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Abstract

For any given quiver I', there is a preprojective algebra and deformed preprojective alge-
bras associated to it. If the ground field is of characteristic 0, then there are no finite dimen-
sional representations of deformed preprojective algebras with special weight 1. However,
if the ground field is of characteristic p, there are many dimension vectors with nonempty
representation spaces of that deformed preprojective algebras.

In this thesis, we study the representation category of deformed preprojective algebra
with weight 1 over field of characteristic p > 0. The motivation is to count the number of
rational points of the fibers X, = p~'()\) of moment maps at the special weights A € K*
over finite fields, and to study the relations of the Zeta functions of these algebraic varieties
X which are defined over integers to Betti numbers of the manifolds X, (C). The first step
toward counting is to study the categories of representations of the deformed preprojective
algebras I1".

The main results of this thesis contain two types of quivers. First result shows that
over finite field, the category of finite dimensional representations of deformed preprojective
algebras II' associated to type A quiver with weight 1 is closely related to the category of
finite dimensional representations of the preprojective algebra associated to two different
type A quivers. Moreover, we also give the relations between their Zeta functions. The
second result shows that over algebraically closed field of characteristic p > 0, the category
of finite dimensional representations of deformed preprojective algebras II' associated to
Jordan quiver with weight 1 has a close relationship with the category of finite dimensional

representations of preprojective algebra associated to Jordan quiver.
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Chapter 1

Introduction

1.1 Background and Motivation

Given a finite type scheme X defined over Z, there is an associated complex manifold X (C).
We are interested in the geometric and topological properties of X (C), such as the Betti
numbers b; = dimH'(X(C)). Also for any prime number p and any r > 1, X (F,) is a finite
set, and we are interested in computing | X (F,-)| for all . Weil conjecture [40] suggests that
these two are related in terms of Zeta functions of X if p is large enough relative to X, but
they are quite different when p is fixed and small. The results of this thesis provide a family
of examples of such X coming from quiver representations that Weil conjecture fails. The
motivation is from Hausel’s approach to proof of Kac’s conjecture.

It is a classical question to classify the representations of any given quiver. For a given
quiver I without loop, there is a Kac-Moody Lie algebra g = g(I")[28] associated to it. If the
quiver I is of finite type, the indecomposable representations over any algebraically closed
field are in one-to-one correspondence to the positive roots of the Kac-Moody Lie algebra g(I")
by the dimension vectors (with coordinates being the simple roots). This was first discovered
by Gabriel in 1972 [15] and proved directly by Bernstein, Gelfand and Ponomarev in [24].
For general quiver I, Kac proved this statement in [26]. Moreover, in [27], Kac introduced

the number Ar(c, q) of isomorphism classes of absolutely indecomposable representations of



quiver I" over the finite field K = F, of dimension vector «, and he proved [27, Proposition
1.5] that Ar(a,q) is a polynomial in ¢ with integer coefficients. He went on to conjecture
[27] that the constant term Ar(a,0) = dim g(I"),, the root multiplicity of the root space of
the Kac-Moody Lie algebra g(T").

1.2 Proof of Kac’s Conjecture

In 1998, Hua [23] gave a formula for the generating functions of number of isomorphism class-
es of a quiver over finite field F,. This formula encodes the coefficients of the A—polynomial
Ar(a, q), which counts the number of representations of the quiver I' over finite fields F,.
Crawley-Boevey and Van den Bergh [9] proved that Kac’s conjecture is true if « is indivisible
using Weil conjecture. Finally Hausel [19] proved Kac’s conjecture using the Weil conjecture
and by relating the Betti numbers of the certain algebraic varieties associated to Nakajima
quiver varieties and using the fact that when p is large (depending on the dimension vector
«), this variety do not have rational points. However, for a fixed prime p, there are in-
finitely dimension vectors a of these varieties have nonempty rational points over [F,-. This
makes some of the formulas in Hausel’s proof not correct for any fixed prime p, however, the
main result of Hausel’s paper is not effected. The main goal of this paper is to find correct
formulations of those formulas for every fixed prime p.

Now let us discuss the problem a little more in detail. Let I' = (I'g,I'y) be a finite
quiver with vertices set 'y and arrow set I';. Given two dimension vectors v = (v;) € N
and w = (w;) € N'o Nakajima [30, 31, 32] used the moment map to define a variety
Vi(v,w) = p~}(A)(C). The Nakajima quiver variety My (v, w)(C) is the GIT quotient of
Vi(v,w)(C) with respective the group PGLy(C) action. Using these varieties, Nakajima
gave a geometric construction of integrable representation of highest weight w (the coeffi-
cients of the fundamental weights of the integral weight lattice) of the Kac-Moody Lie algebra
g(I'). In [33], Nakajima found a combinatorial algorithm to determine the Betti numbers
of Nakajima quiver varieties, then Hausel [19] proved a generating function formula for the

Betti numbers of Nakajima quiver varieties in terms of counting the representations of the



preprojective algebras and the deformed preprojective algebras over finite fields extending
Hua’s formula, which then implies Kac’s conjecture on root multiplicity.

However, in Hausel’s proof of Kac’s conjecture [19], he used the special assumption ®(0) =
1 to compute his generating function ®(w). This assumption is true if the characteristic of
the representation field is zero, but will never be true for any field of positive characteristics.
Nevertheless, the proof of Kac’s conjecture is not effected as follows. For each fixed dimension
vectors w and v the Betti numbers depends on all primes sufficiently large. Thus in the
computations, (for a fixed dimension vector mathbfv) one assumes that the characteristic is
large enough. Thus, the coefficients of XV in ®(0) is zero for p large enough.

Therefore, it is an interesting question to compute the exact formula for ®(0) and ®(w)

in any fixed prime characteristics. This is the main goal of this thesis.

1.3 Brief Introduction to This Thesis

1.3.1 Stack Function

Let C be an abelian category and dim : K(C) — Z" be a homomorphism of abelian groups.
Assume that for any object C' in C, we have dim([C]) € N” and dim([C]) = 0 if and only if
C = 0. Such a homomorphism dim is called a Chern character of the category C. We will
call it the dimension function.

Let Iso(v,C) be the set of isomorphism classes of objects C' in C with dim([C]) = v.

With the following finiteness assumptions:
(1) For any object C' in C, the the automorphism group Aut(C) is a finite set;
(2) For each v € N", the set Iso(v,C) is finite.

The we can define the stack function

1 .
=2 2 maorN T 2 R (1)

veN™ Celso(v C) Cé€lIso(C)



Assume that D is another such category with a dimension function dim : Ky(D) — Z".
If there is a category equivalence F' : C — D such that dim(F(C)) = dim(C) for all C' in
C. Then we have up(X) = pc(X).

Suppose C" and C" are two full subcategories of C closed under extensions in C. Let D be
the abelian full subcategory generated by C’ and C” closed under extensions in C. We will
write D = C' & C" if Home(C’, C") = Home(C”,C") = 0 for all C" in ¢’ and C” in C”. Then
every object in D is isomorphic to the form C' @ C” and Aut(C' @ C”) = Aut(C”) x Aut(C”).

With the restriction of the dimension function dim to each of the subcategories, we have
(X)) = i (X)pien(X). (1.2)

Here the product is taken in the formal power series ring Q[[ X1, -+, X,]].

For more general constructible abelian K-category for an algebraically closed field, one
define the motive stack functions with |[Aut(C')| being replaced by its motive measure under
the assumption that Aut(C') is an algebraic variety of finite type and Iso(v,C) is assumed

to be stack of finite type. We refer to [5] for interested readers.

1.3.2 Generating Functions for IT'(T)

For each fixed finite field F,, the formal power series ®f(w) is defined to be

= P WE) sl
2= D TG E Vewl

veNTo

we have
‘g[V(Fq” _ q<v,v)p

|V (Fy)] ’
here (, )r is the Euler-Ringel form for the quiver I'.

Therefore ®(w) can be written as

Vi(v, W) (Fo)l ooy
d(w) = Z WTM(](JX'

veNlo



By Jordan decomposition of the linear endomorphism g; € gl(V;), we have

®(0)
P,,(0)

(W) = @5 (W) Dyey = Pt (W)

Hausel [19] gave the formula for ®,;(w), so we just need to compute ®(0). It follows from
the definition of ®(0) in (2.10) that to compute ®(0) we need to compute |Vi(v,0)(F,)|.
For a fixed dimension vector v, the number of isomorphism classes of representations with
dimension vector v of the deformed preprojective algebra IT'(I") over a finite field F, is
Vi(v,0)(F,)/Gy(F,)|. Thus we will focus on classifying all representations of the deformed

preprojective algebra IT!(T).

Remark 1.3.1. Here we did not emphasis I' and weight A for generating function ® because

we want to keep notations the same with Section 2.4.

Use

N
mO = 2 aE

to define the stack function for the category rep(IT*(T)).
Thus computing ®(w) is equivalent to computing pl(w). In particular, ®(0) = 1 if and
only if uh(0) = 1.

On the other hand, we have

Vi(v, 0)(F,)| _ 1
TR TAue ()]

Melso(v

where Iso(v) is the isomorphism classes of representations of the deformed preprojective alge-
bra IT}(T") of dimension vector v and Aut(M) is the automorphism group of a representation

M. Thus we have

1 .
1 _ dim(M)

M e (Isoll! (I')—Mod

Therefore all what we need to do is to describe the category rep(IT'(T')) of finite dimen-



sional representations of IT'(T") over the field F,.

Theorem 1.3.2. [19, Lemma3] For any quiver T' and any field K, there is a module in
rep(IT(T)) of dimension vector v if and only if v = 0, under the assumption CharK 1> v;.

Therefore, for deformed preprojective algebra with a special weight 1, if the ground
field has characteristic 0, then there are no finite dimensional representations, so ®(0) = 1;
however, if the ground field has characteristic p, for example, a finite field, there are some

dimension vectors whose representation space is nonempty, so ®(0) # 1.

1.3.3 Main Results

In this thesis, we concentrate on classifying the category of finite dimensional representations
of deformed preprojective algebra IT!(T") associated to two types of quiver over field of char-
acteristic p. We use rep(A) to represent the category of finite dimensional representation of
an algebra A.

The first result describes the finite dimensional representations of IT'(T") associated to

type A quiver.

Theorem 1.3.3. Let K be any field of characteristicp > 0 and N = np+s with0 < s < p—1.

If the quiver is of Ay, then there is a categorical equivalence
rep(IT' (Ax)) = rep(I1°(A4,,))®** @ rep(I1°(A,,_,))®P—= 1,

If the ground field K is a finite field F,, then the morphism sets are finite in these
categories. For a quiver I, let TI%(T") be the preprojective algebra over the finite field F,. We
define

1 .
Mo Xr) = > e XD,
(g, Xr) [Aut(M))]

M éerep(IT°(T))
Here the variable Xt is indexed by the vertex set I'g. If I' is a disjoint union of two quivers
IV and I", then we have

(g, Xr) = pi (g, Xro) o (q, Xror). (1.3)

6



Theorem 1.3.3 gives us a way to describe the representation category of deformed prepro-
jective algebra associated to a quiver Ay of weight 1 in terms of the representation category
of preprojective algebras associated to quiver A, and A,_;. Using Theorem 1.3.3 and (1.3),
we can give a description of yy (0) in terms of u% (¢, Xa,) and pS (¢, Xa,_,)-

The second result describes the finite dimensional representations of IT'(T") associated to

the Jordan quiver over algebraic field of characteristic p > 0.

Theorem 1.3.4. If the ground field K is an algebraically closed field of characteristic p > 0,

then there is a categorical equivalence

rep(IT'(T)) = rep(I1°(T)),

here I' is Jordan quiver.



Chapter 2

Quiver and its Related Topics

The theory of representations of quivers is very rich and related to a lot of other topics.
The quivers of finite representation type and tame representation type have been classified,
and all their representations are known. A complete list of references can be found in [36].
In Section 2.1, we recall some basic definitions and properties which we will use. In the
following sections, we introduce the related topics on Kac-Moody Lie algebra, (deformed)
preprojective algebras, and Nakajima quiver varieties. We also introduce Hausel’s proof of
Kac’s conjecture and also Weil conjecture which are the motivation of this thesis. This

chapter serves as a preparation. We always fix K to be a ground field.

2.1 Basics For Quiver and its Representations

Definition 2.1.1. A quiver I' = (I'g,T'1,s,¢) is a quadruple consisting of two sets: Ty
(whose elements are called vertices) and I'; (whose elements are called arrows), and two
maps s,t : 'y — [’y which associate to each arrow e € I'; its source s(e) € I'g and its target

t(e) € Ty, respectively.

Remark 2.1.2. If s(e) = i, t(e) = j, then e is usually denoted by i > j. A quiver
['= (T, T, s,t) is usually denoted briefly by I' = (I'g, I'1) or even simply by T



Example 2.1.3.

e —e— .- —e

is called An quiver, which has N vertices and N — 1 arrows. In this case, the vertices set is

denoted by {1,2,--- , N} and the arrows are i - i+ 1, fori =1,2,--- /N — 1.

Let I' = (T'o,I'1, s,t) be a quiver, we associate with each point i € I'y a path ¢; of length

[ =0, called the trivial path at ¢. Define product of 2 arrows e; and ey by

erey, if t(er) = s(es);
€162 =

0, otherwise.

We also define product of the trivial path ¢; and the arrow e € I'; by
5? =&, &= 5i,s(e)€7 €g; = 5t(e),iea

where ¢ is the Kronecker delta. Then we can define the path algebra KT of I' to be an

algebra generated by {e;}ier, and {e}cer, using product defined above over field K.

Example 2.1.4. If the quiver I" is the Jordan quiver, which is 1 vertex and 1 loop, i.e.,

Co.

the defining basis of the path algebra KT is {a°, a,a?,--- ,al, -}, where a° is the trivial

path and the multiplication of basis vectors is given by a‘a* = o!**, for alll,k > 0. Thus

KT is isomorphic to the polynomial algebra K[a] by viewing « as one indeterminate.

Definition 2.1.5. Let K be a field, a representation (V, z) of a quiver I" over K is a collection
of K-vector spaces {V;}ier, together with a set © = {x(e)}eer, of K-linear transformation
z(e) : Vyey = Vi) The vector dim(V') = v = (v;)er, is called the dimension vector of this

representation, where v; = dimg (V}).

Remark 2.1.6. To give a collection of vector spaces {V;}ier, is the same as to give a I'g-

9



graded vector space V = @ V;. Then each path defines an element in End(V'). A T'p-graded
vector space is called ﬁnitzg F(i)imensional if dimg V' < oco. In this thesis, we just consider finite
dimensional representations and denote the category of the finite dimensional representation
category of I" by rep(KT'). For any finite dimensional representation (V,z) of I" over K with
dim(V;) = v;, if we fix a basis for each K-vector space V;, then V; = K" for all 1 € I'y and

. . . . € .
every K-linear map z(e) is a v; X v; matrix over K for arrow i — j.

Example 2.1.7. Let I' be the quiver

Lo

then KT' = K(a, f5) is the free algebra. Let I = (a8 — fa — 1) C KT, then KT'/I is the

Weyl algebra.

Definition 2.1.8. A homomorphism f from a representation (V,x) to a representation
(V',2') is a collection {f;}ier, of K-linear maps f; : V; — V/ that are compatible with the
structure maps z(e), that is, for every arrow i — j, we have 2'(e) f; = f;x(e), or equivalently,
the following diagram

V% z(e)

J ]

/ !
3 ac'(e) ¥

is commutative. If every f; is invertible, (V,z) and (V’,2’) are said to be isomorphic.

Theorem 2.1.9. For arbitrary quiver I', the category rep(KT) of all finite dimensional rep-
resentations of I' is equivalent to the category KI'-mod of all finite dimensional left modules

of the path algebra KT'. Moreover, rep(KT') an abelian category.
Proof. This is a classical result. For more details, see [3]. ]

Remark 2.1.10. We may also consider quiver with relations and Theorem 2.1.9 also holds

for the corresponding path algebra with relations. In the future, we will abuse the notation

10



rep(KT) and KT'-mod. The dimension vector actually is a Chern character, which is a group

homomorphism from the Grothendieck group of the KT-mod to the lattice ZI,
dim : Ko(KT) — ZI.

We can use the dimension vector to classifying all representations of T'.

For any representation (V,z) of quiver I' = (I'g, I';) with dimension vector v = (v;)er,,

we define

Vy = GB Hom(Vi(e), Vie))-

ecly

To this dimension vector v, the group

Gy =[] L)
i€lg
acts on V, via the conjugate action
(Gi)i - (x(e))e = (GjueGi ), s, (2.1)

1—]

where G; € GL(V;).

The space V, defined above is called the space of representations of I' with dimension
vector v, and the group G, is called the gauge group of V,. The set of Gy-orbits in V,,
[V, /Gy] correspond to the isomorphism classes of representations of I' of dimension vector
v. If K is a finite field, V, and G, are finite. If K is algebraically closed, V, are affine
variety and G, affine algebraic group acting on V. Although V, /G, do not have algebraic
variety structure, one can use stack and we call V, /G, the stack of representation of I" with

dimension vector v.

If the field K is a finite field F,, then for the Chern character

dim : Ko(KT) — ZT,

11



we have the fibre dim™'(v) = {V € iso(KT'—mod) | dimM = v}. Then |dim™~'(v)| gives
the number of orbits V, /Gy, and we denote this number by Mr(v,q), i.e.,

Mr (v, q) = the number of isomorphism classes of representations of I' over F, with

dimension vector v.

We also care about the number of indecomposable representations, so let

Ir(v,q) = the number of isomorphism classes of indecomposable representations

of I' over F, with dimension vector v.

For finite field K = IF,, we call module V' absolutely indecomposable over K if for any

finite extension field E of K, V ) E remains indecomposable over E. Denote
K

Ar(v, q) = the number of isomorphism classes of absolutely indecomposable

representations of I' over F, with dimension vector v.

Hua [23] gave a closed formula of the generating function with coefficient Mr(v, q), which

we will recall in Section 2.2.3 after we introduce root systems and Kac-Moody Lie algebras

in Section 2.2.1 and 2.2.2.

Remark 2.1.11. If the field K is an algebraically closed field, then one define Mr(a, q) =

[V, /G| in motivic counting. For more details, see [7].

12



2.2 Connection to Kac-Moody Lie Algebra

2.2.1 Root System

Definition 2.2.1. Let I' = (I'g,I'1) be a quiver, the Euler-Ringel form for T" is the bilinear
form on Z' defined by

(0475>F = Z ;i — Z Oéiﬁj-

i€l iS5€er

Let the corresponding symmetric bilinear form BE («, 8) = («, 8)r + (3, a)r.

Let o; € Z denote the coordinate vector at vertex 7. If 7 is a loopfree vertex in I'y, then

there is a reflection

v 25— 7,

a = a—(a,q)aq.

The Weyl group is the subgroup of Aut(Z') generated by the ;. The fundamental region
is

F={ae€Z":a+0,a has connected support, and (o, a;) < 0 for all i}.

The real roots for I' are the orbits of coordinate vectors «; under the Weyl group and we
denote them by A,.. The imaginary roots for I" are the orbits of +« (for a € F') under the
Weyl group and we denote them by A;,,. The «; defined above is called simple roots.

The root system A is defined as
A=A UAj,.

An element o € AN ZEO is called positive root and we denote all the positive (resp. real
or imaginary) roots by AT (resp. Af or A} ).
If « is a root, then so is —«. This is true by definition for imaginary roots. It holds for

real roots since 7;(;) = —ay if 7 is a loopfree vertex. In particular, every root « is either

13



positive or —a« is positive, i.e., A7 = —AT,
Definition 2.2.2. A nonzero element v = (v;);er, of Z is called indivisible if ged(v;) = 1.

Then by definition, clearly we have any real root is indivisible; if « is a real root, only +a«
are roots. Every imaginary root is a multiple of an indivisible root, and all other nonzero

multiples are also roots.
Theorem 2.2.3. [26] If K is an algebraically field, then we have the following result.
(1) If there is an indecomposable representation of T' of dimension «, then « is a root.

(2) If a is a positive real Toot, there is a unique indecomposable representation of T' of

dimension o up to isomorphism.

(8) If « is a positive imaginary root, then there are infinitely many indecomposable repre-

sentations of I' of dimension a up to isomorphism.

Example 2.2.4. From [3, p299], we know the positive roots of the corresponding finite
dimensional simple Lie algebra, so for Ay quiver I'; we get the indecomposable KT-modules

have dimension vector

(O’...,0’17...71’07...70)
—_—— ——— ——

l1 la l3

here l; > 0,1, >0, [3 > 0 and l; + ls + I3 = N. We denote this the indecomposable module
by I(ly +1,15).

2.2.2 Kac-Moody Lie Algebra

For any quiver I' = (I'g, I'1), under the notation in Section 2.2.1, the matrix C' = (ay, @;); jer,

is a generalized Cartan matrix, so there is an associated Kac-Moody Lie algebra g(I').

Example 2.2.5. If the quiver I' is Ay quiver: ¢ — o, then a; = (1,0) and as = (0,1). So
we have,

(a1, 00)r =1, (a2, 0)r =1, (a1, a0)r = —1, (a9, a1)r = 0;

14



and then

(alaal) = 27 <0527a2) = 27 (CKDOQ) - _17 (a27a1) =-1L

So the corresponding Cartan matrix

and the associated Kac-Moody Lie algebra g(I') is the semi-simple Lie algebra sl3.

The Kac-Moody Lie algebra g(I") is A-graded and

iD= P s)ebe( P o).
aeA-\{0} aeA+\{0}
Here g, is the root space attached to o and note that h = g, is the Cartan subalgebra. The
number mult(«) := dimgg, is called the multiplicity of a.
Let V' be a weight g(I')-module and let V- = € V) be its weight space decomposition.

Aeh*
We define the formal character of V' by formal series

chV =) " (dimg (V) X*),
AEb*
here h* is the dual K-vector space of b.
Let p = > % and use W to denote the Weyl group. Then the Weyl-Kac character

formula [28] says the following:

Theorem 2.2.6. Let L(A) be an irreducible representation of g(I') of highest weight A. Let
L(A) = @ L(A)s_o denote its weight space decomposition. Then

aeNTo

= det(w)XA+pfw(A+p)

_ weWw
DLW = S T (2.2)

acAt
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For more details of Kac-Moody Lie algebra, see [28].

2.2.3 Kac’s Conjecture

Fix the field K be a finite field F, in this section. Recall that Ar(a, q) denote the number of
isomorphism classes of absolutely indecomposable representations of I' over [F; of dimension
vector a. The following theorem gives the relation between the representations of quivers
and their root systems. It is due to Gabriel [15] in finite type, to Donovan and Freislich [12]

and independently to Nazarova [34] in tame type, and to Kac [27] in general.
Theorem 2.2.7. Let I' be a connected quiver, then we have,
(1) The polynomials Ar(c,q) are independent of the orientation of T'.

(2) There exists an absolutely indecomposable representation of I' over F, with dimension

vector « if and only if o is a positive root in A.
(8) Ar(a,q) =1 if and only if o is a positive real root.

(4) For any w in the Weyl group, Ar(w(a),q) = Ar(a, q) provided o and w(«) are positive

r00tSs.

Then Kac proved in [27] that for all o € NY°, Mp(«, q), Ir(a, q) and Ar(a,q) are poly-

nomials in ¢ with rational coefficients, which are independent of the orientation of T'.

Example 2.2.8. [22, Appendix A] If T is
e e — o
then
Mr(1,2,1,q) = 4 +T;  Mp(2,2,2,q) = 44> + 13¢ + 21
1, 1

AF<172717Q) :q_'_lu AF<272727Q) ZQ+1
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Proposition 2.2.9. /27, Proposition1.5] Ar(a,q) is a polynomial in q with integer coeffi-

cients.
Moreover, he conjectured in [27]

Conjecture 2.2.10. The constant term of Ar(«,q) equals the multiplicity of the weight o

in g(T):
Ar(a,0) = mult(a).

Conjecture 2.2.11. The coefficients of Ar(«, q) are nonnegative.

Remark 2.2.12. Conjecture 2.2.11 was proved in [21], and we just concentrate Conjecture
2.2.10 in this thesis, so when we say Kac’s conjecture in this thesis, we mean Conjecture

2.2.10.

Recall that a partition p = (u1, g2, - -+ ) is a finite sequence with gy > pg > -+ of non-
negative integers. The integer |u| = py + po + -+ is called the weight of . We use P to
denote the set of all partitions including the unique partition of 0. Note that any partition
i can be written in the exponential form (17,272 ...) which means that there are n; parts
equal to ¢ in p.

For a collection of partitions A = (A%);cr, € P, denote || to be the vector of (|A]);er, €
N0 For any two partitions \' = (171 2m2(\) ..y and A2 = (1) 2m2(¥) .Y we
use the notation

(AL A7) = min(d, j)mi(A)my (X). (2.3)

.3

J. Hua [23] gives a combinatorial formula for Ar(«, q).

Theorem 2.2.13. /23, Theorem 4.9] If Ar(a,q) = Zt?qj, the following formal identity
J
holds: o
H q(/\l,)\J)
> R V1) (R
my ()
S L [T gy e

i€ E o j=1

And he pointed out immediately the following:

17



Corollary 2.2.14. [23, Corollary 4.10] Conjecture 2.2.10 is true if and only if the following
wdentity holds:

[T ¢*
. i—j€l] Al _1)w) xrs(w)
lim F SCTCY ‘ X ZW< 1)Hw) xsw), (2.5)
AP T gAML TT (T=q77)) e
1€l ko j=1

Here W is the Weyl group, [(w) is the length of w and s(w) is the sum of positive roots

mapped into negative roots by w=!.

Besides Ar(«, q), Hua gave a closed formula for M (a, q) as follows:

Theorem 2.2.15. [23, Theorem 4.3] The following formal identity holds:

H qd<,\i,,\j>
o i—jel’
> o) =[[( 37—y,
@eNTo d=1 )\ePlo H (qd()\i)\j) H H (1 — q—dj))
i€l ko g=1

where ¢1(q) = q— 1, and for d > 2, ¢4(q) is the number of monic irreducible polynomials of
degree d over I,.
Moreover, if Ar(a,q) = 3 t?‘qj with t§ € Z, J. Hua [23] also gave a formula for Mr(«, q):

J=1

Theorem 2.2.16. [23, Theorem 4.7] The following formal identity holds:

> Mr(a,g)X* =[] ﬁ(1—qifxa)—t?.

a€eNlo acAt j=1

Conjecture 2.2.10 was finally proved by Tamas Hausel in [19], and we will give a brief

introduction of the proof in Section 2.4.
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2.3 Preprojective Algebra Associated to a Quiver and

Nakajima Quiver Variety

2.3.1 Preprojective Algebra
Let I' = (I'g,I'1) be a quiver.

Definition 2.3.1. The opposite quiver I'? of I' is the quiver obtained by reversing any

arrow i — j in I';. We denote arrow set of I'°? by I'%.

Definition 2.3.2. The double quiver I' of I is the quiver obtained by adjoining an arrow

7 5 i for each arrow i <% j in I'y. We denote it by T = (Fo, 'y UTY).

Example 2.3.3. If the quiver I" is type Ay quiver with N vertices and N — 1 arrows, i.e.,

e —>e—3 .- — e

then the corresponding opposite quiver is

e— @0— - i— o

and the corresponding double quiver is

Definition 2.3.4. The preprojective algebra associated to quiver I is the associative algebra

() = KT/() [e*,e]).

ecl'y
More generally, the deformed preprojective algebra associated to I' with weight A = (\;);er, €
KTo is
NT) = KT/() [e*,e] = Y Aily).

ecl'y i€lg
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Remark 2.3.5. For consistency, we denote II(T") by II°(T"). It is easy to know that IT*(T)
doesn’t depend on the orientation of I'. Just reverse the role of e and e*, and change the

sign of one of them.

Example 2.3.6. If the quiver I" is Jordan quiver, i.e.

Co

then
(1) TI%T) = K|z, y| is the polynomial algebra in 2 indeterminates;

(2) TIN(T) = K(z,y)/([x,y] = 1) is Weyl algebra.

We defer more details of preprojective algebra and its representations to Chapter 3.

2.3.2 Nakajima Quiver Variety

Actually the relations for the deformed preprojective algebra arise from a moment map. Let’s
define the Nakajima quiver variety using the moment map. Since Hausel [19] use counting
over Nakajima quiver variety to prove Kac’s conjecture 2.2.10, so we follow the notations in
Hausel’s paper [19].

Let I' = (T'o,I'1) be a quiver, if I'; = {1,--- ,n}, to each vertex i, we associate two finite
dimensional K-vector spaces V; and W;, and denote (v, w) = (vy, -+ , vy, w1, -+ ,wy,), where

v; = dimV; and w; = dimW;. To this data we have the grand vector space,

Vivw) = @ Hom(Vy(e), Vi) ® @ Hom(W;, V;);

ecly i€lo

for the group

i€l

and its Lie algebra

Ov = @gl(‘/;)a

1€’y
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there is a natural representation
Pv.w : Gv — GL(V(\,’W)),

which acts on the first term by conjugation and acts from the left on the second term, and

with a derivative,

Ov,w - Bv — gl(V(WW))'

Let V(v,w) = Viv,w) X va,w)? then it has a natural symplectic bilinear form (-,-). The

group G, acts on V(ww) preserving the symplectic form,

ﬁv,w = pV7W X pf/,w : GV — GL(V(V,W)>7

with derivative,

@v,w : gV — gl(V(WW))

Concretely, if (z,2*) = (A(e), I;, B(e), Ji)eer, icr € V, G = (Gy)ier, € Gy and g = (gi)ier, €

gv, then
Pyw(G)(z,1%) = (Gt(e)A(e)G’s_(i), Gil;, Gs(e)B(e)Gt_(iy JG; ) eery iero
and
@v,w(g)($7$*) = (gt(e)A(e) - A<6)gs(e)agi[iags(e)B<6> - B<6)gt(e)7 _Jgi)eEFl,ieFo-

Definition 2.3.7. The moment map

Hvow - V(v,w) — g:,
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is defined by: if (z,2*) = (A(e), I;, B(e), Ji)eer, iy, then

oz a) = (Ili+ Y Bl)Al) = 3 A@B(e)iy, €0 (26)

e€s—1(1) ect—1(1)
here we identify any elements g = (g;)ier, € gv With the linear form ¢* : g, — K given by

g ((91)iery) = > tr(gig)) € K.

i€lg
The moment map iy w is Gy-equivariant. For A = (\;)ier, € k' the element A1, =

(Mldy,, -+, A\ddy,) € gy is fixed by all element of Gy. Define
VA(V7 W) - :u;,{v()‘]')a

it is a G -stable subset of V(V,W).

Remark 2.3.8. It is not hard to see if w = 0, then V) (v, w) is the deformed preprojective
algebra ITM(T').

For [ € Z, we have the character

XZ:Gv - K~

(gi)ier, — HieFodet<gi)l-
With these we define
EW(v,w)]oX = {f € K\(v,w)] | f(g9(x)) = X'(9) f(x) for all z € V\(v,w)},

SO

P EWi(v, w)o"

neN

becomes an N-graded algebra.
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Definition 2.3.9. The Nakajima quiver variety [32] is the GIT quotient,

Mip(v,w) = Proj( @ KVa(v, w)] &),

neN

As an affine GIT quotient
Mor(v,w) = Spec(K[V,\(v,w)]Gv) = KW\(v,w)]//Gy.

By the GIT construction we have the map M (v, w) — My (v, w), which is proper and
a resolution of singularities.

Next, we list some properties of M, (v, w) which were used by Hausel in his proof of
Kac’s conjecture 2.2.10.

If dvw = (D Vs(e)Vite) + > vi(w; —v;)), then from [32, Corollary 3.12],
T

ecl’y i€lo

Lemma 2.3.10. M, (v, w) is non-singular of dimension 2dy v for all .

Lemma 2.3.11. [19, Lemma 7] For X\ # 0, the variety Mo (v, w) is non-singular of di-

mension 2dy v and hence My \(v, W) = M (v, w).

Theorem 2.3.12. [19, Theorem 8] When K = C the mized Hodge structure on the isomor-

phic cohomologies H* (M o(v, w) = H*(Mo1(v, w))is pure.

In the future, M(v,w) = M, o(v, w)(C).

2.4 Tamas Hausel’S Proof of Kac’s Conjecture

Kac [27] proved the conjecture 2.2.10 for finite and tame quivers, but not for wild quivers.
The next major proof was made by W. Crawley-Boevey and M. Van den Bergh [9], who
proved conjecture 2.2.10 in the special case where « is indivisible by using quiver varieties
[30]. They showed if « is indivisible, the polynomial Ar(c,q) is the Poincare polynomial

of the quiver variety associated to I' and «. In particular, its constant term equals to the
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dimension of the top nonvanishing cohomology group of it, which actually equals to the
multiplicity of v in g(T").

The main result of Tamas Hausel’s [19] work is to prove conjecture 2.2.10 for arbitrary
a. By counting points of the framed quiver variety M (v, w) over finite fields via Fouri-
er transforms, which Hausel introduced in [18], and by Theorem 2.3.12 the mixed Hodge
structure on H*(M (v, w) is pure, he applied Kataz’s result [20, Appendix, Theorem 6.1.2]
connecting the arithmetic and the cohomology of so-called polynomial-count varieties to get

a generating function of Betti numbers of Nakajima quiver varieties.

Theorem 2.4.1. [19, Theorem 1] Fizx w € N' denote

bi(M(v,w)) := dim(H (M(v,w))).

Then in notation of (2.3), we get

(T1 a0 ¢ 1)

i—j€ely zng by
XA

dv,w AEP €l_[F C >l_[ H (1-q=7))

dvw—1VvVV __ i
E E boi(M(v, w))g™ " XY = . T qw,m : (2.7)

veNTo =0 i—jEl A
Zr i mE () . X

AEPO eHr (¢ A”)l_[ H (1—q=7))

i€lg

Then Hausel combines and compares the following results

(1) J. Hua’s combinatorial formula for Ar(a,q) (2.4), and we rewrite it here for convenient:

If Ap(a,q) = >, t;’qj, then
J

1 g%

Z i—jely 5 X|>\\ _ H HH H—]Xa (28)
P (@] (1—g) e 0

i€l k=1

(2) The Weyl-Kac character formula (2.2) says the following:
Theorem 2.4.2. Let L(A) be an irreducible representation of g(I') of highest weight A.
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Let L(A) = @ L(A)a_o denote its weight space decomposition. Then

aecNlo

3 det(w) X Atrmwd+r)

S dim(L(A)y-a) X = weWZ det ()Xo

T
aeN"o weW

(3) Nakajima in [32] gives a geometrical interpretation of the irreducible representation L(A),
and his description of the top cohomology of M(v,w) as the weight space of the simple

g-module with highest weight w which is the special case of z = 0 in [32, Theorem 10.2].

We use the following notations: «;(i € I'y) denote the linearly independent simple roots
and p = > o, and pick the h; satisfying (h;, ;) = 655 — %J, where (,) denote the
symmetriczegiolinear form associated to the Euler-Ringel form, and b;; denote the number
of edges of " between ¢ and j. Finally pick A; such that (h;, A;) = &;;. For w € N let

Aw =Y w;A;. Use W to denote the Weyl group.

Theorem 2.4.3. Fiz w € N'°_ then

> dim(H*™ Y (M(v, W) XY = Y dim(L(Aw)a,_,) X" (2.9)

veNTo aeNTo

Finally by taking a limit as w goes to oo, he manages to prove the Conjecture 2.2.10.

In Hausel’s proof of (2.7), he introduced the grand generating function

Vi(v, w)([Fe)| [gv]
d(w) = XV (2.10)
2 TIGE ol
dv,w )
to compute > Y by (M(v, w))g™ XY, where Vi(v,w) = py 4 (1) correspond to the
veNTo i=0
vector 1 = (Idy,--- ,1d,) € gy. By decomposition of the linear endomorphism z; € gl(V;),
we have
®(0)

(W) = @5 (W) Dyey = Pt (W) B(0)°

In the computation of ®(w), he computed ®,,;(w) and use
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Lemma 2.4.4. [19, Lemma 3] Let w = 0 and v € N'° arbitrary. For A\ € K*, let A1, =
(Aldy,, - -+, Aldy,) € gv. Further assume char(K) 1 Y v;, then the equation fiyo(v,v*) =

A1,* has a solution if and only if v = 0.

to make the conclusion ®(0) = 1, then get

However, Lemma 2.4.4 does not give ®(0) = 1, and in some cases, ¢(0) = 1 will never

happen.

Example 2.4.5. If K = [, is a finite field of characteristic 2, the quiver is
o — .7

by computation, V;(v,w) is nonempty if and only if v = (n,n) with n € N, then we have

®(0) = Y ([T -L45) X7 X5,

n>0 =0

Although Hausel’s proof of Conjecture 2.2.10 is still correct, because by Lemma 2.4.4,
2.7 holds for infinitely many ¢ for a fixed v, it is still interesting to get the correct formula

of ®(0).

2.5 Weil Conjecture

Let K = I, be a finite field with ¢ elements, and X is a scheme of finite type over K. K
is algebraic closure of K, and let X = X x,, k be the corresponding scheme over K. For
each integer 7 > 1, let N, denote the number of points of X which are rational over the field

K, =F, of ¢" elements.

Definition 2.5.1. The Zeta function of X is the power series with rational coefficietns:

Z(t) = Z(X:t) = exp() Né).

r=1
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Example 2.5.2. If X is the projective line P!, then over any field, P! has one more point

than the number of elements of the field. Hence N, = ¢" + 1, and

o0 r

2(8;1) = exp(3 (0 + 1)),

r=1

But ) & = —In(1 —¢) for |t < 1| and ). €& = —1In(1 — qt) for |gt < 1|, so
r=1 r=1

250 = T a =g

We get this zeta function is not only a power series, but a rational function of ¢.

Example 2.5.3. It is not much harder to do n-dimensional projective space P",

NT:1+qr_'_q2r+."+an7

so the Zeta function is

1
(I—=t)(1 —qt)---(1—qt)

Z(P";t) =

If X is a scheme of finite type over C, we can cover X with open affine subsets Y; =

Spec(A4;). Each A; is an algebra of finite type over C, so we have

Ai = C[xla"' 7mn]/<f1>"' afm>a

here fi,---, f, are polynomials in 1, - - - , x,,. We can regard them as holomorphic functions
on C", so their set of common zeros is a complex analytic subspace (Y;);, € C™. The scheme
X is obtained by glueing the Y;, so we use the same glueing data to glue the analytic spaces

(Y;), into an analytic space Xj,.

Definition 2.5.4. The X, defined above is called the associated complex analytic apace of

the scheme X.
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In 1949, Andre Weil [40] stated his famous conjectures concerning the number of solutions
of polynomial equations over finite fields: let X be a smooth projective variety of dimension

n defined over F,, and Z(t) is the zeta function of X, then
(1) Rationality: Z(t) is a rational function of ¢.

(2) Functional equation: Let E be the self-intersection number of the diagonal of X x X
(which is also the top Chern class of the tangent bundle of X). Then Z(t) satisfies a
functional equation,

1

(3) Analogue of the Riemann hypothesis: It is possible to write

C PO)P(t) - P (1)
2 RORO P

where Py(t) = 1 —t; Py,(t) = 1 — ¢"t; and for each 1 <i < 2n — 1, P;(t) is a polynomial

with integer coefficients, which can be written as

Pi(t) = TJ(1 = i),

here the a;; are algebraic integers with |a;;| = ¢%/2.

(4) Betti numbers: Assuming (3), we define the ith Betti number B; = B;(X) to be the
degree of the polynomial P;(t). Then we have F = > (—1)'B;. Furthermore, suppose
that X is obtained from a variety Y defined over an algebraic number ring R, by reduction
modulo a prime ideal p of R. Then B;(X) is equal to the ith Betti number of the
topological space Y, = (Y xg C)p, i.e., B;(X) is the rank of the ordinary cohomology
group H (Y}, Z).

Example 2.5.5. If X = P!, then its dimension is n = 1. Let’s verify the Weil conjecture.

From example 2.5.2 we have already seen Z(t) is rational. The invariant F of P! is 2, so we
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can verify the functional equation immediately,

1
Z(=) = qt*Z(t).
(=) = a*Z(1)
The analogue of the Riemann hypothesis follows by: Py(t) = 1, Py(t) = 1 — t, and Py(t) =
1 —qgt. Hence By = By = 1 and B; = 0, and these are the usual Betti numbers of Pcl.

Moreover, > (—=1)'B; =2 = E.

For more details of the results of this section, we may refer to [17].

Weil proved Weil conjectures in case dimX = 1 earlier in [39]. Three of the Weil conjec-
tures apart from the most difficult third conjecture (Analogue of the Riemann hypothesis)
were proved by M. Artin and A. Grothendieck in the early 1960s (see [16] and SGAB); an
independent proof using completely different techniques of the first one was by B.Dwork[13].
The third conjecture was proved by P. Deligne [10] in 1974.

The Weil conjecture suggested a connection between the arithmetic of algebraic varieties
defined over finite fields and the topology of algebraic varieties defined over complex numbers.

In this thesis, we tried to count the number of rational points of the fibers V;(v,0) =
,u;}o( 1) of moment maps at the special weights 1 over finite fields (actually it is equivalent to
any nonzero weight A) and its Zeta functions. Weil conjecture [40] suggests that over finite
field and complex field C they are related if p is large enough, but they are quite different
when p is fixed and small. From Lemma 2.4.4, we know over complex number C, V;(v,0) is
nonempty if and only if v = 0; But over characteristic p field, for example finite field, things
are quite different. The results of this thesis provides a family of examples of such varieties

coming from quiver representations that Weil conjecture fails.
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Chapter 3

Representation of Deformed

Preprojective Algebra

In this chapter, we discuss representations of deformed preprojecive algebras II*(T") asso-
ciated to a quiver I' by representations of the path algebra KT'. This chapter serves as a
preparation of the next two chapters which contains the main results of this thesis. We
separate it here because we want to generalize our results to more types of quiver. For Weyl
algebra, because the results works for algebraically closed field of characteristic p > 0, so we

also list it as a separate section.

3.1 General Results

Let K be any field.

Definition 3.1.1. Let ' = (I'g,I'1) be a quiver, the representations of the deformed pre-
projective algebra ITN(T") associated to I' correspond to representations of double quiver T

satisfy the relation

Z e'e — Z ee’t = \1; (3.1)
)

e=s"1(i e=t—1(i)

for all 7 € T'y.
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With this identification, we can speak of the dimension vector of a representation of
().
In fact, the subalgebras KT, KI'? of KT induces K-algebra homomorphisms,

KT KT

N

IT\(T)

These algebra homorphisms induce the natural pull back functors

rep(ITA(T'))

N

rep(KT) rep(KTP).

These functors preserve the dimension vectors. In fact, they keep the K-vector spaces
unchanged.
The representations of the deformed preprojective algebra II1*(I') have been studied ex-

tensively in the literature. We will refer the readers to [8].
Remark 3.1.2. Since we will concentrate on 7, only, we denote 71 by 7 for simplicity.

Theorem 3.1.3. [8, Theorem 3.3] Let K be any algebraically closed field and any char-
acteristic. Assume X € K. Then a KT-module M is isomorphic to 7(M?) for some

1M (T)-module M if and only if for any direct summand N of M (as KT-module), we have

m K.

Let Im(7) denote the full subcategory of rep(KT') consisting of all objects of the form

7(M?*) with M* in rep(IT*(I")). Im(7) is an additive category closed under direct sums.
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Corollary 3.1.4. An indecomposable KI'-module I is in Im(7) if and only if A-dim(I) = 0

in K, here K is an algebraically closed field.

Proof. Note that the only direct summands of I are I and {0}. Thus the corollary follows

from the theorem. O

Recall that an additive category is Karoubian C if any idempotent endomorphism comes
from a direct sum decomposition in C. The subcategory Im(7) is closed under taking kernel

and cokernels of morphism in rep(IT*) in general. However we have following

Corollary 3.1.5. Im(7) is closed under taking direct summands in rep(KT"). Thus Im(7)

15 a Karoubian additive category.

Proof. Suppose M = 7(M*). If M = L@ N is a direct sum decomposition in rep(KT). Any
direct summands of L and N in rep(KT) are also direct summands of M. Thus both N and
L satisfies the condition of the theorem. Hence both L and N are also in Im(7).

The second part follows from the fact that rep(KT') is Karoubian. O

We will use Ind(A) to denote the set of all isomorphism classes of indecomposable A-
modules for a K-algebra A. Similarly, we will use Ind(C) to denote the collection of isomor-

phism classes of indecomposable objects in an additive category C.
Corollary 3.1.6. An object of Im(7) is indecomposable if and only if it is indecomposable
in rep(KT). Thus we have

Ind(Im(7)) = Ind(rep(KT)) N Im(7) = {I € Ind(rep(KT)) | A\-dim(]) =0 € K}

Remark 3.1.7. (1) Since we will just consider the case A = (\;)ier, € (KX)' with all
{Ai}ier, are equal, and they are the same as the deformed preprojective algebra with
weight (1,---,1), in this dissertation, for simplicity, we always use IT'(T") to denote

deformed preprojective algebra with weight (1,---,1).
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(2) From Section 2.4, we want to get the formula for ®(0), what we really need to study is
V1(v,0), which actually is the space of representations of IT'(T") with dimension vector

v. For simplicity, from now on, we use V;(v) to denote the representation space V; (v, 0).
For our special algebra IT'(T"), we have

Corollary 3.1.8. If K is characteristic 0, then IT'(T') has no nonzero finite dimensional

module.

So we are always interested in field K with characteristic p.
Let’s recall the definition of V;(v) in easier notation. For quiver I' = (I'g,I'y), if I'; =
{1,---,n}, for a fixed dimension vector v = (vy,--- ,v,), the representation space of I with

dimension v is

Vy = @ Hom (K s KU);

ecl'y
the gauge group of V,, is
Gy =[] GL.(K),

i€l’g

and its derivative is

gv = @gl(‘/;)

1€lg

Let V, =V, x V5, then the moment map

v 2 Vy = gy
is defined by: if (z,2*) = (z(e), 2*(€))eery

py(z,a®)i= Y a*(a)z(a) — Y x(a)z*(a) € gl(Vi). (3.2)

e€s—1(1) act=1(4)

Then Vi(v) = p3'(1), a Gy-stable subset of V,, is the space of representations of IT'(I") with

dimension vector v.
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When K = F, is a finite field, we have

v2 Vv
lov(F) =[] ¢ =a",

i€lg

and

[V (Fy)| = geers oo

Thus
‘g[v (Fq> ’ _ q<V,V>[‘ )

Vv (Fy)]

Here (, )r is the Euler-Ringel form for the quiver I'.

Therefore the definition of (2.10) can be written as

Z |V1 )| (V,V)FXV

veNTo

Thus ®(0) can be written as

o0)= Y ||(V2$‘5|)|qwfxv (3.3)

As what we said in section , we define a function

Z Wl )|Xv,

veNTo

then

ViV)(E] o
=2 em) <

veNTo
Thus computing ®(w) is equivalent to computing pi(w). In particular, ®(0) = 1 if and only

if pl(0) = 1.
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On the other hand, we have

M) (Fy)| _ 1
GVE) 2 |[Aut(M)]’

Melso(v)

where Iso(v) denotes the isomorphism classes of representations of the deformed prepro-
jective algebra IT'(T") of dimension vector v and Aut(M) is the automorphism group of a

representation M. Thus we have

O = > X (3.4)

M e (Isoll! (I')—Mod) M> |
Thus all what we need to do is to describe the category IT*(T")-Mod of all finite dimensional

representations of IT*(T") over the field F,,.

Example 3.1.9. We now assume that K has characteristic p > 0 and consider a Dynkin
quiver A, with the vertex set {1,2,---,p} and the arrow set {i »¢+1|i=1,...,p—1}.
The only (non-zero) indecomposable K A,-module N satisfying the condition A-dim(N) =0
has dimension vector dim N; = 1 for all ¢+ € I'y. This is the unique indecomposable module
I, corresponding to the highest positive root a. Thus any II'(A,)-module restricting to T’
is isomorphic to ;"

Thus we have V;(v) # 0 if and only if v = may. Any II'(4,)-module has the following

form
1d 1d 1d 1d 1d 1d
K™ K™ K™ ‘e K™ K™ K™
1 T2 T3 Tp_3 Tp_2 Tp_1
with x; being a m X m-matrix for ¢ = 1,...,p — 1. Using the relation in (3.1), we have

=il forv=1,...,p— 1

Thus for v = may, there is exactly one isomorphism class of II'(A,)-modules with di-
mension vector v. In particular, the module category repIl*(4,) has exactly one irreducible
representation with dimension vector «g and all other representations are direct sums of

the irreducible representation. If M is a II'(A,)-module with dimension vector may, then

Aut(M) = GLy (k).
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If K =T, is a finite field, then

IGLn(F) =q™ (1—¢g )1 —q2)-(1—q¢™),

which implies that

m?2

Z T 1 — )(XQO)m. (3.5)

Knowing that for the quiver A,, we have (ap, ag) = 1, then (mag, magy) = m? and

Z T0-¢ )(Xao)m. (3.6)

Remark 3.1.10. Although Theorem 3.1.3 and Corollary 3.1.4 work for algebraically closed
field K, the conclusions still hold for type A quiver for any characteristic p > 0 field which

will be proved in Section 4.3.

We know that the function pf(0) is invariant under category equivalence of the IT'(T)
provided the Chern character Ko(II*'(I'YMod) — Z is invariant under the equivalence.
Thus we will concentrate on computing the function pf(0) (with respect to the fixed Chern

character). The main goal of this thesis is to use this property to compute the stack function

1L

3.2 Full Subquivers and Their Deformed Preprojective
Algebras

Let T" be a quiver, and I'j; C I'y be a subset of vertices. We denote by I the induced
subquiver by I', here I'] consists all arrows a in I'; such that both s(a) and ¢(a) are in I,
We will call such subquiver full subquiver. Then I is the induced subquiver of I'? by I,
and I is the induced subquiver of T by T’} as well.

For any v € N the support supp(v) = {i € Ty | v; # 0}. Then N0 can be thought
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as the subset of N0 consisting of all u with supp(u) C I'y. In particular for any such v we

have

Vz(v,T) = Vy(v, ') and G,(T) = G (T"),

with N € KT, N = Alry . Since we have different quivers here, we add the notation of
quivers here to distinguish. Then the algebra homomorphism AI” — kL' induces an algebra
homomorphism IV (IV) — II*(T). In fact this map identifies II"(I") as the subalgebra
of IA(T). On the other hand, TI"(I") is the quotient algebra of II*(I') modulo the ideal
generated by the idempotents 1; with ¢ € Iy \ I,

Thus we have two functors between these two categories. The functor
. : rep(IT¥ (I")) — rep(IP\(D))

identifies each IV (I")-module as IT*(T")-module with the same dimension vector. This cor-
responds to extension by zero of sheaves over a constructible subset. This functor is also the

pullback functor of algebra homomorphism
(T — I (I).
The other functor is
7 : rep(ITN(T')) — rep (I (1))

by assigning each II*(I')-module M to 3=, M;.

These two functors are adjoint pairs.

Theorem 3.2.1. If " is a full subquiver of T, for any M in II'(T) with supp(dim(M)) C
Iy, M is irreducible (or indecomposable) in rep(IT* (")) if and only if M is irreducible (or
indecomposable) in rep(I1H(T)).
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3.3 Some Results for Weyl Algebra

For Weyl algebra, it is the deformed preprojective algebra of the Jordan quiver, and
Lemma 3.3.1. For Weyl algebra W = K(z,y)/([z,y] = 1), we have

(1) [2™,y] = nz"t, and [x,y"] = ny™!;

(2) A basis for W is {x'y? 1,7 > 0};

(8) W can be viewed as the algebra of polynomial differential operators in one variable.
Proof. (1) use the relation [z,y| = 1 and induction;

(2) see Proposition 2.7.1 in [14];

(3) see Remark 2.7.2 in [14].

3.3.1 Characteristic 0

If the ground field is of characteristic 0, then by Corollary 3.1.8, we have
Theorem 3.3.2. There are no finite dimensional representations of Weyl algebra.

But for our special case Weyl algebra, we can prove it simply by the fact: for any two

square matrices X, Y, tr[X,Y] = 0.

Proposition 3.3.3. [37] Let K = C, W be the Weyl algebra, G be a finite subgroup of
Autc(W), then G is conjugate to one of the following special subgroups of the canonical

image of SLy(C):
1. C,: a cyclic group of order n.
2. Dy,: a binary dihedral group of order 4n.

3. T: a binary tetrahedral group of order 24.
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4. O: a binary octahedral group of order 48
5. 1: a binary icosahedral group of order 120.

Corollary 3.3.4. [1] Let K = C, W be the Weyl algebra, G and T be two finite subgroups
of Autc(W). Then W& =2 WT if and only if G = T.

Actually, the automorphism group of Weyl algebra of index n is given by [6, Conjecture
1]. The automorphism group of our Weyl algebra W is a positive example of the Conjecture.

We summarize it to the following Theorem: by the work of [25], [11] and [29],

Theorem 3.3.5. The automorphism group of the Weyl algebra W over C is isomorphic to

the group of the polynomial symplectomorphisms of a 2-dimensional affine space

Aut@(W) = Aut(c(P),

here P is the Poisson algebra over C which is the usual polynomial algebra Clz,y] = O(Ac?)

endowed with the Poisson bracket:

{z,z} {z,y} 0 1
{y, 2} {y, vy} -1 0

For more details of the automorphism of W and general Weyl algebra of index n over C,
see [1], [6]. A lot of the work of the automorphism of W and general Weyl algebra of index

n comes from reduce to the Weyl algebra of characteristic p > 0.

3.3.2 Characteristic p

Definition 3.3.6. An Azumaya algebra over a commutative ring R is an R-algebra A which
is finitely generated and projective over R, and is such that the action map A @z A? —

Endg(A) is an isomorphism of R-algebras.
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Lemma 3.3.7. [38] Let K be a field of characteristic p, for Weyl algebra

W= K(z,y)/([x,y] = 1),

we have the following facts,

(1) xP, yP belongs to the center of W.

(2) More precisely, the center of W is Z = K[z, y*].
(3) W is a free Z module of rank p*.

In particular, W is an Azumaya algebra over Z of rank p?.

For more details of Azumaya algebra, see [2], [35], [4].

Lemma 3.3.8. (1) Any finite dimensional representation of W has dimension divisible by

p.

(2) Ower algebraically closed field of characteristic p > 0, the finite irreducible representa-

tions of W are p dimensional.
Proof. (1) This is just from Theorem 3.1.3.

(2) This is also from Theorem 3.1.3 and the definition of irreducible representation. We
may also prove it directly: let V' be an irreducible finite dimensional representation of
W, and let v be an eigenvector of y in V. Then show that the collection of vectors

{v,zv,2%v,- - ,2P"1v} is a basis of V.
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Chapter 4

Type A Quiver Case

In this chapter, we always assume K is a field of characteristic p.

4.1 A, Full Subquivers

In this subsection we assume that the field K has positive characteristic p and A = 1. Let '
be a quiver and we consider the category rep(IT*(T")).

Let ¢ : A, — I' be an embedding of quivers such that the image IV = (4,) is a full
subquiver. We will use the rep(¢) to denote the full subcategory of IT'(T') consisting of
modules with dimension vectors v having support in I'j). We know from Example 3.1.9 that
rep(¢) is a semisimple category with exactly one irreducible object and thus is equivalent
to the category of finite dimensional K-vector spaces. Let L(:) be the image of the unique
irreducible module of IT'(A,) in rep(IT*(T")). Then L(:) is uniquely determined by its image
in T, and is an irreducible representation of IT*(T") since dim(L(¢)) is minimal among all
v € N ynder the partial order relation v > u if and only if v; > u; for all i € T.

By Remark 3.1.10, the set of dimension vectors v with an irreducible IT*(I")-module of

dimension vector v is described as those satisfying the following two conditions,

(1) There is an indecomposable KT-module of dimension v and A - v =0 in K
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(2) For any decomposition v = »7"_, w/ with r > 2 and w/ satisfying (1), one has

r

1= (v,v) > (1—(w,w))

J=1

In particular dim(L(¢)) satisfies these two conditions.

We call a quiver I' is A,-coverable if every vertex of I' is in the image of an embedding
LA, =T

Examples of A,-coverable quivers include Dynkin quivers of type Ay with N > p, type
Dy with N > p+ 1 and type Eg if p = 2,3, E7 and Eg with p =2,3,5.

We now define a new quiver with vertices be all A, full subquivers of I' and the number
of arrows from ¢; to to is dim Ext(L(¢1), L(t2)). We are interested in describing this quiver.
The representation category of IT'(T) is closely related to representation category of the

preprojective algebras of this new quiver.

Example 4.1.1. Let I' = Ay with vertices being {1,--- , N} I' is A,-coverable. There are
exactly N —p+ 1 such A, subquivers with ¢, generated by the vertex set {r,--- ,r +p —
1}. Checking the above conditions for v with an irreducible II'(Ay)-module of dimension
v, one sees that dim(L(t;)) are the only dimension vectors with an irreducible IT*(Ay)-
module. By Theorem 3.2.1, {L(¢1),- -+, L(tn—p+1)} is the full set of all irreducible modules
in rep(IT' (Ay)).

4.2 Duality

Let o : ' — I'? be the standard anti-isomorphism of quivers which is identity on the set of
vertices and o(a) = a* such that s(a) = t(a*) and t(a) = s(a*). For any A € K'°, there is an
induced K-algebra anti-automorphism o : II*(I') — II*(T) defined by o(a) = a* and o(a*) =
—a and o(1;) = 1;. Then o%(a) = —a and o%(a*) = —a* defines an order 4 automorphism

of the K-algebra II*(I'). An interesting question is to determine the Automorphism group
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Aut(TT*(T)), and Weyl algebra we mentioned in Section 3.3 is just a special case.
For any IT*(T")-module M, let M* be the T'y-graded dual vector space defined by

(M*); = Homg (M;, K).

Then M* has a natural I1*(I')-module structure defined by (zf)(v) = f(o(a)v) for all x €
IMNT), f € M* and v € M. The functor (-)* : rep(II*(T')) — rep(II(T")) is contravariant
and exact.

If M is a KT-module, then (M)* is a KT'°’-module with (a*f)(z) = —f(a(x)) for any
arrow a € I'y. Then the functor (-)* : rep(KT") — rep(KT?) is exact and defines a category

equivalence rep(KT)% = rep(KT%)

Lemma 4.2.1. The following diagram of functors commmute.

rep(IP (')~ rep(ITA(T'))

rep(KT) v, rep(KTP).

It follows from the definition that for any I1*(I")-module M, one always have dim(M*) =
dim(M).

Proposition 4.2.2. (-)* send irreducibles to irreducibles, and indecomposables to indecom-

posables. In particular, Ethl—p\(F)<M, N) = Extllp(r)((N)*, (M)*).

4.3 Block Decomposition rep(IT'(Ay))

Recall from Section 3.1 the algebra homomorphism

KT — 1INT),
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induces an exact functor on their representation categories,
s rep(IINI)) — rep(KT).

For future use, we define some notations as follows.

(1) We will just use 7; in this chapter, so for simplicity, we denote it by 7 : rep(II*(T)) —
rep(KT).

(2) To distinguish with IT*(T")-modules, we will use the underlined M to denote KT-module.

In particular, when M is a II*(I')-module, then M = 7(M).

For any KT module M, to each vertex i € 'y, there is a finite dimensional K vector
space M, and we define its support to be supp(M) = {i € I'y | M, # 0}, i.e., supp(M) =
supp(dim(M)). In the future, we may abuse the notation supp(M ) and supp(dim(M)).

For any IT'(T") module M, we have the decomposition in rep(KT)

M= H I (4.1)

I€Ind(KT)

as KT-modules. By Corollary 3.1.5, any I with n; # 0 has to be in Im(7). Thus I €
Ind(Im(7)).
For any i € I'y, we have

M= P I" (4.2)

I€Ind(KT)

as a vector space. The IT'(T")-module structure on M is determined by the collection of pairs

(xz(e),xz*(e)) for each e € I'y. For each i € 'y, and the arrow e : i — ¢, the linear maps

z(e) : @[?L — @[ZL and x*(e) : GB[ZL — @ﬂ@ (4.3)
1 1 1 I

can be decomposed into blocks x(e) = (x(e); ) and z*(e) = (z*(e)r, ) with

z(e)ry: Lt — ()" and x*(a);p: L — (1) (4.4)
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such that
0 if
z(e)ry = (4.5)
xr(e)®mr if

I~
N
I~

I~
I~

Here z;(e) is the corresponding linear map of the KT-module I at the arrow e € I';.
Thus to determine a IT*(I')-module structure, all we need to determine are the linear
maps z*(e) p satisfying the following conditions. For any i € I'y and any two [ and I, we

have

Nd, L=,
> at(e)pra(e)® = Y aple) et (e)y = (4.6)
e€s~1(i) a€t—1(7) 0 lfl 7£ L’

In the rest of this section, we assume K is a field of characteristic p and the quiver I' is
always type Ap, vertices set is I'g = {1,2,--- , N}, arrows are i — i + 1.

We now focus on the quiver I' = Ay and A = (1,--- ,1). Recall the notation in Example
2.2.4, all indecomposable KT-modules are of the form I(i,1) such that supp(dim(/)) =
li,i+1—1]={i,i+1,...,0+1—1}. Here [ is called the length of 1(i,{). In fact I(i,1) is

uniquely determined by the segment [i,7 + | — 1], and up to isomorphism, we have

1+1-1

4 K

Lemma 4.3.1. An indecomposable KT'-module I1(i,1) is a direct summand of (M) = M

0 0 0
—-0—=---=0.

N(—@.

for some M in rep(IT'(Ay) if and only if p | . In other words, the indecomposable objects
in Im(7) are exactly 1(i, kp), fori € I'y and k € K with i+ kp—1<N.

Proof. Suppose M = N @ I(i,1). The vertices involving I(i,0) are i, +1,--- ;i +1— 1. For

simplicity, we denote I(i,l) by I, then M = N @& I. We just need to consider the vertices
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1—1,4,--- ,724 [, and the representation of M is isomorphic to

AO Al 0 Al—l 0
0 0 1 0 1 < A0 )
N,y — NeK — 7 - — Ny ®K ° — 7 Ny,

here the A; are K-linear map from N, ,; ; to N, ; in the representation of N.
Since M is the pull back of M in rep(IT*(Ay)), we get for the vertices i — 1,4, -+ ,i + [,

and the representation of M is isomorphic to

Ag A 0 A 0
0 0 1 0 1 <Al O>
M, E— M; ... Mi+l—1 5 MHl ,
(a5 5 ) A B\ 4 B, | (4
¢y Dy )\ ¢y Diy By
with the relations:
4
A B [ Ao Ao 14 0
Cr D 0 1 0 0 1
Ar B;i A O A1 0 Ar . B Id 0
< k L k B k—1 k—1 k-1 _ 7 2 < k Sl_ 1
C; D: 0 1 o 1)\ ¢, D, 0 1
Ar A 0\ [ A, B, d 0
(o) =
B 0 1 Cr, Dr, 0 1
\
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By matrix computation, the above relations give

(
ATAy — AgAh Bp — AgB; Id 0

Y

C’{‘Al Di‘ 0 1
AT A, — A1 Af Bf — A, B; Id 0
k4K k=141 k k—1Pk—1 _ ,2§k§l—1
CiA, —Cr D; — Dy, 0 1
Id 0
0 1

ArAy — A Ar | —A B,

Bl*Al - 01*71 _Dﬁl

\

In particular, we have

D;—D; =1 2<k<[-1
-D; | =1.
The solutions are
Di=k 1<k<I-1
-Df , =1.

sol—1=—1thenp|L

Then we get if M = N & 1(7,1), then p | [. The rest of the theorem is easy to prove. [

Since 7 is an additive functor with the property that 7(M) = 0 if and only if M = 0, any
M in rep(IT(T")) such that 7(M) is indecomposable must be indecomposable in rep(IT!(T")).
Also I(7,p) in Im(7) are of minimal length among all non-zero indecomposable objects, and
recall that an object in Im(7) is called irreducible if it has no proper sub-object in Im(7), so

we get,

Corollary 4.3.2. The irreducible objects in Im(7) are I(i,p), for anyi € Tg withi+p—1 <
N.

>~

Lemma 4.3.3. Suppose an indecomposable K1'-module I is a direct summand of M

€

@ I for some M in rep(II'(T)), and i = 4’ L s a path of length 2 in I' = Ay
I€Tnd(KT)
such that all three vertices are in supp(l). Then x*(e')r; = x*(e)r s + 1d.
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Proof. Using the fact that z(e);p =0if I # I,

z*(e')z(e) — x(e)z”(e) = Id g s

I~ @
=

and I, # 0 we can easily get

Id;n = (2" (e)x(e)) 1 — (x(e)x™(e))rr = o™ (') rrw(e')r.r — 2(e)rrx™(e)rr-

Since i, ¢/, and " are in the support of dim(/) we have z(e¢');; = Id and z(e);; = Id.

Hence the lemma follows. O

Remark 4.3.4. (1) In case ¢ and " are in supp(dim(/)), but 7 is not in supp(dim(7)) we

have x(e);; = 0 and z(e');,r = Id. Hence we have z*(e’) = Id ;.

(2) For any vertex i’ € Ty, and I # I', the two step path i = ¢/ 2§ defines a map
¢ = 2" (e)rra(e)rr = x(e)rra™(e)rr + Ly — Ly

such that ¢ = (¢¢)ger, : L7 — I'*" is a KT'-module homomorphism.

Lemma 4.3.5. If I is any I1'(T')-module such that 7(I) = I = 1(i,kp) is indecomposable

KT, then for any arrow i LN i", we have z*(e') = (i" — 1)Id if x(¢/) = 1d.

Proof. Apply Lemma 4.3.3 to M = I and induction for ¢/ > i. When i’ = i, we have
i" = i+ 1 and the remark following the proof of Lemma 4.3.3 shows that z*(¢’) = Id.
Assume the formula holds for i/ > 4, we apply Lemma 4.3.3 to get z*(¢/) = (i’ —i+1)Id. O

This lemma implies that z*(e’) is uniquely determined. Thus we have

Corollary 4.3.6. For any I € Ind(Im(7)), there is a unique I in Ind(IT(T")) such that
7(I) = I. We will simply denote this I by 7=(I). In this case, T~ *(I(i,kp) is uniserial
with simple quotient 7=1(1(i,p)) and simple submodule 7= (L(i + (k — 1)p,p)). In particular
77 1(1(i,p)) are all possible irreducible objects in rep(IT'(T')).
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We note that since the duality functor (-)* does not change the dimension vector. In
this case the dimension vectors uniquely determine the simple IT*(T")-modules. We have for
any irreducible object 771 (L(i,p)), (7' (L(i,p)))* = 7 1(L(4,p)). However, it is not true that
(=YL (i, kp)))* = 771 (L(4, kp)). In fact, rep(IT*(T")) has more indecomposable objects than
the set {(771(L(i, kp)))*} U {1 (L(i,kp))}. See Example 4.3.14.

Definition 4.3.7. If I = I(i, kp), an arrow ¢ %" €T acalled a p-arrow for [ if i/ —i =0

in K. In this case, the map z*(¢/) = 0 for [ = 771(I).

Lemma 4.3.8. Let I = I(i,kp) be a direct summand appearing the decomposition of M

above. If i’ % i is an arrow in T such that L, #0 and I, # 0, then

/ 0 if € is a p-arrow for I,
z* (€)= (4.7)

(3" — @')Idﬁ, if € is not a p-arrow for I.

Proof. By direct computation applying Lemma 4.3.3, we get x(a’)j; = (¢” —i)Id. Then the

lemma follows. O

Theorem 4.3.9. Suppose M is a II'(T')-module such that M = I(iy, kip) & L(ia, kop). If
p'f (’ll - 22) fOT il,’ig c Fo, then M = T_l(l<i1, klp)) ) T_1(£<i2, k'Qp))

Proof. Define

A = supp(L(i1, k1p)) N supp(L(iz, k2p)).

For notational simplicity, we denote I = I(iy, k1p) and I’ = I(is, kop). Since supp(L(iy, k1p)) =
i1, + k1p — 1] and supp(L(ig, kap)) = [i2, 92 + kop — 1] are intervals, we can assume i; < is.

We first assume A # (), then we have f(A) = 1 > 0. Thus iy < i1 + kip and A =
lig, i1 + k1p — 1] or A = [ig,i9 + kop — 1]. Thus [ = iy + k1p — iy or kep depending on whether
i1 + k1p < g + kop or iy + kip > 19 + kop.

Case 1: i1 + kip < iz + kop. Under this assumption, we have Homgr(Z,I') = 0 and
Hompr (L', I) = K.
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We have A = {7}, --- 4} with ¢} =i and 4, = iy + k1p — 1. There are i, i, ; € I, such

that the following path

. . . €—1 . .
e A = R

satisfies to conditions lik # 0 for k = 0,1,---,1 and, li2+1 = 0 while L/ik # 0 for k =
1,2,--- 1 +1 and]_’%:().

For the module M, the corresponding arrows defines the sequence of linear maps

/ I(eo) / 55(51) / 17(62) ff(el—l) / x(el) /
Lyoly = Lol = Lol = - = Lol = L &1

-/ .
1

By Lemma 4.3.3 we have x(ex)r; = Id for k =0,--- I, z(ep)pp =1d for k =1,--- [+ 1,

and x(eg)rr = 0= x(eg)py for k=0,--- 1+ 1. Using the matrix notation, we have
Id 0 0 0
x(eo) = ;o w(e) = ,
0 O 0 Id
Id 0
x(ex) = , for k=1,2,---,1—1.
0 Id

To get the IT!(T")-module structure on M determine the maps

i (er)rr r(ew)ra
oy [ e

v*(er)rr v (er)rr

By Lemma 4.3.8 we have z*(ex)rr = (i1 — 41)Id and 2*(ex)pr = (i} — i2)Id for k& =
1,---,l. By Remark 4.3.4(b), «*(ex)rr : Ly — L’%H = [’y defines a homomorphism of

Yk

KT-modules I — I’. Similarly 2*(ex)p s : L/ik — I oy = [—,iﬁc defines a homomorphism of
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KT-modules I’ — I. Using matrix form we have

i —i)ld 0 0 i
x*<€0> _ ( 1 1) ’ Q}'*<€l) _ 1 :
0 0 0 (i, —is)d

(if,, — i1)Id Bi
0 (i}, — in)Id

x*(ex) = ,fork=1,2,---,1—1.

Here ¢ : I’ — I is a homomorphism of KT-module. Thus there is x € K such that
¢y = for k=1,---,1. By assumption ¢ =4} —iy =43 — 11 # 0 in K and ¢+ 1= 0.

We note that the automorphism group Autgr (L @ I’) has the matrix form

Gri Gryg
0 Grr

Now now use the group G = [[,.p. Gi € Autgr(M) action on M to find simpler matrix

i€lg

presentation of the morphisms z*(e). We now take the G = (G;);er, € Autgr(L & I')

(

Id ifi¢ A,

G = Id ¢ 'z
ifi1 € A.
0 Id

and define (y(e),y*(e)) = G - (z(e),z*(e)), which defines a IT'(I")-module M’ which is iso-
morphic to M. Here y(e) = z(e) for all e € I'; and

c-Id 0O 0 O
y*(eo) = ACHES ;
0 0 0 [-1d
(c+k)Id 0
v (ex) = ,fork=1,2,---,1—1
0 k-1d



Hence the M = 771(1(iy, kip)) ® 77 (L(i2, k2p)) in this case.

Case 2: iy + kip > ig + kop. Under this assumption, we have Homgr(Z,1I’) = 0 and
Homgr (I, I) = 0.

Using the same notation as in Case 1 for the arrows e with £k =0,1,...,l+ 1. The only
difference is that L’%H = 0 and ii2+l # 0. Similar matrix computation shows that z*(ey)
are diagonal matrix already and the theorem follows without using the automorphism group
action.

If A = (), then we have i; + k1p < ip. Under this assumption, Homgr(Z,I’) = 0 and
Homgr(I',I) = 0. In this case, all components of x(e) are either Id or zero. Noting that
M . = M g1 = 0. Hence the full subquiver generated by supp(M) has two connected

components. Thus the theorem follows directly. O]

Remark 4.3.10. Under the notation in Theorem 4.3.9 and from its proof, we also have
if supp(L (i1, k1p)) N supp(L(io, kop)) = 0, then M = 771(1(iy, k1p)) ® 771 (L(i2, kap)) unless

ig = 1y + kip or 1y = ip + kop.
Theorem 4.3.11. For any 11,15 € I'g such that i1 +p—1< N and i +p—1 < N, we have
K ifi2=i1+p 07'2.122.2“'1);

Extyp oy (77 (L(i1, p)), 77 (L(i2, p))) =
0 otherwise.

Proof. Let M be a IT'(T")-module with the short exact sequence
0— Tﬁl(l(i%p)) — M — Tﬁl(l(ilap)) —0

of IT*(T")-modules.

(1) If p 1t (i1 — i2), Theorem 4.3.9 implies that M = 771(L(i1,p)) & 7 '(L(i2,p)). Thus the
sequence splits as IT'(I")-module, and Extyy o (77 (L(i1,p)), 7 (L(i2, p))) = 0.
Moreover, by Remark 4.3.10, we know Extyp (77 (L(i1,p)), 7' (L(i2,p))) = 0 unless
lg =11+ D, 41 =12+ P, Or i =ia.
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(2)

we consider the case i; = iy. In this case, 7(M) = I(i;,p)?. By direct computation

using (4.6), M is a direct sum of two copies of the irreducible module 77*(Z(i1, p)), and

Exthuey (7 (101, p)), 7 (L2, ) = 0.

We now discuss the case i + p = i. Since Homgr (1 (ia, p), L(i2,2p)) = 0 and M has a
submodule I(iy,p), then M # I(is,2p), and M = I(i1,p) @ L(i3,p). Let iy +p —1 5 4

be the arrow of interest, we have the IT'(I")-module structure of M as follows

Here z*(¢/) = (p — 1) - Id and z*(e”) = 1d, and z*(e) = k - Id, where k is any element of
K. Hence Extyp (17 (L(i1,p)), 7' (L(i2, p))) = K.

Finally, we consider the case is = i1+p. Apply the duality functor (-)* and by Proposition

4.2.2, the proof is similar to the case i; = i3 + p.

Corollary 4.3.12. If pt (i1 — i2) foriy,is € g, then

Extyp ) (77 (L(in, kip)), 7 (L(ia, kop))) = 0.

Proof. This follows from the fact that all composition factors of 7(I(i1,k1p)) are 7(L(i; +

Jp,p)) with 7 =0,...,k — 1 and all composition factors of 7(I(iz, k1p)) are 7(L(i2 + jp,p))

with 7 =0,...,ky — 1. Now the corollary follows Theorem 4.3.11. [

Remark 4.3.13. The results of this will work for functor 7 with indices reversed. In

particular, for indecomposable KT'P-module [ of length kp, there is a unique indecomposable

IIY(T')-module N such that 7°?(N) = I. One might ask whether every indecomposable IT*(T")-

module M has the property that either 7(M) is indecomposable or 7%’ (M) is indecomposable.

The answer is negative in the following example.
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Example 4.3.14. Consider the II'(T")-module M for ' = A3, as follows:

1d 1d 1d (p—1)1d (p—2)-1d Id 0 Id Id Id
K .. K K K o K K K e K .
1d (p—1)-1d 0 —1d —1d —1d Id 1d 2.1d (p—1)-1d

Then M has three composition factors 771 (I(1,p)), 77 (L(p+1,p)), and 7~ (L(2p+1,p))
with 771(I(p, p)) being the unique simple submodule, which is also the radical. M has Loewy
length 2. But neither 7(M) nor 7°°(M) is indecomposable.

For the quiver Ay, let L(i) = 77'(L(i,p)) be the irreducible IT!(T')-module. Then
rep(IT(T")) has exactly blocks C; with ¢ = 1,--- , p, where C; is full subcategory of rep(IT'(T"))
generated by the irreducible modules L(i + kp) closed under extensions in rep(IT*(T")). Then

we have a category decomposition
rep(II'(0)) =C, ®C, @ -+ & C,.

More precisely, any IT'(T")-module M in C;,

(M) = D L(i', kp)™ .

i/=iModp,i’'+kp—1<N

Corollary 4.3.15. If M is a IT'(T')-module such that there are iy and iy, with pt (i, —1is) and

both (i1, kip) and L(i1,kip) are direct summands of T(M), then M is not indecomposable.

4.4 Describing a block of rep(IT'(Ay))

In this section we describe a block C; of the category rep(IT'(T")) for the quiver I' = Ay.
Here we fix 1 <i <p.

Let Irr(C;) be the set of isomorphism classes of irreducible modules in C;. Then

Irr(C;) = {L(i + kp) | k=0,1,...,N;}.
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Here N; = [Np_i] is the maximal integer not to exceed %.

Let T'(7) be the ext-quiver of the block C; with the vertex set being Irr(C;), the number
of arrows from L to L’ is dim Extéi(L, L) for two irreducible objects L L’ in C;. By using
Theorem 4.3.11, we see that I'(i) = Ay, 1, the double quiver of the quiver Ay, ;. Our goal

is to show that C; is related to the preprojective algebra IT°( Ay, 11).

4.4.1 Block Decomposition of Im(7)

To describe the objects in C;, we first construct the block decompositions of Im(7). We note

that the full subcategory Im(7) of rep(KT') is a not an abelian category.

Definition 4.4.1. We say that two indecomposable objects I and I in Im(7) are IT'-related
if there is an indecomposable object M in rep(IT'(T)) such that both I and I’ are direct
summands of 7(M). Extend the IT'-related relation to an equivalence relation on the set of

isomorphism classes of indecomposable objects in Im(7).

We decompose the indecomposable objects in Im(7) into p sets, 7,2y, - - - ,Z, with Z; =
{L(i + mp, kp)} with i + mp + kp — 1 < N. By Corollary 4.3.12, each Z; are in the same
equivalence class. Corollary 4.3.15 implies that two indecomposable modules in two different
Z;’s are not IT' related. Thus {Z;,---,Z,} are the equivalence classes of indecomposable
modules in Tm(7).

Let D; be the full subcategory of Im(7) consisting of all modules that are direct sums
of objects in Z;. Note that we do not have a category decomposition Im(7) = éélD,» since

objects in different D; can have non-zero morphism in rep(KT).

Lemma 4.4.2. Every object in D; is of the form 7(M) for some M € C; (although such M

is not unique).

Proof. We use the fact that Im(7) is Karoubian (see Corollary 3.1.5). Then the lemma
follows from Corollary 4.3.6 and Corollary 4.3.15. O]
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To study the D;, we need to study Z; first. If N = np + s, then

"(n;l) fori=1,2,---,s+1;

|Zi| =
n(n—1)
2

fori=s+1,s4+2,---,p.

Proposition 4.4.3. The category D; are isomorphic to

rep(KA,), ifi=1,2,---,s+1;
rep(KA,—1), ifi=s+1,s+2,--p.
Proof. We just prove i = 1 case, and the other cases are similar.
We know Z; = {I(1+ mp,lp)}, with 0 < m < n —1, and (m + 1) < n, and these are
the indecomposable modules in D;. Under similar notation, we denote the indecomposable
modules in rep(K A,) to be {I™(k,1)}, with 1 < k <n and (k+1—1) < n. Then we define

a functor

F : Dy —rep(KA,)

to be,
F(L(1+mp,lp)) = I™ (m +1,1).

It is easy to define on the morphisms and check that F gives the category equivalence. [

Remark 4.4.4. It is easy to see that all the indecomposable objects in D; have the same
p-arrows; indecomposable objects in different D; have no common p-arrows. Then we may

define p-arrows in D; to be p-arrows for indecomposable objects in D;.

Lemma 4.4.5. Any module in D; is isomorphic to a module M € D;, such that if the arrow

i" — 1" is not a p-arrow, then M, — M., is identity.

Proof. If i/ — i"” is not a p—arrow in D;, we know the indecomposable modules are of the
form I(mp+1,1lp), so we may assume M = @ I(myp—+1i,lxp). The conclusion is just an easy
k

computation. O
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4.4.2 Pull Back of Im(7)

To pull back Im(p), we need to pull back each D;, which are just C;, for i =1,2,--- | p.

Lemma 4.4.6. For M & rep(II'(T")), if the arrows iy < ia 3 -+ -4;_, gy satisfy M, z(—ei)
M, isa+j-id= 3~ (1—j)-1d,

z*(ej)

M;,,, is Id, for any j =1,2,--- |1 — 1, then M;, <

i+
where the o and B are the following morphisms,
z(e1) z(e2) z(ej—1)
{3M, S My, S M, S M7Pp (4.8)
z*(e1) z*(e2) z*(e1—1)

here, if iy is the initial vertex of I, then a = 0, and if 1; is the ending vertex of I', then

B =0.

Proof. First, for j =1 we have z*(e;)x(e;) — a = 1d, so z*(e;) = a + Id; then use induction
we can get z*(e;) = a+j - Id.
To prove z*(e;) = B — (I — j) - Id, we also use § — z(e;)x*(e;) = Id and induction from

j=1. O
Then from Lemma 4.4.5 and 4.4.6, we easily get

Theorem 4.4.7. Any module in C; is isomorphic to a module M € C;, such that M 1is
z(e)
determined by all { My M } with {i' 5 "} p-arrows in D;.

2 (e)
From Example 3.1.9, we know that rep(IT'(A,)) is a semisimple category and there is

only one irreducible object L in it. Recall that L is

Id Id Id Id Id Id
Id 21d 3Id (p—3)1d (p—2)Id (p—1)Id

Ap
Using L and Theorem 4.4.7, let’s define a functor L ) from rep(I1°(A4,,)) to rep(IT* (A,,)),
Ap

LX) : rep(I1°(Ayn)) — rep(IT' (Apy)).

m
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For any (M, ) € rep(I1°(A,,)), M is represented by

z(e) z(e’)
My My — My

x*(e) z*(e)
with z*(e/)z(e’) — z(e)z*(e) = 0 for any consecutive arrows i — 1 — i S il Here, if
1 —1 =0, then ¢ = 1 is the initial vertex for A,,, then there is no M;_; and no morphisms
x(e) and x*(e), for definition and computation consistency, we keep it here and treat z(e) = 0
and z*(e) = 0. We make similar convention for i + 1 = m + 1, i.e., i is the ending vertex of
Ap.

Ap
Define L @ M € rep(IT*(A,,,)) to be

Ap z(e) Ap z(e’) Ap
L@ Mo LM L& M.
Ap
where L Q) M; is
Id Id Id Id Id Id
M M M, e T M MM,
a;(1) a;(2) a;(3) a;(p=3)  ai(p—2) ai(p—1)

with a;(k) = z(e)z*(e) + k - Id = z*(e)x(e’) + k - Id. Tt is easy to check L%M is a
1 (A,,,)-module. "

For any I1°(A4,,)-modules (M, z) and (M’,z'), if there is a morphism f from M to M’,
with f = {f;}/*, which makes the diagram

xz(e)
M M;

z*(e)
fi—1 ” fi
M., M

2'* (6)

commutative, then we have z'(e) f;_1 = fiz(e) and z"*(e) f; = fi_12"(e).
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Ap

Ap Ay
We define LQ(f) : LQ M — LQ M’ to be

Ap z(e) Ap
LM LM,
m x* (e) m
Ap Ap
L%(fil)l ng(fi)
Ap z'(e) Ap
LQQM_,_ "LKM;
m x!'* (e) m
Ap
here L @ M/ is
m
Id Id Id Id Id Id
M My MY M M
a;j(1) j(2) ;(3) aj(p=3)  of(p-2) aj(p-1)

with o/(k)

Ap
x'(e)x™(e) + k-1d = 2™*(e)a'(¢/) + k- 1d and LQ(f:) = (fi, -, fi)-

Ap Ap Ap
To check that L Q)(f) is a morphism from L &) M to L Q) M’, we just need to check that

the diagram above is commutative. There are two cases:

(1) For any k=1,2,---

Id

—

My M
a;—1(k)

d
M;_, M;_,
af_ (k)
and
1d
M, M;

are commutative.

,p — 1, we need to prove the diagrams

The proof of the two types are similar, so for simplicity, we just

prove the later cases. Note that a;(k) = z(e)z*(e) + k - Id, af(k) = 2'(e)z"*(e) + k - 1d,
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x'(e)fio1 = fiz(e) and 2™ (e) f; = fi_12*(e), so we have

aj(k)fi = (2'(e)a"(e) + k - 1d) fi
= a'(e)(z"(e)fi) + k- fi
= 2'(e)(fimrz™(e)) + k- fi
= (a'(e) fi)z"(e) + k- fi
= (fiz(e))z*(e) + k- fi
= fi(z(e))z"(e) + k - 1d)

= fici(k).
(2) We need to prove the middle diagram

z(e)
Mi*l ¢ MZ

z*(e)
fi—1 @ fi
Milfl — Mz,
a:/*(e)

is commutative, and it is just by definition of f.

For any m < m/, A,, is a full subquiver of A/ . There are m’—m+1 natural embedding of
quiver A, into A, and we denote them by Fy, pr, 70 Frnmts T20 Frnants =3 T 0 Foont -
More precisely, 7% o F,, v maps the ith vertex of A,, to the i + kth vertex of A/ .

Recall from Section 3.2, these embedding induce natural embedding of rep(IT*(A4,,)) into
rep(IT' (A7,)), and we denote them by mo.(m, m’), my.(m, m’), mo.(m,m'), -+, T —mys(m, m’),
respectively.

p
Since rep(IT*(Ay)) = @ C;, there is a canonical projection of rep(IT'(Ay)) to C;, and we
i=1

AP
denote it by p; for any i = 1,2,--- ,p. Finally combine the L) functor, the embedding

functor 7, and projection functor p;, we get the following p functors:
(1) fort=1,2,--- ,s+ 1, there are s + 1 functors,
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ﬂ’(i—l)*(nI%N)
—

Fi 1 1ep(I1°(An)) — rep(IT' (Ayy)) rep(I'(Ax)) * Ci;

(2) fori=s+2,s+3,---,p, there are p — s — 1 functors,

Ap
L®

n—1 T(i—1 *((n—l) ,N)
G: : tep(I1°(An_1)) — rep(IT (Ap_ry,)) s "

rep(IT* (Ax)) 2 C..

Then we can start to prove our main theorem in this section.

Theorem 4.4.8. The category C; are isomorphic to

rep(HO(An))7 Zf,l = 17 27 T, S+ 17'

rep(TIl°(A,_1)), ifi=s+1,5+2,---,p.

Proof. Now from Lemma 4.4.5, Theorem 4.4.7, and combinatorics we get the functors F;
(1=1,2,---,s+1)and G; (i =s+2,s+3,---,p) induce category equivalence.
O

p

Therefore, we get Theorem 4.4.8, and combine the decomposition rep(IT'(Ay)) = @@ C;
i=1

we get Theorem 1.3.3: if N =np+ s with 0 < s < p — 1, then for type Ay quiver, there is

a categorical equivalence

rep(IT' (A )) = rep(IT°(A,)) " & rep(T1° (A, 1))~

4.5 Computation of Stack Functions

In this section , we always fix the ground field be a finite field F, with characteristic p and
N =np+ s with 0 < s <p— 1. We study the stack functions ®(0) and x(0) in this section

and we get some interesting identities using Theorem 1.3.3.
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From Section 3.1, we have

1 .

1 _ dim(M)

0) = E —X .
pr(0) [Aut(M)]

Me(IsolT (I')—Mod)
and
1 . . .
d(0) = <d1m(M),d1m(M))de1m(M).
©) 2 [Aut(21)[?

M e(Isoll! (I")—Mod)
Since we will have different quivers and different deformed preprojective algebras, and

the 0 is always fixed, so we change the notation a little bit here to make things clearly.

1 .
A _ dim(M)
X) = E — X .
M e(IsoIIM(I')—Mod)
and
1 . . .
@A X)) = E (dim(M),dim(M))r Xdlm(M)'
M e(IsolIM (I') —Mod)

We denote by K[[I'g]] the ring of formal power series of with commuting variables

{X4]d € Z"™}. Elements in K[[['o]] can be uniquely written as

D faX? with fq € K.

dezlo

We note that the K-algebra structure on K[[I'y]] depends on the vertex set I'y only.
Recall the Euler-Ringel form on Z™ is defined by

(dd) =" did, = > duaydya)

i€l acl

for any d,d’ € Z'. The corresponding symmetric bilinear form is (d,d’) = (d,d’) + (d’, d).

We define a new algebra structure on K|[I'g]] with multiplication deformed by

Xd i Xd’ _ q(d’d/)Xd—i_d/.
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We use K[[I']] to denote this algebra structure (still commutative). Let F': K[[I'¢]] — K[[T]]
defined by
F(Xd) — q<d,d)Xd.

Then F'is a K-algebra isomorphism. In particular, we have
Lemma 4.5.1. ®}(X) = F(up(q, X)).

Therefore, we just consider the p(X).
We know that rep(II'(Ay)) = C1®Ca@® - - - DC,p, so from the discussion for 1.2 in Section

3.1, we have

=11 % de‘m( v

=1 M(3)€(IsoC;)

=: Huci(%X)

Remark 4.5.2. By Theorem 4.4.8, we have rep(II°(A,)) = C; by functors F; for i =
1,2,--+,s + 1; and rep(II°(A,_1)) = C; by functors G; for i = s +2,s + 3,---,p. For
simplicity, we denote these functor by ©; in general, i.e., ©; = F; for : = 1,2,--- ;s + 1,
and for i = s+ 2,s+3,--- ,p, ©; = G;. Moreover, we also use n; to denote n and n — 1 in

general, i.e., n;=nfori=1,2,--- s+ 1,and fori=s+2,s+3,--- ,p,n; =n— 1.

Under the notation in Remark 4.5.2, we have rep(I1°(4,,)) = C; by ©;. However, for any
M € rep(I°(A,,)), dim(6:(M)) # dim(M), so 1, (4, X) # pic,(a, X). But 1%, (g, X) and
te, (g, X) still have close relationship.

For quiver I' = Ay, we know it has N vertices; for quiver I'(i) = A,,,, it has n; vertices.
Note that C; are subcategory of rep(IT°(Ay)). We use {¢; | i = 1,--- , N} C Z' to denote
the standard basis of the abelian group Z'. We will use the same notation €; to denote the
basis of Z'@o_ Tt should not cause any confusion. We define a homomorphism of abelian

groups
p—1

0, : ZFWo — 7 by 6i(ep) = Z €it(k—1)ptr-

r=0
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Note that 0;(Z'@o C Z'. In fact for the functor ©; : rep(I1°(A,,)) — C;, we have
dim(©;(M)) = ,(dim(M1))

for all M € rep(I1°(A,,)).
The homomorphism theta; also induces K-algebra homomorphism 6;, : K[[I'(i)o)]] —

K|[[To]], which is defined by, for g(Y) = Y gqY9,

dezr@o

O ( Z gaY?) = Z ga X"V = Z( Z 9a4) X" € K[[Lo]].

dezr@o dezl o vezZlo ded; ' (v)

Note that for d = (d;)ier, € Z", then XV = [] (X)%. If we denote by 0,.(X%) =
X% for all k € T'(i)o, then the map 6, is the variazlif; subsititution Y +— X?%() of formal
power series. We simply write this change of variable by Y ~— 6;(Y), then 6,.(g(X)) =
g(0;(Y)). Noted that g(6;(Y)) is a formal power series of X.

We can now take K to be any commutative ring containing Z and all [Aut(M)| for all

M. (For finite field K = Q will be good enough. But for general case, ¢ becomes a variable

and K should contain necessary inverses of automorphism groups.)

Note that
1 . )
0 X) = § - xdim(M()
ILLAn (Q7 ) ‘ \Aut(M(z))] )
M (i) €Isoll? (A, )—Mod)
and
1 . )
(q. X)) = § - xdim(M(@).

M (i)e(IsoC;)
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then under the equivalence ©; we get

1 , ,
(q, X) = E = xdim(8:i(M(2)
palt 0= [Aut(2(0))
M (i)€(Isoll®(Ap,; ) —Mod)

_ 3 L yoamora))
T ey 1 AUE(M (D))
M (3)e(IsoIlIV(Ap, )—Mod)

K3

)

=, (0.0:(Xa,,)) € K[[Ax]].

= 0i (1, (4, Xa,,

Here X = (X1, -+, Xy), and we are using X A,, to indicate the variables used the quiver
A,,. Remember that fori =1,2,--- js+1,n; =n,and fori =s+2,s+3,--- ,p,n; =n—1.
If n; = 0, then the quiver A,, has no vertex and thus has no representations of any

kind (with an understanding of having a zero representation). We will use the convention

Theorem 4.5.3. i}y, (¢, X) = []_, %, (¢,0:(Xa,,))-

Corollary 4.5.4. For the quiver Ay we have ®(0) = [];_, F(,u%ni (¢,0:(Xa,,)))-
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Chapter 5

Jordan Quiver Case

In this chapter, we assume K is an algebraically closed field of characteristic p, and W =
K{(x,y)/lz,y] =1 is Weyl algebra. To classify all finite dimensional representations of Weyl

algebra, we just need to classify its representation space of a fixed dimension.

5.1 Decomposition

Now for a fixed dimension NV, in this section, we use the eigenvalues of y acting on WW-module
to decompose the W-module.

Let’s list some notations we will use first.

(1) Iy denotes the N x N identity matrix, and sometimes for simplicity, we ignore the size

and just write I.

(2) We have the variety Vy = {(X,Y) € gly(K) x gly(K) | [X,Y] = Iy} is the N dimen-
sional representation space for Weyl algebra W, so we use a pair of N x N matrices

(X,Y) to represent an N dimensional representation of W.

(3) For any matrix M, if we decompose it into s X s blocks, then we denote the blocks to

be {M;;}; -, and write M = (M, ;)

S
ij=1-
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(4) Jy(«) denotes the N x N Jordan block with eigenvalue «. If the eigenvalue is 0, then

we denote Jy(0) to be Jy for simplicity, i.e.

0
1 0
0
0 0 10
NxN
(5) @y denotes the following matrix:
0 1
0 2
N -1
0
NxN

There are two natural maps

Vv ={(X,Y) € gly(K) x gly(K) [ [X,Y] = In}

T1 T2

gly(K) gly(K)

To classify the N dimensional representation space, we fix a class in Im(7y) first, pull it back
to Vy, then push forward to Im(7;). Therefore we just need to classify the push forward.

Fixing a class in Im(7y) is equivalent to fixing the eigenvalues of Y.

Theorem 5.1.1. For any finite dimensional representation (X,Y) of Weyl algebra, if under
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a fized basis,

0 Jn((lfg)

with ay # aw, then the same size block decomposition of X is

X1 Xip
X =

Xo1 Xop
Then we will have [X11, Jy(a1)] = I, X12 =0, Xo1 = 0 and [Xao, Ju(a2)] = I, i.e., this
representation is decomposable.
Proof. Use the relation [X,Y] = I we can get
X1,1Jm(a1) - Jm(Oé1)X1,1 = I,

X1,2Jn(042) - Jm(Oél)X1,2 =0,
X2,1Jm(041) - Jn(OéQ)XQ,l =0,

XQ,QJn(OZQ) - Jn(OZQ)ng = I,.

The first equation and the fourth equation tell [ X1y, J,,(aq)] = I, and [Xag, Ju ()] = I,
directly.

The second equation gives X oJ,(a2) = J (1) X1 2, and oy # aa, so X o is a morphism
between different eigenspaces , which tells X, = 0.

For the proof Xy, = 0, it’s similar.

]

Then we know different eigenvalues of Y give a decomposition of the module (X,Y)
into indecomposable modules, so we just need to consider the case Y = Jy(a) with only
one eigenvalue. Denote Gyy = {G € GLy(K) | GY = YG}, since Jy(a) = aln + Jy,
X, In(a)] = [X,aly] + [X, In] = [X, x|, we have G ().nv = Gyy,n. Therefore we can

reduce to the nilpotent elements in Im(7).
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Remark 5.1.2. (1) We have similar decomposition results for the 2 variable polynomial

algebra K|z, y].

(2) Set
Xyn ={X € gly(K) | [X,Y] = Iy with Y fixed nilpotent},

then Xy n is the push forward of Y, and the conjugation action of GLy(K) on gly(K)
induces the conjugation action of Gy on Xy y. To classify the isomorphic class, we

just need to get the orbits Xy y /Gy n.

(3) Fix a nilpotent isomorphic class [Y] in Im(7) C gl (K) is equivalent to fix a nilpotent

Jordan matrix, which is also equivalent to fix a partition of V.

In the rest of this chapter, we always fix a basis, such that under this basis, the W-module

(X,Y) is a pair of matrices with Y a nilpotent Jordan matrix.

5.2 Count the Orbits

In this section, we want to get the orbits Xy y/Gy,n. We first found a subset Q?K ~n of Xy n
which intersects each orbit of Xy y/Gy y nonempty, and then use this subset to count the

orbits XY,N/GY,N'

5.2.1 Nilpotent Elements in Im(7)

By Lemma 3.3.8, we know for algebraically closed field of characteristic p, W-modules are
np dimensional, here n is some integer number; and the irreducible W-modules are p dimen-
sional. For any W-module (X,Y'), we want to know more information of Y in this section,

and then we can give a precise description of the irreducible W-module.
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From now on, we fix

I,
IN,

JIN

S

NXxN

then > N; = N = np.
i=1

Lemma 5.2.1. Xy y is not empty if and only if the size of every Jordan block of Y is divisible
by p, i.e., p | N; for eachi=1,--- s.

Proof. Without loss of generality, assume N; > Ny > --- > N,, and X = (Xi,j)f,j:1 is the

same size block decomposition of X, so X, ; is an N; x N; matrix. Then we have

0, ifij:
In, ifi=j.

When i = j, (5.1) gives [X;;, Jn,| = In,. Since tr[X;;, Jy,] = 0 = trly,, we need N; = 0,
which means p | IV;. This proves Xy y is not empty only if the size of every Jordan block of
Y is divisible by p.

For the other side, if p | N; for all i = 1,--- | s, by computing directly and notice that

the characteristic of K is p, we have [Qy, Jy] = In. ]

From now on, we always assume Ny > Ny > --- > N,. Let’s define some special matrices

for future use.

(1) If ¢ < j, then N; > Nj, then define JP =

(2) Ifi > j, then N; < Nj, then define J3; = < Jg 0 ) .
NiXN]
(3) Ifi=j, then J3, = J§..
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Using (5.1) to compute X = (X ;);,;_; directly, we have

1. If i < 7, then IV; > N;, so

0 0 0 0
0 0 0 0
(i5)
x
Xij = " )
Igm) xé”)
mgij)
x(()ij)
x%ill xgm xgm -
i XI5
N;j—1
- xgj)Ji?(J
a=0
2. If i > j, then N; < Nj, so
zy? 0 0
xgij) :I;(()ij) 0 0
Xij = 2\
239 0 0
", A 0 o)
i J
N;i—1
- xgj)‘]iofj
a=0

3. If i = j, then
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x(()ii) 1

Xig = : x&ii)
8N -1
N
Ni—1
— ngJ)Jz‘a,i‘i”QNi-
a=0

Since the irreducible W-modules are p dimensional, so we can easily get

p—1
Corollary 5.2.2. Any irreducible W-module (X,Y') with Y nilpotent is isomorphic to ( > Tady+
a=0
Qp, Jp), with z, € K.

5.2.2 Push Forward to Im(n)

We will find the subset .)’vay’ ~ of Xy y which intersects each orbit of Xy /Gy y nonempty by
studying the push forward a fixed Y in Im(72) to Im(7;) in this section.
Let’s fix N satisfying p | N and fix

JIn,
JIN,

In

s

NxN

here N1 Z N2 Z Z NS, ]\/vZ = kzp for some kz and N = ZNZ
i=1
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Fix
Qn,
Qn,

@n,

NxN

it is easy to get @ = Qn because p | N; for each i = 1,--- | s and characteristic of K is p.
Since [Q, Y] = Iy, then we can write Xy xy = Endy (K”) + Q, where Endy (KV) = {X €

aly(K) | [X,Y] = 0}. Therefore for all X € Xy y, we can write X = X +Q = ( ,])” L+ Q

with X € Endy (KY). In the future, we just write X = (Xij)ij=1 + @Q for simplicity. Pay

attention the X, ; a little bit different from the above one, and here

1 Ifz'<j,XZ-~: x“f
5J
(2) Ifi>j, X;; = Z x(”

(3) Ifi=j, X Z x(”)JO‘.

k(izyp—1

Use N; = k;p, and set k(;;) = min{k;, k;}, we can write X, ; = Z m(”)Ji‘f‘j in general,

where a: e K. Also, under this notation, we have

kigyp—1

Xy ={X = (Xiy)im + Q| Xij = Z eI, el e K}

E@ijp—1

Gyn = 1{G = (Gi;);i j=; is invertible | G; ; = Z g “)ij,ga € K}.
By matrix computation, we give some formulas for future use under this notation.

Lemma 5.2.3. We have the following computation formulas relating to X, Q) and J.

(1)
T = TR, (5.2)

4,750
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(2)

k(ij)p—1 kyp—1

T o 5
a=0

here 6 = kqy—min{k;, kj, ki} > 0.

(3)
Qn Il — I Qn, = nJ (5.4)
Now let’s prove our key theorem in this section.

Theorem 5.2.4. For any X = (X;;)i;_; + Q € Xy, there exists G € Gy, such that the

following holds
k(i)
GXG' e{®=(Pi;);,_1 +Q| Pij = Z¢( W) e K} = Ay
Here we always make a convention that J;jl = 0.

Actually Theorem 5.2.4 tells us each element in Xy, is isomorphic to an element in Xy, x
with the coefficients of Ji"; is 0 if n # ap —1 for some o = 1, - -+ | k(;;). Then the subset /?Y,N
of Xy y intersects each orbit of Xy /Gy y nonempty.

To prove Theorem 5.2.4, set
kijp—1

Xyn(0) = {X = (X))}, + Q| Xij = Zxap N S N
a=0

here [ ] is the maximal integer not to exceed 9

It is easy to get the following properties of Xy7 ~N(0):
(1) Xy n(kp—1) = Xy n(kp) for any integer k.

(2) There is a filtration

XY’N = XY,N(O) D) XY,N(l) IDIEREND) XKN(OO) = XY,N'
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Remark 5.2.5. Actually when 6 is big enough, we have
XY’N(Q) = XYJ\[(@ + 1) == XY’N(OO) = /:YVYVN.

To prove Theorem 5.2.4, we prove the following Lemma first.

Lemma 5.2.6. If 0 + 1 # 0 in K, then for any X = (X;;); -, + Q € Xy,n(0), there exists
G € Gy, such that GXG™" = @, where ® = (®;)f,_; + Q € Ayn(0+1).

Proof. X has s x s blocks, so we set any G' € Gy, n the same size blocks. For simplicity, we

denote [ | by 7, then

0 zg)p 1
i 1 (i7) T
NCIVES SRS 59
a=0
What we need to prove is for every (i, ),

0+1 kigyp—1
Z AR S N C O (5.6)

a=0+1

Step 1: For ¢ = j, let’s prove there exists G, such that all the ®;; are of the form 5.6.

Take

Gy

G = ,
G
NXN

with G; = I + glJe+ for some g; € K, then

Gi!

Gt=
Gfl
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kip—l
with G;t = Y (=1)% aJ 0+ Denote

a=0

G((Xig)ijm + Q)G = (®iy)i s + @,

SO
Qi = Gi( X + QNG — Qn,

Note k(;;y = ki, use (5.3) and (5.4), we get

D, = Gi(Xii+Qn)G ' — Qn,

k;p—1
= (e Z%p T 2w Q)
kzp 1
(D (=17 gl I"Y) — Qu,
B=0
v kip—1
= 33 PG I g T
a=0 p=0
kip—1 kip—1
+ Z (—1) Jﬁ 0+1) 4 m(u)gﬂ-&-ll](@—&-l)(H-&-l))JQ‘
a=60 =0 ; :
kip—1
+ Z “]fzeﬂ I B+1J9+1Q ZJl,BZG+1 )= O
k;p—1
— Z:cap ey Z 28— Qn,
kzp 1
+ Z H]fl@—kl + /M QNI = (0 + 1)) in(9+1>}
.. k;p—1 kip—1
= Z-Tg;)_p]z‘of 1y Z :U(” Zal Qn, — Z (_1)5(9+ 1)95+1J2jﬁ(9+1)
i B=0
kip—1
+ 3 (=D Qu IS + gl Qu I
B=0
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v kip—1
_ E ap—1 E (u «
- xap 1J + Lo, z ) QN

klp 1

B Z 80 +1) 5+1J9+5(0+1) +Qn,
.. 9 Zp 1
_ Zxap 1Jap 1 ém)JZZgu')p—&- (9+1 g:J! + Z :L’
a=0+1
0 +1#0,s0 0+ 1 is invertible, take g; = ;7 (”) , then
’y .o
®;; = foj; id ' é“)‘]ie,z' - (9+1)9i=]z'9,i
Y . kip—1
_ ng; VI I — 0+ Vgl + D Al
= a=0+1
Y ( ) ) kip—1
. i ap 1 (3t) 70 0
= Zx Wit xg S — <9+1)6 Jii +Zx
a=0+1
kip—1
B SIS S
a=0 a=0+1

and @, ; is of the form (5.6).
Step 2: Let’s prove that there exists G, such that the non-diagonal block matrices ®; ;
are of the form (5.6). For simplicity, we still use X = (X;;);,_; + @ to denote the matrix

after step 1, i.e.,

(i9) Jap 1 Fuprt (ij )JO‘ if 4 -
Zxapl + Z Lo i,jall#]a

k(u)p 1

_ (i)  gop—1 (i) 7o
Xivi Z ‘Tap 1‘] + Z Lo Jz,z
a= a=0+1
kgigyp—1
For notation easier, in some computation we will use X;; = > 29 J7; for any (i, j).
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Pick

G = +(Gmn)N><N-

1
NxN

Here m # n, and (G,,,) is a matrix which satisfies for (i,5) # (m,n), the matrix in (4, j)

block is 0, and the (m,n) block G, = géf?)ﬁ;;} with {77 € K.

SO

Then

G((Xi )i jm + Q)G

G_l = - (Gmn)NXNa

NxN

= L+ (Goun))(Xij)i iz + @) = (Gn))
= (Gmn)(Xiy)ijm1 — (Xig)]j=1(Gmn) = (Grn) (X3 )7 j=1(Ginn)
+(Xi,j)f,j:1 + (Gmn)Q - Q(Gmn) - (Gmn)Q(Gmn) + Q

= (Piy)i= + Q-

Since m # n, (Gpy,) is a matrix with only (m,n) block non-zero, and @ is a matrix with

only diagonal blocks nonzero, we have (G,)Q(Gmy) = 0, and then

(q)i,j)f,jzl

(Xi,j)f,jzl + (Gmn)(X@j)ijzl - (Xi,j)f,jzl(Gmn)
—(Gnn)(Xi5)7 j=1 (Gran) + (Grin) @ — Q(Gan)-
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Therefore we have

) =X, if i #m and j # n;
D, =X +GnnXn, if 7 #n;

b, =Xin— XinGmn, if © £ m;

Drn = Xon + GnXnn — XonmGrmn

_Gm,an,me,n + Gm,nQn - Qmen7

0+ 1 # 0 tells us 6 + 1 is invertible, take géi”f) = 9+1xém”). Use G = g(,Jrl Jgfé and
QNI — J5Q; = nJi’fj_l, we have
Gm,nQNn - QNme,n = _(0+ )geJrl Jg@n

1

o (mn) 70
— _xe (]m’n

Kijyp—1

Pick 6 > 0, and use X, ; = Z 2l J"‘ for Xny Xmm, and X, m, then

(1) For the (m,n) block,

q)m n  — Xm,n + Gm,an,n - Xm,me,n + Gm,nQNn - QNm Gm,n - Gm,an,me,n

knp 1 kmp 1
. 9+1+a 2 : 0+1+a (mn) 70
= an + E 99+1 'CE J - l’ 99+1 Jmn — Ly Jm,n
k(nm)p 1
2vp+260+2+oa+dp
§ : g(9+1 $ g@-l—l Jmn
mn)p 1 k(mn)p_l
— § xap 1Jap 1 E (mn) Ja § E&mn) Jrc:L . 559 J@
a=0+1
Y 'mn)p 1 k(mn)p_l
_ § : ap— 1 E (mn) oY ~(mn) 70
- ( xap 1‘] ‘] Z Loy Jm,n
a=0 a=0+1 a=0+1
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k(mn)p_l

S A Y

a= a=0+1

(2) For j # n, there are two cases:

if j # m, use X, ; = Z z Jo‘ and X, ; = Z 2 Jo‘p S J,f‘,‘”, then
a=
Py = X+ GmnXnj
Y k(mgyp—1 k(ngyp—1
_ E (mj) ap— 1 § m]) el § : (mn) _(nj) 70+14+a+dp
— ( xap 1J ‘] 99+1 Lo, Jm,j
a=0
k(mJ)p 1
_ (mg) ap 1 ( .
- Zxap 1 T Z T
a=04+1
oo Fnmyp=1 (nm) 7q o (mm) ap 1 hmp -1 (mm) ¢
if j=m,use Xpn = > Ta Jpmand Xpm = > 2o, 150+ D0 26 5
a=0 a=0 a=0+1
then
(Dm,m = Xm,m+Gm,an,j
kmp—1 k(nm)pfl
_ ap—1 (mm) Jou (mn) 9+1+a+§p
= g xap 1J + E xg" I ) 941 x J
a=0-+1 a=0
ol kmp—1
_ ap—1 ~(myj)
= pr b+ > 2
a= a=60+1
(3) For ¢ # m, there are also two cases:
k(imyp—1 (im) . k(inyp—1 )
ifi#n use Xipm= > xa J, and X;, = Z 2l Jap + Z i Ji,, then
a=0
(I)i,n - Xi,n _Xi,me,n
~ k(inyp—1 k(imyp—1
_ (in)  gap-1 2 : (in) 700 Z (im) _(mn) 76+14a+38p
- ( Lap- IJ + Lo ‘]z,n) - Lo "Go41 ‘]i,n
a=0 = =
Y k(zn)p 1
_ § (in)  jyap—1 E zn) a .
- xap 1J + :EG Jz n’
a=0 a=60+1
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k(nm)p 1

knp—
ifi=n,use Xpm= 3 ay™ JS o and X, = Z xap 1J‘”‘p L+ Z J;fn, then
a=0 a=0+1
(I)n,n = Xn,n_Xn,me,n
¥ knp—1 k(nmyp—1

_ E : (nn)  jap-1 § : } : (nm) 0+14a+dp
- ( ap 1J + $ Lo g@+1 Jnn

a=0 a=0+1

Y ( knp—1
= N 1J + E x

a=0 a=04+1

Therefore, we get for m # n, 3G € Gy, such that

G((Xij)} o1 + Q)G = (Py)5 ;1 + @

with ®,,,, and all ®;; are of the form (5.6). More precisely, G' will change X,,,, into the form
(5.6) we want, keep all the other blocks to be the original form (either (5.5) or (5.6)) but
with maybe different coefficients.

Using this method, and going over all (m,n) with m # n, we get there exists G € Gy,
such that GXG™' = (®;;); ,_; + Q, with

o kp—1

AR

a=0 a=60+1
then we complete the proof.

O
Since we have

(1) Xy n(kp—1) = Xy n(kp) for any integer k,
(2) When 6 is blg enough, XY’N(G) = XY’N(G + 1) == XYJ\[(OO) = ‘/’%/Yva

using Lemma 5.2.6 and induction on €, we can complete the proof of Theorem 5.2.4.

Then combine Lemma 5.2.2 and Theorem 5.2.4, we have

81



Corollary 5.2.7. Any irreducible W-module (X,Y') with Y nilpotent is isomorphic to (mJ}f*l—i—
Qp, Jp), with r € K.

Moreover, we have

Corollary 5.2.8. Up to isomorphism, all the irreducible W-module (X,Y") are bijective to
(x,y) with x,y € K, i.e., bijective to the closed points of SpecK [x,y].

There is a natural map

W:;Y'VKN — XY,N/GY,N

X = [X]

Then by Theorem 5.2.4, we get

Corollary 5.2.9. 7 is a surjective map.

5.2.3 Orbits Counting

Now we have found fy,N which intersects each orbit in Xy n/Gyn nonempty, then let’s

count the orbits Xy n/Gy,n by fyy ~ In this section.

Lemma 5.2.10. For any X € fy,N, set

Ay = {G € Gyn | GXG ' € Xyn},

ki) —1
B:: {GEGY,N|G:( ,] Z] 1 ’Lj_ Z g(zj z] ’gap EK}

then Ax = B.

Proof. For one side, it is easy to check B C Ay;

Now , let’s prove Ax C B.

For all X € )?Y,M G € Gy, if there exists ¢ € )?Y,Na such that GXG™' = &, then
we have GX = ®G, we use the notation that X = (X;;);,_, + @, G = (Gy;);;—, and
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D = ()] ;= + Q. ¥V(m,n), then:

S

Z(Gm,le,n - q)m,lGl,n) = QNme,n - Gm,nQNn;

=1

k=1 k-1 ’fm)P 1

since X; ; = Z a:ap P @y = Z ¢§j§, I and Gy Z gl )J”,

a=0
by direct computatlon we have

s s kmp—1lkan)—1

Z(Gm,le,n_(I)m,lGl,n) = Z Z Z g (l" (a+5+6)p—1
I=1 a=0 B=

=1

Z Z QSO{TZQ l”)J o<+ﬁ+5’)p 1)
a=0 =

and
k('mn)p 1

QNme,n - Gm,nQNn - Z agamn) ‘]rorlL nl' (57)
Compare the coefficients of J,, ,, we get the « in (5.7) is a multiple of p, so G € B. [

Define
éY,N = {G c GY,N | G.)’C‘VY’NGil - .)’gny},

then the action Gy ny ~ Xy induces an action éy’ N M .jC'Vy’N, where the action is still
conjugation.

From Lemma 5.2.10, we know éyJV = B = Ax, and also
[ ‘)?Y’N — XY,N/GY,N

induces a map
,7:(: . XY,N/GY,N — XY,N/GY,N'

From Corollary 5.2.9 it is easy to get

Theorem 5.2.11. 7 is bijective.
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5.3 Categorical Equivalence

We got an easier subset Xy, to compute the orbits Xy /Gy.n. Now for W = Kz, y)/[z,y] =
1, and A = Kz, 9], let

C, = the representation space of all n-dim A-modules with y acts nilpotently,

D, = the representation space of all np-dim WW-modules with y acts nilpotently.

We still use a pair of matrices (X (0),Y(0)) and (X,Y) to denote modules in C; and Dy,

respectively. Let’s construct a functor

Fn:Cy

— Dgp

(X(0),Y(0)) = (X,Y)

as follows, (here we denote N = np for consistent notation in the above sections)

(1) For objects, if under fixed basis,

Ik,
nxn

kap-1 = _
with &y > ky > -+ > ky, then X(0) = (X(0);;);,_, with X(0);; = 2 Je by

»J
» a=0
direct computation. Here we use the notation Ji*; which is similar as J7;:

N 0
(i) Ifi < j, then k; > k;, J& = with Jit =
i JN;
ki xk; NixNj
(i) If i > 4, then k; < kj, J¢; = ( JE 0 ) with J7; = ( Iy, 0 ) '
ki xk;j NixNj

(ii) If i = j, thenJ?, = J¢ with J& = J§..
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Define

Jklp
i,
FY(0) =Y = = ,
ey NxN
kajn—1
and F, (X (0)) = X = (Xi;)i,_; + Qn with X;; = xgngA.
a=0

(2) For morphisms, if H(0) = (H(0);;);;—; € Hom((X(O)l,Y(O)), (X(0)2,Y(0))), then by
ki) =1
direct computation we have H(0);; = Z hi9

k(l]

Then from what we get in Section 5.2.3, the functor F,, gives a categorical equivalence
between C;, and Dy, .

Note if

C,, = the representation space of all n-dim A-modules,

D,,, = the representation space of all np-dim W-modules,

then by the decomposition discussion in Section 5.1, we have

C.=]]cs Duw=]]D

keK keK
so we get the following Corollary:
Corollary 5.3.1. There is a categorical equivalence between C,, and Dy .

Since

rep(I1°(T H Cn

neZ

85



rep(IT' (1) = [ Do

ne’

then we get Theorem 1.3.4: for Jordan quiver I', there is a categorical equivalence
rep(IT'(T")) 2 rep(11°(T")).

Remark 5.3.2. Since we are not using finite field, we can not get the stack function u as
what we did in 4.5, but we can denote L =| K |, and using motivic counting to get a similar

function pu.
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