resistance

A = filter area

R
m

" resistance of the filter medium (or the precoat)

For constant pressure, constant temperature filtration, p, u, a, and R
m

remain constant.
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The mass of the accumulated cake, m . can be expressed as
c

m
c

= p
g

(1 - e) A (L - t) (8)

where p is the density of the solids, and (L - £) is the thickness of

the cake. Substituting equation (8) into equation (7) yields

(9)

3C

36

3C
+

1 a c

pe di

i.e. C = at

B.C. 's uC. " uC U^n.

I W IP (1 - e) a (L - £) + R ]
s m

The normalized forms of equations (1) through (4) are, respectively,

(10)

6 = (11)

1 3C

I

^+ -T-Ji\ at 5-0 (12)

9C I

-ft
- 0, at £ = 6 (13)

and those of equations (6) and (9) are, respectively,

6 = x " if
uC

[e=6
dB

<14 >

(15)b(l - 6) + a

The dimensionless groups in these expressions are defined as

C

C =
1 - e'

u t
o

L
'

u L

« --£-
pe D

is
-

C .

sin
1 - E

5
z

L'

B
I

V (16)
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Here u
o

is the initial filtration rate and can be determined from

equation (9) with I - L:

o uR (1/ '

m

The constants, a and b, in equation (15) are, respectively,

a = UV (18)

and

b = p ML (1 - e)
( 19 )

Note that the present transient model of filtration accompanied by the

longitudinal dispersion of slurry gives rise to a moving boundary problem

of the very general and complex type. This is the consequence of the

advancing slurry-cake interface and increased cake resistance with the

progress of the filtration process.

SOLUTION

In solving the highly coupled equations (10), (14) and (15), a

finite difference method has been employed. Discretization of equation

(10) and its initial and boundary conditions is made with the following

forward-difference approximation for the first-order derivative and the

center-difference approximation for the second-order derivative (see,

e.g. , Ames, 1977)

:

(20)

where C^S and AS are depicted in Figure 2. With these substitutions,

equations (10), (12) and (13) become, respectively,

dC -
C
i+1

- c.
1

H AS

3
2
C

C
i-1 - 2c

i
+ c

i+l

u 1
'

AS
2



tlC. C.,_ - C. , C. , -2C. + C

se ^ ac
;

N (
2 '•

pe AE

i = 1, 2, . .., N-l
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df =
df

= °' (2D

dC dC
N

r r 1
C
l ~ C

uC
in

= U C " N AT~ (22)
pe

and

C
N " C

N-1> (23)

where N is the number of ordinary differential equations resulting from

discretization. Since the length of the dispersion chamber decreases as

cake solids accumulate, N also decreases from the original value of XI Li.

A trapezoidal rule approximation is used in evaluating the integration

in equation (1A) . It can be written as

M
,A6

B(e)-i-(F) i([uc|
5. b]j

+ [ucl^]^). (24)

where A6 is the time increment.

The numerical scheme employed in this work to solve the simultaneous

equations is shown in Figure 3. In essence, the values of B, position of the

slurry-cake interface, and u, the filtration rate, determined in the 6 's
j-l

calculation are used as constants during numerical integration of equations

(21) at time I . It is worth noting that the solution scheme involves a

direct solution of the governing equations and that this numerical scheme

did not invoke quasi-steady state assumptions nor a preliminary transformation

of the original equations that are typical in the solution of moving boundary

problems (Bankoff, 1964). The widely available software packages GEAR and/or
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GEARB (Hindmarsh, 1974; 1975) can be used to solve the system of stiff

ordinary differential equations, equation (21). The packages offer

variable order methods, automatic time-step, error control, and they are

particularly known for their efficiency in solving stiff problems

(Gear, 1971).
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RESULTS AND DISCUSSION

Calculations have been executed with the following values for

constants: C^ 0.2, a = 1.58, b = 33.9. Values of a and b correspond

to an average specific cake resistance, a, of 1.99 x 10 ft/lbm

(1.41 x 10 m/kg) and a medium resistance, R , of 3.20 x 10 ft"
1

m

(1.05 x 10 m ) which were experimentally determined during pressure

filtration of liquefied lignite at 356°F and 20 psi (180°C, 1.38 x 10
5
N/m

2
)

.

Time increments of 0.1 and spatial mesh of 50 (i.e., N is initially

50) are used. The results of the calculations are shown in Figures 4

through 9

.

Figures 4 through 8 show the solids concentration profile in the

filtration chamber at various times and for the Peclet number N of
pe

0.001, 1.0, 10.0, 50.0, and 100.0. Initially, there are no solids in the

chamber. With the assumption of constant porosity of the filter cake, the

dimensionless solids concentration in it has a constant value of unity.

Therefore, the slurry-cake interface is represented by a vertical line

extending from C| - to 1. It appears that the rate of cake formation

becomes weakly dependent on the Peclet number when 6^>2.0 and that about

20% of the filtration chamber becomes occupied by the cake when 8 reaches

4.0.

Figure 4 indicates that the concentration profile is essentially flat

when the Peclet number is small as 0.001; in contrast, Figure 7 or 8 shows

that the concentration profile resembles that of a slug (plug) flow system

when the Peclet number becomes large. It is well known (Levenspiel and

Bischoff, 1963) that the dispersion model approximates the behavior of a
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completely mixed flow system at one extreme of having an infinitely large

dispersion coefficient and that it approximates the behavior of the plug

flow system at the other limit of having a negligibly small dispersion

coefficient. Often analytical solutions of the completely mixed flow

and the slug (plug) flow systems are attainable. For this particular problem,

analytical solutions were presented by Tiller and Anantharamakrishnan

(1977). Their solutions are in close agreement with those of the present

work obtained at the upper and lower bounds of the Peclet number, as shown in

Figure 9 where the accumulated filtrate volume is plotted against time.

The filtrate volume curves for the dispersion model are calculated with a

trapezoidal rule approximation of the following integral:

Filtrate Volume (8) / ud8 (25)

The oscillation observed in Figure 8 is quite common in numerical

solutions of partial differential equations (see, e.g., Carver, 1976).

Its appearance is caused by the inability ol the numerical methods to

handle "sharp" functions such as those resulting from a step change.

Oscillation also frequently indicates the onset of instability. Once

the oscillatory wake has passed, the solution stabilizes to its normal

value. In the present work, the oscillation is eliminated when the spatial

mesh is increased from 50 to 100, as can be seen in Figure 8. Generally,

increasing the number of spatial meshes (i.e., reducing A£) will stabilize

the solution; however, this is done at the cost of increased computational

time. In most moving boundary problems, the Peclet number is usually

small enough so that stability is not a problem when an adequate number

of spatial meshes is employed.

GEAR and GEARB (Hindmarsh, 1974; 1975) are generally considered as

the most efficient available packages for solving highly stiff differential
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equations such as those commonly encountered in the chemical engineering

field (Heydweiller and Sincovec, 1976). The capability of these soft-

ware packages does not diminish appreciably when coping with systems with

a large number of differential equations. An example of such a system is

the freezing of multicomponent liquid, in which each component gives rise

to a single partial differential equation. The present numerical solution

scheme should be applicable to systems with more than one differential

equation.

CONCLUDING REMARKS

A mathematical model of the transient filtration process accompanied

by the dispersion of solids in the slurry section of the filtration chamber

has been presented. The model takes into account the temporal variation

of solids concentration distribution which develops in the filtration

chamber. The model naturally reduces to those of the ideal slug (or plug)

flow and completely mixed flow systems. The model also gives rise to a

moving boundary problem of the very general type which has been solved

numerically. It appears that a similar numerical scheme can be applied

to a variety of hitherto unsolved moving boundary problems or to those

solved by imposing quasi-steady state assumptions (see, e.g., Wilcox, 1967,

Bankoff, 1964).
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NOMENCLATURE

A = filter area

a = constant

b = constant

C dimensionless solids concentration

C. dimensionless solids concentration in the feed slurry

C volume fraction of solids
s

C
g

. * volume fraction of solids in the feed slurry

D dispersion coefficient of solids in liquid

L length of filtration chamber

I = position of the slurry-cake interface, or the length of the
slurry section.

m = mass of the accumulated cake
c

N - number of discretized equations

N = Peclet number
pe

p filtration pressure

R = filter medium resistancem

t = t ime

u = dimensionless filtration rate or the dimensionless slurry velocity

u^ = filtration rate or the slurry velocity

u = initial filtration rate
o

z spatial coordinate

Greek Symbols

a average specific cake resistance

8 = dimensionless position of the slurry-cake interface
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e « average porosity of the filter cake

V = viscosity of liquid

£ = dimensionless spatial coordinate

p • density of solids
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Figure 3. Numerical Scheme for the Solution of a Moving
Boundary Problem.
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Figure 4. Solids Concentration Profile in the Filtration
Chamber with N_ = 0.001.
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Figure 5. Solids Concentration Profile in the Filtration
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Figure 6. Solids Concentration Profile in the Filtratic
Chamber with N = 10.0.
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Figure 7. Solids Concentration Profile in the Filtration
Chamber with N = 50.0.



V-23

0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-6 0-9 1-0
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APPENDIX 1. DERIVATION OF THE DISPERSION EQUATION

Consider a material balance on a differential volume in the slurry

section of the filtration chamber:

rate of solids in by convection at z = u C I A,
I 812

rate of soids in by dispersion at

3C
s

3z
A,

rate of solids out by convection at z+Az = u C I A
2. s z+Az
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Summing all contributions, we obtain
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Dividing this equation by AAz and taking the limit as Az-K) gives the

dispersion equation, we have
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APPENDIX 2. DERIVATION OF BOUNDARY CONDITIONS

The equivalence relationship between compartments-in-series with the

back-flow model and the dispersion model is (Wen and Fan, 1975)

Az "
. 2
Az

with

I _ vN
Az

=
V

where

f fraction of back-flow

u specific velocity in the dispersion model

z - axial coordinate of the dispersion model

D = dispersion coefficient

v volumetric flowrate in the compartments-in-series with
back-flow model

V
77 = volume of the individual compartments

This relationship and the compartments-in-series with the back-flow model

depicted below will be used to derive the boundary conditions for the

dispersion model. Closed-Entrance Boundary Condition at z = ,

(1+f) v

Material balance on the compartment, 0, yields
dC
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x
" \> + fv \ - \>
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Applying the equivalence relationship, we have
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Letting C = C
. , and taking the limit as Az » 0, the boundary condition

becomes
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Applying the equivalence relationship, the above equation becomes
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The following areas of research are suggested for future pursuit:

CONVERTIBLE (SEMIFLUIDIZED) BED FILTER

The results of the present work indicate that convertible

or semifluidized bed filters may have great potentials in solid-liquid

separation not only for synthetic fuel processes but also for other

industries where separations are carried out in severe conditions.

The convertible bed filter (Wen and Fan, 1977), which is based on the

principle of semifluidization (Fan, et al. , 1959; 1961; 1968), consists of

a cylindrical bed section containing a distributor plate, the bed and a

sieve plate. The slurry to be filtered is dispersed and injected into the

bed through a conical shaped flow regulator at the bottom of the filter

bed. The bed is comprised of packing particles which are inert and serve

as a porous filter. The sieve plate located at the top of the bed permits

the passage of filtrate from the bed and retards the upward movement of

the bed particles once the fluid stream enters the chamber. The maximum

filtration rate is maintained in the convertible (semifluidized) bed by

maintaining an ultra- thin cake. A diagrammatical representation of the

filtration cycle is shown in Figures 1 through A, and the following is a

description of the cycle.

Initially the bed is in a fixed configuration as the fluid stream

containing fines (solid or colloidal material to be removed) enters the

flow regulator and passes into the bed. The fines, upon entering the por-

tion of the bed adjacent to the distributor zone, are unable to penetrate

the bed to any great extent before being stopped by the bed particles.

Thus, a "cake" of fines begins to build up in this zone. The formation of

the cake produces an increased pressure drop as monitered via the pressure
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taps at the distributor and at the top of the bed. This rise in the

pressure drop activates a driving mechanism which raises the sieve plate.

The mechanical movement of the sieve plate in conjunction with the - -

forces being exerted by the fluid stream disrupts the formed

cake of fines into small fragments. Cake disruption is also aided by the

fluidized particles. In addition, the act of disruption of the existing

cake causes more of the particles which are encased by the cake to become

fluidized. Raising of the sieve plate continues while small fines in the

stream are being trapped in the fixed bed. The amount of fixed bed grad-

ually decreases with successive disruption of the formed cakes.

Continuation of this process results in the condition where the amount

of fixed bed remaining can no longer function adequately as a filter. At

this point, the fluid stream is stopped and the contents of the bed chamber

may be purged or flushed by lifting the sieve plate to the very top of the

column. Depending on which process is used for removal of cake and cake

fragments, the bed column is returned to the initial conditions to restart

the filtering process. The fines to be filtered can fill 80 to 90% of

the volume of the column at the end of the operation. The column can be

heated or pressurized to such a condition that the fluid density and vis-

cosity are adjusted for easier flow through the packing. The filtration

process described here using a convertible bed (semifluidized bed) may be

suitable for removal of ash, sand and other particulates from liquefied

coal and petroleum crude oil. Continuous filtration can be established by

utilizing two or more beds.

SCALE-UP, DESIGN AND SYSTEM SYNTHESIS

To scale-up or design any of the separation processes that are reviewed

in Chapter II, it is essential that a mathematical model be developed
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which characterizes the performance of the process. This can be accomplished

best by adopting the so-called sequential mechanistic model building pro-

cedure (Box and Hill, 1967; also see Appendix 1) . The procedure will

permit the fullest exploitation of the available data, the fundamental

theories and the existing models, and will enable the effective utilization

of new data yet to be obtained and of new mechanisms yet to be discovered.

The sedimentation-filtration test discussed in Chapter II and the observed

exponentially increasing effort required, in any given technique, to remove

the solids as their concentration diminishes seem to indicate a need for

more than one method of solid residue-liquid product separation for any

coal liquefaction process. In other words, there exists a combination of

different separation techniques which will be best suited for a particular

liquefaction process. Methods of finding such a combination or methods

of system synthesis are available (see Appendix 2).

Because of the extreme complexity of solid residue-liquid product

separation in any coal liquefaction process, even an optimally synthesized

separation system will probably not perform optimally in practice. The

final determination of the optimal operating conditions should be carried

out experimentally by employing a suitable experimental optimization pro-

cedure, e.g., EVOP (see Appendix 3).

COMPUTER SIMULATION

Researchers in the field of solid-liquid separation processes have been

relying heavily on linearization and other mathematical simplifications of

the governing equations of the processes in order to solve them analytically.

However, with the advanced continuous industrial filters, such
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simplifications are often impractical and undesirable. Furthermore,

computer simulation can now be easily accomplished with the development of

the high speed computers and the highly sophisticated integrator software

packages. Therefore, more sophisticated and realistic models should be

developed to accurately simulate and predict the performances of solid-

liquid separation systems.

PETROLEUM COKE

In the experimental study of the solvolysis process, it was seen that

the lignite and asphalt slurry was subjected to coking under certain reaction

conditions. It was also observed that extensive coking took place in a

relatively short period of 0.5 ~ 1 hour. In the commercial production of

petroleum coke where a coking time of 8 to 24 hours is usually required,

this could mean a tremendous saving. Additional research is required to

determine the conditions of carbonization which would lead to efficient

production of a clean coke. This would encompass the identification of

process variables such as:

1. minimum lignite (or coal)-to-asphalt ratio which would still

result in fast production of coke,

2. heating conditions which would reduce the sulfur content in the

coke.

STATISTICAL ANALYSIS OF INTERACTION AND NON-NEWTONIAN EFFECTS

The solvolysis and filtration data obtained in the present work and

other future data should be statistically examined for interaction effects

among any of the reaction conditions which are difficult to detect other-

wise. The analysis of filtration data in Chapter IV was carried out on
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the assumption that slurry remained newtonian. This assumption may not be

completely valid. Re-analysis of the data based on a non-newtonian model

may be desirable.

FURTHER STUDY ON THE SOLVOLYSIS PROCESS

A study should be conducted to determine the effects of catalysts,

solvent pretreatment, and other solvents on the conversion of lignite to

gaseous and liquid products.

It is also highly desirable to determine the suitability of the

solvolysis process in the extraction of bitumen from oil shale and oil

sands

.

GASIFICATION OF LIGNITE

Circulating-type fluidized bed gasifiers are currently being developed

in Japan to produce low BTU gas from municipal solid wastes which contain

as much as 30 - 50% moisture. Such a process could efficiently produce

synthetic fuel gases from moist lignite by eliminating the costly drying'

process.
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APPENDIX 1

MODEL DEVELOPMENT PROCEDURE

The mathematical form of a model can generally be written as

where n is the dependent variable, or the response of the system to the

independent (or, controllable) variables i, and the 6's are the parameters

of the system. The procedure for building a mechanistic model can be

roughly separated into two distinct stages, the specification and estimation

stages (Hunter and Kittrell, 1967). In the specification stage , the

problem is to search for an adequate mathematical function of the mecha-

nistic model which appropriately describes the system behavior or response

(Bruin, 1971). The techniques employed are: (a) model screening,

(b) model discrimination, and (c) model modification. Although parameter

estimation is often necessary to test the adequacy of any particular

functional form at this stage, the estimation often does not need to

be very precise. The estimation stage follows the specification stage,

where attention is paid to the accurate estimation of the parameters

within the chosen functional form.

At the onset of the specification stage, the model builder usually

must select an appropriate functional form of the model from several

forms which were derived from various proposed mechanisms. In case there

is a large number of proposed models, the model builder might try to

reduce the number of models to a minimum by applying preliminary screening

techniques which include analysis of variance (Draper and Smith, 1966),

test of residuals (Draper and Smith, 1966), and/or linear test of non-

linear models (Kittrell, 1966) using sets of data generated through
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a series of experiments with screening design (Kittrell, 1966). The

discrimination techniques, such as application of intrinsic parameters

(Kittrell and Mezaki, 1967), non-intrinsic parameters (Mezaki and Kittrell,

1966) , and/or efficient model discrimination experiments (Hunter and

Reiner, 1965; Hill, 1966), are applied to the outcome of model screening

to choose the most adequate model. At this point it may happen that

the chosen model has a specific shortcoming under certain conditions.

The procedure of model modification (Box and Hunter, 1962; Hunter and

Mezaki, 1964) can be employed to eliminate the shortcoming until a satis-

factory form of the model is obtained.

In any model building procedure, values of parameters in the model

have to be estimated through comparison between the predicted values

of system responses based on the model and the corresponding observed

values from the experiment. For a linear model using least square criteria,

estimation is quite straight-forward (Draper and Smith, 1966) ; however,

for non-linear models, estimation is generally more complicated and require

use of some iterative search procedures (Bard, 1967; Marquardt, 1963;

Fletcher and Powell, 1963) which minimize (or maximize) some appropriate

functions of residuals, such as least squares (Draper and Smith, 1966),

weighted least squares (Hill, 1966) , maximum likelyhood (Bard, 1967)

,

and Bayesian (Box and Draper, 1965).

Once model discrimination has been accomplished, and the best model

is selected from a group of rival models, further experimentation can

be conducted to improve parameter estimation. Criteria for efficient

design of experiments to increase the preciseness of parameter estimates

have been developed (Kittrel et al., 1966; Box and Hunter, 1965; Box,

1970). The sequential mechanistic model building procedure is outlined

in Table 41-1.



VI-11

TABLE Al-1. OUTLINE OF MECHANISTIC MODEL BUILDING

INITIAL STAGE

Derivation of Models

1. Understanding of the system through review of past
experiences, survey of literature and/or exploratory
experimentation

2. Proposal of possible mechanisms

3. Derivation of mechanistic models

SPECIFICATION STAGE

Model Screening

1. Experimental design for model screening

2. Analysis of data by using techniques of

Analysis of variance (test of lack of fit)

Analysis of residual
Linear Test of non-linear models

Model Discrimination

1. Use of diagnostic parameters

2. Experimental design for model discrimination

Model Modification

ESTIMATION STAGE

1. Experimental design for parameter estimation

2. Least square estimation

3. Maximum likelihood estimation
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APPENDIX 2

SYSTEMS SYNTHESIS METHODOLOGIES

The study of system synthesis, beginning in 1968, has developed into

six major areas; the decomposition approach, the heuristic technique,

evolutionary design, dynamic programming, branch and bound strategies,

and the structural parameter integrated approach. How one classifies

a particular application can be somewhat subjective since many papers

use combinations of these basic techniques. To describe system synthesis,

the guides for type assignment must be somewhat soft or flexible so that

a single paper can be said to advance more than one concept of synthesis.

Decomposition Approaches

To decompose is to subdivide; to subdivide is to simplify. Rudd

(1968) first formally stated the decomposition algorithm for the optimal

design of a complicated or nonsolvable system as one of decomposing the

original problem into smaller solvable problems. For the simplest case,

one large system is decomposed into two smaller subsystems; or one large

optimization, design problem is decomposed into two smaller less compli-

cated and solvable optimization problems plus one problem of optimally

combining the subsystems into the original system. The subsystems are

optimized with respect to the independent variables associated with each

subsystem; while the decomposition, recombination problem is optimized

with respect to how the problem is decomposed and recombined.

Rudd describes a general philosophy of developing a design as one

of decomposing a problem that cannot be solved with existing technology

into a group of subproblems which can be solved with existing technology.
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Several researchers have investigated how large sets of interconnected

equations can be solved by decomposing the problem into smaller tasks

and then combining the smaller problems into the original large problem.

Christenson _e_t a_l. (1969) investigated decomposition of design equations

for large systems with many recycle streams to obtain an optimal solution.

One of the most recent of these solution procedures, tearing algorithm

papers, was that by Westerberg and Debrosse (1973). Again it presents

a method to obtain a solution procedure for a system with many recycle

streams and other complicated interconnections.

Decomposition procedures have been applied to the systems synthesis

problem directly by Nishida St al. (1971), Kobayashi et_ al . (1971),

Umeda and Ichikawa (1972), Menzies and Johnson (1972) and Osakada and

Fan (1972).

In 1972, a symposium was held in Cambridge, England, on decomposition

theory as applied to control theory, computer science, operations research,

chemical engineering mathematics, and network theory. The notes of the

symposium, edited by Himmelblau (1973), contained thirty-seven papers.

About ten papers considered nonlinear systems, but only two of these papers

presented complete applications of their proposed decomposition schemes.

The first paper, by Westerberg, implied that the direct solution of a

combined problem without decomposition could be obtained more quickly

than the decomposed problem. Jung et_ al. (19 73) also reported this result

when he reviewed several decomposition schemes. The second paper from

the symposium, by Sandbloom, illustrated the optimization of a highly

decomposable system of equations with his proposed decomposition scheme.

The results indicated that, again, the direct solution without decomposition

was faster than the decomposed problem. The method also required that
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the objective function and constraints were convex and dif ferentiable

functions. Of course, the equations normally encountered in systems syn-

thesis studies may not be convex or dif ferentiable.

Wilde (1972) computed the constrained derivative from each stage

of a large interconnected system and then the entire system is constructed

from the combination of the derivatives of each stage by the chain rule,

Uraeda et al. (1972) has presented the concept of a feasible decompo-

sition method. All decomposition procedures before this decomposed a

problem by assigning a variable at one point in the procedure and at

some later point in the solution procedure, an equality constraint was

added. The effect is to require the production of infeasible regions.

Umeda's method first requires that the number of coordination variables

produced in a decomposition be less than the number of independent variables

associated with all of the subproblem optimizations. Next, instead of

relaxing an equality, the method uses one of the internal independent

variables in the subsystem to fix a coordination variable. An iterative

technique is then used to alternatively fix coordination variables by

selecting internal independent variables associated with a subproblem

and, secondly, by selecting the remaining independent variables to achieve

the desired result in the objective function.

Heuristic Technique

A heuristic rule is a guideline. Usually, its validity has been

found from experience as opposed to being rigorously proved. In engi-

neering the existence of such rules is wide spread. Indeed, the most

noticeable distinction between a practicing engineer and a new graduate

entering the field is the heuristic-knowledge gap.
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The heuristic approach has long been the only available technique

for process systems synthesis. Heuristic rules are probably still being

used more often than any other system synthesis technique. The systematic

use of a set of heuristic rules and a learning technique in systems syn-

thesis apparently was first attempted by Masso and Rudd (1969) in heat

exchanger network design.

In applying the heuristic technique, several sets of possible heuri-

stic rules are first developed. Weighting terms are then introduced for

the purpose of determining which heuristic rule should be used. Each

time a particular heuristic rule performs well, its respective weighting

term is incremented; if the heuristic rule performs poorly, the weighting

term is decremented. The value of the weighting term determines which

heuristic rule will be used from that set during later iterations.

Thompson and King (1972) used the heuristic technique to generate

separation sequencing solutions. The heuristic rules used in their study

were developed by Heaven (1969) in his study on distillation sequencing.

Siirola and Rudd (1971) extended the heuristic technique so that,

given a reaction sequence, a complete task identification procedure, in-

cluding material and energy balances and utility estimates can be developed.

In addition to the heuristic rules employed in the computer program, the

provision for the interaction with the design engineer is also included.

Siirola, Powers, and Rudd (1971) continued with this Adaptive Initial

Design Synthesizer (AIDES) and developed a semi-automated design synthesizer.

This final form performs the complete design problem from the reaction

scheme to the final flow sheet with the complete equipment specification.

Since the work of Powers in 1972, no new techniques or papers have

been proposed dealing with the heuristic technique.
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Evolutionary Method

A basic design technique used by practicing engineers in industry

is evolutionary design. The principle is to first start with a working

system and improve it. Of course, how or where the improvements should

be made is not obvious. Indeed, that is the challenge to industrial opti-

mization, to find areas in a system where costs can be decreased.

This method of evolutionary design is also used in systems synthesis.

Again, the starting point is a working, feasible design. From this point

changes are made in the structure of the system and the effect on the

objective function of the proposed system is observed. If the profit is

increased by the change in structure, the new system replaces the original

design.

Evolutionary design has been used by King et al. (1972) to reduce

the ethylene loss from a demethanizing tower of a chemical complex.

How and where the changes in structure were made were determined entirely

by engineering judgement. They also carried out an available energy

balance over the entire process. Those units that had the largest loss

of available energy were then studied closely to determine possible struc-

tural changes in order to minimize the energy consumption per pound of

liquified methane.

Ichikawa and Fan (1972) used the evolutionary process to design a

reaction-separation system. In addition, they derived the necessary

condition for an optimal system.

The dual feasible decomposition proposed by Lasdon (1970) was used

by McGalliard and Westerberg (19 72) to develop an evolutionary design

procedure with which the effect of a structural change could be determined
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without reoptimization of the entire system. Several heat exchanger net-

work designs were synthesized with satisfactory results.

Dynamic Programming

A waste treatment plant was synthesized using dynamic programming

by Shih and Krishnan (1973). The system synthesized by them had a primary

clarifier, a trickling filter, an aerated lagoon, an activated sludge reactor,

a coagulation settler, and a carbon adsorbent filter. A drawback in the

problem formulation was the lack of a recycle stream around the activated

sludge reactor. In practice, however, such systems are extremely rare.

Separation sequencing was first performed with dynamic programming

and list processing by Hendry (1972). The difference between a pure dynamic

programming solution and the inclusion of list processing was two-fold.

First, the number of possible sequences that had to be considered were

reduced by taking into account only those separations included in the list

processing scheme. In other words, only a single split could be obtained

for each separation. The second difference was that the list processing

scheme allowed all types of separations to be considered in the same dynamic

programming problem. Extraction, distillation, crystallization could all

be considered in the same separation sequencing problem.

Energy integration was added to the work of Hendry by Rathore et al.

(1974a, b) . By using Hendry's method of separation sequencing and dynamic

programming for the heat exchanger network design, the integration was achieved.

In a second paper, the problem was extended to the sequencing problem with

distillation towers operating at pressures other than atmospheric. Branch

and bound was used for the heat exchanger network design in this second paper.

Optimal systems were obtained by both techniques but the relative savings

was small for systems without energy integration.
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Branch and Bound

Heat exchanger network synthesis was performed by Lee and Masso (1970)

using a branch and bound algorithm. By relaxing the network feasibility

criteria of using a stream only once in a network, a branch and bound

algorithm could be formulated. A cost matrix was constructed from the

costs of individual exchangers and subsequent networks including the neces-

sary utility costs of steam and cold water needed to accomplish the process.

The step of filling the cost matrix was considered to be the simplest

step in the design problem. Next, various branching strategies were de-

veloped along with the appropriate bounding criteria. By the repeatedly

branching and bounding, the original problem was transformed into many

small problems, many of which need not be solved completely. The job

of comparison was then drastically reduced.

The second application of branch and bound by Menzies and Johnson

(1972) expanded Lee's basic method of heat exchanger network design by

considering both the heat transfer problem and the pressure change problem.

The system structure for the units other than the heat exchanger network

was fixed for the entire problem.

Branch and bound was finally used by Rathore et al. (1974b) in his

distillation sequencing and energy integration problem.

Feasible Matrix and Decision Tree Methods

A decision tree algorithm developed by Pho and Lapidus (1973) consi-

ders only the feasible structures of heat exchanger network synthesis.

By judiciously matching streams in a matrix representation, the assign-

ment effort and the computational burden are reduced. The condition that

allowed branch and bound to be used in heat exchanger network synthesis



VI-21

was the relaxed constraint on the multiple use of a single stream. The

tree structuring method can then be used to include the multiple use con-

straint and therefore reduce the required computation. For example, a

four stream heat exchanger network requiring the evaluation of 4200 possible

system structures can be reduced to a problem of requiring examination

of only 24 structures c

Synthesis by Direct Optimization

The structural parameter of solution formulation was introduced and

first used with a direct search by Ichikawa et al. (1969), and has been

used broadly. Since the study of optimization has been so extensive,

it would seem plausible that these techniques could be used directly in

systems synthesis. This is the basis for the structural parameter method

of solution formulation used with a direct search. The method begins

by devising a system structure composed of all the reasonable combinations

of units. Engineering judgment and basic heuristic rules must, of course,

be used in order to devise both a general system and a system of moderate

size. Structural parameters are employed at splitting points to determine

the split fractions of the state variables to the various streams leaving

the split point. After a solution procedure and the appropriate decision

variables are obtained, the system can then be optimized with any existing

nonlinear optimization technique.

Since structural parameters are merely splitting fractions, they

can also be used in combination with a variety of systems synthesis tech-

niques. Umeda and Ichikawa (1972) used structural parameters with a decom-

position technique; Ichikawa and Fan (1972) used them with an evolutionary

approach; and Umeda, Shindo, and Tazaki (1972) used them with a feasible

decomposition technique.
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Hybrid Methods in Synthesis

Combinations of methods is very common in systems synthesis. For

example, Hendry and Hughes (1972) used both dynamic programming and list

processing in order to accomplish his separation sequencing. Rathore

et al . (1974a, b) added the branch and bound strategy devised by Lee et

al . (1970) to integrate the energy and separation sequencing problems.

Ichikawa and Fan (1972) used the structural parameter method of solu-

tion formulation and an evolutionary approach to optimize a reactor-

separation system. Osakada and Fan (1972) used the structural parameter

method of solution formulation and a multilevel decomposition procedure

to optimize a reaction-separation system.

Additional information on system synthesis methodologies are avail-

able in two earlier reviews, one by Fan and Osakada (1972) and the other

by Hendry and Rudd (1973).
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APPENDIX 3

PROCEDURE FOR EXPERIMENTAL OPTIMIZATION

Evolutionary operation (EVOP) is a statistical method for process

improvement which employs sequentially Response Surface Methodology (RSM)

.

EVOP was developed by Box and his associates (Box, 1954; Box, 1969; Box

and Draper, 1969; Box and Hunter, 1958; Box and Wilson, 1951). The basic

philosophy of the method is that data collected routinely during the regu-

lar operation of a process can often be used to find new operating condi-

tions to improve its performance.

In biological waste treatment processes, the influent conditions and

the ambient temperature are seldom constant. Furthermore, the loading

often increases with time because of increases in population and/or expan-

sion of industrial activity. It is, therefore, frequently necessary

to search for improved operating conditions.

The number of independent operating variables that can be optimized

simultaneously using EVOP is not fixed. Box and Draper (1969) described

in detail the procedures for treating two independent variables using a

2
2 factorial design and for treating three independent variables using

3 2
a 2 factorial design. A 2 factorial design was employed in this work

to optimize two variables, flow rate ratio and volume ratio, as shown in

Figure A3-1.

A single performance at one of the five operating conditions in

Figure A3-1 is called a run while a complete sequence of performances at

these five sets of operating conditions is called a cycle. The order of

experiments within a cycle should be randomized. After several cycles,

statistically significant results become available and a new phase or

new set of operating conditions can be selected.
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2
After n cycles, the effects and their standard errors for a 2 design

can be computed according to Table A3-1. The effects of flow rate ratio,

volume ratio, and their interactions can be presented diagrammatically

as shown in Figure A3-2. From this diagram and Table A3-1 the effect of

a variable can be interpreted.

The sample standard deviation, s., at point j is calculated from

the positive root of the sample variance as follows:

N
- 2

2 <V
y
J

' V
<V •— N-l <«

where

s. » sample standard deviation at point j

N

y, " ( I y,.)/N
3

i-1 1J

= average of the N observations at point j

jr.. = value of the ith observations at point j

n = number of observations.

One can estimate s from preliminary experiments before initiating the EVOP

search pattern or from the use of data obtained during EVOP experiments.

In this work s was initially estimated using four observations from four

successive days for each of the five operating conditions during cycle

1 of phase 1; that is, at point j:

i (y. - y..)
2

2 i-1 J ^
(Sj) 3 , j - 1, 2, 3, 4, 5 (2)

where

y.. observation on day i at point j

s. standard deviation at point j



VI- 2 7

The average of the five values is

(8 )

s & (3)
5

The estimation of s for phase 2 was slightly different from that

of phase 1. First, the four standard deviations for the operating con-

ditions 1, 2, 3, and A between cycles 1 and 2 of phase 1 were calculated

by using equation (1); the standard deviation for was computed based

on the three data at this operating condition from cycles 1 and 2 of phase

1 and cycle 1 of phase 2. Second, the average of these five standard

deviations was taken as the standard deviation for cycle 1 of phase 2.

After the standard deviation is obtained the standard error in Table

A3-1 can be calculated. The effects, which can be calculated using the

formulas in Table A3-1, and the 2 S.E. limits are used in constructing

the EVOP information board. An information board generally consists

of the functions of interest (objective function and other reference

functions), requirement, running averages, 2 S.E. limits, phase mean,

effects with 2 S.E. limits, and standard deviations for individual observa-

tions. The standard error is multiplied by two because this gives values

which are approximately equivalent to a 95% confidence interval. Thus,

the statistical significance of the effects is given in the information

board. As the number of cycles increases, the standard error decreases.

After several cycles, statistically significant results can usually be

obtained. This property of the method makes it particularly useful for

improving operation in processes where the standard deviation is relatively

large or where one can afford to make only small changes in operating

conditions.
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TABLE A3-1

2
Computational Formulas for the Effects anil Standard Errors for a 2

EVOP Design

Formula Standard

Effect . (Sequence Numbering) Error

.____* si-
Main effect of flow rate ^Cy, + >S ~ J, ~ y ,)

—
ratio (Q) 2 J A I

fa

Main «ffOct of volume hCy
2
+ y

h
- y

3
- y

±
)

s

ratio (V) 1\n

Interaction (Q x v) h(y
2
+ y

x
- y^ - JJ

Change in mean (y + y + y + y, - 4y )/5 0.S9
v£

y, > y.,) y.» y^ oad >' > process averages Crow Che n cycles Tor operating condi-

tions 1, 2, 3, 4, and 0, respectively.

s "- sample standard deviation calculated from the positive root of the sample
variance . n r- number of cycles performed

.
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Figure A3-1. Sequence of Che Runs in a 2 EVOP Design.
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-o

(V——

6

v—' Variable 1Variable 1

(A)

6 6
Variable 1

(b)

Variable 1

(c)

FUure A3-2. Diagrammatic Representation of Effects for 2 EVOP Design:

(a) Variable 1 effect; (b) Variable 2 effect; (c) Inter-

action effect.
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Solid residue-liquid product separation techniques currently being

tested for coal liquefaction processes were reviewed and summarized. The

result indicates that no single technique, such as filtration, centrifuga-

tion, or sedimentation could effectively and economically remove the solid

residues from liquefied coal.

Experimental study was then carried out to determine the effect of

conditions during liquefaction on the ease of solid-liquid separation;

liquefied Texas lignite slurries obtained through the solvolysis process

2under atmospheric pressure were filtered at 180°C (356°F) and 13.7 N/cm

(20 psi) . The conversion of solid lignite to liquid and gaseous products

through the solvolysis process with asphalt as the solvent was low (<25%) .

However, the difficulty of separation, measured in terms of f ilterability

,

was highly dependent on the liquefaction condition. The filtration rate

2 2varied from 0.05 to 1.56 m£/cm -min (0.7 to 23.0 gal/ft -hr) . The experimental

study also revealed that the solvolysis process might be an efficient process

to produce petroleum coke.

The filtration parameters, such as the average specific cake resistance

and filter medium resistance, determined in the experimental study were

incorporated in a numerical simulation of a filtration process with variable

slurry concentration. The resultant moving boundary problem was solved with

a highly stiff Gear-type integrator. The result of the calculation indicates

that the numerical scheme used ought to be applicable to other moving

boundary problems.


