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Abstract 

Consistent and reliable flow of bulk wheat from hoppers and silos is very significant in 

wheat handling and processing. Bulk wheat flow challenges such as inconsistent flow, arching, 

etc., are common during handling. The irregular size and non-uniformity of physical properties, 

the presence of impurities affects the flow of wheat. Chaff and insects infested kernels are the 

two most common impurities present in bulk wheat. In this research, the effect of these two 

impurities on bulk wheat physical and flow properties were studied.  

Physical and flow indicators, such as bulk, tapped, particle densities, angle of repose, 

Hausner ratio, Carr index, and porosity measures the flowability of uncompacted bulk solids. 

Meanwhile, flow properties measured by shear testing principle based on Jenike’s method 

simulated bulk wheat under pressure in bins/hoppers. The dynamic properties tested quantify the 

energy required to flow, compressibility and permeability at dynamic handling situations. Due to 

the presence of impurities and moisture content differences, bulk density and angle of repose of 

wheat varied from 801.54kg/m3 to 718.36kg/m3, and 23.6° to 38.4°, respectively. Angle of 

internal friction and wall friction angle that reflect interaction between particles and particle with 

bins/hopper walls, ranged from 23.95° to 43.13° and 15.46° to 20.33°, respectively.  

In addition to instrumental flow properties, the flow profile, discharge rate, and particle 

velocity during hopper flow of bulk wheat was studied using Particle Image Velocimetry 

method.  Mass flow and funnel flow hopper dimensions were used for flow profile analysis. The 

discharge rate decreased from 1.67 to 1.12 kg/s for mass flow and 1.42 to 0.86 kg/s for funnel 

flow when the chaff in bulk wheat increased from 0% to 7.5% (weight basis). Analysis of the 

active flow zone indicated that bulk wheat without chaff had a uniform flow compared to wheat 

with chaff in the bulk.  The findings from this study will be useful for design of hopper bottom 

bins and handling equipment based on the wheat quality and percent moisture content.    
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Chapter 1 - Introduction 

This thesis presents a study on the effect of moisture content and impurities 

proportion on the bulk flow characteristics of wheat. The physical properties such as 

densities, flow indicators, and flow properties such as flow energy, stability, compressibility, 

permeability, and shear characteristics was studied. Particle image velocimetry (PIV) analysis 

to study the discharge profile of bulk wheat in laboratory scale hopper was also included. 

Understanding these characteristics help support the bulk wheat processing facilities in 

design of hoppers and to predict the bulk wheat flow and discharge from silos/hoppers. 

This chapter gives an overview on the flow characteristics of bulk wheat, which is the 

primary focus of this study. In Section 1.1 wheat characteristics and the factors that influence 

flow were enumerated. The hypothesis and goals, and the objectives of this study are given in 

Section 1.2 and 1.3, respectively. Section 1.4 provides an overview of the remainder of this 

thesis. 

1.1 Bulk Wheat Flow Characterization 
With an increasing quantity and variety of bulk grains being handled, processed, and 

produced in grain based food and feed industry, there is growing need for information on 

material characteristics that is significant for design of handling and storage equipment. 

Knowledge of bulk properties of particulate materials is essential for the design of industrial 

equipment, efficient and reliable material processing as well as for estimation of quality of 

raw material (Molenda and Stasiak, 2002). Furthermore, physical properties of bulk solids are 

important for quality assessment of the final product as well as during subsequent storage, 

handling, and transport. In addition, flow properties of bulk solids influence handling and 

processing operations, such as flow from silos and hoppers, transportation, mixing, 

compaction and packaging (Knowlton et al., 1994). 

Most of the bulk solid characteristics are not inherent properties or does not depend 

on their individual particle physical characteristics. In general, the particulate properties are 

influenced by environmental factors, such as moisture content, relative humidity, temperature; 

and processing history, such as consolidation and vibration. In the U.S., wheat is one of the 

major cereal grains processed as food and feed. Wheat is usually stored in metal bins or 

1 

 



  

concrete silos with capacities ranging from few tons to more than million bushels of grain. 

Uniform flow of wheat is expected from the bins/silos, during discharge, or when handled 

using mechanical conveyors. Many researchers have studied the bulk physical (Glenn et al., 

1991; Al-Mahasneh and Rababah, 2007) and flow properties of wheat (Versavel and Britton, 

1986; Molenda et al., 1998, 2004, 2005). Most of these studies concluded that wheat is a free 

flowing bulk material.  

Bulk wheat, before cleaning and during storage, often contains impurities such as 

chaff, broken kernels, insect damaged kernels, dust, frass, etc. These impurities, due to their 

difference in size and density affect the flow characteristics of wheat due to spoilage, 

interlocking, cohesion, and compaction. Changes in physical properties lead to arching, crust 

formation, and caking of grains. Grain bin entrapment, due to poor flow of grains, is a major 

grain based hazards when working with flowing grain. However, not much research has been 

done on the effect of impurities on the physical and flow properties. In this thesis, based on 

the foreign material level in bulk wheat and within the moisture content of wheat that is 

commonly stored or handled, the physical and flow properties were investigated. 

 1.2 Research Hypotheses  
The bulk physical properties provide a macroscopic view at uncompacted or 

unconsolidated condition. The flow properties simulate handling conditions to understand the 

properties under consolidation or during the flow. The working hypothesis of this study is 

that moisture content and impurities proportion influence the physical and flow properties of 

bulk wheat. In this study, instrumental evaluation and flow profile analysis were employed to 

investigate the bulk wheat characteristics and they are discussed in detail in subsequent 

sections.  

 1.3 Research Objectives 
The overall goal of this project is to understand the flow characteristics of bulk wheat 

with impurities (chaff and lesser grain borers infested kernels). Particle image velocimetry 

(PIV) technique was also used to understand the profile of wheat kernels during discharge 

from hoppers. The objectives of the research are:  
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1. To measure the physical and flow properties of bulk wheat with different proportion of 

chaff at three moisture content level. 

2. To measure the physical and flow properties of wheat with different proportion of lesser 

grain borer infested kernels at different moisture content levels. 

3. To study the flow profile of wheat through mass and funnel flow hoppers using particle 

image velocimetry technique.   

 1.4 Thesis Outline 
The rest of this thesis is divided into four chapters. Chapter 2 contains the literature 

review on bulk solids flow. Physical and flow properties affected by the presence of 

impurities and insects damaged kernels is discussed in Chapter 3 and Chapter 4, respectively. 

Chapter 5 contains the flow profile analysis in mass and funnel flow hoppers.  In Chapter 6, 

the findings from this study has been summarized and provides suggestions for future work 

based on the understanding developed from this study. 

 1.5 Chapter References 
Al-Mahasneh, M.A. and Rababah, T. M. 2007. Effect of moisture content on some physical 

properties of green wheat. Journal of Food Engineering 79, 1467-1473. 

Grain Inspection Handbook. 2013. Book II, Chapter 13 - Wheat. Federal Grain Inspection 
Service, U.S. Department of Agriculture. 

Glenn, G.M., Younce, F. L. and Pitts, M. J. 1991. Fundamental physical properties 
characterizing the hardness of wheat endosperm. Journal of Cereal Science 13, 179-194. 

Knowlton, T.M., Carson, J.W., Klinzing, G.E. and Wen-Ching, Y. 1994. The importance of 
storage, transfer and collection. Chemical Engineering Progress 90, 44–54. 

Molenda, M., Horabik, J. and Rossi, J. 1998. Stress and deformation of wheat in direct shear test. 
International Agrophysics 12, 115-118. 

Molenda, M., Horabik, J., Thompson, S. A. and Rossi, J. 2004. Effects of grain properties on 
loads in model silo. International Agrophysics 18, 329-332. 

Molenda, M. and Horabik, J. 2005. Mechanical Properties of Granular Agromaterials and Food 
Powders for Industrial Practice Part1: Characterization of Mechanical Properties of 
Particulate Solids for Storage and Handling. Lublin, Poland: Institute of Agrophysics 
Polish Academy of Sciences. 
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Molenda, M. and Stasiak, M. 2002. Determination of elastic constants of cereal grain in uniaxial 
compression. International Agrophysics 16, 61–65. 

Versavel, P. A. and Britton, M. G. 1986. Interaction of bulk wheat with bin wall configuration in 
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Chapter 2 - Literature Review 

In this chapter, the factors that influence the physical and flow properties are presented. 

In section 2.1, the importance of bulk properties of wheat is discussed. Flow characteristics and 

common flow issues are discussed in section 2.2. The physical and flow properties of bulk solids 

are presented in sections 2.3 and 2.4, respectively. Hopper flow patterns and discharge flow rate 

prediction methods are discussed in section 2.5. In section 2.6, particle image velocimetry 

technique is reviewed in relation to hopper discharge analysis. The aim of this chapter is to 

describe the details in quantifying flow characteristics of bulk granular material.  

 2.1 Bulk Properties of Wheat 
Flowing grain is a term that is used to describe the movement (downward) of grain 

during handling especially from a storage bin or hopper. During unloading, velocity increases as 

grain flows from the bin wall at the top of the grain mass into a small, vertical column at the 

center of the bin. Flowing grain behaves like fluids while discharging. Information on the flow 

rate of grain through various sizes and shapes of orifices is needed to properly size the opening 

for flow control during the transfer of grain. The flow rate of grain through an opening is 

independent of the depth of grain above the opening if the mode of flow remains the same 

(Ketchum, 1919; Fowler and Glastonbury, 1959). Stahl (1950) indicated that flow of grain 

through a horizontal opening was proportional to the cube of the diameter, or the product of 

length and width of the opening.  

In the agriculture industry, grain engulfment is a bigger challenge resulting in fatalities. 

As mentioned above, flowing grain behaves like fluid with high rate of flow at the bin center. 

Grain entrapments usually happen when the grain bridges or arches in the silo. A grain bridge is 

a layer of condensed, crusted, spoiled grain, which can conceal voids beneath the bridge (Yutaka, 

1994). From Fig 2.1 it could be observed that, if a worker walks on the crusted surface, the 

additional weight will cause the crust to break and collapse, and the worker will be partially or 

completely submerged immediately (in 20 seconds). In Jenike’s theory, an important assumption 

is that an arch would form if the unconfined yield stress of material is greater than the major 

principal stress caused by the self-weight in the arch. Published literature (Kudrolli and 
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Samadani, 2001; Zuriguel et al., 2003; Zuriguel et al., 2005) indicates that a series of processes 

and phenomena affects the dynamics of grain flow during emptying of the silo. The effects could 

be divided into: arching, ratholing, irregular flow, jamming, caking, and segregation (Fig 2.2). 

Though the particle size, density and shape characteristics influence the flow characteristics, 

because of their biological origin, the properties of cereal grains are also highly influenced by 

their composition and environmental factors. Hence, understanding the characteristics of stored 

materials and storage condition can help predict the flowability of bulk cereal grains.  

 

Fig 2. 1 Grain entrapment  

 
(Source: North Dakota State University Agriculture and University Extension) 

 

Fig 2. 2 Challenges in grain flow 

 
        a. Arching        b. ratholing          c. Segregation 
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Due to the presence of impurities in wheat during storage and handling, the handling 

process will be more complex than a mono-sized bulk material system. Larger differences in 

particle size, irregular shape and particle size distribution can affect the flow and flow properties 

during handling. However, limited research has been done on characterizing the flow properties 

of wheat in the presence of impurities.  

 2.2 Flow Characteristics and Common Flow Issues 
Most of the raw materials that are currently being used in the grain based food and feed 

industries are in particulate form. The materials include various ingredient and end products. 

Two of the most common problems encountered in solids processing plants occur during the 

transporting and handling (Merrow, 1988). In particular, problems arise from the difficulty 

encountered in withdrawing material from a storage hopper without interruption and at the 

required rate. These complications are caused by failure to incorporate accurate flowability 

measurements into the design. The end result, if the solids are not characterized before handling, 

is frequent stoppage of the process. This results in loss in production time and time of additional 

staff to restore the process flow.  Many studies have described the impact of hopper design, 

material characteristics, and operating conditions on hopper flow (Marinelli and Carson 1992; 

Johanson, 2002). These studies included experimental, theoretical, and modeling approaches 

with both ideal and real materials. It is generally understood that the particle internal friction, the 

particle–wall friction, and the hopper geometry (hopper angle, outlet size, and shape) contributes 

to the flow mode in a hopper. 

Bulk solids property characterization is essential in providing theoretical and data support 

to facilities design and help troubleshoot the problem areas. Therefore, understanding the bulk 

characteristics and flowability of solids helps predict flow and handling behavior during 

processing. The flowability of a powder, which is defined as the capacity of a powder or a 

granular solid to flow under a specified set of conditions, is a complex characteristic of a 

material. It is highly dependent on the state of the powder and the application it is being used for. 

Because the flowability is multidimensional, its quantification is also a complex task. Prescott 

and Barnum (2000) stated that since flowability is not an inherent property of a material, but 

instead results from a combination of physical properties and environmental and processing 

factors, it cannot be described by any one value or any single index.  
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The flow properties of bulk solids might change significantly during various stages of 

processing, thus affecting the quality of the final product. However, the mechanisms of these 

changes are poorly understood (Muzzio et al., 2002). Bulk solids system is complex because it 

contains components not only in one state, but most of the time it’s a combination of solid, liquid 

and gaseous state. Hence, testing the flow properties of solids and defining by a one-dimensional 

parameter value would be a tough task. 

The most common flow problems are no-flow and inconsistent flow. No-flow could be 

caused by arching and caking. Arching occurs when an obstruction in the shape of a bridge form 

above the hopper outlet. This could be due to interlocking or cohesive arch (Fig 2.2), from the 

irregular shape of particles or particle cohesion (Eric, 2004). The inconsistent flow is the result 

of an obstruction alternating between an arch and flowing (Eric, 2004). The arch could be 

collapsed by its own weight or by external force. The sudden flow of bulk solid causes 

ununiform pressure distribution on the bin/silo walls, increasing the risk of bin/silo collapse. 

Segregation is also a common issue during hopper discharge of solids, due to the particle size 

distribution. Arteaga and Tüzün (1990) and Tüzün and Arteaga (1992) examined the segregation 

of binary and ternary materials discharging from mass-flow and funnel-flow hoppers. The results 

showed that most segregation occurred either during an initial transient or a final transient 

motion of the solids.  In this thesis work, the effect of chaff and insect damaged kernels 

(impurities present in bulk wheat) on the bulk flow properties of wheat will be analyzed.  

 

Fig 2. 3 Interlocking and cohesive arch during flow of solids (source: Eric, 2004)  
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 2.3 Physical Properties 
Physical characteristics that determine the flowability of bulk solids include particle 

surface properties, particle shape, densities, and the particle size and size distribution. Particles 

with irregular fibrous shapes and plate-shaped particles can interlock mechanically. Furthermore, 

some irregularities on the surface of particles can cause physical interlocking of the particles, 

restricting flow. Mechanical interlocking occurs in bulk solids containing particles of irregular or 

fibrous shapes, and with the aid of vibration or pressure, these particles can form a stable 

structure (Peleg, 1978). Fibrous, bulky, and flaky particles can interlock or fold about each other, 

resulting in ‘‘form-closed’’ bonds (Pietsch, 1997) contributing to interlocking in addition to 

frictional strength developed under constant normal stress of the system. Also, the formation of 

stable mechanical structures, such as arches above the aperture of silos and containers, is 

possible, but it depends on the three-dimensional shape and size of particles (Jenike, 1964). 

 2.3.1 Particle size 

Considerable research has been carried out to study the effect of particle size and size 

distribution on the flowability of powders. In general, lower particle size reduces flowability of 

solids (Thomson, 1997). Smaller particles provide a greater surface area for surface cohesive 

forces to interact as well as friction to resist flow (Fitzpatrick et al., 2004a). An increase of 

surface-to-surface ratio becomes greater as the particles become smaller, increasing surface 

interactions (Peleg and Hollenbach, 1984; Griffith, 1991). The forces opposing flow are friction, 

attraction between particles (cohesion), attraction between the particles and system walls, and 

mechanical resistance or interlocking (Peleg, 1978).  

 2.3.2 Densities and relative flow indicators 

Bulk, tapped and true density are the commonly measured density values to assess the 

bulk characteristics of powders. Bulk density accounts for the volume occupied by the inter-

granular spaces, inner pores, and external pores of the solids. Bulk density gives an overall 

degree of packing in a specific volume. Tapped density is the density after vibration or tapping.  

Due to vibration, the structure of bulk solids collapses or densify significantly with smaller 

particles filling the inter-granular spaces. Tapped density gives the measure of the ability of 

powder to be compacted without applying consolidation pressure. Bulk and tapped density are 
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used to calculate compressibility index (CI) and Hausner ratio (HR). As defined by Carr (1965) 

and Hausner (1967), CI and HR are the flowability indicators that measures the propensity of a 

powder to be compressed, reflecting the relative degree of interparticulate interactions. Based on 

the CI and HR values, the powders could be classified from having ‘excellent’ to cohesive’ 

(Table 2.1).  

 

Table 2. 1 Hausner ratio and compressibility index (source: Eben, 2008) 

Flow indicator Excellent Good Fair Passable Poor Very poor Cohesive 

Hausner’s ratio 1.00-1.11 1.12-1.18 1.19-1.25 1.26-1.34 
1.35-
1.45 1.46-1.59 >1.60 

Compressibility 
 index (%) 

≤10 11-15 16-20 21-25 26-31 32-37 >38 

 
 

True density is the density of the solid part of solids without voids in particles and 

intergranular spaces. By measuring true density, the porosity of bulk samples could be 

calculated. Porosity measures the potential permeability and aeration through the bulk solids. 

Porosity also helps in assessing the flow of gas through bulk grains during aeration, drying, 

heating, and cooling operations. Bulk wheat with low porosity will have greater resistance to 

water vapor escape during the drying process, which may lead to higher power to drive the 

aeration fans (Bhise et al., 2014).  

 2.3.3 Angle of repose 

Angle of repose is not an intrinsic characteristic of bulk solids, but depends on the 

environmental conditions at which the pile has been stored or formed and the measurement 

accuracy. There is no universal or standard testing method for angle of repose, hence, different 

values of the angle can be obtained for the same materials. Some studies have indicated that 

angle of repose may be less accurate for predicting flowability of cohesive and compacted 

materials (Bell, 1993; Ileleji and Zhou, 2008). Consequently, a collection of a large number of 

data points is recommended for characterizing a single sample (Bell, 1993). Angle of repose can 

only reflect the flowability of bulk solids in an unconsolidated state. Moreover, the angle of 

repose is not an accurate test to apply in the design of silos, when bulk solids are under high 

stress, because the angle of repose does not represent how the strength varies with its state of 

compaction (Ileleji and Zhou, 2008). 
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 2.3.4 Moisture Content 

During handling and storage, bulk solids might uptake moisture from the air, if the 

relative humidity of ambient air was higher than the equilibrium relative humidity of stored 

materials (Fitzpatrick et al., 2004b). Moisture uptake increases the cohesion between the 

particles. These forces depend on the presence of liquid (usually water) at the outer surface layer 

of the particles. Liquid layers on the surface of particles promote cohesion by creating a 

meniscus between the particles. The more viscous the liquid, the stronger is the cohesive forces. 

Flowability can be affected by the amount of free and associated water inside each particle 

(Pablo and Gustavo, 2009). The ability to associate water within a powder bulk mass depends on 

the structural distribution of these components within each particle. Furthermore, surface 

properties such as friction, ductility, and interlocking capacity on the surface may depend on the 

powder’s composition and structural distribution (Pablo and Gustavo, 2009). Chang et al. (1984) 

conducted experiments with corn of various moisture contents and found that the flow rate was 

proportional to the orifice depending on the moisture content.  

However, the properties mentioned above are usually considered the flow indicators 

because they are single measure and are therefore unable to fully reflect the potentially complex 

behavior that powders can exhibit during processing and storage. Limitations are in their 

sensitivity and ability to capture diverse flow aspects , especially with respect to characterizing 

samples during conveying, flow through hoppers, and at under consolidation. 

2.4 Flow Properties 
Flow properties characterize the behavior of solids during hopper flow, conveying 

through feeders, and other handling equipment. Flow assurance is also crucial for the design of 

bins or hoppers especially to maximize the use of discharge units to their design capacity in order 

to prevent costly downstream handling problems (de Jong et al., 1999). Generally, flowability 

properties tests can be divided into three classes: uncompacted conditions (e.g. angle of repose), 

tapped or vibrated (Hausner ratio and compressibility index), and consolidated (shear tests). 

While the first two simple methods are of problematic accuracy, the industry standard has 

become the Jenike shear-tester, as a reliable tool in the industrial silo design (Schulze, 1996a, b). 

The Jenike shear-tester is a widely-accepted method for predicting the flow of bulk solids in a 

compacted state, but it is common opinion that this requires a high level of training and skill, is 
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time and products-consuming and is sensitive to the way how materials are conditioned before 

testing (Schwedes, 2003; Krantz et al., 2009). The accuracy of the results depends upon the 

material being tested and the technician performing the procedures, and often has reproducibility 

problems (Ganesan et al., 2008). 

More recently, the measurement of dynamic flow properties have been commonly used 

by the industry. Dynamic flow properties help assessing the flow characteristics at consolidated, 

compacted and aerated conditions. Dumarey et al. (2011), Alisa et al. (2011) and Leturia et al. 

(2014) have shown the use of measuring dynamic flow properties of powders for accurate flow 

characterization. The FT4 powder rheometer (Freeman Technologies, UK) is one of the 

commonly used instruments for measuring dynamic flow properties. The FT4 powder rheometer 

(Fig 2.4) is designed to characterize powders under various conditions in ways that resemble 

large-scale production environments.  

The initial state of the powder prior to testing is particularly important. An advantage of 

FT4 is that the instrument conditions the samples so that the measurement is reproducible and 

repeatable (Freeman, 2007). Traditional test methods (Berry and Bradley, 2005; Carr and 

Walker, 1968; Schulze, 1996; Peschl, 1989) often lack an initial conditioning stage to remove the 

powder's history and operator variability.  The methods used in FT4 include rheological, 

torsional shear, compressibility and permeability tests (Fig 2.5) which can be performed using a 

small amount of bulk samples. 
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Fig 2. 4 FT-4 powder rheometer 

 
 

Fig 2. 5 Powder rheometer test categories 

 
 

2.4.1 Dynamic flow properties 

Mohammad and Behdad (2006), Freeman (2007), Freeman and Cooke (2009), Guillaume 

and Nicolas (2010), and Leturia et al. (2014) have mentioned the application of FT-4 powder 

rheometer for measuring dynamic flow properties. Through dynamic tests, the instrument 

evaluates energy required to make the material flow, and the relative indices such as stability 

index, flow rate index, and aeration ratio. In the dynamic flow properties test, flow energy was 

tested with/without aeration, to evaluate the effect of air flow during the flowing of material. 

Haifeng et al (2011) reported the discharge of coal in an aerated hopper to promote the 
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flowability of cohesive powders. Aeration assisting the flow near hopper outlet has been stated 

by Papazoglou and Pyle (1970) and Donsi and Ferrari (1991). Moreover, Ouwerkerk et al. 

(1992) found that aeration in hopper through a porous cone section would create an opposite 

pressure gradient, and thereby increase the discharge rate. 

 

2.4.2 Compression and permeability 

Grain during storage experiences packing and compaction due to the vertical pressure 

exerted by the grain mass. Packing results in a change in bulk density of the grain mass, which in 

turn results in a change in porosity since little particle deformation is expected at the low 

pressures typically experienced during grain storage (Thompson and Ross, 1983). Quite often the 

testing of bulk solids is done for silo design purposes, hence, not only the dynamic properties 

need to be tested, but also the static properties under compaction need to be measured. Annular 

shear cells and uniaxial testers are instruments that can easily be automated and give 

reproducible results, although their sensitivity may vary according to the tested powder (Jorg, 

2003). Indirect evaluation of flow properties has also been attempted by measuring 

compressibility of bulk solids using uniaxial compression testers (Ehlermann and Schubert, 

1987). 

Permeability is a property of porous materials that quantifies the relative ease with which 

a transporting substance can pass through the material. For example, the air permeability of grain 

stored in a grain bin will help engineers to determine how much air pressure will be needed to 

make air flow through the grain at a required flow rate in designing a grain drying process 

(Ludger and Arthur, 2007). Determining the permeability of grain as a function of bulk density is 

important for predicting natural convention current in stored grain. Permeability classification is 

given in Table 2.2 

 

Table 2. 2 Bulk solid permeability classification (source: Huang et al., 2012)  

Permeability Pervious Semi-Pervious Impervious 

κ (cm2) 10-3 – 10-6 10-7-10-10 10-11-10-15 
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2.4.3 Shear and wall friction 

To analyze the flow of solids from bins and silos, and to develop a model of flow and no-

flow conditions, Jenike used the principles of plastic failure (Fig 2.6) with the Mohr-Coulomb 

failure criteria (Thomson, 1997). Ideally, in free flowing powders, the resistance to flow is due to 

the result of friction; but in cohesive powders, the inter-particle forces are enhanced by 

compaction, which results in mechanical strength in the bulk (Peleg, 1983). Shear testing 

procedure for the design of bins, have been commonly used for research purposes and in 

industrial practice for characterizing granular materials (Ashton et al., 1965; Schrämli, 1967; 

York, 1975; Kamath et al., 1993; Duffy and Puri, 1994, 1999; Schwedes, 1996).  

  

Fig 2. 6 Typical Mohr circle failure plot based on Jenike’s theory (source: Ganesan et al., 

2008) 

 

 2.5 Hopper Flow 
In most industries where hoppers are used, it is of interest to know how the solid 

materials flow from the hopper as it empties under gravitational force. The shear test could 

provide data to determine the hopper opening and half hopper angle. Flow from hopper can be 

divided into two modes — the “mass-flow” and “funnel-flow” (Jenike, 1961, 1964), as 

indicated in Fig 2.7. In mass-flow, the whole particulate material moves simultaneously during 

discharge while in funnel-flow, the material at the center of the hopper exits first, followed by 

the material closest to the walls of the hopper. In extreme cases, a ratholing is formed during 
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funnel-flow and the hopper may not empty completely under the force of gravity alone. Funnel-

flow can also induce segregation of a powder into non-uniform fractions during discharge, as 

reported by Johanson (1978), Prescott and Hossfeld (1994), Kirkwood et al. (1999), Pittenger et 

al. (2000) and Tang and Puri (2004). 

 

Fig 2. 7 Mass flow and funnel flow from hoppers (source: William et al., 2009) 

 
 

Wood (1981) stated that powder discharge is closely connected with both the hopper 

structure and the powder properties. By using the approaches described by Jenike (1961, 1964), 

the mode of flow for a given system could be predicted for a known material and hopper. Jenike 

used continuum models which were validated against experimental data to develop a series of 

“hopper design charts” that are being widely used. The design charts, as shown in Fig 2.8, are 

specific to a certain hopper geometry (conical, wedge-shaped, etc.) and powder internal friction. 

Once the appropriate chart is selected, the user could locate the intersection point of the hopper 

wall angle on the x-axis and the wall friction angle on the y-axis to determine whether the 

powder will discharge in mass- or funnel-flow mode. Based on Jenike’s classification and with 

reference to the Eurocode 1 and DIN 1055, the two critical points to classify the flow pattern is 

40°and 60°for mass flow and funnel flow, respectively, as shown in Fig 2.9. 
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Fig 2. 8 Hopper design chart for a conical hopper based on Jenike’s theory (source: Jenike, 

1961, 1964) 

 
 

Fig 2. 9 Flow pattern classification based on Eurocode 1 and DIN 1055 (source: Eric, 2004) 

 
 

The general accepted thumb rule is that interlocking arches can be overcome by ensuring 

that the outlet diameter is six to eight times of that of largest particle size for a hopper with 

circular opening outlet, or the width is three to four times the largest particle size for a hopper 

with slotted opening. (Slotted outlets must be at least three times as long as they are wide for 

such conditions to apply) (Eric, 2004).  
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 2.5.1 Discharge rate 

Knowledge of the discharge rate is of importance for the design of reliable and 

controllable transport systems. But, prediction of rate is often difficult due to the complexity 

associated with granular flow, such as inhomogeneous solid distribution, irregular velocity 

profile and diverse particle size and shape (Seville et al., 1997). Beverloo (1961) and Johanson 

(1965) evaluated the flow rate form silos for different particulate materials and developed 

standard equations that are widely being used to estimate the hopper discharge rate.  

The Johanson equation is given as: 

       (2.1) 

where θ is the half angle of the hopper, m is the discharge rate (kg/sec), ρo is the bulk density 

(kg/m3), and g is the gravity acceleration (9.8 m/s2) 

The Beverloo equation is given as: 

                                (2.2) 

where, dp is the particle diameter (m) ，k is the constant, typically 1.3 < k < 2.9 with k = 1.4 if 

discharge rate data are not available. The term kdp accounts for the wall effect where the particles 

do not fully flow at the perimeter of the outlet, and D is the outlet diameter (m).  

Recently, discrete element method (DEM) simulations have been conducted by Cleaver 

and Nedderman (1993), Langston and Tüzün (1994), and Langston et al. (1997), to predict 

discharge rate. The DEM simulations had good agreement with the experimental discharge rate 

and the Beverloo equation values.   In general, the Beverloo equation gives a good prediction for 

spherical particles. However, in DEM simulations, the predictability decreases with shape 

deviation from spheres (Liu et al., 2014).   

 2.6 Particle Image Velocimetry 
Particle image velocimetry (PIV) is a powerful optical surface velocity measuring tool to 

visualize two-dimensional flow or deformations (Tejchman, 2006). It could evaluate velocity 

magnitude contours, velocity vector fields, velocity distributions, etc based on analyzing the particles 

displacement in two sequencing frames.  The review work by Adrian (1991) is a reference baseline 
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for early development of the PIV technique and its applications. The improvement of the PIV 

technique made by Willert and Gharib (1991) provided a dramatic reduction in image processing 

time, but at a cost of spatial resolution. Willert and Gharib (1991) and Westerweel et al. (1991) 

demonstrated that measurement accuracy is not adversely affected by a switch to digital 

processing. Digital Particle Image Velocimetry (DPIV), as it has come to be commonly known, 

has thus found application in a number of situations in which the processing of large numbers of 

PIV images is beneficial or necessary for the accuracy of the analysis results.   

PIV uses particle displacement over a specified small finite separation time to provide a 

velocity field for particle flow. PIV, therefore, requires that the materials must contain an 

adequate number of small particles for sufficient representation of velocities. The quality or 

accuracy of any flow visualizations using particle motion in the bulk flow primarily depends on 

the fidelity with which individual particles track the surrounding fluid. The first experimental 

concern for PIV is the mechanical coupling between the fluid and the particles. The particle 

density, or the number of particles per unit volume, should be sufficiently low to preserve the 

original flow dynamics (Crowe et al., 1998; Merzkirch, 1987). 

Experimental investigations of flow patterns in converging hoppers have been presented 

in numerous publications, e.g. Pariseau (1969), Blair-Fish and Bransby (1973), Lee et al. (1974), 

Nguyen et al. (1979), Tüzün and Nedderman (1982), Langston et al. (1996, 1997), and Ooi et al. 

(1998). Pitman (1986) investigated stress and velocity fields in two- and three-dimensional 

hoppers. To investigate granular flows in laboratory models, special techniques such as X-ray, 

ultrasonic measurement, transparent walls has been used. Kvapil (1959) used two different colors 

of investigating materials to detect the zones of flow and the stagnant zones. Drescher et al. 

(1978) presented experiments in a plane parallel/converging bunker using a stereo-photographic 

technique. Dosekun (1980) measured the granular material flow in a wedge-shaped hopper with 

transparent walls. Also, other non-invasive measurement techniques used were spy-holes, radio 

transmitters, and positron emission (Ooi et al., 1998). More details on different techniques used 

in investigations of granular flow in small models can be found in Ooi et al. (1998) and Lueptow 

et al. (2000). Irena et al. (2006) used amaranth seed as material to explore the velocity vector 

fields, flow profiles, and geometrical characteristics of the granular material flowing in the 

Plexiglas wedged hopper model.  
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Flow patterns are important to understand the flow efficiency and to understand the 

hopper design requirements. Hence, in this research, PIV technique was used to study the flow 

profile of wheat during mass and funnel flow. 

This review indicates that to understand challenges in handling bulk wheat, it requires a 

fundamental understanding on the bulk properties. An in-depth understanding of the flow 

characteristics of bulk wheat during handling is needed in order to design appropriate and 

efficient hoppers or storage bins. Therefore, the primary focus of this thesis is to pursue a 

fundamental investigation on bulk characteristics of bulk wheat. 
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Chapter 3 - Effect of Chaff on Flow Properties of Wheat 

 3.1 Introduction 
Wheat is one of the most consumed cereal grains in the world. In the grain processing 

industry, wheat grains are largely used as raw materials for a number of food applications, 

and more particularly for the production of wheat flours (Carman, 1996; Landillon et al., 

2008). Storage and handling of bulk wheat is an important aspect of the process and grain 

handling industries. Bulk wheat is subjected to a series of static and dynamic loads during 

handling, transport, processing, and storage (Bargale et al., 1995). During these operations, 

the physical and flow properties intrinsically affect the bulk behavior such as flow from 

hoppers and silos (Peleg, 1978; Knowlton et al., 1994). Bulk wheat is considered free flowing 

and the change in compressed bulk density is minimal compared to other solids or powders 

such as wheat flour (Schulze, 2008). 

Wheat is graded into different grades based on the percent dockage in the bulk. 

Dockage is described as the “weed seeds, weed stems, chaff, straw, or grain other than wheat 

(Womach, 2005). Depending on the grade, the dockage could make up to 2% of bulk wheat 

(FGIS, 2013). Though the wheat kernels are irregular in shape, however they are easy-

flowing solids. But, the impurities such as chaff are highly irregular in shape and have a high 

tendency to interlock that affects bulk flow (Peleg, 1978). 

Bulk density, true density, porosity, and angle of repose are some of the useful flow 

indicators, under gravity. In addition, angle of repose that relates to the interparticulate 

friction or resistance to movement between particles (Train, 1958), provides a rough estimate 

of the cohesive behavior of bulk solids (Zhou et al., 2008). Bulk and tapped densities, and 

derived indices such as Compressibility Index (CI) and Hausner’s Ratio (HR) as defined by 

Carr, 1965 and Hausner, 1967, measures the ability of a granular material to be compressed, 

reflecting the relative degree of interparticulate interactions. However, flow indicators 

mentioned above provide some insight into the behavior of bulk solid, but these are single 

measures and therefore does not reflect the potentially complex behavior that any granular 

material exhibit. Limitations are in their sensitivity and ability to capture diverse aspects of 

flow behavior, especially with respect to characterizing samples during flow. 
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The flowability of bulk solids, which is defined as the capacity of a granular solid to 

flow under a specified set of conditions, is a complex characteristic of a material; it is highly 

dependent on the state of the materials and the application it is being used for. Since the 

flowability is multidimensional, its quantification is a complex task (Vasilenko et al., 2011). 

The design and modification of equipment, in particular storage silos and hoppers, for wheat 

with impurities will require a fundamental understanding of physical properties and their 

effects on flow behavior. In this chapter, the effect of the different levels of chaff and 

moisture content on the flow characteristics of wheat is discussed. 

 3.2 Materials and Methods  

 3.2.1 Samples 
Hard red winter (W) wheat kernels were obtained from Farm Coop, Manhattan, Kan., 

USA. Wheat chaff was gathered from Hal Ross flour mill, Kansas State University, 

Manhattan, Kan., USA.  Moisture content of the wheat was measured using the American 

Society of Agricultural and Biological Engineers (ASABE) Standard S352.2 of drying 10 g 

of unground samples in air oven at 130° for 19 h (ASABE, 2006). The moisture content of 

chaff was measured using the ASABE Standard S358.3 of drying 25 g samples cut to small 

pieces and dried at 103 °C for 24 h (ASABE, 2012). Initial moisture content of wheat and 

chaff were 11.7 and 10.4% wet basis (w.b.), respectively. Experiments were conducted within 

the moisture range of 10-14% (w. b.). Moisture content of chaff was also maintained at the 

same moisture content as wheat. Wheat kernels and chaff were rewetted to about 15% (w. b.) 

moisture content by adding calculated amount of distilled water. After rewetting, the samples 

were stored at 4 ℃ for 72 h for equilibration. Drying to desired moisture level (10, 12, 14% 

w. b.) was carried out in ambient conditions by spreading kernels and chaff in thin layers 

without any additional heat or airflow. Due to the difference in drying, the wheat and chaff 

the final moisture content was not uniform. The moisture content of wheat and chaff used 

(Fig 3.1) in this study are given below in Table 3.1. The abbreviation MC1, MC2, MC3 

denotes moisture content of wheat and chaff at about 10, 12 and 14% (w.b.), respectively.  
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Fig 3. 1 Wheat and chaff samples 

 

 

 

 

 

 

 

Table 3. 1 Moisture content of samples, % w. b. 

Moisture content Wheat Chaff 

MC1 9.89 10.40 

MC2 11.67 11.83 

MC3 13.35 14.01 

 

The overall size of wheat kernel was measured using a single kernel characterization 

system (SKCS 4100, Perten Instruments, Inc., and Springfield, IL, USA). Chaff dimensions 

were measured using a Vernier caliper (General Tools, New York City, NY, USA.). Wheat 

and chaff (C) were mixed at specific proportion (W: C at 100:0%, 97.5:2.5%, 95:5%, 

92.5:7.5% and 0:100%) by weight basis. The proportion of mix was selected based on the 

U.S. grade of wheat with different broken and foreign material level (FGIS, 2013). As per the 

Federal Grain Inspection Handbook, foreign material consists of broken wheat, chaff, insect 

damaged kernels, live insects, and frass. In this study only chaff was mixed with bulk wheat 

to simulate different U.S. grades.  

 3.2.2 Physical properties and flow indicators 

 3.2.2.1 Bulk density 

The bulk density of wheat, chaff and the wheat-chaff mix was measured by using a 

Winchester cup setup (Seedburo equipment Company, Chicago, IL, USA.). A one pint 

(4.7318x10-4 m3) cup was set under a funnel and the samples poured through the funnel to 

maintain a natural flow into the cup. Excess sample was scraped off using a wooden scrapper 

in a zig-zag motion and the cup was weighed using a balance (sensitivity: 0.001g; Mettler-
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Toledo, Heightstown, NJ, USA). The bulk density (ρB) was then calculated from the weight 

and volume of the samples. 

 3.2.2.2 Tapped density 

Tapped density, that measures the compaction during handling, was measured using an 

autotap instrument (AT 6-1-110-60, Quantachrome Instruments, FL, USA) according to ASTM 

Standard B527-6 (ASTM, 1985). The samples were filled in a volumetric cylinder (250 ml) and 

the cylinder was tapped for 750 times. The number of taps was optimized for change in volume 

during tapping in a preliminary experiment (data not shown). After tapping, the change in 

volume of sample was measured and the tapped density (ρT) was then calculated from the 

volume of sample after tapping and the weight. 

 3.2.2.3 Compressibility index and Hausner ratio 

Compressibility Index (CI) and Hausner Ratio (HR) indicate the cohesiveness and 

compaction mechanism that occurs during handling of particulate materials due to vibration 

or tapping. CI and HR were calculated from the bulk and tapped density using the following 

equations (Kingsly et al., 2010): 

( )







 −
×=

T

B

ρ
ρρT100CI         (3.1) 

Bρ
ρTHR =         (3.2) 

where ρB is the bulk density (kg/m3) and ρT is the tapped density (kg/m3). 

 3.2.2.4 True density 

True density of the samples was measured using a gas pycnometer (AccuPyc II 1340, 

Micromeritics, Norcross, GA, USA). Helium gas was used to fill the chamber containing 

samples to determine the particle volume and the true density was calculated from the weight 

and the solid particle volume.  
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 3.2.2.5 Porosity 

Porosity was calculated using the relationship between bulk and true densities according 

to Mohsenin (1986) as follows,  

100)1(ε ×−=
Ture

B

ρ
ρ                                                                       (3.3) 

where ρB is the bulk density (kg/m3), and ρTure is the true density (kg/m3). 

 3.2.2.6 Angle of repose  

A fixed diameter (0.09 m) plate was set under a funnel which was held at a height (0.1 

m) above the plate and the samples were poured to maintain a natural flow on the plate. After 

pouring the samples, the height of the cone was measured and the angle of repose was 

calculated using the following relationship (Ozguven and Kubilay, 2004):    

 





=

D
H2arctanθ                              (3.4) 

where H and D are the height and average diameter of the pile, respectively. 

 3.2.3 Flow properties 
The FT4 Powder Rheometer (FT4, Freeman Technologies, Gloucestershire, UK) was 

used to evaluate the flow properties in terms of energy required to make the solid flow. Detailed 

descriptions of this equipment and its use in flow characterization can be found in Lindberg et 

al., 2004; Freeman, 2007; and Leturia et al., 2014. The FT4 powder rheometer system consists of 

a vertical glass sample container (120 mm height; 50 mm internal diameter) and a rotating blade 

(48 mm diameter; 10 mm height), which navigates through the sample up and down, and either 

in clockwise or anti-clockwise direction. FT4 calculates the flow properties by continuously 

measuring the forces causing deformation and flow of the powder imposed by moving blade 

(Leturia et al., 2014). The flow properties, described in the following sections, were evaluated 

during the displacement of powders in a controlled manner. The FT4 standard dynamic test cycle 

includes preconditioning, conditioning cycle, and test cycle. Preconditioning cycle mixes the 

sample to make the bed uniform before energy measurement. However, as the dimension and 

densities of wheat kernels and chaff had significant difference, during preconditioning, chaff 
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moved to the top of the cylindrical vessel. To avoid measurement error due to this segregation, 

preconditioning cycle was not used in the dynamic flow property measurement in this study. 

 3.2.3.1 Basic flowability energy (BFE) and stability index (SI) 

The energy required to establish a specific flow pattern for a precise volume of 

particulate materials is called the basic flowability energy. SI evaluates the effect of flow on the 

bulk physical changes on powders and solids. Some physical changes such as segregation (of 

chaff and wheat kernels) and agglomeration due to interlocking during flow of bulk wheat will 

help in developing better understanding on the wheat and chaff mix. BFE and SI were used to 

evaluate the flow properties of the granular material under free surface conditions. The flow 

energy is calculated from the anticlockwise motion of blade (23.5 mm diameter), through the 

samples, when it traverses through the vessel top to the bottom. The instrument conducts eleven 

test cycles to calculate BFE. The first seven test cycles were performed at a blade tip speed of 

100 mm/s to examine the effect of segregation on the bulk wheat during flow. For subsequent 

tests (test 8 to 11), the blade tip speed was gradually reduced from 100 mm/s to 70, 40 and 

10 mm/s to evaluate the sensitivity of the particles to different flow rates. From the 11 test cycle 

results, the flow parameters were calculated (Leturia et al., 2014). BFE corresponds to the 

stabilized flow energy (test 7) that represents the energy needed to displace a conditioned 

particulate sample during downward movement of the blade: 

7testatenergyFlowBFE =                                                        (3.5) 

SI is the factor evaluating flow energy changes during repeated testing and assesses how 

easily the particles are affected by being made to flow: 

1testatenergyFlow
7testatenergyFlowSI =                                                          (3.6) 

 3.2.3.2 Aeration ratio (AR) 

Bulk wheat with chaff is very porous and has intergranular spaces filled with air. The 

presence/absence of air or the porosity affects the bulk flow properties. Depending on their 

physical characteristics, easily aeratable solids have better flow properties because low applied 

energy is sufficient to initiate flow. For AR measurement, the samples were placed in a 160 ml 

vessel (50 mm inner diameter) glass vessel with a porous base that was connected to an air flow 
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controller. The flow of samples was simulated by moving the blade in an axial helical path 

through the test sample at a blade tip speed of 100 mm/s. In the second test cycle, the blade was 

moved along a downward helical path, (-10° at the sample blade tip speed) but in the opposite 

direction, to impose compaction, thereby forcing the sample to flow around the blade. 

Progressively, from test 1 to 6, the air flow rate was increased from 0 mm/s to 10 mm/s at 2 

mm/s increment. At each condition, the flow energy was recorded by the instrument and using 

the relationship below, the aeration ratio was calculated: 

)mm/s 10velocity  air(at energy Flow
mm/s) 0velocityair(at energy FlowAR =                                            (3.7) 

 3.2.3.3 Compressibility 

The compressibility reflects the particle density change during compaction, which is., the 

decrease in volume of the packed bed of particles under normal stress (Turki and Fatah, 2008; 

2010). Wheat and chaff samples were placed in a 50 ml cylindrical vessel and using a vented 

piston normal stress from 0.5 to 15 kPa (0.5, 1, 2, 4, 6, 8, 10, 12, and 15 kPa) was applied to 

consolidate the samples. Each normal stress was maintained for about 25 s to reach equilibrium 

at the target stress. The force applied on the sample and the compressibility as a percentage 

change in volume was recorded.  

 3.2.3.4 Permeability  

Permeability is part of the proportionality constant in Darcy's law which relates discharge 

(flow rate) and fluid physical properties (e.g. viscosity), to a pressure gradient applied to the 

porous media. Permeability testing by FT4 measures the pressure drop across the powder bed 

while the applied normal pressure was varied and the air velocity through the aeration base was 

maintained constant at 2 mm/s (Leturia et al., 2014). During testing, the sample was compressed 

using a piston with stainless steel mesh end that allowed air to pass through during compression. 

The air flow velocity was kept constant at 2 mm/s and the resistance to air flow was measured as 

air pressure drop.  

P
Lk

△

µV
=                                                            (3.8) 

where k is the permeability (cm2); v is the air velocity (cm/s); △P is the pre    
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powder bed (Pa); µ is the air viscosity (Pa·s); and L is the length of powder bed (cm). 

 3.2.3.5 Shear tests  

The relationship between normal stress and shear stress are plotted to obtain experimental 

yield locus that represents the failure during shearing of the bulk solids (Fig. 3.2). In free flowing 

powders, the yield locus follows a straight line that passes through the origin (Peleg, 1978) and 

its slope defines the angle of internal friction, as calculated by equation 3.9. For cohesive 

powders, however, the experimental yield locus is generally non-linear at different consolidation 

stresses (Thomson, 1997; de Jong et al., 1999). The shear test determines the following material 

characteristics as related to flow: the flow function (FF), the effective angle of internal friction 

(δ), and the angle of wall friction (ϕw). The flow function is derived from the relationship 

between unconfined yield strength (UYS), σc, of the powder against major principal stress 

(MPS), σ1, acting on the solids. FF represents the strength of the consolidated sample that must 

be surpassed to initiate flow. The smaller value at which the larger Mohr circle intersects the x-

axis is the minor consolidation stress (MCS) σ2. 









= −

ws

ws

/

/1tan
σ
τ

φ          (3.9) 

where ws /τ  indicates the shear stress in shear test/wall friction test, ws /σ  indicates the normal 

stress in shear test/wall friction test. 
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Fig 3. 2 Mohr circle analysis of shear test results 

 
 

 3.2.4. Statistical analysis 
The flow property measurements were performed in triplicates and the mean and standard 

error (SE) values are reported in this thesis. Statistical analyses were conducted using SAS (SAS 

Institute Inc., Cary, NC, USA). The effect of moisture content, chaff proportion and their 

interactions on physical and flow properties were evaluated by subjecting the data to two-way 

analysis of variance (ANOVA) at α= 0.05, using PROC GLM. Ryan or Ryan-Einot-Gabriel-

Welsch Q (REGWQ) multiple comparison tests was used to calculate the differences (P ≤ 0.05) 

due to moisture content and impurity percent. 

 3.3 Results and Discussion 

 3.3.1 Bulk physical properties 
The average size of wheat kernels were 2.78±0.35 mm, 2.82±0.34 mm, and 

2.78±0.32mm at moisture contents 9.89, 11.67 and 13.35 % w.b., respectively. Size of chaff was 

not uniform and the chaff length ranged from 15.90±2.18 to 26.08±3.31 mm with an average 

diameter of 4.71±1.38 mm. 
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Moisture content and chaff proportion had significant influence on the bulk, tapped and 

true densities of bulk wheat (Table 3.2, 3.3 and 3.4). The bulk density of wheat, chaff and the 

wheat-chaff mixture decreased significantly with the increase in moisture content. The decrease 

in bulk and true density, with increase in moisture content, could be attributed to the relatively 

larger increase in kernel volume compared to the increase in kernel mass. The negative 

relationship of bulk density with moisture content was also observed for wheat (Karimi et al., 

2009), gram (Dutta et al., 1988), and soybeans (Deshpande et al., 1993). As expected, with the 

increase in chaff proportion, the bulk density of wheat decreased as the density of chaff is 

significantly lower than the wheat kernels (Table 3.2).  

Tapped density exhibited similar trend as that of bulk density. During handling or 

transportation, the structure of cohesive bulk solids collapse significantly due to vibration, while 

the weak or free-flowing particulate material has less scope for further consolidation (Eben, 

2008). When there is reduced friction between the particles, the particles rearrange and thus 

tapping results in improved packing conditions. The effect of chaff proportions and the moisture 

content on bulk, tapped and true densities are significantly different. 

 

Table 3. 2 Bulk density of wheat with chaff 

 Sample 
Bulk density, kg/m3 

MC 1 MC 2 MC 3 
W 100% 805.50±0.33a 801.54±0.51b 785.91±0.12c 
W 97.5%-C 2.5% 783.68±0.49d 776.62±0.37e 767.71±0.40f 
W 95%-C 5% 758.36±0.42g 747.68±0.38h 734.52±0.21i 
W 92.5%-C 7.5% 738.24±0.39j 729.40±0.33k 718.36±0.25l 
C 100% 322.79±0.50m 308.47±0.49n 293.35±0.71o 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** Different letters indicates significant difference (P < 0.005). 
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Table 3. 3 Tapped density of bulk wheat with chaff 

 Sample 
Tapped density, kg/m3 

MC 1 MC 2 MC 3 
W 100% 831.52±1.22a 825.33±0.57b 811.51±0.19c 
W 97.5%-C 2.5% 811.90±0.61c 800.73±0.85d 793.15±1.09e 
W 95%-C 5% 781.00±1.06f 781.00±1.06g 766.82±2.80h 
W 92.5%-C 7.5% 762.75±2.95i 762.75±2.95j 746.31±0.60k 
C 100% 359.78±1.51l 359.78±1.51m 323.11±2.20n 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** Different letters indicates significant difference (P < 0.005). 
 

Table 3. 4 True density of bulk wheat with chaff 

 Sample 
True density, kg/m3 

MC 1 MC 2 MC 3 
W 100% 1404.63±3.58Aa 1386.71±1.63Ab 1379.67±3.65Ac 
W 97.5%-C 2.5% 1395.58±3.04Ba 1371.01±0.58Bb 1371.12±1.09Bc 
W 95%-C 5% 1393.69±3.40Ba 1380.57±1.39Bb 1370.11±0.73Bc 
W 92.5%-C 7.5% 1391.79±1.26Ba 1379.42±0.91Bb 1367.13±2.59Bc 
C 100% 1364.57±2.93Ca 1354.36±4.50Cb 1341.10±3.80Cc 

* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content.  
 

Because the interparticulate interactions that influence the bulking properties of a solid 

are also the interactions that interfere with solid material flow, a comparison of the bulk and 

tapped densities gives a measure of the relative importance of these interactions. HR and CI of 

wheat, chaff and their mixture are given in Table 3.5 and 3.6. Based on Carr’s indices of CI and 

HR, flowability of wheat could be classified as ‘excellent’ with minimum effect from the 

presence of chaff (Carr, 1965). Chaff had the highest CI and HR for their irregularity in shape, 

weak structure and varying size distribution. CI and HR could be effective indicators for the 

effect of chaff proportions and moisture content on bulk wheat flow.  

Porosity is the fraction of a porous medium that is void space (John, 2010). The porosity 

of samples increased as the moisture content and chaff proportion significantly (Table 3.7) Chaff 

was highly porous and presence of chaff in wheat influenced the porosity of bulk wheat 

significantly. Moisture content also had significant effect on the porosity of wheat-chaff mixture. 
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Angle of repose of bulk wheat with chaff (Table 3.8) showed positive correlation with moisture 

content, and the value increased with the chaff proportion in bulk wheat samples. Similar results 

have been reported for wheat (Tabatabaeefar, 2003; Karimi et al., 2009) and pigeon pea 

(Shepherd and Bhardwaj, 1986). The smaller sized chaff occupied the intergranular space of the 

wheat kernels and resulted in an increase in angle of repose from higher interlocking between the 

chaff particles. Higher angle of repose could indicate poor flow of bulk material. Other than 

affecting flow through hopper bottoms, higher angle of repose could also reduce the overall bin 

capacity.  

 

Table 3. 5 Hausner ratio of bulk wheat with chaff 

 Sample 
Hausner’s ratio  

MC 1 MC 2 MC 3 
W 100% 1.03±0.15×10-2Ba 1.03±0.07×10-2Ca 1.03±0.02×10-2Ba 
W 97.5%-C 2.5% 1.04±0.08×10-2Ba 1.03±0.11×10-2BCa 1.03±0.14×10-2Ba 
W 95%-C 5% 1.03±0.14×10-2Ba 1.04±0.27×10-2Ba 1.04±0.38×10-2Ba 
W 92.5%-C 7.5% 1.03±0.40×10-2Ba 1.03±0.09×10-2BCa 1.04±0.09×10-2Ba 
C 100% 1.11±0.47×10-2Aa 1.12±0.25×10-2Aa 1.10±0.75×10-2Aa 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content.  
 
Table 3. 6 Compressibility index of bulk wheat with chaff 

 Sample 
Compressibility index  

MC 1 MC 2 MC 3 
W 100% 3.05±0.14Ba 2.81±0.07Ca 3.07±0.02Ba 
W 97.5%-C 2.5% 3.41±0.07Ba 3.01±0.1Ca 3.14±0.13Ba 
W 95%-C 5% 2.83±0.13Ba 3.75±0.25Ba 4.14±0.35Ba 
W 92.5%-C 7.5% 3.14±0.37Ba 3.13±0.37BCa 3.68±0.08Ba 
C 100% 10.22±0.38Aa 10.78±0.19Aa 9.14±0.62Aa 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content.  
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Table 3. 7 Porosity of bulk wheat with chaff 

Sample  
Porosity, % 

MC 1 MC 2 MC 3 
W 100% 42.65±0.15a 42.20±0.07b 43.04±0.15c 
W 97.5%-C 2.5% 43.85±0.12d 43.76±0.02d 44.01±0.04e 
W 95%-C 5% 45.59±0.13f 45.84±0.05g 46.39±0.03h 
W 92.5%-C 7.5% 46.96±0.05i 47.12±0.03j 47.46±0.10k 
C 100% 76.34±0.05l 77.22±0.08m 78.13±0.06n 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** Different letters indicates significant difference (P < 0.005). 
 

Table 3. 8 Angle of repose of bulk wheat with chaff 

Sample  
Angle of repose, deg 

MC1 MC2 MC3 
W 100% 23.61±0.62Da 24.31±0.61Db 25.36±0.60Dc 
W 97.5%-C 2.5% 25.01±1.05Ca 25.71±0.60Cb 26.39±0.59Cc 
W 95%-C 5% 25.71±0.60BCa 26.39±0.59BCb 26.73±0.59BCc 
W 92.5%-C 7.5% 26.39±0.59Ba 26.73±0.59Bb 27.41±0.58Bc 
C 100% 36.53±0.47Aa 37.87±0.79Ab 38.40±0.45Ac 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis) 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 

 3.3.2 Dynamic flow behavior 
BFE corresponds to the stabilized flow energy that represents the energy needed to 

displace a conditioned bulk particulate sample during testing. BFE of bulk wheat had a positive 

relationship with moisture, meanwhile as the chaff proportion increased BFE decreased (Table 

3.9). With lesser chaff content, the bulk wheat had low compressibility and high transmission of 

particle-to-particle forces that makes the bulk material flow easily. But for chaff, the 

transmission zone is localized due to higher porosity that resulted in low flow energy. 

SI values for stable solids range from 0.9 – 1.1. Solids with good stability value indicate 

that they do not segregate or disintegrate during flow. The measured stability values for bulk 

wheat are in the range of 0.9- 1.1 (Table 3.10). Based on statistical analysis, the effect of chaff 

proportion and moisture content are significantly different with P < 0.001. Within the range of 

moisture content and the chaff proportions evaluated, bulk wheat does not change their 

properties during flow. Bulk solids are sometimes considered to be relatively stable entities like 
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the individual solid particles that make up their mass. This is not the case since the rheological 

properties of the mass are greatly influenced by the presence or absence of air. Solids consolidate 

on compaction and yet following aeration will usually flow readily, even in some cases 

fluidizing occurs across the bed. Because the effect of air is so significant, an important 

industrial need is to be able to characterize the bulk solids in relation to air content (Freeman, 

2003). Understanding how air affects flow properties is a prerequisite of efficient handling and 

processing of powders. Aeration ratio (AR) of bulk wheat is given in Table 3.11. Aeration ratio 

values close to 1 indicates that the materials are not sensitive to air flow in specific conditions 

(air flow rate from 0mm/s to 10mm/). For bulk wheat, including chaff, the AR values are close to 

1.  

 

Table 3. 9 Basic flow energy of bulk wheat with chaff  

Sample 
Basic flow energy 

MC 1 MC 2 MC 3 
W 100% 805.5±0.33Aa 801.54±0.51Ab 785.91±0.12Ac 
W 97.5%-C 2.5% 783.68±0.49Ba 776.62±0.37Bb 767.71±0.40Bc 
W 95%-C 5% 758.36±0.42BCa 747.68±0.38BCb 734.52±0.21BCc 
W 92.5%-C 7.5% 738.24±0.39Ca 729.40±0.33Cb 718.36±0.25Cc 
C 100% 322.79±0.50Da 308.47±0.49Db 293.35±0.71Dc 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 
 

Table 3. 10 Stability index of bulk wheat with chaff 

Sample 
Stability index  

MC 1 MC 2 MC 3 
W 100% 1.00±0.03Aa 1.01±0.02Aa 0.98±0.02Aa 
W 97.5%-C 2.5% 0.99±0.01Aa 0.99±0.04Aa 0.98±0.02Aa 
W 95%-C 5% 0.98±0.06Aa 0.99±0.03Aa 0.96±0.04Aa 
W 92.5%-C 7.5% 0.97±0.06Aa 0.95±0.03Aa 0.96±0.05Aa 
C 100% 0.99±0.13Aa 1.01±0.18Aa 1.05±0.11Aa 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
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Table 3. 11 Aeration ratio of bulk wheat with chaff 

Sample 
Aeration ratio 

MC 1 MC 2 MC 3 
W 100% 1.04±0.03Aa 1.0±0.04Aa 1.12±0.05Ab 
W 97.5%-C 2.5% 1.11±0.09Aa 1.06±0.10Aa 1.17±0.09Ab 
W 95%-C 5% 1.18±0.14Aa 1.13±0.11Aa 1.19±0.13Ab 
W 92.5%-C 7.5% 1.12±0.01Aa 1.20±0.16Aa 1.19±0.06Ab 
C 100% 0.97±0.07Aa 1.12±0.13Aa 1.17±0.08Ab 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 

 3.3.3. Bulk flow properties 
Compressive property are important in many problems associated with the design of 

machines and the analysis of the behavior of the product during operations such as drying, 

cleaning and milling. Meanwhile, compressibility of particles is relative to many process 

environments such as storage in silos or behavior during roller compaction (Akaaimo and Raji, 

2006). Compressibility of wheat samples increased with the increase of moisture content (Table 

3.12). In bulk solids with poor flow characteristics, relatively large voids are formed due to the 

action of adhesive forces. This is not the case with free flowing particulate materials. Thus, it is 

expected that poorly flowing bulk solids are more compressible.  

Permeability is a property of porous materials that quantifies the relative ease with which 

a fluid can pass through the bulk material. Grain during storage experiences packing and 

compaction due to the vertical pressure exerted by the grain mass. Packing results in a change in 

bulk density of the grain mass, which in turn results in a change in porosity. Determining the 

permeability of grain as a function of bulk density is important for predicting natural convention 

current in stored grain. The wheat-chaff mix didn’t indicate any specific trend of permeability in 

relation to chaff content (Table 3.13). Negative relationship was observed between the 

permeability and moisture content.  The permeability was measured at consolidated conditions, 

so the chaff had lower permeability than wheat. Under consolidation, due to particle 

rearrangement and reduction in interparticulate void space, the chaff exhibited lower 

permeability. Presence of chaff in bulk wheat could impact the air flow during drying and 

aeration.  
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Table 3. 12 Compressibility of bulk wheat with chaff at 15kPa pressure 

Sample 
Compressibility, % 

MC 1 MC 2 MC 3 
W 100% 4.84±0.59Aa 4.86±0.11Aa 5.58±0.17Ab 
W 97.5%-C 2.5% 4.98±0.73ABa 7.32±0.28ABa 7.58±0.45ABb 
W 95%-C 5% 5.33±0.60Ba 7.49±0.09Ba 7.76±0.21Bb 
W 92.5%-C 7.5% 5.52±0.06Ba 7.59±0.69Ba 7.99±1.40Bb 
C 100% 18.31±3.68Ca 22.55±2.31Ca 23.20±2.85Cb 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 
Table 3. 13 Permeability of bulk wheat with chaff at 15kPa pressure 

Sample  
Permeability 

MC 1 MC 2 MC 3 
W 100% 1.46×10-7±4.86×10-10a 1.81×10-7±1.58×10-9b 1.28×10-7±2.63×10-9c 
W 97.5%-C 2.5% 1.60×10-7±1.29×10-9d 1.53×10-7±2.84×10-9ad 1.34×10-7±6.65×10-10c 
W 95%-C 5% 1.62×10-7±2.74×10-9d 1.55×10-7±3.01×10-9d 1.33×10-7±9.03×10-10c 
W 92.5%-C 7.5% 1.58×10-7±2.12×10-9d 1.58×10-7±1.24×10-9d 1.40×10-7±3.83×10-9ac 
C 100% 1.25×10-7±1.48×10-9ce 1.33×10-7±3.16×10-9dc 1.20×10-7±3.79×10-9ce 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 

 3.3.4 Shear properties 
Shear properties indicate how easily a previously at rest, consolidated powder will begin 

to flow. From Table 3.14, there is no significant difference in the angle of internal friction of 

bulk wheat samples with different proportion of chaff. The larger the angle of internal friction 

and wall friction, it is harder for material to flow. The angle of internal friction of rye, barley, 

oats and corn has been studied by Molenda and Horabik (2005) and they reported that the value 

of angle of internal friction increased with moisture content. In comparison, the angle of internal 

friction of barley and corn is higher than wheat, but the value for rye and oats are lesser than 

wheat. The angle of internal friction values from this study agrees with the results reported by 

Molenda and Horabik (2005).  

Knowledge of wall friction provides important information on whether the bulk solid will 

flow against the material with which it is in contact. It is the frictional resistance to bulk solids 

flow that exists between the bulk solids and hopper/silo wall material (Iqbal and Fitzpatrick, 
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2004). Similar to angle of internal friction, at MC 1 and MC 2 moisture contents, the wall 

friction results are not significantly different. The wall friction was higher at 14% (MC 3) 

moisture content (Table 3.15). The results indicate that increase in moisture content will lead to a 

higher wall friction influencing the bulk flow of wheat.  

All the shear properties were significantly affected by chaff proportion (Tables 3.16 – 

3.20). Cohesion values of wheat and wheat - chaff mixture was in the range from 0.1 – 1.8. For 

free flowing material like wheat, the cohesion value should be close to 0. The results obtained in 

this study reflected the findings reported by Molenda and Horabik (2005) of cohesion values 

ranging from 0.9 -2.8. However, the flow function values had larger standard deviation (Table 

3.10) which might due to the configuration of the FT-4 rheometer. As stated in Jenike’s methods 

(Jenike, 1960) the diameter of the shear tester base should be 30 times than the diameter of bulk 

solids. The flow function of chaff (Table 3.20) was much lower compared to the wheat grains.  

Jenike (1964) and Fitzpatrick and Iqbal (2004) stated that the lower the flow function the worse 

the flowablity of samples. Furthermore, samples with FF value higher than 10 indicates free 

flowing and based on the results from this study, wheat samples did not fall in that classification. 

 

Table 3. 14 Angle of internal friction angle of bulk wheat with chaff at 15kPa 

Sample  
Angle of Internal friction 

MC 1 MC 2 MC 3 
W 100% 23.95±0.95Aa 26.58±0.49Aa 28.64±2.46Ab 
W 97.5%-C 2.5% 25.31±0.44Aa 26.67±1.62Aa 30.441.44Ab 
W 95%-C 5% 27.92±0.29Aa 29.60±0.29Aa 28.10±2.17Ab 
W 92.5%-C 7.5% 29.44±0.26Aa 30.33±0.53Aa 27.92±0.74Ab 
C 100% 33.81±3.16Ba 34.45±2.60Ba 43.13±7.17Bb 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
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Table 3. 15 Wall friction angle of bulk wheat with chaff at 15kPa 

Sample  
Wall Friction Angle 

MC 1 MC 2 MC 3 
W 100% 17.39±0.29Aa 18.24±0.50Aa 20.33±0.50Ab 
W 97.5%-C 2.5% 16.99±0.82ABa 17.78±0.55ABa 19.40±1.77ABb 
W 95%-C 5% 16.94±0.29Ba 17.07±0.17Ba 19.04±1.88Bb 
W 92.5%-C 7.5% 16.32±0.26Ba 16.52±0.62Ba 18.37±0.45Bb 
C 100% 15.46±0.60Ca 15.43±0.37Ca 16.37±0.28Cb 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 
Table 3. 16 Effect of chaff on cohesion of bulk wheat with chaff 

Sample  
Cohesion 

MC 1 MC 2 MC 3 
W 100% 0.74±0.33Aa 0.63±0.11Aa 0.68±0.49Aa 
W 97.5%-C 2.5% 0.75±0.08Aa 0.63±0.26Aa 0.34±0.19Aa 
W 95%-C 5% 0.40±0.04Aa 0.28±0.22Aa 0.69±0.22Aa 
W 92.5%-C 7.5% 0.17±0.10Aa 0.20±0.06Aa 0.68±0.31Aa 
C 100% 1.39±0.68Ba 1.79±0.51Ba 1.14±0.46Ba 

* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 
Table 3. 17 Effect of chaff on unconfined yield stress (UYS) of bulk wheat with chaff 

Sample  
UYS, kPa 

MC 1 MC 2 MC 3 
W 100% 2.07±1.25Aa 2.03±0.34Aa 2.24±1.52Aa 
W 97.5%-C 2.5% 2.36±0.26Aa 2.04±0.78Aa 1.17±0.64Aa 
W 95%-C 5% 1.17±0.14Aa 0.98±0.75Aa 2.28±0.63Aa 
W 92.5%-C 7.5% 0.59±0.32Aa 0.69±0.19Aa 2.24±1.00Aa 
C 100% 5.13±2.22Ba 6.75±1.58Ba 5.30±1.94Ba 

* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
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Table 3. 18 Effect of chaff on major principle stress (MPS) of bulk wheat with chaff 

Sample  
MPS, kPa 

MC 1 MC 2 MC 3 
W 100% 18.07±2.27a 24.54±0.17b 23.71±0.34bc 
W 97.5%-C 2.5% 25.27±0.48b 24.88±1.38bc 23.60±0.50b 
W 95%-C 5% 24.29±0.15b 23.65±0.71bc 24.66±1.18b 
W 92.5%-C 7.5% 23.01±0.26bc 23.10±0.95bc 23.94±1.38bc 
C 100% 26.18±1.42b 29.67±1.34d 33.38±2.90d 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 
 
Table 3. 19 Effect of chaff on major consolidation stress (MCS) of bulk wheat with chaff 

Sample  
MCS, kPa 

MC 1 MC 2 MC 3 
W 100% 9.70±1.76Aa 8.59±0.14Aa 7.53±0.13Ab 
W 97.5%-C 2.5% 9.06±0.16Aa 8.70±0.66Aa 7.34±0.36Ab 
W 95%-C 5% 8.37±0.11Aa 7.68±0.18Aa 8.07±0.91Ab 
W 92.5%-C 7.5% 7.78±0.21Aa 7.51±0.24Aa 7.87±0.42Ab 
C 100% 5.95±0.41Ba 6.34±0.47Ba 4.80±1.23Bb 

*where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis);  
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
 

Table 3. 20 Effect of chaff on flow function (FF) of bulk wheat samples 

Sample FF 
MC 1 MC 2 MC 3 

W 100% 10.23±3.78Aa 12.31±2.02Aa 14.56±9.41Aa 
W 97.5%-C 2.5% 10.25±0.75ABa 13.53±5.45ABa 25.45±15.39ABa 
W 95%-C 5% 18.29±2.37ABa 36.18±26.06ABa 11.22±2.35ABa 
W 92.5%-C 7.5% 149.4.±155.89Ba 35.89±20.42Ba 12.58±6.46Ba 
C 100% 5.86±2.64Aa 4.58±1.21Aa 6.27±1.93Aa 
* where W indicates wheat kernel, C indicates chaff and MC is the moisture content (% wet basis); 
** The same uppercase letter in the same column indicates no significant difference (P < 0.05) due to 
chaff proportion, the same lowercase letter in the same row indicates no significant difference (P < 0.05) 
due to moisture content. 
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 3.4 Conclusions 
The effect of proportion of chaff and moisture content on the bulk physical and flow 

properties of wheat was studied. Results indicate that the moisture content and chaff proportion 

influence both the physical and flow properties of wheat. Flow indicators, such as bulk density, 

tapped density, and angle of repose, showed that the flowability of bulk wheat decrease as 

moisture content and chaff proportion increase. Under compaction, changes in density altered the 

bulk porosity of samples. Meanwhile, more void in the sample due to the presence of chaff made 

it easier to be compacted at the same pressure level. The energy required to initiate the flow of 

bulk wheat is higher than chaff due to higher bulk density. The presence of chaff and from their 

interlocking behavior, the flow of wheat with chaff will be challenging than clean wheat.  
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Chapter 4 - Effect of Insects Infested Kernels on Flow Properties of 

Wheat 

 4.1 Introduction 
Wheat quality standards presented by GIPSA (Grain Inspection, Packers and Stockyards 

Administration) regulate the wheat grades with details on the contaminants that lower the wheat 

grade.  As defined by GIPSA, damaged kernels are pieces of wheat kernels those are ground-

damaged, weather-damaged, diseased, frost-damaged, germ-damaged, heat-damaged, insect-

bored, mold-damaged, sprout-damaged, or otherwise materially damaged. Insect-damaged 

kernels are kernels bored or tunneled by insects (GIPSA, 2013). While a wheat kernel may 

visually appear to be sound or uninfested, insects may be present inside some kernels. The 

insects may eventually emerge and cause further damage to kernels by fragmenting the kernels 

into flour. The presence of live or dead insects in wheat kernels lowers the overall wheat quality 

(Maghirang et al., 2003) 

The lesser grain borer (LGB), Rhyzopertha dominica (F.), is a primary pest in stored 

grain. The insect is injurious to cereals; breeds in wheat, corn, rice and in other substrates 

containing starch (Subramanyam et al., 2007). The optimum temperature for LGB infestation is 

28 ℃ (Howe, 1950) and at grain moisture contents between 12 and 14% (wet basis, w.b.) at 26 

to 34 ℃ (Birch, 1945). It is well known that 12 to 14% (w.b.) is the optimum wheat storage 

moisture content. The grade of wheat is discounted based on the number of insect damaged 

kernels (IDK) in the lot during grading. A wheat consignment containing more than 32 insect 

damaged kernels per 100 g is designated as sample grade (FGIS, 1997).  

Adult feeding activities of LGB produce large amounts of frass, most of which consists 

of ovoid granules of apparently undigested endosperm mixed with a finer floury part (Breese, 

1960). The frass contain feces, fragments of immature insects, and other by-products, which 

could affect the end-use quality of the infested grain (Sanchez-Marinez et al., 1997; Seitz and 

Ram, 2004; Park et al., 2008). The larvae and adult R. dominica feed on both the germ and 

endosperm and are capable of reducing wheat kernels to the pericarp (Chanbang et al., 2008). 
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With the presence of impurities, the handling and processing of bulk wheat will be 

affected by the differences in particle size and by the filling of void spaces with frass or dust 

generated by the insect activity.  According to Peleg (1978), particles with irregular or fibrous 

shapes can mechanically interlock the particles during bulk flow. Understanding the physical and 

flow properties are important for their effect on particles’ behavior in handling and processing 

operations, such as flow from hoppers and silos, transportation, mixing, compression, and 

packaging (Knowlton et al., 1994). Failure to understand these characteristics could result in 

unreliable and inconsistent discharge leading to loss of production time.   

Insect damage could decrease the quality of wheat and most importantly could affect the 

flowability. Arching of bulk wheat, due to improper flow through hoppers or from bins happens 

during wheat storage. Other than affecting the capacity, arching is also a serious safety issue and 

a concern in grain handling facilities across U.S.  So understanding the properties of the wheat 

containing IDK could help predict the bulk wheat flow and to prevent accidents originating from 

arching in bins. Though the flow behavior of bulk wheat is well studied, but the effect of insect 

damage and the influence of dust on the bulk flow of wheat has not been characterized. In this 

chapter, the effect of moisture content and insect damaged kernels proportion on the physical and 

flow properties of bulk wheat is discussed.  

 4.2 Materials and Methods  

 4.2.1 Sample preparation 
Hard red winter wheat kernels were obtained from Farm Coop, Manhattan, Kan., USA. 

Moisture content of the wheat was measured using the American Society of Agricultural and 

Biological Engineers (ASABE) Standard S352.2 of drying 10 g wheat samples in air oven at 130° 

for 19h (ASABE, 2006). Initial moisture content the wheat was 11.7% w. b. Physical and flow 

experiments were conducted at the general storage moisture contents of approximately12 and 14% 

(w. b.). Wheat kernels were conditioned to about 15% (w. b.) by adding calculated amount of 

distilled water. After conditioning, the samples were stored at 4 ℃ for 72 h for moisture 

equilibration. Drying to desired moisture level (12 and 14% wet basis) was carried out in ambient 

conditions by spreading kernels in thin layer without any additional heat or airflow, decreasing the 

moisture content to target levels (Ileleji et al., 2003).  
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Moisture conditioned wheat samples were used for preparing insects infested kernels. 

Insect damaged kernels were prepared by adding 200 Lesser Grain Borer (LGB) insects to 400 g 

sound wheat per jar. The wheat sample with insects was cultured in an incubator at 65±5% relative 

humidity at 32±1℃ for 42 days (Boina et al., 2012).  About 7 kg of wheat samples were cultured 

for measuring the bulk physical and flow properties. The infested wheat samples contained sound 

kernels, LGB damaged kernels, dead LGB, and grain dust produced from the infestation. The final 

moisture content of wheat and insects infested kernels are given in Table 4.1. In the cultured 

samples, the insects damaged kernel to sound kernel ratio was 18±3:100 and 25±5:100 at MC 1 

and MC 2, respectively.  The average dust generated by insect infestation was 1.43 and 2.31 % (by 

weight) at MC 1 and MC 2, respectively. The particle size of wheat kernel was measured using a 

single kernel characterization system (SKCS 4100, Perten Instruments, Inc., Springfield, IL, 

USA). The particle size of grain dust was measured using a LECOTRAC LTS-150 Particle Size 

Analyzer (LECO Corporation, Tampa, FL). LGB infested kernels are as shown in Fig 4.1. 

 

Fig 4. 1 LGB infested kernels 

 
 

Table 4. 1 Moisture content of wheat and insects infested kernels, % wet basis 

Moisture content Wheat Insects infested kernels 

MC1 11.67±0.30 11.83±0.10 

MC2 13.35±0.10 14.01±0.2 

* MC1, MC2 denotes the conditioned moisture content of wheat and insects infested kernels at 
approximately 12 and 14% (w.b.), respectively. 
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Wheat (W) and infested wheat kernels (I) were mixed at specific proportion (W: I at 

100:0%, 97.5:2.5%, 95:5%, 92.5:7.5% and 0:100%) on weight basis. The proportion of mix was 

selected based on the U.S. grade of wheat with different broken and foreign material level (FGIS, 

2013).  To avoid segregation of dust and damaged wheat kernels, before adding with sound wheat 

kernels, the cultured samples were mixed thoroughly and a Boerner divider (Seedburo Equipment 

Co., IL, US) was used to draw representative samples for each replicate measurement of physical 

and flow properties.  

 4.2.2 Physical properties and flow indicators 
The procedures described in chapter 3 were used for the measurement of bulk density 

(3.2.2.1), tapped density (3.2.2.2), CI, HR (3.2.2.3), true density (3.2.2.4), porosity (3.2.2.5), and 

angle of repose (3.2.2.6).  

 4.2.3 Flow properties 
The FT4 Powder Rheometer (FT4, Freeman Technologies, Gloucestershire, UK) was 

used to evaluate the flow properties of wheat, insects infested wheat kernels, and the mix 

samples. Detailed descriptions of this equipment and its use in flow characterization can be 

found in Lindberg et al. (2004), Freeman, (2007) and Leturia et al. (2014).  

The same experimental procedures detailed in chapter 3 for the measurement of basic 

flowability energy and stability index (3.2.3.1), aeration ratio (3.2.3.2), compressibility (3.2.3.3), 

permeability (3.2.3.4), and shear tests (3.2.3.5) was used.  

 4.2.4 Statistical analysis 
All the tests were performed in triplicate and the mean values and standard deviations 

(mean ± standard deviation) are reported in this paper. Statistical analyses were conducted using 

SAS (SAS Institute Inc., Cary, NC, USA). The effect of moisture content, insects infested 

kernels proportion and their interactions on physical and flow properties were evaluated by 

subjecting the data to two-way analysis of variance (ANOVA) at α= 0.05, using PROC GLM. 

Ryan or Ryan-Einot-Gabriel-Welsch Q (REGWQ) multiple comparison tests were used to 

separate the differences (P ≤ 0.05) between the effect of moisture content and impurities. 
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 4.3 Results and Discussion 
The average size of wheat kernels and the grain dust generated by insects was about 3mm 

and 48 µm, respectively. This variation and difference in particle size within the bulk wheat 

could make the flow of wheat with insects damaged kernel a complex operation. Bulk solids, 

comprised of larger particle size have better flow than the bulk solids containing smaller particles 

(Hou and Sun, 2008). The smaller sized dust could occupy the external void spaces in between 

wheat kernels and thus increasing the bulk cohesion. Due to this, the energy required to make the 

bulk wheat flow will be higher. However, the prediction of bulk flowability on the basis of a 

particle size distribution is difficult and can sometimes be misleading. So, an accurate and 

quantified characterization of bulk properties is essential to understand the flow (Schulze, 2007).   

 4.3.1 Bulk physical properties 
The average bulk density of dust generated from the insect infestation was 528.4 and 

514.1 kg/m3 at MC 1 and MC 2, respectively. These values were much lower than the density of 

sound wheat kernels (Table 4.2) that contributed to the decrease of bulk density with the increase 

in the insect damaged kernel proportion. Moisture content had also significant effect on the bulk 

density. Similar negative relationship of bulk density with moisture content was also observed 

for wheat (Karimi et al., 2009), gram (Dutta et al., 1988), sunflower seeds (Gupta and Das, 

1997), and soybeans (Deshpande et al., 1993). Moisture content had similar effect on the tapped 

density of bulk wheat samples.  At lower proportion of insect damaged kernels, the change in 

tapped density was not significant (Table 4.3).  The tapped density of insect damaged kernels 

was higher than the other samples. The dust, insect damaged kernels, and sound kernels vary in 

average size and density. So, during tapped density measurement, the particles rearranged and 

compacted within the container volume due to vibration. So, handling bulk wheat with high 

insect infestation will be challenging. The compaction and rearrangement of particles could lead 

to arching and bridging of particles leading to poor flow. However, due to the presence of 

smaller sized grain dust particles, the true density increased slightly with the proportion of 

insects infested kernels added to the bulk wheat. Addition of insects infested kernels did not had 

any significant effect on the true density (Table 4.4). The true density of dust was 1483.2 and 

1487.8 kg/m3 at MC 1 and MC 2, respectively. The dust particles filled the intergranular space of 

the wheat kernels that resulted in an increased true density. As the same effect of chaff 
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proportions and the moisture content mentioned in the last chapter, the effect of LGB infested 

kernel proportions and moisture content on bulk, tapped and true density of bulk wheat are 

significantly different. 

 

Table 4. 2 Bulk density of wheat mixed with insect damaged kernels 

 Sample 
Bulk density, kg/m3 

MC 1 MC 2 
W 100% 801.54±0.51a 785.91±0.12b 
W 97.5%-I 2.5% 799.55±0.10c 785.59±0.97d 
W 95%-I 5% 798.48±0.34e 784.36±0.95f 
W 92.5%-I 7.5% 796.52±0.61g 780.86±1.06h 
I 100% 777.64±0.28i 769.60±1.93j 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 
Table 4. 3 Tapped density of wheat mixed with insect damaged kernels 

 Sample 
Tapped density, kg/m3 
MC 1 MC 2 

W 100% 825.33±0.57a 811.51±0.19b 
W 97.5%-I 2.5% 824.40±0.52ac 810.77±1.28b 
W 95%-I 5% 823.21±1.07ac 809.78±2.89bd 
W 92.5%-I 7.5% 822.26±0.81ac 807.64±1.98d 
I 100% 832.44±0.67e 831.31±1.34e 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 

Table 4. 4 True density of wheat mixed with insect damaged kernels 

 Sample 
True density, kg/m3 

MC 1 MC 2 
W 100% 1386.71±1.63a 1379.67±3.65b 
W 97.5%-I 2.5% 1391.35±1.11ac 1380.06±0.51b 
W 95%-I 5% 1391.68±0.49c 1380.38±0.24b 
W 92.5%-I 7.5% 1392.31±0.32c 1380.70±0.58b 
I 100% 1412.17±1.25d 1401.13±2.76e 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
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The derived flow indicators of Hausner’s ratio (HR) and compressibility index (CI) of 

wheat samples are given in Table 4.5 and 4.6, respectively. The difference in HR and CI values 

for wheat with insect damaged kernels was not statistically significant. But, the increase in HR 

and CI values indicate that the increase in insect damaged kernel proportion in bulk wheat could 

make the flow challenging. The two-way ANOVA results indicate that the moisture content did 

not affect HR significantly, but did affect the CI of bulk wheat samples.  

 

Table 4. 5 Hausner’s ratio of wheat mixed with insect damaged kernels 

 Sample 
Hausner’s ratio  

MC 1 MC 2 
W 100% 1.03±0.0007a 1.03±0.0002a 
W 97.5%-I 2.5% 1.03±0.0007a 1.03±0.0016a 
W 95%-I 5% 1.03±0.0013a 1.03±0.0037a 
W 92.5%-I 7.5% 1.03±0.0010a 1.03±0.0025a 
I 100% 1.07±0.0009b 1.08±0.0017c 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 
Table 4. 6 Compressibility index of wheat mixed with insect damaged kernels 

 Sample 
Compressibility index  
MC 1 MC 2 

W 100% 2.88±0.07a 3.15±0.02ab 
W 97.5%-I 2.5% 3.01±0.06a 3.11±0.15ab 
W 95%-I 5% 3.00±0.13a 3.14±0.35ab 
W 92.5%-I 7.5% 3.13±0.10ab 3.32±0.24b 
I 100% 6.58±0.08c 7.42±0.15d 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 

 

The porosity of samples increased with the moisture content and insects infested (Table 

4.7) proportion significantly. This could be due to the presence of holes drilled by LGB inside 

the wheat kernels. Though insect infestation produces dust that could fill the intergranular space 

of wheat kernels, but the void space created by drilling is higher than the amount of dust 

produced. Higher porosity could lead to increased compaction of the bulk during storage.  

Angle of repose of bulk wheat, except for the insect damaged samples, ranged from 24.31 

to 27.37º (Table 4.8). At lower proportion of insect damaged kernels, the difference in angle of 
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repose was not statistically significant. The insect damaged samples had higher angle of repose 

due to the presence of dust that occupied the intergranular space and increase the angle of repose 

value. In addition, grain dust increases the contact area between particles. Carr (1965) suggested 

that angle of repose below 30° indicate good flowability, 30°-45° some cohesiveness, 45°-55° 

true cohesiveness, and >55° sluggish or very high cohesiveness with very limited flowability. 

Wheat samples with different proportion of insect damaged kernels could be categorized under 

solids with “good flowability” because the angle of repose was less than 30º. 

But, angle of repose is a qualitative and relative data that at best may help in finding 

differences between samples and angle of repose are not applicable in design of handling and 

storage systems (Zhou et al., 2008). The angle of repose is a measure in uncompacted condition 

and differs from the conditions during storage or handling. As expected, with the increase in 

moisture content, angle of repose increased due to higher cohesion between particles. The effect 

of LGB infested kernel proportions and moisture content played significantly. 

 

Table 4. 7 Porosity of wheat mixed with insect damaged kernels 

Sample  
Porosity, % 

MC 1 MC 2 
W 100% 42.20±0.07a 43.04±0.15b 
W 97.5%-I 2.5% 42.53±0.04c 43.10±0.07b 
W 95%-I 5% 42.62±0.04c 43.15±0.09b 
W 92.5%-I 7.5% 42.78±0.05d 43.50±0.07e 
I 100% 44.94±0.04f 45.09±0.04g 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 
Table 4. 8 Angle of repose of wheat mixed with insect damaged kernels 

Sample  
Angle of repose, º 

MC1 MC2 
W 100% 24.31±0.61a 25.36±0.60ab 
W 97.5%-I 2.5% 24.84±0.53a 26.42±1.14b 
W 95%-I 5% 25.50±0.84ab 26.60±0.16b 
W 92.5%-I 7.5% 26.79±1.37b 27.37±0.63b 
I 100% 36.02±1.20c 40.30±0.30d 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
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 4.3.2 Dynamic flow behavior 
The BFE results indicate that the energy required to make the bulk wheat flow, 

irrespective of the proportion of insects damaged kernels, was significantly different (Table 4.9). 

In addition, moisture content had significant effect on BFE due to higher interparticle friction 

though moisture content affects the BFE, the data (Table 4.9) shows that bulk wheat, irrespective 

of impurity proportion, does not resist flow. Stability index (SI) values of bulk wheat ranged 

between 0.9-1.1 that classifies the bulk wheat as ‘stable’ indicating no physical change occurs 

during handling of wheat with insect damaged kernels (Table 4.10).  

With the difference in particle size between dust and wheat kernels, there could be 

potential segregation with dust settling at the bottom of conveying equipment and storage 

vessels.  Aeration ratio of bulk wheat samples was almost uniform with values close to 1, 

indicating samples are not sensitive to the air flow in the measured 0 -10 mm/s range (Table 

4.11). There was no significant difference due to the presence of insect damaged kernels and 

moisture content.

 

Table 4. 9 Basic flow energy of wheat mixed with insect damaged kernels 

Sample 
Basic Flow Energy 

MC 1 MC 2 
W 100% 131.40±2.48a 158.49±3.10b 
W 97.5%-I 2.5% 127.36±2.60a 149.29±4.06c 
W 95%-I 5% 132.70±3.36a 148.81±4.23c 
W 92.5%-I 7.5% 130.44±4.43a 155.03±2.42bc 
I 100% 140.74±2.97d 149.03±3.15c 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
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Table 4. 10 Stability index of wheat mixed with insect damaged kernels 

Sample 
Stability index (SI) 

MC 1 MC 2 
W 100% 1.01±0.02a 0.98±0.02b 
W 97.5%-I 2.5% 0.99±0.01b 1.01±0.03a 
W 95%-I 5% 1.05±0.01a 1.01±0.02a 
W 92.5%-I 7.5% 1.02±0.04a 1.00±0.05a 
I 100% 0.97±0.04a 1.01±0.05a 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 

Table 4. 11 Aeration ratio of wheat mixed with insect damaged kernels 

Sample 
Aeration ratio 

MC 1 MC 2 
W 100% 1.01±0.04a 1.12±0.05b 
W 97.5%-I 2.5% 1.03±0.04ab 1.07±0.06ab 
W 95%-I 5% 1.09±0.01b 1.06±0.04ab 
W 92.5%-I 7.5% 1.04±0.00a 1.09±0.04b 
I 100% 1.05±0.05a 0.99±0.03a 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 

 4.3.3 Bulk flow properties  
Proportion of insect damaged kernels in bulk wheat did not affect the bulk 

compressibility of wheat samples (Table 4.12). Presence of insect damaged kernels and moisture 

content increased the compressibility of wheat kernels. In addition, the compressibility of insect 

damaged kernels was significantly different than bulk wheat samples with proportion of IDK. 

Rearrangement of finer dust particles and the breaking of wheat kernels with insect drilled holes 

might have resulted in a higher compressibility for insect damaged kernels. The compressibility 

result shows that if there is insect activity in a section of grain stored in a bin, the compressibility 

of that section of grain could increase the cohesive strength of the bulk grain. Localized increase 

in strength could lead to arching and caking of grains within grain bins.  

Permeability is a measure of the storage and flow capacity, respectively, in a porous 

medium (John, 2010). The permeability of air through the grain in bin will help grain 

handling/process facility managers to determine the air pressure required to make the air flow 

through the grain at a required flow rate during aeration and in-bin drying operations (Ludger 
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and Arthur, 2007). The permeability, measured under consolidation, for bulk wheat samples are 

given in Table 4.13. In this study, any specific trend due to the presence of insect damaged 

kernels or the effect of moisture content was not noticed. The variation in particle size could 

have resulted in this high standard deviation. Grain packing during storage results in a change in 

bulk density of the grain mass, but little particle deformation is expected at the low pressures 

typically experienced during grain storage (Thompson and Ross, 1983). 

 

Table 4. 12 Compressibility of wheat mixed with insect damaged kernels 

Sample  
Compressibility,  % 

MC 1 MC 2 
W 100% 4.86±0.11a 5.58±0.17b 
W 97.5%-I 2.5% 4.92±0.39a 5.59±0.12b 
W 95%-I 5% 5.18±0.19a 5.64±0.05b 
W 92.5%-I 7.5% 5.12±0.20a 5.64±0.21b 
I 100% 5.44±0.10ab 6.07±0.21c 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 

Table 4. 13 Permeability of wheat mixed with insect damaged kernels 

Sample  
Permeability, cm2 

MC 1 MC 2 
W 100% 1.42×10-7±3.36×10-9a 1.28×10-7±2.63×10-9b 
W 97.5%-I 2.5% 1.57×10-7±5.19×10-9c 1.26×10-7±1.44×10-9b 
W 95%-I 5% 1.38×10-7±3.59×10-9a 1.41×10-7±3.34×10-9ad 
W 92.5%-I 7.5% 1.36×10-7±5.19×10-10a 1.37×10-7±2.63×10-9a 
I 100% 1.46×10-7±7.31×10-9ad 1.39×10-7±3.31×10-9e 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 

 4.3.4 Shear properties 
During storage and processing, solids would be subjected to consolidation stresses, 

causing changes in density and mechanical inter-particulate forces. Shear properties measures the 

flowability of powder under consolidation.  At a specific normal stress, higher shear stress 

corresponds to higher angle of internal friction and wall friction angle indicating a higher shear 

stress is needed to make cohesive materials to flow. From Table 4.14 and 4.15, the decrease in 

trend can be observed for angle of internal friction and wall friction angle at different insects 
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damaged kernel proportion. But the values are not statistically different. With increase in inter-

particulate cohesion, arches might form in a grain bin. But with changes in angle of internal 

friction due to application of load, for e.g. a person stepping on the cohesive grain arch, the 

cohesively bonded grain would break leading to sudden change in flow. Grain entrapment 

accidents happens as grain arch breaks due to changes from static to dynamic conditions 

resulting from the  lowered friction between the grain kernels. From Tables 4.16 - 4.20 indicate 

that the shear properties are not significantly different and were not affected by moisture content 

and with the proportion of insects infested kernels.  

The possible reason would be the minor changes in physical properties due to the 

presence of insect damaged kernels that influenced the bulk properties of wheat.  Flow function 

is a significant measure to evaluate the flowability of bulk solids. As stated by Jenike (1964), 

higher flow function value indicates better flowability. However, from the results in Table 4.20, 

moisture content and proportion of LGB infested kernels did not significantly differ. Due to 

differences in particle size and density, the standard deviation between replication was very high.  

This might be from the reproducibility limits of shear test (Alisa et al., 2011).  

 

Table 4. 14 Angle of internal friction at 15kPa of wheat mixed with insect damaged kernels 

Sample  
Angle of Internal friction, ° 

MC 1 MC 2 
W 100% 26.96±0.21ab 28.64±2.46a 
W 97.5%-I 2.5% 26.06±0.12ab 26.07±0.80ab 
W 95%-I 5% 24.63±0.28b 24.37±3.91ab 
W 92.5%-I 7.5% 23.82±0.27b 23.35±1.76b 
I 100% 23.37±0.23b 25.00±2.90ab 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
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Table 4. 15 Wall friction angle at 15kPa of wheat mixed with insect damaged kernels 

Sample  
Wall Friction Angle, ° 

MC 1 MC 2 
W 100% 18.24±0.31Aa 20.33±0.63Ab 
W 97.5%-I 2.5% 18.55±0.60Aa 18.89±1.42Ab 
W 95%-I 5% 17.86±0.51Aa 18.76±0.13Ab 
W 92.5%-I 7.5% 17.54±1.11Aa 18.04±0.05Ab 
I 100% 15.64±0.83Ba 16.53±0.62Bb 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
**Capital letter indicates the analysis between impurity proportions in columns, lowercase represents the 
analysis between moisture contents in rows. 
 

Table 4. 16 Cohesion of wheat mixed with insect damaged kernels 

Sample  
Cohesion 

MC 1 MC 2 
W 100% 0.63±0.11a 0.68±0.49a 
W 97.5%-I 2.5% 0.19±0.05a 0.29±0.09a 
W 95%-I 5% 0.61±0.31a 0.71±0.51a 
W 92.5%-I 7.5% 0.32±0.07a 0.64±0.13a 
I 100% 0.50±0.17a 0.22±0.31a 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
 

Table 4. 17 Unconfined yield stress (UYS) of wheat mixed with insect damaged kernels 

Sample  
UYS, kPa 

MC 1 MC 2 
W 100% 2.03±0.34ab 2.24±1.52c 
W 97.5%-I 2.5% 0.59±0.16b 0.94±0.29b 
W 95%-I 5% 0.74±0.92b 2.17±1.46b 
W 92.5%-I 7.5% 0.97±0.19b 1.94±0.34b 
I 100% 1.51±0.48b 0.49±0.27b 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
** Different letters indicates significant difference (P < 0.005). 
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Table 4. 18 Major principle stress (MPS) of wheat mixed with insect damaged kernels 

Sample  
MPS, kPa 

MC 1 MC 2 

W 100% 24.56±0.17Aa 23.71±0.34Aa 

W 97.5%-I 2.5% 21.76±0.67Ba 21.81±0.43Ba 

W 95%-I 5% 22.20±1.78Ba 22.22±0.79Ba 

W 92.5%-I 7.5% 21.99±0.46Ba 23.12±0.01Ba 

I 100% 22.62±0.72Ba 20.83±0.45Ba 

*where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% w. b.);  
**Capital letter indicates the analysis between impurity proportions in columns, lowercase represents the 
analysis between moisture contents in rows. 
 

Table 4. 19 Major consolidation stress (MCS) of wheat mixed with insect damaged kernels 

Sample  
MCS, kPa 

MC 1 MC 2 
W 100% 8.59±0.14Aa 7.53±0.13Ab 
W 97.5%-I 2.5% 8.38±0.44ABa 8.13±0.30ABb 
W 95%-I 5% 9.19±0.96ABa 8.14±0.76ABb 
W 92.5%-I 7.5% 8.92±0.18Ba 9.01±0.55Bb 

I 100% 9.12±0.37ABa 7.96±0.50ABb 
* where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% wet basis); 
**Capital letter indicates the analysis between impurity proportions in columns, lowercase represents the 
analysis between moisture contents in rows. 
 

Table 4. 20 Flow function (FF) of wheat samples mixed with insects damaged kernels 

Sample  
FF 

MC 1 MC 2 
W 100% 12.31±2.02Aa 14.56±9.41Aa 

W 97.5%-I 2.5% 38.68±10.28Aa 24.62±7.21Aa 

W 95%-I 5% 86.91±83.76Aa 13.37±8.79Aa 

W 92.5%-I 7.5% 23.23±4.41Aa 12.98±2.69Aa 

I 100% 15.89±4.45Aa 48.59±24.95Aa 

*where W indicates wheat kernel, I indicates IDK and MC is the moisture content (% w. b.);  
**Capital letter indicates the analysis between impurity proportions in columns, lowercase represents the 
analysis between moisture contents in rows. 
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 4.4 Conclusions 
Physical and flow properties of hard red winter wheat, insects infested wheat kernels and 

their mixture was investigated as a function of moisture content. Knowledge on these 

characteristics is necessary for design of handling equipment and to understand the behavior of 

grain during storage and handling. Increase in moisture content significantly influenced the 

physical and flow properties.  The bulk and tapped density decreased with increase in percent 

insects damaged kernels in bulk wheat. The rearrangement of smaller sized frass and less denser 

insect damaged kernels influenced the density of bulk wheat. Basic flow energy and 

compressibility increased with the increase proportion of insect damaged kernels. Moisture 

content and the proportion of insects damaged kernels, within the tested range, did not have any 

significant effect on the shear properties of bulk wheat. Presence of insect damaged kernels and 

the dust from insect activity could increase the compressibility and lead to arching and caking of 

grains affecting their flowability.     
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Chapter 5 - Particle Image Velocimetry of Bulk Wheat Discharge 

Flow  

 5.1 Introduction  
Hoppers are the common handling equipment used by the grain based food and feed 

industry. The capacity of hoppers range from a few milliliters to many thousands of liters, and 

they vary in both their shape, basically conical or wedge-shaped, and size (Ketterhagen, et. al., 

2009). Meanwhile, hoppers are also classified by the solids flow pattern as affected by their 

angle. Under gravity discharge conditions the flow behavior could be divided into two patterns 

(Fig 5.1): “Mass Flow” and “Funnel Flow” (Jenike, 1961, 1964). 

 

Fig 5. 1 Illustration of mass flow and funnel flow  

 
(Source: http://eng.tel-tek.no/Powder-Technology/Silo-design-and-powder-mechanics/Research-activities/Mass-
flow-or-funnel-flow) 

 

During mass flow all the particles move together during discharge. Once discharge starts, 

no particle or agglomerate remains in its original position. The particles in motion avoid 

formation of dead zone within the bin. The solids that enter the bin first, leave the bin first (first-

in, first-out), which tends to keep a steady residence time in the bin in a continuous process. The 

bin can therefore be designed using a mass flow hopper bin to prevent arch formation that causes 

discharge stoppages (Amoros, 2000). 

Funnel flow involves the formation of a flow channel aligned with the bin wall, 

surrounded by a region in which the material initially stands still. In funnel flow, the particles do 
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not move together, which may make the flow at the outlet change progressively in the course of 

handling. Even when the bin has been almost completely emptied, material is still left inside. The 

accumulated material in the bin's dead zone not only lowers the bin effective capacity but can 

even become unserviceable if its properties change with time (by drying, oxidizing, 

etc.)(Amoros, 2000).  

Jenike (1964), in conjunction with the measured data, applied two-dimensional stress 

analysis in developing a mathematical methodology for determining the minimum hopper angle 

and hopper opening size for mass flow from conical and wedge shaped hoppers. The measured 

flow properties used in his methodology are the flow function, the effective angle of internal 

friction and the angle of wall friction. These data are used for determining the dimensions of the 

hopper angle and opening size. Details of calculations can be found in Schulze (2008). During 

hopper flow, discharge rate and particle velocity are two important parameters. Beverloo et al. 

(1961) proposed the most widely accepted equation to predict the flow rate of grains through an 

orifice and its dependence on bulk density, outlet size and the particle size. 

Particle Image Velocimetry (PIV) technique is a well-established experimental method in 

fluid mechanics for quantitative measurement of one or two-dimensional flow structure. PIV 

technique involves the measurement of instantaneous velocity and its correlation to related 

properties of fluids. The motion of the particles is then used to calculate speed and the direction 

of flow of a solid/liquid. A common application of PIV is to investigate the aerodynamics of 

aircraft and cars to optimize the fuel combustion.  This indirect method of measurement was first 

used by Lueptow et al. (2000) to study granular flow. The authors recommended application of 

PIV to study quasi-two dimensional flows in transparent containers though images captured 

using a high-speed camera. PIV enables measurement of the instantaneous in-plane velocity 

vector fields within a planar section of the flow field. This method allows for the calculation of 

spatial gradients, dissipation of turbulent energy, and spatial correlations.  

The typical PIV evaluation procedure is based on the analysis of two successive images 

of the flow, particle displacement direction and distance can be traced (Quenot et al., 1998). 

During video recording, it does not need any intrusive markers to be installed in granules since 

the grains themselves serve as tracers. As it was shown by Steingart and Evans (2005), and 

Sielamowicz et al. (2005, 2006), an application of PIV technique to granular flows in two-

dimensional hoppers appears to be very promising to study the bulk flow characteristics. Despite 
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its limitation that only flow close to the transparent wall can be observed, PIV technique offers 

unique possibility to obtain full field transient velocity fields.  

In this thesis work, bulk wheat discharge was recorded at different hopper angle and 

chaff proportion. Flow profile, particle velocity, velocity vector fields, and discharge rate of 

HRW wheat during hopper was assessed.  

 5.2 Materials and Methods 

 5.2.1 Samples 
Hard red winter wheat was obtained from Heartland Mills, Marienthal, Kan., USA and 

chaff was collected from Hal Ross mill, Department of Grain Science and Industry, Kansas State 

University. The moisture content of wheat and chaff was 11.12±0.06% and 11.34±0.21%, 

respectively. Wheat and chaff were mixed at specific proportion (W: C at 100:0%, 97.5:2.5%, 

95:5%, 92.5:7.5% and 0:100%) by weight basis. Two different heights of sample was tested, 35 

cm and 55 cm. At 55 cm height, only one proportion of chaff was used (W:C at 97.5:2.5%). The 

amount of sample in hopper during each test is given in Tables 5.1 and 5.2. The proportion of 

mix was selected based on the U.S. grade of wheat with different broken and foreign material 

level (Grain Inspection Handbook, 2013). The size of wheat kernel was measured using a single 

kernel characterization system (SKCS 4100, Perten Instruments, Inc., Springfield, IL, USA).  

 

Table 5. 1 Amount of samples used in hopper flow test (with wheat height fixed as 35 cm)  

Sample Amount of sample in hopper, kg 
A-40º A-60º 

W 100% 28.0±0.4 36.5±0.3 
W 97.5%-C 2.5% 27.3±0.2 35.1±0.2 
W 95%-C 5% 26.9±0.2 34.2±0.2 
W 92.5%-C 7.5% 26.1±0.3 33.6±0.1 
* where W indicates wheat kernel, C indicates chaff, and A is the hopper angle. 
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Table 5. 2 Amount of samples used in hopper flow test (with wheat height fixed as 55 cm) 

Sample 
Amount of sample in hopper, kg 

A-40º A-60º 
W 100% 40.1±0.4 50.3±1.4 
W 97.5%-C 2.5% 39.1±0.2 49.4±1.0 

* where W indicates wheat kernel, C indicates chaff, and A is the hopper angle. 
 

5.2.2 Hopper flow analysis 

 5.2.2.1 Hopper model 

A plexiglass wedge-shaped hopper was fabricated (Fig 5.2) for testing wheat flow. The 

hopper was fabricated in such a way that the width, hopper angle and hopper opening are 

adjustable.  

 

Fig 5. 2 Hopper model 

 
 

For wedge-shaped hopper, the length of outlet should be at least 3 times the width of 

outlet (Eric, 2004). Interlocking arches can be overcome by ensuring that the outlet diameter is 

six to eight times the largest particle size in a circular opening, or the width is three to four times 

the largest particle size in a slotted opening. (Slotted outlets must be at least three times as long 

as they are wide for such conditions to apply) (Eric, 2004). By considering above mentioned 

standards, for this test, the hopper dimensions were fixed as given in Fig 5.3.  
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Fig 5. 3 Hopper dimensions of mass flow and funnel flow with 35 cm sample height  

 
               a) Mass flow               b) Funnel flow 

 

Fig 5. 4 Hopper dimensions of mass flow and funnel flow with 55 cm sample height  

 
               a) Mass flow               b) Funnel flow 

 5.2.2.2 PIV experimental setup and analysis  

Bulk wheat hopper discharge process was recorded using a high speed camera Casio EX-

F1 (Casio computer co., ltd, Japan). For PIV measurement and analysis, the procedure used by 

Sielamowicz et al. (2005) was used. The rate of image capture was fixed at 30 frames per second 

and at 512 pixels ×384 pixels resolution. This recording speed and resolution was optimized 

based on the hopper size and camera specications. After recording, video frames at every 50 

millisecond interval was selected for PIV analysis. The images were then imported into the 

PIVlab module (Thielicke and Stamhuis, 2014) of MATLAB (MATLAB 2010b, The 

MathWorks, Inc., Natick, MA, USA.). Using PIVlab, the particle flow vector, particle velocity 

and colored velocity magnitude zone were measured.  
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 5.2.3 Statistical analysis 
All the tests were performed in triplicate and the mean values and standard deviations 

(mean ± standard deviation) are reported in this thesis. Statistical analyses were conducted using 

SAS (SAS Institute Inc., Cary, NC, USA). The effect of chaff and hopper angle on hopper 

discharge rate was evaluated by subjecting the data to two-way analysis of variance (ANOVA) at 

α= 0.05, using PROC GLM. Ryan or Ryan-Einot-Gabriel-Welsch Q (REGWQ) multiple 

comparison tests were used to separate the differences (P ≤ 0.05) between the effect of moisture 

content and impurities. 

 5.3 Results and Discussions 

 5.3.1 Hopper discharge time and rate  
Different levels of chaff and the hopper angle had significant effect on the discharge time 

and discharge rate (Table 5.3 and 5.4). Presence of chaff in wheat affects the density, size and 

size distribution of the materials present in the bulk. If the particles present in the bulk are 

uniform with minimum variation in physical properties, the discharge rate will be consistent. The 

chaff particles are non-uniform in size, has interlocking tendency and has higher inter-particle 

friction. Due to these effects, the discharge time progressively increased while the rate decreased 

with the increase in the amount of chaff. The results indicate that wheat, before cleaning, will 

have inconsistent hopper discharge. Furthermore, for effective handling of bulk wheat, mass 

flow hoppers could be used because of their better discharge time and rate (Table 5.3 and 5.4).  

 

Table 5. 3 Discharge time and discharge rate of samples at 35 cm height 

 

 

 

 
 
 

* where W indicates wheat kernel, C indicates chaff and A is the hopper angle; 
** Two-way ANOVA: discharge time: HA: P < 0.001, C: P < 0.001, HA*C: P < 0.001; discharge rate: 
A: P < 0.001, C: P < 0.001, A*C: P = 0.8853; 

 

 

Sample 
Discharge time, s Discharge rate, kg/s 

A40 A60 A40 A60 
W 100% 16.75±0.40Aa 25.76±0.29Ab 1.67±0.06Aa 1.42±0.02Ab 
W 97.5%-C 2.5% 18.90±0.49Ba 30.06±2.13Bb 1.44±0.03Ba 1.17±0.08Bb 
W 95%-C 5% 20.54±1.49Ca 31.88±0.40Cb 1.32±0.10Ca 1.09±0.02Cb 
W 92.5%-C 7.5% 23.43±0.72Da 38.90±0.52Db 1.12±0.02Da 0.86±0.01Db 
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Table 5. 4 Discharge time and discharge rate of samples at 55 cm height 

Sample 
Discharge time, s Discharge rate, kg/s 
A40 A60 A40 A60 

W 100% 21.31±0.85 44.32±1.41 1.88±0.06 1.13±0.02 
W 97.5%-C 2.5% 27.05±0.51 51.50±1.52 1.45±0.02 0.96±0.01 

* where W indicates wheat kernel, C indicates chaff and A is the hopper angle 

 5.3.2 PIV analysis 
The velocity vector field and velocity magnitudes of bulk wheat flow through mass and 

funnel flow are presented in Fig 5.5 and 5.6, respectively. Different color indicates the velocity 

of grains and the arrows indicate the velocity vectors. With the increase of chaff proportion the 

discharge velocity decreased and this trend could be observed based on the color difference in 

Fig 5.5 and 5.6. For the 60º angle hopper, at 30 cm height (from the bottom of the hopper), dead 

zones were observed with no-flow when the outlet was opened. With the increase in chaff, the 

particles in motion decreased. At height 20 cm and 10 cm (from the bottom), there is no dead 

zone in the hopper, and the flow profiles were symmetrical. With the increase in chaff, the time 

taken by the top layer of wheat to reach a height of 20 cm and 10 cm (from the bottom) 

increased. 

Fig 5. 5 Flow velocity vector field and velocity magnitude contours analysis results at 40° 

hopper angle at initial sample height of 35 cm 

 

74 

 



  

Fig 5. 6 Flow velocity vector field and velocity magnitude contours analysis results at 60° 

hopper angle at initial sample height of 35 cm 

 
 

Compared to a mass flow hopper, more dead zone locations were observed in a funnel 

flow hopper with 60º hopper angle (Fig 5.6). Similar to the mass flow hopper results, increase in 

the proportion of chaff increased discharge time that corresponded to the results reported in 

Table 5.3. However, in the funnel flow especially towards the end of discharge, particles moved 

at a very low velocity. This indicates that, for bulk wheat with chaff, complete emptying of bins 

might not be possible using funnel flow hoppers with material stagnant on the sides of the 

hopper. With time and consolidation, existence of dead zone affects the quality of wheat and the 

handling efficiency.  In Fig 5.7 and 5.8, the flow fields are compared at specific time points to 

observe the differences in flow. In general, the flow was irregular for bulk wheat with higher 

chaff proportion. 
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Fig 5. 7 Comparison of flow velocity vector field and velocity magnitude contours analysis 

results of 40° hopper angle at different time interval at initial sample height of 35 cm 

 
 

Fig 5. 8 Comparison of flow velocity vector field and velocity magnitude contours analysis 

results of 60° hopper angle at different time interval at initial sample height of 35 cm 
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From Table 5.3 and 5.4, it could be observed that the flow rate decreased due to the 

pressure applied by the self-weight of wheat samples. Comparing the time interval listed in Fig 

5.9 and 5.10, the flow mode is similar to the figures shown in Fig 5.5 and 5.6. In mass flow, 

wheat close to bin walls were initiated earlier than those in funnel flow mode. Meanwhile, the 

existence of chaff decreased the flow velocity. And for mass flow, it requires more time to 

discharge all the samples from bins. 

 

Fig 5. 9 Comparison of flow velocity vector field and velocity magnitude contours analysis 

results of 40° hopper angle at different time interval at initial sample height of 55 cm 
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Fig 5. 10 Comparison of flow velocity vector field and velocity magnitude contours analysis 

results of 40° hopper angle at different time interval at initial sample height of 55 cm 

 
 

Fig 5. 11 Profile of vertical velocity of 40° hopper angle at different hopper geometries at 

initial sample height of 35 cm 

 

   
                                 W 100%                                                                                                            W97.5% - C 2.5%                
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Fig 5. 12 Profile of vertical velocity of 60° hopper angle at different hopper geometries at 

initial sample height of 55 cm  

 

 
                                   W 100%                                                                                                        W97.5% - C 2.5%                

 

From Fig 5.11 and 5.12, it could be observed that towards the end of wheat dischage, there 

would be two peaks of velocity as the central section of flow ended first, followed by the wheat 

close to the bin wall.  

 5.4 Conclusions 
The particle image velocimetry (PIV) method can be used as an effective optical 

technique to evaluate the flow pattern and quantify particle velocity of bulk wheat by processing 

successive digital images. Though strains inside the bulk materials cannot be traced by using this 

method, PIV gives the surface movement characteristics.  This study indicated that chaff had 

significant influence on the discharge time and rate of bulk wheat hopper flow. Two stages were 

tested to research the effect of pressure change to wheat discharge flow. Compared to funnel 

flow hoppers, mass flow hoppers could be efficient for handling bulk wheat. PIV results 

indicated the presence of dead/no-flow zones during handling of wheat with chaff. In funnel flow 

hoppers, presence of chaff increased the tendency of bulk wheat to be stagnant near the hopper 

walls. The results indicated that clean wheat has better flow characteristics than bulk wheat with 

impurities. Arch formation and segregation potential will be high for wheat with chaff and 

impurities compared to bulk clean wheat. 
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Chapter 6 – Summary of Conclusions 

 6.1. Restatement of Thesis Goals 
To understand challenges in grain flow during handling requires better understanding of 

grain physical and flow characteristics, to guide design appropriate equipment and prevent 

accidents. Due to the complexity of the bulk solids handling system, in this Thesis, two main 

factors that affect the flowability of bulk wheat are studied. Physical properties that act as a 

quick pre-overview parameter could help estimate the flowability of material in uncompacted 

condition (e.g. bulk density, angle of repose) and tapped condition (e.g. Hausner’s ratio and 

Compressibility index). However, in most of the processing operations bulk wheat is being 

processed or handled under consolidation. At these conditions, physical properties alone cannot 

provide solid theoretical support for design purposes. Hence, more reliable materials’ data under 

specific compacted or flow condition are required for characterizing the flowability of bulk 

wheat.  

The aims of this thesis was to study the flow characterization of bulk wheat and the 

specific objectives as stated in Chapter 1were, 

1. To measure the physical and flow properties of bulk wheat with different proportion of 

chaff at three moisture content level. 

2. To measure the physical and flow properties of wheat with different proportion of 

lesser grain borer infested kernel at three moisture content level. 

3. To study the flow profile of wheat through mass and funnel flow hoppers using particle 

image velocimetry technique.   

This thesis work explores to address three main objectives associated to characterize bulk 

wheat with two main impurities, chaff and insects infested kernels, and moisture content. 

Meanwhile, image analysis of the discharge flow of bulk wheat with chaff in laboratory-scale 

hopper was conducted for better understanding on the bulk wheat flow. In this part of the thesis, 

a project overview is described in Section 6.2. In Section 6.3, the major findings from the 

experiments are discussed. Potential future work based on the questions evolved while 

conducting this research are stated in Section 6.4. 
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 6.2. Project Overview 
The storage and handling challenges of bulk wheat, project hypothesis and goals were 

discussed in Chapter 1. The studies and results available in previous literatures were explaining 

the bulk solids characterization, flow in hopper, hopper structures and digital image analysis 

were reviewed in Chapter 2. The common flow issues such as no-flow and inconsistent flow 

during discharging and grain entrapment were briefly discussed. Physical properties such as 

densities, flow indicators, angle of repose and moisture content were discussed in detail. 

Different flowability evaluation methods were discussed for a comprehensive understanding of 

flow properties during handling.  

Hopper structure is a significant link in processing affecting the efficiency and reliable. 

Basic hopper design theory and flow patterns were reviewed. The review provided theoretical 

support to fabricate a laboratory-scale hopper for visualizing the discharge flow by Particle 

Image Velocimentry (PIV) analysis. PIV analysis provided the flow profile of discharge, but the 

limitation of this method is also obvious, because of 2-D analysis the internal flow happen 

cannot be analyzed by PIV. In Chapter 2, possible evaluation methods for flowability of bulk 

solids were discusses. 

In the Chapter 3 and 4, the effect of chaff and insects infested kernels on bulk wheat 

characterization at different moisture content are characterized.  Physical and flow properties 

were comprehensively tested and reported. Chapter 5 focused on particle image analysis by using 

PIV technique. Particle flow vector, particle velocity and colored velocity magnitude zone were 

plotted using image analysis. In this part of work, chaff proportions in bulk wheat and flow 

pattern (mass flow and funnel flow) was varied to study the effect on discharge flow rate and 

time. 

 6.3. Discussion of Major Findings 
Physical and flow properties of bulk wheat affected by impurities and moisture content 

have been evaluated. The PIV analysis quantified the particle velocity, velocity direction and 

velocity vector distribution. 

Results indicate that the moisture content, chaff proportion and the presence of insects 

damaged kernels influence both the physical and flow properties of wheat. Knowledge on these 

characteristics is necessary for design of handling equipment and to understand the behavior of 
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grain during storage and handling. Flow indicators, such as bulk density, tapped density, and 

angle of repose, showed that the flowability of bulk wheat decreases as moisture content, chaff 

and insects infested kernels proportion increase. Under compaction, changes in density altered 

the bulk porosity of samples. Meanwhile, more void in the sample due to the presence of chaff 

made it easier to be compacted at the same pressure level. The main difference due to the 

presence of chaff or insects infested kernels is the shape of particles that make-up the bulk wheat. 

The rearrangement of grain dust and less denser insect damaged kernels influenced the overall 

density characterisitics of materials. The energy required to initiate the flow is higher for wheat 

than those of samples with impurities at lower densities. Moisture content and the proportion of 

these two impurities, within the tested range, did not have any significant effect on the shear 

properties of bulk wheat. Presence of chaff and insect damaged kernels and the dust from insect 

activity could increase the compressibility and lead to arching and caking of grains affecting 

their flowability. The flow of wheat with impurities will be challenging than clean wheat. This 

observation was supported by the PIV analysis. PIV results indicated that presence of chaff 

increases the discharge time and reduces the discharge rate. Flow of wheat, with impurities, will 

be challenging in funnel flow hoppers.  

 6.4. Future Work  
Fundamental and applied studies to understand the physical and flow characteristics of 

bulk wheat has been undertaken in this thesis study. Adjustable Plexiglas hopper model was 

developed to understand the bulk discharge behavior of bulk wheat during laboratory-scale 

handling. The application of these potential research areas may not be limited to bulk wheat but 

also could be applied for other bulk grain handling and storage systems.  

 6.4.1 Industrial scale testing of wheat flow 
This study focused in labscale and pilot scale testing of flow of wheat grains. The bulk 

flow of wheat could be scaled up and tested at industrial scale hoppers and bins. Because, during 

storage, weather conditions influence the cohesion between the particles due to the presence of 

chaff and insect damaged kernels.  
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 6.4.2 Discrete Element Method (DEM) Simulation  
Recently, DEM modeling has been accepted as a method to provide detailed 

understanding for equipment design. William et al. (2009) and Balevičius et al (2011) has used 

DEM to predict the flow mode from hoppers. In the future, DEM can be used for characterizing 

bulk flow of wheat. 

 6.5 Chapter References 
Balevičius, R., Kačianauskas, R., Mrózc, Z. and Sielamowiczd, I. 2011. Analysis and DEM 

simulation of granular material flow patterns in hopper models of different shapes. 
Advanced Powder Technology 22(2), 226–235.  

William, R. K., Jennifer, S. C, Wassgren, C. W. and Bruno, C. H. 2009. Predicting the flow 
mode from hoppers using the discrete element method. Powder Technology 195(1), 1–10 
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