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INTRODUCTION

Physically, free or natural convection flow arises from
a difference in density in the fluld. Visuallize a heated surface
exposed to colder air in a room. Since the density of alr near
the heated surface 1s less than that of malnbody of the air,
buoyant forces cause an upward flow of alr near the surface.

If the surface were colder than the alr, because of greater
density near the surface, the gir would flow downward. In
elther case heat 1s conducted through the air layers and is
carried away by bulk motion or convection. Although both
conduction and convection are involved, the process is called
"natural" or "free" convection.

In recent years, there has been a growing interest in the
use of low-melting metals as heat transfer media. Liquid metals
have had limited applications in the field of heat transfer,
but the developments in handling and metering liquid metals and
thelr suitability for high temperature, high-heat-flux applica=-
tions have led to a considerable amount of theoretical and
experimental investigation in this field. Liquid metals have
been used extensively to cool valves in alrcraft engines.

Power generation using mercury instead of water as the working
fluid in boilers has been carried out commercially since 1922,
The present interest in liquid metals in the field of heat
transfer stems from their use in atomic reactors. The use of

nuclear reactors in spacecraft or satellite systems has been



suggested and the cooling of such reactors would be in general
achleved using liquid metals., The natural convection effects
may be quite significant and, in fact, there may be an advantage
in eliminating the pumping system and using natural convection
for heat transfer,

Theoretically, the natural convection phenomenon has been
of interest in that it represents a system of coupled differential
equations. This coupling results from the fluld flow being
caused by the temperature gradient in the thin boundary layer
surrounding the heated object. These equations and their
solutions have been subject of numerous papers, However,
experimental verifications of the analytical work have not been
as numerous.

This work experimentally investigates the laminar, steady,
two dimensicnal, free convection heat transfer from a vertical
flat plate with a uniform heat flux, immersed in mercury at
rest., The work is especially directed toward the condition of
low Grashof numbers (Gr;) where appreciable deviation from the
boundary layer theory are predicted by the perturbation analysis.

There have been no experimental investigations for flulds at

semall Grashof numbers.



REVIEW OF LITERATURE

This review 1s concerned with research in the field of
natural convection heat transfer, the results of which have been
published until early 1970. Recent llterature has been
especlally well surveyed.

In 1881, L. Lorenz [83]* presented, in his ploneer paper, a
theoretical analysis for natural convection from a vertical,
isothermal, flat plate in alr at rest. He assumed that the fluid
flow was parallel to the plate, and that the fluld temperature at
any point depended only on the distance from the plate. Although
inadequate assumptions were used, hls results were in agreement
with the then-existing experimental results. In 1928, Nusselt
and Jurges [96] improved Lorenz's work by taking into account
his improper assumptions, and measured the temperature field in
air at 100° c.

In 1904, L. Prandtl [103] simplified the Navier-Stokes
equations by dividing the flow into two regions; a thin boundary
layer along the solid surface where viscous effects were
important and the velocity gradient normal to the wall was large,
and a bulk flow reglon where viscous effects could be neglected.
The first exact#** solution of the boundary layer equations for

the case of an isothermal vertical flat plate was developed by

* The number corresponds to the reference in the Bibliography.

#% A solution which is obtained using a similarity transforma-
tion is conventionally called "exact", even though the
solutions are obtained numerically via the digital computer,



E. Pohlhausen. In 1930, he appliea a similarity transformation
method he had used in 1921 [101] for the boundary layer on a
semi-infinite flat plate parallel to a uniform flow., He showed
how the resulting partial differentlal equations could be
transformed into ordinary differential equations with a single
independent variable, l.e., a similarity variable. Pohlhausen
obtained a numerical solution of these ordinary differential
equations for a Prandtl number of 0.733 and compared the results
with experimental values of the temperature and veloxity gradients
in air which were measured by Schmidt and Beckmann [120] in 1930.

An experimental correlation derived in 1934 by H. Lorenz
[847] based on measurements on a vertical hot plate in oil was
given by Schlichting [118]. In 1935 and 1936, Weise [152] and
Saunders [108], obtained extensive data for short vertical plates,
which were later correlated by McAdams [91].

In 1939, Saunders [10?] also presented approximate solutions
for air and compared his results with those of Pohlhausen [120]
and Squire [53]. Saunders obtained some experimental data for
mercury and water and appears to have been the first to study
free convection in a liquid metal. However, the plate he used
was attached to a surface of fireciay containing a heater coil,
and it was a portion of the wall surface. Therefore, it had no
leading and trailing edges.

In 1946, H. Schuh [122] extended Pohlhausen's calculations
to high Prandtl numbers of 10, 100, and 1000, and Sugawara and

Michiyoshi [138] obtailned numerical solutions for comparatively



small Prandtl numbers of 0.03, 0.09, and 0,5.

In 1953, Ostrach [98], starting from the complete steady
state equations for varlable properties, determined the
conditions under which E. Pohlhausen's equations adequately
describe the physical process. These equations were then solved
numerically for various Prandtl numbers: 0,01, 0.72, 0.733, 1,
2, 10, 100 and 1000, Ostrach compared hlis solutions with the
experimental data in air by Schmidt and Beckmann [120], and
pointed out that, in general, the agreement was good for small
values of the similarity variable and less satlisfactory for
larger values of the similarity variable.

All the approaches mentioned so far were concerned with
isothermal vertical plates or planes. The present work, however,
is concerned with a uniformly heated, vertical plate. In 1956,
Sparrow and Gregg [131] analyzed laminar free convection from
a uniformly heated (constant heat flux), vertical, flat plate
by determining a simllarity transformation which would reduce
the boundary-layer equations to ordinary differential equations.
These equations were solved numerically for Prandtl numbers of
0.1, 1, 10 and 100, and Dotson's experimental data [ 23] for
air were used to verify the theory. In 1964, Chang, et al.

[15] extended Sparrow and Gregg's solution to small Prandtl
numbers of 0.01 and 0.03 for ligquid metals.

In 1955, Sparrow [129] used the approximate Von Karman-
Pohlhausen integral method to solve the boundary layer

equations for natural convectlon from a vertlcal plate with a



nonuniform wall heat flux and wall temperature for Prandtl
numbers of 0.01 to 1000. Results for the case of constant heat
flux were 1n good aéreement with those obtalned using the
similarity transformation [131].

In 1956, Finston [38] showed that according to the boundary
layer theory the problem of free convection past a vertical
plate had an exact solution for a surface temperature which 1is
proportional to a power of the distance from the leading edge of
the plate. Foote [39], in 1958, extended Finston's method and
obtained the solution by asymptotlic expansions, and Niuman and
Pohlhausen [94] numerically evaluated Finston's equations for a
Prandtl number of 0.,733.

Sparrow [1287], in his 1956 Ph,D. Thesis, included the
temperature dependence of physical properties when he solved
boundary layer equationsrfor an isothermal, vertical, flat plate,
He developed a reference temperature for perfect gases and
liquid metals (mercury) so that the results from the constant
property analysis could be used to approximate the values of
temperature-dependent physical properties. Sparrow and Gregg [133].
in 1958, extended the analysls to treat the varlable fluid-
property problem in free convectlon. Tanaev [142]. in 1956,
studied the effect of varliable viscosity on laminar free convection
of a gas. Gebhart [45], in 1962, 1lndicated that viscosity
dependence could result in an inflexlon point for gases at low
temperature or for higher Prandtl number flulds whose viscosities

are large.



In 1959, Fujii [41] applied a modified integral method for
laminar free convectlion from a vertical flat plate and supple-
mented Squire's approximation [54]. He also treated non-
isothermal surface problems. In addition, he analyzed turbulent
free convection from a vertical surface [40]. Bobeo [6], in
1959, also used the integral technique to obtain an approximate
solution in closed form to the problem of nonuniform wall heat
flux,

In 1960, Yang [156] established the necessary and sufficlent
conditions required for the existence of simllarity solutions to
the problem of steady and unsteady free convection on vertical
plates with varlious surface temperature distributions.

Then in 1961, he presented an improved integral proéedure
for compressible flulds in laminar natural convection near a flat
vertical plate [153].

In 1962, Gebhart [42] investigated the effect of viscous
dissipation in the natural convection boundary layer close to
a vertical flat plate, and concluded that the effect is small
for all Prandtl numbers where the only buoyant force constitutes
body force., Acrivos [2] showed how an approximate‘but accurate
expression could be obtained for the rate of heat and mass
transfer in laminar boundary-layer flows by plecing together
certain asymptotic scolutions. Acrivos pointed out that free
convection is mathematically similar to forced convection if the
veloclty is replaced by a characteristic velocilty,

Scherberg [114], in 1962, investigated the effect of leading



edge configuration, and found that it did not affect the velocity
and temperature profiles at sufficlent upstream distances except
shifting the relative starting point of boundary layer.
Scherberg [112], in 1965, extended his previous work by matching
the solutions at the leading edge with the known solution
immediately above this reglion. Arbitrary surface temperature
variations along a vertical flat plate were treated in 1964 by
Scherberg [113] using an integral technique.

In 1958, Schecter and Isbin [111] presented theoretical
and experimental analyses of natural convection heat transfer
in water at 4° C where water has its maximum density. Similarity
equations for an isothermal plate were solved on an analog
computer, The results indicated that fluid motion should occur
in both the upward and downward directions simulfaneously.
These results were verified'experimentally on a one-foot square,
vertical, aluminum, isothermal plate lmmersed in a large container
of water, Goren [56], in 1966, solved this same problem (without
any knowledge of Schecter and Isbins' work) and concluded that
the convection currents would be reduced, Vanler and Tien [14?]
extended Goren's work in 1967. They showed that heat transfer
coefficients investigated by Goren were too low by 15 per cent
and were restricted to plate temperatures of less than g° Ce
They found more accurate solutions which are applicable to plate
temperatures of up to 35° Ce

Most of the analytical solutions of laminar free

convection presented up to 1964 were based on Prandtl's boundary



layer assumptions which apply for large Grashof numbers,
In 1964, Yang and Jerger [158], presented for the first time
a perturbation analysis which they expected to be more accurate
for moderate Grashof numbers., Thelr analytical method was
similar to that applied by Kuo [76] to forced convection flow
over a horizontal plate, However, the free convectlion problem
is more complicated due to the coupled motion and energy equations.
Numerical solutions were presented for Prandtl numbers of 0.72
and 10,

In 1965, Suriano, Yang, and Donlon [139] developed a
perturbation method for extremly small Grashof numbers (less
than one). In 1968, Suriano and Yang [140] extended the previous
work [139] for small and moderate Grashof numbers (Rayleigh
number from 1 up to 300) with Prandtl numbers of 0,72 and 10,
They concluded that effects of viscous dissipation were
negligible, and that the effects of Grashof number (or Rayleigh
number) on the free convection phenomena may be broken down into
three regions with different characteristies. For Rayleigh
numbers up to unity, heat is transferred by pure conduction
and slow flow field wvarles about linearly with Grashof numbers,
In the Rayleigh number reglon from one to about fifty, convection
effects start to be increasingly more important, whille
conduction still persists, especlally in the ilmmediate neigh-
borhood of the plate. For Rayleigh numbers above fifty, a
boundary layer type of behavior 1s developed along the vertical

plate., This 1s accompanied by sharp increase in Nusselt



10

numbers. Surlano and Yang lndicated that as Rayleigh number
increases beyond 300, both the flow and energy fields would vary
monotonically toward true boundary layer behaviors. The
numerical results were compared with the exlsting experimental
correlations [13, 59, 65, 91] and it was claimed that, even
though there exlst discrepancies between the theoretical and the
experimental results, this theoretical work could be considered
as reasonable, considering the order of magnitude of discrepancies
between the experimental correlations.

The perturbation analysls assumed that streamlines leaving
the trailihg edge of the plate would essentlially be parallel to
the plate. Yang [154], in 1964, theoretically studied the
momentum and energy flelds in this laminar wake region above the
plate. He carried out numerical calculations for Prandtl numbers
of 0,72 and 10, and found that spreading of the boundary layer
was rather gradﬁal and that the assumption of streamlines parallel
to the plate was well Justifled.

In 1966, Chang, Akins, and Bankoff [16] extended Yang and
Jergers' [158] perturbation analysis to the case of a uniformly
heated plate. They presented numerical solut;ons for Prandtl
numbers of 0,01, 0,03 and 0.1l.

In 1969, Julian and Akins [68] carried out experiments on
natural convection from a uniformly heated, vertical, flat plate
in water and mercury in the range of moderate Grashof number,

The results were in good agreement with the similarity and

integral solutions to the boundary layer equatlions, The dimenslion-
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less profiles also showed the trends, with position up the
prlate, predicted by the first order perturbation analysis [16].
The present work shows the experimental results on natural
convection as an extension of Julian and Akins' work, especially
at low Grashof numbers where appreciable deviatlion from the
boundary layer solutlion was predicted.

In 1967, Hayday, Bowlus, and McGraw [60] numericallylsolved
a nonsimilar free convection problem, the nonsimilarity of the
flow being generated by step discontinuities in surface
temperature. Results were compared with experimental correlation
of Schetz and Eichhorn [117] and formed a theoretical basis for
their experiments.

In 1967, O'Brien and Shine [97] investigated some effects
of an electric field on heat transfer from a vertical plate in
free cénvection. They showed that the local heat transfer from
a vertical plate increased significantly in the presence of a
large electric field.

Gebhart, Dring, and Polymeropoulous [50], in 1967, studied
the transient natural convection from a verticél sheet following
a step input (with time) of heat. Gebhart and Dring [49], in
1967, showed the rate of propagation of leading edge effects
up the plate. Also in 1967, Polymeropoulous and Gebhart [102],
presented the results of an experimental investigation of the
behavior of artificlal disturbances produced by an oscillating
ribbon in the free convection boundary layer over a vertical

uniform flux plate. Dring and Gebhart [24], in 1968, theoreti-
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cally investigated the nature of instability and disturbance
amplification for the basis of Polymeropoulous and Gebharts'
experiments [102]. In the same year, Knowles and Gebhart [?2].
showed that thermal capacity coupling exlists between ‘the fluid
and the wall which generates the flow. 'This coupling was shown
to have a first order effect for particular Grashof-number
Wave-number products. In 1969, Gebhart [47] summarized what was
known at that time concerning the inciplent instability and
transition of laminar flow.,.

In 1968, Takhar [141] presented a numerical solution for
the development of free convectlon from a semi-infinite flat
plate, which was 1sothermal up to a certain length from the
leading edge and was insulated for the rest of 1ts length., He
pointed out that at the insulated pért above the isothermal part
of the plate, the velocity and temperature dlstributions behave
as if the heated part were put in as‘a line source of heat at
the base of the insulated part.

In 1967, Tien [143] applied an integral method to study the
laminar natural convection heat transfer from both an isothermal
and a non-lsothermal plate to a power-law fluid., Tien and Tsue
(1447, in 1969, presented an approximate solution for the
problem of determining the laminar natural convection heat
transfer between a vertical, isothermal plate and a fluid whose
rheological behavior is characterized by Ellis' model. The
results were obtained by integral method and compared with

available experimental data.
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In 1968, Sparrow and Guinle [135] investigated the
deviations from classical boundary layer theory at small Prandtl
numbers, They evaluated effects of transverse pressure
variations, and streamwise shear stress and conduction phenomena,
which are neglected in the conventional boundary layer theory.
It was shown that for very low Prandtl numbers, the Grashof number
must be quite large in order that the classical boundary layer
results are applicable., It was also pointed that the local heat
transfer exceeds that of classical boundary layer theory.

In the same year, Cygan and Richardson [22]-used a transcen-
dental approximation to the velocity and temperature profiles to
obtain integral solutions of the natural convection boundary
layer at small Prandtl number,

Papailiou and Lykoudis [100], in 1968, performed an
experiment to show the effect of a magnetic fleld on a laminar
natural convection of electrically conclucting fluid. The case
examined in this exﬁeriment was that of a vertical hot plate
of uniform temperature with mercury as conducting fluid, in the
presence of a transverse magnetic field., The existence of
similarity solutions theoretically investigated by Lykoudis [85]
and independently by Gupta [58] in 1962 was fully established by
the experiment.,

Experimental results investigated in 1968 concerning
turbulent natural convection from a vertical flat plate were in
general agreement with each other even though there were some

discrepancies in a number of the details. Cheesewright [18]
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performed an experiment and comparison was made with predictions
of Eckert and Jackson [28]. It was in good agreement. Another
experimental study carried out by Warner and Arpaci [151] showed
that their results were in good agreement with analytical
correlation of Bayley [?], and that the use of power law
temperature profiles 1s undesirable for the case of turbulent
natural convection. The absence of a laminar sublayer was noted
in another study carried out by Lock and Trotter [82]. Kato,
Nishwaki, and Hirata [70] predicted the turbulent velocity and
temperature profiles using eddy diffusivifies similar to those
found in forced convection., New criterion was proposed for
transition. In 1969, Vliiet and Liu [150] conducted an
experimental investigation on turbulent natural convectlon from
a constant heat flux, vertical plate in water. Thelr results
showed that natural transition occurs in the range of Rayleigh

12 ¢4 101%,

number from 10
In 1969, Nishikewa and Ito [95] theoretically studied the

laminar free convection from an isothermal plate to fluids,

water and carbon dioxide, at supercritical pressures, taking

into account temperature dependence of all the physical properties,
Yung and Oetting [159], in 1969, presented the results of

experimental work on the free convectlon heat transfer from a

heated flat plate in ailr moving from the vertical position

through three inclined positions to the horizontal posltion.

Vliiet [149], in 1969, presented experimental local heat transfer

data for natural convection on constant-=heat flux, inclined
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surface in water and alr. The data extended to Rayleigh number

of 1016, covered angles from the vertical to 30 degrees with the
horizontal, and included the laminar, transition, and turbulent

regimes.

MacGregor and Emery [88], in 1969, theoretically and
experimentally investigated the effect of Prandtl number, Grashof
number, Rayleigh number, aspect ratio, and ﬁarlable propertlies
on the free convection through vertical plane, They divided flow
regime into flve divisions and presented corresponding Rayleigh
numbers, Results were compared with other experimental
correlations [ 25, 35, 77].

Sparrow and Husar [136], in 1969, conducted experimental
investigation on the free convectlion from a flat vertical surface,
the leading edge of which is not horizontal., They pointed out
that the three dimensionality of the problem due to non-horizontal
leading edge could be reduced to quasi-two dimensional, because
of very small spanwise veloclities and as the result of an order
of magnitude estimate. _

Kuiken [74], in 1969, developed a method, using & singuler
perturbation technique of the type described in the book of
Van Dyke [146]. The method is free of the objectionable features
of the integral method and similarity transformation, but it
maintains the adfantages of each, l.e., accuracy from similarity
transformation and explicit Prandtl number from the integral
method. He solved the first and the second perturbation

solutions using matching principle to the inner flow (boundary
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layer flow) and outer flow (inviscid flow). Kuiken [?75], in
1969, theoretically studied free convection past a vertical

plate for a general class of nonlinear wall temperature distribu-
tions., He developed a method which makes it possible to find

two series solutions, One 1is for small distance up the plate and
the other is for large distance, and both are applicable to

the same wall temperature distribution. An overall valid
solution wﬁs obtalned through graphical Jolning of two solutions.,

Again in 1969, Merkin [92], investigated the effect of
buoyancy forces on the boundary layer flow over a semi-infite
vertical flat plate in a uniform free stream. When this
buoyancy force acts in the direction of the free stream, he
indicated that two series solutions can be obtained, one which
holds near the leading edge and the other which holds far down
stream. When the directlon of buoyancy force 1is oﬁposite to
that of free stream, a series, valld near the leading edge was
obtained and it was extended by a numerical method teo the point
where the boundary layer was shown to separate,

Here some experimental technlques on natural convection for
measurement of flow and energy flelds are summarized. Conventlon-
ally, local temperature profiles have been easily measured by a
single movable and/or several fixed thermocoﬁples. Many
difficulties have been involved in measurlhg flow field. Visual
technigues have been generally used for measuring the veloclity
profiles and sometimes for temperature proflles.

The dimensions of the boundary layer and also the temperature
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profiles were first observed visually about a horizontal tube
using a Schlieren photograph by E. Schmidt [119] in 1932. A
more advanced device, the Interferometer, was developed by Mach
and Zehnder [110] and was used by Kennard [71] and later by
Eckert and Soehngnen [ 29, 30] to study isotherms in air about a
vertical plate in laminar and turbulent free convection.
Goldstein and Eckert [55] and Schetz [116] used the Mach-Zehnder
interferometer to observe steady and transient free convection.
Schetz and Eichhorn [117] used both Schlieren and Mach-Zehnder
interferometer to study the temperature and flow flelds adjacent
to a vertical plate subjected to a spatlally discontinuous surface
temperature. Simon and Eckert [125] used the interferometer to
observe laminar free convection in carbon dioxide near its
eritical point and Hill [64] used it to study natural convection
from a nonisothermal vertical plat plate in alr and water.

Eichhorn [32], in 1962, devised a new method for measuring
small flow velocities by using photographlic techniques to measure
the trajectories of small dust particles carried with the flow.
Eckert, Hartnett, and Irvine [27] studlied experimentally three-
dimensional process of transition to turbulence in air by the
introduction of thin threads into the heated free convection
layer.

Gebhart and his co-workers used a Mach=Zehnder interferometer
to measure the transient natural convectlon response [50], to
investigate the leading edge effect in translent natural convection

[49], and to observe the approximate location of neutral curve
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after artifical disturbances were initially given [102],

0'Brien and Shine [97] observed the distortion of the
boundary layer in the vicinity of an electric field by use of
an interferometer.

Cheesewright [18], in 1968, developed new experimental
measuring technique. He used fine wire, platinum resistance
thermometer to measure the temperature and the thermometer was
also used as a hot wire anemometer. Electrical current through
the wire and wire temperature were used to calculate the Nusselt
number., The corresponding Reynolds number for flow past the wire
was determined from a calibration graph, thus permitting the
flow veloclty to be calculated.

Vliet and Liu [150], in 1969, used a combined time-streak
marker hydrogen bubble method to observe the flow pattern in the
x-y plane (normal to the test surface) as well as in the x-z
plane (parallel to the test surface). A film type B-lA 16-mm
movie camera was used to record the hydrogen-bubble motions as
observed through a mirror box.

Sparrow and Husar [136], in 1969, applied the flow
visualization technique to investigate the effect of non-
horizontal leading edge. The flow was made visible by local
changes of color of the fluid itself, the color change resulting
from the change in pH. Thymol blue was used as pH indicator,
which is blue in basic solution and yellow orange in acidic
solution. Initilally the solution was made acidic and yellow,

and when small d.c. voltage was impressed between the test surface
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(negative electrode) and copper billet (positive electrode),
there was a proton transfer reaction at the test surface. A4s a
result, there was a change in pH of the fluld, with a
cooresponding change in color from yellow to blue. This process

did not give rise to density difference within the fluid, so

no extraneous buoyancy forces were induced.,
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THECRETICAL ANALYSIS

The problem of laminar natural convection heat transfer
from a uniformly heated (constant heat flux), vertical plate will
be analyzed to glve the theoretical baslis to this experimental
work., Consider a vertical flat plate of zero thickness, infinite
width, and finite height immersed in a large amount of fluid
initially at rest. Heat transfer will occur from the thin plate
to the fluid due to conduction and convection (radiation will
be neglected). Electrical energy 1is passed through the p1ate to
generate the uniform heat flux.

A nonuniform temperature fleld is established near the
plate, which causes the fluid adjacent to the plate to be set in
motion because of density differences resulting from temperature-
dependence of fluld density. Assumling no slip at a solid-fluid
interface, the fluid next to the plate (as well as the fluid far
away from the plate) will not be in motion.,

A rectangular Carteslan coordinate system 1s adopted as shown

below.

-
-
-
- -

_,—_,,.———r—’"""—_— Direction of
Gravity force

/ y'
1.-—"""f- Infinite plate in z-direction
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The origin 1s located at the leading edge of the plate and
plate itself 1is defined by 0£ x <L and y = 0, The direction
of gravitational fleld is chosen to be parallel and opposite to

the X-coordinate. The complete and exact equations of continuity,

momentum, and energy are [8]:

Continulity:

4T V=0 (1)

Motion:
DV - s
— - = L] ‘t' - 2
G(Dt) 7 7P + 08 (2)
Energy

DI) - % « T - T(38),(FT) - 7 177 (3)

Assuming steady state, a Newtonian fluld, constant thermal
conductivity, incompresslible fluid, no viscous dissipation, and

two-dimensional flow, equations (1) through (3) reduce to 1

Continuity:

2u 2V 0 (4)
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Motiont
PP L P(sz * EEE) - 22 . eg (5)
2X B oy 2 ?2X X
e(u2T 4 v 20y _ u2% 2%, 2P (6)
2X ay” T 2y 2 2y 2 2y
Energy :
2
u-a—.I-'-rv?E:a(-?—I-F?-Z-T-) (7)
2X 2y %2 ?y2

In free convection, the body force ls important, because
it gives rise to buoyancy which generates fluld motion. Physical
properties except density are assumed to be independent of
temperature and will be evaluated at a reference temperature,
The density ls assumed to be variable only in PE, which brings
about buoyancy to generate free convection, This term will be
expanded in a Taylor series in temperature about the reference

temperature TRI

2
'32:3) (T - TR) o
'aTz TH 2! DX‘F---

(8)

- 2p -
P8y = P8 T + (’a'I‘)TR(T ’I'R)s)c + (
R

Taking the first two terms and introducing the coefflcient of

volume expansion, reduces equation (8) toi
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X

= P - PB (T - T,)
08 sxlTR ITR & R (9)

The components of pressure gradient in a static fluid far

from the plate arei

2P _

5% = ~ P&y (10)
2.0 (11)
2y

Assuming the incremental increase 1n pressure due to fluid
motion near the plate to be negligible, equations (10) and (11)
for stationary fluld can be used for moving fluid in laminar
natural convection, Substitution of equations (9) through (11)

into the equation of motion yields:

2 2
2u 2U 2 u 27
i B2 s e e T = T (12
o= ¥ v(axZ # 3y2) + Be( ) )
2 2
2V 2V 27v 27y 1
“ﬁ*"a—y—"(—uz*?‘yz) w3

The boundary conditions for equations (4), (7), (12) and (13)

aret

u=0 (no slip at the plate), at y = 0 and 0 < x < L

v=20 (no suction or injection), at y = 0 and 0 < x < L
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(constant heat flux), at y = 0 and 0 < x < L

u - 0 (no bulk motion), at y =+ = and all x

v — 0 (no bulk motion), at y —» *® and all x

T -+ T, (constant bulk temperature), at y =+ and all x

(14)

Prandtl [103] used an order of magnitude afgument to
simplify the Navier-Stokes equations in boundary layer. Applying
the general boundary-layer assumptions to equations (%), (7), (12)
and (13) yields:

20 2V
x*toy =0 - (15)
R R 2% Bg (T - Ty) (16)
'ax"' 2y - ?yz* Ex B

27 2T ?aT
uﬁ-rva-i:a;}-é (1?)

Note that conduction in the x-direction has been neglected and
that these equations are valid for large Grashof numbers.
The boundary layer equations (15), (16), and (17) will be solved

by two methods, simllarity transformation and integral method.

SIMILARITY TRANSFORMATION METHOD

The stream functions are defined asg

LK (18)
Yy
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e S (19)

Substitution of the stream functlons defined above into the

boundary layer equations (15), (16) and (17) glves:

& 2
L A A S (20)
2yex 22Xy

2 2 3
F Ty Y v rise’s
3V 3% 3% 52 =Y _j“a.v + pg(T - Tg) (21)
7 20 _ ¥ 3T _ o 3% (22)
2y X ?X 2y 2

It is apparent that continuity equation is satisfied,
Sparrow and Gregg [131] transformed the partial differential
equations (21) and {22) to ordinary differential equations by

introducing following similarity varlablesi

cr¥ 1/5
= (=) & (23)
Gr¥ -1/5
Ry = (%) 3% (24)
Gr; /5
B(YL) = (—3—) = (T - Tw) (25)

where Gr; is modified Grashof number which is defined as:
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Gr; = gaxuq /kvz

By substituting the similarity varlables into the definition of
stream functions and integrating with respect to y and x,
respectively, expresslions for the veloclty components u and v
can be found. Expression for temperature can be obtalned by

rearranging equation (25). They are:

G.r* 2/5
u = %(.335 F' (%) (26)
* 1/5 .
vo2 i’;'_}.n [RF' () - 4F(v)] (27)
Ggr* -1/5
ro =5 L e e, (28)

After substitution of the similarity variables and considerable

manipulations are made, equations (21) and (22) reduce toy

F o+ 4FF" - 3(F)% 4 0= 0 (29)

6" 4 Pr(46'F - 6F') = O (30)
subject to

F(0) = F'(0) = O

8'(0) = =1 (31)

F'(=) = 8(=) = 0
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Sparrow and Gregg [131] solved equations (29), (30) and (31)
numerically on a digital computer. Other necessary boundary
conditions, 6(0) and F"(0), to solve equations have to be gussed
until a solution satisfles all the known boundary conditions,
The only parameter to this solution is the Prandtl number,

They obtained results for Prandtl numbers of 0.1, 1, 10 and 100.
Chang, et al, [15] extended the solutions to Prandtl numbers of
0,01 and 0.03, Flgure 1 presents dimensionless temperature
profiles versus v for various values of Prandtl number.

The dimensionless temperature profile was determined from

%%%%. as can be seen from equation (28). The velocity profile

can be obtained from equation (26) and the computed values of

F'(v). They are:

#*
Gry 1/5
=% )
eyL T-Tw
6(0) = T, - T (32)
(=)
. v
F(U:;ﬁ?g—)—zﬁu
5

F'(q) is plotted versus q_for various Prandtl numbers in Figure 2.
Next we look at Sparrow and Gregg‘s [131] presentation of

the heat transfer results. The surface temperature profile

developed on the uniformly heated plate can be evaluated from

equation (28) by setting v = 0O
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Gr; -1/5
TW - Tw = (—5"') (HT{—X) 6(0) (33)

Rearrangement of equation (33) gives:

T = Too |
-—__: — Gr;1/5 - 5%/50(0) (34)
( = )

Introduction of local Nusselt number which is defined as

h_*»x qQ *X

X
Nux = X = k(Tw _— ) (35)

00

reduces equation (34) to 1

1
Gry /5

Nux

1
= 55 50 O (38)

Since the values of 6(0) change with Prandtl numbers equation
(36) can be plotted versus Prandtl number. Figure 3 presents
this relation, and can be used to give approximate values of
8(0) for other Prandtl numbers to solve the boundary layer

equations.

INTEGRAL METHOD

This method was developed by Von Karman and Pohlhausen.

The similarity solution ecan only be carried out with the aid of
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an electronic computer, because a completé calculation is so
cumbersome and time-consuming. It 1s desirable to possess at
least approximate methods of solution, to be applied in cases
when an "exact" solution of the boundary layer equations cannot
be obtained with a reasonable amount of work. Such approximate
methods can be devised if we do not insist on satisfying the
differentlal equations for every fluid particle, Instead, the
boundary layer equation is satlsfied in a stratum near the wall
by satisfying the boundary conditions, together with certain
compatibility conditions. In the remalning region of fluid in
the boundary layer, only a mean over the differential equation is
satisfied; the mean belng taken over the whole thickness of the
boundary layer. Such a mean vélue is obtained from the momentum
equation, which is, in turn, derived from the equapion of motion
by integration over the boundary layer thickness.,

Integration of continuity equation, (15), gives the
expression for the normal veloclty compgnent. v, and substitution
to the expression in the equations of the motion and energy,

(16) and (17), gives:

y 52
w2 o[ Hay] oy Ly pe(T - Tp) (37)
0 2y
?;T—[fyﬂay]’-?-a-ﬁ | (38)
1 3% 0 2% 2y T 2
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Assuming that momentum and thermal boundary layers have the same
thickness 6(x), equations (37) and (38) will be integrated over

this boundary layer:

6 y
[owsgay - J 3500 5% andy

5 52, 5

=Y !0 - Y * B8 IO(T Tq)dy (39)
6 6 y 6._2
2

lulgar -1 U R andy =l 25 ay (40)

The associated boundary conditions are:

U= V=0, q-= dg at y=0 and 0 < x <L i)

= 0at y= 6 and 0 «c x < L

c
[}
O
3
1]
=
uld
<|le
"
o
d'd
i3

Evaluation of equations (39) and (40) term by term and then

rearrangement of those terms ylelds:

5 3
21 2u
24 gy - - T )dy - v (22
.2 Io usz dy = gB IO(T TH) y (?y)y=0 (42)
6
5
fo(u%—,}lénr T%-Tm%)dy=-a(¥y'=-_0 (43)

Equations (42) and (43) can be rewritten to agree with Sparrow's

[129] starting equation:
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6 ]
d 2 U
&, v = es IO (T - Tpldy =V (55), o (4)
o} ° aT
Ei- !0 u(T = Tm)dy = =0 (-ay)y_:o (45)

Sparrow pointed out that equations (44) and (45) are the
conservation equations for an element of the boundary layer.
Sparrow approximated the veloclity and temperature profiles

by the following egquationst

2
po1 = B0y (46)

“- e - p° o

where Ww(x) is a "veloclity function" and must be determined along
with 8(x). Equations (46) and (47) are substituted into the
equations {(44) and (45) and then the integration is carried out;
The integrations yleld & palr first-order, ordinary differential
equations, which are then solved for w(x) and 6(x); The results
agreed well with those obtained by use of a similarity
transformation.

Both the similarity transformation and the integral method
discussed above are based on the boundary layer theory which is
applicable to natural convection at large Grashof numbers, l.e.,
a thin boundary 1layer ., The boundary layer assumptions may not

be valid for the fluid with small Prandtl number and with small
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Grashof number. Therefore, a method was developed to solve the
problem without boundary layer assumption. It is called
perturbation technique which may be used for the fluid at small

and moderate Grashof numbers,

PERTURBATION TECHNIQUE

Before this technique was developed by Yang and Jerger [158]
in 1964, all analyses of natural convectlion had been based on
laminar boundary-layer equatlons which are physically only
adequate for large Grashof numbers. More precisely, they
represented asymptotic solutions to the complete Navier-Stokes,
continuity, and energy equations for Grashof numbers approaching
infinity. For cases where the boundary layer approach 1s not
valid, the perturbation method may be applied. They formulated
the zeroth-order and the first-order perturbation equations, and
solved them numerically for the Prandtl numbers of 0,72 and 10,
Then the zeroth-order equations were shown to be the same as
general boundary layer equations.

As pointed in the Review of Literature, all the work by
Yang and his co-workers has been concerned with the isothermal
plate and with two Prandtl numbers (alr and water). Chang, Akins,
and Bankoff [16] made a theoretical analysis of the case of
constant hest-flux, verkical plate in 11lquld metals. Sinpe
the present experimental work was directly related with the

latter case, thelr work will follow,
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The governing equatlons without the boundary layer

simplifications and with viscous dissipation neglected are:

22U 2V
Sy =0 (e}
2 24
22U 2u 27U 2 2P
D(uﬁd-v'-sy) =}1(3—x-2+;;2)——i- Pg + ?SB(T - TR)
(49)
2
2V 2V ?2v 25V 2P
Plu 2 e vIP =M 2D -5 (50)
u?.?....v?-?.:a(ﬁq-ﬁ) (51)
o 2y sz ?yZ
The boundary conditions assocliated with present problem are:
-V = - -k 2I - < x<
UW=VvV=0, qg=-=k 5% ly=0" at y = 0 and 0 £ x < L
(52)

U =+ 0, VvV == 0, T—o-Tm.p—rpm at y ==

The following dimenslonless quantities are introduced with the

stream functions defined as equations (18) and (19).

X

‘3_(= 'E"n -.‘;:'i' G (53)
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_ o, (e - pet® gL’
v Gr¥ ov2or /5 vzc_rf\‘/s
" (54)
(T - T )k
s o3, e} o EEL3
q kv
- ul - 3F vL
U = = » V= === = * (55)
2y Gr}:v ?x  Gryv
_ 1/5 L .
X=X, Y= GI‘; Yo ¥ = GI'Z /5:!?' (56}

Then equations (49), (50) and (51) are transformed, respectively,

toi

#=2/5

¥y¥yy = Yy¥yy = =P, + G Yoy * Tyyy = G #+ ® (57)
Grp, (-TyTyx * YTxy)= = Py = 67 77 Ty
-l (58)
.1, . #2/5 |
¥Y®X-VX®Y=P1- (Gr 7@ . + @YY) (59)

where the subscripts denote partial differentiation with respect

to the variable indicated.
To solve equations (57), (58) and (59) by a perturbation

method, it is assumed that the function ¥, the pressure P, and

the dimensionless temperature (§) can be expanded in small
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constant parameter, viz.,

P = P(O) & GP(I) L3 éEP(Z) # ene (61)
0 1
@ - ®( )* é®( ) - 62 @(2) W e ‘62)

where the value of constant expansion variable 1s taken as
Gr;'l/ 2, which results from the smooth joining of horizontal
velocity components at the interface between the boundary layer
and the exterior. When this definition of £ , together with the
expansions of ¥, P, and ® , is éubstituted to equations (57),
(58), and (59), and the coefficlents of like powers of &£ are

equated, the following sets of equatlions result:

The zeroth-order perturbation equations are:

(0} _(0) (0)_(0) (0) (0) (0)
Yy T =¥y Yl = By 4 Yy -G @ (63)
- P:io) = 0 (64)
(0) i (0) (0) (0) 1 (0)
@ -y ® y = o= ® vy (65)

The first order perturbation equations are;

(0)_(1) (1) _(0) (0)_(1) (1)_(0)
v Yoo * Yy Yy "W Yy T ¥ Yy
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(1 1 1
=-px’...wfﬂ§+ ® ‘v (66)

- P@l) -0 e (67)

(0) m(1) 1 0 0 3 1
1Y e e - 1 e

(1)

-% On (60
by introducing new variables:
n= v/(sx)%/5 (69)
v(O _ (s0%5 rey | | (70)
8% . (5x)_1/5e(vl_) | (71)

the zeroth order perturbation equation can be reduced to the

following palr of ordinary simultaneous differential equations

F" & 4FF" - 3(F')2‘¢ 8 = 0 (72)

8" 4 LPXrF 8' - Pr F' 0 = 0 (73)
subject to:

"F(0) = F'(0) = ©
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6°'(0)

]
i
—

F'(m) = B(N} = 0

where the primes denote differenciation with respect to v .
Equations (72) and (73), along with the boundary conditions
turn out to be same as the equations (29) and (30) which were
obtained by the similarity transformation of the general boundary
layer equations.

Chang, et al, [16] obtained following set of first-order

variables:

o0 n+l/5

() 20E(=)ise () - E s ()] (74)

® M- 208=)(5x)" s @ () - zox—s—nﬁ— |01  (75)
N=

Wwhere Q) , and @h are functions of v alone, and

0’ fn' 00

o

S = = 0,8648064.4,

> 3 =
Zo TR DGR W

Substitution of equations (74) and (75) into the first-order
perturbation equations (66), (67) and (68) gives the following

sets of ordinary differentlial equations:
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w

n ' '

(76)
1 # ' - v
= 900 » uFeoo - 313900 0f g = ©
i I " tpe 1)F"
£+ WP, - (5n + 3)F £+ (5n 4+ 1)F £, * en = 0
| (77)
% 0 4 LF! - (5n =2)F'6, - Of! + (5n 4 1)0'f, = 0

where n = 0, 1, 2y 3, eeesy and the primes denote the differencia-
tion with respect to n These equations are to be solved

subject to the following boundary conditions:

£00l0) = f'oo(o) = 660(0) =0

(78)
foocm) = 1, 900("0) = 0
and
fn(O) - fﬁ(O) = GA(O) = 0
(79)

fﬁ(w) = 1, en(m) =0

Note thét first-order perturbation equations (76) and (77) include
constants which are variables in the zeroth-order equations,
Therefore the first-order perturbation equations have to be
solved with the zeroth-order perturbation equations simultaneously.

Finally, expressions for veloclty profile and temperature
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profile ares

oo 1/5
X/ OV ' 20F (e (] .)E.n:._
(GI‘?E 2/5 u="F (YL) +& T 5%) 5|:Sf00(11.) - nfO Sn+l n("z-)]
5 (80)
EUF(W) ) xn+1/5
. P00+ & = w75 B0 - E ST ()]
P 20F (0 o nel/5
v 0(0) + ¢ n(5x§ ) [S0,,(0) - nf %——— 6,(0)]

(81)
When these equatlons are compared with the zeroth-order velocity
and temperature profiles, equation (32), it is noted that both
the second term in right hand side in equations (80), and also
the second terms of numerator and denominator in right hand
side in equation (8l), are additional terms to the zeroth order
profiles., Equations (80) and (81) are definitely functions of
x, the distance up the plate, while equations (32) are not so.
Numerical results are plotted in Figures 4 and 5 for the
temperature profile and in the Figures 6 and 7 for the velocity
profile with the Prandtl number of 0.03 at Grashof number

(Grz) of 10? and 109, respectively., These results are from the

Reference [16].

RECENT THEORETICAL WORK

As mentioned in the prevlious chapter, Sparrow and Guinle

[135], in 1968, studied the effects of transverse pressure
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PERTURBATION SOLUTION
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Figure 4. Comparison of Temperature Profiles for

Pr = 0.03 When Gr} = 107 .
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Figure 5. Comparison of Temperature Pgofiles for
Pr = 0,03 When Grf = 107 .
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gradient and streamwlise second derivatives on the local heat
transfer in laminar free convectlion from an isothermal vertical
plate.

Complete governing equations are given: namely, equations
(4), (5), (6) and (7). After the expansion coefficlent is
introduced, egquations (5) and (6) are differentiated with
respect to y and x, respectively; then substraction of two
resulting equations and deletion of the pressure terms, yilelds a
single, consolidated momentum equation of higher order. The

perturbation solution is sought in the form:

Gr, 1/4 -~ i
® = (T - T@)/(TW -T) =8, () + €T () + .nn (83)
Gr. 1/4 (T, - T )x°
where ;i: % (—;E) ] er = 2 W.QZ = z » and E= Gr;l/z

Resulting two sets of equations are:

- L1

Fn 7 T 2 a
o *3TgT, - aATP "+ 5, = 0
_ o (84)
38 + JPr 066 = 0
— PR | | __l_. _IO - 1 00- _ d__
To =% . 6F'F - .8 = lEc
8,/Pr + 31,0, + 6f061 - 3,8, = 5 G(»)
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where F = ﬁf[-j?o?uf + 7TIT" - 2"6] +§i[6?g' - 5(?6)2
+ IET0] - 27 ?OF{') - 6T, (86)
and
c 1 - B — ' :
G = = 3 (5 n 85 96) (87)

for the simultaneous effects of transverse pressure gradient and
streamwise second derivatives.,

Equations (84) turned out to be the same as those for the
boundary layer theory for the isothermal vertlical plate.

Equation (85) is numerically solved subject to boundary conditions:

The quantity of primary interest is the local heat transfer

per unit time and area as given by Fourier's law

2T
q==Xk (;;)y‘:o (88)

In terms of the variables of the analysis, q 1s expressed as

q 1 -e‘i(o)
q erl/z ‘56(0)

(89)

where

k(r, - T, cr /M
qf = —1 () [-550)]
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g0 represents the local heat flux corresponding to the classical
boundary-layer solution.

Thus, the deviation of q/q% from unity is a direct measure
of the effects. The magnitude of q/qp depends on the ratio
Ei(O)/Eo'(O) and on the Grashof number er. Sparrow_ and Guinle
calculated the values of 3{(0)/@6(0) for the three separate
effect and the simultaneous effect. Those values for the

different Prandtl numbers are presented in Table 1,

Table 1, Values of 56(0) and Ei(o)/ﬁé(o)

81(0)/84(0)
Pr -6'(0)
0 5 2 27 SUM(simulta-
‘ ;geff ect o :;;,-g neous effect)

It should be noted that the longitudinal conduction #T/>x°
1s a dominant factor in deviation from the boundary layer theory
and that longitudinal shear 'f%/axz has negative effect, even
though it 1is small, In addition, the calculation reveals that

the effects are largely accentuated, when the Prandtl number
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decreases, Considering the simultaneous effect, the value of
the Grashof number for the Prandtl number of 0.03 was calculated
as 2.1 x 104 so as to give 5% positive deviation. Conclusively,
the smaller Prandtl number and Grashof number the system has,
the larger deviation 1t has from the boundary layer_theory.

Even though the previous calculations were concerned with
the case of isothermal vertical plate, and they can not bé
applied directly to the case of constant heat-flux plate, some

qualitative and theoretical knowledge may be obtained for the

latter case.
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APPRATUS

The experimental equipment was essentially the same as that
used by Julian [67], with the exception that an additional X-Y
Plotter was used. The equipment consisted of a container large
enough for the fluid to be consldered as infinite, an electrically-
heated vertical plate to give a constant heat flux, a probe
positioning mechanism to move & thermocouple horizontally and
vertically, and the temperature versus position recording device,

The container, seven inches wide by nine inches long by
thirteen inches deep, was made of type 410 stainless steel,
The plate was made of type 302 stainless steel and was two inches
high, four inches long, and 0.004 inch thick (Figure 8). The plate
was electrically heated using a d.c, power supply in order to
generate constant heat flux. The plate was coated with Datakoat
(a plasticized acrylic resin of high solid content) to electrically
insulate it from the mercury. The probe positioning mechanism
consisted of a 7/16-inch thick, eight by thirteen inch base plate
with a slot and slide for moving the thermocouple horizontally
(to and from the plate). The slide was connected to a 2-rpm
synchronous motor by a 1/2-inch, 32 precision pltch screw in
order to obtain continuous horlizontal motion. Thus, the linear
speed of the thermocouple was 1/16 inches per minute, Attached
to the motor shaft was a ten-turn, 50 K ohm potentlometer and a
battery which gave voltages corresponding to the thermocouple

position from the plate. The thermocouple could be moved



Figure 8.

Vertical plate and thermocouple probe
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manually to a desired position up the plate by a similar screw
arrangement. Filgure 9 shows a view of the entire mechanism.

Temperature profiles were measured with a BLH Electronics,
HT Micro miniature thermocouple, model TCC-FS-200. The copper-
constantan wires were enclosed in a two inch 10ng._0.014-inch
diameter, type 302 stainless steel sheath. The end of the sheath
was flattened onto the jJunction of the thermocouple to increase
the response time (0,008-inch by 0.,021l-inch wide). The time
constant was approximately fifty millliseconds. Any disturbances
in the flow that were casued by the thermocouple were minimized
by having thermocouple pointing upstream (downward)., The tip of
the thermocouple was bent parallel to the flow to minimize the
conduction error. Figure 10 1s an enlarged photograph of the
thermocouple. The wiring of the thermocouples to the recorder
1s shown below.
cold junction in ice bath

|

hot junction in mer- ,
cury !

/7

‘ constantan copper
I

Y copper

R SRECIETEE 1

= Ground to Probe = Guard Ring on Recorder
Positioning Mechanism

Thermocouple Wiring Dilagram



Figure 9,

Probe Positioning Mechanism

54



55

A91Y3 Yydul goo'0  :ardnodounayl jo diy
Ja13weLp yaut 1070 tyjeays |9315 ssajuleis

*31dnoJ0WMaYy] 3J4njelull 04AdL uejuejsuo) uaddoy

*OT &JInITd




56

A constant temperature bath was used to keep the whole
container at the desired temperature. It controlled the
temperature to within one degree centigrade using cooling coil
and immersed electrical heaters, This temperature varied too
much for measurement of small temperature differenqes, and
therefore the water bath without the cooling colls and heaters
was used, and then it was found that temperature change in the
mercury was negligible.

The small voltage generated between the thermocouple in the
mercury and the thermocouple in the ice-bath (reference
temperature) was first amplified in aSanborn, Model 350-1500, low-
level preamplifier and 350 Amplifier, and then plotted on a EAI,
Model 1130, Variplotter (X-Y Plotter). The Sahﬁorn recorder has
two channels with preamplifiers and an attempt was made to use one
channel for amplification and the other for additional amplifica-
tion and recording. But this falled to produce a uniform
amplifying factor and the recording was not stable,

The sensitivity of the Sanborn recorder was two microvolts
per millimeter, thus allowlng temperature difference measurements
to within 0,03 °¢ (% mm of chart width). In order to measure and
record even smaller temperature differences, the output of the
Sanborn (0 = 5 volts full scale) was plotted on the X-Y Plotter.
The maximum amplifying factor of the Sanborn was about 50,000
times, which would give an output of 92.15 mv/mm without any
attenuation.

In the Sanborn preampliflier, the maximum error was 4 2%
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and the response time was twenty-five milliseconds for 99.9%
response to a step input. The X-Y plotter had eighteen scale
factors. At the minimum scale factor of 1.0 mv/in, a temperature
difference of 0,0005 °C could be measured, which was.equivalent
to one inch of plotting width. The static accuracy was s 0.1%
and scale factor accuracy (range to range) was also - 0.1%

The eighteen scale factors covered the range from 1 mv/in to

20 v/in each for the X and Y coordinate. 1In addition; there was
six time base ranges in seconds per inch in X axis, therefore
temperature versus distance from the plate and temperature versus
time at a fixed position could be plotted by choosing proper
scale factors.

Input voltage to the Y axls came from the thermocouple in
the mercury with the reference thermocouple in the ice-bath
through the Sanborn recorder, and the input voltage to the X-axis
came from the potentiometer which was attached to the shaft of
the synchronous motor used to move the thermocouple horizontally.

The power generated in the plate was determined by
measuring the voltage drop across the two copper rods which were
connected to the plate. The current was determined by measuring
the voltage drop across a 1,500 ampere, fifty millivolt shunt

with a Leeds and Northrup millivolt potentiometer,



58

PROCEDURE

As preliminary experiments, water was used as a working
fluid and it was contained in a glass vessel {(the same size as
the metal one) for observation of the thermocouple and plate,

The plate was adjusted to be flat and vertlcal. Some experimental
data were obtained to check for consistency and to find the
minimum possible temperature difference that could be measured

by the amplifier and the plotter.

For the primary experiments, the contalner was placed on a
stainless steel support inside the constant temperature bath and
was leveled carefully. Mercury, which was previously purifiled
by oxidation and filtering, was poured into the container. The
probe positioning mechanism was prepafed by locating the
thermocouple at the leading edge (bottom) of the plate and
adjusting the plate so that it was perpendicular to the top of
agsembly. The mechanism was carefully set and the clamped on top
of the container inside the constant temperature bath, Distilled
water was added through an entry tube to bring the level to the
top. Mecury had been filled to a level two inches from the top
of the contalner.

The power cables and all other leads were connected and
plate supports were checked to see 1f they were still perpendicular
to the top of the mechanism. Enough water was added to the '
constant temperature bath to a level approximately two inches
above the top of the slide on the probe posltioning mechanism,

Immersion heaters in conjunctioﬁ with a copper cooling coil inside
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the constant temperature bath falled to maintain the temperature
sufficiently constant, the variation being about 1 °C, Since
temperature differences of the order of 0.01 °C were to be
measured in the contalner, the bath temperature fluctuations

had a great effect on the temperature profiles. It was found
that simply allowing the bath to remain at room temperature
provided the most constant temperature, and that the bulk heating
of the mercuiy was negligible at the power levels used, After
the power to the system was turned on, at least twenty-four hours
were allowed for steady state to be reached. A similar perlod of
time was also allowed after the power level to the plate was
changed.,

Before each set of measurements were made, the Sanborn
recorder was calibrated by adjusting the response of the recorder
to a known standard cell voltage. The zero position was set
twenty~one millimeters from the right hand edge of the chart
(corresponding to zero output voltage). This manipulation was
made for easy positioning of the plotting pen at any point in
the plotting paper by setting X and Y zero positions properly.

The thermocouple was located at the point of interest up
the plate by turning the micrometer dial manually. All the
profiles were recorded starting from the plate and moving to the
bulk, and then from the bulk to the plate by reversing the motor,
Starting at the plate, the temperature would remain constant

initially, and then start to decrease, indlcating that the

thermocouple had left the plate., As the probe moved from the
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plate to the bulk, the temperature would drop rapidly at first,
then would approach a constant value (the "bulk" temperature).

At this point, the motor was reversed, and the probe was driven
back to the plate. In thlis manner, two almost identical profiles
were obtailned, making it possible to check for the steady state
and for the effect of probe movement on the profile.

The two profiles were not identical in all cases, the
difference being less than 2x10"2 ©C. The temperature at the
plate surface varied about the same amount. The position (on
the recorded chart) where the thermocouple first left the plate
was not identical to the position where it met the plate on
returning. The distance from the plate to a glven position 1n
the bulk was always shorter when moving from the plate than 1t
was when moving toward the plate. This was thought to be due
to the thermocouple probe sticking slightly to the plate requiring
a slight pressure to firmly contact the plate. The difference
in the apparent plate location was never more than 1/2 % of the
total profile distance. The profiles toward and away from the
plate were averaged to produce the profile used for data. It
should be noted that it took about twenty minutes for the probe
to travel to and from the plate,

After profiles were obtained at several positlions up the
plate at the same power level, the power was changed and the
system was allowed to attain the steady state for approximately
one day, For each profile, the voltage drop across the copper

rods and shunt, position up the plate, attenuation and zero



suppression on the Sanborn,

Plotter were recorded,

and X and Y scale factors on the
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DATA ANALYSIS

Some typical X-Y plotter outputs are deplcted in Figure 11.
Temperatures were plotted versus distance from the plate.

Each solid line in Figure 11 represents an average of two
profiles: one plotted when the thermocouple started from the
plate and moved to the bulk, and the other from the bulk to the
plate under same conditions., The dashed lines at an either side
of the solid lines show the reglon of noise contained in the
profiles. The fluctuation frequency was so high (60 cycle mostly)
that each profile looked like a curved band rather than a single
line. From the point of view of the nolse, it could be anticipated
that the fluctuation was caused primarily by 60 cycle pickup in
the recorder or from the thermocouple. Since the voltage
generated in the thermocouple was amplified about 50,000 times,
any small accompanying nolse would be amplified accordingly.

In the first profile, Profile 1, in Figure 11, which was
obtained at higher power levels (16.6 watts), the fluctuation
range was 4 1%. The ranges for the Profiles 2 and 3 at medium
(7.5 watts) and lower (3.9 watts) power levels, respectively,
were 42 % and ib %. At the lower power levels where higher
amplification was needed, the fluctuation was accentuated,
causing an increased error.

Fifteen to twenty-five data points were selected from each
profile, each data point representing a temperature and a distance,

Each point was transformed into dimenslonless varlables and all
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the data were processed by IBM 360/50 digital computer. The
computer program l1s presented in Appendix A. The following
paragraphs describe the data reduction.

First, the temperature at the wall and in the bulk were
computed with the known recorder characteristics and setting
factors. The resulting temperatures in millivolts were converted
into degrees centigrade using a fourth-order least square
polynomial fit of the copper-constantan thermocouple calibration.
The reference temperature for the evaluation of physical
properties was calculated from fhe wall and bulk temperatures as
Sparrow [128] recommended, i.e., a weighted average of 70% of wall
temperature and 30% of the bulk temperature. Physical properties
such as density, viscosity, thermal conductivity, thermal
expansion coefficient and Prandtl number were then computed at
the reference temperature from corresponding fourth-order least
square polynomial equations,

The heat flux was calculated from the power consumed in the
plate, which was determined from the total power multiplied by
the ratio of the plate resistance to the overall resistance.
The plate resistance was computed at the wall temperature from
a second-order polynomlal equations and the overall resistance
from the experimentally measured voltage and current. The local
Nusselt number and the modified Grashof number were computed with
the physical properties, heat flux, and the vertical position
on the plate.

The position of the probe horizontally from the plate was
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calculated from the plotter position, X-scale factor, potentio-
meter output, and the speed of the probe., Finally, temperatures
in degrees centigrade and distance in centimeters were converted
to dimensionless temperatures and distance, respectively. For
the detailed calculation on the data analysis, the'reader is
referred to the Sample Calculations 1n Appendix B.

Even though the data had been taken from the averaged curve,
the dimensionless data points dild not constitute the good
smooth curve., The dimensionless data points were fitted by a
first to six-order polynomial éc obtain the final dimensionless
plot. The polynomial fit which had the smallest standard
deviation for each set of data was chosen. Careful attention
has been paid to see if the polynomial fitting procedure affected

any trends or conclusions seriously.
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DISCUSSION OF RESULTS

Boundary layer theory for the free convection from a
constant heat flux, vertical plate immersed in mercury was
experimentally verified by Julian [6?] in 1967. He carried out
experiments in moderate range of local modified Grashof number.
There has not been an experimental investigation of natural
convection in liquid metal at low Grashof numbers, where
appreciable deviation from the boundary layer theory were
theoretically predicted. The present work presents the experi-
mental results for the free convection from a constant heat flux,
vertical plate in mercury at low Grashof numbers, Thils work is
essentially an extension of Julian's work to the much lower
range of Grashof numbers., First, overall dimensionless
temperature profile is presented to see the general tendency.
Next, dimensionless temperature profiles at constant power levels,
at fixed vertical positions, and at constant local Grashof
numbers are presented in order to see the possible dependence of

the profiles.

OVERALL DIMENSIONLESS TEMPERATURE PROFILE

Results of many experimental runs at varlous power levels
and several positions up the plate are presented in one figure,
Figure 12, to investigate general trend., Figure 12 includes
the data obtained at five different power levels ranging from

26 to 1150 Btu/hr-ft? and at seven different positions from
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1/64 to 7/8 of the plate height. Two solid lines in the Figure 12
represent the boundary layer solutlion for the Prandtl number

of 0.01 and 0,03, where were obtained by Chang, et. al [15].

A dashed line also represents the boundary layer solution for

the Prandtl number of 0.024 which is the case of the present
work. Since there had been no published solution for the

Prandtl number of 0.024, boundary layer equations for this
Prandtl number were solved numerically using a diglital computer
IBM 360/50., As mentioned prefiously in the Theoretical Analysis,
unknown boundary conditions, 6(0) and F"(0), were to be guessed
for the solution to satisfy all other boundary conditions. These
two unknown boundary conditlons were found by simulating on an
analog computer, It should be noted that even if the Prandtl
number is slightly varied with temperatures, the Prandtl number
of 0,024 is exact enough for the temperature rénge used in this
experiment.

Most of data are located below the dashed line and also
spread widely., As shown in Figures 4 and 5 in the Theoretical
Analysis, the perturbation theory predicted the downward shift
of profiles from the dashed line in the smaller range of
dimensionless distance N but not in the relatively larger n e
and also predicted that the lower position up the plate and/or
the lower heat flux would cause the more deviation. In other
words, the larger x and the higher heat flux would make the
situation approach to the boundary layer theory. This deviation

can be explained to be due to the physical situatlon which would
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not follow the boundary layer assumptions. Silince the Grashof
numbers used in the present experiment ranged from 1 to 108 and
the temperature difference between the heated plate and bulk
ranged from 0.05 °C to 2.2 °C. It is surely obvious that
boundary layer theory can not be applicablé to the overall range
uniformly. In the region where boundary layer assﬁmptions are
no longer valid, the neglected terms in the simpllified boundary
layer equations such as transverse pressure, streamwise
conduction, and shear stress should be taken into account. In
1968, Sparrow and Guinle [135] (see Theoretical Analysis)
analyzed the effect of those neglected tefms for the case of
isothermal plate. Since there has not been such an analysils for
the case of constant heat-flux plate, direct comparlson can not
be made quantitatively.

Julian's experimental data are presented in Figure 13 for
comparison with the present work. His data along with
Saunder's [107] are only existing experimental data 1n mercury.
Most of Julian's data are located near the boundary layer solution
for the Prandtl number of 0.03, whereas the Prandtl number he
used was 0.022. It was explained that the downward shift of
data would be due to the probe thickness, and pointed that the
temperature response of thermocouple was not from a single point
but from the two points across the probe, and that the effect of
the finite thickness of the probe on the downward shift of
the data was estimated to be about 18%. Thus, 1t can be

anticipated that the shift of present data would be accentuated
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by the probe thickness effect.

Following table shows the

difference in physical situation between the present work and

Julian's,
Table 2.
of Jullian
Present
Prandtl No. 0,024

Heat flux

G*
rx

Temperature
difference

Positions up the
plate where data
were taken

26 - 1150 Btu/hr-ft?

l - 108

0.05 - 2.2 °C

1/32, 1/16, 1/8, 1/4,
1, 3/2y 7/% inches
from leading edge

Comparison of experimental results with those

Julian's

0.022

530 = 5010
Btu/hr-ft2

5 10

107 - 10

1 -8 %

1/4%, 1/2, 1, 3/2,
7/4 inches
from leading edge

As can be seen in the above table, the present data were

obtained at much lower heat flux and lower positions, which

resulted the smaller Grashof numbers,

are more widely spread than the Julian's.

Therefore, present data

DEPENDENCE OF DIMENSIONLESS PROFILES ON THE DISTANCE UP THE

PLATE}

AT CONSTANT HEAT FLUX

At a certain power level (constant heat flux or constant

71

Gr;). several sets of data were obtained with various positions
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up the plate. Eleven groups of dimenslonless temperature profiles
are presented in Figures 14 through 24 at six different power
levels: 87, 121, 354, 512, 735 end 1168 Btu/hr-ftZ, There are
two group of profiles each for the first five power levels and
one group for the last level, showing the dependencg of the
profiles on the position up the plate. Because the profiles do
not depend on the positions uniformly in one direction, the sets
of data at various x at one power level were grouped into two.
All the solid lines in these figures and following figures, unless
noted specially, represent the best polynomial fit of each
experimental data set and dashed lines represent the boundary
layer solution fﬁr the Prandtl number of 0,024,

First group of profiles in Figures 14, 16, 18, 20, 22,
and 24 are compared with the Flgures 4 and 5 which ﬁere plotted
with the first order perturbation solution., They are in
agreement with each other in general shape except the crossing
of present profiles. At small dimensionless distance, all the
data are located below the boundary layer solution, but at
large distance, the data are located on both sides of dashed
1ine. At small region of dimensionless distance, the dependence
of profiles on x is the same as that predicted by perturbatlon
theory: the smaller x gives the more deviation, causing the
profile to shift downward farther from the dashed line. But
experimental data show the reverse dependence 1in the region of

larger dimensionless distance. Thus, the crossing of profiles

each other resulted. The crossing of profiles occurred
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only in the lower part of the plate. In the upper part of the
plate, there is no such crossing of profiles but the dependence
on x 1s contrary to the perturbation theory. Dimensionless
temperature profiles in the upper part of plate are presented in
the Figures 15, 17, 19, 21, and 23. Thus, the dependence on

X agreed with perturbation theory only in the smali 1 and in
the lower part of the plate, but not in the larger n_ or in the
upper part of the plate. It can be also seen that as the power
levels go up, the dependence of profiles on x is less distinct
as compared in the profiles in Figures 4 and 5. The detalled
dependence of profliles on the power level will be presented in
the following section.

At one power level, increase in x up to a certain point
shifts the profiles upward, but further increase in x above
this point shifts the profiles downward., Close examination of
figures indicates that the reverse point depends on the power
level: the reverse point tends to go down as the power levels
g0 up. From the Figures 14 through 23, it is found that the
reverse points are 3/8, 1/4, 1/4 and 1/8 of the plate height
for the power levels of 87, 121, 354 and 735 Btu/hr—ftz,
respectively. It should be noted that since the data were
obtained at several fixed positions in x, exact reverse points
for each power level could not be figured out, however, the
general trend 1s obvious.

Present dimensionless temperature profiles in the lower

part of the plate were found to have the same trend as the
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velocity profiles shown in the Figures 6 and 7 in the

Theoretical Analysis: In the smaller-m y 8 profile at lower

X locates below a profile at upper x, and in the larger M e the
dependence on x 1s reversed. Therefore crossing of profiles seems
to occur at the point a l1little farther than the polints where
maximum velocity can be observed, From the fligures shown, this

tendency can be seen,

DEPENDENCE OF DIMENSIONLESS PROFILES ON THE POWER LEVEL: AT
FIXED POSITION UP THE PLATE

At a fixed position up the plate, dimensionless profiles
were plotted in the Figures 25 through 29 with power level as

a parameter. Because x is fixed, power levels (heat flux)

#*
L

profiles at the positions of 1/32, 1/16, 1/4, 1/2 and 5/8 of the

are directly related with the Gr. and Gr;. Five group of
plate height are presented with the parameter of three power
levels which represent the higher, medium, and lower range.

In the Figures 25, 26, and 27 for the lower part of plate,
shape of profiles, compared with the dashed line, 1s exactly the
same as that of the Figure 4. At the higher part of plate,
shape of profiles shown in the Figures 28 and 29 are slightly
different especially in the larger dimensionless distance.

In the Figures 25 through 29, the profiles do not cross each
other and the dependence of profiles on the power level are
uniform such that smaller power level causes larger deviatlion

from the boundary layer theory. Thus profiles at smaller hesat
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flux are located farther below from the dashed line than the
profiles at larger heat flux are. In other words, profiles tend
to approach to dashed line by increasing the power level.

In can be also seen that the distinction of profiles
depending on the heat flux are clearer in lower part of plate,
but it diminishes in the upper part of plate., This.is similar
to the fact that the boundary layer thickness is more sensitive
to power level in the 1ower part of plate than in the upper part

of the plate.

DEPENDENCE OF DIMENSIONLESS PROFILES ON NUSSELT NUMBER: AT
CONSTANT Gr¥

Constant Gr; could be obtained by changing distance up the
plate and power level properly. Because of the experimental
procedure, it was not easy to find exactly the same values of
Gr; with various x's and q's, and constancy of Gr; here implies
fairly close values to each other. Dimensionless profiles
are presented in Figures 30 through 34 at values of Gr; of
approximate 104, 105, 106, 107 and 108 with a parameter of the
local Nusselt number,

At constant Gr;, dependence of profiles on power level is
found to be the same as the dependence at fixed position xi
lower power level causes more departure from the dashed line,
but the dependence on x at constant Gr; is contrary to the

perturbation theory. Therefore a certaln mixed parameter should

be found rather than separate parameter of X and q for the case.
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of constant Gr;. The local Nusselt number 1s found to be good

parameter, Since the Nusselt number is expressed as:

it is surely a mixed variable. From the Figures 30 through 34
the dependence of profiles on Nux are distinect., At constant

Gr;. increase in Nux gives more deviation from the boundary
layer theory, This result 1s in agreement with the Sparrow and
Guinle's analysis [135]1 actual heat transfer would be greater
than the heat transfer predicted by the boundary layer theory,
and greater heat transfer implies more deviation from the theory.
Detailed heat transfer data versus Gr; will be shown in the

following section, and the deviation will be seen clearly.

LOCAL NUSSELT NUMBER VERSUS Gr‘;

Figure 35 presents the local Nusselt numbers versus the
modified local Grashof numbers. The dashed line shows Sparrow
and Gregg's theoretical correlation [131]:

%1/5

. _
—%%——— = 51/5 8(0) (Equation 36 on page 30).
X

For the Prandtl number of 0.024, 1t is found that
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Figure 35. Nusselt number - Grashof number correlations.
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#1/5

“Julian's heat transfer data [67] are included in the Figure 35

and his correlation was

Gr*0.188

X
= 5.1
Nux

with the standard deviation of 0,021, His heat flux range was
from 530 to 5010 Btu/ft2-hr. Also included are Saunder's
data [107] which are the only avallable heat transfer data in
mercury, along with the Julian's data.

For the present work, slxty data polnts were correlated for

the overall relationshlip between Gr; and Nux. The correlations

arei
Linear correlation:

log Nu, = =0.605 + 0.178 log Gr;

Gr*O . 178

or —%I‘E—-— = 4,03 (0 = 0.033)
X

Binomial correlation:
log Nu, = ~0+551 + 0,145 log Gr; + 0.,004(1log Gr';)2

(C‘ = 0.028)
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The linear correlation can be directly compared with the
Sparrow and Gregg's theoretical correlation [131] and the
Julian's experimental correlation [67].

Examination of the binomial correlation indicates that
Nusselt numbers are generally are greater than their theoretical
vélues. and that as Gr; decreases, the deviation is accentuated
and &as Gr; increases, Nux approaches gradually to the theoretical
prediction., Sparrow and Guinle [135] estimated the deviation
as q/q° where gq° is theoretical heat transfer rate. At the
Gry = 2.1 x 10% and Pr = 0.03, the ratio was estimated to be
1.05 (5% positive deviation) for the case of isothermal plate,
From the present. binomial correlation, Nux/Nu; is estimated to
be 1.20 (20% positive deviation) at the same value of Gr; and
the Prandtl number of 0.024. As mentioned previously, since
Nux is a function of heat transfer rate, distance up the plaﬁe,
and temperature difference, a direct quantitative comparison

falled. Qualitatively, the data surely deviated from the theory,
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CONCLUSIONS

The first-order perturbation solution to the problem of
two dimensional free convection in a liqulid metal (mercury)
at rest from a uniformly heated vertical plate with both leading
and trailing edges has been experimentally examined especlally
in the low range of modified Grashof numbers,

The classical boundary layer assumptions used to simplify
the coupled equations of motion, energy, and. continulty have
been experimentally shown to be invalid in the case where the
modified Grashof number is small in the mercury.

General deviations from the boundary 1ayér theory due to
the low Grashof numbers have been shown in the dimensionless
temperature profile plotted with overall experimental data by
comparing both with the boundary layer solution and with Julian's
work [67] which experimentally verified the boundary layer
theory in the moderate range of Grashof numbers in the mercury.

Dependence of the deviation on the distance up the plate
at constant heat flux were in good agreement with the flrst-order
perturbation theory only at sméll values of dlmensiqnless
distance: the data taken at the lower regilons of the plate had
larger deviatio: than the data in the upper portion of the plate.
The dependence did not followed the perturbation prediction
when the dimensionless dlstance m was large or in the upper
part of the plate. The dimensionless temperature profiles

plotted for the lower part of the plate crossed each other just
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like the velocity profiles predicted by the perturbation
theory. The crossing polnts were observed to be a little
farther from the plate than where the maximum velocity occurred.

Dependence of the deviation on the heat flux (Gri or Gr;)
at a fixed vertical position agreed well with perturbation
solution: the data at lower heat flux have larger deviations
than the data at higher heat flux,

Dependence of the deviation on the Nusselt number at
constant Gr; were in excellent agreement with the Sparrow and
Guinle's prediction [135]: the actual heat transfer was greater
than that predicted by the boundary layer theory at lower values
of Gr;.

The experimental data were correlated for the relation

between the Grashof number (Gr;) and the Nusselt number (Nux)

as following:
Linear correlation:

log Nux = =0,605 + 0.178 log Gr;

0.178
Grg:'?

or —-ﬁ-ﬁ;— = 4003 (0 = 00033)

Binomial correlation:
#* 3, 2
log Nu_ = -0.551 + 0.,145(1log Gr}) + 0.004 (log er)

(U = 0-028)
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From the binomial correlation, the positive deviation
of Nusselt number from the boundary layer theory was calculated
to be 20% at Gr; = 2.1 X 10"F and Pr = 0.024, As Gr; increased,
heat transfer data (Nux) were less deviated from the theoretical
values and as Gr; decreased, Nux's were gradually more deviated.

b - 109), the data were in fairly

At the higher range of Gr;(lo
good agreement with the only exlsting experimental data
(Julian's [67] and Saunder's [107]). In the lower range of
Gr;(l - 10“). there have been no avallable data to compare with.
Even though the boundary layer assumptions do not predict
the correct profiles or heat transfer rates in the low Grashof

number range, the predictions are preclse enough for almost

any practical use.,
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NOMENCLATURE

heat capacity at constant pressure, Btu/lb °F
heat capacity at constant volume, Btu/lb °F
zeroth-order velocify function, dimenslonless
dimensionless function defined by equation (86)
first-order velocity functions, dimensionless
zeroth-and first-order velocity functions for
isothermal plate case defined by equation (82)
dimensionless gravitational acceleration defined
by equation (54)

dimensionless temperature function defined by

equation (87)
sB(Tw-T)x3

> y dimension-
V

Grashof number based on X,

less

sﬂxaq,
k2

geLtq

K2

modified Grashof number based on X,
dimensionless

modified Grashof number based on L,

dimensionless

acceleration gravity, ft/se02

gravity force vector, ft/se02

gravity force in x direction, ft/seo2
local heat transfer coefficient, Btu/hr £t2 Of
thermal conductivity, Btu-ft/hr ft2 OF

vertical length of plate, ft

h
xX oy
k k( TygTon)

local Nusselt number,

dimensionless
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local Nusselt number evaluated from the boundary
layer theory

pressure, 1lb f/ft2

dimensionless pressure defined by equation (54)
Prandtl number, V/a or Cpu/k. dimensionless
heat flux, Btu/hr ft?
constant heat flux Btu/hr £t

heat transfer rate evaluated from the boundary layer
theory |

0.,864806 .4es

temperature, °F

wall temperature,. °F

bulk temperature, Of

reference temperature, °F

time, hr

velocity component in x direction, ft/sec
dimensionless velocity component in x direction
velocity component in y direction, ft/sec
dimensionless velocity component in y direction
velocity vector, ft/sec

volume per unit mass, ft3/lbm

velocity function, ft/sec

vertical coordinate

dimensionless vertical coordinate, x/L

transformed dimensionless vertical coordinate

defined by equation (56)
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horizontal coordinate,

dimenslionless horizontal coordinate, y/L
transformed dimensionless horizontal coordinate
defined by equation (56)

thermal diffusivity, k/cpo. ft%/sec

coefficient of thermal expansion, 1/°F
boundary layer thickness, ft

small constant parameter in serles expansion,
Gr£'1/5, dimensionless

small constant parameter in series expansion,

Gr'l/z. dimensionless

%
1/5
similarity varlable, = —3—)1/ y dimensionless
Gr
similarity variable, E( 2.3 » dimensionless

temperature variable, (__3)1/5 k(‘I' - T))
dimensionless temperature. (T - Tw)/('l‘w - T.)
first-order temperature functions, dimensionless
dimensionless température defined by equation (54)
zeroth- and first-order temperature of H '
dimensionless

viscosity, lbm/ft sec

kinematic viscosity, u/p, ftzfsec

3014159 caeo

density 1bm/ft3

standard deviation

stress tensor, lbm/ft sec?

stream function



107

qi dimensionless velocity function defined by
equation (82)

A dimensionless stream functlion defined by
equation (54)

Y transformed dimensionless stream function defined

by equation (56)

(0) (1)

zerothe and first-order ¥, dimensionless
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APPENDIX B

SAMPLE CALCULATIONS
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SAMPLE CALCULATIONS

Run with mercury No., 201 . February 20, 1970

(Refer to the second profile in Figure 11)

Voltage drop across the copper rods 1 0.412 volts
Current 1 0,7661 x 30 = 22.98 amperes

Position up the plate 1+ 1 inch = 2.54 cm
potentiometer voltage 1+ 5.5 volts

Zero suppression : 0,9526 mv,

Attenuation 1 1

Sensitivity 1 0,002 mv/mm in Sanborn chart
Sanborn Output :+ 92.15 mv/mm in Sanborn chart
X~-scale factor 1 0.2 v/in 1in the Plotter
Y-scale factor 1+ 200 mv/in in the Plotter
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Temperature at the wall

Tw(mv) = (Zero suppression) - [(Y¥-scale factor)(#inch)

(attenuation)(sensitivity)/(Sanborn Cutput factor)]

200¢(2X 0 (1 1.0 x 0,002(X
0.9526 (mv) - (in) 2P nd = % z(mm)

92,15 (=)

0.9526 mv

n

T,(°C) = 24.098 ©c

Temperature at bulk

200(%"%) x4%,95(in) x1.0 x 0.002(-3—:;)

Tynf (mv) = 0.,9526 (mv) =~ —

0.9311 mv

Tyt (°c) = 23.563 °©c

Reference temperature for physical properties

= T, (0.7) & Ty,¢(03) (Reference 128)

(24.098)(047) 4 23.563 (0.3)

23.937 °¢

Physlcal Properties

Coefficient of thermal expansion, B «+ 0.1818 x 10~3 /°c
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Prandtl number, Pr t 0.02426

Density, p 3+ 13.5362 gm/c.m3

Viscosity, p 1+ 0.01529 gm/cm-sec
Conductivity, k¥ 1 0,02099 cal/cm-sec-°C

Power dissipated in plate

Total power (PT) = (Volts)(Currents)

(0.412)(22.98)

9. 467 watts

Overall resistance (plate, copper rods, contact, etc.)(RT)

Volts
current

0,412
= 22.98

= 0,0179 ohms

(Resistivity)(length)
(Area)

Resistance of plate (BP) =
resistivity = 7.315 x 10~ ohm-cm
cm

length of plate = 4 (in) x 2.54(35) = 10,16 cnm

Cross Sectional Area = 2(in) x 0.004(in) x 2.54%222)
in
= 0.0516 cm?

(7.315%1072)(10.16)
BP = 0.0516 , - 0-01}4"4' ohm
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R,
Pp x =L = 9.467 x 0.0144

Power disslipated in plate
P ¥ Ry 0.0179

7.616 watts (80.4%)

Heat flux

Surface Area 2 x 2x 4(in<) ™

: 2
iné watts/in% hr-fté

o,uyso(EEE%§) X 0.03?1(Calgsec-cm2)

in watts/in2
= 0.0176 —%81
sec - cm?
Modified Grashof numbers
2 4
Based on x 1 ng = EEE—EE-
kpz
2
cm -3,.1 2, 8n cal
ar* o 980(@)1!&18181{10 (-U-é-)x13.5314 (L—ms)xo.()l?é(m)
x - P
0.0211 (—281 ) x 0.01519%(—E82 )
e b Ccm-sec~°C em-sec?
X 2.54 (em’)
arf - 0.4908 x 107
2 _4
Based on L Gr* = gep qL = 0.7854 x 108

r

kpz



Nusselt number

Nu

X

q

Nu

Nu

—
=

hx'x
k

hx(Tw - Tinf)

q «» X
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0'01?6(8_65%) X 2:5"4’(0]}1)

K(Ty = Tyne)

3.938

0,0211(

cal
CMwSeC=2C

) x (24,098 - 23.563)(°C)

Dimensionless temperature at sample location

Temperature 2.1 inch at the position 2 inch from the plate

T

0.

0.

9526 -

9435 mv

23.863 ©°c

T -T

Tw = Tinf N

inf

92.1

200 x 2.1 x 1 x 0,002

Dimensionless distance at sample location

23.863 = 23.56
E£75§g—:—§%7§3% = 0.561

Pitch of horizontal screw i é%inch per turn of motor

Number of teeth in potentiometer wheel :

Number of teeth in motor shaft wheel

120
25

turn o

f motor

= 5 Turn of potentiometer

120
24
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Voltage change in ten-turn potentiometer

10 turns of potentiometer
5.3 Voltage change

X-scale factor 0.2 v/inch of pen

Factor = -L (inch of probe )x;gg( turn of motor )
32 turn of motor 24 “turn of potentiometer

x 20 {turn of gotentiometer) x 0 z(voltgge g
545 voltage change *“Vinch of pen

cm
X 2. Su(m)

0.1443 (cm of_Probe
in of pen

=

y = distance from plate at sample position = 0.1443 x 2.0(in)
= 0.2886 cm

%
Gr 1
dimensionless distance . n= % (7;5 /5

0.2886 (0.4908 x 107)1/5
2454 5

= 1.,7941

|1}

Measurement Errors

l. Temperature

Temperature fluctuation amplitude was 4 0.15 inch

200(3E) x 0.15(in) x 1.0 x (0.002°F%

o)
x 25(=8) = 4 0.016
mv
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T = 23.863 4+ 0.016
Position up the plate

The micrometer dial can be set to within é% turn

1 inch
32 rev,

x 315 = 0.0006 inch or 0.00158 cm

A more important error would be in not knowing exactly where
the thermocduple junetion is located inside the sheath.
This error would be about 0,007 inch or 0.02 cm.

X = 254 4 0,02 cnm

Position away from the plate
distance difference about 0.2 inch

cm of probe)

Thor gon) * (¢ 0¢1)(in of pen) = 4 0.01443

0.,1443 (
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APPENDIX C

COPPER-CONSTANTAN THERMOCOUPLE
CALIBRATION
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ABSTRACT

This thesis presents the results of an experimental
investigation of the two dimensional natural convection in =a
liguid metal (mercury) at rest from a uniformly heated vertical
plate. The purpose of thils investligation was experimentally to
check the validity of the boundary layer theory and the
perturbation analysis for the natural convection in the 1liquid
metals, especlally'at low Grashof numbers.,

The temperature profiles about a 2-inch high by 4-inch
long by 0.004-inch thick plate were measured with a copper-
constantan thermocouple sheathed in a 0,0l4-inch diameter
stainless steel tube. The results are presented on dimensionless
plots and show definite deviations from the similarity solution
of the boundary layer equations.

The deviations (of dimenslonless temperature profiles)
were found to depend on the distance up the plate, the heat
flux, and the Nusselt number. The results are compared with
those of the perturbation analysis.

Experimental data are correlated for the relationship
between the modiflied Grashof number (Gr;) and the Nusselt number
(Nux), and compared with the only two existing experimental data
for moderate and large Grashof numbers. They are in good agreement
with each other only in the higher range of Grashof numbers.
There is no avalilable data for comparison at lower Grashof numbers.

The correlations of the present experimental data (Gr; 1-108)



ares
Linear correlation:

log Nu, = -0.605 4 0.1781og Gr; (6 = 0.033)

Binomial correlation:
log Nu, = -0.551 + 0.145log Gr¥ 4 0.004(1logGr)?

(U = 0-028)



