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INTRODUCTION 

The type of control utilized by a robotic manipulator is vital to its 

performance and usefulness. With proper control, a robot is capable of 

performing intricate tasks with great accuracy and precision. Without good 

control, the robot is only able to perform with marginal accuracy and little 

dependability. 

In order for a control system to perform well, it must be able to deal 

with the changing configurations and loads that the robot experiences. The 

control system must be able to "adapt" itself to every situation the robot 

encounters. Without adaptibility only under certain conditions will the 

robot be able to perform adequately. With adaptibility the robot can 

perform well over the entire range of its motion and load carrying 

capabilities. 

This paper investigates a model referenced adaptive control technique 

developed by Donalson and Leondes [1] and applies it to an International 

Robomation Intelligence (IRO Model M-50 robotic manipulator. Dubowsky 

and DesForges [2] have previously made application of model referenced 
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adaptive control to robotic manipulators and the work of this paper follows 

their work on the subject. 

Model referenced adaptive control is a method of adjusting the gains of 

a control system so that a desired response is achieved, regardless of the 

changes that occur in the physical system being controlled. These changes 

in the robot are due mainly to inertial properties. By selecting an index of 

performance, which is a function of an error signal and its derivatives, 

model referenced adaptive control adjusts the gains of the control system 

so as to move the index of performance toward zero at a rate determined by 

a steepest descent trajectory. 

The analysis of the model referenced adaptive control is done by means 

of a computer simulation. Computer simulations allow for numerous tests 

to be carried out, without ever physically implementing the control system. 

Asa preliminary study, the simulation provides the control system designer 

with data concerning the system response, ranges of gain adjustment, gain 

adjustment rates, and how well different control configurations work with 

the adaptive algorithm. 

The simulation consists of 3 basic parts; the mathematical model of 

the robot, the model of the control system, and the adaptive algorithm. The 
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mathematical model of the robot consists of the dynamic equations 

describing the motion of the robot and determining the physical properties 

of the robot links. The model of the control system consists of the 

equations that emulate the control, and the adaptive algorithm consists of 

the equations derived for adjusting the gains of the control system. 

Chapter 1 gives the derivation of the dynamic equations of the robot 

and the calculation of the physical properties of the links. Chapter 2 

investigates the use of model referenced adaptive control with various 

control systems, and discusses their performance. And Chapter 3 contains 

some observations and conclusions about model reference adaptive control. 
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1. DYNAMIC MODEL 

In this Chapter, the mathematical model describing the robot is 

developed. The mathematical model is used by the computer to determine 

the displacement, velocity, and acceleration of the links of the robot, given 

the torque applied at each joint. 

The equations describing the IRI robot are nonlinear, highly coupled 

equations. In order to simplify their derivation and solution, the following 

assumptions 

I. The wrist roll and wrist pitch axes of the robot are locked. 

2. The links of the robot are symmetric with respect to their 

principle axes of inertia. 

3. The links are made of solid, homogenous material and there are no 

concentrated masses within the links. 

Assumption 1 reduces the robot from 5 degrees of freedom to 3 

degrees of freedom and allows the wrist and gripper to be considered part 

of the forearm. Assumptions 2 and 3 simplify the calculation of the 

moments of inertia of the links. Applying these assumptions results in the 



three degree of freedom model of the robot shown in figure 1. 

To develope the dynamic equations for the model shown in figure 1, 

Lagrange's Equation will be used. Defining K as the kinetic energy of the 

system, P as the potential energy of the system, and L as the difference 

between K and P, then the torque at joint i of the model, Ti, is given as: 

1.1 Ti = d a 
dt mi aei 

for i = 1, 2, or 3 

where L = K -P 

ei = angular displacement of link 

and ei = angular velocity of link i 

FIGURE 1. Simplified Model of Robot 
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The following definitions are made for the derivation of the kinetic and 

potential energy of the system (see Figure 2). 

1. (X0,Y0,Z0) is the base coordinate system. Base Coordinates will be 

in upper case. 

2. {xi,yi,zi} is the link coordinate system of link i. 

3. ei is the angular displacement of link i about the zi axis. 

4. R. is the vector to the center of mass of link i with respect to the 

base coordinate system. 
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FIGURE 2. Top and Side View of Model 
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5. (Jai is the angular velocity vector of link i with respect to the 

center of mass of link i. 

6. mi is the mass of link i in slugs. 

7. I i is the inertial matrix of link i and is defined as: 

I xx 

I 
Yx 

I zx 

I xy 

I 
YY 

I zy 

I xz 

I 
Yz 

I zz 

where 
Ixx = f(yi24. zi2)dm 

Iyy = f(x24- z,2)dm 

I = 
f(x,24. yi2)drn 

Xy 
= dm 

Ixz = jxizi dm 

tyz = fyizi dm 

8. 11 is the distance from the origin of link 1 to the origin of link 2. 

9. 12 is the distance from the origin of link 2 to the origin of link 3. 

10. 13 is the distance from the origin of link 3 to the centroid of the 

payload located at the origin of coordinate system 4. 

11. ri is the distance to the centroid of link i with respect to the ith 

coordinate system. (The centroid of link i is assumed to lie on the 

xi axis.) 

12. xi, yi, and zi are unit vectors in the xi, yi, and zi directions. 

The above definitions will now be used to derive the terms necessary 



for the Lagrange Equation. Given Ai, toi, mi, and li, the total kinetic energy 

of the manipulator is defined as: 

1.2 K = 1/2 mi(Ai - A1) + 1/2m2(A2 R2) + 1/2m3(A3 A3) 

,,,tt j 
+ 1/2M4(A4 114) + 11 

/ 2w 1 ' A 1 ' U)1 + 1 I I 2 tat 2 ' 12 ' (1) 2 

4. 1/266 ' 13 ' 03 + 1/2(1)t4 ' 14 ' (1)4 

The total potential energy of the manipulator is given as: 

1.3 P = mi g Rizo + M2 g R2zo + m3g R3z0 + M4 g R4zo 

where Rizo is the component of the Ili vector in the Zo 

direction. 

Determination of the Ri's 

1.4 Ri = r1 x1 = ricos(ei) xo + risin(ei) yo + 0 zo 

1.5 R2 =11 Xi + r2 x2 

= [ 11cos(81) + r2cos(e1)cos(612)1x0 + 

[ lisin(ei) + r2sin(e1)cos(82)1 go + [ r2sin(62)] 43 

1.6 R3 = li Xi + 12 X2 + r3 x3 

= [ licos(ei) + 12cos(ei)cos(e2)+ r3cos(e1)cos(e2+83)1x0 

+ [ lisin(ei) + 12sin(e1)cos(82) + r3sin(e1)cos(82+e3)1 yo 

+ [ l2sin(e2) + r3sin(82+63)1 zo 
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1.7 R4 = 11 + 12 X2 + 13 X3 

= [ licos(el) + 12cos(e1)cos(82)+ 13cos(81)cos(e2+83).1x0 

+ [ lisin(ei) + 12sin(81)cos(82) + 13sin(e1)cos(02+03)] yo 

+ [ 12sin(92) 13sin(02+63)1 zo 

Taking the derivative with respect to time of each of the R vectors 

gives: 

1.8 A1 = [(-risin(80)81 xo + [( ricos(ei))ei I yo 

1.9 A2 = [(-lisin(191) -r2sin(e1)cos(82))61+ (-r2cos(e1)sin(e2))e21 xo 

+ [( licos(ei) r2cos(e1)cos(e2))61+ (-r2sin(e1)sin(e2))021 yo 

+ [( r2cos(e2))021 ZO 

1.10 R3 = [(--lisin(81) - 12sin(81)cos(82) - r3sin(e1)cos(e2+e3))01 

+ (-12cos(e1)sin(e2) - r3cos(e1)sin(82+03))62 

+ (-r3cos(e1)sin(e2+193))03] x0 

+ [( licos(ei) 12cos(e1)cos(e2)+ r3cos(e1)cos(e2+e3))01 

(-12sin(e1)sin(e2) - r3sin(81)sin(82+83))02 

+ (-r3sin(e1)sin(e2+03))63] go 

[( 12cos(e2) + r3cos(e2+83))02 + ( r3cos(02+83))031z0 

1.11 A4 = [(-11S111(91) 12sin(qcos(62) - 13sin(e1)cos(e2+e3))e1 

+ (-12cos(i91)sin(e2) - 13cos(e1)sin(02+03))02 
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13C09(e1)511.02+03))631 X0 

+ [( licos(ei) + 12cos(81)cos(62)+ 13cos(e1)cos(e2+e3))61 

+ (-12sin(e1)sin(02) - 13sin(61)sin(62+63))62 

+ (-13sin(ei)sin(02+03))83] yo 

(( 12co5(e2) I3cos(e2+e3))e2 (l3cos(e2+e3))031 zo 

Now with the Ri terms of the kinetic energy equation derived, the wi 

terms are now derived. 

1.12 wti = [ 0 0 61 I 

1.13 w 2 = v 
rA / / 6. iSinke2) viCOSke2) 

1.14 wt3 = [ eisin(62493) eicos(62+63) (62+63) ] 

1.15 cot 4 = [ eisin(62+03) e1cos(62+63) (62+63) ] 

All the terms of the kinetic and potential energy equations are now 

given. Carrying out the dot products of the Ri terms and multiplying the wi 

vectors with their respective inertial matricies gives the expression for 

kinetic energy. 

1.16 K = 1/2m1 r12 012 + 1/2m2 [( Ii + r2cos(62))2612 + r22622 

1/21113 [( 11 12COS(e2) f3COS(e2+e3))2612 

( 122 + 212r3COS(03) r32)622 r32632 
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( 2 r32 + 212r3cos(e3))0263] 

1/2m4 [( li + 12cos(e2) + I3cos(e2 +03))2012 

( 122 + 21213cos(e3) + 
132)022 + 132032 

+ ( 2 132 + 21213cos(93))0263) 

+ 1/2 61211zz + 1/2 [ 61212xx sin2(e2) 61212uucos2(02) 

62212zzi 

+ v2 [ e12(13xx 14xx )sin2(e24.e3) 

ei2(13uu + 14WY)cos2(02+e3)+ (62+63)2(13zz+ 14zz)1 

Note that because of assumptions 2 and 3 made earlier, all of the off 

diagonal terms of the inertial matrices are zero, and therefore do not 

appear in the expression for kinetic energy. 

Taking the Zo components of the Ri vectors gives the expression for 

potential energy. 

1.17 P = m2gr2sin(02)+(m3+m4)gl2sin(82)+(m3r3+m413)gsin(e2+63) 

Now taking the difference of K and P gives the expression for the 

Lagrangian, L. 

1.18 
L ' /2m, ri2012 1/2m2 [( 

li + r2cos(82))2012 r220221 



+ 1/2m3 [( 11 + 12cos(82) + r3cos(02+193))2612 

+ ( 122 + 212r3cos(e3) + r32)022 + r32032 

+ ( 2r32 + 212r3cos(83))6263] 

+ 1/2m4 (( 11 + 12cos(192)+ 13cos(e2+e3))2612 

+ (122 + 21213cos(e3) + 
132)622 132e32 

+ ( 2132 + 21213COS(e3))62e31 

+ 1/2 e12l1zz 
+ 1/2 [ei2i2xx sin2/,-2 lid \ + 61212yuCOS2(e2) 

62212zZ1+1/2[ 612(13XX +14XX sin2(e2 +e3) 

+ 612(13 +14 )cos2(e2+e3)+ 
UU UU (e24)3)2(13zz+1422)1 

-m2gr2sin(82) - (m3+m4)g 12sin(e2) - (m3r3+m413)gsin(e2+03) 

By Lagrange's equations, the torques at joints 1, 2 and 3 are given as: 

1.19 T1 = d aL _ aL 

Kit ao, ae, 

[ 

1.20 T2= d aL _ aL 

dt ae2 ae2 

{ 

1.21 T3 = Ll_ al._ .... a_ 
dt ae3 ae3 

Performing these operations give the expressions for torque. 

1.22 T1 = [ miri 2 + m201 + r2cos(e2))2 + m3(11 + 12cos(8 ) 

12 



(ze)u!sz Dow + ((2e+ze)soD2J + (30soDz1 + 11)((2e+ze)uts2J + 

(Zou!sZpiw +((Ze)soDZ j li)(Zou!sZ jZw [ZZo 

zz2 
+ ((2e)soD2izi + 21)0w + ((2e)soDEJz1 z2J)Ew 

zci zzt7/ +ZZ21 +ZZzi (E9)90D21Ziz 
Z 

(z2-1 + (29)S0D2JZIZ zZi)Zuj zZ jZw Zi 

21)11 [(MO-MEI- 
xxt,l+ xxE 

1 )(29+3045(20+Ze)S°DZ 

((E9+ze)soD21 CosoDzi + 10(ze+ze)uIs2itua - 

((e+Zosop2.1 + (Ze)soDZ1 11)(2e+Ze)uts2JEwZ - + 

Zistle ent,khno_ XXi,i+XX2 1)(29+30)soD(29+30)u!sz + 

(fifiz I- xxz 1)(3e)soD(zet)u!sz + 

((2e+ze)sopi (Ze)soDZI li)((2e+Ze)u!sEi (Ze)uisZ0i7wz _ 

((ze+ze)soDEJ + (ze)soDzi + 11)((2e+ze)uis2J + 

(ze)uiszozwz - ((ze)soDzJ + I i)(ze)ulszwz.., z- + 

19 [(29+zozsoo (nnv fifi 
21) + 

(2042e)z.,:u!s( XXt, XX2 (ze)zsoDnfiz coots XXz ZZI 

z((2e+zosoD21 + (ze)sopz + 1017w + z((2e+zosoDEJ + 



+ 13sin(e2+03))01+12cos(62) + 13cos(62÷63)) 

+ (12 _ 12 
yy )sin(e2)cos(82) 

+ + 1 

yy 
4 

yy 
_13 

xx 
_14 

xx )sin(E) 2 +03)cos(02+03)] 612 

[-212Sirl(63)(M3r3 + M413)1 0263 

+ [-I2sin(03)(m3r3 + m413)] 632 

[ m2g r2cos(82) + (m3 + m4)g I2cos(02) 

+ (m3r3 + m413)gcos(02+03)] 

1.24 T3 = EM3(r32+ 12r3cos(03))+ M4(132+1213COS(e3))+ 13ZZ+ I4Zz1e2 

+ [m3r32+ m 
4 3 

1_2+ 
I3ZZ 14ZZ] 63 

+ [m3r3sin(e2+83)(11 + 12cos(82)+ r3cos(e2+63)) 

+ m413sin(02+03)(11 + 12cos(e2)+ 13cos(02+03)) 

3yy +14yy 3xx 4xx -I 4. 
)sin(02+03)cos(62+03)] 012 

+ [m312r3sin(e3)+m41213sin(e3)] 622 

+[(m3r3+m413)gcos(e2+03)] 

In order to implement the dynamic equations of the robot in the 

computer, they are put in state variable form. Following the form used by 

Dubowsky and DesForges [2], the differential equations are written in the 
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form: 

- 
1.25 m11 11112 m13 81 g12ei 9,38, T 01 

a 1 2 1 22 Ln- 2 3 82 92162 922612 92362 e2 T 2 Q2 

1131 11132 Ln-33 83 93183 93283 93383 83 T 3 Q3 

where Qi represents gravitational and other forces not included in the 

left hand side of the equation. Note that the elements of the M matrix are 

underlined so as to distinguish them from the m's representing the link 

masses. The state variables for the system are defined as. 

1.26 Y(1) = el g(4) = e, g(1) = g(4) 

y(2) = 82 y(5) = 62 g(2) = y(5) 

y(3) = 03 y(6) = 63 g(3) = y(6) 

Writing equation 1.25 using the state variables given in equation 

1.26 gives: 

1.27 g(4) m m .11 .12 m .13 

M121 1:1121 2 1223 

1_31 121 311:31 3 

-1 T1 

T2 

T3 

Q1 

Q2 

Q3 

... 

g11y(4) g12y(4) g13y(4) 

921092209245) 

g3Iy(6)g32y(6)g33y(6). 

w 

y(4) 

y(5) 

y(5) 

ae 

Equations 1.26 and 1.27 represent the equations of motion for the 

manipulator. 
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1.28 g(i) = y(4) 

9(2) = y(5) 

g(3) = y(6) 

9(4) T1 Q1 G1 

9(5) = T2 - Q2 - 02 

9(6) T3 03 03. 

Simplifing the form of the matrix equation, the last two matrices are 

multiplied together to form a new column matrix G. The state equations in 

1.28 represent these changes. The expressions for the elements of the M, Q, 

and 6 matrices are obtained from the equations of the torques given earlier. 

1.29a m» = m1r12 + m2(11 + r2cos(e2))2 + m3(11+12cos(82) 

+ r3cos(82+63))2 + m4(11+12cos(02) + 13cos(e2+03)) \)2 
+ I zz 

+ 12XX sin2(62) + 1 2uucos2(02)+ (13 
YY 

414 
YY 

)COS2(82+03) 

(13xx I4xx)sin2(02+e3) 

1.29b M22 = m2r22 + m3(122 + 2 12r3cos(e3)+ r32) 

m4(122 + 2 1213cos(e3) + 
132) 

+ 
12 4. 13 + 14 

ZZ ZZ ZZ 

1.29c M23 = IM32 = m3( r 3 2+12r3cos(e3))+ m4(13 2+1213COS(e3)) +13ZZ+14ZZ 
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1.29d 2:31 3 = m3r32 + rn4132 + 13 + 14 
zz zz 

1.29e Gl = H2r2m2sin(02)(11+r2cos(02)) - 2m3(12sin(e2)+ r3sin(e2+83)) 

*01+12COS(02)+r3COS(132+e3))-2M4(12Si11(e2)+13Sin(62+63)) 

*(11+12cos(02)+13cos(02+83))+ 2sin(e2)cos(e2)( 12xx -12yy) 

+ 2sin(e2+83)cos(e2+83)(13XX +14XX - 13N-14uu)1 e1e2 

[ -2 m3r3sin(e2+e3)(11 + I2cos(e2) + r3cos(e2+e3)) 

-2 m413sin(e2+e3)(11 + 12cos(e2) 13cos(e2+03)) 

+ 2 sin(e2+e3)cos(e2+63)(13xx +14xx - 13yy-14uu)l e1e3 

1.29f G2 = [--212Sirl(e3)(M3r3 m413)] e2e3 

1.29g 63 = 0 

1.29h Ql = 0 

1.291 Q2 = [ m2r2sin(e2)(11 +r2cos(e2)) + m3(12sin(02) + r3sin(02+03)) 

$(11 + 12cos(e2) + r3cos(e2+83)) + m4(12sin(e2)+ 13sin(e2+63)) 

m(li + 12cos(02) + 13cos(82+03)) + (12yy-12xx )sin(e2)cos(e2) 

sin(e2 +e3)cos(e2 +e3)( 13yy+1 4gu-13XX -1 4Xx )1 612 

[ -12Sirl(e3)(M3r3 m413)] (2)32 

+ [m2gr2cos(e2)+(m3+m4)gl2cos(e2) 
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+ (m3r3 + m413)gcos(62+63)] 

1.29j Q3 = [ M3r3Sin(e2+e3)(11 12COS(62)+ r3COS(82+83)) 

+ m413sin(62+63)(11 + l2cos(e2) + 13cos(62+63)) 

+ Sill(e2+e3)COS(e2+63)( 
13yy+14yy-13xx-14xx)1 612 

+ [ m312r3sin(63) + m41213sin(63) 622 

+ [(m3r3 + m413)gcos(e2+63)] 

Symbolically inverting the M matrix yields: 

1.30 

IMO 

0 

1 0 0 

m33 -m23 - 

M3311_122 - 11:1232 r113311122 - 21232 

0 -m23 m22 

133122 -12323122 - 12232 

Finally, the form of the equations used in the computer solution is: 

1.31 g(1) = y(4) 

g(2) = y(5) 

g(3) = y(o) 

g(4) = [T1 - - Gi] imil 

g(5) = [ 133( 1-2-Q2-G2 ) - L1123( T3 - Q3 - G3 )1/[ _111_3 (3121 2 - 12321 

y(6) = m22( T3-Q3-G3 ) - _111_23( T2 - 02 G2 )1/[ r(1331121 2- 1-2321 
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Calculation of Moments of Inertia of Links 

The actual links of the IRI manipulator are nonhomogeneous 

nonsymmetrical bodies, but for the purpose of the computer simulation, a 

simplified model of the links will be used. Figure 3 represents a model link. 

y 
2b, 

x 

FIGURE 3. Model of Robot Link 

The model is a solid homogeneous body that is symmetrical about the x 

axis. At x=0, the cross-section is a square of dimension 2a x 2a, and at x=X, 

the cross-section is a square of dimension 2b x 2b. The center of mass of 

the link is located at x =r' on the x axis. The variable r' is used here to 

represent the distance from the aft end of a link to the center of mass. This 

is different from r, which is used to represent the distance from the origin 

of the link coordinate system to the center of mass. For links 2 and 3 , r' 
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will equal r. For link 1, however, r' does not equal r. 

To calculate the moments of inertia of each link, the following 

equations are used. 

1.32a 

1.32b 

1.32c 

XX 
J(y2 +z2)dm 

= J(x2 +z2)dm 

I 

ZZ 
.7: f(x212)dm 

To perform these integrals, the limits of integration must be 

determined. If the values of r' and X were known for each link, then using 

the formula for x, the ratio of a/b could be determined. The equation for 7 

is: 

1.33 r' = x = (jx dm)/(f dm) 

Then by knowing the weight of each link, and by selecting a suitable 

density for the solid, the values of a and b could be determined by: 

1.34 W/(32.2 ft/s2) = j dm where W = weight of link 

The proper limits of integration can be defined, once the values of a and 

b are determined for each link. 

From the model of the link given in Figure 3, the integral of x dm is 

given as: 
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qax'a x+a 
1.35a fx dm = 4p f xdx f dy f A dz 

a a 

x 

1.35b = 4p f x {[(b- a) /X]x + a }2dx 
0 

1.35c = 1/3pX2[3b2 + 2ab + a2] 

The integral of dm is given as: 

.t"tlx.a 

j 

x +a 
1.36a f dm = 4p f x dx f dz 

o 0 0 

1.36b = 4p f0{[(b-a)/Xlx + a}2dx 

1.36c = 4/3px[b2 ab a2] 

The location of the center of mass is then given by: 

= (f x dm) /(f dm) 

1.37 x = [X(3b2 + 2ab + a2)]/[4(b2 + ab + a2)] 

and since x = r', then 

1.38 3b2 2ab + a2 - ALL 

b2 + ab + a2 X 

or 12 - 4r' - 2N + 1(2X-4r12 - 4(3X-40(X-4r) 
a 2(3X-4r9 

*The negative solution of the equation is discarded. 

To calculate the ratio of b/a then, the length of the robot links and the 

location of the center of mass of each link must be known. This 

information is given in Table 1 and was provided by 1R1 (with the exception 
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of the value of r' for link 1 which was estimated). 

TABLE 1 

Link X r' 

1 41.0" 29.0" 

2 32.0" 17.5" 

3 37.0" 17.25" 

Given these physical parameters of the robot links, then the calculated 

ratios of b/a are: 

Link 1 b/a = 6.504 

Link 2 b/a = 1.330 

Link 3 b/a = 0.8154 

The weight of each link is given by the equation 

1.39 W = 32.2 J dm 

The weights of each link have been provided by IR1, however, a value of 

the volume of a link is necessary for calculating density. Assuming that the 

links are homogeneous solids with no concentrated masses, then the density 

can be assumed to be constant over the entire link and is equal to mass 

divided by volume. Link 2's volume was approximated to be 2.667 ft3 (12" x 
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12" x 32"), and the weight of link 2 (given by IRI) is 60 lbs. The calculated 

density of link 2 is: 

1.40 p = [60 lbs/(32.2 ft/s2)1/2.667 f t3 

= 0.699 slugsif t3 z 0.7 slugsif t3 

All the links of the robot are assumed to have the same density, so the 

calculation of equation 1.40 will serve as the representative density of all 

the links. Table 2 shows the results of the solution of the a's and b's using 

the value of 0.7 slugs/ft3 for p. 

TABLE 2 

Weight (W) a 

199 lbs 2.37" 15.40" 

60 lbs 5.13" 6.82" 

66 lbs 6.43" 5.24" 

These values of a and b are used to calculate the limits for the 

integrals of the moments of inertia given in equations 1.32a, 1.32b, and 

1.32c. The general form of the integrals are the same for each link of the 

robot. Three primary integrals are involved, these being fx2dm, fy2dm, and 

1z2c1m. Due to symmetry about the x axis, though, the integrals of y2dm and 

z2dm will be equal. This leaves two expressions to be derived. In 
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calculating the moments of inertia for the links, the link center of gravity 

is used for the calculation. The limits of integration for the y and z axes 

can be expressed as a function of x, given the slope and intersection of the 

planes, which are the sides of the link solids. These slopes and 

intersections can be calculated from the values of a and b for each link, 

given the location of the center of gravity of each link within the link 

solid. Figure 4 shows the location of the center of gravity of the links of 

the robot. Given the information in Figure 4, and the values of a and b for 

each link, the slope and intersection of the sides of the links can be 

determined. Expressing the limits of integration in the g and z directions as 

1.-- 
1 3 9 

-.1 -P14"I4--14- 17.5" 
PI 

- 
II al 

Designates center of maRs 

- Desi gnates location of oh qin 
of coordinate system 

FIGURE 4. Coordinate Systems and Centers of Mass. 
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functions of x yields the form -- mx+c, where m is the slope and c is the 

point of intersection. Applying this form to the equation for the moment of 

inertia about the x axis gives: 

1.41 ixx = J g2dm z2dm = 2 J vdm 

di 

= 2p J dx 

mXt-C rhXf-C 

y2dy J dz 
-(mx+c) ...(tnx<c) 

where d1 and d2 represent the aft and fore intersection of the 

link solid with the x axis respectively. 

Since the links are symmetrical about their x axes, the limits of 

integration can be changed from -(mx+c) to mx+c, to, 0 to mx+c, and then 

multiply the integral by 4. This gives the final expression for inertia about 

the x axis. 

di ftvio-c x4-c. 

1.42 xx 8p foidx 50 y2dy Jo dz 

Performing this integration gives the general form for calculating the 

moment of inertia about the x axis of each link. 

d, 
1.43 xx = 

8/ 
3 
p[(m4x5)/5 m3x4c 2m2x3c2 2mx2c3 xc4] 

, 

The calculation of the moments of inertia about the y and z axes 

follows the same reasoning used previously. Due to symmetry, these 

inertias are equal, and therefore only one need be derived. From equation 
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1.32c, the moment of inertia about the z axis is: 

I ZZ J(x2 +y2)dm 

From equation 1.43, the expression for 2 times the integral of y2dm is 

derived. Dividing this equation by 2 give the expression for the integral of 

y2dm. Calculating the integral of x2dm gives: 

d2 mx+c mx+c 
1.44 f x2dm = 4p f x2dx fo dy Jo dz 

d 
1 

= 4p [(m2x5)/5 (mcx4)/2 + (c2x3)/311d2 

Combining the expressions for the integrals of y2dm and x2dm gives the 

expression for the moment of inertia about the y and z axes of each link. 

1.45 rn3x4c 2m2x3c24. 2mx2c3 + xelid2 
I Wg 

4/3p((m4x5)/5 
dt 

+ 4p((m2x5)/5 + (mcx4)/2 + (c2x3)/31r2 
d1 

Table 3 contains all the link parameters used in the calculation of the 

values of the moments of inertia. 
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TABLE 3 

Link Mass, a(in) b(in) d2(in) m c(in) 

1 6.18 2.37 15.40 -29.0 12.0 .318 11.58 

2 1.863 5.13 6.82 -17.5 14.5 .0529 6.504 

3 2.050 6.43 5.24 -17.25 19.75 -.0321 5.877 

Using these values, the respective moments of inertia can be computed 

using equations 1.43 and 1.45. These values are: 

11xx = 4.084 I2xx = .3182 13xx = .3289 

Puy = 5.684 12yy = 1.240 Puy = 1.771 

1 lzz = 5.684 1 2zz = 1.240 13zz = 1.771 

All inertias are in slug -f t2 

This completes the derivation of the dynamic equations of the model 

robot and the calculation of the moments of inertia of the links. The 

equations and the values derived in Chapter 1 will be implemented in Chapter 

2 in the form of a computer simulation of the robot. In Chapter 2, various 

control systems will be examined in conjunction with model reference 

adaptive control. 
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II. MODEL REFERENCE ADAPTIVE CONTROL DEVELOPMENT 

The development of the model reference adaptive control algorithm 

follows the work done by Donalson and Leondes [I]. In designing a model 

reference adaptive control system for the robot the type of control system 

to be used must be selected. The choice of control used with the model 

reference adaptive control algorithm has a great deal to do with the way the 

algorithm performs. 

Proportional Integral Control with Derivative Feedback 

The IR robot uses PO control, and in the first efforts to choose a 

control system, proportional and integral control were incorporated in a 

feed forward compensator with unity and derivative action in the feedback 

(see Figure 5). The placement of the derviative action in the feedback gives 

the desired anticipation without adding another zero to the closed loop 

transfer f ucnt ion. 

Assuming a simplified model of the robot of the form Km/s(Js+f), 

where Km is the motor torque constant in ft-lbs per radian, J is the 

effective inertia about the axis in slug-f t2, and f is the viscious friction 
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FIGURE 5. Proportional Integral Control with Derivative Feedback 

factor in ft-bs per radian per second, the closed loop transfer function of 

the control system is: 

2.1 T(s) = bis ao 

s3 a2s2 ais ao 

where b1 = KmKD 

J 

a2 = f + KmKiKd 

J 

= KmKD + KmKiKd 

J 

ao = KmKi 

J 

and where Kp, Ki, and Kd are the proportional, integral, and 

derivative gains respectively. 

Given the form of the closed loop transfer function of the system, a 
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reference model of the same form is chosen with constant coefficients. 

The coefficients of the model are chosen so that the output of the model 

will have the performance characteristics desired of the robot. The form of 

the model is: 

2.2 M(s) = Bps + Ao 

s3 + A2s2 + Ais + Ao 

where Ao, A1, and A2 are constant coefficients chosen so 

that the model responds the way it is desired that the robot 

respond. 

parameters of the robot model are assumed to vary with time in 

some unknown manner. The principle cause of the variation is the change in 

J due to load and orientation. The control system parameters, Kp, Ki, and Kd 

are adjusted by the model reference adaptive control algorithm so that the 

values of b1, a2, al, and ao are driven towards the values of the constant 

coefficients of the reference model, B1, A2, A1, and Ao, using a steepest 

descent trajectory. 

it is clear that this control system configuration does not produce 

enough system parameters to independently adjust the coefficients of the 

closed loop transfer function of the system. There are 4 coefficients to be 
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adjusted and only 3 system parameters, Kp, Ki, and Kd. 

This control system configuration is unfit for the model reference 

adaptive control algorithm, however, if another system parameter could be 

added to the control system without increasing the number of coefficients 

in the closed loop transfer function, then there would be enough system 

parameters to independently adjust the coefficients of the closed loop 

transfer function. By adding a second derivative term in the feedback loop, 

this is accomplished (see Figure 6). The closed loop transfer function is: 

2.3 T(s) = b1s + ao 

s 3 
+ a2s 2 

+ ais + ao 

where b1 = KmKD 

J + KmKpKa 

a2 = f + KmKiKa + KmKdKp 

J + KmKpKa 

= KmKiKd + KmKD 

J + KmKpKa 

ao = KmKi 

J + KmKpKa 

and where Ka is the coefficient of the second derivative term 

This configuration meets the required number of system parameters 

needed to independently adjust the coefficients of the closed loop transfer 
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FIGURE 6. Modified Control with Second Derivative Feedback Added. 

function. However, relatively complex equations are derived for use in the 

model reference adaptive control algorithm from this configuration. The 

equations that result are of a highly coupled nature, and when tested, are 

unsuccessful in adjusting the gains of the control system. 

P1D Control 

Figure 7 is a diagram of a P1D control system, and in this case, the 

K i 
+ K p + 

K rn 

Js 

FIGURE 7. P1D Control 

simplified model of the robot is of the form Km/Js2. This form of the 
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simplified model of the robot neglects any viscious friction terms which 

might exist in the robot. In neglecting these terms, it is assumed that these 

forces are small in comparison to the inertial forces acting on the robot 

and therefore do not significantly affect the dynamic characteristics of the 

robot arm. Given this control system, the closed loop transfer function is: 

2.4 T(s) = a2s2 + ais + act 

s3 + a2s2 + ais + ao 

where ao = KmKi 

J 

a1 = KmKD 

J 

a2 = KmKd 

J 

and the model is of the form: 

2.5 M(s) = A2S2 + Ais + Ao 

s3 + A2s2 + Ais + Ao 

where Ao, A1, and A2 are constant coefficients chosen to give 

the model the response that is desired of the system. 

Following the steps outlined by Donalson and Leondes [11, the gain 

adjustment equations are derived. Two initial assumptions are made. 
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Assumption I 

Km/J Varies slowly compared to the basic time constants of 

the physical process and the reference model. 

Assumption 2 

Km/J varies slowly compared to the rates at which the 

adjusting mechanism adjusts the parameters Kp, Ki, and Kd. 

The first step is to define a quadratic error function which is to be 

minimized by the adjusting algorithm. The error function selected is: 

2.6 f(e) = I Q02 
+ 

aio cl2d2 qiezt 

2 

where e e - y 

q's are the weighting factors for the errors 

e is the output of the system 

and y is the output of the model 

A steepest descent method is derived by Donalson and Leondes in which 

the rates of adjustments of the coefficients are proportional to the 

negative of the slopes of the error function in the directions of the 

coefficients. If the response of the model and system are alike, the slopes 

of the error function in the direction of the model coefficients are equal to 
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the negative of the slopes of the error function in the directions of the 

system coefficients. The slopes of the error function in the directions of 

the system coefficients are unknown, but the slopes in the directions of the 

model coefficients can be computed. The adjustment rates are: 

2.7a ao = 8f(e) 
aA0 

2.7b = 8f(e) 
aAi 

2.7c a2 =afe 
aA2 

With regard to these equations, a third assumtion is made. 

Assumption 3 

The adjusting mechanism will be designed so that it adjusts 

the parameters Kp, Ki, and Kd at a rate that is rapid when 

compared with the rate at which f(e) changes due to the 

effects of the input r(t). 

Taking the respective partial derivatives of the error function gives: 

2.8a ao = -qoe au_ -qie -q2e a*U_ -qie 
8A0 aA0 aA0 aA0 

2.8b = -goe aci -q2 ag 

aAl aA1 aA, aAl 
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2.8c a2 = -qoe ay_ -qie ay_ -q2d 

aA2 aA2 8A2 8A2 

The transfer function of the model can be expressed in the form of the 

differential equation: 

2.9 g + A2g + Alg + Aoy = A2F+ Ali- + Aor 

where y is the output of the model and r is the command input to 

the system and the model. 

Taking the partials of the differential equation with respect to A2, A1, 

and Ao yields: 

2.10a ag + A2 ag + A1 8g + Ao ay = r - y 

aA0 aA0 aA0 aA0 

2.10b + + A1 ag + Ao 8y = f- - 
aA, aA, aA, aA, 

2.10c ag +A2 ag + Aix + Ao_ay_ = P - g 

aA2 aA2 8A2 aA2 

Defining u as ay/8A0, v as ava,41, and w as ay/8A2, and taking the 

derivatives of u, v, and w with respect to time (assuming the order of 

differentiation can be interchanged) gives: 

2.11a u =amt u= u= u= ag_ 
aA0 aA0 aA0 aA0 

2.11b v= \./ = amt = amt = 

aA, aA, aA1 aA, 
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2.11c w = 

aA2 

X/ = 3- 
aA2 aA2 

= 

aA2 

This set of equations is substituted into equations 2.8a, 2.8b, and 2.8c 

and also into equations 2.10a, 2.10b, and 2.10c. The resulting two sets of 

equations are: 

2.12a ao = -q0e u - q1e u - q2 - 

2.12b = -cioe v C12 C13. 

2.12c a2 -C10e W Che Cl2e CA/ (13. 

and 

2.13a u + Aou= r - y 

2.13b A2V + A1/ + AoV = - 

2.13c CA./ + A2V,./ + AIW + AoW = - g 

Previously ao, al, and a2 were defined in terms of the system 

parameters Kp, Ki, Kd, and the simplified robot model parameters Km/J. 

Taking the derivative with respect to time of these expressions gives: 

2.14a 

2.14b 

2.14c 

a° = Km. Ki 

J 

= 

J 

a2 = 

J 
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Km and J are considered to vary slowly with respect to Ki, Kp, and Kd 

and are therefore considered constant when taking the derivative with 

respect to time. Solving for Km/J in terms of ao, al, a2, and the system 

gains and substituting these expressions into the equations 2.14a, 2.14b, 

and 2.14c yields: 

. 
2.15a = ao Ki 

ao 

2.15b 1:p = Kp 

a1 

2.15c Kd = a2 Kd 

a2 

Assuming that the adaptive mechanism adjusts the system gains so that 

adzIA0, aezAi, and aezA2, then the values of ao, al, and a2 can be replaced by 

the constants Ao, A1, and A2. This gives: 

2.16a Ki = Ki 

Ao 

2.16b Kp = a. Kp 

Al 

2.16c Kd = a2 Kd 

A2 

All the equations necessary for implementing the model reference 

adaptive control are derived. In order to implement the system, the 
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FIGURE 8. Control System Schematic 

following procedure is followed (see Figure 8). 

1. The command input, r, is fed into the control system and into the 

model where the model response to the input is calculated. 

2. The system response to the input is compared with that of the 

model, generating the e's used in the error function. 

3. The output from the model along with the derivatives of the input 
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are used as forcing functions to compute the values of u, v, and w 

and their derivatives. 

4. The values of u, v, and w and their derivatives along with the error 

signals (e's) and the error weighting factors (q's) are used to solve 

for 50, al, and a2. 

5. Knowing the values of ao, al, and a2 and knowing the present values 

of Ki, Kp, and Kd, the adjustment rates of the gains are computed. 

6. Integrating Ki, Kp, and Kd yields Ki, Kp, and Kd. 

The implementation of this in the computer (along with the dynamic 

equations developed for the robot in the previous chapter) is done to test 

the equations developed. A model is chosen, thus defining the values of Ao, 

A1, and A2. In choosing the model, a pair of complex conjugate poles are 

chosen so that a second order system described by them has a damping ratio 

of 0.9 and a natural frequency of 3 radians per second. A third pole is 

chosen to be located on the real axis at -10 so as to diminish its effects on 

the other two dominant poles. The zeros of the model are dictated by the 

values of Ao, A1, and A2 chosen in locating the poles. The transfer function 

of this model is: 
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2.17 M(s) = 15.452 + 63s + 90 

s3 + 15.4s2 + 63s + 90 

The differential equation describing the model is: 

2.18 g +15.48 + 63y + 90 y = 15.4F + 63r: + 90r 

In order to calculate the response of the model, the differential 

equation describing the model is written is state variable form and 

numerically integrated using a Runga Kutta Gill numerical integration. The 

form of the state variable equation is: 

r- 
2.19 X1 0 1 0 A2 0 

X2 0 0 1 X2 Al r - 0 r 

X3 -A0 -A1 -A2 X3. Ao - 2A1A2 A22 

where Ao = 90, A1= 63, and A2 = 15.4 

The output equations are: 

2.20 g 7* xi 

g x2 + A2r 

g = x3 + Air + A2i- 

It is noted that there is no output equation given for g. Because the 

value of g that would be returned by the state equations would be error 

prone, and due to the fact that is would be difficult to obtain x from the 
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robot, the error weighting factor q3 is set to zero. This eliminates the need 

for both g and x in the equations used by the adjustment mechanism. 

The results of the simulation follow. A standard move sequence is 

used in all the simulations that follow. The command input, r, given in 

Table 4 shows the move sequence the robot is commanded to. execute. All 

simulations are for the torso axis of the robot only, the upper-arm and 

forearm of the robot are extended straight out with gravity offset torques 

at their respective joints. 

TABLE 4 

Time (sec) Input Learning 
from to Signal Signal 

0 5 Yes 

5 6 Ramp, +1 slope No 

6 10 1 No 

10 15 1 Yes 

15 16 Ramp, -1 slope No 

16 21 0 Yes 

Table 4 shows that the robot torso is commanded to move to a 

displacement of 1 radian at a velocity of 1 radian per second and to hold 
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there for 4 seconds. After 4 seconds have passed, a payload can be 

specified for the robot to pick up, after which the robot is given 5 seconds 

to adjust to the new load. The robot is then commanded to move back to its 

starting position at a velocity of -1 radian per second. The last column of 

the table indicates whether or not the robot is being given a "learning 

signal". A learning signal is a high frequency, low amplitude signal which is 

added to the command input. The learning signal creates a small 

perturbation which induces gain adjustment activity in the adjusting 

mechanism. The learning signal is useful in heightening the adaptive 

mechanism's sensitivity to changes in the robot's physical status. 

To test the performance of the adjustment mechanism, a simulation is 

made in which the final proper values of the system gains are known. 

Instead of using the dynamic model of the robot developed in chapter 1, the 

simplified model of the robot used in the derivation of the adjustment 

mechanism is used in the simulation. The simplified robot model is Km/Js2, 

where Km is the motor torque constant and J is the inertia. It is assumed 

that Km is constant and the inertia about the torso axis will also remain 

constant (i.e. no payload will be added to the robot arm during the move and 

the forearm and upper-arm assemblies of the robot will maintain in fixed 
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positions during the move). By specifying the ratio of Km/J to be 1, the 

proper values of Ki, Kp, and Kd correspond to the values of Ao, Al, and A2 

respectively. 

Figure 9 represents the response of the ideal system in comparison to 

the model response when the system gains are preset 10% above their proper 

values. The standard move was executed with the following parameters: 

learning signal frequency of 30 hz, amplitude .0035 radians, no payload 

picked up by the robot, gel°, q1 =7, and q2=1.711. It is the intent of the 

model reference adaptive control system to cause the response of a system 

to conform to a desired model response. Figure 9 shows a slight difference 

in the response of the system and the model at the end of the first ramp up. 

This, however, is the only noticable deviation between the system and the 

model, and therefore it could be said that the model reference adaptive 

control system did what it was intended to do. 

Inspection of the gain adjustment activity, however, reveals that the 

system gains were not driven to their proper values. The derivative gain, 

Kd, adjusted to within +8% of its value, the proportional gain, Kp, to within 

+9.99% of its value, and the integral gain, Ki, did not adjust at all. The fact 

that there was so little gain adjustment could be because the q values were 
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FIGURE 9. Ideal System Response vs Model Response. 

too low. Another test was made with q0=200, q1=140, and q2=34.22. Figure 

10 is a plot of the response of the system and the model, and Figure 11 is a 

plot of the gain adjustments. The response of the system in this test is 

much worse than the previous test. The gains, however, did strow more 

adjustment activity. The derviative gain, Kd, adjusted to within -0.17% of 

its value, the proportional gain, Kp, to within +8.8% of its value, and the 

integral gain, Ki, to within +9.9% of its value. It appears that the 

proportional and integral gains are adjusting in the proper direction, but 

don't adjust rapidly enough to make it to their correct values. The response 

of the system in this test when compared to Figure '9, though, clearly shows 
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FIGURE 10. System Response vs Model Response with Increased q Values 
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FIGURE 11. System Gain Adjustments with Increased q Values. 
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that the first q values produced the best system response. Even though the 

system gains were not driven to their correct values in Figure 9, this does 

not indicate that the adaptive mechanism failed. On the contrary. The 

results of the first test showed that the system did respond in the desired 

manner ( i.e. the system response was nearly identical to that of the model). 

In examining the adaptive mechanism, the gain adjustments are driven 

by an error signal generated by the differenCe between the system and model 

response. Equation 2.6 shows that the error function is a positive definite 

function and the Euclidian Space formed by the function f(e) has only one 

minimum point and has a positive slope at all other points. If the system 

response at some time is different than that of the model, then the value of 

f(e) on the f(e) space lies away from the minimum point and the slope of the 

f(e) space at that point is negative. The gain adjustment equations use an 

approximation of the slope of the f(e) space at that point to calculate a gain 

adjustment that is based on a steepest descent trajectory, driving the value 

of f(e) toward its minimum value of 0. 

Therefore, if the system is behaving like the model, then the values of e 

are small and the value of f(e) is near its minimum. With this in mind, the 

behavior of the system gains in Figure 9 can be explained by the fact that the 
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difference between the system response and model response was small, 

therefore, little gain adjustment occured. 

Figures 12 and 13 represent a test of the gain adaption mechanism 

using the robot dynamic equations to compute the response of the robot. 

The standard move is executed with the following parameters: learning 

signal frequency of 30 hz, amplitude of .0035 radians, a payload of 2 slugs 

is picked up, q0=200, q1=140, and q2=34.22.- The initial values of gains are 

Kp=98.19, Ki=140.26, and Kd=24 (these values of gain make the closed loop 

transfer function coefficients directly proportional to those of the model). 

system 
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0 

model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 

Time seconds 

FIGURE 12. System Response vs Model Response using Robot Dynamic 

Equations. 
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FIGURE 13. System Gain Adjustments using Robot Dynamic Equations. 

Figure 12 shows that the robot's response is generally of the same 

form as that of the model. The robot tends to experience more overshoot 

than the model but it recovers well and has a good settling time comparable 

to that of the model. Another note is that the robot shows a consistent 

response when comparing its motion with and without a payload. This 

supports the control system's ability to adapt to a changed physical 

condition and maintain consistent performance. The gains of the system did 

not adjust in a predictable manner that was expected with the addition of a 

payload, however, the gains of the system are adjusted so as to minimize 
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the error function which is a function of the f(e) space. 

Based on these results, the PID control system responded in a manner 

consistent with the expectations of the model reference adaptive control 

system. Although perfect conformity to the model response was not 

achieved, the performance was consistent when tested under changing 

physical conditions. 
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Proportional Control with Derivative Feedback 

Figure 14 is a diagram of the control system using proportional control 

with derivative feedback. The development of the gain adaption mechanism 

is exactly the same as for the PID control, with the only difference being 

that the simplified model of the robot used is Km/s(Js+f). 

-A 
Kp 

Km 

s(Js + f) 

1 + Kd s 

FIGURE 14. Proportional Control with Derivative Feedback. 

The closed loop transfer function of the system is: 

2.21 T(s) = 1 

a2s2 + ais + 1 

where a2 = J 

KmKp 

= f + Kd 

KmKp 

and where Kp is the proportional gain, Kd is the derivative 
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feedback gain, f is the viscous friction factor, J is the inertia 

of the system, and Km is the motor torque constant. 

The transfer function of the model is: 

2.22 M(s) = 1 

A2s2 + Ais + 1 

where Aland A2 are constant coefficients chosen to give the 

model the desired response. 

The error equation to be minimized is: 

2.23 f(e) [ que2 + (110 4. (1262 1 

2 

where e e - y 

e is the output of the system 

and y is the output of the model 

The rates at which the coefficients of the system adjust are: 

2.24a a, = Of(e) = -qoeu - (ilea - 
aA, 

2.24b a2 = 81(e) = -qoev - qieN - q2aQ 

8A2 

where 

and 

u= au_ 

0A1 

v au_ 

8A2 
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The equations for calculating u and v and their derivatives are: 

2.25a A2ii + AIO + u = 

2.25b A2./+ Ai/ 4- v = -g 

Taking the derivatives of the coefficients of the system closed loop 

transfer function gives: 

2.26a a2 = 

KmKp2 

2.26b a1 = -f.KD + Kd 

KmKp2 

Solving for the derivatives of the gains yields: 

2.27a Kp = -a2KD 

A2 

2.27b Kd = a1 - 62(A1 -Kd) 
A2 

The coefficients of the model transfer function are chosen so that the 

second order system described by them has a natural frequency of 3 radians 

per second and a damping ratio of 0.9. The model transfer function is: 

2.28 M(s) = 

0.111s2 + 0.6s + I 

To test the gain adaption equations, an ideal system of the form 

Km/s(Js+f) is used to represent the robot. By setting Km and J equal to 1 
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and f equal to zero, the proper values of the system parameters, Kp and Kd, 

can be determined. 

Figures 15 and 16 represent a test of an ideal system with the system 

parameters initially off by +10%. The standard move is executed with the 

following parameters: learning signal of frequency 30 hz and amplitude of 

0.035 radians, no payload was picked up by the robot, q0=1, q1=0.6, and 

q2=:0.111. The response of the model and the system are very close. The 

model rises quicker than the system on the first ramp, but after that , the 

responses are identical. The plots of the gain adjustments in Figure 16 

shows that both gains are driven to their proper values during the course of 
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FIGURE 15. Ideal System Response vs Model Response. 
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FIGURE 16. System Gain Adjustments with Ideal System. 

the move. Another test, with the gains initially off by +70% is shown in 

Figures 17 and 18. Figure 17 shows that initially the response of the 

system is greatly different from the model, but on the second ramp down, 

the responses, again, are nearly identical. The gains in this test did not 

exactly reach their proper values, but it appears that the adjustment 

mechanism is driving them toward those values. 

Figures 19 and 20 show the results of the test of the gain adaption 

mechanism using the robot dynamic equations. The initial values of the 

gains are; Kp=13.068, and Kd=0.6. The q values are; q0=1, q1 :70.6, and 
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FIGURE 17. Ideal System Response vs Model Response. 
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FIGURE 18. System Gain Adjustments using Ideal System. 
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FIGURE 19. System Response vs Model Response using Robot Dynamic 

Equations. 
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FIGURE 20. System Gain Adjustments using Robot Dynamic Equations. 
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q2=0.111. At time equals 10 seconds, a payload of 2 slugs is added, causing 

the gains to adjust in order to maintain proper system response. Figure 19 

shows that the response of the system is very close to that of the model, 

with the exception that the system has a bit more lag that the model after 

the second ramp. 

This concludes the results of the simulations made with the various 

control configurations on the torso axis. In the next section, some 

simulations are made with all three axes of the robot being controled. 
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Three Axis Control 

The three axis simulation of the robot is the final test of the model 

referenced adaptive control system. Again, a standard move is executed by 

the robot. The move consists of a tuck, load, and rollout sequence. For the 

tuck portion of the move, el, 02, and 03 are commanded to simultaneously 

ramp at a rate of 1 radian/second fort second from an initial displacement 

of 0. This causes the elbow to move up fr'om 0 degrees to 57.3 degrees (1 

radian), the shoulder to move up from 0 degrees to 57.3 degrees (1 radian), 

and the torso to swing from 0 degrees to 57.3 degrees (1 radian). A load of 

2 slugs is added to the robot, and then, for the rollout portion of the move, 

the reverse motion of the tuck is performed. 

For the three axis simulation, the proportional with derivative 

feedback control configuration is used for all three axes. The results are 

qualitative in nature, and are concerned primarily with the form of the 

response curves. Gain adjustment data was analyzed, but it is beyond the 

scope of this paper to adequately evaluate those results. 

Figure 21 shows the response of the three axes with gains fixed. The 

shoulder axis is affected the most by the inertial changes followed by the 

elbow and then the torso. Figure 22 shows the response of the three axes 
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FIGURE 21. System Response with Fixed Gains on All Axes. 
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FIGURE 22. System Response with Model Referenced Adaptive Control 
on All Axes. 
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with model referenced adaptive control on all three axes. The response of 

the shoulder axis is greatly improved by the adaptive control, however, the 

torso's response is greatly degraded when compared to the fixed gain 

simulation. The elbow's response was somewhat better with adaptive 

control. 

Figure 23 shows the response of the torso compared to that of the 

model with the gains fixed on the shoulder: and elbow, and model referenced 

adaptive control on the torso. This shows a greatly improved response for 

.75 
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Time - seconds 

FIGURE 23. Torso Response with Model Referenced Adaptive Control on 
Torso Axis and Fixed Gains on All Other Axes. 
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the torso over that of Figure 22. 

It was the overall case that when model reference adaptive control is 

added to all three axes, the adaptive algorithm does not yield good response 

from all axes. In addition to this, the q value selection becomes much more 

critical. Numerous q values were tested that gave unstable response from 

one or more of the axes involved in the simulation. Selecting q values that 

produced good response in each axis separately might well cause the system 

on the whole to go unstable. 

This concludes the results of the tests of the model referenced 

adaptive control system. In the next chapter, some observations and 

conclusions are made about these results with recommendations for further 

study. 
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III. OBSERVATIONS AND CONCLUSIONS 

The results presented in Chapter 2 represent the best results obtained 

from the research for each control system. During the course of 

investigating each of the different systems, several observations were made 

which were not included in the presentation' of the results. 

The tests of the different control systems shows that the control 

system configuration has a great deal to do with the way in which the 

adaptive mechanism performs. This is not surprizing, since the development 

of the adaptive algorithm is different for each control configuration. 

Certainly there are some control configurations that are more suited to, and 

respond better to this method of model reference adaptive control than 

others. 

Mathematically speaking, the shape of the f(e) space determines the 

behavior of the adjusting mechanism. In considering a comparison between 

the PID control and the Proportional Control with Derivative Feedback, the 

latter system's gain adjustments performed much better than those of the 

PID control system. This, though, was due primarily to the differences in 
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their f(e) spaces. The f(e) space for the PID control system was aparently 

much flatter in places than that of the Proportional with Derivative 

Feedback system. 

Another observed effect on the performance of the adjusting algorithm 

was the manner in which the adjusting equations are derived for each 

control system. Depending on the control system, there is usually more 

than one way to derive the adjustment rate equations. In the first attempt 

to derive gain adjustment equations for the Proportional with Derivative 

Feedback system, the transfer function was divided through by the 

coefficient of the second order term, J. This is in contrast to the form of 

the transfer function presented in Chapter 2. The tests of the gain adaption 

equations derived from this form of the transfer function were unsuccessful 

in adapting the gains. 

In the development of the gain adjustment equations, a simplified 

model of the robot is used. The dynamic equations of the robot contain 

nonlinear terms of the form 62 and 
1 

.6 but no linear first order terms are 

contained in these equations. In the case of the Proportional with 

Derivative Feedback system, the gain adjustment equations are derived using 

a simplified model of the robot of the form Km/(Js2+fs). This form treats 
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the nonlinear first order terms as being linear for the purpose of developing 

the gain adjustment equations. If viscous friction is incorporated into the 

dynamic equations of the robot, the terms representing it are linear first 

order terms. Adding viscous friction terms to the dynamic equations, 

though, has no noticeable effect on the performance of the PID control or 

the Proportional with Derivative Feedback system. 

During the testing of the different systems, there was a lot of juggling 

of the q values used. The process of trying to find a set of q's that yielded 

the best response from the adaptive mechanism led to a selection based on a 

suggestion in reference [1]. There Donalson and Leondes suggest that 

qty=q2a2, and q1 =q2a1. This makes the q values proportional to the 

coefficients of the closed loop transfer function. By maintaining these 

ratios among the q values, the best system performance was obtained. 

Experimentation was also done on the amplitude of the learning signal 

being applied to the system. The Proportional with Derivative Feedback 

system's response to the learning signal increased significantly with an 

increase in amplitude. Learning signals with amplitudes as high as 5 degrees 

were tested. With large learning signals, the gains would adjust very 

quickly to their proper values. During the testing of large amplitude 
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learning signals, it was observed that after the first ramp input, when the 

input signal was 1, the proportional gain adjusted to an incorrect value and 

stayed there until the next ramp was input that brought the position back to 

zero. This steady state error of the gain value for a nonzero input was 

noticed regularly with the proportional and derivative gains of that system. 

In conclusion, model reference adaptive control provides a viable 

means of approaching the complex probleM of robotic manipulator control. 

The adaptive control mechanism contains only linear differential equations 

that can easily be solved on a real time basis by the control computer. The 

type of control configuration used must be carefully selected, though, as 

not all control systems are suited for this particular adaptive method. 

Recommendations for Further Study 

There are several alternative means of deriving gain adjustment 

equations for the purpose of model referenced adaptive control. One such 

method is sensitivity analysis. 

Using the proportional with derivative feedback system, the following 

analysis can be made. The system equation is given as: 

3.1 Ts(s) = KmKD /J 30 

S2 + (KmKd /J) s KmKp /J s2 ais ao 
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The model equation is given as: 

3.2 Tm(s) _ AO 

S2 + AIS + AO 

And the index of performance is: 

3.3 1(ao,a1) = i/21 Qoe2 4. Q162 

where e = -y 

= - 

It is desired that the values of ao and al that minimize 1(ao,a1) be found. 

Therefore the values where I = Fo(ao,ai) » 0 and = Fi(ao,ai) 0 must 

a ao 3 ai 

be found, where: 

3.4 Fo = Qoe ae + Q1e ae 
Sao aao 

3.5 F1 = Q02 Qie ae 
aai aai 

Expanding equations 3.4 and 3.5 in a Taylor Series gives: 

3.6 Fo(ao+Sao,ai+Sai) = Fo(ao,ai) + aFg Sao + 9F0 Sal + H.O.T. 

aao aai 

3.7 F1(a0+8ao,a1 +Sai) = Fi(ao,ai) + aF1 Sao + aF1 Sal + H.O.T. 

aao aai 

By neglecting the higher order terms (H.O.T) and setting equations 3.6 

and 3.7 equal to 0, Sao and Sal can be solved for. 
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Let: Goo = aFg , Goi = 8F0 , Gio = aFi , and Gil = aF, 

Sao aai aao aai 

Then: (Goo Got 1 [ 'Sao [ -F(/ 
t Gto G11 8a1 - -F1 

Therefore: 

3.8 Sao = FiGoi - FoGii )/( GooGii - GioGoi ) 

3.9 Sal = FoGio - FiGoo )/( GooGii - GioGoi ) 

Let: ay = uo and lg= u1 then: 

aA0 aA, 

3.10 Fo = Qoeuo + Qiatio 

3.10 F1 = Qoeui + Qieui 

111 Goo = Qoeuoo (Woo Qou02 + Q1602 

3.12 Got = Gio = Cheuot + QaUgUi 

3.13 G11 = ()anti QA Qoui2 Q1612 

Where auo = uoo auo = uot and 31A-L = Olt 

aA0 aA, aA, 

The model equation is: 

3.14 g+ A16+ Aoy = Aor 

Differentiating with respect to Ao and Al yields: 

3.15 
(.1.o Aouo = r 
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3.16 ui + Alai + Aoui = -g 

and 

3.17 A1300 + A0000 = -2% 

3.18 tips + A11:501* Aopoi = -6o 

3.19 Aouil = -261 

Fromequation3.1a1= troUandao= Km=.. This gives the expressions 
J J 

for Sal and Sae. 

3.20 Sal = tin Kd = SKd f-t-- SKd 

J Kd Kd 

3.21 Sao = Kn, SKp = 8Kp A4 SKp 

J Kp Kp 

Now solving for SKd and SKp yields: 

3.22 SKd = Icsj Sal 

A1 

3.23 SKp = Kg Sao 

Ao 

This alternative method of deriving the gain sensitivity equations 

could be used with a model referenced adaptive control system. Further 

study could be made to determine this methods performance. 

Another area of suggested further study is in the area of determining 

the q values used in the index of performance. Also, along with this, 
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would be a study of the stability of the system as a function of the q 

values and an analytical approach to determining the values of the q's. 
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The following is a listing of the computer programs used in the analysis 

of the model reference adaptive control system. 
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PAGE 1 LIST VER 081282 4 6/27/84 14:07:13 SYS:1022..LRN.SA 

DIMENSION DTHETA(6),T(3),THETA(6),Q(6),Y(3),DY(3),U(9),DU(9), 
SS(9),P(3) 

C 

C 

C This COMMON statement is needed for the graphics subroutines and for the 

C ROBOTEQ subroutine. The top row of variables is used by the graphics 
C and the second row is used by the subroutine that contains the dynamic 
C equations describing the robot, subroutine ROBOTEQ. 
C 

C 

COMMON LEFT.RIGHT,BOTTOM,TOP,XREG,YREG,IXREG,IYREG, 
SM4,IXX4,IYY4,IZZ4,T 

C 

C 

C The REAL and INTEGER statements contain variables used in the graphics 
C subroutines, robot dynamic equations subroutine, and the main program. 
C The variable LEFT must be defined as real for the graphlics subroutines 
C to work. M4, IXX4, IYY4, and IZZ4 are used in the robot dynamics equa- 
C tions to describe the payload being handled by the robot. KP, KI, KD, 

C and KM are the system gains used in the control of the robot. INT is the 

C value of the integral of the error signal of the control system and INCR 
C is the step size of the Runga Kutta Gill numerical integration that is 

C used in this program. FLAG is simply a flag used in selecting output to 
C be plotted. 
C 

C 

REAL LEFT,M4,IXX4,IYY4,IZZ4,KP,KI,KD,KM,INT,INCR 
C 

INTEGER FLAG 
C 

C 

C This is where you specify a payload for the robot. These variables are 
C common with the robot equations subroutine, so changing them in the main 
C program updates them in the dynamics equations also. M4 is the mass of 

.0 the payload in slugs. I**4 is the second moment of inertia of the pay - 
C about the axis in slug-ft squared (where is X, Y, or Z). The 
C axes of the payload are defined in the thesis in figure . 

C 

C 

M4=0. 

IXX4=0. 

IZZ4=0. 
C 

C 

C This loop writes blank lines to the screen so that .the graphics screen is 

C clear of unwanted material when it plots output. 
C 

C 

DO 100 1=1,30 
WRITE (9,10) 

100 I=I+1 

C 

C 

C This section sets up the graphics screen for plotting output. GINIT and 
C GCLEAR initialize the graphics subroutines and clear the graphics screen. 
C WINDOW defines the plotting area of the graph, AXES labels axes on the 
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C plotting area, and FRAME frames the graphics screen. 
C 

C 

CALL GINIT 
CALL GCLEAR 
CALL WINDOW (0.,21.,-.25,1.25) 
CALL AXES (0.,0.,1.,.25) 

C CALL WINDOW (0.,21.,10.,50.) 
C CALL AXES (0.,10.,1.,2.) 
C 

C 

C N is the order of the differential equations describing the robot 
C dynamics and is used by the RI, Runga Kutta Gill, subroutine that 
C integrates the robot dynamic equations. INCR, as stated earlier is the 
C step size of numerical integration. 
C 

C 

C 

C 

N=6 
INCR=.01 

C The Qn values (where n=0,1,or2) are the weighting factors used in the 
C error functions of the gain adjustment sensitivity equations in the 
C CONTROL subroutine. 
C 

C 

Q0=200. 
Q1=140. 
Q2=34.22 

C 

C 

C This loop determines the number of times the simulation is run, according 
C to the FLAG=n,m statement. Each time the simulation is run, FLAG can be 
C used to specify a different CALL DRAW statement. 
C 

C 

C 

C 

DO 300 FLAG=0,1 

C This is where you specify the initial values of the system gains. KM is 

C constant for the rest of the program. KP, KI, and KD are adjusted by 
C the CONTROL subroutine according to the system dynamics. 
C 

C 

KM=40. 

KI=140.26 
KP=98.19 
KD=24. 

C 

C AKP=KP 
C AKI=KI 
C AKD=KD 
C 

AT=0 
AY=0 

C 

C This initializes the following variables. TIME is the time is seconds. 
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C T(1) is the torque applied to the torso of the robot in ft-lbs. RSAVE 
C is used to calculate the derivative of the input signal R. ESAVE is 

C used to calculate the derivative of the error signal E. And INT is the 

C integral of the error signal E. 

C 

C 

TIME=0. 

TC1)=0. 
RSAVE=0. 
RDSAVE=0. 
ESAVE=0. 
INT=0. 

C 

C 

C This loop initializes all the joint angles, velocities, and accelerations 
C to zero. If a different initial condition for a joint is desired, then 
C it can be specified after this loop. 

C 

C 

DO 200 J=1,6 

DTHETA(J)=0. 
THETA(J)=0. 

200 Q(J)=0. 
C 

C 

C 

C This starts the simulation and decsribes the inputs to the system. 
C 

CALL MOVE(0..24.) 

150 CONTINUE 
R=.0035*SIN(30.*TIME) 
GO TO 1000 

C 

250 CONTINUE 
R=1.*(TIME-5.) 
GO TO 1000 

C 

350 CONTINUE 
R=1. 
GO TO 1000 

C 

450 CONTINUE 
M4=2. 
IXX4=.3 
IYY4=.3 
IZZ4=.3 
R=1.4-.0035*SIN(30.*TIME) 
GO TO 1000 

C 

550 CONTINUE 
R=1.-1.*(TIME-15.) 
GO TO 1000 

C 

650 CONTINUE 
R=.0035*SIN(30.*TIME) 

C 

C 
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C Calculation of the derivative of the input, R, using a linear aporoxima- 
C tion of the input over the interval INCR. 

C 

1000 RDOT=(1-RSAVE)/INCR 
RSAVE=R 
RDDOT=(RDOT-RDSAVE)/INCR 
RDSAVE=RDOT 

C 

C Calculation of the error signal, E. The control uses unity feedback and 
C the error is the difference in the torso position. THETA(1), and the 
C input, R. 

C 

C 

E=R-THETA(1) 

C Calculation of the derivative of the error signal, E. 

C 

C 

EDOT=(E-ESAVE)/INCR 
ESAVE=E 

C Calculation of the integral of the error signal, E, using a linear 
C approximation of error over the interval INCR. 
C 

INT=INT+E*INCR 
C 

C Calculation of the torque applied to the torso using PID control in the 
C feed-forward path. 
C 

T(1)=KM*(KP*E+KI*INT+KD*EDOT) 
C 

C Call to subroutines that give the response of the math model of the 

C robot to the calculated torque. 
C 

CALL RI(N,TTME,INCR,THETA,DTHETA,Q) 
C 

C Call to subroutines that calculate the response of the model to the input 
C and that contain the gain adjustment algorithm for the control system. 
C 

CALL CONTROL(THETA,DTHETA,R,KP,KI,KD,Y,DY.INCR.TIME. 
00,Q1.102,RDOT,U.DU,S,P.RDDOT) 
WRITE (9,35) TIME,KP,KI,KD 

35 FORMAT (10X,F5.2,3F20.3) 
C 

C Plotting of output. 
C 

IF (FLAG.LT.1) GO TO 4000 
C 

CALL MOVE(TIME-INCR,AT) 
CALL DRAW(TIME.THETA(1)) 
CALL MOVE(TIME-INCR,AY) 
CALL DRAW(TIME,Y(1)) 

C CALL MOVE(TIME-INCR,AKP) 
C CALL DRAW(TIME,KP) 
C CALL MOVE(TIME-INCR,AKI) 
C CALL DRAW(TIME,KI) 
C CALL MOVE(TIME-INCR,AKD) 
C CALL DRAW(TIME,KD) 

AT=THETA(1) 
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AY.Y(1) 
C 

C 

C AKP=KP 
C AKI=KI 
C AKD=KD 
C 

C 

C Increment time. 
C 

4000 TIME=TIME+INCR 
C 

IF (TIME.LT.5.) GO TO 150 

IF (TIME.LT.6.) GO TO 250 
IF (TIME.LT.10.) GO TO 350 

IF (TIME.LT.15.) GO TO 450 

IF (TIME.LT.16.) GO TO 550 
IF (TIME.LT.21.) GO TO 650 

C 

C 

C When the simulation is completed, FLAG is incremented for the next 
C pass through. If only a single output is desired on the plot, then the 
C DO 300 statement will be for FLAG=0 and the program will terminate 
C after dumping the plot to the printer. 
C 

C 

300 CONTINUE 
C 

C 

CALL DUMPGR(1) 
C 

10 FORMAT(") 
END 
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SUBROUTINE CONTROL(THETA,DTHETA,R,KP,KI,KD,Y,DY,INCR,TIME, 
S Q0,Q1,Q2,RDOT,U,DU,S,P,RDDOT) 
DIMENSION. THETA(6),DTHETA(6).U(9),DU(9),Y(3),DY(3),S(B),P(3) 
REAL KP,KI,KD,KPD,KID,KDD,P,S,INCR,J 

C 

C 

C Initialization of parameters used in the calculation of the U-values and 

C the model response to the input, R. 

C 

IF (TIME.GT.0.) GO TO 500 
DO 40 1=1,9 
U(I)=0. 
DU(I)=0. 

40 S(I)-0. 
DO 50 1=1,3 
Y(I)=0. 
DY(I)=0. 

50 P(I)=0. 
500 CONTINUE 
C 

C 

C Constants of model transfer function. 
C 

A2=15.4 
A1=63. 
A0=90. 

C 

C 

C Call to subroutine that calculates model's response to input, R. 

C 

C 

C 

NEQ=3 
CALL MI(NEQ,INCR,Y,DY,P,R,RDOT) 

C Call to subroutine that calculates U-values used in determining values 
C for rate of gain adjustments. 
C 

NEQ=9 
CALL UI(NEQ,INCR,U,DU,S,R,Y,RDOT,RDDOT) 

C 

C 

C Calculation of model displacement, velocity, and acceleration in terms of 

C state variables as defined by state equations. 
C 

YDISP=Y(1) 
YVEL=(Y(2)412R) 
YACCL=Y(3)-4-AR-1-A2RDOT 

C 

C 

C Error equations used in error functions. 
C 

C 

C 

E0=THETA(1)-YDISP 
E1=THETA(4)-YVEL 
E2=DTHETA(4)-YACCL 

C Calculation of rate of change of gains and calculation of new values of 
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C gains. 

C 

C A2D=-(Q0.E0+01 E1+Q2E2)(00*U(7)+Q1U(8)+Q2U(9)) 
C A1D=-(Q0.E0-.Q1 E1-.Q2E2)(00U(4)+Q1 .U(5)+02U(6)) 
C AOD=-(Q0.E0.111.E14-02E2)*(Q0U(1)+Q1U(2).-Q2U(3)) 

AOD=-1000.*(-Q0EO.U(1)-Q1E1U(2)-02E2.U(3)) 
A1D=100.(-(30EOU(4)-Q1E1U(5)-Q2.E2U(6)) 
A2D=5.(-Q0*E0.11(7)-Q1*E1U(8)-Q2E2.U(9)) 

C 

C 

KDD=A2DKD/A2 
KPD=A1DKP/A1 
KID=A0D.KI/A0 

KP=KP+KPDINCR 
KI=KI+KIDINCR 
KD=KD+KDD.INCR 

RETURN 
END 
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SUBROUTINE RI(NEQ,X,H,Y,DY,Q) 
DIMENSION A(2) 
DIMENSION Y(NEQ),DY(NEQ),Q(NEQ) 
A(1)=.2928932188134524 
A(2)=1.707106781186547 
H2=H/2.0 
CALL ROBOTEQ(NEQ,X,Y,DY) 
DO 13 I =1.NEQ 
B=H2DY(I)-Q(I) 
Y(I)=Y(I)+8 

13 Q(I)=Q(I)+3.0B-H2DY(I) 
DO 20 J=1,2 
CALL ROBOTEQ(NEQ,X,Y,DY) 
DO 20 I=1,NEQ 
B=A(J)(HDY(I)-Q(I)) 
Y(I)=Y(I)+B 

20 Q(I)=Q(I)+3.0B-A(J)HDY(I) 
CALL ROBOTEQ(NEQ,X,Y,DY) 
DO 26 I=1,NEQ 
B=.1666666666666666(HDY(I)-2.0Q(I)) 
Y(I)=Y(I)+8 

26 Q(I)=Q(I)+3.0B-H2DY(I) 
RETURN 
END 
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SUBROUTINE ROBOTEWN.X,Y.DY) 
C 

DIMENSION Y(N),DY(N),M(3.3),G(3),Q(3),T(3) 
C 

C These are the common variables needed for the graphics routines 
C 

C 

COMMON LEFT.RIGHT,BOTTOM.TOP.XREG,YREG,IXREG,IYREG. 
$ M4,IXX4,IYY4,IZZ4,T 

C 

REAL Ll,L2,1,3,M1.M2,M3,M4,IXX1.IYY1,IZZ1,IXX2,IYY2,IZZ2, 
$ IXX3.IYY3,IZZ3,IXX4,IYY4,IZZ4,MR1,MR2,MR3,M 

C 

C 

C Calculation of repeated expressions in state variable equations 
C 

C 

L1=.6667 
L2=2.667 
L3=3.25 
R1=-.3333 
R2=1.458 
R3=1.4375 
M1=6.18 
M2=1.863 
M3=2.050 
IXX1=23.37 
IYY1=33.75 
IZZ1=33.75 
IXX2=.3182 
IYY2=5.361 
IZZ2=5.361 
IXX3=.3118 
IYY3=6.804 
IZZ3=6.804 

S1=SIN(Y(1)) 
C1=COS(Y(1)) 
S2=SIN(Y(2)) 
C2=COS(Y(2)) 
S3=SIN(Y(3)) 
C3=COS(Y(3)) 
S23=SIN(Y(2)+Y(3)) 
C23=COS(Y(2)+Y(3)) 
MR1=4134.M4 

MR2=M3o113+114*L3 

MR3=M3*R3**2414*L3**2 
C 

C 

C Calculation of elements of the M matrix 
C 

C 

C 

C 

C 

M(1,1)=Ml*R1**2A-M2*(L14-R2*C2)**24-M3.(L14-L2*C24-R3*C23)**2 
+144*(L14-1..2.C24-L3*C23).'2 

-4-(IYY34-IYY4)*C23**24-IZZ14-IXX2*S2**24-IYY2*C2**2 
+(IXX3+IXX4).S23**2 

M(2,2)=M2*R2**24-MR1*L2*.2+2..MR2.L2*C3+MR3+IZZ2+IZZ3+IZZ4 

M(2,3)=MR2'1.2*C3+MR3+IZZ3+IZZ4 
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M(3,3)=MR3+IZZ3+IZZ4 
C 

C 

C Calculation of elements of G matrix 
C 

C 

G(1)=(-2.*R2*M2*S2*(Ll+R2*C2)-2.*M3*(L2*S2+R3*S23)* 
(Ll+L2*C2+113*C23)-2.*M4*(L2*S2+L3+523)*(Ll+L2*C2+L3*C23) 

$ +2.*S2*C2*(IXX2-IYY2)+2.*S23*C23*(IXX3+IXX4-IYY3-IYY4)) 
*Y(4)101(5)+(-2.*M3*R3*S23*(L1+1.2*C2+R3*C23)-2.* 

$ M4*L3*S23*(L1+1..2*C2+1,3*C23)+2.*C23*S23* 
(IXX3+IXX4-IYY3-IYY4))*Y(4)*Y(6) 

C 

G(2)=-2.*L2*S3*(113*R34114*L3)*Y(5)*Y(6) 
C 

G(3)=0 
C 

C Calculation of elements of Q matrix 
C 

C 

0(1)=0. 
C 

Q(2)=(M2.112*S2*(L1+R2*C2)+M3*(L2*S2+R3*S23)* 
(L1+1,2*C2+R3*C23)+M4*(L2*S2+L3*S23)*(Ll+L2*C24-L3*C23) 

$ +(IYY2-IXX2)*S2*C2+(IYY3+IYY4-IXX3-IXX4)*S23*C23)* 
$ Y(4)**2 

C 

$ -(MR2*L2*S3)*Y(6)**2 
C 

$ +32.2*(M2*R2*C2+MR1*L2*C2+MR2*C23) 
C 

Q(3).(M3*R3*S23*(L1+1..2*C2+1.3*C23)+M4*L3*S23* 
(L1+1.2*C2+R3*C23)+(IYY3+IYY4-IXX3-IXX4) 

$ *S23*C23)*Y(4)**2 
C 

$ +MR2*L2*S3*Y(5)**2 
C 

$ +32.2*MR2*C23 
C 

T(2)=32.2*(M2*R2*C2+MR1*L2*C2+MR2*C23) 
C 

T(3)=32.2*MR2*C23 
C 

C 

C This is where you put the equations for your state variables. 
C DY(n) is the expression for y-dot(n). 
C 

C 

DY(1)=Y(4) 
DY(2)=Y(5) 
DY(3)=Y(6) 

C 

DY(4)=CT(1)-Q(1)-G(1))/M(1,1) 
C 

DY(5)=CM(3,3)*(T(2)-Q(2)-G(2))-M(2.3)*(T(3)-Q(3))) 
/(M(3.3)*M(2.2)-M(2.3)**2) 

C 

DY(6)=(M(2.2)*(T(3)-Q(3))-M(2.3)*(T(2)-Q(2)-G(2))) 
/(M(3,3)*M(2,2)-M(2,3)**2) 
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RETURN 

END 
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C 

C 

C File TSOM stands for torso model equation subroutine. This subroutine 
C is called by the Runga Kutta Gill subroutine that calculates the output 
C values of the model system used for the torso of the robot. The name 
C of the Runga Kutta Gill subroutine used with the torso is TSOMI, which 
C stands for torso model integration subroutine. 
C 

C The state equations defined in this subroutine represent the differential 
C equation describing the third order model used in the control of the 

C torso axis of the robot. 

C 

C 

C 

SUBROUTINE MODEL(X,DX,R,RDOT) 
DIMENSION X(3),DX(3) 

C 

A2=15.4 
Al=63. 
A0=90. 

C 

C 

C State equations describing system model 
C 

C 

DX(1)=X(2)+A2.11 
DX(2)=X(3)+A1 *R 
DX(3)=-A0*X(1)-A1*X(2)-A2*X(3)-1-(AO-A1 *A2-Al*A2).R-A2*A2*RDOT 

C 

C 

C The state variables are defined as: 
C Y(t)=X1 
C Ydot(t)=X24.A2R 
C Ydoubledot(t)=X3+A1R+A2RDOT 
C 

RETURN 
END 
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SUBROUTINE UVALUE(U,DU,R,RDOT,Y,RDDOT) 
DIMENSION Y(3),U(9),DU(9) 

C 

A2=15.4 
Al=63. 
A0=90. 

C 

C 

C The state equations describing the U's are now given 
C 

C 

C 

DU(1)=U(2) 
DU(2)=U(3) 
DU(3)=-AOU(1)-Al.U(2)-A2U(3)-Y(1)+R 
DU(4)=U(5) 
DU(5) =U(6) 
-DU(6)=-AO*U(4)-Al*U(5)-A2.11(6)-(Y(2)+A2.R)+RDOT 
DU(7)=U(8) 
DU(8)=U(9) 
DU(9)=-AO U(7)-A1 U(8)-A2*U(9)-(Y(3)+A1R4-A2*RDOT)+RDDOT 

RETURN 
END 
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DIMENSION DTHETA(6),T(3),THETA(6),Q(6),Y(2),DY(2),U(4),DB(4), 
$S(4),P(2) 

C 

C 

C This COMMON statement is needed for the graphics subroutines and for the 

C ROBOTEQ subroutine. The top row of variables is used by the graphics 
C and the second row is used by the subroutine that contains the dynamic 
C equations describing the robot, subroutine ROBOTEQ. 
C 

C 

COMMON LEFT,RIGHT,BOTTOM,TOP,XREG,YREG,IXREG,IYREG, 
$M4,1XX4,1YY4,1ZZ4,T 

C 

C 

C The REAL and INTEGER statements contain variables used in the graphics 
C subroutines, robot dynamic equations subroutine, and the main program. 
C The variable LEFT must be defined as real for the graphlics subroutines 
C to work. M4, IXX4, IYY4, and IZZ4 are used in the robot dynamics equa- 
C tions to describe the payload being handled by the robot. KP, KI, KD, 
C and KM are the system gains used in the control of the robot. INT is the 
C value of the integral of the error signal of the control system and INCA 
C is the step size of the Runga Kutta Gill numerical integration that is 

C used in this program. FLAG is simply a flag used in selecting output to 

C be plotted. 
C 

C 

REAL LEFT,M4,IXX4,IYY4,IZZ4,KP,KD,KPD,KDD,KM,INCR 
C 

INTEGER FLAG 
C 

C 

C 

C This loop writes blank lines to the screen so that the graphics screen is 

C clear of unwanted material when it plots output. 
C 

C 

DO 100 1=1,30 
WRITE (9,10) 

100 I=I+1 
C 

C 

C This section sets up the graphics screen for plotting output. GINIT and 
C GCLEAR initialize the graphics subroutines and clear the graphics screen. 
C WINDOW defines the plotting area of the graph, AXES labels axes on the 
C plotting area, and FRAME frames the graphics screen. 
C 

C 

CALL GINIT 
CALL GCLEAR 

C CALL WINDOW (0.,21.,-.25,1.25) 
C CALL AXES (0.,0.,1.,.25) 

CALL WINDOW (0.,21.,-.1,60.) 
CALL AXES (0_0_1_5.) 

C 

C 

C N is the order of the differential equations describing the robot 

C dynamics and is used by the RI, Runga Kutta Gill, subroutine that 
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C integrates the robot dynamic equations. INCR, as stated earlier is the 
C step size of numerical integration. 
C 

C 

C 

C 

N1=6 
N2=2 
N3=4 
INCR=.05 

C The Qn values (where n=0,1,or2) are the weighting factors used in the 

C error functions of the gain adjustment sensitivity equations in the 

C CONTROL subroutine. 
C 

C 

Q0=1. 

Q1=.6 
Q2=.11111111 
Al=.6 
A2=.11111111 

C 

C 

C This loop determines the number of times the simulation is run, according 
C to the FLAG=n,m statement. Each time the simulation is run, FLAG can be 
C used to specify a different CALL DRAW statement. 
C 

C 

DO 300 FLAG=0,1 
C 

C 

C This is where you specify a payload for the robot. These variables are 
C common with the robot equations subroutine, so changing them in the main 
C program updates them in the dynamics equations also. M4 is the mass of 

C the payload in slugs. I**4 is the second moment of inertia of the pay - 
C load about the axis in slug-ft squared (where is X, Y, or Z). The 

C axes of the payload are defined in the thesis in figure . 

C 

C 

M4=0. 

IXX4=0. 
IYY4=0. 
IZZ4=0. 

C 

C 

C This is where you specify the initial values of the system gains. KM is 
C constant for the rest of the program. KP, KI, and KD are adjusted by 
C the CONTROL subroutine according to the system dynamics. 
C 

C 

KN =40. 
KP=13.068 
KD=.6 

C 

AKP=KP 
AKD=KD 

C AT=0 
C AY=0 
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C 

C 

C This initializes the following variables. TIME is the time is seconds. 
C T(1) is the torque applied to the torso of the robot in ft-lbs. RSAVE 
C is used to calculate the derivative of the input signal R. ESAVE is 

C used to calculate the derivative of the error signal E. And INT is the 

C integral of the error signal E. 

C 

C 

TIME=0. 

T(1)=0. 
C 

C 

C This loop initializes all the joint angles, velocities, and accelerations 
C to zero. If a different initial condition for a joint is desired, then 
C it can be specified after this loop. 
C 

C 

DO 200 J=1,6 
DTHETA(J)=0. 
THETA(J)=0. 

200 Q(J)=0. 
DO 40 1=1,4 
U(I)=0. 
DU(I)=0. 

40 S(I)=0. 

DO 50 1=1,2 
Y(I)=0. 
DY(I)=0. 

50 P(I)=0. 
C 

CALL MOVE(0.,0.) 
C 

C 

C This starts the simulation and decsribes the inputs to the system. 
C 

150 CONTINUE 
R=.0175*SIN(30.*TIME) 
GO TO 1000 

C 

250 CONTINUE 
R=1.*(TIME-5.) 
GO TO 1000 

C 

350 CONTINUE 
R=1. 

GO TO 1000 
C 

450 CONTINUE 
M4=2. 
IXX4=.3 
IYY4=.3 
IZZ4=.3 
R=1.+.0175*SIN(30.*TIME) 
GO TO 1000 

C 

550 CONTINUE 
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R=1.-1.*(TIME-15.) 
GO TO 1000 

C 

650 CONTINUE 
R=.0175SIN(30.*TIME) 

C 

C 

C Calculation of the torque applied to the torso. 
C 

1000 T(1)=KM*(R-THETA(1)-THETA(4)*KD)KP 
C 

C Call to subroutines that give the response of the math model of the 
C robot, the response of the model reference to the input, and the U-values 
C used in the gain sensitivity equations. 
C 

CALL RI(N1.TIME,INCR,THETA.DTHETA,Q) 
CALL DI(N2,INCR,Y,DY,P,R) 
CALL VI(N3.INCR,U,DU,S,R,Y.DY) 

C 

C Calculation of gain adjustments 
C 

C 

E0=THETA(1)-Y(1) 
E1=THETA(4)-Y(2) 
E2=DTHETA(4)-DY(2) 
A1D=-Q0*E0*U(1)-Q1*E1*U(2)-02*E2*DU(2) 
A2121.-Q0E0 *U(3)-01*E1 *U(4)-Q2.E2DUC4) 
KDD=A1D-A2I)*(A1-KD)/A2 
KPD=-KPA2D/A2 

KD=KD+KDD*INCR 

WRITE (9,25) TIME,KP,KD 
25 FORMAT(F5.2,2F20.3) 

IF (FLAG.LT.1) GO TO 6000 
C CALL MOVE(TIME-INCR,AT) 
C CALL DRAW(TIME,THETA(1)) 
C CALL MOVE(TIME-INCR,AY) 
C CALL DRAW(TIME,Y(1)) 
C 

CALL MOVE(TIME-INCR,AKP) 
CALL DRAW(TIME,KP) 
CALL MOVE(TIME-INCR.50.*AKD) 
CALL DRAW(TIME.50.*KD) 

C 

C AT=THETA(l)' 
C AY=Y(1) 
C 

AKP=KP 
AKD=KD 

C 

6000 TIME=TIME+INCR 
C 

IF (TIME.LT.5.) GO TO 150 
IF (TIME.LT.6.) GO TO 250 

IF (TIME.LT.10.) GO TO 350 
IF (TIME.LT.15.) GO TO 450 

IF (TIME.LT.16.) GO TO 550 
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IF (TIME.LT.21.) GO TO 650 

C 

300 CONTINUE 
C 

CALL DUMPGR(1) 
C 

10 FORMAT(") 
20 FORMAT(F5.2,3F20.3) 

END 
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C 

C 

C 

SUBROUTINE VALUE(U,DU,R,Y,DY) 
DIMENSION Y(2),DY(2),U(4),DU(4) 

Al=.6 
A2=.11111111 

DU(1)=U(2) 
DU(2)=(-Y(2)-A1U(2)-U(1))/A2 
DU(3)=U(4) 
DU(4)=(-DY(2)-A111(4)-U(3))/A2 

RETURN 
END 
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DIMENSION Y(3),DY(3),THETA(3),DTHETA(3),U(9),DU(9),P(3),Q(3),S(9) 
C 

COMMON LEFT,RIGHT,BOTTOM,TOP,XREG,YREG,IXREG,IYREG 
C 

REAL LEFT,KP,KI,KD,INCR,P,KPD,KID,KDD,J 
C 

INTEGER FLAG 
C 

DO 100 1=1,30 

WRITE (9,10) 
100 I=I+1 
C 

CALL GINIT 
CALL GCLEAR 

C CALL WINDOW (0.,21.,-.25,1.25) 
C CALL AXES (0.,0.,1.,.25) 

CALL WINDOW (0.,21.,14.,17.) 
CALL AXES (0.,14.,1.,.2) 

C CALL MOVE (5.,0.) 
C CALL DRAW (6.,1.) 
C CALL DRAW (15.,1.) 
C CALL DRAW (16.,0.) 
C 

N1=3 
N2=3 
N3=9 
INCR=.01 

C 

Q0=200. 
Q1=140. 
Q2=34.22 
A2=15.4 
Al=63. 
A0=90. 

C 

DO 300 FLAG=0 
C 

KI=99. 
KP=69.3 

KD=16.94 
C 

DO 200 1=1,3 

THETA(I)=0. 
DTHETA(I) =0. 

200 Q(I)=0. 
DO 40 1=1,9 
U(I)=0. 
DU(I)=0. 

40 S(I)=0. 
DO 50 1=1,3 
Y(I)=0. 
DY(I)=0. 

50 P(I)=0. 
C 

TIME=0. 
RDSAVE=0. 
RSAVE =O. 
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J=1. 

CALL MOVE(0.,16.) 
C 

150 CONTINUE 
R=.0035*SIN(30.*TIME) 
GO TO 1000 

C 

250 CONTINUE 
R=1.*(TIME-5.) 
GO TO 1000 

C 

350 CONTINUE 
R=1. 

GO TO 1000 
C 

450 CONTINUE 
R=1.+.0035*SIN(30.*TIME) 
GO TO 1000 

C 

550 CONTINUE 
R=1.-1.*(TIME-15.) 
GO TO 1000 

C 

650 CONTINUE 
R=0.+.0035*SIN(30.*TIME) 

C 

1000 RDOT=(R-RSAVE)/INCR 
RSAVE=R 
RDDOT=(RDOT-RDSAVE)/INCR 
RDSAVE=RDOT 
CALL TI(N1,INCR,THETA,DTHETA,Q.R,RDOT,KP,KI,KD,J) 
CALL MI(N2,INCR,Y,DY,P,R,RDOT) 
CALL UI(N3,INCR,U,DU,S,R,Y,RDOT,RDDOT) 
WRITE (9,20) TIME,KP,KI,KD 

20 FORMAT (10X,F5.2,3F10.3) 
YDISP=Y(1) 
YVEL=(Y(2)+A2*R) 
YACCL=Y(3)+A1*R*A2*RDOT 
E0=THETA(1)-YDISP 
E1=THETA(2)+KD*R/J-YVEL 
E2=THETA(3)+KP*R/J+KD/J*RDOT-YACCL 
AOD=-Q0*E0*U(1)-Q1*E1 *U(2)-Q2*E2*U(3) 
A1D=-Q0*E0*U(4)-Q1*E1 *U(5)-Q2*E2*U(6) 
A2D=-Q0410*U(7)-01*E1 *U(8)-Q2*E2*U(9) 
KDD=A2D*KD/A2 
KPD=A1D*KP/A1 
KID=A0D*KI/A0 
KP=KP+KPD*INCR 
KI=KI+KID*INCR 
KD=KD+KDD*INCR 
IF (FLAG.GE.1) GO TO 2000 
CALL DRAW (TIME,KD) 
GO TO 6000 

2000 IF (FLAG.GE.2) GO TO 3000 
CALL DRAW (TIME,Y(1)) 
GO TO 6000 

3000 IF (FLAG.GE.3) GO TO 4000 
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CALL DRAW (TIME,U(7)) 
GO TO 6000 

4000 IF (FLAG.GE.4) GO TO 6000 
CALL DRAW (TIME,KP) 
GO TO 6000 

5000 CALL DRAW (TIME,KI) 

6000 TIME=TIME+INCR 

C 
IF (TIME.LT.5.) GO TO 150 

IF (TIME.LT.6.) GO TO 250 

IF (TIME.LT.10.) GO TO 350 

IF (TIME.LT.15.) GO TO 450 

IF (TIME.LT.16.) GO TO 550 

IF (TIME.LT.21.) GO TO 650 

C 

300 CONTINUE 
C 

CALL DUMPGR(1) 
C 

10 FORMAT(") 
END 
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C 

C 

C 

SUBROUTINE TEST(X,DX,R,RDOT,KP,KI,KD,J) 
DIMENSION X(3),DX(3) 
REAL KP,KI,KD,J 

A2=KD/J 
A1=KP/J 
AO=KI/J 

DX(1)=X(2)-4-A2R 
DX(2)=X(3)+A1R 
DX(3)=-AO X(1)-A1 X(2)-A2.1(3)+(AO-A1 *A2-A1A2)R-A2A2RDOT 

RETURN 
END 

96 



PAGE 1 LIST VER 081282 4 6/27/84 14:12:48 SYS:1022..D.SA 

C 

C 

C 

SUBROUTINE D(X,DX,R) 
DIMENSION X(2),DX(2) 

Al=.6 
A2=.11111111 

DX(1)=X(2) 
DX(2)=(R-A1X(2)-X(1))/A2 

RETURN 
END 
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DIMENSION Y( 2), DY( 2), THETA( 2), DTHETA (2),U(4),DU(4),P(2),Q(2),S(4) 

COMMON LEFT,RIGHT,BOTTOM,TOP,XREG,YREG,IXREG,IYREG 

REAL LEFT,KP,KD,INCR,P,KPD,KDD,J 

INTEGER FLAG 

DO 100 1=1,30 
WRITE (9,10) 

100 I=I+1 
C 

CALL GINIT 
CALL GCLEAR 
CALL WINDOW (0.,21.,-.25,1.25) 
CALL AXES (0.,0.,1.,.25) 

C CALL WINDOW (0.,21.,.5,1.3) 
C CALL AXES (0.,.5,1.,.1) 
C 

C 

C 

C 

C 

N1=2 
N2=2 
N3=4 
INCR=.05 

00=1. 
Q1 =.6 

Q2=.11111111 
Al=.6 
A2=.11111111 

DO 300 FLAG=0,1 

KP=9.9 
KD=.66 

DO 200 1=1,2 

THETA(I)=0. 
DTHETA(I)=0. 

200 Q(I)=0. 
DO 40 1=1,4 
U(1)=0. 
DU(I)=0. 

40 S(I)=0. 
DO 50 1=1,2 
Y(I)=0. 
DY(I)=0. 

50 P(1)=0. 
C 

TIME=0. 
J=1. 

CALL MOVE(0.,0.) 
C 

150 CONTINUE 
R=.0175.SIN(30.*TIME) 
GO TO 1000 

C 

250 CONTINUE 
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R=1.(TIME-5.) 
GO TO 1000 

C 

350 CONTINUE 
R=1. 
GO TO 1000 

C 

450 CONTINUE 
R=1.+.0175*SIN(30.*TIME) 
GO TO 1000 

C 

550 CONTINUE 
R=1.-1.(TIME-15.) 
GO TO 1000 

C 

650 CONTINUE 
R=.0175SIN(30.TIME) 

C 

1000 CALL SI(N1,INCR,THETA,DTHETA,Q,R,KP,KD,J) 
CALL DI(N2,INCR,Y,DY.P.R) 
CALL VI(N3,INCR,U,DU,S,R,Y,DY) 
EO= THETA(1)-Y(1) 
E1=THETA(2)-Y(2) 
E2=DTHETA(2)-DY(2) 
AlD=-Q0+EO*U(1)-Q1*E1 *U(2)-Q2*E2+DU(2) 
A2D=-Q0E0U(3)-Q1*E1 *U(4)-Q2*E2TU(4) 
KDD=A1D+A2D(Al-KD)/A2 
KPD=-KP*A2D/A2 
KP=KP+KPD+INCR 
KD=KD+KDDINCR 
WRITE(9,20)TIME,KP,KD 
WRITE(9,10) 
IF (FLAG.GE.1) GO TO 2000 
CALL DRAW (TIME,THETA(1)) 
GO TO 6000 

2000 IF (FLAG.GE.2) GO TO 3000 
CALL DRAW (TIME.Y(1)) 
GO TO 6000 

3000 IF (FLAG.GE.3) GO TO 4000 
CALL DRAW (TIME,E0U(1)) 
GO TO 6000 

4000 IF (FLAG.GE.4) GO TO 5000 
CALL DRAW (TIME,KP) 
GO TO 6000 

5000 CALL DRAW (TIME,KI) 
6000 TIME=TIME+INCR 
C 

IF (TIME.LT.5.) GO TO 150 
IF (TIME.LT.6.) GO TO 250 

IF (TIME.LT.10.) GO TO 350 
IF (TIME.LT.15.) GO TO 450 

IF (TIME.LT.16.) GO TO 550 
IF (TIME.LT.21.) GO TO 650 

C 

300 CONTINUE 
C 

CALL DUMPGR(1) 

99 



PAGE 3 LIST VER 081282 4 6/27/84 14:13:57 SYS:1022..FINAL.SA 

C 

10 FORMAT(' ') 

20 FORMAT(F5.2,3F20.3) 
END 
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C 

C 

C 

SUBROUTINE SYS(X,DX,R,KP,KD,J) 
DIMENSION X(2),DX(2) 
REAL CP,KD,J 

A1=KD 
A2=J/KP 

DX(1)=X(2) 
DX(2)=01-AlX(2)-X(1))/A2 

RETURN 
END 
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DIMENSION DTHETA(6).T(3),TRETA(6),Q(6),Y(2).DY(2),U(4),DU(4), 
$S(4),P(2) 

C 

C 

C Program TUKROL.SA adds proportional plus derivative feedback control 
C to the shoulder and elbow axes. 
C 

C 

C 

C This COMMON statement is needed for the graphics subroutines and for the 

C ROBOTEQ subroutine. The top row of variables is used by the graphics 
C and the second row is used by the subroutine that contains the dynamic 
C equations describing the robot, subroutine ROBOTEQ. 
C 

C 

COMMON LEFT,RIGHT,BOTTOM,TOP,XREG,YREG,IXREG.IYREG, 
$M4,1XX4,1YY4,1ZZ4,T 

C 

C 

C The REAL and INTEGER statements contain variables used in the graphics 
C subroutines, robot dynamic equations subroutine, and the main program. 
C The variable LEFT must be defined as real for the graphics subroutines 
C to work. M4. IXX4, IYY4, and IZZ4 are used in the robot dynamics equa- 
C tions to describe the payload being handled by the robot. KP, KD, 

C and KM are the system gains used in the control of the robot. INCR 
C is the step size of the Runga Kutta Gill numerical integration that is 

C used in this program. FLAG is simply a flag used in selecting output to 

C be plotted. 
C 

C 

REAL LEFT.M4,IXX4.IYY4.IZZ4,KP,KD,KPD,KDD,KM,INCR,KMS, 
&KME,KPS,KPE,KDS.KDE 

C 

C 

C 

C 

C This loop writes blank lines to the screen so that the graphics screen is 

C clear of unwanted material yhen it plots output. 
C 

C 

INTEGER FLAG 

DO 100 1=1.30 
WRITE (9,10) 

100 I=14-1 

C 

C 

C This section sets up the graphics screen for plotting output. GINIT and 
C GCLEAR initialize the graphics subroutines and clear the graphics screen. 
C WINDOW defines the plotting area of the graph, AXES labels axes on the 

C plotting area, and FRAME frames the graphics screen. 

C 

C 

CALL GINIT 
CALL GCLEAR 
CALL WINDOW (0.,21..-.50.1.25) 
CALL AXES (0..0_1_25) 

C CALL WINDOW (0..21..-.1,100.) 
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C CALL AXES (0.,0.,1.,5.) 
C 

C 

C N is the order of the differential equations describing the robot 
C dynamics and is used by the RI, Runga Kutta Gill, subroutine that 
C integrates the robot dynamic equations. INCR, as stated earlier is the 
C step size of numerical integration. 
C 

C 

N1=6 
N2=2 
N3=4 
INCR=.01 

C 

C 

C The Qn values (where n=0,1,or2) are the weighting factors used in the 
C error functions of the gain adjustment sensitivity equations in the 
C CONTROL subroutine. 
C 

C 

QOT=1. 
01T=.15 
Q2T=.01 
Q0S=1. 
Q1S=.6 
Q2S=.005 
QOE =1. 
Q1E=.6 
Q2E=.01 
Al=.6 
A2=.11111111 

C 

C 

C This loop determines the number of times the simulation is run, according 
C to the FLAG=n.m statement. Each time the simulation is run, FLAG can be 
C used to specify a different CALL DRAW statement. 
C 

C 

DO 300 FLAG=0,0 
C 

C 

C This is where you specify a payload for the robot. These variables are 
C common with the robot equations subroutine, so changing them in the main 
C program updates them in the dynamics equations also. M4 is the mass of 
C the payload in slugs. I**4 is the second moment of inertia of the pay - 
C about the * axis in slug-ft squared (where * is X, Y, or Z). The 
C axes of the payload are defined in the thesis in figure 
C 

C 

M4.0. 
IXX4=0. 
IYY4=0. 
IZZ4=0. 

C 

C 

C This is where you specify the initial values of the system gains. KM is 

C constant for the rest of the program. KP, and KD are adjusted by 
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C 

150 CONTINUE 
R=.0175*SIN(30.*TIME) 
RS =O. 

RE=0. 
GO TO 1000 

C 

250 CONTINUE 
R=1.*(TIME-5.) 
RS=R 
RE=R 
GO TO 1000 

C 

350 CONTINUE 
R=1. 

RS=R 
RE=R 
GO TO 1000 

C 

450 CONTINUE 
M4=2. 
IXX4=.3 
IYY4=.3 
IZZ4=.3 
R=1.+.0175*SIN(30.*TIME) 
RS=1. 
RE=1. 
GO TO 1000 

C 

550 CONTINUE 
R=1.-1.*(TIME-15.) 
RS=R 
RE=R 
GO TO 1000 

C 

650 CONTINUE 
R=.0175*SIN(30.*TIME) 
RS =.O 
RE=.0 

C 

C 

C Calculation of the torque applied to the torso, shoulder, and elbow. 
C 

1000 T(1)=KM*KP*(R-THETA(1)-KD*THETA(4)) 
T(2)=KMS*KPS*(RS-THETA(2)-KDS*THETA(5)) 
T(3)=KME*KPE*(RE-THETA(3)-KDE*THETA(6)) 

C 

C Call to subroutines that give the response of the math model of the 

C robot, the response of the model reference to the input. and the U-values 
C used in the gain sensitivity equations. 
C 

CALL RITR(N1,TIME,INCR,THETA,DTHETA,Q) 
CALL DI(N2,INCR,Y,DY,P,R) 
CALL VI(N3,INCR,U,DU,S,R,Y,DY) 

C Calculation of gain adjustments for the torso. 

C 
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E0=THETA(1)-Y(1) 
E1=THETA(4)-Y(2) 
E2=DTHETA(4)-DY(2) 
A1D=-Q0T*E0*U(1)-Q1T*E1*U(2)-Q2T*E2*DU(2) 
A2D=-QOT*E0*U(3)-Q1T*E1*U(4)-Q2T*E2*DU(4) 
KDD=A1D-A2D*(A1-KD)/A2 
KPD=-KP*A2D/A2 

C KP=KP+KPD.INCR 
C KD=O+KDDINCR 
C 

C Calculation of gain adjustments for the shoulder 
C 

C 

ESO=THETA(2)-Y(1) 
ES1=THETA(5)-Y(2) 
ES2=DTHETA(5)-DY(2) 
AS1D=-Q0S.ESO.U(1)-Q1S.ES1.U(2)-Q2S.E2*DU(2) 
AS2D=-00S.ESO.U(3)-Q1S.ES1.11(4)-Q2S.ES2*DU(4) 
DSDD=AS1D-AS2D*(A1-KDS)/A2 
DSPD=-KPS.AS2D/A2 

C KPS=KPS+DSPDINCR 
C KDS=KDS+DSDD.INCR 
C 

C Calculation of the gain adjustments for the elbow. 
C 

EEO=THETA(3)-Y(1) 
EE1=THETA(6)-Y(2) 
EE2=DTHETA(6)-DY(2) 
AE1D=-Q0E.EEO.U(1)-Q1E.EE1 *U(2)-Q2E.EE2*DU(2) 
AE2D=-Q0E.EE0 *U(3)-Q1E.EE1*U(4)-Q2E*EE2*DU(4) 
DEDD=AE1D-AE2D*(A1-KDE)/A2 
DEPD=-KPE.AE2D/A2 

C KPE=KPE+DEPD.INCR 
C KDE=KDE+DEDD*INCR 
C 

C 

WRITE (9,25) TIME,KD,KDS,KDE,KP,KPS,KPE 
25 FORMAT(F5.2,6F10.3) 
C IF (FLAG.LT.1) GO TO 6000 

CALL MOVE(TIME-INCR,AT1) 
CALL DRAW(TIME,THETA(1)) 
CALL MOVE(TIME-INCR.AY) 
CALL DRAW(TIME,Y(1)) 

C CALL MOVE(TIME-INCR,AT3) 
C CALL DRAW(TIME,THETA(3)) 
C 

C CALL MOVE(TIME-INCR.AKP) 
C CALL DRAW(TIME,KP) 
C CALL MOVE(TIME-INCR,AKPS) 
C CALL DRAW(TIME,KPS) 
C CALL MOVE(TIME-INCR,AKPE) 
C CALL DRAW(TIME,KPE) 
C 

AT1=THETA(1) 
AT2=THETA(2) 
AT3=THETA(3) 
AY=Y(1) 
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C 

AKP=KP 
AKD=KD 
AKPS=KPS 
AKPE=KPE 

C 

6000 TIME=TIME+INCR 
C 

IF (TIME.LT.5.) GO TO 150 
IF (TIME.LT.6.) GO TO 250 

IF (TIME.LT.10.) GO TO 350 
IF (TIME.LT.15.) GO TO 450 

IF (TIME.LT.16.) GO TO 550 
IF (TIME.LT.21.) GO TO 650 

C 

300 CONTINUE 
C 

CALL DUMPGR(1) 
C 

10 FORMAT(") 
20 FORMAT(F5.2.3F20.3) 

END 
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ABSTRACT 

Model referenced adaptive control is a method of adjusting the gains of 

the closed loop transfer function of a control system, so that as the 

physical system being controlled changes, uniform performance can be 

maintained. 

This paper is an analysis of model referenced adaptive control applied 

to an International Robomation Intelligence MS0 robot. A computer 

simulation of the control is performed for the analysis. 

Several control system configurations are analyzed for their use with 

the model referenced control algorithm. Tests are made for proper gain 

adjustment and system response for various systems. 


