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I. Introducticn.

A. Statement of Problem, Purpose and Scove,

The scope of building structures is chanzing rapidly.
Building helghts are growing up and up, and volumes are getting
larger and larger, but the space reserved for structural members
1s getting smaller. So new problems involved in the desizn of
building frames are being developed, and old problems are taking

on nore importance. One of these problems concerns cnerings in

of plipes, electric cables and ventilation ducts to minimizs the
space or for architectural reascns. For this reason, the deter-
mination of the stress distribution around holes in the webs of
Wwide-flange beams is an important problem for structural
engineers.

The purpose of tnis paper 1s to introduce a method for calcu-
lating the elastic stresses around a hole in a web of a wide-
flange beam with a concentrated load (Fig. 1). As far as thne ne-
thod is concerned, a hole of general shape can be treated. 4
numerical example 1s presented for the case of a simply supported
bean with a concentrated load, 2P, at midspan, which has a span

2L and a circular hole with a radius "a" at a distarce

-y

length o
"u" from the support. The hole is centered on the neutral axis
of the bean.

The equations for the stresses in the beam with a2 hole a2t

Gifferent locations, u = 80", 60", 40", 20", are calculated usins

& digital computer.



B. 3Brief Review of the Litcrature.

Theoretical and experimcntal colutions for the stresses
around a hole in a plate subjected to bending moment were
obtained by Tuzi (1l)¥ early in this century. The Alry stress
function which he used was based on the results of photoelastic
experiments, and a theoretical solution was worked out using
the stress function and assuming an infinite plate.

Subsequently, a theoretical solution using conform-=1l msnping
and theory of complex variables was initiated by Greenspan (2).
The mapping function assumed was approximate, so the results
were also approximate. The procedure was very similar to Tuzi's,
but a different stress function was employed.

The basic method for determining the stress distritution
around holes was given by Savin (3), who treated the problem in
general form. Eowever, his solution was restricted to plates
subjected to pure tensile or compressive stresses.

Recenﬁly. Joseph and Brock (4) have studied the stresses
around a general small opening in a beam subjected to pure
bending, using the complex variable method assocliated with
Muskhelisvili (5). An exact mapping was employed for the first
time, but details of the solution were not presented. Numerical
examples were obtained using Greenspan's approximate function.

The stresses around a small opening in a beam subjected to
bending with shear were determined by Heller (6), who surer-

imposea a stress equation considering bending with shear with

# The numbers in parentheses refer to references in Bibliography.
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the equation solved by Joseph and Brock (4). This solution was
also based on Greenspan's mapping function. Heller continued to
study various mapping functions with Brock and Bart (7).
Finally, a general mapping function was developed along with a
method of choosing the coefficiercs which are needed for the
solutio:.

Anotiner method, slightly different, was developed by Bower
(8). The procedure was different, which is that the stresses
around an opening in a web of a wlde-flange beam subjected to
bending with shear can be solved by taking the sum of the basilc
stresses and the perturbated stresses. This approach 1is discussed

in the following section.



A. The stresses in a wide-flange beam with a web hole are

>

computed from the following equations:

g = o}
6= %op " %op
g =20 + O (1)
Tr rb Irp
= +
Tre ?rab zrep

where 59 and or are the total normal stresses on the cross
section perpendicular to the 6 and r axes, and ?re 1s the total
shear stress on that cross section. ceb and Urb are the basic
normal stresses which occur in a beam when there is no opening
and act on the cross section perpendicular to the 6 and r axes,
'whila ?reb is the basic shear stress on that cross section.
cep, Grp and Tre are the perturbated stresses which occur in a
beam as a result of forces applied to the boundary of the hole.

B. The forces applied to the boundary of the hole are
applied in such a manner that the resulting perturbated stresses
and the basic stresses satisfy a required boundary condition at
the hole. The boundary of the hole is assumed to be free of
force; therefore, the shear stress and stress normal to the
boundary of the hole are zero at the boundary (8).

C. The perturbated stresses must attenuate according to
Saint Venant's principle as distance from the hole increases,
because the hole causes only localized redistribution of stress
(8).

D. The ratio of the hole dlameter to the web depth does

not exceed a maximum value. This assumption wlll be discussed



E. The solution 1s baseé on the usual assumptions of plan

elastvicity: homogeneous, isotropic material within the elasti

Q

\n
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ITII. Nethod of Solution.
A. Basic Stresses and Stress Functions,
To calculate the stresses in a wide-flange beam with =z
hole, The stress equations which were given by Timoshenko (§)
may ve used. A simply supported beam with a concentrated load at
the center can be treated as a cantilever. Then the stress

equations arei

in which Ox is the normal stress on a cross section perpendicular
to the longitudinal direction of the beam, GY is the normal

stress on a cross section parallel to thg longitudinal axis of the
teanm and ny is the shear stress in the web on the above cross

section. c* is a modified halfdepth of the beam given by (5)-
c*? - a®(1 + 28R) (5)

These symbols are defined in Fig. 1. The bracketed quantity in
Zg. 5 accounts for the difference in shear stress distribution in
a wide-flange beam as compared with that of a beam with a

rectangular cross beam,

Egs. 2 through 4 give the stresses as a function of the
loading and beam geometry at locations defined by the x and y

coordinztes., For subsequent work, it is convenient to give the



stresses in terms of compnlex stress functions so that the
boundary of the hole can eventually be expressed zs a continuous
function of a single complex coordinate rather than as a
function of the two coordinates x and y. The complex strezs
functions of Muskhelishvill are related to the normal and shear

stresses gilven in Egs. 2 through 4 by the formulas (5)

- s - 1) et
o o+ Zl?xy_ 2(z¢" +v¢") (7)

and to the boundary forces by the formula

5, + 18, = ¢+ 26" + v ' (8)
in which ¢ and qrare complex stress functions of the single
coordinate z, which is defined as x + iy, $ and ﬁ'are the complex
conjugate of ¢ and ﬂr, the symbol Re denotes the real part of the
guentity following the symbol, the primes denote differentiation
with resvect to z, and i is the imaginary part. The quantities gl
and g, are functions of the boundary forces (5).

Because the basic normal ancd shear stresses in the beam are
known in terms of the loading conditions and beam geometry, the
stress function can be expressed in terms of the loading and
beam geometry by combining Egqs. 2, 3, 4, 5, 6, and 7 (8).

B, MNapping Functions.

To simplify the subsequent computation of stresses in
the neighborhood of a hole, it is convenient to transform the

complex coordinate system used in Eqs.6 through 3 to a different
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complex coordinate system in which the future hole boundary is
defined by radial polar coordinate r (8). This 1ls accomplicshned

by conformally mapplng the area outsidé the hole into the

interior of a unit circle so that the boundary of the hole heocomes
the perimeter of the circle. The following general transformation

equation performs this mapping,

3 5 7 (9)

z = Ww) = + BW + CW” & Dw” + EW

e

in which w is the coordinate in the transformed complex plarne,
ané A, B, C, D, and E are real coefficients that vary according
to the shape of the hole being transformed. This mapping
function was obtained from the following Schwarz = Christoffel

integral (4, 5)

W 1
2= z(w) =& f (£ - 31 - Kt% 4 —16-(1 + K2)%y=dt
1 1 tq

+ const. (10)

The coefficients can be evaluated using Newton's Approximate
Method. Typical examples are given in Ref, 7.
Because the new plane is the interior of a unit circle, w

is defined in terms of polar coordinates r and 6. Specifically
W =TI eXp ie (11)

Tne hole boundary lies on the circle where r is unity, and the
exterior boundary of a beam are not explicitly defined by the
transformation (8).

C. Transformation of ¢ and o 1into o_ and ce.
= y o
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To provide equations relating these complex strecs functlons

to the normal and shear stresses and to the “oundary forces,

Eqs. 6, 7, and 8 are also transformed by using Eq. 9.(4),

(¢ = cx - ZiT#y)e = 0. = ar “* Zl?re

Thne transformation defined in Eq. 9 describes the relations

(12)

between an increment dz in the z-plane and an increment dw in the

w-plane, Therefore,
ila ie
dz = e |dz| , dw = e |dwl

Therefore,

eia 8z _ _W'(w) dw _ _W'(w) eie _w W'(w;
= Tdzl T W (w)l [dw] T [wW'(w)!l T r [W'(w)

and
M W)
r W'(w)
and
z = W(w)

P(z) = $(U(w)) = ¢ (W)
D = &' - dp d¢ a a a b
‘?1(W) ¢ (z) E‘E“Hd_z=£/'é€"

Tnerefore,

Ci)‘(z) =<}>_.(.i).

W (w)

(13)

(14)

(15)



The same procedure yields

Y (z) =“E.JL)T (5. pp. 183.)

+0 = ciid
¢ * 9. = L4Re — (16)
2
_ _ 24 Tty ' 3
g, - 0,4 24T = — (W) + ) (17)
<P+wi—'-+1_[r=g + 8.1 (18)
W 1 2

in which ¢ and Yare now functioﬁs of W, and primes indicate
differentiation with respect fTo w. dr and ce are stresses normasl
to the cross section perpendicular to the axis defined by the
subscript, and ?ve is the shear stress on their cross section.

D. Perturbated stresses and stress functions,

"Stress functions for perturbated stresses are defined by

the power series" (8),
=2
5. = €W e W & = = = = = = + e W (19)
Po +2 g

=2
=1 4 W+ T W b
o o * fl - T, - 3

W 4 === £ W (20)
10 . n

in which:@o and'¢0 are the perturbated stress functions in terms
of w, and €, and fn are complex coefficients to be determined by
satisfying boundary conditions around the hole.

The perturbated stress coefficients e, and fn are calculated

from the condition that the sum of the boundary condition forces



related to the basic stresses and the perturbated stresses nmust

be zero. Eg. 18 yields

& (W) + w2
O T

-i--— T = i 1
) yb(l) 81 - gz (21)

and comvlex conjugate of Eq., 18 becomes

— 7 ?O(w)
?O{W) + W(W)WTTﬁT +¢b(W) =8y = igz (22)

Integrating, Eq. 21 yields

/ =
5 (w.) (w_ ) aw
E%v J Tgl—il— dwo e E%? f W(woifo 0 0
Tl g Wy - W = e w’(wo) Wo- W
! j'wb(wo) aw - L. (g, + 1g,) S
T 2Tl Vg~ ¥ 0~ 2l ‘¢ wo - W 0
(23)

and by Harnack's theorem (Appendix 1.) and a given form ofcpo(w)

“(w.,) aw
Lop w0170 O _o
Al T 0 Figm,) Yoo M
0]
By setting
$o (%)

= ]
271 c wo - W 0 0

end

1 Yol¥o) alwy)
2l c WO- W

=‘¢b(0) = Const. (5. ppe 291.)

yields



g, + 1o, y
c (WO — W_> dwo . {d r)

1
<P0(w) = 2l I

By integration, Eg. 22 ylelds

—— "
L ?O(WO) a6 ol T Hew )#O (wo) dw,
271 T CPE 2mi "o 0w (ﬁé} Wy o~ W
1 f’t‘r‘o(wo)dw 1y BT e
2ml T Wy =W 0 T 2mi c WO - 0
By setting
& (W)
1 f5' "0 -
0 .
and
(w. )
1 ¥o'%o _—
77T 1o W, - W o = o{®)
then,
1 g - ig, 1 Wlag) (v ) °7s
1FO(W) = 2mi IC wo = ¥ - ZhT / T o' %'n - w
(25)

in whicn WO is the,boundary value of w, C denotes the contour of
the unit circle over which integration 1s performed, and1?0(0)

indicates that #b is to be evaluated when w equals zero.
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IV. Numerical Example.
In the following example, the stresses around a clrcular hcle
in the web of simply supported 12WF 45 steel beam with a
concentrated load 2P applied at the center (Fig. 1) are calculated.
A. DBasic Stresses.

From Eqs. 2, 3, and 6,

PSK-}I- U.)E - 4_121_847. | (26)

where u is the longitudinal distance from the reaction, or point
of zero moment, to the center of the hole.
By integrating with respect to z through the axis ox, then

dz = dx. Therefore,

Be ' = z%(x + u)y

[ Redraz = & [ (x4 wy dz (27)
2
Red= (5L + uxy) + C(y) (28)

By setting He = P

$=P + 1Q A 7 (29)

Q is the quantity of an imaginary part and determined by the

Cauchy=-Riemann equation,

5 .
2P _ 29, - 2P _2e (30)
X y oy 2X
Therefore,
a-—P' 2y =32Q
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Q=15 ay (31)
Q- B, w’
= 37 (55— + =5-) + C(x) (32)

Using the second part of Eq. 30 ylelds

o) = -y G+ 2

cty) = & (&)

Therefore,
<}
P = ﬁ% (i%& + UXy .+ %;) (33)
=2 3 2
TR o BERCD

By substituting Eqs. 33 and 34 into Eg. 29,

3 i 3
¢ = gr (€5 + 2uxy - Ll 4 (o + uw” - %5 = wd ) (35)

4pplying -1" = 1 to the first term of Eq. 35 yields

3 3

Pi i _ i 2 X 2
¢>= BT (-ixfy - 2iuxy «+ —%7 4 XP° & gt - 5 - ux )
Using z = x + 1y
Pi z> 2
47 = —T (- —3" - uz ) (36)

By substituting Egs. 2, 3, and &4 into Eq . 7, and using the same
procedure.'w‘is obtained. By differentiating with respect to

z from Eq. 35
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d'= g% (-x° - 2ixy + ¥°) + g% (~2ux - 2uyi) (37)
and
"= gi% (-2x - 2iy - 2u) (38)

Therefore, from Eq. 7

V= é%(—xy - uy 4+ i(c*® - y2)) - g%(-2xa - 2ixy - 2ux

+ 2ixy - 2y° - 2uyi) (39)

Integrating in terms of z yields

1F‘= g%(-ZXEy - Yuxy + uic*ax - Lixy®) - g%(- %xf - ux?®

- 2xy® 4+ 2iuxy) «+ Cl(y) + icz(y) (40)

The constants C1 and C2 are obtained by the Cauchy-Riemann

Equations. Then,

#® =2 2

P - =2 - _ _ ':i Pi #*2 _ 2
1F’ = g-I-( Z;Ry 2uxy - 4 ¥ 3 j‘) + gf{bc X - 2xy

3 2 =2
- % X + ux = uy ) (41)
Applying -12 = 1 and using z = x + 1y,
1F‘= g% (% 2% & uz® + 40*22)7 (42)

B. Mapping function,

The Mapping function for the circular hole in the form of

Eq. 9 is



where &' is the radius of the circle.

The transformed equations for<? and qfin terms of w are:

) = - £ (3 B 4 ud) (L)
A(w) = P—}- (-%- (-I%):3 + u(%)E + 40*2(%)) ' (45)

C. Perturbated Stresses.
With a cilrcular hole and the previously defined stress
functions the perturbated stress functlons are calculated as

shown below. From Eg. 18

81 + 182 = = g% (% (%)3 -+ u(%)a) + g% % (agwa + 2uaw)
- g—zl- (% (aw)® + ua w° + L4c*2aw) (46)

By substituting Eq. 46 into Eq. 24

1 gy + 18,

(w) = = - f aw
?0 2mi c WO - W 0

Pi ;1 ,a.3 2,2 3 2 2.3 3

= 5T (3 (ﬁ)_ + U (ﬁ’ -a’w =22 u + 3a w_
+ ua’w® 4+ 4c*2aw) |
Integration using Harnack's theorem ylelds
a2 ¥#*2
Pi 2 3 u 2 4e U
@ O(w) = -g%— (3 W opg WA ( 3 - 1w = 25) (&47)

Then,
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2 L n_Pila?2 3  u =
elw + ezm + - enw = ‘8T§3 W4 =W
2
¥ (22— = Lw = B0)
a
This yields
A %a
e = 702 -1
1 a
u
e o —
2 a - 3
a
. -g* X TI— (14‘8)
3 3
- - - =0
e4 en
From Eq. 25
0 - 2mi “q WO - W 0 2mi W'(w) 0 0 wo - W
(25)
The first term of Eg. 25 beconmes
g, = ig 3 _3 2
o 1 2 _Pia ,w _u _ Pia 2u
5oy fc T dwg = = 55 T+ ZW ) = (= )
and second term of Eq. 25 becomes
W(W aw 3 5 #2

L
i T : Pia 2u 40
Zni ! w (w474h (WO WO - - _Ef(zw + aw + (=3 —l)w )

Therefore,

<] w2
TFO(W) = E%%r(-ZWS - %Ewu - (&23— - -%)W3 - Uy® L 2y (y9)
a



g
o &
fl = 0
u
f2=-a
*2 3
Le 2 Pia
f3 = = ag - 3) X =T (50)
21
fb =y
f = =2
5
f == = = o= = - =f =0
6 n
Therefore, the perturbated stress functions beconme
. a *2
Pia 2 4 n @ Le
<P0(W) = BT (3 W o+ oW 4 ( aa - 1)w) (51)
Pias. 5 2ul  he®2 2.3 w2 2u
ﬂfo(w) = = gglew’ + Zw + (—;;— - §)W + W - ?;) (52)
D. Basic stresses in terms of ¢ , ¢, and 7 _.
Tr e rb6
Adding Egs. 16 and 17 yields
20+ 217 = 4Re T 2u_ (W) 3 (53)

r W'

From Eq. 15 the first term of Egq. 53 becomes

P PL ,_2
:E_S_-F:: _BEC?'(Z) = - T (Z -+ 2112)
Therefore,
ype §L _ - BLas . pu@y _ _ BPial -210  2ua
— W' - 21 = w'o- 2 r3 r

e-ie)
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From the equation e:Le = co0s B + 1isin 6,
! P a® ; 2ua
LRe %T = = ¥ (;; sin 20 4+ = sin 8)

The second term beconmes

2 (G (@G e
I‘
2w ( ( 2u2)) ( a8 2u -Ef— - 46*2-?-'-))
= S—(aw(- g“ +oeugll o+ 8I - “E 3 2
r a W w

- ( ) (Za + 2uaw -

_ - 2ei 233(003 20 - 1 sin 20) + _2_1%&1 (cos 6 - 1 sin 6)

8r irxr

-+ 2(2c*2 - az) - 2uar{cos 8 + i sin 6))

Therefore,
NN - a® 2ua
Zce = ET(;E sin 20 = sing)
2
a 2P (—— sin 26 + 2%2 sin 6 + 2uar sin @)
8r =z r
2 2ua
o, = - ﬂ%(is sin 28 + == sin 8)
2
-l (28 iy 28 & 2%3 sin @ + 2ua sin @) (54)
162°1
Eq. 16 yields
=2
g & & Z—PI(-‘?‘;- sin 20 + 3—— sin 8) + L—( sin 26 + 222 ging)
T r
+ E (—— sin 206 + Q%E sin & 4+ 2uar sin 8) (55)

8Ir r
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' Eq. 17 yields

2% ="

' 2
(2a cos 26 = 3%2003 6 + 2(25 _
8r I r

- 2uar cos 8) (56)

At the boundary of the hole, r = 1, and 0., and ?}e are zero,

Therefore, from Eq. 16

2
ce = %%? (sin 26 + E sin ©) (57)

E. Perturbated Stresses in Terms of ar, Ue, and ?ig.

Eqs. 16, 17, 51, and 52 yield the perturbated stresses:

[ 2
?0 Pia° w° ((40* 1) 4 2%y 4 2u’)
nial i s ol - 1 W &
*2
(G IR T T

- %3 3
= - BIE (22— - 1)r"(cos 20 4 1 sin 2¢) + ZZ(cos 38

+ 1 sin 36) + 2 I#(GOS 4o 4+ 1 sin 48))

Therefore,
o 4
fﬁ ((“° - 1)r sin 26 + 3%57 sin 36 + 2r sin 48)
a’
and from Eqg. 17
2 L}
21 ¢O
(W (=)' +0.")
ru W Yo
z I ®3 bu 2 3
= £ (aw (P (( C - 1)2w + == + 8w ))



i b
aa 3 a .

42
a
C L uw)

2
Pia
w +~é.-

6 u
R NG R

a

Eq. 53 yields

2 #2 3
_ Pa Le = 2ur L
209 3 2ine = 21(( a? - 1)r" sin 20 + ';f_Sin 30 4+ 2r sinke)

_ Pia El2_((cos 66 + 1 sin 66) + 2(cos 56 + 1 sin 50)
2Ir
#2
5. L (cos 46 4+ 1 sin 48) + %(GOS 36 + 1 sin 38))
2
a
Therefore,
2 ,F2 3 Lj-
o = E2 (e _ 1)rPsin 20 + 225 sin 36 + 2r sin 46)
6 4T aa
*2
+ 22 (sin 6o 4 Ssin 56 + 2%—sin 40 + Jsin 36)  (58)
4Ir a

From Eq. 16,
e ” 2 3 4
1;—(( ° - 1)r"sin 20 + 3237 sin 36 + 2r sin 48)
T - a
#*2
- 22_(o1n 60 + Zsin 50 + 2% —sin 46 + sin 30)  (59)
a a
hIr . a
#2
= -2 (cos 606 + Zcos 56 + 29——cos 4o + Bcos 38) (60)
= a a
rd LIr a

At the boundary of the hole cr and 7 are equal to zero,

rd



Therefore, from Egq. 16,

#2

o = _((l‘LC -~ 1) sin 26 + 2%in 30 + 2 sin 46) (61)
0 1 a a

F. Total Stress at the Boundary of the Hole
The total stress at the boundary of the hole 1s the sum of

Eqs. 57 and 61,

2

0 - 22 (2sin 46 + Z¥sin 30 + (uc - 2)sin 26 - X sin 6)
I a a
6 a
(62)
G. OStresses in terms of ¢ and T .
% Xy
From Eqs. 12 and 14
G 4+ 0 =0 4+ C
X y T e
-216
g =0, % 287 = (o - o * 21? )e =
y Xy 6
= (o, =0, +21?)T_W(_".)_'
e 2
w W'(w)
By subtracting these two equatlons,
ik ? W (w)
2gx_2j_? =gr(1+£5__5’_(w._).)+ga(1-M_W)
y w W'(w) - wo W' (w)
— 2i7 (_Ef_'l_l)
O w® we(w)
Therefore,
o 2 - ,
o= -F .y IO, £ - 2 W w, (63)
x wo W' (w) wo W' (w)
o _
B T, DR (64)

Xy o wa W' (w)



For a circular opening, Eq. 14 becomes
éZiB B 2 W' (w)
W W (w)
and

W{w)

i
clp

; W'(w) = - i%, W'(w) = a
W

Therefore,

216 - W a 1
e ="z z =<7
rwWa i
i 2 )
e 218 = = I (65)

Substituting Eq. 65 into Eqs. 63 and 64 yields

g=_2£(1-r2)+z§-(1+r2) (66)
X
T = T B ) (67)

At the boundary of hole (r = 1),

0. =0 (68)
e = =7 (69)

Therefore, at the boundary of the hole o and zxy become

2 #2
¢ = 22-(2 sin 40 + EEsin 36 + (= - 2)sin 26 - 2usm 8)
X 21 a’
2 2 u
n = Zcos 36 cos 26
7?—(008 60 + —cos 50 + % cos 4o «+ = 36 +

+ (2c>%2 - a%))
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The general equations for G and ¢ are obtained as follows:

X Xy
from Egs. 55 and 59
r 2 * 2 6 '
0 = 22 _(-sin 66 - Hsin 56 - 2(& = -7 Yein 48 - ¥(1 - 2r7)
X LIr a a 2
be 2

« sin36 + ((

- 1)1'“'-:- (-l - 1))sin 26 + &
2 2 a
a T

. (%— r) sin 9)

and from Eqs. 54 and 58

#* 2

3 6
g, = Lo (sin 66 + —=sin 56 + 2(S— + r )sin 40
B 2 a 2
4Ir .a

# 2
be . 1)r* . L - 1)sin 20

a r

% §(2r5 + 1)sin 30 4+ ((

- §(3r + %) sin 6)

Equations 56 and 60 yield

2 i 2

IR, - - (00566+Ecos59+2° cosll—e-;.l_lcosBe

rd LIz~ 4 a” a

2
+ lzcos 26 + E(l - r)cos 6 + (ﬁ__ - 1))
ar 2
T a
Therefore, from Eq. 66
2 * 2
P 6

g = ‘az((-sin 66 - 2sin 50 = 2(3&_= - 7 )sin 46

£ 8Ir & a

* 2

s nr o+ (L -1)

a xr

- -3-(1 - 2r5)sin 38 + ((

« sin 20 4 g(% - 1)sind) (1 - r®)
u o *2 6
+ (sin 66 + 5sin 56 + 2( -~ + T Jsin 46
a
*¥2

4e

2
a

: 4
+ =(2r° 4 Dsin 36 + (B - 1)r - =~ 1)sin 20
iy
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- 20r 4 2) sin 0)(1 + r?)) (70)
Pa2 o 20*2 U
2%y = TﬁT(cos 66 + < cos 58 + £=— cos Leg 4+ T cosg 36
a
- 2
+ L cos 26 4+ Bl - r)cos 8 + (2 _ - 1)) (71)
ra ar aa

H. Graphical presentation of Results.

The tangential stresses, the bending stresses and the shear
stresses around a hole in a beam have been calculated using a
digital computer. The programs for'these calculations are
given in Appendix II.

Circular holes with three different radii are treated, a =
2.0, 2.5% 3.0% For each radius the stresses have been calculated
for the locations u = 80", 60", 40", 20".

In Figs. 2 through 4, the tangential stress parameters are
presented.Figs. 5 to 7 show the normal bending stresses cor-
responding to the above tangential stresses on fransverse
sections at & = OO, 900, 180°, o = 0° corresponds to the low
moment edge of the hole and 6 = 180° to the high moment edge of
the hole.

The shear stresses at locations u = 80", 60", 40", 20", and

o (o]

at the transverse sections corresponding to 6 = 07, 90, 180°

are drawn in Fig. 8 for a beam with a circular hole of 2.0"

radius.



V. Discussion.

For any shape or size of opening or for any loading
cpndition, the total stresses can be obtained numerically.
However, the applicability of elasticity theéry, as far as the
size of opening 1s concerned, is 1imited to beams in wnich the
ratio of the hole diameter to the web depth does not exceed a
maximum value determined by examining moment and shear force
equality. On any transverse cross section in the beam, "the
internal moment computed from the total stresses must equal the
applied moment, and the internal shear force computed from the
total stresses must equal the applied shear force" (8). EBecause
stresses defined by Egs. 19 and 20 attenuate as the distance fronm
the hole increases, the stresses at the top and bottom of thé
beam would equal the basic stresses if the ratio of the hole
diameter to web depth were small. For such small holes, the total
stresses obﬁained by using Egs. 19 and 20 satisfy the moment and
shear force equalities on all cross sections as well as the
boundary conditions at the hole. However, for larger holes the
total stresses would be greater than the basic stresses at the
top and bottom of the beam, and the total stresses obtained by
using Eqs.719 and 20 may not satisfy the moment and shear
equalities. This limits the applicability of this analysis to
beams in which the ratio of the hole diameter to web depth does
not exceed 2 maximum value that would be examined at each opening
(8)., For practical purposes the analysis should be satisfactory
for beans witﬁ a depth to diameter ratio as low as 2.0.

Second, the mapping functions must be chosen to suit the



shape of the opening. As given before, the general mapping

function is:
F o= WEW) = % + Bu + Cwo + Dw’ + Eu’ {79)

Wwhere A, B3, C, D, and E are real coefficlents. For a rectangular
opening this eguation can be developed from the following
Schwarz-Christoffel integral (7, 3),

z = z(w) = A j:(tu- %(; - K JE (1 + K )2)%‘%’5
+ const. (80)

where

(+ 1 + Ki)

o

K 1 ratioc of vertical side length to horizontal side one.
1 Ki 1 X

=g ¥ Py
t, T |
K
t, t,,
_;L_;(_- ;-El
2 2t zZ 2
1

-
Lg

d
4

z - plane (z = x + 1iy)

By expanding the bracket in a descending power serles and
choosing the arblitrary constant such that no constant term appears

in the integral, Eg. 79 becomes

KE

- k® _ k(1 -x®) _K(1 - 3K 4 Ku}
4

T 2hw3 160W5 896 W’
+ -==) (81)

1
W



This expression is the required mapping functlon in expanded
form. This 1nfinite series maps a rectangle with perfectly
straight sides in the z-plane onto the unit cirecle in the w
plane. The sides of the rectangle meet at 90 degreez and the
radius of curvature at the vertex 1is not defined (7).
Approximate rectangles with rounded corners may be mapped by
retaining only a finite number of terms of Eq. 8l. Openings
with different radii of curvature at the corners may be obtained
by changing the number of terms which are retained. But a more
attractive alternative is to keep a2 épecified number of terms in
the éeries and to permit changes in the coefficients. Thus the
form of the mapping function finally is given by Egq. 79.

The specified mapping functions for particular openings

aret
circle 1 z = W(w) =”%
‘ellipse: zZ = Wlw) = % + BwW.
A 3
square i z = Wlw) = = Cw

The coefficients of these mapping functions could be obtained by
Newton's Approximate Method (7). The stress functions ¢ and
for a rectangular opening in a simply supported beam with a
concentrated load at the center of the beam are givenin Appendix
(III1).

Third, the elastic analysis is always the same, whatever
the loading condition. But the stress eguations for‘cx, Uy’ and

-gy in two dimensional elasticity depend on the loading



condition. For a cantilever beam with & concentrated loszd at
the end the stress equations are expressed in Eqs. 2, 3, and 4

and for a simply supported beam with a uniformly distributed loacd:

— = LI 2 .3 2 ¥
o= ng((l‘ XJy+-§y_-5C y)
pe
_ 9 (¥ _ o*= 2 o3
Uy = 3% (3 C"°y =+ 3 C _)
. I *2 _ B

If a small eccentricity of the center of the hole in the
y=-direction occurs, the stress equations would be changed as
indicated below, but the calculation procedure is the same.

For a simply supported beam with a concentrated load

P(L - x)(y + e)
1

a =
X
g =0
y 2
_ Py + e)
?Xy - 21

where
“e"is the eccentricity from the center of the hole in the

y direction.



VI. Summary and Conclusions.

An elastic analjsis for calculating stresses around a hnole
in the web of a wide-flange beam has been studiéd. The appli-
cability of the analysls depends on the slze of the web hble.
For circular holes, boundary conditions at the hole and a moment
equality are satisfied when the ratio of beam depth to hole
diameter is 2.0 or greater.

From the study of a wide-flange beam with a circular hole
the following conclusions are drawn:

1. For a simply supported beam with a concentrated load at
midspan, the predlicted maximum stress at the edge of z circular
hole occurs at 8 = %; - %. when the hole is located at mid-
depth of the beam. When the opening moves away from middenth,
the location of the predicted maximum stress changes slightly,
eand the maximum stresses occur at the side of the hole which is
located closer to the center of the span.

2. The magnitude of the stresses occuring at the edge of the
hole near mid-depth increase as the hole is moved away from the

center of the beam.
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Appendlix I.

Theorem of Harnack (6, 11)
1. If f(w) is continuous in the closed region w > 1 and

analytic in the region exterior to r, with the possible exception

of the point w = «,where f{w) has the structure

then

1 (o) o P n
) IC = do = =T(W) + Ay + A, A + AW for [w| >1

2. Let f(w) be continuous in the closed region w > 1 and

analytic in the interior with the possible exception of the point

W = 0, Where f(w) has the structure

2 n
W w

4 A A
f(w) = él b =L b= = = —— 4 g(w)

and where g(w) is analytic; then

I I3 R S S -8 ror [w]>1
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APPENDIX 1Il.

CCVMPUTE THE TANGENTIAL STRESSHES ARCUND A

A01) = RATDIUS CF A CIRCULAR HCTLE

UlJ) = SISTANCE FRCM THE SURPPCRT TC THE
DtK) = ANGLE ARCUND A CIRCULAR #iCLE

R{N) = RADIUS IN PTLAR CTCRDINATL

o

NFPTH CF A 12 WF 45 REAM
WINDTH CF A 12 WF 45 REAM

= FLANGFE THICKNFSS OF A 12 WF 45
T WER THICKNFSS OF A 12 WF 45
PIVMENSION A{3)4U(4L)sD(50)
CAONAT (2F10,2)

FORMAT (4LF10.2)

FORMAT (5F10.2)

EORMAT (5F10,.2)

IEAD 1s(A(I)sI=133)

READ 2s{U(J)sd=1s4)

READ 35({D(K)sK=1+19)

F=12.06

=8 ,N4p?

F=0, 876

T=Ce226

C=F#%2a% (1t (2o %H%P) /(T*E)) .
Ne & T=1,.7

DUNCH 15A(T)

NN R J=1.4

PUNCH 2sU{J)

N 5 K=1410

DUNCH 38D (K)

VEd o #3414159%0(K)/ 180
Y=34%3414159%D(K)1/180C.
7=2+%3414159%D(K)/180.
"‘3‘%-]&-159*D(K)/1800

H

ion

CIRCULAR HILF

CENKTE!

CF A HZLE

XA= (2 ¥SIN(V) ) +H{2%¥UCUIXSINIYI/Z/ALL NI H( (4% C) /AT )®%2,4)-2

XB=(2#U(JIESINIWI)/(A(T ) %%24)

X=XA=XR

DUINCH 45X

STCP

END
205' 3.0
A5Ca 40. 20,
1'\’). 200 30. 40.
£C . 7Ce 80. S0.
110. 120. 13Ce 14C,

16C. 173 180

|
¢ ) ESIN(Z
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COMPBUTE THE RENDING STRFSSFS ARCUND A CIRCULAR RILE Y
A{T) = RADIUS ZF A (CIRCULAR HCZLE
UtJY = DISTANCFE FRCM THE SURPFPSRT TC THE CEMTER CTF A H
S{KY) = ANGLE ARCUND A CIRCULAR HCLE
R(N) = RADIUS IN PCLAR COZRDINATEL

£ = PpEPTH CF A 12 WF 45 REAM

# = WIDTH CF A 12 WF 45 3EAM

P = FLANGE THICKNESS CF A 12 WF 45
T = WEd THICKNESS CF A 12 WF 45
DIMENSICN A(3)sUl4)sD{2C)sR(10)
FCR:AT (3F1C.2)

ECRMAT (4F10.2)

FORMAT [BFI1N.2)

FORMAT (Fl4.5)

BFAD 14 (A({I)sI=]4s3)

RFAD 2« {ULI) e d=144)

READ 2,{D(K)sXK=119)

READ 3, (R{N)sN=1s38)

F=172.04A

H=R,N42

D=0eR76

T:(‘I.’%‘Jﬁ

C=E%%2e%{ lat {2 ®H¥P ) /(THE))

0o 5 I=143

PUNMCH 1sA(I)

N 5 =144

A
DIMCH 24100 )
My & =1418

PLNCH 24D (K)

"o 5 N=1.8

PUMCH 3eR(IM)
S=5.%3,14159%D(K)/18C

Vod oe®3 e ]4159fD(K)/18Q.

Y=3e%3e14159%D(K)}/180

=7 +%3.14159%D(K) /180

W=3414159%D(K)/180.

KA= {1 o /RINIEF2e=1e ) ¥ (—SIN{R)I=U(JI®SINISI/A(T))
XR=(=-2a)1%(1la /Q(N)**Zo—lo)*(F/A{I)**2.~R(N)**6-)*SIN(V]
XC={1a/RIN)H®ED =10 )% (4. %C/A{I)¥R2, -1 ) XR(N)FX4
XO={1e/RINIZ#2q=1a ) ¥ (14,/RIN)FH24a~1}*5IN{Z)
XE={1e/RINIFH2a=2 )% {U(J)®{14/RIN)=1&)¥SIN(W)/A(]})
AFE=({1a/RIN)®F24 +1-)*\SIN(U)+U(J)*SIN(S]/A!I)}
KE=(1e/RINIFX2e+10 ) #2e#{C/ALI)FH24+RIN)FXEHL)IFXSINIV)
Ar={le/RINIH#24+1e )% (U(JIR (2 ¥RIN)F¥Sa+1 e )®SINIY]})
XC=1(1. ?‘KJ”*doflolﬁ\A.%u/A( JEE2 e =1 ) FRINIFRL L XSIN(L)
XP={1ls/ NN # ‘2.+1¢}*{-¢0/Q(|\|}*“20_‘L-)*c‘if\(Zl
XC==(1e/RIN)¥%24+1e ) ¥ULJIR (3 4¥RIN)F1o/RIN)IFSINIW)

X=X A+XBE+XC+XD+XE+XF +XG+XH+XC+XP+XQ
DUNCH 49X '
Fa i

j= NI i}

™

mn
in
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D e

(Sl S | R e 4]

g

n o Doe

[ N

o8

s R e e Bl

2e5
60,
18,
650
110
160,
1.7
25

e
20
20,
70
120,
170
[
3.0

20,
3C.
BO.
130
180

146

40,
90
140
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JO Oe De

O

DO e
[ ]

|

]

o N e

PUNCH 2.,U(U)

no R K=1,4109

PUNCH 3+D(K)

nA R N=T 48

DM 342 (M)

Az, #2,14159%DN(K}/1R0,

=5 .%3,14159%¥D(K) /180,

Vb oe#3614159%0D(K) /180,
Y=34%23e14159%D{K)1 /18U,
Z2=2e%3e414159%DI(K) /180,
W=2,14159%#0(K)1/180.
XE=CoS{B)+UlJ)#COSIS) /AT ) +2 % *(C*%{1a/2
S=U(JI*CCSI{Y)I/ALT)+CTSIZY/RINY®*%2,

-._;

8]

3
CCMPUTE THE SHEAR STRESSES ARZUND A CIRCULAR HILE
A2(1)Y = RADIUS CF A CIRCULAR =ZLE
U(J) = DISTANCE FRCZM THE SURPPZRT TC THE CEKTER ZF A HCLE
D(KY = ANGLE ARCUND A CIRCULAR HCLE
R{NY) = RADIUS IN PTLAR CCCRDINATE
F = NEPTH OF A 12 wWF 45 REAM
H = WINDTH OF A 12 WF 4R REAM
O = FLANGF THICKNESS CF A 12 WF 45
T = WEB THICKNESS TF A 12 WF 45
DIVMENSION A(3):Ul4)eD(20)sR(10)
FCRMAT (3F10.2)
FCRMAT (4F10.2)
FCRMAT (5F10.2)
FCRMAT (Fl4,.5)
READ 1s(A(TI)eal=193)
READ 22(U(J)sd=194)
READ 3s(ND(IK)eK=1s19)
READ 3, ({R{N)sN=1+8)
£=17,0A
H=8,042
D= ,R74
-T="0.23%35
C=i%%2e%(le+ (2% H*P) /(TXE))
D2 5 I=1.3
PUNCH 14A(T)
NC 5 J=ls4

VRCOSIVIZA(LI ) ¥%2,

XC=U(J)®{1e/RINI=RIN))*CCSIWI/A(TI)+{2%¥C/A(IV¥%24-14)

A=XA+XB+XC

BUMCH 49X

cTAD

’:M!’)
25 3.0
506 40 20,
1Ce 20. 330 . 4G
60. 70. 80. gc-
11Ce 12C. 130, 14C.
160 17G. 180.
1e2 lets la6 1.8
245 2.0
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Appendix III1.

The stress functions ¢>and,qffor e rectangular web opening

=

in & simply supported wide flange beam with a concentrated load at
the center of the beam are given below.

A. Basic stresses.

v :
qD(W)'= - Pl(%(-l b =2 e VW VWD 4V W 4 v6w7 s vu’

3 W 3 L 5 7

T aovwil ooy wld oy + v Wl wt?

8 9 9 117 F V17

21 -2 2 4

+ V. W ) + (vluw + v15 + VigW o+ VW

+ V w6 - v 'w8 “* V w10+ v w12+ vzzwla)u)

18 19 20 21

2_._ .v.2_ 3 5 o5 9
ﬂf(w) = gu( ( + + vjw + vuw + vsw + veul 4 v7w

11 13 15 17 19
v 1) v w v w
LA S S T A T R T

- v w21) « u(v w2 + V. + ¥ w2 . 7 w&

13 14 15 16 17

- V Wé + v w8 + ¥V wi0 + V wi? 4+ wlu)

18 19 20 21 22
3

+ 40*3(v23w-1 + VoW VW V26W5 & v27w?))

where

<}
v. = A
1 -

2
V_ = BAB

2 2
3(LC + AB )

<
il

v, = 34°D + 6aBC + B°



v = 348 E + BABC 4+ 3AC° 4+ 24°D = 24BC 4 CB

5
v, = GADC + 5ABE + AR + 38°D + 3BC-
2
v, = S8EC « 3AL° +6BCD + 3B E + BE + 4ACE + C°
v, = GADE + SBCE + 38D° 4+ 3C°D + CE + DEZ

2
v = 3AE" 4 5BDE + 3C E + 3CD° + DE

-
V. — 2BE 4+ 6CDE + D° + E

10 )
2 2
= 3CE D=E
vll 3 2+2
v = DE
15~ 3
Ea
v =
13 Aé
V=
v = 2AB
15
Vv = 2AC + B2
16
= 2(AD BC
17 ( + ) )
= 2AD 2BD + C
18 *+ |
= 2CD BE E
Y19 4 - *
= 2CE D
20 +
= 2DE
21 .
= E
22
= A
23
v = B
24
v = C
&5
v = D
26
= B
27

B. Perturbated Stress functions.

o

w
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LO

Vi 27

2u(v23v27)

V14726 * V15727

2u(v23v26 + v24v2?)

V4525 + V1526 T V16V27

)

2u(v, Vo * VouVo6 * V25" 27

VauVou ¥ V15725 * V16726 * 17727

)

2u(v, .V, * VouTas * VasT26 T V26727

+ V.V
16723 F TisTou * V16V25 * V17V26 * V18727

2ulv 2 . v 2 Lwv 2 L v 2 v 3)
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h =

11 = V15¥23 t V16¥on T V19725 * V18726 T V19727

h = 2u{vVv
12 ( 23v24 = v2ﬂv25 HE v25v26 + v26v27)

1

h v,V + VvV Vv -V v + Vv + Vv v
13 16 23 17 24 18 25 19 26 20 27

hoy = 20V, ¥, + Vo, Vos * VosVog ¥ VogVan)
h =V vV + v v + vV OV e VvV vV e VvV v
15 = 17 23 © 18 24 © 19 25 20 26 21 27
ho o=

16 = 2T,V VouVan’

#
17 = V18723 * V1o"au * V20725 * Va1¥26 7 ALY

h 2u(v__v__)

18 23 27

h - =v v +- VvV v + V Vv e V v
19 19 23 20 24 21 26 22 27
h =V Vv + vV 7 + vV v
20 20 23 21 24 22 25

h =v v + v v
21 21 23 22 24

h = Vv v
22 22 23
| I § 29 27 25 23 21
Q{b(w) = 81(n29W e nz?w + n25W + n23w =T n2lW
+ m w23 + I wzl + (n +m )W19 4 {5
23 21 19 i 17
Wl W o | e
a4 ml? W b n15 e m15 W = n16+ m16 W
14 1
s (n +m Jw +{(n +m Jw 3 + (n
14 14 13 13 12
) 12 (n. ) 11 ( )Tlo
L T S T T A b T Wi 1o R



wWhere

(n9 + m )w9 % (. & na)w % (n? s m?)w?

9 38

(n, + m )w6 + (n 4+ m )w5 + (n + )wa
6 6 5 5 bk

n m w n m w
( 3 + 3) + { - 2) + (n:L + ml)w

’ 8 6
(no + mo)/\7v w o+ 5v26w + Jv__w

27 25
v w2 -v )
24 23
2e2 o+ 4e4 o 636
elv24 + 3e3v25 + 5e5v26 -+ ?e?vz?
2e2v2u + Qeuv25 + 6e6v26 + 8e8v2?
elv23 * 3e3v2u -+ 5e5v25 + 7e?v26 + 939v2?
2e v23 4e4v24 + 6e6v25 + 8e8v26 - IOeldvz?
3e3v23 565v2h + 7e?v25 + 9e9v26 -+ 1lellv27
Ll—eav23 6e6v24 + 8e8v25 + 10e10v26 + 12e1;v2?
5e5v23 7e?v2u + 9e9v25 -+ llellv26 + 13e13v2?
6eév23 868v24 + 10916v25+ 12e12v26 + 14e14v2?
7e?v23 9e9v24 - 11e11v25 + 13e13v26 + 15e15v2?
8e8v23 1Oelov2u - 12e12v25 + 11.’«e14v26
9e - 11eliv24f 13e13v25+ 15el5vé6 o 1?e1?v2?
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Appendix IV. Notation.

coefficients in mapping function;
radius of clrcular hole;

modified half-depth of a web of a wlde flange
beam;

contour of a unit cirecle;

half depth of beam;

complex coefficients used in verturbated stress

functions;

complex coefficients used in perturbated stress

functions:

L7

functions representing forces on beam boundaries;

flange width of a wide flange beamn;

moment of intia about the strong axis of a beam;

imaginary unit;

half length of a wide flange beam;
moment;

summation index;

flange thickness of & wide flange beam;
uniform load per unlt length;

radial polar coordinate;

web thickness of a wide flange bean;

distance from a reaction or center of beam to
center of hole;

shear force;

transformation function;

nondlmensional distance in a complex plane;
rectangular cartesian coordinates;

distance in a complex plane, z = X + 1y;



6 = angular polar coordinate;
O ,0 ,40 ,0 — normal stress on the cross section perpendicular
X y r 6 to the axls defined by the subscript;
?xy' T — shear stress on the above mentioned croses section;
- :

$ ¥ = complex stress functions;
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ABSTEACT

The elastic analysis of a beam with a web hole is a very
interesting and practical problem for structural engineers.

The solution of this problem is developed on the basis of various
assumptions. One of the assumptions, which is studied in this
paper, is that the total stress around a hole in a wide-flange
bean can be computed as the sum of the stresses occuring in the
beam when there is no hole, called basic stresses, and the
stresses occuring in the beam as a result of forces applied to
the boundary of the hole, called perturbated stresses.

To calculate the basic stresses, the stress equations ex-
pressed in x and y coordinates are transformed to z coordinates
in order to express them as a single complex coordinate. Complex
stress functions are calculated by Muslhekishvili's equations.
To simplify the computation of the stresses around a hole, the
complex stress functions are transformed by confirmally mapping
the outside of the hole into the interior of a unit circle.

The perturbated stresses are computed from the forces which
are applied to the boundary of the hole in such a manner that
the resulting perturbated stresses and the basic stresses sat-
isfy the required boundary conditions at the hole.

A numerical example is presented for the calculation of the
total stresses around a circular hole in the web of a 12 WF 45
loaded with a concentrated load 2P at the center of the beam and
simply supported at the ends.

For any shape or size of opening, or for any loading



condition the total stresses can be calculated numerically.
However, applicability of the elastie theory 1s limited to beams
in which the ratio of the hole dlameter to web depth does not
exceed a maximum value determined by examining moment and shear
equality. For clrcular holes, the analysis 1s applicable to a
minimum beam-depth-to-hole diameter ratio of about 2.0.

For a simply supported beam with a concentrated load at
midspan, the predicted maximum stress at the edge of a circular
hole occurs at 6 = %; + %. The magnitude of the stresses occur-
ing at the edge of the hole near mid-depth increase as the hole'

is moved away from the center of the beam.



