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CHAPTER I

INTRODUCTION

The characteristics of all objects (existing in nature as well as

manufactured by man) are subject to inherent variations. Not only are

the hetrogenities in nature beyond human control but so also are many

of the variations in the different processes involved in manufacturing.

These basic variations make it unrealistic to hope for a product's

strict conformity to the requirements. In real life one is usually

dealing with statistical populations (discrete or continuous), with

unknown parameters.

In practice, the specifications for a product are determined by

the designer. The problem of the manufacturer is to ensure that a

batch (lot) adheres to these standards. This assurance is needed well

in advance, to avoid unwelcome damages caused by the defective unit.

The implications are twofold (i) quality evaluation (ii) quality control.

Both of these aspects are interrelated and usually go hand in hand but

the techniques used for each, differ.

Restricting the discussion to quality evaluation with the aim of

eliminating defective items, there are two possibilities:

1. One hundred percent inspection.

2. Sampling inspection.



1.1 ADVANTAGES OF SAMPLING INSPECTION

Unless it is imperative to remove all defective items, item by item

inspection will be avoided as a rule because of the following advantages

offered by sampling inspection.

1. The cost of inspecting each item may be prohibitive. Sampling

leads to the inspection of just a fraction of the total items while

giving (hopefully) sufficient quality assurance.

2. Sometimes the time required for inspecting all the items may

be so large that it may be infeasible to do so.

3. Trained inspectors are not easy to obtain. Sampling inspection

obviously needs fewer inspectors.

4. Even if inspection of all items could be arranged it would

often fail to detect all of the defective items. This failure on part

of the inspectors is enhanced when (i) number of defectives is small

or (ii) the lots are large, or (iii) inspection is tiring. In some cases it

has been found that sampling inspection actually resulted in better

quality of the outgoing product than hundred percent inspection. [4]

5. With hundred percent inspection, only the defective items

are rejected. Compared to this, sampling inspection would lead to the

rejection of the complete lot if the quality is not satisfactory. This

acts as a great incentive for a producer to tighten his quality control.

The tendency to depend on the customer to weed out the defectives is

eliminated by sampling inspection. [30]

6. Damage from handling during inspection is minimized.



7. When production volume is decreased or increased the corres-

ponding increase or decrease in sampling inspection is proportionately

quite small and may easily be accommodated. For hundred percent in-

spection, changes in production level may well lead to bottlenecks or

undesirable lay offs.

8. The knowledge that his sampling work results in the rejection

or acceptance of an entire lot, gives a sense of pride and responsibility

to the inspector. He, in turn, works more efficiently.

9. In case of destructive testing there is no alternative but

to use sampling.

1.2 SAMPLING PLANS

As soon as one opts for sampling inspection, risks are introduced.

Both producer and consumer have to accept them. The trade off between

reliability and effort required to get the reliability is primarily

based on economics. It becomes now important to minimize these risks

with the help of statistical as well as optimization techniques.

Much effort has already been expended to facilitate the aforesaid

optimization. A number of standard plans have been published and are

readily available. The well known Dodge & Romig sampling plans, [17]

MIL-STD-414 and ABC-STD-105 sampling plans are so well established

that their mutual acceptance by the producer & the consumer is almost

a routine.



1.3 SCOPE OF THE PLANS

Enough sampling plans already exist to cover effectively almost

the whole spectrum of processes and possibilities. The plans can be

used at any stage

a) Raw materials

b) In-process goods

c) Finished products

Custom tailored plans are not uncommon in situations where it is

worthwhile. The possibilities are as diversified as the requirements.

Recent work is not only aiming at improving the old solutions but

also finding and evaluating new ones.
:

1.4 TYPES OF PLANS

Basically all sampling plans can be classified as

1. Attribute plans

2. Variable plans

1.4.1 Attribute Plans

The measurements made for the quality evaluation are of a discrete

nature. Theoretically discrete distributions are viable in this case

(commonly the hypergeometric, binomial and Poisson distributions are

used). Usually a distinction is made between the plans based on

counting the number of defectives and the ones based on the counting

of number of defects per unit area or item. For the former, go-no go

gauges may be used and items are classified either as defective or

good. For the latter, thorough inspection of an item is needed to



ascertain the number of defects - an item with some defects may still

be classified as good.

1.4.2 Variable Plans

For these plans the measurements made for quality evaluation are

on a continuous scale, consequently the underlying probability distri-

butions are continuous (the normal distribution is most often assumed).

1.4.3 Types of Sampling

For both attribute as well as variable plans there can be further

classification based on the number of samples asked for in the plan.

1.4.3.1 Single Sampling . Just one random sample is sufficint

to make the decision for rejecting or accepting the lot, according to

the single sampling plans.

1.4.3.2 Double Sampling. With these plans, although a lot may be

accepted or rejected on the basis of just one sample (if the sample

is very good or very bad) yet for the more common intermediate zone,

a second sample is taken to make the final decision.

1.4.3.3 Sequential Sampling . With these plans there is no limit

on the number of samples to be taken. The acceptance/rejection criterion

is the crossing of acceptance or rejection limits. Although a decision

is possible after each item is inspected yet it is not uncommon in

practice to make the decision after sampling a small group of items.

1.4.3.4 Multiple Sampling . With these plans the basic principle is

the same as sequential plans, the difference being that in this case a

decision is forced after a small finite number (three or more) of samples.



1.5 OTHER RELEVENT FACETS OF ACCEPTANCE SAMPLING

In addition to deciding which sampling plan is to be used, every

sampling program will involve such basic decisions as -

1. What is to be inspected for ? Depending on the application,

it may be decided to inspect for more than one characteristic of each

item.

2. How will the lot quality be described? For example will it

be (i) percent defective or (ii) average number of defects per unit,

or (iii) arithmetic mean of some characteristic.

3. One quality at a time or more? Depending on the correlation

between different characteristics to be inspected, the convenience

and practicability, it will be decided whether to inspect just one

2
characteristic or more at an inspection station.

4. Where will this inspection be done?

5. Who will do it?

6. What will be the lot size?

7. What sampling technique will be used to eliminate bias? Some

sampling plans, for example in bulk sampling, explicitly include the

standard procedure for taking a sample, while others take it for

granted that the user will ensure randomness of the sample.

8. What inspection records will be kept and how will they be

maintained?

All of these questions are pertinent but the aim of the report is

to make an overview of various sampling plans while stressing the

comparison of attribute and variable sampling plans, specifically the

matching of a variable plan with an existing attribute plan.



CHAPTER II

HISTORY

When was the idea of sampling inspection introduced? It is dif-

ficult to say exactly. The modern concept comes from the merging

of two great streams, first the testing of materials and the second

is inductive logical inference. [1]

The statistical foundation was probably laid by Bayes (1763)

and elaborated by Laplace. The work of "Student" and Fischer aroused

the interest needed, w. A. Shewhart and his colleagues at Bell Telephone

Laboratories in 1926 finally set up the stage for starting sampling

inspection as it is known today. The nineteen twenties were the golden

age of sampling inspection research and the credit for the great

accomplishment goes, without any doubt, to Bell Telephone Systems and

its affiliate the Western Electric Company. The works of G. A. Campbell

(1923); Molina & Crowell (1924); W. A. Shewart, Frances Thorndyke (1926);

Paul Coggins
5

and H. F. Dodge (1928) all reached its climax in October

1929
6
with the publication of "A Method of Sampling Inspection" by

H. F. Dodge and H. G. Romig in The Bell System Technical Journal .

This was a landmark. The concepts introduced in it are still used,

more or less in the same form.

Despite the great advancement in statistical technology it was left

to the second world war to accelerate the work in sampling inspection

once again. It was necessitated by the wartime activities. Various

departments of Armed Forces consulted more and more statisticians



to make their decisions. The army in conjunction with experts from

Bell Telephone Laboratories compiled and printed the Dodge and Rom
i

g

sampling plans. The Navy on the other hand organized the Statistical

Research Group, Columbia University. The members of this group were

later responsible for publishing the two monographs "Sampling Inspection"

and "Sampling Inspection by Variables".

The Office of Production Research and Development took the ideas

to the industries and won a place for them.

Today extensive and comprehensive tables exist which provide ready

made plans for different applications. Literature is replete with

papers criticizing the old work and giving ideas for improvements and

for designing custom made plans for specific applications. Though

there is enough scope for improvement yet undoubtedly sampling in-

spection is now on firm standing.



CHAPTER III

TERMINOLOGY , DEFINITIONS AMD DESCRIPTION

3.1 ACCEPTANCE SAMPLING

"The art or science that deals with procedures in which decisions

to accept or reject lots or processes are based on the examinations of

samples". [20]

3.2 SAMPLING PLAN

"A specific plan which states (a) the sample sizes (b) the criteria

for accepting/rejecting a lot or taking another sample". [20]

3.3 INSPECTION LOT
8

"A specific quantity of similar material, or a collection of

similar
9

units, offered for inspection and acceptance at one time". [20]

3.4 LOT SIZE

Number of items (units) or quantity in a lot.

3.5 SAMPLE

"A portion of material or a group of units, taken from a lot, the

inspection of which provides information for reaching a decision re-

garding acceptance". [20]

3.6 SAMPLE SIZE

The number of items (units) or quantity in the sample.

3.7 PROCESS AVERAGE QUALITY (PROCESS AVERAGE)

"The expected quality of product from a given process, usually esti-

mated from first sample inspection results from the past." [20]
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3.8 PROBABILITY OF ACCEPTANCE (PJa

The probability that a lot is accepted.

3.9 OPERATING CHARACTERISTIC CURVE (O.C.)

The graphical representation of the response of a given

plan. It is the plot of probability of acceptance versus lot quality

or process quality, whichever is applicable (Figure 1). The shape of

O.C. curve decides the discerning power (between a good lot and a bad

lot) of the plan.
10

3.10 ACCEPTABLE QUALITY LEVEL (AQL:pj)

That percent defective or number of defects per hundred units

which is acceptable as the process average. Materials of this quality

will have only a small (specified) risk of rejection.

3.11 LOT TOLERANCE PERCENT DEFECTIVE (LTPD:p£)

That percent defective which is not acceptable to the consumer.

Materials of this quality have a very small (specified) risk of

12
acceptance. This is expressed as Lot Tolerance Fraction Defective

(LTFD) sometimes.

3.12 INDIFFERENCE QUALITY

That percent defective which has fifty-fifty chance of being

accepted or rejected.

3.13 PRODUCERS RISK (a)

The risk (probability) of rejecting a lot with a quality equal

to AQL. This is also known as the probability of type I error.
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3.14 CONSUMERS RISK {&)

The risk of accepting a lot having quality level equal to LTPD.

This is also known as the probability of type II error.

3.15 AVERAGE SAMPLE SIZE (ASN)

"The average number of sample units inspected per lot in reaching

the decision to accept or reject". [20]

3.16 AVERAGE TOTAL INSPECTION (ATI)

"The average number of sample units inspected per lot including

all units in rejected lots (i.e. with screening)". [20]

3.17 NORMAL INSPECTION

"Inspection in accordance with a plan that is used under ordinary

circumstances". [20].

3.18 REDUCED INSPECTION

Inspection with a smaller sample size (lax compared to normal

inspection). Generally done when past record shows lot quality con-

sistently better than AQL.

3.19 TIGHTENED INSPECTION

Inspection in accordance to a plan that has more strict acceptance

criterion than normal. Generally used when past record shows consistent

poorer quality compared to AQL.

3.20 CURTAILED INSPECTION

Sampling Inspection in which, as soon as a decision is reached,

the inspection is stopped. As soon as the number of defectives exceed
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the maximum allowable limit no more are inspected. However, it is

common to inspect the first sample completely for maintaining the

control charts or at least to determine the process average.

3.21 ACCEPTANCE NUMBER

The maximum number of defectives (or defects) allowed in a

sample without causing the rejection of the lot.

3.22 REJECTION NUMBER

The smallest number of defectives (or defects) which will cause

the lot to be rejected.

3.23 AVERAGE OUTGOING QUALITY (AOQ).

The average quality of the outgoing product after all defectives

in the rejected lots have been replaced with good ones.

3.24 AVERAGE OUTGOING QUALITY LIMIT (AOQL)

The maximum AOQ an acceptance plan will result in, irrespective

of the incoming quality (Figure 6).
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CHAPTER IV

FORMULATION OF DIFFERENT TYPES OF SAMPLING PLANS

The characteristics of a good sampling plans as per Cowden [14]

are as follows.

(i) Protect the producer against rejection when his process

is under statistical control and satisfactory as to level

and uniformity

.

(ii) Protect the consumer from accepting bad lots,

(iii) Give long run protection to consumer,

(iv) Act as an incentive to producer to keep his process under

control

.

(v) Minimize the cost of sampling, inspection and adminis-

tration .

(vi) Provide information about the incoming quality.

As already described basically sampling plans are of two types,

1. Attribute (Discrete)

2. Variable

depending on how inspection is carried out.

4.1 ATTRIBUTE PLANS

Before we can proceed with the formulation of these plans we have

to make a distinction between type A and type B O.C. curves which is

due to Dodge and Romig [17,19,30].
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4.1.1 Type A O.C. Curves

These curves give the probabilities of acceptance for different

incoming fraction defectives from parent lots of finite sizes. The

hypergeometric distribution thus would be the correct one to use for

computations of various probabilities. Note also that such curves

would be discontinuous in principle though it is a common practice

to draw them as continuous.

4.1.2 Type B O.C. Curves

These curves give the probabilities of acceptance against fraction

defectives from infinite lots (from a continuous, statistically stable

process). The binomial distribution would be the correct one to be

used here. Note that it is common to use the Poisson approximation in

both cases, especially when lots are large and sample sizes small.

For practical purposes when the sample size is less than one-tenth of

the lot size both type A and type B curves are identical for practical

purposes. [30]

It may also be noted here that type A curve always falls below

the type B curve (this becomes obvious when you consider the underlying

distributions) and hence type B curves always give a higher value for

consumers risk.

4.1.3 Single Sampling Attribute Plan

It is identified by n (sample size) and c (acceptance number).

It works as follows. Take a random sample of size n and count tne

defectives (or number of defects) if these are less than or equal to

c then accept the lot, otherwise reject it.
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4.1.4 Derivation of a Single-Sampling Fraction Defective Plan with

Specified p|, p£, a and g.

We can either wish the O.C. curve to pass through two designated points

or pass through one point plus satisfy some other criterion (such as

keep sample size as preassigned fixed number).

4.1.4.1 Type A O.C. Curve . Using the following notation

Let N = Lot size

M « number of defectives in the lot

M
p' (fraction defective in lot) =

^

n = sample size

m = number of defectives in a sample (it is a random

variable)

Probability of finding m defectives in a random sample is given by

the hypergeometric probability.

C
N-M

C
M

P(m|n,N,M) =
n'^ - m = 0,1 ,2, ... , min(n.M) (1)

C
n

(N-M).
1 HlnMN-n!)

(n-m):(N-M-n+m):(H-m):m:N:

If c is the acceptance number then probability of acceptance is

given by

rN-M _M
C L L

p ., y n-m m
a L N

m=0 C_
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substi tutiong p'N = M we can obtain two equations for the two points

as follows.

N-p^N p^N

c C C

1 - . - T
"-" m

(2)

m=0 C
N

n

and

N-p'N p'H

v n-m m lt\

m=0 C
n

It can be seen that solving for c and n from equations (2) and

(3) is not easy, it can be done by trial and error only.

There are alternatives of course.

1. Use G. J. Leiberman and D. B. Owen's Tables of Hypergeometric

Probability Distribution. [42] Tabulated values are for N = 2 to 100

and n = 1 to 50 plus some other specific values of N and n.

2. Use one of the approximations.

(a) When both N and n are large and neither M nor N-M is very small:

use normal approximation. The P is given by area under standard normal

curve with

*.-F^-p\

where p' is tr

E^M to
( 4)

(b) When N,M and N-M are large relative to n and m then it can be

approximated by binomial with p' = M/N and n (binomial) =

1 o

n (Hypergeometric).
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I C
N "M

C
M
/c

N
I C

n
p'

x
(l-p')

n -x
(5)

(c) When N and n are large but m or N-m is relatively small then it is

approximated by a binomial distribution with p' = n/N and n (binomial)

. 14
• m (hypergeometric)

.

Jo
C- C

"/
C"

=

mL
C
"

P
'
X(1

-
p,)n "X

(6)

The binomial distribution has been extensively tabulated. However

again it is to be noted that trial and error is still the only practical

way to calculate the required values for n and c.

(d) In case p' for binomial approximation is small and n or H are

not too small, it is possible to use Poisson distribution as an

. , . 15
approximation.

nM

c c (^ e"
N

V C
N "M

C
M

/c
N

= Y
N

, (7)

i
C
n-m

Cm/ C
n l

Q
U ^ 7 ^

This cummulative poisson distribution can be read from the tables

or graphs provided by Dodge and Romig [32] (Figure 7).

A perfect solution is usually never found because of the discrete

nature of N and n etc. and we have to make adjustments to get whole

numbers

.
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Examples.

Say p\ = 0.01

p£ = 0.08

a = 0.05

B = 0.10

and lot size N =100 [19].

Using the Lieberman-Owen tables we see the best solution is

n 40, c = 1 which gives a = and 3 " 0.097.

When one has to work out of the range of these tables then

Binomial approximation is used for better results.

For example if N = 200 and other criteria are the same as in the

above example viz.

p]
= 0.01

p£ = 0.08

a = 0.05

6 0.10

then using National Bureau of Standards Tables for Binomial Distribution

the solution after some trial and error comes as n = 44 , c = 1 which gives

a = 0.048 and 8 = 0.097 (using equation 5).

4.1.4.2 Type B O.C. Curve . These are the usual ones that are

developed in practice. Here the Binomial distribution is valid and

Normal approximation or Poisson approximation may be used.

(a) The procedure can be simplified if Figure 7 is used in conjunction

with the method described by A. R. Burgers.
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Since the p'n scale in Figure 7 is logarithmic, equal distances

anywhere along the axis represent the same ratio. Cut an L shaped

piece of paper and proceed as follows. "Starting at 1.0, mark off

the p'n scale along the (inner) bottom edge of the 'L'. To find a

single-sampling plan with a specified p.! , pA, a and 6 compute ratio

pi/pi. Place the (inner) bottom edge of the 'L' on the horizontal

line of Figure 7 for which P a
= g and mark off the point on the (inner)

a

upper part of the L through which passes the horizontal line P = 1-a

then move 'L' to the left or right until an X curve is found that

passes through the 1-a mark on the upper part of L and at the same

passes through, or close to, the pA/p-J ratio on the lower part of 'L'.

The X will be the c for the sampling plan. To find n read off p'n

at this point and divide it by p.j. The plan so found will have desired

o but its B will be higher than that desired if the X line passes to

the right of the ratio mark or lower if it passes to the left of the

ratio mark. If B is needed to be held constant then we can make X

curve pass through ratio mark and make adjustments on the other end."

[19]

The advantage here is that we can work with any a and 6.

(b) Another method is to use the tables given by A. H. Bowker and

G. J. Lieberman [7]. This table directly gives the design of single

sampling plan. The sample entries are shown in Table 1.
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TABLE 1*

Table for two-point design of a single-sampling with a approximately

0.05 and 6 approximately 0.10.

P' n0.10/P'
n
0.95

P'VlO = P0.10/P6.95

2.30 45.10

3.89 10.96

5.32 6.50

6.68 4.89

A.J. Duncan [19]

c " "0.95

0.051

1 0.355

2 0.818

3 1.366

Example

Using the same values p] = 0.01

p£ = 0.08

a = 0.05

e = o.io

P2
calculate — =8.

Pi

This lies between the ratios corresponding to c = 1 (10.96) and

c = 2 (6.50). A choice has to be made now, between being conservative

(c = 1) or liberal (c = 2).

Say c = 1 is picked then again it is to be decided whether a is

to be held constant or e. If a is held constant then p'n
n
„ is read

off as 0.355 which gives n = 0.355/0.01 = 35.5 = 36.
18
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The final plan is thus n = 36, c = 1 a = .05 and B = 0.23. A

better choice can be had by keeping I constant and thus getting

n = 49, c = 1, a = 0.08 and B = 0.10.

(c) If one wants to be more exact then Binomial Tables can be used

as described earlier while discussing the type A O.C. curve plans.

For a fuller explanation and description reader is referred to Annals

19
of Mathematical Statistics Vol XX, page 242-56.

4.1.5 Single-Sample Defects per Unit Acceptance Sampling Plans

This kind of plan is needed when the items subjected to sampling

inspection are like cloth, linoleum or large items consisting of a

big number of components eg. T.V. set, referigerator etc.

The number of defects per unit may follow the Poisson distribution

and it can be proved (any text book on statistics will verify it) that

total number of defects in n units will also follow a Poisson distri-

bution with a parameter (mean) equalling n times the population

parameter.

And now it can be seen that defects per unit plans can be formed

just like the fraction defective plans. Sample size n and acceptance

number c will be similar. The O.C. curves will be approximately the

same (exactly the same if the Poisson approximation has been used) as

a fraction defective plan with same n and c. Only the abscissa will

now read "number of defects per unit' instead of 'fraction defective 1

.

In practice the same sampling plans are used interchangeably.
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4.1.6 Double Sampling Attribute Plans

These are designated as n, (1st sample size), n~ (2nd sample

size), c, (1st acceptance number), c
2

(1st rejection number), c
3

(2nd

acceptance number). The plan works as follows: take a sample of size

n,, check for defectives (or number of defects); if these are less than

or equal to c,, accept the lot; if more than or equal to c~, reject

the lot; if more than c-, but less than c, then take another sample of

size n~. If the combined number of defectives are less than or

equal to c, then accept the lot, otherwise reject it. Note that it is

common to have c, c
3

.

4.1.7 Double Sampling Plans with Specified p', , pi, a and g

The basic principles behind calculations of the various probabilities

remain the same as before. The probability of acceptance for the com-

bined sample is the sum of two probabilities, the probability of ac-

ceptance at the first sample and the probability of acceptance at the

second sample.

Once again both type A and type B curves are possible. How that

the difference is clear, attention will be confined to type B curves

only, as they are more common.

The formulation of the plan is now more complicated. To begin

with, just knowing pj, pi, a and e is not sufficient to give a unique

plan [19]. Thus some additional criterion has to be used. One such

popular criterion (which leads to good plans) is to use a fixed re-

lationship between n, and n
?

.
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Assuming p' is small (which is reasonable in practice) the

Poisson approximation may be used. This in conjunction with the fixed

ratio between n, and n
2
would mean that for a given set of values for

c, and c
2

, the probabilities of acceptance would only depend on n^p'.

Hence it means that plans with fixed p2
and p^ ratio can be made to

have identical O.C. curves by simply varying n-j. [19] In other words

if pi and pi are both multiplied by a common factor 'a' (maintaining

their ratio) and n, is divided by 'a' then values of P-| and P
2

(prob-

abilities of acceptance) will be the same because nip 1

has been held

constant. Bearing this in mind tables similar to Table 1 (for single

sampling plans) may be constructed. A sample portion is given in

Table 2.

TABLE 2*

Values useful in deriving a double-sampling plan with a specified pj

and p2
. (n

1

= n 2> a = 0.05 and 6 • 0.10)

Plan
No p

l

p' Acceptance
Approximate values of pJ n, for

numbers Kr "
1

C
1

C
2

p = 0.95 p « 0.50 p 0.10

1 11.90 1 0.21 1.00 2.50

2 7.54 1 2 0.52 1.82 3.92

3 6.79 2 0.43 1.42 2.96

4 5.39 1 • 3 0.76 2.11 4.11

*
For extensive tables see Chemical Corps Engineering Agency, Manual

Number 2, Master Sampling Plans for Single, Duplicate, Double and

Multiple Sampling (Army Chemical Center, Md., 1953).
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The above procedure leads to an extensive table of double sampling

plans; however all the plans will not be good. The plans that are

intuitively bad may be rejected. For example if we take n, equal to

2.5 n, then it is intuitively appealing to have c, at least 3.5 C,

.

Observe that in the sample table given (Table 2) n~ n, and c, is

at least twice c-,.

It may be once again stressed that here the probabilities are

calculated by the Poisson approximation. For more accurate results, one

must again use the binomial or hypergeometric distributions and calcu-

late n and c by trial and error. The probability of accepting an in-

spection lot is given by

c
2

P
a

= P-'tc,;^) + I P(K; ni ) P"(c
2
-K,n

2
)

K-C-i+1

where P(K,n) denotes probability of getting K defectives in n items

and P"(c,n) denotes probability of c or fewer defectives.

It may be mentioned here that the probability calculations can be made

with the use of Incomplete Beta Function. For details reader may

refer W. E. Deming. [16] Pearson's Tables of Incomplete Beta Function

give the tabulated values.

4.1.8 The Average Sample Size Curve (ASN Curve)

Now that the formulation of double sampling plans has been dis-

cussed, it is appropriate to discuss another important characteristic

of the sampling plans, the average sample size (A.S.N. )• This is very
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important from the economic point of view. For a good comparison

between two plans we need to compare not only the O.C. curves (the

level of protection) but also the average sample sizes expected (the

inspection effort required). The average number to be inspected will

be constant for single sampling but will vary for double plans with

incoming quality because the second sample is drawn only on the basis

of the number of defectives observed in the first sample which in turn

is dependent on incoming quality (p
1

).

The plot of the average sample size (A.S.N.) against p' is known

as the ASN curve. For a comparison between single, double and multiple

(sequential sampling) see Figure 8. It is important to note that two

different curves are possible

(a) with complete inspection of all samples

(b) complete inspection of first sample and then termination of in-

spection at any other stage as soon as a decision is reached.

4.1.8.1 The ASN Curve with Complete Inspection . The general

formula for ASN is given as

ASN = n-,P
1

+ (n,+n
2 ) (1-P

1
)

= n
]

+ n
2
(1-P^

where P, = probability of decision after first sample

= probability of acceptance after first sample plus

probability of rejection after first sample.

And this probability can be calculated from the binomial distribution

or the Poisson approximation as discussed earlier.
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5]
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4.1.8.2 The ASN Curve with Curtailed Inspection . Here the in-

spection is curtailed just at the point where number of defectives

exceed c
?

(acceptance number for combined samples).

pi
The formula for ASN is given in this case as

c
2

ASN = n, + I P
n

[n„ P"
1

K= Cl +l
n
l: K z n

2: c
2
-K

c
2
-K+l

+ -±—,— P' ]

P n
2
+l: c

2
-K+2

where

n, = size of first sample

n
2

= size of second sample

C-. acceptance number for first sample

c
2

= acceptance number for combined samples

P .
= probability of exactly x defectives out of n

P' probability of x or more defectives out of n

P" = probability of x or less defectives out of n.

4.1.9 Item by Item Sequential Plans

In order to further reduce the amount of inspection, it may be

decided to take a sequence of single observations and then base the

sample size entirely on the sampling result. Inspect one more item

until a decision can be reached as described below.
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To expound the basis for these plans it is worthwhile to quote

Acheson J. Duncan. [19] "I tern- by -item sequential sampling is based

fundamentally upon the notion of the "random walk". Suppose, for

example, two gamblers, A and B, each have a capital of $10 each.

They agree to play the following game. A perfectly unbiased coin is to be

tossed in a random manner. If the coin turns up heads, A pays B $1.00.

If the coin turns up tails, B pays A $1.00. They agree to play until

either one has lost all his money to the other. If the coin were

biased, the game could still be played, but the outcomes, A's ruin or B's

ruin, would not now be equally likely."

In sampling inspection the probability of a defective is compari-

tively small but still the principle holds, and acceptance and re-

jection limits (A's ruin / B's ruin) can be set over the whole range of

sampling. See Figure 9. The better known sequential plans in the USA

were developed by A. Wald (member, Statistical Research Group Columbia

University during W.W. II). Another one was developed independently in

England by G. A. Barnard. [19]

4.1.9.1 Formulation of an Item-by-Item Sequential Ratio Plan

With Specified pi, p'
2

, a and 6. (a) Wald's Sequential Probability Ratio

Plan: To satisfy the given conditions and keep a score to check whether

the rejection or acceptance limit is exceeded, Wald uses SPR, which is

defined as the ratio of the probability of getting cumulative result

at any stage assuming that population fraction defective is pj to the

probability of getting the same results under the assumption that true

population fraction defectives is pi. That is,
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Figure 9. Sequential-Sampling Chart

Sourcei A. J. Duncan, Quality Control and Industrial
Statistics . [19]
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p(x|p^;

SPR -

P(X|p£)

When this ratio becomes "too large" accept the lot, "too small" then

reject the lot. Otherwise keep on sampling. How large is "too large"

and how small is "too small" can be strictly determined by level of

protection needed (given parameters).

The SPR need not be calculated in practice. Wald showed that the

procedure can be simplified by using a chart like Figure 9.

22
The equations for the two limit lines are as follows.

x = -h, + sn

x h„ + sn

l_a fP? O-Pi)
wnere h

,
- log — / log

[p
,

(1 _
p

,

}

1-8 fP2 (1 -Pl }

h
2
=log^/log (j^-Jj

fl-p-j

109 M
rf>£U-p{)

109
Ipjtt^tJ

Tables have been developed by the Statistical Research Group, Columbia

University and included in the book "Sequential Analysis of Data:

Application." These tables list values of h,, h
2

and s for a = 0.05,

B = 0.10 and 0.50, p]
= .0002 to 0.10 and p'

z
= 0.002 to 0.35.
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(b) The O.C. curve for SPR Sampling Plan: The O.C. curve for such

a plan can be sketched by designating three points. [19] It has been

23
proved that s lies between pj and pi and the probability of acceptance

24
for a lot with fraction defective equal to s is hj/th-i+h,).

Furthermore using a parameter e such that when e = 1, p' = pj.

when e = -1, p' p, and when 6=0, p
1

= s, other points can be

obtained from the following equation. [74]

1-P21
9

Product or Lot Quality

p
2] (

] -P2

Probability of Acceptance P M
'1-Bl

e

|JL
1-a

(c) The ASN curve for SPR plan: Different points on the ASH curve

can be located by using these relationships

At p' * 0, ASN = hj/s

p' = 1, ASN = h
2
/(l-s)

(1-a) h, - ah 7
P' "Pi- ASN = ^ 1

(l-B)h, - eh,

p
1 = p], ASN -

P
2
i - s
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h,h12 [24]

It was proved by Wald [74] that

».
p
a

1og iV (1 - p
a
)1og:

^.
ASN =

p' log (p£|pj) + (l-p')log Ld-P2)/(l-P])J

Statistical Research Group, Columbia University lists the above

five points for all their plans.

The ASN curve has its maximum somewhere between pj and p£, and as

indicated by the relationships above, the ASN is extremely low at the

extremes and this can result in appreciable cost savings.

It has actually been shown that no other attribute plan with

two given points on the O.C. curve can have ASN lower than SPR plan

. . 25
at those points.

However for rest of the points it is possible (but not likely)

for single and double sampling plans to have lesser ASN than SPR

plan. [19]

(d) Barnard's Approach to Sequential Sampling: His approach was

to start from the acceptance/rejection limits and show how O.C. curve

could be obtained from these boundaries.

Here the scoring system is 1 for each good item and -b for each

bad item. When the score exceeds or equals a certain value H then

the lot is accepted, when the score falls below or equals another val

-H' then the lot is rejected. Some feel that administratively this is

better than Wald's approach.

ue
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The parameters in the two approaches are related as follows.

b i , hi
s

- s
1

H < hys - h
l

H
~ b+1

h" = h
2
/s + h

2

h"=
b+T

[19]

Following this approach F.J. Anscombe has worked out tables of

sequential sampling plans indexed simply on h
1

and h 2>

4.1.10 Group Sequential and Multiple Sampling Plans

In practical situations it is sometimes better to inspect a group

of items rather than one item at a time and then base the decision on the

result of the group. The acceptance-rejection limits are kept the same

as in item by item sequential sampling but the step size on the plot, in

this case, is equal to the group size. Both O.C. curve and ASN are

expected to change under this condition. The change in the O.C. curve

is not appreciable, but the change in ASN is usually greater as one has

to wait for the inspection of the whole group containing the Kth item

which under sequential sampling would have given the decision.

Recalling that s is the slope of the acceptance and rejection

limit lines (i.e. representing the increase in n corresponding to unit

increase in x) and assuming that h, and h
2

are integers, then effectively

no decision can be made till

preferred as the group size.

no decision can be made till 1 items have been inspected. Hence - is
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Group sequential plans are usually truncated, that is after a

certain number of samples it is stipulated that either the lot will

be accepted or rejected. These are what are known as Multiple Sampling

Plans.

4.1.11 Formulation of a Multiple Sampling Plan with Specified

pi , p£, a and B

It is easy to see that problem is now more tedious than even

double sampling. In addition to the two points (AQL and LTPD) specified

above, one has to specify some other criteria such as minimizing sampling

inspection to get a unique plan.

(a) An algebraic expression can be formed for calculating the probability

of acceptance and then trial and error can be used to get an acceptable

plan.

In addition to the formulae already stated we can use the following

recursive relationships for calculations

P
i

" P
i

- P
i + 1

P
i

" P
i

- P
i-1

P
i

- 1 " P
i-1

P» - i -
p;+1

p
i

= p
o

+ p
i

+ -- p
i

where as usual P. = probability of exactly i defectives in a sample of n
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P! = probability of i or more defectives

P" = probability of i or fewer defectives

Either Poisson approximation or Incomplete Beta Function tables can be

used to cut down on calculations.

(b) Another approach is to develop and use tables similar to the one

described in section 4.1.7. (Table 2). Such tables can be found in

Army Chemical Corps Master Sampling Plan for Single, Duplicate, Double

and Multiple Sampling and in Enters and Hamaker 'Multiple Sampling in

27
Theory and Practice'. A sample portion is given in Table 3.

TABLE 3*

Values useful in designing a multiple-sampling plan a 0.05, B = 0.10

Acceptance and Approximate value of p'n-j for

Rejection numbersNo. Pl/P2

1 18.46

2 12.15

3 9.95

4 8.91

5 8.06

6 7.04

a

Ac * * 1 2 3

Re 2222344

Ac * * * 1 2

Re 2222233

Ac * * 1 2 4

Re 2223345

Ac**000002
Re 22222333

Ac * * 1 2

Re 222333333
Ac * 1 1 1 2 3

Re 23334444

= 0.95 0.50 0.10

.048 .38 .89

.065 .31 .79

.10 .43 1.00

.088 .34 .78

.093 .36 .75

.18 .62 1.27

A. J. Duncan [19]
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The use of the table is' similar to Table 1 and Table 2 and can best

be explained by the previous example with pj
= 0.01 p£ = 0.08

a = 0.05 and B = 0.10.

Then p]/p£ » 0.08/0.01 = 8

which lies somewhere between number 5 and 6. The closest is number 5

(8.06), so let this be selected. Then keeping 2 constant the value

of pin. is given (in the column under P = 0.95) as 0.093. So group

size n = 0.093/. 01 9.3. To be conservative make it equal to ten.

Now recall that with this kind of approach, a constant relationship

is kept between samples (in this case it is n-j = n
2

= ... n^. The

required plan can be stated as follows.

Cumulated Acceptance Rejection

sample numbers numbers

10 * 2

20 * 2

30 2

40 3

50 3

60 3

70 3

80 1 3

90 2 3

It is to be noted that at the last stage the rejection number is just

one more than the acceptance number, thus ensuring a definite decision

at the last sample.
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(c) The third (and a very sensible) approach is to try and make the

multiple sampling plan conform to the sequential ratio plans' acceptance

rejection limit, which will ensure proper a and B values. This approach

was used by the Statistical Research Group, Columbia University [25] to

formulate their plans. The book 'Sampling Inspection 1

[25] gives the

details for computations. The basic idea is to first construct the

proper SPR as described in 4.1.9.1 and select a group size n (usually

—) and then read off Acceptance and rejection numbers from the SPR

plan plot for corresponding value of n (rounding off to the next higher

integer for rejection number and lower integer for acceptance Ac number,

to be a conservative side).

4.1.11.1 The ASN Curve for Multiple Sampling Plan . In general

when inspection is not curtailed (i.e. stopped in midsample) then

ASN ' P
]

n
1
+ P

2
(n

1
+n

2
) + ... P

k
(n-|+n

2
+ " n

k'

where P- = Probability of decision at the ith stage

4.2 VARIABLE SAMPLING PLANS

The fundamental assumption here is that the quality characteristic

of interest is distributed normally (later on, the implications of this

assumption being erroneous will be briefly discussed). On this basis

the proportion of defectives (p
1

) in a population with respect to a

specification limit (L) can be determined by constructing a standard

normal deviate

a
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The probability of an item falling below L is thus given by

1 t I?—— / e ' dt, which has been extensively tabulated as the
/27-»

Standard Normal Distribution.

Basically a single variable plan will be designated as n,K, where

n is the sample size and K the specification limit. There are several

approaches to explain the working of such a plan but the following

two are common and readily understood. [19]

Assuming that there is a single lower limit (L) the first approach

is as follows :

1. Take a random sample of size n and calculate its mean 1

.

7 I

2. Calculate standard normal deviate Z. = —r (assume o
1

known
L a

for the time being) .

3. Estimate the fraction defective from Z, .

4. If this exceeds a maximum specified limit K reject the lot,

otherwise accept it.

The 2nd approach is as follows

1. Take a random sample of size n and calculate the mean X.

7.-1

2. Compute Z
L

= ^f- .

3. If this Z. is less than or equal to K, accept, otherwise reject

the lot.

In this case K is the critical limit for standard normal deviate

and not fraction defectives. It is to be noted that this procedure is

equivalent to the procedure which rejects a lot when 7, - Ko
1

< L.

Both approaches are equivalent and the O.C. curve is the same but

is easily constructed by following the latter. [19] Hence only the
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second procedure will be followed here. The interested reader may

refer to Acheson J. Duncan [19] for the details of first procedure under

different circumstances.

When 11 or a
1 are unknown (either or both of them) different prob-

ability distributions have to be used and thus their formulations are

different. In practice, we can classify the variable plans under three

headings.

(a) When u is unknown but a' is known

(b) When u is known but a' is unknown

(c) When both y and a' are unknown

The treatment will differ when there is:

(a) Single specification (either lower or higher) limit

(b) Double specification limits

Also the possibility of a) single sampling b) double sampling and

c) sequential and multiple sampling exists with each combination.

Only the basic formulations will be discussed here, the reader can

find detailed formulations in any other specific combination he is

interested in, in the references included in the bibliography.

4.2.1 Variable Sampling Plans when a' is Known

The most fundamental, a single sampling plan with a' known and with

single specification limit will he dealt with first.

4,2.1.1 Formulation of a Single Sampling Variable Plan with

o' Known and with Specified a, B, p,' and p-
1

(Single Specification Limit).

Say the lower limit (L) is specified. Then under the procedure decided

on, the lot is accepted
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1f 7^
adding and subtracting \- to left hand side

if H+^> K

or if hj. > K . Ji4
of' — *

a

Multiplying both sides by /n leads to the conditic

" pfjltt I* -*$)* (8)

Now let those values of y which will yield p', and pi quality be designated

as y, and y„.

If Z, and Z
2

are designated as

L
l

~ FT/FT

then equation (8) in conjunction with the concept of a and 8 will yield

the following probability statements:

Pr (|^> (K-Z,) €).!-« (9)

Pr(fe t (K- Z
2» ^ = 6 HO)
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We know that when

X - N (u,a'
2

)

then |^f-M0.l)

which means eq. (9) and (10) yield

(k-z^ ^r- z
lHI

01)

(K-Z
2
)^=Z

g
(12)

where Z, and Z. are the standard normal probability points
I -ex p

corresponding to l-o and B respectively. Note that Z
1
_a

-Z
a . The

reader is urged to refer to Figure 10 which illustrates all these

relationships graphically.

The equations (11) and (12) can now be solved for n and K giving

W
K-z -ls.nl + ^=^llVl (14 )K Z

l
/n"

Z
2 /n

Z + Z
e

Example

Taking the previously used values. [19]

p^
= 0.01

p^ = 0.08
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DISTRIBUTIONS OF MEANS OF
SAMPLES OF SIZE n

DISTRIBUTIONS OF
INDIVIDUAL ITEMS
IN PROCESS OR
LOT

Figure 10. Illustrating the relationship
between the z's involved in the
design of a variables sampling
plan (variance known)

Sourcei A. J. Duncan, Quality Control and Industrial
Statistics. [ 19

j
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a = 0.05

6 = 0.10

Then the normal distribution tables give

Z, = 2.3263 Z
2

= 1.4053

Z = 1.6449 Z Q
= 1.28U

a 3

and eq (13) gives

n =
[j l̂ll

+
_ ]; 4053]

= 10.1 = JO (being a little lax)

and

K = z, -fe- 2.3263 -'^.Ll

Note that this value of k will yield a exactly 0.05;if 3 is to be

maintained then use

K. z, + ^= = 1.40S3 + 1^S36"L1U.
z *n /TO"

The complete O.C. curve can be obtained by using the following relation-

ships

M
p

. = L + Z
p
,(o') (15)

P. (Probability of acceptance) = P[ &- > (K-Z .) /n" (16)
a ^<//n~ p J
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Example

For the above plan the point corresponding to p
1 = .03 is determined

as follows:

Z
Q3

from tables 1.881

which yields

(K-Z ,) ^T> (1.809 - 1.881) /m= -0.2277

Using equation (16) with p
1 = 0.03, one finds that

P
a

P(Z > -0.2277) = 0.59

4.2.1.2 Formulation of a Single Sampling Variable Plan with

a 1 Known and with Specified a, B, p',
, pj (Double Specification Limits).

The first thing to note is that with the normal distribution, as with

any other symmetric distribution, the minimum fraction defective for

a process (or lot) will be obtained when y is centered exactly at the

middle of the specification limits, and if this minimum expected fraction

defective is more than the maximum allowed then the lot may be rejected

wthout any further consideration. In otherwords sampling is justified

only when (U-L)/2ol

is so large that if process were centered at the

middle, there would be practically no defective material.

For widely spread specification limits (U-L >_6o' is a good

criterion for this) the solution is simpler. A pair of single plans,

each working at one of the specification limits, is all that is needed.

The pair consists basically of one plan with two different rejection/

28
acceptance criteria. With specified values of p] , pi, a and 8 the

corresponding single specification limit plan is the solution.
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Example

Say U and L are wide enough to use the above approach and

Pi
-01

p'
z

= .08

a = .05

6 = .10

Thena single plan is devised as in section 4.1.2.1 giving n = 10.

K = 1.809 which works as follows. Take a sample of size 10;

accept if ^t > 1.809 and ^£ > 1 .809,otherwise reject.
r o — a —

When two limits are not relatively far apart, say U-L < 6a',

at the same time they are not so close that minimum defective possible

29
exceeds the acceptable quality level. In this case the fraction

defective of the population will occur on both sides (below the lower

limit as well as above the upper limit) and the population can be

shifted and centered about such a mean as to give the total sum of

proportion defectives as stipulated. In this case, as a rule more

fraction defective will occur in one tail than the other.

Two single limit sampling plans can now be set up in such a manner

that at one end (lower or upper limit), the probability of acceptance

for an incoming fraction defective p| t
(corresponding to this tail area)

is equal to 1-a, while the probability of acceptance for a fraction

defective of pi (at the same end) is equal to 6. Value of K may be

determined by taking the average of the two values calculated at the

30
upper and lower limits.
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Pi
= 0..01

P2 - ,08

a = 0..05

Example [19]

Say U = 0.880 and

L = 0.8773

o" = .005

6 0.10

From the normal tables it can be found that p
1 = 0.01 corresponds to

X' = 0.878485 or V = 0.878815. The distribution in both cases is

such that fraction defective in one tail is 0.0089 while in other

0.0011.

Now find a single sampling plan so that

p]
= .0089 p£ = 0.08

o = .05 6 = 0.10

2 2

„ - f

Z
0-05

+ Z
0.10 1 _ f

1.6449 + 1.2816) „ „ . Q

l
Z
0.0089 - Z

0.0800 J ~ I
2 - 3698 ' ^"J -"'-"-

K is given by the average of

"in *• r\c.~^ + Z
08

and Z 0089 " ~i=r ( from equation (14))

i.e. K *\ f"

1 ' 2816
+ 1.4053 + 2.3698

1.6449 1

J? I

i.e. K = \ (1.8325 + 1.8215)

i.e. K 1.827
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and the acceptance/rejection criteria becomes:

accept the lot if
'

- °;
8773

>_ 1.827 and

°' 880°,' l
L 1 .827 otherwise reject.

It is important to see that if procedure two was used then the

fraction defectives expected in both tails could be added to give just

one unified plan. This becomes a more satisfactory approach when o
1

31
is unknown. [19]

The O.C. curve can be completely plotted just like in section 4.2.1.1.

4.2.2 Variable Sampling Plans with Known u and Unknown a'

The sample statistic used in this case is t /n(x-u)/s where

s (unbiased estimate of a') is equal to.| [(x-x) /(n-1). This statistic

follows the Student's t-distribution with n-1 degrees of freedom.

This kind of plan is viable when quality assurance is needed for the

32
population mean only.

To begin with, some value for a' has to be assumed (based on past

performance or a small sample). Later on if the true value of a
1

is

larger than what was assumed for devising the plan then the plan will be

more liberal in accepting low quality product (b will be more than the

stipulated figure). [19]

The second difficulty is faced because of the fact that the t

statistic depends on n which is also unknown. This is overcome by

33
using the plot between P and x = (p.j - nAl/a'. Wltn specific values

of n the plot can be easily made by using t statistic instead of Z

for the sample mean. The same plot, once it is completed, can be used
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to estimate n for different values of P a and X (u, and y,).
a i c

To see a worked out example reader may refer to page 281-282. [19]

4.2.3 Formulation of a Variable Sampling Plan with Specified a, 3,

pi, pi; Both u and a
1 Unknown (Single Specification Limit)

(a) Analytical approach - One good approximation is obtained by

observing that if

X - N (u, a'
2

)

then X - N (y,a'
2
/n)

and unless the sample size n is very small, say less than 5, it will

be approximately true that

1 b a

where \Jjiki$

and b W2 (n-l)(l-a)
2

[21]

Factors a and b are less than 1 and they tend to be equal to 1 as

n increases. For this purpose one makes the approximation that a = b = 1

.2

and s - N (0' , in- , 1 ) . It can be proved that

E(ax + by) = aE(x) + bE(y)

2 2
and Var (ax + by) = a Var(X) + b Var (y) when x and y are independent
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It has also been proved that if two variables follow some normal

distributions then their sum too follows a normal distribution. With

the help of the above facts the probability distribution of X + Ks is

indicated as follows:

X+Ks-N^Kc'.a 2 ^^)) VH

The probability of acceptance

P = Probability that "x t Ks in a sample will be less than U

3

(upper limit)

- p (z - " - k + K°') < -z ]
(17)

Where e is the probability of being less than Z. Equation (17)

can be written as an equality

y-v y m7 |.i
i

jl! (is)

Note that (U-y)/o is a standard normal deviate which will be

exceeded with a specific probability giving p' proportion of defectives

thus equation (18) can be written as

k-v = zJ^5-O"
Squaring both sides and rearranging

i-4tt) k2 -V k+
(

zp'4 "°
.

(20)
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Solving this quadratic for K it gives

12
Z
'

2 K
K

_ y±4y - HJnrgJEa ; T] (21]

z
2

2T7PIT

When a. B, Pi and p„ are specified it is easier to work with equation (19).

Using the usual notations it leads to the following equations.

7~
K - zi= zi-jy+

K - Z
2

= Z3jw
+
2l^T .

(23)

Dividing (22) by (23) yields

K-Z, Z, Z
1 _ l-g _ a

Y^q ' u
'

' z
$

solving for K this gives

K-J^jLVl (24)

a B

Note this is the same weighted average as the one obtained when

a' was known (see equation (14)).

To simplify the solution for n, assume that n is large enough

so that n-1 can be replaced by n and thus equation (22) can be written

as
35
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&

Z
2

2

i.e. „-__t_(1+ fj (25)

(K-z/ 2

Similarly (23) leads to

7 2 a k
2

n - -2-8-y (1 + *J (26)

(K-Z
2

)

2 2;

Once n and k are determined the probability of acceptance for any

p' can be calculated, using equation (19) and thus the O.C. curve can

be fully determined.

(b) Graphical Approach: A graphical solution to the above equations

can be obtained by constructing corresponding nomograms. One such set

of nomographs has been constructed by Leo J. Jacobson and given in his

article "Nomograph for Determination of Variable Inspection Plan for

Fraction Defectives". Industrial Quality Control , Nov. 1949.

The use of these nomograms is simple but they seem to give results

37
which have upward bias in n and downward bias in K. [21]

For double and sequential plans reader may refer to the literature

References are included.

One important point to be noted is that with variable sampling,

group sequential sampling or multiple sampling hardly offers any ad-

vantage over sequential sampling because, unlike attribute plans, a de-

cision is possible after each measurement. Hence no multiple sampling

plans with variable sampling exist.
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CHAPTER V

SELECTED ASPECTS OF SAMPLING

This chapter is intended to throw some light on those important

aspects of sampling which are not to be treated in such a detail as to

deserve separate handling.

5.1 INDEXING AND CLASSIFICATION CRITERIA FOR SAMPLING PLANS

An indexing scheme is essential for any standardized set of

plans. It is not only necessary for reference and search for the most

suitable plan but also helpful in maintaining an optimal level of some

useful criterion such as AOQL etc. The common criteria for indexing

are listed below.

5.1.1 Points of Interest on the O.C. Curve

One point on O.C. curve is sufficient for indexing. Three points

on the O.C. curve most commonly used are:

(a) AQL: Producers Risk - As previously defined, this is the point

a producer is interested in. It is common to designate this point as

p g5
(i.e. the probability of acceptance at AQL is commonly 0.95).

Example: Plans developed by Statistical Research Group, Columbia

University (The basis for MIL standards).

(b) LTPD: Consumers Risk - This is the point consumer is more interested

in. Often designated as p 1Q
it implies that 0.10 is a common value for

consumer's risk.

Example: Dodge and Romig (1 set).
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(c) Indifference Quality - Some times referred as 'Point of Control',

1t is designated as pQ 5Q
. This is the point both consumer and producer

can use.

Example: Philips Standard Sampling System. [30]

5.1.2 Average Outgoing Quality Limit (AOQL)

The most logical choice for some experts, especially in view of

the fact that this gives the overall effectiveness of a plan independent

of incoming quality.

Example: Dodge and Romig (1 set)

5.1.3 The Ratio LTPD/AQL (p£/pj)

When used for indexing has one distinct advantage that the plans

can be tabulated in a very concise form.

Example: Army Chemical Corps' Master Sampling Plans for Single,

Duplicate, Double and Multiple Sampling. [21]

The term classification is sometimes used for indexing. There

are several ways for classifying plans. They may be classified on the

basis of their indexing i.e. (i) AQL, (ii) LTPD, (111) AOQL, etc. Another

way to look at all plans is on the basis of the basic nature of measurement

used i.e. (i) Variable (ii) Attribute.

Another way to classify is on the basis of number of samples in-

volved i.e. (i) Single Sampling (ii) Double Sampling (iii) Multiple

Sampling (iv) Sequential Sampling.

Yet another way to classify the plans is on the basis of the kind

of quality control the plans are supposed to provide (the purpose of the
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plans) i.e. (i) Fraction defective assurance plans (ii) Mean or

Standard Deviation assurance plans (iii) Rectifying Inspection Plans.

There are still more ways of classification e.g. Lot by Lot/

Continuous Production plans. The aim here is to let the reader see

the possibilities.

5.2 COMPARISON OF SINGLE SAMPLING, DOUBLE SAMPLING, AND SEQUENTIAL/

MULTIPLE SAMPLING

The comparison is made in Table 4. The 'law of diminishing returns'

starts operating when we go for multiple sampling. Double sampling

probably offers the best compromise between administration and inspection

costs. This has been proved in practice over the years. [17]

5.3 COST OF SAMPLING

This is basically two fold (i) Administrative Cost; Including training

and establishment of personnel, equipment, overheads. Usually these

costs are fixed, (ii) Inspection Cost: The cost of inspecting all the

items to be inspected under a plan. The cost of getting a sample is

some times included in this category and some times in the previous one

depending on a particular situation.

These costs usually depend on

(a) Average amount of inspection

(b) Number of samples inspected

(c) Maximum amount of inspection

(d) Variability in amount of inspection. [25]

Sampling inspection of course introduces consumer's as well as

producer's risks. Consumer's risk is two fold
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(a) That a bad lot will be sumbitted

(b) The inspector in conjunction with the plan will pass it.

The former can not be so easily reckoned with while the latter

can be. [17]

The sampling plan selection and its related costs will depend on

the amount of these risks involved.

This in turn depends on the seriousness of the defect. What kind

of loss is expected if a defective item is encountered (consumer) and

how much can the rejection of a good item be tolerated (producer).

How much is the discrimination power (steepness of O.C. curve) worth?

A more discriminating plan will also exert greater pressure on the

producer to maintain adequate standard.

One important point to note here is that discriminating power

basically depends only on number of items in a sample while the inspection

cost depends on percentage of items inspected. Larger lots can therefore

be submitted to more discriminating plans without increasing sampling

costs. This is intuitively appealing as well. Making a wrong decision

for a larger lot is more serious.

Optimization techniques can be used; the current literature has

an account of the approaches used. We can mathematically formulate all

these considerations as shown by Freeman et al . [25], but to be of

any practical importance we should be able to incorporate the actual

costs and their distributions into the mathematical model. It is not

easy to compute costs for expected risks.
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Individual cases merit separate consideration. Both theoretical

and practical aspects are to be considered. Overall cost and appli-

cation under hurried shop conditions is of prime importance. "The

most advantageous plan selection will often be determined on the

proving ground of experience". [17]

5.4 GUIDLINES FOR SELECTING AMD INSTALLING A SAMPLING SYSTEM

The following are the factors and steps usually to be considered.

The list is not all inclusive; specific situations would demand special

attention but this should be handy as a guideline.

(1) Decide what characteristics are important and should be

inspected for.

(ii) Decide whether to include them at one or more inspection

stations.

(111) Decide whether attribute and/or variable measurements can be

made for inspection,

(iv) Determine if production will be submitted in lots or as a

continuous stream.

(v) Determine if 100 percent inspection of rejected lots is

feasible or not.

(vi) Decide the type of protection desired e.g. AOQL or AQL or LTPD

etc.

(v11) Determine the level of protection required,

(viii) Make a tentative selection of the desired plan. Try and pick

out more than one type of plan, if possible. Check the O.C.

curves to see that the plan is satisfactory for the level of

protection required.
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(i>.) Try to compare and evaluate the prospective plans by esti-

mating the administrative and samp Ting costs involved. Make

the final selection,

(x) Follow the recommended procedure.

(xi) Keep a running check on the quality of incoming product and

the performance of the plan,

(xii) Make adjustments whenever necessary.

The informed reader of course knows that it is more easily said

than done. Much work has been done to facilitate the decisions (the

bibilography lists some good references) yet much subjective judgement

is involved. Only common sense, expertise and experience together can

give the best practical solution.

A comparison of common published plans is given in the appendix

for quick reference.

5.5 COMMON PITFALLS AND PRECAUTIONS

5.5.1 Sampling Inspection as a Substitute of Process Control

The most common mistake is to use the sampling inspection as a

substitute for operating process control. While sampling inspection

does give some information about the quality of the material, it can

never be a substitute for process control and engineering.

5.5.2 Arbitrary Modification of Sampling Plans

Another common mistake is to modify the sampling plans without

understanding the principles behind them. In order to get the proper

protection, the specified procedure should be faithfully carried out.

If a situation warrants, custom tailoring can be done but only with

the help of the proper techniques.
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5.5.3 Estimation Based on Invalid Data

Some sampling plans explicitly require an estimate of process

average (incoming average lot quality) others incorporate this more

implicitly. This knowledge is always helpful and the usual source

is from the past data. The precaution here is that no average or

distribution is helpful for any kind of estimate or prediction unless

the process giving rise to the data is under statistical control.

The correct way to this is by a control chart. Engineers frequently

fail to make this check. [14]

5.5.4 Representative Sample

Not much has been said about it. Some plans explicitly state

how the sample shall be picked up while others presume that sample

will be picked up at random, which means that each item in the lot is

given an equal chance of being selected for inspection. How exactly

a random sample shall be selected? There are quite a few approaches

and controversies too. Use of a random number table is as good as any.

Practical aspects such as selection of a sample from a huge lot,

cost and effort may act as crippling restraints. Instead of a

completely random sample a stratified sample may be taken. Whatever

is done, the implications should be clearly understood. How much of

a bias and increased risks can be afforded to save sampling costs?

Many quality conscious companies specify detailed random sampling

techniques to avoid personal biases. [14]
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5.5.5 Assumptions Underlying Various Plans

For simplification and for the purpose of getting practical

solutions, assumptions are made at almost every step of sampling.

These include the presence of infinite populations, random sampling,

probability distributions etc. Some of these assumptions are better

justified and do not affect the results as much as others. Quite a

few attempts have been made and solutions have been suggested to get

better results under different situations. Specifically it should be

mentioned here that the normality assumption underlying the variable

sampling plans has been open to the maximum of criticism. Some feel

that the plans are robust and adequate [61] while others point out the

vast difference when normal distribution is far from the real situation,

possible solutions have also been suggested [15,28,53,64]. Tests have

been suggested to check for normal distribution, randomness, and homo-

genity. [4,6] The need for care and expertise for operating a good

sampling procedure can not be overstressed.



CHAPTER VI

VARIABLE VERSUS ATTRIBUTE PLANS

Attribute plans were the first to be developed and thus used

extensively but variable plans are worthy of much more attention than

has been given to them in the past. Following is a brief comparative

discussion of the advantages/disadvantages and applications of the

two types.

6.1 ADVANTAGES OF VARIABLE PLANS

6.1.1 Smaller Sample Size

In variable sampling the full, measurement of the quality character-

istic is used for the decision while in an attribute plan an item is

classified either as defective or nondefective. Intuitively it is

obvious that instead of just knowing that a part is defective, it is

far more informative to know in quantitative terms, how badly it is

defective. Frequently the observations are first collected as con-

tinuous variates (go or no go gauges are not so frequently feasible

as one may think) and then converted into a discrete kind. As per the

Information Theory the compression of a two parameter distribution,

such as normal distribution, into one parameter distributions, such

as binomial and poisson distribution, results in considerable loss

of information and moreover this process is irreversible [50].

For the same sample size, a variable plan will give a higher degree

of protection; in other words for the same degree of protection variable
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plans will need a smaller sample. Following is a comparison of

average sample size for the different kind of sampling plans having

approximately the same O.C. curve (the values for a, B, p] and p£

are same as the ones, which have been used till now in the text). [19]

p} = 0.01

p£ = 0.08

a 0.05

$ = 0.10

Average Sample Size

n = 67 (a = .03)

ASN 1 45 (at p\)

ASN = 41 (at p\)

ASN = 38 (at p])

n - 31

Type of Sampling Plan

1. Single sampling by attributes

2. Double sampling by attributes

3. Multiple sampling by attributes

4. Item by Item SPR sampling by attributes

5. Single sampling attribute plan using

compressed limits, a' known

6. Single sampling by variables, unknown a',

average range method

7. Single sampling by variables, unknown a',

standard deviation method
/

8. Single sampling by variables, a' known

When a' is known, the savings can be as high as 90 percent. [50] The

minimum saving is about 30 percent. [6] When the inspection is very

expensive or complicated and especially when destructive testing is

used this advantage would override all the objections inherent in

variable sampling.

n = 35

n = 27

10
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6.1.2 More Useful Data for the Control Charts

Any kind of sampling would provide some useful data to keep a

running check on the incoming quality but variable sampling data re-

sults in 1 and a control charts compared to p charts for attribute

sampling data. The computations are already done and unquestionably

K and o charts are more effective. The overall picture is clearer.

6.1.3 Elimination of Personal Bias

This minor advantage may actually prove to be quite useful

in proving the fairness of a sampling program and thus maintaining

good consumer-producer relationships without compromising the quality

in any way. In attribute sampling the acceptance and rejection numbers

are small. Sometimes the acceptance or rejection of an entire lot

may well depend on just one marginal (defective or non defective) item.

The inspector would be under a stress and may well accept the marginal

defective item to avoid any controversy (also it is usually not possible

to make distinct qualitative judgements). With variable plans such a

situation does not exist.

6.2 DISADVANTAGES OF VARIABLE PLANS

All is not rosy. There are limitations. To make the right

decision one needs to weigh the pros and cons discussed below.

6.2.1 Variable Plans Need Better Administration

Generally variable inspection needs more skill (expertise), time

and expensive equipment. Training for the staff has to be more

extensive. Variable inspection plans need more computations and
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record keeping. Moreover the selection and installation of a variable

plan usually needs more effort. [21] It may however be noted that

the arithmetic may be cut down by using graphs and tables. [6]

6.2.2 Call for More Stringent Assumptions

A probability distribution (usually normal) has to be assumed.

Perhaps most of the Industrial Quality characteristics do follow normal

or quasinormal distributions, but still there can be some bad exceptions

and care is needed. On the other hand it has been shown that when

n > 4 the normality assumption is not seriously affected. [53]

It should be noted here that although a quality characteristic

follows a continuous normal distribution, individual observations are

essentially discrete, and have to be grouped together into discrete

classes. If these intervals are less than ten in number, the effect

of discontinuity may impair the usefulness of variable plans. [6]

The increased number of intervals need better precision in measurement

and higher cost. Twenty is a reasonable number of intervals. [6]

6.2.3 Separate Plan for Each Characteristic

When a product needs to be inspected for more than one quality

characteristic, just one attribute plan is sufficient because the

product is to be judged as defective or non defective and the criteria

for such judgement has nothing to do with the plan. Not so for the

variable plan. One can not add the measurement of two quality

characteristic, and come up with a sensible parameter. Every such

characteristic would need a separate plan and separate control limits.
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This not only is costly and cumbersome but also infeasible in some

situations.

6.3 SCOPE AND APPLICATIONS

There are situations where no variable measurement can be made,

for example one cannot measure the degree of unworthiness of pinhole

(uncoated spot) on a tin plate and thus present no possibility for

variable plans. There are quite frequently situations, as mentioned

earlier, where a defective can not be judged directly without first

making a measurement on the continuous scale, for example the resistance

of an element, and to forgo the use of variable plans in such cases

would plainly mean the wastage of a excellent opportunity to cut down

costs.

Like the attribute plans these can be used at any stage of pro-

duction a) raw materials b) in-process goods c) finished products.

The outgoing or incoming products all can be subjected to these plans.

The field of application is wide; quality characteristics such as

mechanical properties - tensile strength, impact strength and ductility

etc., weight, electrical characteristics, chemical properties, dimen-

sions are the excellent qualifiers.

Variable plans can be more effective when the lot quality is ex-

pressed in terms of the standard deviation or the mean but percent

defective is more acceptable (attribute plans are developed on this

basis only) and as such good variable plans now exist to control percent

defectives (MIL-STD-414).
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The choice should finally be made primarily on the economics

of the plans. The reader may find the work of K. Stange, "Comparison of

Costs of Inspection by Variables and Attributes" [61], useful.



CHAPTER VII

HATCHING OF AN ATTRIBUTE SAMPLING

PLAN WITH A VARIABLE SAMPLING PLAN

One of the two aims of this report is to encourage the practitioner

to use variable plans whenever it is possible and result in considerable

savings. Thus a good comparison is needed. Acheson J. Duncan says

"Meaningful comparisons are only made between plans that have essentially

the same O.C. curve". [19] In practice this means that when two plans

offer the same protection, it is possible to evaluate them comparatively

by comparing their respective costs. It is essential to facilitate a

good practical decision. It is difficult enough to specify costs of

sampling but to specify costs for different risks involved has to be

subjective and erratic, to say the least.

Now, what is meant by the O.C. curves being "essentially the

same"? By now one is well aware of the fact that mathematical functions

of different types of plans are not the same and the two curves will

not coincide at every point. Several reasonable approaches have been

suggested.

(a) Match curves at the pi (AQL) and pi (LTPD) and then assume that other

parts of the curve are not so different.

(b) Match the p „ (indifference quality) point and the relative slopes

of the curves at this common point.

(c) Match the points of inflection and slopes at these points. [19]

Basically all three approaches intend to make sure that at least

the matching is good at the most important points. For a good match
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at pj point and the classification of certain type of plans, the last

38
two methods are very useful, but the former is probably the simplest

and most common method used.

With this method we have two choices (i) match at just one point,

either pi or pi and adhere to some pre-assigned sample size (n),

(ii) match at both p^ and p£ as well as possible. Obviously much

better matching is achieved by matching at two points instead of one.

It may be recalled that due to the discrete nature of sample size,

acceptance and rejection number, a perfect match is not possible, as

a rule, even at one point.

To facilitate this matching, the formulation of all plans in

Chapter V was done by indicating preassigned values of p| , p£> a and 8.

The procedures described were mostly based on some simplifying assumptions.

In view of bigger sampling errors, other inaccuracies and faster

solutions, all of those procedure can be used effectively.

In addition, this chapter gives brief description of more accurate

methods for the more conscientious.

Again there are three possible practical approaches:

a) Visual trial and error search

b) Analytical (mathematical) Method

c) Graphical Method

For the sake of completeness all of these are described briefly.
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7.1 VISUAL TRIAL AND ERROR SEARCH

This is simply the technique of trying to match an attribute

plan to another existing variable plan by trying to match their

O.C. curves. If the O.C. curves are drawn on the same scale one can

use a transparent copy of the desired O.C. curve and superimpose it

on the prospective curves. Usually, while trying to match at just

one or two points, the values can be read at those points and the

best match can thus be found. Obviously one has to spend time in search

and sometimes it may be futile. It may be used where accuracy desired

is not great.

It may be mentioned here that quite a few of the published attribute

plans already have matching variable plans, specifically MIL-STD-105A

and MIL-STD-414. MIL-STD-414 are in the process of being revised to

match more closely to the latest D version of MIL-STD-105. [5]

7.2 ANALYTICAL METHOD

The methods described in Chapter V for formulating a variable plan

when both v and a' are unknown, used some sort of normal approximations.

The exact valid distribution is the non-central t-distribution. This

gives the best accuracy but the computations are much more involved.

The acceptance criterion

X + KS < U

can be written as

For determining the proper value of K, knowledge is needed about the
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probability distribution of (U-X)/S - t (say), which is in the form

of a non-central t-distribution. The functional form is given as:

., -f/2 ,
-[f(f+l)zj;j7[2(f+t

2
)]

p(t|f,z ) =—^
( f+ i)/i>

e

2

f

"^r(f|2)( f+t )

t/f+T z

.Hh, i
2-

f —1f+r

- " ?< v+x)2 v
f

„
where Hh.(x) « / e ^r dv

T

and f = n-1 and z is the standard normal deviate. [6] Extensive

tables have been developed for this distribution by Johnson and Welch.

[6] Non-central ' f requires a triple entry because the probability

that t exceeds a given value t
Q

depends on f (number of degrees of

freedom), S (eccentricity) = Jn z
p

, and t
Q

. This probability is de-

noted as P(f,6,t ). t(f,5, e ) is used to denote that value of t
Q

for

which P(t,6,t
Q

) = E . 4(f,t ,O is that value of 5 which makes

P(f,«,t ) ' c.

Detailed instructions for using the tables are included and compu-

tations are also explained by Eisenhart et al
.

[21]

The steps needed to use these tables for the problems encountered

during the formulation of a plan are given below.

Problem I

Given: n,p' (pj and pi). e(1-oi or b)

Required: K
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Step 1. Determine z', the noma! standard deviate exceeded with prob-

ability p' from the normal distribution tables.

Step 2. Calculate f n-1

5 = ^ v
Step 3. Calculate t (f,5 >c) from the non-central t-distribution tables.

Step 4. Calculate K = t(f,s,e)//n

Problem II

Given: n,K,t (P * Probability of acceptance)
a

Required: p'

Step 1 . Calculate

t
Q

= /FT K

f = n-1

Step 2. Calculate 6(f,t
Q
,e) from tables.

Step 3. Calculate Z = s(f ,t
Q
,z)//n

Step 4. Obtain the required p
1 from normal distribution table corres-

ponding to the Z calculated above.

Problem III

Given: p-j , pi, a and %

Required: n and K

Step 1. Determine Z, ,Z,,Z ,Z D . (Z, = Z ,, Z, = Zn ,)
I c a B I

"l
"2

Step 2. Calculate first approximation to K from

1 z ?
+ z

«
z

i

Z
a

+ Z
B

Step 3. Approximate n from
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K
2
+ 2 f

Z
a
+Z

B

*P7

Step 4. Determine the fraction defectives pj_a
and p^ i.e.

the fraction defective whose probability of acceptance is 1-a and g

respectively.

If these are sufficiently close to p
1

and p 2
then k and n calculated

in step 2 and 3 give the required plan. Otherwise go on to step 5.

Step 5. If the discrepency in step 4 is large then determine a better

plan by adjusting K or n as per the following rules.

a) If p] is greater than p] and p^ is less than p2> take the next

lower integer for n and the same K, repeat step 4.

b) If p] is less than p] and p' is greater than p2> take the next

higher digit for n and the same K and repeat step 4.

c) If pi is less than p\ and p^ is less than p£, use same K and a

smaller value of K, a better value for which can be calculated as

K =

x
i h + x

2
z
i

where X is such that

«(f,t ,e) = t
Q

1 +
2f

and x
1

and x
2

are values calculated in step 4 while calculating pj_a

and p' respectively. Repeat Step 6.
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d) If p| is greater than p-j and p' is greater than pi use the same

n and a larger value of K, which can again be calculated just as in

rule c, and repeat step 6.

Step 6. For the required values of n and K take that pair of values

for which p; and p' are closest to p\ and pj, respectively.

Tables have been formed with the help of this procedure, giving

values of n and K for various combinations of
p-J

and p~ for oc = 0.05

and b =" 0.10. [21]

For the more initiated the computer solution can provide the ease,

flexibility and accuracy needed.

Presumably the programs have been developed for the complete pro-

cedure. [74]

A computer subroutine for evaluating the non-central t-distribution

is readily available [13]; the rest of the program can be developed by

following the steps outlined above.

7.3 GRAPHICAL METHOD

The graphical solution of the equations has already been once

briefly described in Chapter V. The aim of such nomograms is to provide

a fast solution; the accuracy however is limited by the graphical

accuracy and the approximations used. Probably the best nomograms

available have been developed by P. Th. wilrich. [79,80] The equations

used for nomograms have been developed from the non-central t-distribution.

For ready reference the three nomograms (i) known o
1

(ii) unknown a' -

based on s (iii) unknown a' - based on R, have been included in the

appendix. Basically the nomogram used here is a binary field (n,K)



81

in the middle of two probability scales (left hand scale — percentage

defective and right hand scale for probability of acceptance). The

usage is simple. The four points pi, pi, a and e give two straight

lines (with relevent pairing) on the plot. Their intersection gives

the plan (n,K). Refer to the figures given in the bottom right hand

corner of the nomograms, in case of doubt. The OC curve for the plan

(once determined) can be read off the same plot easily.

These nomograms presumably give quite accurate results. In the

opinion of P. Th. Wilrich, these nomograms offer the best kind of

solution, very fast, and accurate enough for most practical purposes,

so that a man on the shop floor can afford to have a custom fit variables

sampling plan.

Hopefully more extensive nomograms will be developed in future to

offer still more choices.
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FOOTNOTES

Vor comprehensiveness, the philosophy of 'Zero Defect 1 should be

mentioned here. [44] In view of the space age technology and critical

defense requirements, this has its own place.

2
The advantages of including a few characteristics (those subject

to same inspection operations) outweigh the disadvantages usually.

Procedures are simplified, each characteristic gets more attention

and can be better controlled. [17]

3
The selected bibliography at the end of this report includes

references which will help in answering all such pertinent questions.

4
There is lot of controversy about the usefulness of Bayesian work.

The subjective nature of the analysis has been intensively challenged.

E
Based on Bayes Theorem.

6
Most of the history can be followed in the Bell Telephone Technical

Journal

.

A summary of published plans is given in the appendix.

Note that it is not essentially a shipping lot.

g
How does one determine that units are similar? General Simon states

that small sub groups of sample items will respond to Shewart criterion

of control when the items are "essentially alike". [30]
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10
The salient facts to be noted are as follows.

A steeper curve means more discerning power. A hypothetical ideal

curve would be a Z curve, dipping at AQL (Figure 1).

Same proportion of sample size in different plans gives a different

level of quality protection (Figure 4). Absolute sample size determines

the level of protection (Figure 5).

A larger sample size means steeper slope and thus more discerning

power (Figure 2).

The O.C. curve for a discrete sampling plan becomes steeper with

decreasing of acceptance number (Figure 3).

The level of quality protection is very much dependent on incoming

quality.

No sampling plan can give complete protection against acceptance

of bad lots or rejection of good lots.

A defect free sample does not mean a defect free lot.

See producers risk.

See consumers risk.

For proof, see appendixes of [24].

14
Also see finite population co rection [16].

15
To decide whether Normal or Poisson approximation is appropriate,

reader may like to look at the chart on Page 60 of [17] in addition

to the textbooks in statistics.
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Reader is cautioned to understand the notations before using any

reference.

17
A. R. Burgers, "A Graphical Method of Determining a Single Sampling

Plan," Industrial Quality Control , May 1948.

18
Note this roundoff to the next higher integer, this is always done

so as to ensure better protection than what one was initially trying

for.

The reader may refer to Herman Burstein Attribute Sampling (Tables

and explanation) [10] for short cut tables.

One should be aware of the difference in O.C. curve for double

sampling. The principal O.C. curve is what we will be talking about.

See fig. 8.1 [19] or fig. 12-5 [30].

For proof see Irving W. Burr, "Average Sample Number Under Curtailed

or Truncated Sampling", Industrial Quality Control , February, 1957

1957, pp 5-7.

22
For proof see appendix I (25) of [19]. For full details including

the development of SPRT and its uses see Abraham Wald "Sequential

Analysis", John Wiley & Sons, New York, 1947. [74]

23
See appendix I (26) of [24] for proof.
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24
See Statistical Research Group, Columbia University, Sequential

Analysis of Statistical Data: Applications, New York: Columbia

University Press, 1945), p. 2.48.

25
A. Wald & J. Wolfowitz, "Optimum Character of Sequential Probability

Ratio Test", Annals of Mathematical Statistics , Vol XIX (1948)

pp 326-39.

See G. A. Barnard, "Sequential Tests in Industrial Statistics,"

Journal of the Royal Statistical Society , Ser. 13. Vol VIII (1946),

pp 1-21.

27
A paper from Royal Statistical Society Statistical Method in Industrial

Production (Printed for private circulation, 1951).

28
The modification depends on whether the plan is to be used at the

upper limit or the lower limit.

29
It is important to note that the maximum fraction defective, in this

context, is AQL.

30
For complete understanding see pp. 232-33 of [19].

31
Acheson J. Duncan mentions that a special attribute plan can save

considerable cost when o' is known, (p. 235 [19]). This alternative

may also be considered while making the decision.
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32
See A. J. Duncan [19] for the difference in plans devised for

assurance of (a) fraction defectives (b) mean values (c) standard

deviation of the lot.

For proportion defective there are just two cases, namely (i)

o
1 known (ii) a' unknown.

33
The use of x is similar to standard normal deviate z. The trans-

formation makes x unitless, independent of any particular value of

X or 0' and hence one set of curves can be used for all possible

distributions. For further detials see, J. Neyman and B. Tobarska,

"Errors of the Second Kind in testing "Student's
1 Hypothesis,"

Journal of the American Statistical Association , Vol. 31, pp. 318-26.

34
Whereever standard deviation (s) is used, the average range (R) can

be used effectively. It offers practical advantages with sufficient

accuracy.

:• - L
d
2

The factor d
2

has been well tabulated. [30]

Some sampling plans have been devised on the basis of R.

[19,79,80]

35
If this approximation is not made then

b W b
2

- 16a

4a
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2

where a = -—

—

1 a e

and b K
2

+ 2(a+l) [21].

^Statistical Research Group [21] gives tables for values of K and n

for various pj
(from 0.001 to 0.05) and p£ (from 0.0015 to 0.40)

37
In the last chapter the exact method with non-central distribution

is given for matching (attribute and variables) purposes.

Much better nomographs are now available and are such set is

included for reference, in the appendix.

38
For details and relative advantages and disadvantages refer to

H. C. Hamaker and Army Chemical Corps, plans.
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ABSTRACT

The aim of this report is to provide a comprehensive and a simple

guide to the practitioner of acceptance sampling.

The attempt has been to make an overview and cover briefly all

the aspects of acceptance sampling including the design, selection and

implementation of a sampling program. Special emphasis has been placed

on the comparison between attributes and variables sampling, and the

matching of a variables plan with an existing attribute plan, thus

providing the practioner with an opportunity to use the oft neglected

variables sampling and result in considerable savings whenever it is

feasible.

An extensive literature survey has been made and sufficient ref-

erences have been included for the practitioner as well as an interested

student to pursue any aspect of acceptance sampling in details.


