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Abstract 

Current population trends project that current agricultural production will need to 

increase by 110% by the year 2050 to support the growing worldwide population. Many 

agriculturalists are looking at precision agriculture technology to help achieve this production 

increase. One technology that is being heavily researched is the integration of small unmanned 

aerial systems (sUAS) and their sensors into the agricultural sector. Much research has already 

been conducted in the agronomic sector utilizing sUAS. However, relatively few advancements 

involving sUAS have been made in the animal science industry. This thesis focuses on how 

sUAS can be incorporated into a diverse cropping and livestock operation.  

Chapter 1 - Evaluating Current Capabilities of sUAS and sUAS Mounted Sensors in 

Diverse Agricultural Operation: A Literature Review, focuses on the current capabilities of 

sUAS and explains how they are incorporated into cropping systems and livestock production. 

Chapter 2 - Wheat Variety Interaction on Multispectral Based Vegetative Indices, focuses 

on wheat variety interaction with yield, grain protein content, NDVI, NDRE and CCCI. Ten 

wheat varieties were tested in large plot studies; yield, protein and multispectral data were 

collected for Feekes 4, 7, 10 and 10.5. Wheat variety was statically significant across all 

vegetative indices, protein and yield during less than favorable growing conditions.  

 Chapter 3 - Estimating Cattle Rectal Temperature Using Thermography, focuses on 

determining the ideal location for thermographic readings to be taken to predict rectal 

temperature of beef cattle. To establish if sUAS-based thermography could be utilized for cattle 

rectal temperature estimation, 35 crossbreed steers were selected and thermographic readings and 

rectal temperature data were collected and analyzed for correlation. This study found stronger 

relation in the animal’s eye than other facial features.      
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Chapter 1 - Evaluating Current Capabilities of sUAS and 

sUAS Mounted Sensors in Diverse Agricultural Operation: a 

Literature Review 

 Introduction 

It is projected that crop production rates will need to increase by as much 110 percent 

from rates in 2005 to meet the projected demands of 2050 (Tilman et al. 2011). Increased 

demand for biofuels, population growth and the westernization of Asian diets all attribute to this 

projected demand (King et al. 2017; Pingali 2007; Foley et al. 2011). This increased demand will 

have to be met with increased production. Increased production will stem from high yielding 

crops and new technology resulting in more efficient agricultural practices. Small unmanned 

aerial vehicles (sUAS), more commonly referred to as drones, are one of said technologies that 

many are looking to improve yields.  

According to the Federal Aviation Administration (FAA), a sUAS (small unmanned 

aircraft) is comprised of two main elements, UA (unmanned aircraft) and its associated controls 

and data links (“FAA 2016 Performance & Accountability Report,” 2016). The FAA further 

defines a small UA as, “weighing less than 55 pounds, including everything that is onboard or 

otherwise attached to the aircraft, and can be flown without the possibility of direct human 

intervention from within or on the aircraft.” Historically speaking, the first UA was invented in 

Greece in 425 B.C. while the first modern UA was later invented in WWII (Valavanis 2008).  

These first UAs had limited to no intelligence and were plagued with flight problems, causing 

them to be poorly adopted outside of military or recreational uses (Valavanis 2008). In recent 

years however, UAs have benefited from technological advances in battery, propulsion, micro-
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processing and manufacturing techniques, making sUAS more obtainable and useful to the 

general public (Chao, Cao, and Chen 2010). With this increased adoption rate, more industries 

have become interested in using sUAS for remote sensing purposes. One of the most anticipated 

benefactors of sUAS based remote sensing is the agricultural industry. The Association of 

Unmanned Vehicles Systems International (AUVSI) estimated that from 2015 to 2025, 

American agriculture could see a 64-billion-dollar increase with the implementation of sUAS 

(AUVSI, 2013). This economic growth is attributed to not only an increase in jobs, but also an 

increase in agronomic yields (AUVSI, 2013). 

 It is important to realize that many American agriculturalists operate a diverse operation, 

producing both livestock and field crops. Therefore, it is important that sUAS technology be able 

to serve both the agronomic and the livestock sectors of production agriculture. Therefore, this 

paper will evaluate the current capabilities and agronomic impacts of sUAS and sUAS mounted 

sensors on diverse agricultural operations.  

 

 Current capabilities and uses of sUAS in diverse agricultural operations. 

The agronomic sector has benefited from not only more numerous, but more successful 

sUAS based remote sensing research than the livestock production sector. This could be 

attributed to prevalence of precision agriculture and the remote sensing methods precision 

agronomists employed prior to the introduction of sUAS into the agronomic sector. In the 1960’s 

and 1970’s William Allen, David Gates, Harold Gausman and Jospeh Woolley built the 

foundation for remote sensing in agronomy, with their work correlating plant morphological 

properties with their spectral signatures in both the near-infrared and visible portions of the 

electromagnetic spectrum (Gates et al. 1965; Allen et al. 1969; Woolley 1971; Gausman, Allen, 
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and Escobar 1974; Gausman 1974; Gausman 1977).  Their work in remote sensing has been the 

foundation for countless research and technological advances that allow agronomists to analyze 

spectral responses and quantify many agronomic parameters.  

Remotely sensed high-throughput phenotyping is one such innovation. With the 

incorporation of a variety of sensors on UAVs and other autonomous vehicles, researchers now 

have the ability to non-invasive phenotype plants to gauge both physiological  traits and 

resistance traits to both biotic and abiotic stresses in a timely manner (Singh et al. 2016). Broad 

scale phenotyping accelerates the acquisition of needed data so that breeders are able to select 

the most ideal progeny, increasing breeding efficiency(Araus and Cairns 2014; Lamsal, S. M. 

Welch, et al. 2017a; Lamsal, Stephen Welch, et al. 2017b).  

This phenotyping ability has not only impacted breeding programs, it has also influenced 

several management decisions. sUAS remotely sensed thermal and multi-spectral data have been 

used in a variety of crops to detect water stress, (Baluja et al. 2012; Zarco-Tejada, González-

Dugo, and Berni 2012; Gonzalez-Dugo et al. 2013; Zarco-Tejada et al. 2013). This increased 

ability to detect water stress allows producers to adjust in field water management strategies 

throughout the growing season (Gago et al. 2015). sUAS based remote sensing has also shown 

an ability to predict both yield potential and biomass  (Wang 2017), leading to the ability to 

make in season nutrient management decisions (Lorence 2017). Weed management plans have 

also benefited from sUAS mounted sensors, as large scale weed scouting can be performed 

helping to identify proper herbicide and application rate (Rasmussen et al. 2013).  

As previously stated, the animal science industry has had fewer sUAS based remote 

sensing research than the agronomic sector. However, sUAS based livestock products are 

starting to be developed. Researchers from the University of Tennessee concluded that UAV 
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retrofitted with RFID repeaters could be utilized to monitor cattle location and temperature when 

the cattle had the necessary thermometer equipped RFID tags (Webb, Mehlhorn, and Smartt 

2017). UAV mounted thermal imagers have also been utilized to identify and count animals in 

tall grass (Israel 2011). Researchers are even looking to UAV teams to autonomously herd cattle 

from location to location (Jung and Ariyur 2017).  

 

 What sensors are currently used and what analytical information can be derived from 

the sequestered data? 

 The most important thing to realize when trying to incorporate sUAS into a diverse 

agricultural operation, is that the UAV is only a platform to carry a sensor payload and plays 

only a small role in the remote sensing process. The true analytical power is derived from the 

sensor payload used to gather raw data and the algorithms used to decipher and interpret this 

data. Thus, this paper will focus more on the sensor payloads and the data that can be 

interpolated from it. While there are numerous sensors available for integration into a sUAS 

platform, RGB (red, green, blue), multispectral and thermal imagers appear to be the most 

prevalent.  

 Similar to human eyes, RGB imagers work within the visual part of the radiometric 

spectrum and sense red, green and blue wavelengths. RGB cameras are without a doubt the most 

prevalent imager equipped on modern sUAS. In fact, most commercial off-the-shelf sUAS come 

equipped with a fully integrated RGB sensor. This has led some agronomists to research if these 

RGB cameras could be utilized to make agronomic decisions derived from their data. RGB 

imagers along with photogrammetry software has proven to be a reliable source to accurately 

predict plant height and biomass in  maize and barley (Bendig et al. 2014; Li et al. 2016). 
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Research has also shown that RGB, imagery along with photogrammetric processes like 

structure from motion (SfM) computer visioning techniques, can be used to derive leaf area 

index ratings (Mathews and Jensen 2013).  

 

 Multispectral cameras  

Multispectral imagers are another commonly used sensor, as these sensors have the 

ability to capture multiple spectral bands allowing for the creation of vegetative indices. While 

numerous vegetative indices have been created, this paper will discuss three, normalized 

difference vegetative index (NDRE), normalized differences red edge (NDRE) and canopy 

chlorophyll content index (CCCI).         

 

 NDVI 

Normalized differences vegetative index or (NDVI) is a commonly used vegetative index used 

for agronomic purposes. The NDVI works on the basis that photosynthetic plant material can 

selectively absorb electromagnetic radiation, absorbing red (675nm) radiation and reflecting NIR 

(800nm) radiation (Jordan 1969). Prior to the formulation of NDVI, a simple ratio of 675 nm/800 

nm reflectance values was utilized to detect relative greenness however, these values often had 

large errors when comparing location to location or cycle to cycle (Rouse et al.., 1974). To 

combat the limitations of a simple ratio, Dr. J.W. Rouse and his colleagues developed the 

following normalized equation or vegetative index: 𝑁𝐷𝑉𝐼 = (
(𝜌800𝑛𝑚−𝜌670𝑛𝑚)

(𝜌800𝑛𝑚+𝜌670𝑛𝑚)
), where ρ is 

equal to observed reflectance (Rouse et al., 1974). While originally developed for use with the 

broad banded ERTS-1 satellite, studies have indicated that a narrow band width of 15nm for both 

red and NIR bands are more optimal for vegetation monitoring (Thenkabail, Smith, Pauw, 2002, 
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Rouse et al., 1974). The center of these bandwidths vary from sensor to sensor and can be 

selected based on the desired observed vegetative trait. Thenkabail suggested two different band 

centers for the red portion of the electromagnetic spectrum (660nm and 675nm) and four centers 

(845nm, 905nm, 920nm, and 975nm) for the NIR portion of the electromagnetic spectrum 

(Thenkabail, Smith, and De Pauw 2002). Reflectance values in 660nm centered bands can be 

used to detect differences in plant biomass, leaf area index, cultivars and nitrogen and water 

stress in plants (Elvidge and Chen 1995; Carter 1998; Blackburn 1998). Whereas bands centered 

around 675nm have the highest crop-soil contrasts in the majority of crops throughout the 

majority of growing conditions (Thenkabail, Smith, and De Pauw 2002; Thenkabail, Smith, and 

De Pauw 1999). Bands centered around 845nm show a very strong correlation with total 

chlorophyll present (Schepers et al. 1996). 845nm is considered the “NIR shoulder” and using 

broad or narrow bands centered around the shoulder will result in very similar, if not overlapping 

reflectance values to narrower bands in the same range (Thenkabail, Smith, and De Pauw 2002). 

Therefore, with proper band center and width selection NDVI, can be used to estimate yield, 

biomass and N uptake (Stone et al., 1996; Tucker et al., 1980; Pinter et al., 1982). However, this 

estimation ability can be hampered by saturation effects throughout the growing season as LAI 

values change (Gitelson and Merzlyak 1996; Daughtry et al. 2000). 

 

 NDRE  

 Several years after the advent of NDVI, another commonly used vegetative index was 

developed; normalized difference vegetation index or NDRE.  Similar to NDVI, NDRE also 

relies on a plant’s selective absorption of electromagnetic radiation, however, NDRE utilizes the 

red edge portion of the spectrum (Barnes et al. 2000). NDRE can be calculated as follows:   
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𝑁𝐷𝑅𝐸 = (
(𝜌800𝑛𝑚−𝜌720𝑛𝑚)

(𝜌800𝑛𝑚+𝜌720𝑛𝑚)
), where ρ is the observed reflectance (Barnes et al., 2000).  NDRE 

detects red-edge shifts throughout the growing season and throughout crop development 

(Thenkabail, Smith, and De Pauw 2002). Red-edge reflectance values reflect the chlorophyll 

content of plants, and research has shown while indirect, there is a high correlation between 

NDRE values and nitrogen content of crops (Tarpley, Reddy, and Sassenrath-Cole 2000). 

 

 CCCI    

 Even though strong correlations were observed between NDRE values and nitrogen content in 

crops (Tarpley, Reddy, and Sassenrath-Cole 2000) it becomes very difficult to do so when 

observing a diverse canopy as a whole (Fitzgerald et al. 2006). Fitzgerald gave a “cover 

problem” to prove this point, he explained that a sensor could sense the same amount of “green” 

in a crop with high cover and low nitrogen concentration as it would a crop with low cover and 

high nitrogen concentration (Fitzgerald et al. 2006). To overcome the previously described 

limitations of a single vegetative index, Barnes and his colleagues developed the canopy 

chlorophyll content index or CCCI (Barnes et al., 2000). The CCCI utilizes the upper and lower 

limits of NDRE as a function of NDVI’s cover estimations to estimate canopy chlorophyll 

content (Barnes et al. 2000) and can be calculated as follows: 𝐶𝐶𝐶𝐼 = (
(𝑁𝐷𝑅𝐸−𝑁𝐷𝑅𝐸𝑚𝑖𝑛)

(𝑁𝐷𝑅𝐸𝑚𝑎𝑥−𝑁𝐷𝑅𝐸𝑚𝑖𝑛)
), 

where NDRE is the point of interest (Fitzgerald et al. 2006). This methods segregates vegetative 

signals from background signals (Fitzgerald et al. 2006) and thus areas of low chlorophyll 

content will have a CCCI value of 0 and areas of high chlorophyll content will have a value 

closer to 1 (Barnes et al. 2000). In summation, CCCI bridges that gap between NDVI’s ability to 

predict crop cover rates and NDRE’s ability to predict chlorophyll and indirectly predict nitrogen 

content of crops.    
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 Infrared Thermography  

Infrared thermography  utilizes the fact that according to Planck’s Law, all bodies with a 

temperature above absolute zero (-273°C) emit radiation and according to Wien’s Law, all 

bodies with a temperature between -173°C and 2,727°C emit infrared radiation (Carlo 1995). 

Infrared thermal imagers are able to sense this infrared radiation and convert that information to 

a visible form. 

While sUAS thermography has not been widely implemented in the animal science 

industry, handheld and ground based thermography has been incorporated in several research 

projects in the field of veterinary medicine. This is likely due to the fact that at high stocking 

densities, early identification of disease is expensive, time consuming and logistically 

challenging, yet  is essential for proper treatment and control of contagious disease (Schaefer et 

al. 2004). However, many current practices utilize invasive procedures such as determining 

respiratory and heart rate, collecting blood samples and taking rectal temperatures (Stewart et al. 

2008). The collection of these invasive measurements can cause skewed results as animals may 

exhibit anxiogenic responses during handling (Soerensen and Pedersen 2015). These factors have 

led researchers to try to develop non-invasive remotely sensed based procedures for identifying 

possible animal health concerns.  

The use of thermal imagers and thermography are one such non-invasive procedure being 

tested for early disease diagnostics. One study showed that animals inoculated with bovine viral 

diarrhea virus (BVDV) show elevated ocular temperatures one day after inoculation, whereas 

conventional clinical exams did not identify BVDV symptoms for seven days after inoculation 
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(Schaefer et al. 2004). Ocular scans using thermographic sensors also showed a similar ability to 

detect early signs of bovine respiratory disease (Schaefer et al. 2007).  By assessing blood flow 

in the coronary band using thermography, researchers have been able to detect foot lesions that 

can cause inflammation and lameness in cattle (Alsaaod et al. 2015). Seeing that symptoms of 

lameness only occur once lesions are severe (Laven and Proven 2000), the early recognition and 

treatment of these lesions is vital to minimize lameness symptoms (Leach et al. 2012). 

Thermographic sensors have even been identified as a good initial screening method for foot and 

mouth disease, based on lesion detection (Rainwater-Lovett et al. 2009). External parasites such 

as ticks have been identified and quantified on cattle using thermal imagers and computer based 

counting algorithms (Cortivo et al. 2016). While each study has produced research that has 

positively affected the animal science industry, the question still remains if these techniques 

could be adapted to an sUAS.      

 

 Summary 

To meet the growing demand, the increased population of 2050 will require, 

agriculturalists will need to increase agronomic efficiency. To realize this efficiency increase, 

new production and management techniques will need to be designed and implemented. Many 

agriculturalists are looking to sUAS based remote sensing for this efficiency increase. Many 

strides have been made in the utilization of remote sensing in agronomic crops, using 

multispectral indices to quantify physiological differences. This ability of board scale 

phenotyping has increased agronomist’s ability to better manage crops and breeder’s ability to 

breed more ideal crop varieties. Unfortunately for diverse operators, the livestock industry has 

not enjoyed the same amount of success using sUAS, seeing relatively few sUAS technological 
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advancements. However, thermography has a proven track record of being useful in the detection 

of disease and other stress in cattle. These technological advancements in remote sensing will 

likely play a large role in production agriculture for years to come.            
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Chapter 2 - Wheat Variety Interaction on Multispectral 

Based Vegetative Indices.  

 Abstract 

Remote sensing vegetative indices are quickly becoming a widely adopted tool for both 

research and production agricultural. Of these vegetative indices, NDVI, NDRE and CCCI are 

among the most commonly utilized. Several studies have shown that these indices, along with 

complex algorithms can be utilized for nutrient recommendations, biomass estimations, yield 

estimations and numerous other agronomic benefits. This study looks at what interactions, if any, 

wheat variety has on vegetative indices, yield and grain protein content. Trials were established 

in Gypsum, Kansas in 2016 and 2017. In 2016, seven varieties of wheat (Everest, WB Cedar, SY 

Wolf, 1863, SY Monument, WB 4458 and Hotrod) were planted in 9 meters by 243 meters 

strips, with two replications of each variety. In 2017, five varieties of wheat (Everest, 1863, WB 

4269, WB Grainfield and SY Gallant) were planted in 21 meters by 274 meters strips, with two 

replications of each variety. These fields were then monitored using a Micasense RedEdge® 

multispectral imager carried by a DJI s1000 and DJI Matrice. sUAS data was collected on a 

biweekly basis by flying the field at 121 meters agl with 80 percent overlap collecting data in the 

blue, green, red, red edge and near-infrared portion of the electromagnetic spectrum. This 

multispectral data was then processed and NDVI, NDRE and CCCI values were calculated for 

each plot. After statistical analysis, it was observed that during 2016 there was no statistical 

difference between the interaction of wheat variety and yield, however in 2017 a statistical 

difference was observed. This study also found a statistical difference between variety and 

vegetation indices throughout the growing season during key growth stages. 
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 Introduction  

To meet the ever increasing demand for agricultural products, producers and breeders 

have looked for a better method to phenotype their crops. Traditional phenotyping is often done 

by scouting the field on foot and is very time consuming and labor intensive. Due to the time 

consuming nature of traditional in-field phenotyping, it is very hard for wide scale inspection of 

crops, and slowing genetic and agronomic technologic progress. In the 1960s and 1970s 

agronomists started researching how optic based remote sensing techniques could be 

incorporated into the agronomic sector to help modernize the plant phenotyping process. These 

remote sensing techniques led not only to increased scouting efficiency, but also granted the 

ability to recognize plant physiological traits invisible to the human eye. William Allen, David 

Gates, Harold Gausman and Jospeh Woolley laid the foundation for agronomic remote sensing 

by correlating plant morphological properties with their spectral signatures in both the near-

infrared and visible portions of the electromagnetic spectrum (Allen, Gausman, Richardson, & 

Thomas, 1969; Gates, Keegan, Schleter, & Weidner, 1965; Gausman, 1974, 1977; Woolley, 

1971). This foundational work relies heavily on the fact that, photosynthetic plant material 

selectively absorbs and reflects portions of the electromagnetic spectrum (Jordan, 1969). Using 

this knowledge several plant vegetative indices were developed to quantify plant physiological 

and morphological traits in vegetation.  

Until recently, even with all the benefits these phenotyping measures could provide, 

many agronomists failed to incorporate remote sensing into their operations. This is likely due to 

many of the early remote sensing operations being carried out using satellites with low temporal 

and spatial resolution or by manned aircraft, which could be costly to operate. However, with the 

advent of inexpensive commercially available small unmanned aerial systems (sUAS) and 
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optical sensors, many agronomists are showing interest in the utilization and incorporation of 

remote sensing based phenotyping. These inexpensive sUAS and inexpensive sUAS based 

sensors have allowed for agronomists to collect remotely sensed data without having to consider 

satellite return times or satellite band selection. This allows agronomists to cost effectively 

monitor crops throughout the growing season with high temporal and high spatial data. With this 

increased phenotypic data set, agronomists have been better able to select agronomic practice 

and genetic lines. These phenotyping methods showed an ability to predict yield and biomass 

(Wang, 2017), make fertilizer recommendations (Lorence, 2017), create weed management plans 

(Rasmussen, Nielsen, Garcia-Ruiz, Christensen, & Streibig, 2013) and numerous other 

agronomic processes. 

 Vegetative Indices 

Many of these advancements have utilized sUAS based multispectral imagers and the 

vegetative indices calculated from their data. While numerous vegetative indices have been 

derived for both satellite based sensors and aerial based sensors, NDVI, NDRE and CCCI are 

among the most common.  

 NDVI 

Perhaps the most widely recognized vegetative index, normalized difference vegetation 

index (NDVI) depends on the plants ability to selectively absorb red light (650nm) and reflect 

near infrared light (800nm) (Jordan, 1969). In 1973, Dr. John Rouse utilized this physiological 

trait to formulate the NDVI as follows 𝑁𝐷𝑉𝐼 = (
(𝜌800𝑛𝑚−𝜌670𝑛𝑚)

(𝜌800𝑛𝑚+𝜌670𝑛𝑚)
), where ρ is equal to observed 

reflectance (Rouse Jr, 1973).  These bands were originally selected for the broad bands of the 

ERTS-1, but more recent studies have indicated that bands of 15nm are more ideal for vegetative 

monitoring (Rouse Jr, 1973; Thenkabail, Smith, & De Pauw, 2002). By properly selecting the 
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center of these narrow bands, we can differentiate plant traits. Bands centered around 660nm will 

detect changes in plant biomass, leaf area index and nitrogen and drought stress in plants 

(Blackburn, 1998; Elvidge & Chen, 1995), whereas bands centered around 675nm have a greater 

plant to soil contrast (Thenkabail et al., 2002). With proper band selection, NDVI can be utilized 

to estimate yield, nitrogen uptake and biomass (Pinter Jr, Jackson, Idso, & Reginato, 1981; Stone 

et al., 1996; Tucker, Holben, Elgin Jr, & McMurtrey III, 1980). However, these estimation 

abilities are greatly limited by saturation effects in areas of high leaf area index (Daughtry, 

Walthall, Kim, De Colstoun, & McMurtrey Iii, 2000; Gitelson & Merzlyak, 1996).  

 NDRE 

To help combat the saturated driven shortcomings of NDVI, normalized difference red-

edge was created. Much like NDVI, NDRE also relies on a plant’s ability to selectively absorb 

radiation, however NDRE utilizes the red-edge (720nm) portion of the electromagnetic spectrum 

and is formulated 𝑁𝐷𝑅𝐸 = (
(𝜌800𝑛𝑚−𝜌720𝑛𝑚)

(𝜌800𝑛𝑚+𝜌720𝑛𝑚)
), where ρ is observed reflectance (Barnes et al., 

2000). By utilizing the red-edge, NDRE can gauge chlorophyll content and indirectly gauge 

nitrogen content of plants (Tarpley, Reddy, & Sassenrath-Cole, 2000). However, in a diverse 

canopy this ability can be limited; the same sensor may see the same amount of “green” in areas 

of high nitrogen concentration and low cover as it would in areas of low nitrogen concentration 

and high cover (Fitzgerald et al., 2006).   

 

 CCCI 

The canopy chlorophyll content index CCCI was designed to alleviate some of these 

cover issues. The CCCI is formulated by 𝐶𝐶𝐶𝐼 = (
(𝑁𝐷𝑅𝐸−𝑁𝐷𝑅𝐸𝑚𝑖𝑛)

(𝑁𝐷𝑅𝐸𝑚𝑎𝑥−𝑁𝐷𝑅𝐸𝑚𝑖𝑛)
), where NDRE is the 

point of interest (Barnes et al., 2000) and utilizes the upper and lower limits of NDRE as a 
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function of NDVI to segregate vegetation signals from background signals (Fitzgerald et al., 

2006). Using this calculation, CCCI will value the area of highest chlorophyll content close to 1 

and areas of low chlorophyll content closer  to zero (Barnes et al., 2000). With this formulation, 

CCCI is able to use NDVI’s ability to predict cover rates and NDRE’s ability to predict 

chlorophyll.    

 Rational and objectives 

As previously discussed, agronomists are continuously striving to improve plant genetics 

and agronomic practices. Many agronomists are utilizing sUAS based vegetative indices to 

phenotype their crops. However, many studies will only utilize one variety, choosing to focus on 

other variables. The objective of this study was to determine if wheat variety impacts yield, 

protein, and NDVI, NDRE and CCCI values. This is important if broad scale phenotyping is to 

be successful. This will also help determine if variety interactions should be considered when 

developing vegetative index drive agronomic algorithms.       

 

 Materials and Methods  

 Sight selection and experimental design. 

The study was conducted over two growing seasons in 2015-2016 and 2016-2017, in 

cooperation with Justin Knopf a local producer. Sites were located in Saline County, Kansas, 

near the town of Gypsum. Sites were selected to accommodate this study’s large physical size.  

Soil textural and drainage properties were acquired from the NRCS’s Web Soil Survey webb 

application.   

 

 Gypsum 2016 
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In 2016, trials were established in Gypsum, Kansas in a field located near 38°42'35.1"N 

97°26'19.4"W. This slightly sloped field contained soil classified as 74.8% Hord silt loam and 

26.2% Longford silt loam. This field was then split into fourteen, 9 meters x 243 meters trial 

plots with ground control points (GCPs) at each corner. These plots were then randomly assigned 

one of the following wheat varieties: Everest, 1863, Hotrod, WB Cedar, WB 4458, SY Wolf and 

SY Monument. Each variety was planted in two replications. These large plot dimensions were 

chosen to capture variability throughout the field and also so satellite data could be extracted for 

each plot for subsequent research.    

 Gypsum 2017 

In 2017, trials were establish once again in Gypsum, Kansas, however a larger field was 

utilized, located near 38°43'35.0"N 97°26'33.7"W. This slightly sloped field was classified as 

81.9% Longford silt loam, 16.6% Detroit silty clay loam and 1.5% Crete silt loam. This field was 

divided into ten, 21 meters by 274 meter trial plots with ground control points (GCPs) at each 

corner. These plots were then randomly assigned one of the following wheat varieties: Everest, 

1863, WB 4269, WB Grainfield, SY Gallant. Each variety was planted in two replications. Plot 

width was doubled this year to increase the likelihood of having satellite pixels only encompass a 

single variety. Total variety numbers were changed from seven varieties to five varieties to 

accommodate field size limitations.      

 Variety Selection and management. 

Wheat varieties were selected with consultation from seed providers and extension 

agents, to reflect popularly planted wheat varieties and the new upcoming varieties. All wheat 

management decisions including seeding rate, nutrient management, weed management and 

fungicide applications, were uniform across the trial and were determined by the producer.  
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 Data Collection 

 UAVs 

Three aircrafts were used during this study. In the 2015-2016 growing year, a DJI s800 

evo hexacopter equipped with a DJI A2 flight controller was used until being replaced by the 

larger DJI s1000 octocopter also equipped with a DJI A2 flight controller for data collection. The 

s1000 was selected to replace the s800 due to its larger payload capacity and increased flight 

endurance. Both aircraft utilized the same flight controller, telemetry links, ground station and 

sensor payload. During the 2016-2017 growing year, a DJI Matrice quadcopter was selected for 

data acquisition, for its smaller physical size, ease of operation and increased endurance. Even 

with the change in aircraft, data quality and acquisition techniques remained the same across all 

platforms. DJI ground station software and Maps Made Easy Map Pilots V2.0 IOS based mobile 

application was utilized for flight planning an automatization.      

 Sensor payloads 

Due to the aircraft being used in multiple studies, sensor payloads varied from aircraft to 

aircraft, however the sensor used in this study, the MicaSense RedEdge, remained constant 

across all years and aircraft. The s800 and s1000 carried a Cannon T4i RGB camera and the 

Matrice was equipped with a DJI X3, 12-megapixel RGB camera and FLIR Vue Pro R. These 

cameras were not utilized in this study. However, all three aircrafts carried a MicaSense 

RedEdge multispectral camera equipped with a downwelling light sensor (DLS) and an external 

3DR brand GPS module. The RedEdge multispectral sensor has 5 individual cameras allowing it 

to collect the following bands individually:  
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Band Name Band Center (nm) Bandwidth FWHM (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red-edge 717 10 

Near IR 840 10 

Table 2-1 MicaSense RedEdge Band Description 

 Data Acquisition   

Data was collection was conducted under certificate of authorization number 2014-CSA-

6-COA and later under FAA part 107 regulations. All flights were conducted under the 

supervision of a licensed pilot and remote pilot in command. Data was collected at 121 meter 

above ground level, with 80 percent fore and side overlap, within two and one half hours of solar 

noon. Data was collected on a weekly basis to allow the capture of key growth stages. Great care 

was taken to only collect data when sky conditions were consistent, meaning full sun or full 

overcast. If lighting conditions did vary during data collection, that data was culled and not 

utilized for analysis. Calibration images were taken before and after data collection flights 

utilizing a MicaSense RedEdge Calibration panel. Yield data was collected from a Case 7130 

combine equipped with a voyager 3 yield monitor that was calibrated before harvesting.  

 Data processing and interpolation 

Raw data from the MicaSense RedEdge was uploaded to MicaSense Atlas cloud based 

analytics application for both calibration and orthomosaic construction. Once processed, 

orthomosaic tif files were imported into ArcGis ArcMap 10.5 for data analysis. All orthomosaic 

were georeferenced to the initial flight using GCPs placed in the field. Once georeferenced, 
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NDVI, NDRE and CCCI maps were made for each flight. This data was monitored and 

processed after every flight, and mean VI values were collected for each research plot. Yield 

monitor information was also imported into ArcMap, kriged and quantified for each plot.  

 Statistical analysis procedure 

After collection of vegetation index values, yield values and grain protein, SAS 9.2 

statistical software was utilized for analysis. Using a PROC GLIMMIX model and Tukey test, 

alpha 0.05, with variety as treatment and dependent variables as yield, grain protein, NDVI, 

NDRE and CCCI. The vegetative indices; NDVI, NDRE and CCCI were tested at Feekes 4, 

Feekes 7, Feekes 10 and Feekes 10.5. After statistical analysis, statistical graphs were made in 

Microsoft Excel 2016.    
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 Results and Discussion 

 Yield and Protein 2016 & 2017 

 

Figure 2-1 2016 yield (Pr>F 0.1408) and protein (Pr>F <0.0001) 
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Figure 2-2 2016 yield (Pr>F <0.0001) and protein (Pr>F <0.0001) 

 

This study found that during the 2016 growing year, the tested varieties had no impact on 

yield (Pr>F 0.1408), however, in the 2017 growing year, variety did have a statistical impact on 

yield (Pr>F <0.001).  These results are likely due the varieties interaction with the growing 

environment. The 2016 growing season was an exceptionally favorable year for wheat 

production with more precipitation and less foliar stresses. These favorable growing conditions 

likely masked some of the variety traits making all varieties yield statistically the same. The 

2017 growing season was a far less conducive to wheat production. 2017 was a drier, year with 

less precipitation and more foliar issues in the form of Wheat Streak Mosaic. These less than 

ideal growing conditions, along with differing variety traits allowed some varieties to statistically 

out perform their competitors in the form of grain yield.     

This research found similar results when comparing variety interaction with grain protein. 

While both years saw grain protein contents statistically different across varieties, more variation 
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was found in the 2017 growing season with 5 statistical groupings, compared to the 2016 

growing with season 2 statistical groupings. These results can once again be explained by the 

varieties’ interaction with the growing environment in which they were produced. Variety traits 

were more visible in times of stress than in conducive environments.            

 

 Feekes 4 2016 & 2017 

 

Figure 2-3  2016 Feekes 4: NDVI (Pr>F 0.1684), NDRE (Pr>F 0.0051) and CCCI (Pr>F 

0.0052) 
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Figure 2-4 2017 Feekes 4: NDVI (Pr>F <0.0192), NDRE (Pr>F <0.001) and CCCI 

(Pr>F<0.001) 

 

Variety trait differences were also observed in all vegetative indices, across all growth 

stages except for the NDVI reading taken at Feekes 4 in 2016. This research found that NDVI 

readings at Feekes 4 in 2016 was not statistically significant (Pr>F 0.1684) across varieties. Once 
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values and not in NDVI values. While the varieties in 2016 all had similar biomasses, some 

varieties had higher chlorophyll content than others. The stressful environment in the 2017 

growing season allowed for variety traits to be observed in both NDRE and CCCI vegetative 

indices.      

 Feekes 7 2016 & 2017 

 

Figure 2-5 2016 Feekes 7: NDVI (Pr>F 0.0292), NDRE (Pr>F 0.0006) and CCCI (Pr>F 

0.0006) 
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Figure 2-6 2017 Feekes 7: NDVI (Pr>F <0.001), NDRE (Pr>F <0.001) and CCCI (Pr>F 

<0.001) 
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 Feekes 10 2016 & 2017 

 

Figure 2-7 2016 Feekes 10: NDVI (Pr>F <0.001), NDRE (Pr>F <0.001) and CCCI (Pr>F 

<0.001) 

 

 

Figure 2-8 2017 Feekes 10: NDVI (Pr>F <0.001), NDRE (Pr>F <0.001) and CCCI (Pr>F 

<0.001) 
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Feekes 10 showed variety differences during both years across all vegetative indices. The 

2017 growing season provided interesting results in NDRE and CCCI indices. The 2017 growing 

season saw several foliar stresses, including wheat streak mosaic. Looking back to Feekes 7 in 

2017 figure (2-6), we see that two wheat varieties, 4269 and Grainfield are both performing 

poorly compared to the other varieties. While this is evident in NDVI, NDRE and CCCI are able 

to recognize more differentiation between varieties. However, when comparing these same 

varieties in Feekes 10, it is evident that Grainfield’s NDRE and CCCI values are starting to rise, 

while 4269’s values remain low.  

 Feekes 10.5 2016 & 2017 

 

Figure 2-9 2016 Feekes 10.5: NDVI (Pr>F <0.001), NDRE (Pr>F <0.001) and CCCI (Pr>F 

<0.001) 
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Figure 2-10 2017 Feekes 10.5: NDVI (Pr>F <0.001), NDRE (Pr>F <0.001) and CCCI (Pr>F 

<0.001) 
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 Vegetation Indices Yield Predictions  

NDVI F4 F7 F10 F105 

1863 0.0217 0.105 0.5791 0.2625 

4458 0.0635 0.0376 0.2738 0.2248 

Cedar 0.0823 0.0004 0.5364 0.3864 

Everest 0.2897 0.4968 0.8859 0.8389 

Hot Rod 0.0027 0.3233 0.871 0.7895 

Monument 0.3228 0.3223 0.1835 0.0235 

Wolf 0.6286 0.7318 0.535 0.2343 

All 0.0286 0.1525 0.6306 0.5256 

Table 2-2 Yield/NDVI 2016 r^2 

NDRE F4 F7 F10 F105 

1863 <0.0001 0.2728 0.1784 0.1984 

4458 0.0431 0.0003 0.0194 0.0239 

Cedar 0.2675 0.0184 0.3979 0.2829 

Everest 0.2067 0.5111 0.8297 0.9164 

Hot Rod 0.1584 0.2032 0.0814 0.7919 

Monument 0.3871 0.4264 0.1532 0.3191 

Wolf 0.604 0.8379 0.512 0.5847 

All 0.0011 0.1495 0.0538 0.3117 

Table 2-3 Yield/NDRE 2016 r^2 

CCCI F4 F7 F10 F105 

1863 <0.0001 0.2728 0.1792 0.1994 

4458 0.0431 0.0003 0.0199 0.0242 

Cedar 0.2973 0.0184 0.3977 0.2846 

Everest 0.208 0.5111 0.8295 0.916 

Hot Rod 0.1578 0.2032 0.0816 0.7918 

Monument 0.3874 0.4264 0.1538 0.3217 

Wolf 0.6034 0.8379 0.5122 0.5858 

All 0.0011 0.1495 0.054 0.311 

Table 2-4 Yield/CCCI 2016 r^2 
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NDVI F4 F7 F10 F10.5 

1863 0.1734 0.0009 0.0794 0.8116 

4269 0.0151 0.0233 0.3357 0.4861 

Everest 0.0007 0.0052 0.1185 0.4463 

Gallant 0.0042 0.1984 0.3688 0.7269 

Grainfield 0.0117 0.0557 0.0002 0.2778 

All 0.1752 0.0631 0.0006 0.2642 

Table 2-5 Yield/NDVI 2017 r^2 

NDRE F4 F7 F10 F10.5 

1863 0.02895 0.0101 0.027 0.7184 

4269 0.0468 0.0879 0.1959 0.5043 

Everest 0.0092 0.0497 0.1592 0.2132 

Gallant 0.0014 0.0837 0.1353 0.7352 

Grainfield 0.0066 0.0092 0.092 0.2415 

All 0.3425 0.1387 0.0069 0.164 

Table 2-6 Yield/NDRE 2017 r^2 

CCCI F4 F7 F10 F10.5 

1863 0.2619 0.0106 0.0273 0.0499 

4269 0.0466 0.0871 0.1975 0.0859 

Everest 0.0213 0.0496 <0.0001 0.0228 

Gallant 0.0013 0.0028 0.0504 0.0002 

Grainfield 0.0018 0.0094 0.0164 0.0305 

All 0.3364 0.1391 0.0007 0.0041 

Table 2-7 Yield/CCCI 2017 r^2 

 

 Conclusions  

This study found that in 2016, variety did not have a statistical impact on yield, 

however variety did have a statistical impact on protein and vegetative indices across all 

growth stages with the exception of NDVI during Feekes 4. This study also found that in 

2017, variety did have a statistical impact on yield, protein and all vegetative indices 

across all growth stages. These findings were attributed to the varieties’ physiological 

traits and how they interact with the environment. These variety traits are more 
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pronounced in high stress years than in favorable growing conditions. Generally, more 

deviation was identified across varieties when using vegetative indices utilizing red-edge. 

This was more pronounced in 2017, when foliar damages were present.  

The findings of this research would indicate that variety physiological traits have 

an impact on yield, protein and vegetative indices readings. Due to this variety 

interaction, broad scale phenotyping across multiple varieties is possible, however this 

variation does present challenges for algorithm development. Further research will need 

to be conducted to determine what wheat varieties are similar enough to make cross 

variety comparisons using vegetative indices.  
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Chapter 3 - Estimating Cattle Rectal Temperature Using 

Thermography  

 Abstract 

In high stocking densities, infectious disease can spread rapidly. To control and contain 

disease, early identification and treatment is vital. Conventional techniques are time consuming 

and labor intensive. These factors have driven researchers to focus on the integration of 

thermography into animal wellness programs. This chapter focuses on determining if sUAS 

based thermography can be used to determine rectal temperature. Before conducting sUAS based 

thermographic readings, one must first identify the most ideal area on the animal to take 

thermographic readings. To conduct this research, 35 steers were identified and placed into a 

squeeze chute where rectal temperatures were recorded along with thermographic readings of the 

ocular regions, the muzzle and the forehead between the eyes. Thermographic data was captured 

using a 13mm FLIR VUE Pro R at six predetermined sensor locations, for consistency and 

repeatability. Raw data was processed using FLIR Tools software package, and regression 

analysis was conducted. This study shows moderate correlation between the ocular regions and 

rectal temperature, and no correlation with forehead or muzzle regions and rectal temperatures. 

More complex algorithms will need to be developed if absolute temperatures are to be predicted 

using thermography.        

 Introduction  

In high stocking densities, the early detection and treatment of contagious disease is vital 

to controlling the spread of disease (Schaefer et al., 2004). However, conventional methods are 
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time consuming and logistically challenging, as most current methods require physical contact 

with the animal to perform invasive procedures, such as taking rectal temperatures, collecting 

blood samples or measuring respiratory and heart rate (Stewart, Stafford, Dowling, Schaefer, & 

Webster, 2008). The handling of animals to collect these invasive procedures may cause an 

anxiogenic response in the animals skewing the data collected (Soerensen & Pedersen, 2015). 

These factors have driven researchers to develop noninvasive remote sensing techniques to 

monitor animal health and welfare. Thermography is one such technique that is being used to 

detect animal health and welfare.   

Infrared thermography works on the principle of Wien’s Law that all bodies between        

-173°C and 2,727°C emit infrared radiation (Carlo, 1995). Infrared thermographic sensors are 

able to sense this infrared radiation and translate the incoming radiation into a visible form. 

Ground based thermographic sensors have been successfully used in several veterinarian health 

studies to detect illness in animals. Thermographic ocular readings of cattle have shown the 

ability to detect bovine viral diarrhea virus several days before convention clinical measurements 

(Schaefer et al., 2004). Ocular readings have also been utilized for early detection of respiratory 

disease in cattle (Schaefer et al., 2004). Early signs of foot lesions have also been detected with 

thermographic sensors, limiting lameness (Alsaaod, Schaefer, Büscher, & Steiner, 2015). The 

thermographic detection of foot lesions have even shown promise as a detector of foot and 

mouth disease (Rainwater-Lovett, Pacheco, Packer, & Rodriguez, 2009). The screening of cattle 

udders using thermographic sensors has shown the ability to detect early signs of mastitis and 

other disease (Berry, Kennedy, Scott, Kyle, & Schaefer, 2003; Colak et al., 2008; Hovinen et al., 

2008).   
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 Rational and objective 

With all the proven benefits that infrared thermographic readings have exhibited, one 

must ask if these sensors could be incorporated into an sUAS platform to increase the mobility 

and usefulness of these sensors. The major challenge for sUAS based thermographic readings of 

cattle is identifying what location on the animal should thermographic readings be taken. Many 

researchers have focused on areas such as the coronary band and udder. These locations work 

well for ground based sensors, but are not a viable option for aerial based thermography as these 

locations are generally blocked by the animal’s body when viewed from above. Therefore, one 

must look for other locations to measure body temperature. Due to the tendency to get 

unobstructed views of the cattle’s heads during sUAS flights, this research has chosen to 

evaluate facial features on their correlation to rectal temperature. Four areas of interest were 

selected for this research, right and left ocular regions, forehead and muzzle.   

 

 Materials and Methods 

 Animals and experimental protocol 

35 commercial steers were utilized for this study. These steers were housed in a feedlot 

setting with open access to water and were fed a diet consisting of 33.16% dry rolled corn, Supp 

6.60%, alfalfa hay 5.32%, prairie hay 5.28% and WCGF-Sweet Bran 49.64%. For data 

collection, steers were brought into an indoor hydraulic squeeze chute, in a calm manner to help 

minimize anxiogenic responses. While in the chute, 12 thermographic readings were taken from 

each animal along with rectal temperature using GLA M750 digital thermometer.   
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 Thermographic readings  

Thermographic readings were taken using a 13mm FLIR VUE PRO R imager. This 

sensor was chosen, as it is commonly incorporated into sUAS platforms. The sensor is also 

radiometric, allowing each pixel to be assigned with a temperature value rather than a brightness 

value. For this experiment the sensor was mounted onto a tripod, as conducting a sUAS flight 

near the chute could have posed danger to both the animals and people conducting the research. 

Along with the FLIR VUE PRO R, the tripod also had a RGB monitor allowing researchers to 

accurately aim the thermographic sensor. Six sensor positions were marked on the floor allowing 

for repeated measurements (figure 3-1). Two pictures were taken at each camera location, with 

the animal’s head in the center of the image. The thermographic sensor was calibrated using the 

FLIR UAS mobile application before the first photo at each location. Weather data for this 

calibration was acquired from an onsite weather station.  

 Interpolation of thermographic data 

The collected raw thermographic data was first sorted to insure image quality. Images 

where the animal’s eyes were closed or when the animal’s facial features were obstructed were 

culled. The remaining raw data was imported into the FLIR tools desktop application where 

maximum temperature values were determined for each area of interest. From the side profile 

readings, a square encompassing the ocular region was drawn around the eye and maximum 

temperature values were calculated and recorded (figure 3-2). Frontal profile images had similar 

readings recorded on the animal’s muzzle and forehead between the eyes (figure3-2). These 

measurements, along with rectal temperatures were tabulated into a spreadsheet and simple 

regression models were ran to determine correlation.  
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Figure 3-1 thermographic sensor positions 

Figure 3-2 On animal thermographic reading locations  
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 Results and Discussion 

 Results 

 

Figure 3-3 Right eye to rectal temperature, taken from sensor position A 

 

Figure 3-4 Right eye to rectal temperature, taken from sensor position B 
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Figure 3-5 Left eye to rectal temperature, taken from sensor position E 

 

Figure 3-6 Left eye to rectal temperature, taken from sensor position F 
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Figure 3-7 Forehead to rectal temperature, taken from sensor position C 

 

 

Figure 3-8 Forehead to rectal temperature, taken from sensor position D 
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Figure 3-9 Muzzle to rectal temperature, taken from sensor position C 

 

 

 

 Discussion 

The data shows that the ocular region of the face is the most favorable feature to predict 

rectal temperature. This research showed that ocular regions were statistically significant, 

whereas the muzzle and forehead were not statistically significant. This is expected, as ocular 
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regions have membranes in the tear duct that are less insulated, thus causing less variability 

leading to R2 values as high as 0.6659. The animal’s forehead showed the least correlation with 

an R2 value of 0.0766 at 0.914 meters and 0.1008 at 1.829 meters. This is likely due to 

differences in hide and hair and their insulative properties. The muzzle also showed poor 

correlation with R2 values of 0.187 at 0.914 meters and 0.1153 at 1.829 meters.  

This research shows a higher correlation with the right eye than left eye to rectal 

temperature, however this is likely due to experimental design. While taking readings of the right 

eye at sensor positions A and B, the thermographic sensor was in shade cast by the building’s 

door. In comparison, readings of the left eye at positions E and F, the sensor was not in the 

shade. These different lighting conditions likely explain the difference in correlation between 

right and left eyes.       

 Conclusions and Further Research  

  While this research showed correlation between ocular temperatures and rectal 

temperature, current correlation values are too low to accurately predict an animal’s temperature. 

Muzzle and forehead thermographic readings show no statistical significance with rectal 

temperature. Therefore, one should focus thermographic readings on the ocular region of the 

face. 

To explain the variation in animal’s thermographic readings, more research will need to 

be conducted and algorithms developed. More accurate calibration methods will need to be 

devised, to capture differences in hair color and thickness, solar radiance, wind speed and target 

to sensor distance, if accurate thermal predictions are to be made.  

While current capabilities are too low to accurately predict absolute internal temperature, 

current capabilities have been shown to be an early screening devise. One should also consider 
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formulating defined ranges of thermal readings to establish a threshold system, where animals 

could be designated as “acceptable” or unacceptable”. These animals deemed “unacceptable” 

could then be further screened with traditional clinical measures. This early screen could 

potentially increase profitability and decrease loss caused by illness and mortality.       
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