
PREDICTING PROGRAM COMPLEXITY FROM WARNIER-ORR DIAGRAMS

by

BARBARA WHITE

B. A., University of Kansas, 1965
M. A., University of Missouri, 1968

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

)(114-1/
Major Professor

IA11202
312894

TABLE OF CONTENTS

Page

CHAPTER 1 APPLICATION OF HALSTEAD'S COMPLEXITY MEASURES TO
PROGRAM DESIGN 1

1.1 Introduction to the Purpose of the Experiment 1

1.2 Derivation of Halstead's Formulas 2

1.3 Published Studies of the Practical Applications
of Halstead's Theories 10
1.3.1 Fitzsimmons and Love's Review of Software

Science 10
1.3.2 Christensen et al.'s Study of Halstead's Metrics

and Program Design 11

1.4 Warnier-Orr Diagrams 14
1.4.1 Warnier-Orr Design Methodology 16

1.4.2 Theory of Warnier-Orr Structures 19
1.4.3 Present Usage of the Warnier-Orr Technique 20
1.4.4 STRUCTURE(S): An Automated Warnier-Orr

Diagram Drawing Package 20

CHAPTER 2 AN OPERANDS AND OPERATOR COUNTING TECHNIQUE FOR
WARNIER-ORR DIAGRAMS 23

2.1 Experimental Assumptions 23
2.2 Restriction on STRUCTURE(S)-Style Input Lists

Program COUNT
2.3 Structure of Program
2.4 Program Operator and

for

COUNT
Operand Counting Program

24

26

29

CHAPTER 3 PREDICTIVE POWER OF HALSTEAD DESIGN VALUES
FOR PROGRAM VALUES 31

3.1 Experimental Hypothesis 31
3.2 Experimental Procedure 32
3.3 Results 33

3.3.1 Validity of the Diagram Operator and
Operand Counting Technique 33

3.3.2 Diagram:Program Ratios of the Halstead Metrics 35
3.3.3 The V* Metric 43

3.4 Conclusions 43

REFERENCES 46

ii

Page

APPENDIX A A-1

APPENDIX B B-1

APPENDIX C C-1

APPENDIX D D-1

APPENDIX E E-1

APPENDIX F F-1

APPENDIX G G-1

APPENDIX H H-1

iii

Table 3.1

Table 3.2

Table 3.3

Table 3.4

LIST OF TABLES

Page

Relationship of Estimated Length to Actual Length
for Diagrams and Programs 36

Volume and Volume Ratio for Diagrams and Programs 37

Language Level and Language Level Ratio for
Diagrams and Programs 38

Estimated Abstraction Level, Difficulty, Structure,
and Abstraction Level Ratios for Diagrams
and Programs 39

Table 3.5 Mental Effort, Time, and Mental Effort Ratios for
Diagrams and Programs 40

iv

LIST OF FIGURES

Page

Figure 1 Higgins, 1979a, p. 2 15

Figure 2 Higgins, 1979b, p. 191 17

Figure 3 Higgins, 1879b, pp. 120-121 19

Figure 4 Syntex diagrams for Warnier-Orr basic structures
as implemented in this study using STRUCTURE(S)
source input lists. 28

1

CHAPTER 1

APPLICATION OF HALSTEAD'S COMPLEXITY

MEASURES TO PROGRAM DESIGN

1.1 Introduction t the Purpose DI: the Experiment
Warnier-Orr diagrams are the product of a program design technique

invented by Jean -Dominique Warnier and extended by Kenneth Orr that is

claimed to be far superior to other techniques such as flowcharting. A

WO diagram is always structured and is progressively expandable as the

program designer refines his work to the point where it is coded in a

programming language. Kenneth Orr has marketed a commercial version of

the Warnier-Orr technique, called STRUCTURE(S) (Langston Kitch, 1978),

that produces printouts of WO diagrams; it is meant for use as a tool

for the design of large, complex systems programs.

Maurice Halstead, on the other hand, was the inventor of a

language -independent software metrics that he claimed to reveal the

inherent complexity of a program; he is the father of software science,

and a large number of studies have attempted to validate his theories.

In spite of the difficulty of discovering the mathematical basis for

Halstead's equations, they have been shown to be accurate predictcrs of

such factors as number of program errors and time required to produce

programs (Fitzsimmons and Love, 1978, p. 5).

One reason for continuing interest in Halstead's program complexity

metrics is the possibility of applying them to practical problems in

designing and coding. For example, Christensen, Fitsos, and Smith, in a

review and analysis of software science, say that Halstead's complexity

measures--i.e., on the first clean compile of a program --and that it is

highly desirable "to use measurements that can lead to the optimization

2

of program organization while the program is being written or while it

is being designed. . . . Software engineering. . . needs a measurement

discipline that each programmer can understand and can relate to choices

made while designing and coding a program" (Christensen et al., 1981, p.

373).

If, in fact, Halstead's metrics were to prove applicable to a stage

of program design considerably earlier than the first clean Warnier-Orr

diagrams --and to predict reasonably well the complexity of program

written from the diagrams, then one more very useful feature would have

been added to the WO diagram technique. As well, such results would

tend to substantiate further the language -independent nature of

Halstead's software science theories beyond the programming language

realm.

These propositions were the motivation for the present study of

ways to adapt Halstead's measurement techniques to a structured design

language and of the resulting relationships, if any, between Halstead

values for designs and those for programs based on the designs.

1.2 Derivation of Halstead's Formulas

Because Halstead's theories represent a novel approach to the

definition and analysis of program complexity, they require a fairly

elaborate explanation. Fortunately, Halstead himself took pains to make

his derivations widely available. In Volume 18 of Advances in

Computers, Halstead (1979a) defines the five components of a

science --sound metrics, reproducible experiments, derivable

relationships, ability to explain observed phenomena, and ability to

3

predict the result of an experiment. Software he defines as "any

communication that appears in symbolic form in conformance with the

grammatical rules of any language" (pp. 119-120). The function of

software science is to provide the theoretical foundation for software

engineering.

Although later in the same article, Halstead discusses at length

the various applications of his metrics to technical English prose and

to the psychology of reading and writing, his inferences seem to have no

particular relevance to linguistic theory, and apparently most published

studies of his theories deal with software as defined more

conventionally, that is, computer programs.

All of Halstead's equations for measuring complexity are based on

counts of operators and operands, the two mutually exclusive entity

categories that constitute any computer program in any language.

Halstead defines an operand as a variable or a constant and an operator

as "an entity that can alter either the value of an operand of the order

in which it is altered" (p. 121). His basic measures, from which the

others are derived, are N1, the total occurrences of operators in a

program, N2, the total occurrences of operands, n1, the number of unique

operators, and n2, the number of unique operands.

The vocabulary of a program is simply

1 = 11 12
(1)

and the length is

N= N1 + N2 (2)

According to Halstead, the concept of program volume is best derived

from and N on the basis of the minimum number of bits required to

represent each operator and operand multiplied by total occurrences:

14

V = N log2 n (3)

Volume is, in fact, dependent on the language in which a program is

written, because a higher -level language can perform a given function in

fewer instructions than a lower -level language.

This concept leads to the idea of the highest -level language, for

which every result would be available by calling a built-in procedure or

function and for which the volume would be smallest. For any program

written in the highest -level language, only two operators would be

needed, one for the name of the procedure and one to group the operands,

of which a variable number would be required depending on the nature of

the subroutine. Potential volume is written

V* = N* log2 n

Because no operators or operands would have to be repeated in the

highest -level language, N*
*

= n , so that

V* = 1* log2
71*

In terms of operators and operands, this is

V* = (n 1 + n 2*) log2(n 1 + n 2*)

and because
*

n1 = 2, potential volume becomes finally

V* = (2 + n241) log2(2 + n2*)

Representing as it does the minimum volume for an algorithm, the

potential volume is language independent.

Halstead derives an equation for "implementation level" defined as

the ratio of potential volume to the actual volume of a given

implementation:

L = V*/V

which means that another way of expressing potential volume is

V* = LV

5

This is the formula for potential volume used in the present study, with

est. L substituted for L because, according to Halstead, a close

approximation of the actual level may be obtained by assuming that the

more unique operators used in an implementation the lower the program

level, with the minimum possible being, of course,

L r12/N2

* = 2.
1

Therefore,

Halstead proposes the following equation, because the "simplest

combination of these two terms that will meet the condition that L = 1

for a potential language is their product, where the constant of

proportionality is one" (p. 124):

est. L = (n141/111) (n 2/N2)

or

est. L = (2/n1) (n 2/N2) (5)

Halstead says that est. L has been proven by experiment to be close

enough to L for the former to be used interchangeably with the latter.

Because LV should be a language -independent constant value for a

particular program, potential volume is a useful measurement for testing

the application of Halstead's theories to program designs and the

programs written from them. (However, there is some question whether

two versions of a program written in two different languages can ever be

exactly the "same" program.)

For different programs written in the same language, the potential

volume V* must increase as program size increases. Halstead says that

implementation level L decreases proportionally with the increase in

potential volume so that a language level

X = LV*

may be defined that "tends to remain nearly constant over a wide range

6

of program sizes" (p. 125). As should be expected if the concept of

language level has any meaning, Halstead and others have found that

language level increases from lower -level programming languages to

higher -level programming languages to technical English prose. Although

this increase is consistent, variances are large and grow larger as

language level increases, so that there is considerable overlap.

In the present study the equation for language level used is that

used by Fitzsimmons and Love (1978, p. 8)

A = (est. L2)V (6)

based on V* = LV. It was chosen because V can be measured precisely and

because Halstead highly recommends the accuracy of est. L.

Halstead's first "counterintuitive" finding in software science was

what he calls the vocabulary -length equation:

est. N = 111 log2 nl + 712 log2 n2 (7)

which states that the length of a program may be approximated closely

using only its vocabulary. Halstead attempts to explain this formula on

the basis that operands and operators tend to alternate in a program and

that because a program is "organized" the upper limit of program length

must be its logarithm. According to Halstead, a correlation coefficient

of greater than 0.98 was obtained for N and est. N in a large series of

polished programs.

Because programs can be written whose estimated length is not at

all close to the actual N, Halstead determined six "impurity classes"

that could account for the discrepancies:

1. Complementary operations--e.g., adding a variable to another

and then subtracting it with no intervening logical reason

for the operations.

2. Ambiguous operands--e.g., using one variable name to serve

different purposes in different parts of a program.

7

3. Synonymous operands--e.g., using more variable names than
are necessary.

4. Common subexpressions--e.g., repeatedly using an expression
rather than assigning a name to the result of the expression
and using that repeatedly.

5. Unwarranted assignment--e.g., assigning a name to the result
of an expression that is used only once.

6. Unfactored espressions--e.g., failing to factor the

factorable terms in an expression.

Obviously the impurity classes represent carelessness in programming

that should be eliminated by review. However, there are other causes of

discrepancy between N and est. N. Christensen et al. (1981, p. 375)

reports that one study found est. N to be low for big programs and high

for little ones and that another found est. N to be high for 80 percent

of a larger number of PL/I programs. In the present study PL/I output

formatting statements were found to have a strong confounding effect on

est. N if their built-in functions were considered operators on the

output variables, and therefore they were eliminated from the counts.

It is also an interesting fact that Halstead's equations show

internal consistency when applied to technical English prose, which must

be "impure" in order to be readable.

Halstead attempted to determine how hard it must have been for a

programmer to write a given program by reasoning that writing a program

consists of instituting a binary search through the list of

possibilities in the programming language for the N symbols needed.

Since each search must require an average of log2 "elementary mental

discriminations," the total is simply the volume of the program:

V = N 1og2n

which means that mental effort may be defined as volume times number of

elementary metal discriminations. And since elementary mental

8

discriminations is a measure of difficulty and abstraction level L can

be understood as the inverse of difficulty, a simple representation of

mental effort is

E = V/L (8)

measured in units of elementary mental discriminations.

As with his other measures, Halstead first found a formula for

estimated programming time that worked and then searched out a

justification for his empirical result. Equation (9) is based on

Halstead's "Stroud rate" of 18 emd's per second, named in honor of John

Stroud, a psychologist who estimated that "the human mind is capable of

between 5 and 20 mental discriminations per second" (Fitzsimmons and

Love, 1978, p. 9):

T = E/S (9)

Halstead (1979a, p. 129) says that the rate at which the human brain

makes emd's "is nearly constant, and does not vary significantly with

intelligence." However desirable an intelligence -independent measure of

programming time might be, it is difficult to agree with Halstead that a

factor of between 5 and 20 is nearly constant and to understand why 18

is the number of choice other than that it works.

Equation (9) is included in the present study, converted to

minutes, and its results are not unreasonable. But, as Fitzsimmons and

Love state, Halstead's time equation is in no sense a proof that a

programmer took or should have been granted a certain amouunt of time to

write a program. (11) However, Halstead (1979a, p. 129) claims his

9

equation to be remarkably accurate in its "ability to predict observed

programming times ranging from 5 min to 11,700 man months."

Halstead's speculations about the conclusions that may be drawn

from his mental effort hypothesis are wide-ranging. For example, the

mental effort value was found to decrease for a program after it had

been revised to improve clarity. Someone whose job it was to decide

whether a program should be revised might consider whether other

programmers than the writer would be assigned to maintain it. If so,

and if the mean for the language, the program would seem a likely

candidate for revision.

Halstead also discusses the use of his software metrics to predict

error rates in programs, the resolution or ambiguities in counting

operators, the results of some highly theoretical experiments with his

metrics, and the internal consistency of software metrics with respect

to technical English prose. Only the last of these discussions is

relevant to the purposes of the present study. Halstead's description

of how Kulm (1975) and Miller et al. (1958) applied the concept of

operators and operands to English provides a starting point for the

counting technique used herein for the STRUCTURE(S) design language:

. . . words were divided into two classes, called function
words and content words. The function words, are in general,

all of those words that are classified grammatically as

articles, pronouns, prepositions, conjunctions, or auxiliary
verbs. All of the others are counted as content words . . .

Kulm reasoned that the content words must be equivalent to
operands, and that the function words are operators . . .[to

which must be added], of course, the punctuation symbols . . .

(Halstead, 1979a, p. 155)

The concept of function words and content words undoubtedly models the

structure of the English language. However, a simpler classification of

grammatical constructions into verb phrases and noun phrases follows the

10

function word - content word pattern while also in most English grammar

textbooks. In the present experiment the prose operators were

considered to be verb phrases (e.g., auxiliary and main verbs,

infinitive phrases), prepositions, connectives, and punctuation symbols,

and the prose operands to be noun phrases (i.e., nouns plus adjectival

modifiers not including prepositional phrases).

In the conclusion of his article in Advances in Computers, Halstead

invites skepticism of his theories and experimentation with them. He

claims that the result will be the "inescapable conclusion" that they

tap the natural laws that govern language.

1.3 Published Studies .2f the Practical Applications of Halstead's

Theories

Many large studies of Halstead's theories have been done and have

supported with statistics the overall ability of his equations to

predict program complexity. Two articles are summarized here in some

detail because they indicate the aspects of software science that are

currently of interest. The first is a review, and the second is a study

of the practical applications of Halstead's equations to program

design.

1.3.1 Fitzsimmons and Love's Review 2 Software Science
Fitzsimmons and Love (1978), in "a review and evaluation of

software science," published in Volume 10 of Computing Surveys, outline

Halstead's theories much as has been done here already. They list the

results of studies that have been done on Halstead's metrics using

11

programs and derive Halstead values for a brief interchange -sort

algorithm implemented in Fortran and PDP-11 assembly language.

The computations for their example algorithm come out uniformly

well: their 13 -line Fortran routine has an N of 50 and an est. N of 52;

the volume of the assembly language version of the routine (29 lines) is

considerably greater than that of the Fortran version, "because the rich

vocabulary of operators in high-level language allows more compact

expression and produces shorter programs" (p. 7); the abstraction level

is 35 percent higher for the Fortran routine than for the assembler one;

the two estimates of V* agree within 4 percent of each other; and the

Fortran routine language level is within one standard deviation of the

Fortran average.

Fitzsimmons and Love list mean language level, and standard

deviation for the languages Halstead studied. Those of interest here

are

Language Mean n S.D.

English prose 2.16 0.86
PL/I 1.53 0.96

1.3.2 Christensen gt 11.1g Study i Halstead's Metrics and Program

Design

"A perspective on software science," by Christensen, Fitsos, and

Smith (1981), in Volume 20 of the IBM Systems Journal, discusses the

practical uses that might be made of Halstead's metrics in designing a

program and in improving it as it is being coded.

12

Their lists of operator and operand examples and of "some of the

not -so -obvious" rules for counting operators were used in the present

study for programs and were adapted for use with designs:

Variable name --operand.
Literal --operand.
Arithmetic symbol --operator.
Punctuation --operator.
End of statement delimiter --operator.

Parentheses and brackets always come in pairs, and a compiler
diagnoses correct pairing. Each pair is counted as a single
"grouping" operator.

GO TO statements are concatenated with the address of the GO TO
to form a single operator.

If and THEN are combined into a single operator since one is
unlikely without the other.

IF THEN and ELSE are also combined as a single operator. (thus,

IF THEN ELSE and IF THEN are two separate and distinct
operators.)

Each of the possible combinations of DO UNTIL, DO WHILE, etc. is

combined as a single operator, but each combination is

separate from the others. (p. 374)

Another rule perhaps not obvious from Halstead's definitions is that,

whether explicit or implied, an end -of -line marker is always counted as

present.

Christensen et al. (p. 375) list correlation coefficients for est.

N and N from a series of experiments; the relevant ones are the

following:

Language
Correlation
Coefficient

PL/I 0.98

370 assembler 0.90+
PL/S 0.90+

Programs for the present study were written in PL/I, in UC assembler

(which is similar to but smaller than 370 assembler), and in PLDS (like

PL/S, a subset of PL/I).

13

From Halstead's equations and the results of experimentation,

Christensen et al. proposes two complexity rules:

1. Program size measured as lines of codes, N, or V is a
function of 11.

2. For structured programs program size is a function of n2.

The second rule is based on studies of programs written in PL/S and 370

assembler only and may not be true for all languages; however, it should

apply to the programs of the present study.

The difficulty of a program --which as mentioned earlier is the

inverse of the implementation or abstraction level (equation 5) --is

written

D = (n1/2) (N2/n2) (10)

Christensen et al. analyzes the separate implications of the two terms

on the right-hand side. n1/2 refers to the difficulty imposed by a

large operator vocabulary, and N2/n2 represents the average number of

times operands are changed in a program. A higher -level language

requires fewer operators, which makes a program easier to write and

understand. Frequently changed operands are hard for the reader of a

program to keep track of. However, a high difficulty value does not

necessarily imply that there is something wrong with a program; a

complex algorithm will be implemented as a complex program.

The authors suggest that the strongest evidence in favor of a

specific meaning for the various elements of the difficulty equation is

that for PL/S a high n1 value indicates unstructured programming and a

high N2/n2 value may be caused by unusually high occurrence of one or

more of the six types of impurities that Halstead classified.

With respect to Halstead's equations for mental effort, language

level, and potential volume (which they call information content),

14

Christensen et al. say that experimental results are incomplete but

interesting. Means for language level vary widely within a language,

and "there is a suggestion that Language Level does not measure the

language so much as it measures how the language is used in a program"

(p. 385). Their cited A values (p. 384) are:

Language Mean X

PL/S 2.05 1.14

PL/I 1.53 0.92

370 assembler 0.91 0.79

Potential volume, V*, not yet proven a "practical metric," is, if valid,

a measure of how much function a program has --that is, its information

content. For a series of eight programs implementing Euclid's algorithm

and written in different languages, the mean V* was 11.45, the variance

0.89, and the standard deviation 0.94 (p. 386).

In their conclusion, Christensen et al. stress how important it is

to have measurement techniques for analyzing programs and designs.

However, they also stress that errors in the "measurement instrument"

will have to produce worthless results and that "strict and rigorous

calibration" is required for any experiment (p. 386).

1.4 Warnier-Orr Diagrams

Around 1970 Warnier and his colleagues at Honeywell -Bull in Paris

developed as a design tool diagrams of input and output data sets that

resembled engineering parts explosion diagrams (Figure 1 is an example

of an output report and indicates the hierarchical structure of a

Warnier diagram.) Warnier (1974) later published a book on his design

technique called Logical Construction of Programs, which Orr, working in

the United States, used as the basis for his extended design technique,

15

Division No Section No t 'Employee He (Annual Weiza

Section Total I

Diinaion Total

I Grano Total I

Division No

/
Section No

(1 Time) (1 Time)

Row(Division Section Employee
File (D Times) (S Times) lE Tomes)

Grano Total Division Total Total
(1 Time) (1 Time) (1 Tune)

Employee No
(1 'Time)

Annual Wages
(1 Time)

Figure 1
Higgins, 1979a, p. 2

16

called Warnier-Orr diagramming. Because Warnier-Orr diagrams are a

practical tool for systems and data base design, they have become rather

popular (Higgins, 1979b, p. 2).

1.4.1 Warnier-Orr Design Methodology

There are two fundamental types of Warnier-Orr diagrams produced at

different stages in the Warnier-Orr design cycle, a cycle that repeats

until the designers are confident that the program coding stage has been

reached. The first type is the logical data structure diagram (Figure

2), which is deduced from the system requirements for the desired

output; the second is the logical program structure diagram (Figure 3),

which is deduced from the internal data structure needed to produce the

output. Starting with desired outputs as the basis for finding the

necessary inputs and proceeding from the general to the specific results

in the cyclic construction of system flow.

The steps of the Warnier-Orr method --repeated from step 2 to step 9

until finished at some return to step 2 --may be outlined as follows:

1. Discover the output requirements for the system as a whole.
2. Choose an undesigned part of the desired output.
3. Outline its system requirements.
4. Draw its logical data structure diagram.
5. Draw its preliminary logical program structure diagram.
6. Determine preliminary system flow.
7. Determine necessary input data for system flow.
8. Refine system flow.
9. Refine the logical program structure diagram.

17

Destosierag {Overview
Esecistiv risnwriary

Uitar..level entity dialyses
Nestteat/rot+ Cembinel weerle1htity a ICOTIPOS

Csntaist Acialication-leel antity dialyse+
Ctaiectives

tine Isinctionai flow

114914301 < Ais1tiestien Scotts

rv"ctlerva Chilly Otoorent
Irwnctional OD'active*
Noce goo. Mein lire functional nave

likentivernevita (1.1) TtioSs and ercatoChsras

Datialtice+
Dcanyincet

1

Cisesevy
Data diction/my
hems

(0,1)
nelavanstatte

Adrelicetion
Ftamilta

Pvirciael Form (1 leas Cats itry=t)
Outputs Cve.tarkt (ssrsole)
(1,3) Structiote (WrfifltitI ainOTTNT1)

Organizational eyalcs

Constraints
A.ItrnatIve physical saisitiona

Ptartitoial (1.a)
dronstitsiriaiss tr ach alternative esslarttse
Racisewranaeil cowries ist actian

Figure 2

Higgins, 1979b, p. 191

"SAYINGS ACCOUNT ACTIVITY'
Print "FOR THE YEAR ENDLCrs

.1Sgiss Open input; transctIon file; account balance files
year end date file

Cat year end date
Cat last transaction record

Msg. zuntMt

bagln
,t

Clear yearly deposit amount
Clear 'arty withdrawal amount
Clear yearly current balance
Print year end data
Set end of accounts false

Clear account deposit amount
Clear account withdrawal amount.
It int "ACCOUNT I";

account number
.begin Cet account balance forward

More account balance forward to
monthly balance forward

;Aare account name to old account mane
5,,t end of months false

Account North
(1.11)7/ (12)U

.end

{-See Part 2

Glove monthly current balance to
account current balance

l'iint "TOTAL, FOR ACCOUNT";
account number'
account deposit amount;
account withdrawal amount'
account current balance

Add account deposit amount to
yearly deposit amount

Add account withdrawal amount to
yearly withdrawal amount

Add account current balance to
yearly current balance

Print 'TOTALS F03";
year norntrerr
yearly deposit amount;
yearly withdrawal amount;
yearly current balance { Clews transaction Mei account balance tiles year end das Ilia

.begin

Month Day
(i.d)

.Ead

ifdear ironthly deposit amount
Clear monthly withdrawal amount
Clear monthly current balance
Print month name;

"ACTiVITY";
'BALANCE FORWARD Ors
balance forward amount
"DA TE";"AC TION":"011":"CR's"ISALAPICE"

More month name to old month nano
Set end of days false

.begin
Print date
More transaction date to old transaction date
Set end of transaction to false

{Cl TronsaCtion tr awair
Subtract withdrawal

m currentbalaanrt gr"4 i, ubl
(1.1)14 (0I)'2 "tflint "alTIMRAWAL";

amount
(0.1/22 Print "ADR.ISTMENr;

(.)
Add adjustment amount to

Adiustmen f daisy

adjustment amount

End (Cot nest transaction record

.e.nd

!--
Movo daily current balance to
monthly current balance and

balance forward amount
Print 'FOR TILE MONTH OF

month na.nc;
rnon:hly drroslt amount;
monthly rithdraw.il amount)
msnthly current balance

Add monthly deposit amount to
account deposit amount

Add monthly withdrawal amount to
account withdrawal amount

Deposit
(0,I)?1

Add deposit amount to
daily current balance

Print "DEPOSIT";
deposit amount

Print daily current balance

19

1.4.2 Theory DI Warnier-Orr Structures

A Warnier-Orr diagram is laid out on the page using braces to show

the expansion of a "universal" into its final "elements," which may be

data elements or the Warnier-Orr process operators. Four basic

structures corresponding to the concepts of structured programming make

up the diagram (Higgins, 1979a, pp. 3-6) (see Figure 3 for examples of

each):

1. Hierarchy structure --braces show successive decorOosition of

universals into elements.
2. Sequence structure --elements are listed sequentially within

each hierarchical level.
3. Repetition structure --numbers or variables in parentheses

beneath a universal indicate the range of repetition for a
repeating subgroup. The structure (1,x) corresponds to a

"do until" loop, (0,x) to a "do while" loop, and, say, (50)

to a "do x = 1 to 50" loop.
4. Alternation structure --the repetition structure in the from

(0,1) along with the exclusive or operator, + , represents

alternative processes.

There are also two complex structures (not used in the present study

because they are not implemented in the STRUCTURE(S) design package):

5. Concurrency structure --a + between two universals vertically

shows concurrent operation.
6. Recursion structure --a broken brace following a universal

name duplicating one to the left on the page indicates

hierarchical repetition.

Four rules based on Warnier's programming theory determine the

internal structure of the Warnier-Orr diagram for a program (Higgins,

1979a, p. 7):

1. The heirarchical structure of a program is deduced from the

input data structure.

2. A repetitive input data structure produces a repetitive
program structure.

3. An alternating input data structure produces an alternating
program structure.

20

4. An alternating structure more than six levels deep must be
determined from the output structure.

1.4.3 Present Usage .Q.E the Warnier-Orr Technique

The usefulness of Warnier-Orr diagrams to commercial

custom -programming organizations is obvious: they are based on the

needs of the user as outlined in a requirements document, they enforce

data -driven structured programming, and they constitute an up-to-date

record of the design cycle as they are being refined to the final

stages. WO diagrams have not as yet been much used for designing other

than business -type programs, although their potential usefulness in

scientific applications and operating systems design is clear. If

output requirements are well defined and system flow is complicated, WO

diagrams will clarify and simplify the process of program design.

1.4.4 STRUCTURE(S): An Automated Warnier-Orr Diagram Drawing Package

It is easy to understand why Orr decided that a system to produce a

Warnier-Orr diagram on a series of computer output pages and to list

cross-references as well as remaining undefined references could be

marketed successfully --the Warnier-Orr diagram for a program of

substantial size quickly blossoms into a large, unwieldy sheet on which

refinements and corrections are made with some difficulty and remaining

unresolved segments may be overlooked.

The component of STRUCTURE(S) of interest in the present study is

the "source input list," which is the user's input data that produces

the Warnier-Orr diagram and reference lists. The input list phrases and

tokens have, of course, a 1:1 relationship with the four Warnier-Orr

21

structures and are suitable as input to the program written for this

study that counts the operators and operands of a WO diagram.

All of the input lists used for designs in the present study may be

found in the Appendix along with the program outputs. Following is a

small segment from the input list for the Warnier-Orr diagram of the

program that analyzes input lists; it shows the STRUCTURE(S) tokens:

COUNT;
.BEGIN$;
SETUP;
SAVE DIAGRAM TITLE FOR OUTPUT TABLE$;
SET HEAD OF LINKED LIST OF OPERANDS TO DIAGRAM TITLE$;
SET HEAD OF LINKED LIST OF OPERATORS TO 'BRACE'$;
FOR EVERY LINE 0-X;
PRINT;
.END$;

SETUP;

.BEG1N$;
CREATE LINKED LIST OF PREPOSITIONS/CONNECTIVES FROM INPUT FILES$;
CREATE LINKED LIST OF INFINITIVE PHRASES FROM INPUT FILE$;
.END$;

FOR EVERY LINE;
READ INPUT LINE$;
FIRST CHAR = BLANK 0-1;
+ FIRST CHAR = BLANK 0-1;

The dollar sign is a terminal symbol to indicate that no brace occurs to

the right of a phrase; therefore, absence of a ttsef indicates that a

brace is to be counted as present. The endline marker is obviously

the pair of parentheses around Warnier-Orr diagram repetition counts is

represented by a "+". Sequence is indicated by the vertically arranged

lists indented under headings which repeat the universal that the list

is to appear within a brace.

22

These few tokens and the listed phrases are all that is needed to

produce a Warnier-Orr diagram. Simple translation of the tokens as they

are encountered in the input lists is all that must be done in order to

count the actual Warnier-Orr process operators.

23

CHAPTER 2

AN OPERAND AND OPERATOR COUNTING TECHNIQUE

FOR WARNIER-ORR DIAGRAMS

2.1 Experimental Assumptions

A basic assumption of the experiment which the rest of this paper

will describe was that a Warnier-Orr program design diagram is composed

of words and symbols that may be counted as operators and operands. As

mentioned in Section 1.2, Halstead was sure that his software metrics

were valid for technical English prose, and Kulm and Miller got good

results for prose by counting "function words" as operators and "content

words" as operands.

Since the design language of Warnier-Orr diagrams lies somewhere

between technical prose and high-level programming languages with

respect to "naturalness," there is little question that Halstead's

software metrics should apply. The problem is to derive and justify an

operator and operand counting technique. The approach taken in this

experiment was the sample on of counting as operators the Warnier-Orr

process operator symbols "{", 1r O" 1 IV ft 11

/ , , , and "+" along with the other

logical operators (the arithmetic operators must be expressed in words,

e.g., as "add" or "subtract"), verb phrases, prepositions, connectives,

and the implied end -of -line marker, and as operands numbers and noun

phrases.

That Warnier-Orr process operators and logical operators should be

counted as Halstead operators is obvious. However, counting whole verb

phrases and noun phrases rather than words as individual operators is a

less refined technique than Kulm's and Miller's for prose. As briefly

24

discussed at the end of Section 1.2, the assumption is that this

relatively rough -grained approach is a suitable model of English prose

structure as presently described by phrase structure grammars. Halstead

noted that the operands and operators of English prose tend to alternate

(see Section 1.2), and the importand implication of this fact is that

operands--i.e., noun phrases, whose variations are endless --are

positionally bracketed between operators--i.e., verb phrases,

connectives, and punctuation symbols (possibly including an invisible

end -of -line marker), whose variations may be conveniently limited in a

design language. Therefore, it is reasonably rather than impossibly

difficult to write a computer program to count the operators and

operands of a Warnier-Orr diagram, and the arithmetic and logical

operators furthermore seem to represent about the same degree of

semiotic "complexity" as the linguistic "complexity" represent by simple

word phrases --that is, what is signaled by a symbolic operator may be

expressed in words by a verb.

The purpose of writing a counting program is, of course, to produce

more consistent results than hand -counting would and to take advantage

of the ready-made input that STRUCTURE(S) design language provides.

Also, a practical complexity predictor for programs at the WO

diagramming stage --if such is possible --would have to be automated.

2.2 Restriction on STRUCTURE(S)-Style Input Lists for Program COUNT

In order to simplify the parsing of STRUCTURE(S)-style input lists

for program COUNT, a few restrictions were found to be necessary:

1. Simple phrase lines (i.e., those lines not representing the
Warnier-Orr alternation or repetition structure) must be
written in imperative voice, beginning with a one -word verb
phrase, and be more than one word long.

25

2. All lines must be written in "telegraphic" stle, ilel,

without articles. (Articles would be part of a noun phrase

conted as one operand in any case.)

3. As much as convenient, the same noun phrase must be used

repeatedly to describe repetitions of the same concept.

4. "Procedure names" must be one word long and appear as

universals for the universals for the procedure elements at

the first "call" in the design sequence.

5. A "procedure name" alone on a line with no following

elements must be used to indicate subsequent repetitions of

the sequence of lines it stands for.

6. Figures must always be used for numbers.

7. Except for figures and "s" or

line must contain words only.

fl; or both; a simple phrase

8. Except for single quote marks (with the conventional

meaning), punctuation must not be used in phrase lines;

separate phrase lines are used instead.

These few restrictions make the grammar of the STRUCTURE(S) input

language determinate enough to be processible by a relatively simple

program such as COUNT. That is, which of the four basic Warnier-Orr

structures are represented in a line is determinable from the presence

or absence of the relevant STRUCTURE(S) process operators "{" for

hierarchy, "+" for alternation, IT
" without "+" for repetition, and none

or "{" only for sequence. If a line is a simple sequence lines, then

the first word must be an operator, the followingwords up to the first

preposition (or the end of the line if there is none) constitute a noun

phrase, operand, and the preposition is an operator or the first word of

a two -word infinitive phrase operator, followed by a noun phrase

operator, followed by a noun phrase up to the nxt preposition or the end

of the line. A one -word line represents a procedure name operand.

26

2.3 Structure of Program COUNT

The listing for program COUNT appears at the end of the Appendix to

this paper; the program is written in PL/I and makes extensive use of

PL/I built-in string -processing functions. Input for COUNT, as

described alrady, is the STRUCTURE(S) "source input list" for a WO

diagram with the restrictions listed in Section 2.2. Output for COUNT,

reproduced in the Appendix, consists of two tables --the first a list of

the operators and rti and N1 values for a WO diagram and the second a

list of the operands and T-1,2 and N2 values --along with the set of values

for the nine Halstead metrics of inerest in this study --vocabulary (n),

length (N), estimated most compact (potential) volume (V*), language

level (X), mental effort (E), and time (T) in minutes.

Aside from the verb phrase - noun phrase alteration to the counting

technique for prose, it initially seemed that Halstead's and

Christensen's guidelines for counting program operators and operands

could be followed closely for diagram operators and operands. However,

it became apparent that a program procedure name, which is counted as an

operator by Halstead, is not the same construction as its design

representation in a WO diagram. In the program the procedure name

represents a transfer of control from one location in the code to

another; in the diagram the "procedure name" represents a subheading

(noun phrase operand) paired with its brace (symbolic operator) to

indicate the first occurrence of a named series of operations, and

standing alone it represents subsequent occurrences ("procedure calls")

of the named sequence. In this instance, for WO diagrams a natural

language counting rule produces better internal consistency than

Halstead's procedure call name rule for programming languages.

27

Otherwise, the diagram counting rules used in COUNT are

straightforward implementations of the STRUCTURE(S)-to-WO-diagram

transliterations described in Sections 1.4.4 and 2.1. Separate lined

lists of operators and operands are constructed as encountered in the

input, and ocurrence counts are basic structures of a WO diagram

(hierarchy, sequence, repetition, and alteration) are represented in an

input line is easily determined by searching for the corresponding

STRUCTURE(2) symbols (see Figure 4) for diagrammatic explanations): a

brace (hierarchy) is logged for each line without a "$", a "()" pair and

a "," plus the other particular operands and operators (repetition) are

logged for each line without a "*" and a "-" are encountederd, and

logical operators, and the WO standard operators ".begin", ".end", and

".skip" are logged as found. A single word, other than one of the

standard operators, appearing alone on a line must be a "perocedure

name" and is logged in the oprands list on each such occurrence as well

as on any mention in a simple phrase line. Simple phrase

lines --representing the WO sequence structure --are distinguished by a

lack of the symbols indicating a repetition or alteration structure.

They are parsed one word at a time based on the rule that the first word

in each such line must be an operator (verb). The line is searched for

a preposition or connective by comparing each successive word to an

already set up linked list of the prepositions and connectives most

likely to appear in a WO diagram. If none is found, the unprocessed

part of the input line is printed on the terminal screen for the program

user to signal interactively how processing is to be completed. If no

prepositions or connective unknown to COUNT appears in the line portion

displayed on the screen, the user signals that portion is to be logged

ILTERVITIOI

_(y.'=e7 ['esti? --
noun
phrase

every'
'for' 'each' ----) 4for every/each/all'

tali,

RiTal now

t-r

begint:end'11.skipi

..

(
1... --'N.

simple

noun
phrase phrase

SDQUENCE

simple ogical44K noun
perat: phrase

Li;'

simple simple
logical '#' noun

phrase operator phrase

f'brace'

'0,1-qnumber

initive
-4 phrase

'brace'

simple -
noun
phrase

simple

preposition

:(

---> noun
$

Figure 4

'brace'

Syntex diagrams for Warnier-Orr basic structure as implemented in this study using
STRUCTURE(S) source input lists. Literals are in single quotes, variable tokens
are in angular brackets. The Warnier-Orr diagram operators and operands logged are
shown within braces and square brackets, respectively. Where the Warnier-Orr
operator or operand logged differs from the STRUCTURE(S) input token, the former
follows the latter immediately.

29

as an operand (noun phrase) to the end and processing continues with the

next input line. If an unknown preposition or connective appears in the

problematic line portion, the user writes the word on the screen, and

COUNT logs it and any preceding noun phrase in the operators and

operands lists; processing of the line continues until the end is

detected. The presence of the word "to" in a phrase line constitutes a

particular problem; when found, it and the next word are compared to an

already set up linked list of infinitive phrases most likely to be found

in a WO diagram. Again, if no match is found the program user must

signal whether the occurrence of "to" represents a preposition followed

by its object (an operator followed by an operand) or of an infinitive

phrase (a two -word opeator).

When the end of the input file has been reached, COUNT prints the

tables or operators and operands and computes and prints the values of

the nine Halstead metrics.

2.4 Program Operator an Operand Counting Programs

As already mentioned, a small program to list the tokens in each

program source code listing was written that simply constructs an output

file of each token along with the number of occurrences. These are

combined by hand into a master list of program operators and operands

usng Halstead's definitions with Christensen et al.'s clarifications.

The master list provides values for the program n1' N1, n2' and these

30

are the input for another small program that is basically the same as

the code in COUNT that computes the nine Halstead values for a diagram.

The Halstead metric outputs for the nine programs analyzed in this

experiment appear in the Appendix after those for their corresponding

diagrams.

31

CHAPTER 3

PREDICTIVE POWER OF HALSTEAD DESIGN VALUES

FOR PROGRAM VALUES

3.1 Experimental Hypothesis

As mentioned in Section 1.1, the purpose of this experiment was to

find whether Halstead complexity values are derivable for WO diagrams

and, if so, whether theses values can be used to predict the complexity

of programs written from the diagrams.

It was hypothesized that Halstead metrics for WO diagrams should be

internally consitent and that the values should have a fairly consistent

relationship to the same values for programs. This, of course, is not

to imply that the set of operators and operands for a WO diagram maps

directly into the set of operators and operands for the program written

from the diagram. While there is considerable overlap between the

symbolic operators used for WO diagrams and for a high-level programming

language, there are also several special-purpose operators for WO

diagrams that do not translate straightforwardly into program operators

(e.g., the hierarchical brace) and programming languages use many

arithmetic, logical, and special-purpose operators not required by a

design language. Furthermore, the alteration structure of a Warnier-Orr

diagram (see Figure 3) is a quite different construct from the "IF THEN

ELSE" of a high-level programming language, and with respect to the WO

sequence structure a noun phrase in a WO diagram can only rarely be

translated into a single program variable name or a verb phrase (other

than "add", "subtract", "multiply", or "divide" into a single arithmetic

or logical operator. The hypothesized fairly consistent relationship

32

between Halstead values for diagrams and programs must be based on some

consistency of their "deep structure" (a term used by phrase structure

grammarians with reference to the still poorly understood psychology of

language).

3.2 Experimental Procedure

Six WO diagrams for different program designs were prepared; five

were worked up to the program coding point and one was left at a fairly

abstract level for comparison. Two of the designs, BKB2PFGP and

BKB2PIRW, were for modules that became part of a diskette file

management system being considered for a small operating system. These

designs and their resulting programs were subjected to an inspection and

review process, and the programs were approximately 120 and 60 lines

long, respectively. The largest design --for program COUNT, about 650

lines long --was the WO diagram for the program that counts operators and

operands in WO diagrams; that is, this experiment's counting program

design was used as input for the program it produced. Diagram LINKED

LIST was for a demonstration program of modest length --about 300

lines --that produces and manipulates several singly linked lists.

Diagrams SORT1 and SORT2 were for short programs (about 15 and 25 lines,

respectively) to implement a bubble sort, the former for a fixed -length

array of elements and the latter for a doubly linked list of undefined

length. Diagram SORT1 was prepared to the coding point; diagram SORT2

was left at a preliminary high level of design and the program coded

without a detailed design.

Programs BKB2PFGP, BKB2PIRW, and SORT1 were written in PLDS, a

subset of PL/I used for systems programming; COUNT, LINKED LIST, and

33

SORT1 were written in PL/I. In addition, UC assembler language programs

were produced for BKB2PFGP, BKB2PIRW, and SORT1; these programs were

440, 400, and 90 lines long, respectively.

The six diagrams were translated into STRUCTURE(S) - style lists

for input to program COUNT. The nine programs were compiled or.

assembled and run, after which the source file for each was used as

input to a small token -counting program whose output was used to count

program operators and small program essentially the same as procedure

PRINT in program COUNT. Program operators and operands were

hand -counted because the counting method is simple and well defined

(Halstead's definitions described in Section 1.2 with Christensen et

al.'s clarifications described in Section 1.3.2 were followed) and

because writing a program to do the counting would have required a good

deal of time and was not of particular relevance to this study.

3.3 Results

The output tables and lists of Halstead values for diagrams and

programs compose the raw data used to investigate the hypothesis that a

program's complexity may be estimated from the complexity of the

Warnier-Orr diagram used to design it.

3.3.1 Validity of the Diagram Operator and Operand Counting Technique

An important indicator of whether in fact the hypothesis of this

experiment can be tested is some sign that Halstead's metrics have been

successfully adapted to the analysis of Warnier-Orr diagrams --that is,

whether program COUNT meets Christensen et al.'s standard as a

well -calibrated measurement instrument.

34

Two ways of checking COUNT's calibration are available: comparison

the published language level (A) values for natural and high-level

programming languages with those for the WO diagrams, and comparison of

Halstead's correlation coefficient for length (N) and estimated length

(est. N) of a large sample of programs with the correlation coefficient

for diagram N and est. N values (see Appendix for explanation of the

correlation computations).

As listed in Section 1.3.1, Fitzsimmons and Love's cited A for

English prose is 2.16 + 0.86 and their a. for PL/I is 1.53 + 0.96, almost

the same as that cited by Christensen et al. The obtained in this

experiment for five WO diagrams (excluding the SORT2 diagram, which was

intentionally left uncompleted) is 1.18 + 0.44. This value is within

one standard deviation of the mean for both English prose and PL/I,

which is acceptable although one would prefer to have the mean value for

diagrams between the two others rather than below them. The large

standard deviations preclude using relative A s to reach a strong

conclusion in any case. Christensen et al.'s X for 370 assembler

language is 0.91 + 0.79, which is within one standard deviation of that

for PL/I.

What other investigators emphasize about values is that they tend

to increase from low-level to high-level languages. The diagram and

program values for.this experiment are as follows:

Language Mean S.D.

PL/I, PLDS 1.35 0.46
Diagram 1.18 0.47

UC assembler 0.44 0.05

The implication is that diagram language may be somewhat more restricted

than the high-level programming languages but both are approximately the

35

same and of distinctly higher level than the assembler language. As

Christensen et al. point out, may be more of an indication of how a

language has been used in a particular application than of the

language's inherent "level" (see Section 1.3.2).

A better indication of the internal consistency of the Halstead

values for diagrams is the correlation between N (equation 2) and est. N

(equation 7). As cited previously, Halstead found a correlation

coefficient of 0.98 between N and est. N for a large series of programs.

The diagram correlation coefficient for N and est. N in the present

experiment is 0.95, which is significant at the 1 percent level for a

sample size of 6. With the COUNT program excluded because high usage of

PL/I string -processing functions confounded the est. N value, the

correlation coefficient for the programs of this experiment is 0.96, and

that for programs and designs combined is also 0.96. These values used

in this experiment for diagrams and programs separately and combined do

meet Halsted's criteria. They tend to strengthen the assumption that

further conclusions may be drawn about relationships between diagram and

program values for the other Halstead metrics.

3.3.2 Diagram:Program Ratios D1 the Halstead Metrics

To determine what the "fairly consistent" relationship between

diagram values and program values is, diagram:program ratios were

calculated for the Halstead metrics of this experiment. Table 3.1 lists

the Halsted values for estimated length and actual length for all

diagrams and programs along with the diagram:program length ratios.

Tables 3.2 through 3.5 give the Halstead values and diagram:program

ratios for the other metrics.

36

TABLE 3.1
Relationship of Estimated Length to Actual

Length for Diagrams and Programs

Title
Actual length

(N)

Estimated
length
(est. N)

Est. N

error

(%)

Diagram:
program

ratio (N:N)

BKB2PFGP
diagram 352 3114.0 -11
PLDS 542 541.1 -17 65
assembler 957 740.0 -23 37

BKB2PIRRW
diagram 182 238.6 31

PLDS 285 292.6 3 64
assembler 398 454.6 14 46

LINKED LIST
diagram 396 353.3 -11
PL/I 508 382.9 -25 78

COUNT
diagram 580 551.5 - 5

PL/I 1845 233.1 -87 31

SORT1

diagram 76 128.8 69
PLDS 87 76.2 -12 88
assembler 159 232.7 46 47

SORT2
diagram 89 150.8 70
PL/I 222 155.8 -30 70

37

TABLE 3.2
Volume and Volume Ratios for Diagrams and Programs

Title
Volume

(V)

Diagram:program
ratio

(V:V)

BKB2PFGP
diagram 2095.9

PLDS 3445.8 61
assembler 6644.0 32

BKB2PIRW
diagram 1032.4
PLDS 1676.6 62
assembler 2544.1 41

LINKED LIST
diagram 2410.6
PL/I 3134.3 77

COUNT
diagram 3827.9
PL/I 10412.9 37

SORT1
diagram 380.0
PLDS 388.0 97
assembler 897.4 42

SORT2
diagram 460.1
PL/I 1156.5 140

38

TABLE 3.3
Language Level and Language Level Ratios

for Diagrams and Programs

Title
Language Level

(gamma)

Diagram:program
ratio

(gamma:gamma)

BKB2PFGP
diagram 1.76

PLDS 1.79 0.98

assembler 0.51 3.145

BKBWPIRW
diagram 0.96
PLDS 1.55 0.62

assembler 0.38 2.53

LINKED LIST
diagram 1.63

PL/I 2.86 0.57

COUNT
diagram 0.93
PL/I 0.05 18.6

SORT1
diagram 0.62

PLDS 0.71 0.87
assembler 0.43 1.44

SORT2
diagram 0.59

PL/I 0.62 0.95

39

TABLE 3.4
Estimated Abstraction Level, Difficulty, Structure,

and Abstraction Level Ratios for Diagrams and Programs

Estimated
abstraction level Difficulty' Structure'

Diagram:program
ratio

Title (est. L) (N2/ 2) (n1)
(est. L:est. L)

BKB2PFGP
diagram 0.0290 3.63 19

PL DS 0.0228 3.55 22 1.27

assembler 0.0088 4.58 43 3.29

BKB2PIRW
diagram 0.0304 2.86 23

PL DS 0.0304 3.12 20 1.00

assembler 0.0122 4.06 35 2.49

LINKED LIST
diagram 0.0260 3.65 21

PL/I 0.0302 2.98 20 0.86

COUNT
diagram 0.0156 4.02 21

PL/I. 0.0022 7.79 28 7.09

SORT1
diagram 0.0402 2.62 19

PL DS 0.0427 3.90 12 0.94

assembler 0.0218 3.27 28 1.84

SORT2
diagram 0.0357 2.67 21

PL/I 0.0231 2.85 17 1.55

'According to Christensen et al. (1981).

140

TABLE 3.5
Mental Effort, Time, and Mental Effort

Ratios for Diagrams and Programs

Title
Mental effort*

(E)

time
(T min)

Diagram:program
ratio
(E:E)

BKB2PFGP
diagram
PLDS
assembler

BKB2PIRW

72246.7
151264.0

758445.9

66.9

140.1

702.3
0.48
0.09

diagram 33926.4 31.4
PLDS 55149.8 51.1 0.62
assembler 208195.0 192.8 0.16

LINKED LIST
diagram 92645.5 85.8
PL/I 103785.5 96.1 0.89

COUNT
246012.2 227.8

PL/I 4733143.0 4382.5 0.05

SORT1
diagram 9443.3 8.7
PLDS 9094.5 8.4 1.04
assembler 41201.7 38.1 0.23

SORT2
diagram 12885.0 11.9
PL/I 50043.2 46.3 0.26

*Called "information content" by Christensen et al. (1981).

41

In calculating the means and standard deviations of the

diagram:program ratios, it was decided that COUNT and SORT2 should be

excluded because program values are distorted for the former by PL/I

string -processing functions, and program and diagram values differ

greatly for the latter, whose design was intentionally left at an

abstract level to demonstrate that such would be the case. Excluding

COUNT, SORT2 has the highest diagram:program ratio for estimated

abstraction level of all the high -level -language diagrams (Table 3.4).

Program COUNT has the highest "difficulty" value of all diagrams and

programs --almost twice that of its diagram and considerably higher than

the difficulty values of the assembler -language programs --but its

"structure" value is not overly high, which is proper for a structured

program (Table 3.4). Therefore, the "poor" diagram:program results for

SORT2 and COUNT seem intuitively reasonable.

Means and standard deviations of the diagram:program ratios for

which a statistically significant (or nearly so) relationship exists

between the diagram and program values are listed below.

Those for length are:

Diagram:assembler 43.3 + 4.5
Diagram:high-level 73.8 + 9.9

Those for volume are:

Diagram:assembler 41.0 + 2.2
Diagram -high-level 74.3 + 14.6

Those for estimated abstraction level are:

Diagram:assembler 2.54 + 0.59
Diagram:high-level 1.02 + 0.15

Correlation coefficients are 0.98 for length, 0.99 for volume, and

0.84 for estimated abstraction level. For a sample size of 4, which is

the number of high -level -language programs in this experiment, a

42

correlation coeffcient of 0.95 or above is significant at the 5 percent

level. Only length and volume exceed this requirement, but because of

the small sample size a significant relationship cannot be excluded for

estimated abstraction level. Correlation coefficients could not be

calculated for assembler -language programs because of small sample size

(n = 3), but standard deviations of the mean for length and volume are

relatively smaller for assembly -language programs, which is a good sign

that a significant relationship between diagram values and program

values could be shown in a larger study.

The correlation coefficient for diagram line counts and

high -level -language program lines of code is 0.90 (n = 4), which fails

significance at the 5 percent level although it is somewhat higher than

the correlation coeffident for estimated abstraction level. This may be

an indication that Halstead's length and volume metrics are rather more

fundamental measures of program (and WO diagram) size than is the lines

of code measure.

Although significant relationships between diagram and program

values for Halstead's estimated length, language level, mental effort,

and time are not indicated --perhaps because they are more vaguely

conceived ideas --the values by themselves are of some interest. The

mental effort and time values seem to indicate that a WO diagram

requires about half as much work as its high -level -language program and

that an assembler -language program is 3 or 4 times harder to write than

a high -level -language one. With respect to the language level (x)

results, the overlapping values for diagrams and high-level language are

at least reasonable compared with the results of others, as already

discussed.

43

3.3.3 _mg V* metric

According to Halstead, potential volume (e) is a

language -independent representation of the minimum size of a program and

therefore should be approximately constant for versions of a program

written in different languages.

This experiment did not produce constant V' values for the six

diagrams and nine programs. V* values are lower for WO diagrams than

for high -level -language programs, and assembler -language programs have

the lowest V* values. Means and standard deviations of diagrams and

programs combined are listed below.

BKB2PFGP 65.8 + 9.0

BKB2PIRW 37.8 + 9.3

COUNT 51.3 + 18.4
LINKED LIST 78.7 + 16.0

SORT1 17.1 + 1.8

SORT2 21.6 + 5.2

Even assuming that the figures for COUNT and SORT2 are worthless for

computing VII, these results compare rather unfavorably with Christensen

et al.'s previously cited V* = 11.45 + 0.94 for eight implementations of

Euclid's algorithm where the standard deviation was somewhat less than

10 percent of the mean. The relatively small size of this experiment

(two or three versions of each program concept) may be one cause of poor

results for V*.

3.4 Conclusions

The hypothesis of this experiment --that there should be a fairly

consistent relationship between Halstead values for WO diagrams and for

the programs written from them --is borne out, with some reservations

because of the small size of this experiment, for the Halstead metrics

length (N) and volume (V) and possibly also estimated abstraction level

44

(est. L). Results for estimated length, language level, most compact

volume, and the time are inconclusive. Fortunately, length and volume,

based on the vocabulary of operators and operands in a program (or WO

diagram) rather than the conventional "lines of code" size measurement,

are the strongest and apparently most accepted of Halstead's metrics

(Christensen et al., 1981, pp. 377-378). If the results of a much

larger study were to bear out those of this small preliminary one, then

masurements of a WO diagram's length and volume might easily be

calculated from the STRUCTURE(S) source input list or some other diagram

adaptation to serve as a predictor of program length and volume.

A study of correlations between program Halstead values and diagram

Halstead values produced by a finer -grained operator and operand

counting program would also be of interest. Kulm's and Miller's

techniques for counting operators and operands in technical English

prose are far more involved than the simple verb phrase and noun phrase

scheme used here for WO diagrams, but there is some indication that the

simple method is accurate for the short phrases of a WO diagram and that

a counting method which separately considered adjectives, adverbs,

articles, and other grammatical constructions for diagrams and programs

as a result of relatively higher operator counts for diagrams.

Aside from the large questions of whether Halstead's metrics do tap

some fundamental "complexity" represented by a linguistic expression and

whether knowldege of the "complexity" of a computer program is useful in

engineering better software, some doubt will remain as to the accuracy

of this experiment unless its results are independently corroborated. A

preliminary study can do little more than be interesting and help to

direct future study. Other investigations of Halstead's theories all

45

seem to be preliminary in nature, and it is unclear whether some or all

of his metrics will one day be of practical use in software engineering.

If so, and if the Warnier-Orr diagramming technique continues to

prosper, the two approaches are apparently candidates for combination

into a refined design methodology.

46

REFERENCES

Bandyopadhyay, S. K. (1981a). A study on program level dependency of
implemented algorithms on its potential operands. Bangalore, India:
Aeronatuical Development Establishment, SIGPLAN Notices, February,
pp. 18-25.

Bandyopadhyay, S. K. (1981b). Theoretical relationships between
potential operands and basic measureable properties of algorithm
structure. Bangalore, India:Aeronautical Development Establishment.
SIGPLAN Notices, February, pp. 26-34.

Chapman, D. G., and Schaufele, R. A. (1970). Elementary Probability
Models and Statistical Inference. Waltham, Mass.:Xerox College
Publishing, pp. 238-250, 337.

Christensen, K., Fitsos, G. P., and Smith, C. P. (1981). A perspective
on software science. IBM Systems Journal 20 (4):372-387.

Fitzsimmons, A., and Love, T. (1978). A review and evaluation of
software science. Computing Surveys 10(1):3-18.

Halstead, M. H. (1977). Elements of Software Science. New
York:Elsevier.

Halstead, M. H. (1979a). Advances in software science. Advances
Computers 18:119-172.

Halstead, M. H. (1979b). Software science. Encyclopedia DI Computer
Science and Technology (J. Belzier, ed.). New York:Dekker, Vol. 13,

pp. 242-262.

Higgins, D. A. (1979a) Warnier-Orr diagrams. Computer Programming
Management. New York:Auerbach, pp. 1-8.

Higgins, D. A. (1979b). Program Design angl Construction. Englewood
Cliffs, N. H.:Prentice-Hall.

Kulm, G. (1975). Language level applied to the information content of
technical prose. Collective Phenomena the Applications
Physics IQ Other Fields DI Science. (N. A. Chigier and E. A. Sterns,
eds.). Fayetteville, N. Y.:Brain Research Publications, pp.

401-408.

Langston Kitch & Associates (1978). Langston Kitch STRUCTURE(L).
Topeka, Ks.:Advanced Systems, pp. 1-21.

47

Miller, G. A., Newman, E. B., and Friedman, E. A. (1958). Length

frequency statistics of written English. Information Contributions.

1:370-389.

Stroud, J. M. (1966). The fine structure of psychological time. Annals

DI the New York Academy of Sciences, pp. 623-631.

Warnier, J. D. (1974). Logical construction .1 Programs. New York:Van

Nostrand Reinhold.

A-1

APPENDIX A

Calculation of

Correlation Coefficients

A-2

Calculation of Correlation Coefficients for

Diagram and Program Halstead Values

Correlation coefficients for diagram and program Halstead values

were computed from the formula given by Chapman and Schaufele (1970, p.

248):

1 n

-x
(X1 --X) (y1 --y) y

n-1 i=1

S2x = (X1 --X)2
n-1 i=1

where
n = total number of observations
Xi = ith x value
yi = ith y value

The sample correlation coefficient is

Sxv
r = s s

X Y

It is assumed for the purpose of computing r values that diagram

and program values are jointly normaly distributed so if p = 0 the

implication is that the two data sets are independent. Therefore, low r

values suggest that diagram values and program values are not related.

Rejection of the null hypothesis H:p = 0 because of high r values

implies that diagram and program values are dependent.

Table A2.7 of Chapman and Schaufele (1970, p. 337) gives the

critise levels for the distribution of r. Those of interest here are:

5 percent 1 percent

Sample Significance Significance

Size Level Level

14

6

0.950 0.990

0.811 0.917

A-3

In calculating correlation coefficients, diagram Halstead values

were assumed to be the independent variable X and program Halstead

values to be the dependent variable Y. Following are the X and Y values

for N, V, and est. L.

Length (N)

X 396 76 352 182

Y 508 87 542 285

Volume (V)

X 2410.6 380.0 2095.9 1032.4

Y 3134.3 388.0 3445.8 1676.6

Estimated abstraction level (est. L)

X 0.0260 0.0402 0.0290 0.0304

Y 0.0302 0.0427 0.0228 0.0304

The computed r values are listed in the Results section of the

text.

B-1

APPENDIX B

Data for program LINKED LIST

B-2

HALSTEAD'S COMPLEXITY MEASURES FOR DIAGRAM LINKED LIST

VOCABULARY = ETA = ETA -1 + ETA -2 = 68

LENGTH = N = N1 + N2 = 396

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 353.3

VOLUME = V = N LOG2 ETA = 2410.6

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1)(ETA-2/N2) = 0.0260

MOST COMPACT VOLUME = V* = LV = 62.7

u
LANGUAGE LEVEL = GAMMA = (L**2) * V =

MENTAL EFFORT = E = V/L = 92645.5

1.63

TIME (IN MINUTES) = T = E / (S * 60) = 85.8

B-3

HALSTEAD'S COMPLEX ITY MEASURES FOR LLIST PLI PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 72

LENGTH = N = Ni + N2 = 508

EST. N = ETA -1 LOG 2 ETA -1 + ETA -2 LOG2 ETA -2 = 382.9

VOLUME = V = N LOG2 ETA = 3134.3

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0302

MOST COMPACT VOLUME = = LV = 94.7

LANGUAGE LEVEL = GAMMA = (L**2) 4' V = 2. Bb

MENTAL EFFORT = E = V/L = 103785.5

TIME (IN MINUTES) = T = E / (S * 1080) 98.1

TALL 1. OPE R ATO RS OF DI A GRA n LI N KED LIST

0 PE:RA TOR COUNT

=1.
1

2
3
4

b

BRA CE
.BEGIN
.EN I)

DIS PLAY
SET
TO

39
7
7

13
13
-1.)

7 ASK 0
8 TO EN ER b
9 GET b

10 = 22
11 () 27
14 . 27
13 OR 14
14 NOT 1U
'I D .SKIP I

1 b Full EVE RY/E AC8/ ALL 3
17 ALLOCATE 1

1 ry FOR
19 ASSIGN
2u >)

ETA -1 = 2 1 FREE 1

224 =

B-4

B-5

TABLE 2. UPElt AND S 0? DIAGRAM LINKED LIST

OPERAND COUNT

1

2
3
4
L
_i

DIAGRAM LINKED LIST
Pao ULU RE OPCuD 'ES
OPC ODES LIST
HEAD POINTER
NULL

1

2
1

lb
9

h OTC ODE 11
7 'QUIT' 4
b 0 21
9 1 24

1U X 1

11 'IN SERT * 1

12 'LOCATE ' 1

13 'DE LETE ' 1

14 'PR INTL 1

15 'OP CODES' 1

lb NEW ELE MENT KI.,1 4
17 NEW ELI; MENT DAT A 2
18 PRO CEDU RE I ISER T 1

19 LOCATE ELEMENT KEY 2
20 PROCEDURE LOCATE 1

21 DELETE ELEMENT KEY 2
22 PROCEDU RE DELETE: 1

23 PROCEDURE PRINT 1

24 ERR ORME SSAGE b
25 SPACE 1

2 b NEW ELEMENT NoD E 3
27 PRE SENT POINTER 4

2 b NEW ELEMENT POI TER 2
29 ELE MENT KEY 1

30 ELE MENT DATA 1

31 FUNCTION COMPLETE MESSAGE 4

32 PROCEDURE FIND i
33 DUPLICATE KEY 7
34 'YES' 2
35 ono 5
35 ELEMENT NODE Z.

37 E
38 LAG Poi NTER 1

39 HEAD ELEMENT KEY 2
4 V LAG POINTER LIN K 3
41 PRE SENT ELEMENT LIN K 2
42 SPA CE A LLOCATED 1

43 PRE SENT ELEMENT 1

4 Li PRE SENT ELELIENT DAT A 1

4 5 PRE ;:51. --.NT ELEMENT KE/ 1

B-6

E -2 =
f46 E NENT LIN t

NkEA.1 ELI.; ni:ter 1

172 = N2

B-7

FILE: WORRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

LINKED LIST;
.BEGINS;
OPCODES;
.END:

OPCODES;
.BEGINS;
DISPLAY OPCODES LISTS;
.END$;

LINKED LIST.END;
SET HEAD POINTER TO NULLS;
ASK USER TO ENTER OPCODES;
GET OPCODES;
OPCODE = #0-1;
+ OPCODE = 'QUIT' 40-1;

OPCCDE = 'QUIT';
.SKIPS;
OPCODE = 'QUIT';

FOR EVERY OPCCDE #0-X;
FOR EVERY MODE;
OPCCDE = 'INSERT' #0-1;
+ OPCODE = 'LOCATE' #0-1;
+ OPCODE = 'DELETE' #0-1;
+ OPCODE = 'PRINT' #0-1;
+ OPCCDE = 'OPCODES' #0-1;
+ - OPCODE = 'QUIT' #0-1;
ASK USER TO ENTER OPCODES;
GET OPCCOES;

OPCODE = 'INSERT';
ASK USER TO ENTER NEW ELEMENT KEYS;
GET NEW ELEMENT KEYS;
ASK USER TO ENTER NEW ELEMENT DATAS;
GET NEW ELEMENT DATA$;
INSERT;

OPCODE = 'LOCATE';
ASK USER TO ENTER LOCATE ELEMENT KEYS;
GET LOCATE ELEMENT KEYS;
LOCATE;

OPCODE = 'DELETE';
ASK USER TO ENTER DELETE ELEMENT KEYS;
GET DELETE ELEMENT KEYS;
DELETE;

OPCODE = 'PRINT';
PRINT;
OP= = 'MODES.;
OPCODES;

- OPCCDE = 'QUIT';
DISPLAY ERRORMESSAGES;
INSERT;
.BEGINS;
ALLOCATE SPACE FOR NEW ELEMENT NODES;
HEAD POINTER = NULL #0-1;
+ HEAD POINTER = NULL #0-1;
.ENDS;

LOCATE;
.BEGINS;

B-8

FILE: WORRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

HEAD POINTER = NULL #0-1;
+ HEAD POINTER = NULL 40-1;
.ENDS;

DELETE;
.BEGINS;
SET PRESENT POINTER TO HEAD POINTERS;
HEAD POINTER = NULL 40-1;
+ HEAD POINTER = NULL 40-1;
.ENDS;

PRINT;
.BEGINS;
SET PRESENT POINTER TO HEAD POINTERS;
HEAD POINTER = NULL 40-1;
+ - HEAD POINTER = NULL 40-1;
.ENDS;

INSERT.HEAD POINTER = NULL;
SET HEAD POINTER TO NEW ELEMENT POINTERS;
ASSIGN ELEMENT KEY TO NEW ELEMENT NODES;
ASSIGN ELEMENT DATA TO NEW ELEMENT NODES;
DISPLAY FUNCTION COMPLETE MESSAGES;

INSERT. -HEAD POINTER = NULL;
FIND;
DUPLICATE KEY = 'YES' 40-1;
+ DUPLICATE KEY = 'YES' #0-1;
LOCATE.HEAD POINTER = NULL;
DISPLAY ERRCRMESSAGES;
LOCATE. -HEAD POINTER = NULL;
FIND;
DUPLICATE KEY = 'NO' 40-1;
+ - DUPLICATE KEY = 'NO' 40-1;

DELETE.HEAD POINTER = NULL;
DISPLAY ERRORMESSAGE;

DELETE. -HEAD POINTER = NULL;
FIND;
DUPLICATE KEY = 'NO' 40-1;
+ - DUPLICATE KEY = 'NO' 40-1;

PRINT.HEAD POINTER = NULL;
DISPLAY ERRCRMESSAGES;
PRINT. -HEAD POINTER = NULL;
FOR EVERY ELEMENT NODE 40-E;

FIND;
.BEGINS;
SET DUPLICATE KEY TO 'NO'S;
SET PRESENT POINTER TO HEAD POINTERS;
SET LAG POINTER TO HEAD POINTERS;
FOR EVERY ELEMENT NODE 40-E;
.ENDS;

INSERT. -HEAD POINTER = NULL.DUPLICATE KEY = 'YES';
DISPLAY ERRCRMESSAGES;
INSERT. -HEAD POINTER = NULL -DUPLICATE KEY = 'YES';
NEW ELEMENT KEY > HEAD ELEMENT KEY 40-1;
+ NEW ELEMENT KEY > HEAD ELEMENT KEY 40-1;

LOCATE. -HEAD POINTER = NULL.DUPLICATE KEY = 'N0';
DISPLAY ERRCRMESSAGES;

LOCATE. -HEAD POINTER = NULL. -DUPLICATE KEY = 'N0';

B-9

FILE: WORRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

SET LAG POINTER LINK TO PRESENT ELEMENT LINKS;
FREE SPACE ALLOCATED FCR PRESENT ELEMENTS;
DISPLAY FUNCTION COMPLETE MESSAGES;

FOR EVERY ELEMENT NODE;
DISPLAY PRESENT ELEMENT DATAS;
DISPLAY PRESENT ELEMENT KEYS;
SET PRESENT POINTER TO PRESENT ELEMENT LINKS;

NEW ELEMENT KEY > HEAD ELEMENT KEY;
SET NEW ELEMENT LINK TO LAG POINTER LINKS;
SET LAG POINTER LINK TO NEW ELEMENT POINTERS;
DISPLAY FUNCTION COMPLETE MESSAGES;

- NEW ELEMENT KEY > HEAD ELEMENT KEY;
SET NEW ELEMENT LINK TO HEAD POINTERS;
SET HEAD POINTER TO NEW ELEMENTS;
DISPLAY FUNCTION COMPLETE MESSAGES;

C-1

APPENDIX C

Data for program COUNT

C-2
HALSTEADS COMPLEXITY MEASURES FOR COUNT PLI PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 50

LENGTH = N = Ni + N2 = 18 45

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 233.1

VOLUME = V = N LUG 2 ETA = 104 12.9

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0022

MOST COMPACT VOLUME = V* = LV = 22.9

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.05

MENTAL EFFORT = E = V/L = 4733 143.0

TIME (IN MINUTES) = T = E / (S * 1080) 4382.5

C-3

HALSTEAD'S COMPLEXITY MEASURES FOR COUNT PLI PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 50

LENGTH = N = Ni + N2 = 18 45

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 233.1

VOLUME = V = N LOG2 ETA = 104 12.9

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0022

MOST COMPACT VOLUME = = LV = 22.9

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.05

MENTAL EFFORT = E = V/L = 4733 143.0

TIME (IN MINUTES) = T = E / (S * 1080) 4382.5

C-4

HALSTEAD'S COMPLEXITY MEASURES FOR DIAGRAM COUNT

VOCABULARY = ETA = ETA -1 + ETA -2 = 97

LENGTH = N = Ni + N2 = 580

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 551.5

VOLUME = V = N LOG2 ETA = 3827.9

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.015s

MOST COMPACT VOLUME = V* = LV = 59.6

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.93

MENTAL EFFORT = E = V/L =246012.2

TIME (IN MINUTES) = T = E / (S * 60) = 227.8

C-5

ETA -1

TABLE 1. OPERATORS OF DIAGRA ft COUNT

OPERATOR COUN T

1 BRA CE 50
2 .BEGIN 9

3 SAVE 1

4 FOR 5

5 SET 5

6 OF 16
7 TO 12
8 FOR EVE RY/E ACH/ ALL 2

9 0 35
10 . 35
11 .END lu
12 CRE ATE 2
13 FROM 4

14 READ 2
15 = 33
16 Oct 17
17 NOT 15
18 GET 3
19 IN 3

20 CALL 20
21 WIT H 20
22 .SKIP 3

23 REMOVE 1

24 SEARCH 4

25 PLUS 1

26 INCREMENT 2

27 ADD 2
28 ASK 1

29 TO INDICATE 1

30 ABORT 1

31 PRI NT 3

= 32 CALCULATE 1

319 = Ni

TABLE 2- OPERANDS OF DIAGRAM COUNT

OPERAND COUNT

1

2
3
4
5
6

DIA GRAM COUNT
PROCEDURE SETUP
DIA GRAM TITLE
OUT PUT TABLES
HEAD
LINKED LIST

1

1

2
1

2
10

7 OPERANDS 3
8 OPERATORS 5
9 'BR ACE' 2

10 LINE 1

11 0 35
12 X 1
13 PROCEDURE PRINT 1

14 PREPOSITIONS/CONNECTIVES 2
15 INPUT FILE 2
16 INFINITIVE PHRASES 2
17 INPUT LINE b
l b FIR ST CHAR 5
19 BLA NK 2
20 1 35
21 BRACE INDICATOR 2
22 TSU E 15
23 FIR ST WORD 12
24 DOT OPERATOR 3
25 PROCEDURE L OGOP R 12
2b +. 4
27 'OR' 1

28 61,'010, 2
29 'FOR EVERY/EACH/ALL' 2
30 PROCEDURE L OGOP D 8
31 OBJECT 1

32 PROCEDURE RANGE 3
33 RAN GE SYMBOL 2
34 NEXT LINE 2
35 WORD 1

36 W 1

37 PROCEDURE BRANCH 1

38 PROCEDURE NEXTrrl D 5
39 NEX T WORD 7
4U LAST WO hi) b
41 LEFTMOST WORD 1

42 MATCH 12
43 MATCHED WORD 7
44 'TO' 2
45 PROCEDURE PROBLEM 2

C-6

ETA -2

46
47
48
49
50

PROCEDURE F N DIN F
PHR ASE
PAR AMETER
OPERATOR COUNT
COUNT

1

3
4
1

2

C-7

51 OPERAND COUNT 1
52 '0' 1
53 ',' 1
54 FIRST RANGE VALUE 1
55 SECOND RANGE VALUE 1
56 BRA NCH TEST VALUE 1

57 BRA NCH TEST OPE RATO R 1
58 UNKNOWN PREPOSITION 1
59 UNKNOWN INFINITIVE PHRASE 1

6U UNP ROCE SSIB LE LINE 1
61 PREPOSITION /CON NECTIVE 1

62 INFINITIVE PHRA SE 1
63 PROGRAM 1
64 TAB LE 2

= 65 COMPLEXITY VALUES 2

261 = N2

C-8

FILE: WORRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

COUNT;
.BEGINS;
SETUP;
SAVE DIAGRAM TITLE FOR OUTPUT TABLESS;
SET HEAD OF LINKED LIST OF OPERANDS TO DIAGRAM TITLES;
SET HEAD OF LINKED LIST OF OPERATORS TO 'BRACE'S;
FOR EVERY LINE #0-X;
PRINT;
.ENDS;

SETUP;
CREATE LINKED LIST OF PREPOSITIONS/CONNECTIVES FROM INPUT FILES;
CREATE LINKED LIST CF INFINITIVE PHRASES FROM INPUT FILES;

FOR EVERY LINE;
READ INPUT LINES;
FIRST CHAR = BLANK #0-1;
+ - FIRST CHAR = BLANK #0-1;

FIRST CHAR = BLANK;
BRACE INDICATOR ;0-1;
+ - BRACE INDICATOR #0-1;
GET FIRST WORD IN INPUT LINES;
FIRST WORD = DOT OPERATOR #0-1;
+ - FIRST WORD = DOT OPERATOR #0-1;

BRACE INDICATOR #0-1;
CALL PROCEDURE LOGOPR WITH 'BRACE'S;

- BRACE INDICATOR;
.SKIPS;

FIRST WORD = DOT OPERATOR;
CALL PROCEDURE LOGOPR WITH DOT OPERATORS;

- FIRST WORD = DOT OPERATOR;
FIRST WORD = '+' #0-1;

t - FIRST WORD = '+' #0-1;
FIRST WORD = '+';

CALL PROCEDURE LOGOPR WITH 'OR'S;

- FIRST WORD = '+';

FIRST WORD = 'FOR' #0-1;
+ - FIRST WORD = 'FOR' ;0-1;

FIRST WORD = 'FOR.;

CALL PROCEDURE LOGOPR WITH 'FOR EVERY/EACH/ALL'S;
CALL PROCEDURE LCGOPD WITH OBJECT OF 'FOR EVERY/EACH/ALL'S;
RANGE;

- FIRST WORD = 'FOR';
RANGE SYMBOL #0-1;
+ - RANGE SYMBOL #0-1;

RANGE SYMBOL;
READ NEXT LINES;
GET FIRST CHAR OF NEXT LINES;
FIRST CHAR = '+' 40-1;
+ - FIRST CHAR = '+' ;0-1;

- RANGE SYMBOL;
FOR EVERY WORD #0-W;

FIRST CHAR = '+';

BRANCH;
- FIRST CHAR = '+';

CALL PROCEDURE LOGOPD WITH FIRST WORDS;
NEXTWD;

C-9

FILE: WCRRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

RANGE;
FOR EVERY WORD;
CALL PROCEDURE LOGOPR WITH FIRST WORDS;
NEXTWD;
NEXT WORD = LAST WORD 40-1;
+ - NEXT WCRO = LAST WORD 40-1;

NEXTWD;
.BEGINS;
GET NEXT WORD IN INPUT LINES;
REMOVE LEFTMOST WORD FROM INPUT LINES;
.ENDS;

NEXT WORD = LAST WORD;
CALL PROCEDURE LCGCPD WITH LAST WORDS;

- NEXT WORD = LAST WORD;
SEARCH LINKED LIST OF PREPOSITIONS/CONNECTIVES FOR MATCH TO NEXT WORDS;
MATCH 40-1;
+ - MATCH 40-1;

MATCH;
MATCHED WORD = 'TO' 40-1;
+ - MATCHED WORD = 'TO' 40-1;

- MATCH;
PROBLEM;

MATCHED WORD = 'T0';
FNDINF;

- MATCHED WORD = 'T0';
CALL PROCEDURE LOGOPR WITH MATCHED WORDS;
MATCHED WORD = FIRST WORD 40-1;
+ - MATCHED WORD = FIRST WORD 40-1;

MATCHED WORD = FIRST WORD;
.SKIPS;

- MATCHED WORD = FIRST WORD;
CALL PROCEDURE LOGOPD WITH INPUT LINE FROM FIRST WORD TO MATCHED WORDS;
NEXTWD;
NEXT WORD = LAST WORD 40-1;
+ - NEXT WORD = LAST WORD 40-1;

NEXT WORD = LAST WORD 40-1;
CALL PROCEDURE LOGORD WITH LAST WORDS;
-NEXT WORD = LAST WORD 40-1;
.SKIPS;

FNDINF;
.BEGINS;
SET PHRASE TO MATCHED WORD PLUS NEXT WORD IN INPUT LINES;
SEARCH LINKED LIST OF INFINITIVE PHRASES FOR MATCH TO PHRASES;
MATCH 40-1;
+ - MATCH *0-1;
.ENDS;

FNDINF.MATCH;
CALL PROCEDURE LOGOPR WITH PHRASES;
NEXTWD;
NEXTWD;

FNDINF.-MATCH;
PROBLEM;
.ENDS;

LOGOPR;
.BEGINS;

c-10

FILE: WORRS DATA A CMS 6.0 PLC 11 - SCD COMSYS

SEARCH LINKED LIST OF OPERATORS FOR MATCH TO PARAMETERS;
MATCH ;0-1;
+ MATCH ;0-1;
.ENDS;

LOGOPR.MATCH;
INCREMENT OPERATOR COUNTS;

LOGOPR.- MATCH;
ADD PARAMETER TO LINKED LIST OF OPERATORSS;
SET COUNT TO 15;

LOGOPD;
.BEGINS;
SEARCH LINKED LIST OF OPERANDS FOR MATCH TO PARAMETERS;
MATCH ;0-1;
+ MATCH ;0-1;
.ENDS;

LOGOPO.MATCH;
INCREMENT OPERAND COUNTS;

LOGOPD.- MATCH;
ADD PARAMETER TO LINKED LIST OF OPERANDSS;
SET COUNT TO 1S;

RANGE;
.BEGINS;
CALL PROCEDURE LOGOFR WITH '()'$;
CALL PROCEDURE LOGOPR WITH ','S;
CALL PROCEDURE LOGOPO WITH FIRST RANGE VALUES;
CALL PROCEDURE LOGOPD WITH SECOND RANGE VALUES;
.ENDS;

BRANCH;
.BEGINS;
CALL PROCEDURE LOGOPO WITH BRANCH TEST VALUES;
CALL PROCEDURE LOGOPR WITH BRANCH TEST OPERATORS;
RANGE;
.ENDS;

PROBLEM;
.BEGINS;
ASK TERMINAL OPERATOR TO INDICATE PROBLEMS;
UNKNOWN PREPOSITION 40-1;
+ UNKNOWN INFINITIVE PHRASE ;0-1;
+ UNFROCESSIBLE LINE ;0-1;
.ENDS;

PROBLEM.UNKNOWN PREPOSITION/CONNECTIVE;
CALL PROCEDURE LOGOPR WITH PREPOSITION/CONNECTIVES;
PROBLEM.UNKNOWN INFINITIVE PHRASE;
CALL PROCEDURE LOGOFR WITH INFINITIVE PHRASES;
PROBLEM.UNPROCESSIBLE LINE;
ABORT PROGRAMS;

PRINT;
.BEGINS;
PRINT TABLE OF OPERATORSS;
PRINT TABLE OF OPERATORSS;
CALCULATE COMPLEXITY VALUESS;
PRINT COMPLEXITY VALUESS;
.ENDS;

D-1

APPENDIX D

Data for program SORT1

D-2

HALSTEAD 'S COMPLEXITY MEASURES FOR DIAGRAM SORT 1

VOCABULARY = ETA = ETA -1 + ETA -2 = 32

LENGTH = N = N 1 + N2 = 7 6

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 128.8

VOLUME = V = N LOG 2 ETA = 38 0.0

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = U.U4u2

MOST COMPACT VOLUME = V* = LV = 15.3

LANGUAGE LEVEL = GAMMA = (L**2) V = 0.62

MENTAL EFFORT = E = V/L = 9443.3

TIME (IN MINUTES) = T = E / (S * 6U) = 8.7

D-3

HALSTEAD'S COMPLEXITY MEASURES FOR SORT 1 PLDS PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 22

LENGTH = N = N 1 + N2 = 87

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 76.2

VOLUME = V = N LOG 2 ETA = 388.0

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0427

MOST COMPACT VOLUME = V* = LV = 16 .6

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0 .71

MENTAL EFFORT = E = V/L = 9094.5

TIME (IN MINUTES) = T = E / (S * 1080) 8.4

D-4

HALSTEAD'S COMPLEXITY MEASURES FOR SOR T 1 ASSEMBLER PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 50

LENGTH = N = N 1 + N2 = 159

EST. N = ETA -1 LOG 2 ETA-i + ETA -2 LOG2 ETA -2 = 232.7

VOLUME = V = N LOG 2 ETA = 8 97.4

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0218

MOST COMPACT VOLUME = V* = LV = 19.5

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.43

MENTAL EFFORT = E = V/L = 41201.7

TIME (IN MINUTES) = T = E / (S * 1080) 38.1

ETA -1

TABLE 1. OPERATORS O DIAGRA SORT1
D-5

OPERA TOR COUNT`

1 BRA CE
2 .BEGIN 1

3 SET ON 2
4 SET 2
5 TO 2
6 MIN US 1
7 FOR EVERY/EACH/ ALL 2
8 0 6
9 , b

1U .END 1

11 = 2
12 OR 2
13 SET OFF 1

14 DECREMENT 1
15 .SKIP 2
16 > 1

17 < 1

18 SWAP 1
= 19 AND 1

42 = N1

D-6

ETA -2

TABLE 2. OPERANDS OF DIAGRAM SORT1

OPERAND COUNT

1

2
3
4

DIAGRAM SORT1
NATURAL ORDER SWITCH
LOOP VARIABLE
LIST LENGTH

1

5
3
2

5 MAX IMUM PASSES 2
b 1 5
7 SOR TING PASS 1

8 U b
9 '1* Ei 1

10 'O'B ib 1

1 1 LIST IT EM 1

1 2 PRE SENT LIST IT EM 3
= 1 3 NEXT LIST ITEM 3

34 = tsi2

D-7

FILE: 1 wOtt rtb A

SOlti. 1;
..L.EG1i, 46;

SET.iN NATui-thE OND.I.,E. viliCwt;
SET EoCiil V 111,-1fIEEETu LIx EEN ;

SLiA Pi TO Li:.) US '1 ;

FLdi SiIi iÉS
.1144 £4;

Flitt ;

NATUKAL OADELI = 'l 'b 4u-1;
ti is TUhL ULADLASI.Lk. °U *fp ;u-1;

NA'TUi:A.L. Oa DEE `.2..wU Lii= '1' ;

S 1:T0f' AXuiAL Jit LErt, WiT
LoOl VA tIrlis EjI4);

FU IT L.M. ,1-,,-Ek.)ol, V ARIA 4
ITC11 =

;
FOR Y LIST ;

NT LIST .1.1..1,M > NI' AT TE:1 *u -1;
tkSiT LIS'i IT .z.11 < NEXT 1.1.T I Tr--; 4U-1 ;

Pit.ES.c;24T LIST 1.11.:1> 4T LIST IT..:11;
StTUN NAT uitaL OiiDh S 'IC ;
SwAi ktrS&r LiSt irtt ANL. z1-;

LLS ITLI;

E -1

APPENDIX E

Data for program SORT2

E-2

HALSTEAD 'S COMPLEXITY MEASURES FOR DIAGRAM SORT2

VOCABULARY = ETA = ETA -1 + ETA -2 = 36

LENGTH = N = N 1 + N2 = 89

EST. N = ETA -1 LOG2 ETA -1 -1- ETA -2 LOG2 ETA -2 = 150.8

VOLUME = V = N LOG 2 ETA = 46 0.1

EST. ABSTR ACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N 2) = 0.0357

MOST COMPACT VOLUME = = LV = 16.4

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.59

MENTAL EFFORT = E = V/L = 12885.0

TIME (IN MINUTES) = T = E / (S * 6 0) = 11 .9

E-3

HALSTEAD'S COMPLEXITY MEASURES FOR SORT2 PLI PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 37

LENGTH = N = Ni + N2 = 222

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 155.8

VOLUME = V = N LOG2 ETA = 1156.5

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0231

MOST COMPACT VOLUME = V* = LV = 26.7

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.62

MENTAL EFFORT = E = V/L = 50043.2

TIME (IN MINUTES) = T = E / (S * 1080) 46.3

E-4
TABLE 1. OPERATORS OF DIAGRAM SORT2

ETA -1

OPERATOR COUNT

1

2
3
4
5
b
7
8

BRA CE
SETOFF
SET
TO
CALL
WITH
AND
=

7
2
4
4
2
2
3
2

9 0 5
10 , 5
11 OR 2
12 NOT 1

13 .END 2
1 4 .BE GIN 1

15 FOR EVERY/EACH/ ALL 1

16 < 1

17 > 1

18 SET UN 1

19 SWAP 1

2 0 DECREMENT 1

= 2 1 .SKIP 1

49 =

E-5

TABLE 2. OPERANDS OF DIAGRAM SORT2

ETA -2

OPERAND COON T

1 DIAGRAM SORT2 1

2 DO AGAIN FLAG 3
3 PRE SENT POINTER b
4 LIST HE AD

5 TAI L POINTE ft
6 LIST EN D 1

7 PROCEDURE BUBBLE
8 DO AGAIN FL AG ON
9 TRUE 2

10 4
11 1 4
12 LIST ITEM 1

13 PRE SENT ITEM 3
14 NEXT IT EM 3

= 15 NEXT PO INTER 1

40 = N2

E-6

rILL: Swag. WUilS

SUtITz;
SlAuFr Du AGAIN FLAGS;

Ph..I.SENT POINTLh Tu LIST a..411.4);

SLT TAIL kUIN'I.E.a lu LIST Lti;
JASAJLE;
Du AGAIN k -LAG UN 4U-1;
+ -* DU AGAIN rLAG UN

EtibBLE;
..eLGINS;

LvLaY LiSU ITLtIteRESLNT PUINTLi,-TAIL PuiNTER;
.LNLS;

sULBLE-eUR ±ViiY LIST ITEM;
kiltsENT 'TEN NEXT ITEM tit., -1;
* kriEsENT ITEM NEXT iTEr. *U-1;

401,6DE.rOft EVE11/ LIST ITEM.PtESLNT 1TLn < EXT ITEM;
STUN DU AGAIN YLAG;
SwAk 1,11ESEUT AND NLXT iTLPIS;

EVEhY LIST ITEM.PREsENT iTEa i NEXT IT.Em;
S.L.T Pithsi;NT kuiNTLE TO NEVI' PGINT.L,;

DU AGAIN FLAG uN;
SETUr. DO AGAIN eLAGS;
DI.CNEMEAT TAIL POINTEli$;
sL,1 kELSENT PuINTEh Tu ilLALS;
EU-6;

-ILO AGAIN FLAG uN;
.sKIP.t;

F-1

APPENDIX F

Data for program BKB2PFGP

F-2

HALSTEAD S COMPLEXITY MEASURES FUR DIAGRAM BKB2PFG1-,

VOCABULARY = ETA = ETA -1 + ETA -2 = 62

LENGTH = N = Ni *k. N2 = 352

EST. N = ETA -1 LJG 2 ETA -1 * ETA -2 LOG2 ETA -2 = 314.0

VOLUME = V = N LUG 2 ETA = 2U95.9

EST. ABSTRACTION LEVEL = EST. L = (1/ETA-1) (ETA -2/N2) = 0.0290

MOST COMPACT VOLUME = V* = LV =

LANGUAGE LEVEL = GAMMA = (L**2) V = 1.76

MENTAL EFFORT = E = V/L = 72246.7

TINE (IN MINUTES) = T = E / (S * 60) = b6 .9

F-3

HALSTEAD'S COMPLEXITY MEASURES FOR BKB2PFGP PLDS PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 82

LENGTH = N = N 1 + N2 = 542

EST. N = ETA -1 LOG2 ETA -1 ETA -2 LOG2 ETA -2 = 451.1

VOLUME = V = N LOG2 ETA = 3445.8

EST. ABSTR ACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0 .0228

MOST COMPACT VOLUME = V* = LV = 78 .5

LANGUAGE LEVEL = GAMMA = (L**2) * V = 1.79

MENTAL EFFORT = E = V/L = 151264.0

TIME (IN MINUTES) = T = E / (S * 1080) 140.1

F-4

HALSTEAD'S COMPLEXITY MEASURES FOR BKB2PFGP ASSEMBLER PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 123

LENGTH = N = N 1 + N2 = 957

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 740.0

VOLUME = V = N LOG2 ETA = b644.0

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0088

MOST COMPACT VOLUME = V* = LV = 58.2

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.51

MENTAL EFFORT = E = V/ L = 758 445.9

TIME (IN MINUTES) = T = E / (S * 1080) 702.3

ETA -1

TABLE 1. OPERATORS OF DI AGRA BKS2PFGP
F-5

OPERA TOR COUNT

1

2
3

BRA CE
.BEGIN
=

32
1

28
4 0 29
5 . 29
b OE 14
7 NOT 14

28 FOR EVE RVE ACH/ ALL 1

9 .END 1

1 0 SET 3
11 TO 3
12 SET UN 7
1 3 SET OFF 9
14 .SKIP 11
1 5 CALCULATE 3
l b POST 4
1 7 IN 4
18 USING 2

= 19 AND 1

196 = Ni

F-6

ETA -2

TABLE 2. OPERANDS OF DIAGRAM BKB2PFGP

OPERA ND COUNT

1

2
3
4
5
6
7

DIAGRAM BKB2PFGP
FUNCTION REQUEST
'GET CO NTD t
0
1

REQUEST
R

1

3
29
28

1

1

8 'NOT GET CONTD i 1

9 RCB POINTER 2
10 WOR KARE A VALUE 1

11 REQUEST BLOCK VALUE 1

12 VALID REQUEST 4
13 TRUE 2b
14 VALID REQUEST FLAG 2
15 CAN READ AHEAD FLAG 4
16 READAHEAD DONE FLAG 3
17 NUMBER RECORDS FLAG 2
18 OPEN TYPE FLAG 2
19 RET URN FLAG 2
20 VALID OPEN 2
21 GET CON TD 4
22 VALID RECORD NU mBER 2
23 VERIFIABLE REQUEST 2
24 REQUEST BITES 1

25 OVERLARGE GET REQUEST 4
26 READAHEAD DONE 2
27 PROCEDURE BKB2IH 1

28 REQUEST VALUES 1

29 RCB 2
30 PROCEDURE BKB2P SRR 1

31 RETURN CODE 1

32 FILE RESPONSE
33 READAHEAD 2
3 4 CLOSE I N PROCESS 2
35 NUMBER RECORDS 2
36 SUB DIRECTORY 1

37 REQUEST VALUE 1

38 RETURN DONE 2
39 PROCEDURE BKB2P FRG 1

40 ERR OR RETURN CODE 1

41 DELAYED PROCESSING FLAG 1

42 WORKARE A 1

= 43 PROCEDURE B KB2P FCF 1

156 =

F-7

FILE: BKB21'EGP WORhS Al

BKLI2DFGP;
.BEGINT;
FUNCTION REQUEST = GPT CUNT!), 00-1;

FUNCTION REQUEST = GET CONTO #0-1;
FUR EACH REQUEST 10-R;
.ENIS;

FUNCTION REQUEST = 'GET CONTD,;
SLT FUNCTION hLQUEST TO 'NOT GET CONTDS;
SET Reb POINTER TO WORKAREA VALUES;

-.FUNCTION hE';?UEST = 'GET CUNTU;
SLT RCB POINTER TO REQUEST BLOCK VALUES;
VALID REQUEST 10-1;

VALID REQUEST 00-1;
VALID REQUEST;
SETUN VALID REQUEST FLAGS;
SETOFF CAN READ AHEAD FLAGS;
SETOFF READAHEAD IONE FLAGS;
st:Tolor NUMBER RECoRDS FLAGS;
SETOFF OPEN TYPE FLAGS;
SETOFF RETURN FLAGS;
VALID OPEN 10-1;

VALID OPEN #0-1;
GET CUNTD 10-1;

GET CONTD #0-1;
-.VALID REQUEST;
SETOFF VALID REQUEST FLAGS;

VALID OPEN; ,

.SKIPS;
-.VALID OPEN;
SETUN OPEN TYPE FLAGS;

GET CONTD;
. SKIPS;

-,GET CONTD;
VALID RLCCRD NUMBER #0-1;
+ VALID RECORD NUMBER 10-1;
VALID RECORD NUMBER;
VERIFIABLE REQUEST 10-1;

VERIFIABLE PEQUEST ;0-1;
-.VALID RECORD NUMBER;
.SKIPS;

VERIFIABLE REQUEST;
CALCULATE REQUEST BYTESS;

-.VERIFIABLE REQUEST;
.SKIPS;

GET REQUSST;
UVELLARGE GeT REQUEST 10-1;

OVE:(LARGE GET REQUEST #0-1;
-.GET REQUEST;
.SKIPS;

OVERLARGE GET REOUFSI;
SETUN NUMEER RECORDS FLAGS;

-.OVERLARGE GLT REQUEST;
. SKIPS;

FOR hACH REQUEST;
READAHEAD DUNE 10-1;

F-8

FILE: 51021FGP 1404hS Al CMS 6.0 PLC 11 - SCliCOM

READAHEAD DON1 #0-1;
VALID REQUEST 80-1:

, VALID W-.QUEst 40-1;
READAHEAD LUKE;
LEToEf CAN HEAD AHEAD FLAUS;
seruer READAHEAD DUNE FLAGS;
blift21114;

-.REAEAHEAD DUNE;
.SKIPS:

VALID REQUEST;
GET COhTD 40-1;

GET CUt4TD 80-1;
POST REQUEST VALUES IN RCEJS;

BK8[PSHR;
SETUN hLTULN FLAG';
POST RETURN CODE IN FILE RESPONSES;
READAHEAD #0-1;

READAHEAU 80-1;
CLOSE IN PROCESS ;U-1;

CLOSE IN PROCESS 4U-1;
GET CONTD;
CALCULATE ROMPER RECORDS USING HCBS;

-1GET CONTD;
CALCULATE NUMBER RECORDS USING SUEDIRECTORY AND REQUEST VALUES;

-.VALID REQUEST;
RETURN DONE 40-1;

RETURN DUNE 410-1;

SETOFF CAN HEAD AHEAD FLAGS;
OVERLARGE GET REQUEST 4u-1;

OVERLARGE GET REQUEST #0-1;
IJKB2PERG$;
RETURN DONE;
.SKIPS;

-.RETURN DONE;
POST ERROR RETURN CODE IN FILE RESPONSES;
OVERLARGE GET REQUEST;
SETUN CAN READ AdtAD FLAGT,;

SETUN DELAYED PROCESSING FLAGS;
POST 'GET CONTC' IN WORKAREAS;
-.OVERLARGE GET REQUEST;

READAHEAD;
SETUN READAHEAD DONE FLAGS;

-.READAHEAD;
.:.KIPS;

CLOSE IN PROCESS;
BKB2PFCE;

-'CLOSE IN PROCESS;
.SKIPS;

G-1

APPENDIX G

Data for program BKB2PIRW

G-2

HALSTEAD S COMPLEXITY MEASURES FOR DIAGRAM BKB2PIRW

VOCABULARY = ETA = ETA -1 + ETA -2 = 51

LENGTH = N = N 1 + N2 = 182

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 238.6

VOLUME = V = N LOG 2 ETA = 103 2.4

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0304

MOST COMPACT VOLUME = V* = LV = 31.4

LANGUAGE LEVEL = GAMMA = (L*2) * V = 0.96

MENTAL EFFORT = E = V/L = 33926.4

TIME (IN MINUTES) = T = E / (S * 6U) = 31.4

G-3

HALSTEAD'S COMPLEXITY MEASURES FOR BKB2PIRW PLUS PROGRAM

VOCABULARY = ETA ETA-i + ETA -2 = 59

LENGTH = N = N 1 + N2 = 285

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 292.6

VOLUME = V = N LOG2 ETA = 16 76.8

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0304

MOST COMPACT VOLUME = V* = LV = 51.0

LANGUAGE LEVEL = GAMMA = (L**2) * V = 1.55

MENTAL EFFORT = E = V/L = 55149.8

TIME (IN MINUTES) = T = E / (S * 1080) 5 1.1

G-4

FIALSTEADS COMPLEX ITY MEASURES FOR BKB2PIRW ASSEMBLER PROGRAM

VOCABULARY = ETA = ETA -1 + ETA -2 = 84

LENGTH = N = N 1 + N2 = 398

EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 = 454.6

VOLUME = V = N LOG 2 ETA = 25 44.1

EST. ABSTRACTION LEVEL = EST. L = (2/ETA-1) (ETA -2/N2) = 0.0122

MOST COMPACT VOLUME = V* = LV = 31.1

LANGUAGE LEVEL = GAMMA = (L**2) * V = 0.38

MENTAL EFFORT = E = V/L = 208 195.0

TIME (IN MINUTES) = T = E / (S * 1U80) 19 2.8

G-5

ETA -1

TABLE 1. OPERATORS OF DIAGRAM BKB2PIRW

OPERA TOR COUN T

1

2
3
4
5
b

BRA CE
.BE GIN
SET OFF
=

0
,

14
1

5
12
13
13

7 OR 6

8 NUT b

9 SET 1

10 TO 1

1 1 FUR EVE RY/E ACH/ ALL 1

1 2 POST 5
1 3 IN 5
14 GET 1

15 FROM 1

16 .END 1

5
1 8 .SKIP 4

1 9 DECREMENT 1

2 0 TO PROCESS 2

21 CALCULATE 2

2 2 SET UP 1

= 2 3 FOR 1

102 = N1

G-6

ETA -2

TABLE 2. OPERANDS OF DIAGRAM BKB2PIRW

OPERA ND COUNT

1 NEW JOB FLAG 2

2 FIR ST UNIT FLAG 3
3 ABORT REQUESTED FLAG 2

4 JOB END FLAG 3
5 ABORT REQUEST 2

b TRUE 12
7 0 13
8 1 12

'9 NEXT TT HR 3

10 STARTING TT HR 1

11 SECTOR 1

12 S 1

13 SEC TOR ADDRESS 1

14 RET URN REGISTER 1

15 RETURN ADDRESS 1

1 6 WOR KARE A 1

17 NEW JOB 2

1 8 WRITE REQUEST 2

1 9 ADAPTER ADDRESS 1

2 0 ACB 4

2 1 FIR ST UNIT 2

2 2 SEC TORS 2

2 3 JOB END 2

2 4 ABORT 2

25 NEXT ADDRESS 1

2 6 OPERATION 1

2 7 'WRITE' REQUEST CODE 1

= 2 8 'READ' REQUEST CODE 1

80 = N2

G-7

FILL: EKB21'I,111 WO2LS A

.BEGINS;
SETu?F NEW JO:! ?LAGS;
SITufF eiatiT UNIT FLAGS;
sprure ABohT hEQU.;STED eLAG4;
slTvee ENE .)F JUB FLAGY;;
ALOtAT REQUZST au -1;
+ ABORT 11::011Est 1U-1;
SET NExt TTUR TO STARTIJG TTHRS;
FUR EVERY SLCTUR ;U -S;
POST SECTOR ADDRESS 13 RETURN REGISTE,%$;
GET RETURN ADDRESS epicm WuRKAREAS;
BKB[PSXAS;
.LNLS;

AboRT REQUEST;
SETuN AEUhT REQUEST FLAGS;
BKB.LIDS;

-.ABORT REQUEST;
.SKIPS;

?OR EVERY SECTOR;
NiW JU5 ou-1;
+ NFW JJE 1u-1;
WRITE REQUEST ;0-1;

, WRITE SEQUEsT #0-1;
POST ADAPTER ADDRESS IN ACBS;
FIRST UNIT ;U-1;

FIRST 1:'I'1' aU-1;
PoST NEXT 1Trik IN ACBS;
BKB2PICIS;
DEC1:54ENT SECTORS TO PRUCESSS;
END 0? JUL ;U-1;

END Or JOB n0-1;
ABORT 1U-1;

-b ABORT au -1;
NEW JOB;
SLTUN NEW JOB FLAGS;
CALCULATE: S.-:CTOEs TU PROC;.SSS;
SETUP NEXT ADDRESS F04 OPERATIONS;
SETuN FIRST' UNIT FLAGS;

,NLW JUD;
.sKIPS;

WRITE h::QUEST;
PuST 'WRITE. REQUEST CODE IN ACES;

-%WRIT REQUEST;
Pus.: 'READ' 2E4UEsT CODE IN AChl;

FIRST UNIT;
SETUP!' FIRST '_'NIT FLAGS;

,FIRET UNIT;
CALCULATE N. -2"'r TTBRS;

enu of JJu;
SETUN END u? JOB eLAGZ;

-,EJD CP? JOB;
.::KIPS;

AbuRT;
SnuN END O J05 ?LAGS;

G-8

FILE: UKII2tIkW WONIIS A

.SKI}'$;

H-1

APPENDIX G

Source Code for program COUNT

H-2

9L/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

SOURCE LISTING

NUMBER

10 COUNT: PROCEDURE OPTIONS(MAIN); MSP00010
/************ ifi4 **** **************************** 4.* ** ********* ** * ****** AIS p 0 0 0 2 0

/* THIS PROGRAM COUNTS THE NUMBER OF UNIQUE OPERATORS AND UNIQUE */M5P00030

/* OPERANDS AND THE TOTAL NUMBER OF OPERATORS AND OPERANDS IN A */MSP00040

/* PROGRAM DESIGN THAT IS A WARNIER-ORR DIAGRAM PREPARED AS INPUT */MSP00050

/* FOR ORR'S STRUCTURES PROGRAM. OUTPUT CONSISTS OF TWO TABLES, ONE */MSP00060

/* LISTING OPERATORS AND THE OTHER OPERANDS. IN ADDITION, HALSTEAD'S */MSP00070

/* PROGRAM COMPLEXITY MEASURES FOR VOCABULARY, LENGTH, ESTIMATED */MSP00080

/* LENGTH, VOLUME, ESTIMATED LEVEL OF ABSTRACTION, MOST COMPACT */MSP00090

/* VOLUME, LANGUAGE LEVEL, MENTAL EFFORT, AND TIME AS ADAPTED TO */MSP00100

/* WARNIER-ORR DIAGRAMS ARE COMPUTED USING THE OPERATOR AND OPERAND */MSP00110

/* COUNTS AND ARE LISTED BELOW THE OUTPUT TABLES. */MSP00120
/***4*********msponn
/***/m5p00140
/* */MSP00150

160 DCL 1 OPERAND BASED(HEADOPD), MSP00160

2 OPDEOF FIXED BINARY, MSP00177

2 OPDCT FIXED BINARY, MSP00180

2 OPDNEXT PTR, MSF00190

2 A FIXED BINARY, MSP00200

2 OPD CHAR(B REFER(A)), MSP00210

LAGOPD PTR; MSP00220

230 DCL B FIXED BINARY INIT(30); MSP00230

240 DCL 1 OPERATOR BASED(HEADOPR), MSP00240

2 OPREOF FIXED BINARY, MSP00250

2 OPRCT FIXED BINARY, MSP00260

2 OPPNEXT PTR, MSP00270

2 X FIXED BINARY, MSP00280

2 OPR CHAR(Y REFER(X)), MSP00290

LAGOPR PTR; MSP00300

310 DCL Y FIXED BINARY INIT(30); MSP00310

320 DCL 1 PREPOSITION_CONNECTIVE BASED(HEADPC), MSP00320

2 PCECF FIXED BINARY, MSP00330

2 PCNEXT PTR, MSP00340

2 R FIXED BINARY, MSP00350

2 PC CHAR(S REFER(R)), MSP00360

LAGPC PTR; MSP00370

380 DCL S FIXED BINARY INIT(30); MSP00380

390 DCL 1 INFINITIVE BASED(HEADINF), MSP00390

2 INFEOF FIXED BINARY, MSP00400

2 INFNEXT PTR, MSP00410

2 T FIXED BINARY, MSP00420

2 INF CHAR(U REFER(T)), MSP00430

LAGINF PTR; MSP00440

450 DCL U FIXED BINARY INIT(30); MSP00450

460 DCL (TXTLINE,NXTLINE) CHAR(80) VARYING; MSP00460

H-3

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

470 DCL tENDLINE,ENDLOOP,NXTREAD,ENDSRCH,E0F) MSP00470
SIT(1) INIT('O'S); MSP00480

490 DCL (PRCFILE,IFFILE,INFILE) FILE RECORD MSP00490
ENV(F RECSIZE(S0)); MSP00500

510 DCL CUTFILE FILE STREAM OUTPUT PRINT; MSP00510
520 DCL (FIRSTWD,SRCHWD,TXTWO,MATCHWO,MATCHFNO,TITLE,SAVEOPD,SRCHLINE) MSP00520

CHAR(60) VARYING; MSP00530
/* */MSP00540
/***imspoo550

/* */MSP00570
580 OPEN FILE(INFILE) INPUT; MSP005.80

590 ON ENOFILE(INFILE) EOF = '1'B; MSP00590
600 CALL SETUP; /* SET UP KEYWORDS LISTS */MSP00600
610 READ FILE(INFILE) INTO(TXTLINE); MSPOC610
620 TITLE = 'DIAGRAM ' II SUBSTR(TXTLINE,1,INDEX(TXTLINE,';') -1); MSP00620
630 ALLOCATE OPERAND SET(HEADOPD); /* SET UP HEADS OF OPERAND AND */MSP00630
640 A = LENGTH(TITLE); /* OPERATOR LISTS */MSP00640
650 CPO = TITLE; MSP00650
660 OPDECF = 1; MSP00660
670 OPOCT = 1; MSP00670
680 ALLOCATE OPERATOR SET(HEADOPR); MSP00680
690 X = LENGTH('SRACE'); MSP00890
700 OPR = 'BRACE'; MSP00700
710 OPREOF = 1; MSP00710
720 OPRCT = 1; MSP00720
730 READ FILE(INFILE) INTO(TXTLINE); MSP00730
740 DO WHILE(EOF = '0'8); /* PROCESS INPUT FILE WHILE MORE TO */MSP00740
750 ENDLINE = '0'3; /* READ */MSP00750
760 IF SUBSTR(TXTLINE,1,1) -= ' MSP00760

THEN MSP00770
/* SKIP IF STRUCTURES HEADER LINE */MSP00780

READ FILE(INFILE) INTO(TXTLINE); MSP00790
800 IF EOF = 'O'B /* BEGIN PROCESSING STRUCTURES INPUT */MSPOOS00

THEN 00; /* FILE */MSP00810
820 ENDLINE = 'O'S; MSP00820
830 TXTLINE = SUSSTR(TXTLINE,2); MSPOC330
840 IF INDEX(TXTLINE,it') = 0 MSP00840

THEN MSPOOS50
CALL LOGOPR('BRACE"); /* LOG BRACE FOR EACH LINE THAT */MSP00880

/* NEEDS ONE */MSPOOS70
880 TXTWD = SU3STR(TXTLINE,1,INDEX(TXTLINE,") - 1); MSP00880
890 IF INDEX(TXTWD,';') -= 0 /* PICK OFF FIRST WORD IN */MSPOOS90

THEN DO; /* LINE */MSP00900
910 TXTWD = SUBSTR(TXTWD,1,LENGTH(TXTWD) - 1); MSP00910
920 IF INDEX(TXTWO,'$') -= 0 MSP00920

THEN MSP00930
TXTWD = SUBSTR(TXTWD,1,LENGTH(TXTWD) - 1); MSP00940

950 IF SUBSTR(TXTWD,1,1) -= /* LOG PROCEDURE NAME */MSP00950

H-4

FL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

THEN DO; MSP00960

970 CALL LOGOPD('PROCEDURE ' II TXTWD); MSP00970

980 ENDLINE = '1'Es; MSP00980

990 END; MSP00990

1020 END; MSP01000

1010 FIRSTWD = TXTWO; MSP01010

1020 IF FIRSTWD = '.BEGIN' I FIRSTWD = '.END' I FIRSTWD = '.SKIP' MSP01020

THEN DO; /* LOG STANDARD STRUCTURES OPERATORS */MSP01030

1040 CALL LOGOPR(FIRSTWO); MSP01040

1050 ENDLINE = '1'8; MSP01050

1060 END; MSP01060

1070 IF FIRSTWD = '+' /* LOG STRUCTURES 'OR' OPERATOR */ MSP01070

THEN DO; MSP01080

1090 CALL LOGOPR('OR'); MSP01090

1100 CALL NEXTWD; MSP01100

1110 IF TXTWO = /* LOG 'NOT' OPERATOR OCCURRING */MSP01110

/* AFTER AN 'OR' */MSP01120

THEN DO; MSP01130

1140 CALL LOGOPR('NOT'); MSP01140

1150 CALL NEXTWD; MSP01150

1160 END; MSP01160

1170 CALL BRANCH; /* CALL SUBROUTINE TO PROCESS REST OF*/MSP01170

1180 ENDLINE = '1'13; /* AN 'OR' BRANCH STRUCTURES LINE */MSP01180

1190 END; MSP01190

1200 IF FIRSTWD = 'FOR' MSP01200

THEN 00; /* LOG 'FOR' LOOP OPERATOR */MSP01210

1220 CALL LOGOPR('FOR EVERY/EACH/ALL'); MSP01220

1230 DO I = 1 TO 2; /* GET PAST 'FOR */M5P012.30

1240 CALL NEXTWD; MSP01240

1250 END; MSP01250

1260 CALL LOGOPD(SUBSTR(TXTLINE,1,INDEX(TXTLINE.'#') - 1)); MSP01260

1270 CALL RANGE; /* CALL SUBROUTINE TO PROCESS REST OF*/MSP01270

1280 ENDLINE = '1,8; /* 'FOR' LOOP LINE */MSP01280

1290 END; MSP01290

1300 IF ENDLINE = 'O'E) MSPO1300

/* I E , IF FIRST WORD IN LINE IS NOT*/ MSP01310

THEN 00; /* A STANDARD STRUCTURES OPERATOR AN0*/MSP01320

/* SO LINE HAS NOT BEEN PROCESSED YET*/MSP01330

1340 IF INDEX(TXTLINE,'#') -= 0 MSP01340

THEN DO; /* IF THERE IS NO '#' IN INPUT LINE, */MSP01350

1360 READ FILE(INFILE) INTO(NXTLINE); MSP01360

1370 NXTREAD = '118; /*THEN GET NEXT LINE*/MSP01370

1380 IF SUBSTR(NXTLINE,2,1) = '+' MSP01380

THEN /* IF NEXT LINE IS AN 'OR' STATEMENT,*/MSP01390

CALL BRANCH; /* THEN PROCESS AS A BRANCH */MSP01400

/* ELSE PROCESS AS A SUBROUTINE */MSP01410

/* CALL */MSP01400

1430 ELSE 00; MSP01430

1440 CALL LCGOPD(TXTND); MSP01440

H-5

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

1450 CALL NEXTWD; MSP01450
1460 CALL RANGE; MSP01460
1470 END; MSP01470
1480 END; MSP01480
1490 ELSE DO; /* IF NOT A BRANCH CR SUBROUTINE */MSP01490
1500 NXTREAD = '0'8; /* CALL, THEN LOG FIRST WORD AS AN */MSP01500

/* OPERATOR */MSR01510
1520 CALL LOGOPR(TXTWD); MSP01520
1530 CALL NEXTWD; MSP01530
1540 IF ENDLINE = '1'18 /* THEN CONTINUE PROCESSING*/ MSP01540

THEN MSP01550
CALL LOGOPO(TXTWO); MSP01560

1570 DO WHILE (ENDLINE = '0'8); MSP01570
1380 SRCHLINE = TXTLINE; MSP01580
1590 SRCHWD = TXTWD; MSP01590
1600 ENDLOOP = 'O'B; MSP01600
1610 MATCHFND = '0'8; MSP01610
1620 ENDSRCH = '0'8; MSP01620
1630 DO WHILE (ENDSRCH = '0'8); MSP01630
1640 ENDLOOP = '0'8; MSP01640

/* SEARCH REST OF LINE FOR MATCH TO */MSP01650
/* LIST OF PREPOSITIONS AND */MSP01660
/* CONNECTIVES */MSP01670

1680 LAGPC = HEADFC; MSP01680
1690 00 WHILE(ENDLCOP = '0'8); MSP01690

/* SEARCH THROUGH LIST ONCE FOR EACH */MSP01700
/* WORD */MSP01710

1720 IF TXTWD = LAGPC->PC MSP01720
THEN DO; MSP01730

1740 ENDLOOP = '1'8; MSP01740
1750 MATCHFND = '1'8; MSP01750
1760 MATCHWD = TXTWD; MSP01760
1770 ENDSRCH = '1'8; MSP01770
1780 END; MSP01780
1790 IF LAGPC->PCEOF = 1 MSP01790

THEN MSP01800
ENDLOOP = '1'8; MSP01810

1320 ELSE MSP01820
LAGPC = LAGPC->PCNEXT; MSP01330

1840 END; /* DO WHILE ENDLOOP = '018)*/ MSP01840
1850 IF ENDLINE = '0'8 & ENDSRCH = 'O'B MSP01850

/* IF PREVIOUS CALL TO NEXTWD SET THE*/ MSP01860
/* END OF LINE FLAG THEN THE SEARCH */ MSP01870
/* FCR A PREPOSITION CR CONNECTIVE IN*/ MSP01880
/* THE LINE HAS FAILED */ MSP01890

THEN CALL NEXTWD; MSP01900
1910 ELSE ENDSRCH = '1'B; MSP01910
1920 ENO; /* DO WHILE(ENOSRCH = 'O'B)*/ MSP01920
1930 IF MATCHFND = '1'8 MSP01930

H-6

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTICNS(MAIN);

NUMBER

THEN DO; /* IF MATCHED WORD IS */ MSP01940

1950 IF MATCHWO = 'TO' /* 'TO', THEN CALL SUB- */ MSP01950

THEN CALL FNOINF;/* ROUTINE TO FIND OUT IF */ MSP01960
/* IT IS THE BEGINNING OF */ MSP01970
/* AN INFINITIVE PHRASE */ MSP01980

1990 ELSE DO; MSP01990

2000 CALL LOGOFR(MATCHWD); MSP02000
/* IF MATCHED WORD IS NOT */ MSP02010

/* 'TO', THEN LOG IT AS */ MSP02020
/* AN OPERATOR */ MSP02030

2040 IF INDEX(SRCHLINE,MATCHWD) > 1 MSP02040

THEN MSP02050
/* IF MATCHED WORD IS NOT */ M5P02060
/* FIRST WORD IN THE LINE */ MSP02070
/* SEGMENT TESTED, THEN */ MSP02080
/* LOG THE LINE FROM THE */ MSP02090
/* BEGINNING TO BEFORE THE*/ MSP02100
/* PREPOSITION OR CONNECT-*/ MSP02110
/* IVE AS AN OPERAND */ MSP02120

CALL LOGOPO(SUBSTR(SRCHLINE,1,INDEX(SRCHLINE,MATCHWO) -2)); MSP02130
/* SET TXTLINE AND */ MSP02140
/* TXTWD TO UNPROCESSED */ MSP02150
/* REMAINDER OF LINE */ MSP02160

2170 CALL NEXTWO; MSP02170

2180 IF ENDLINE = MSP02180
THEN CALL LOGOPD(TXTWD); MSP02190

2200 END; MSP02200

2210 END; MSP02210

2220 ELSE MSP02220

CALL PROBLEM; MSP02230

2240 END; /*00 WHILE(ENDLINE = 'O'B)*/ MSP02240

2250 END; /* IF # NOT FOUND IN LINE */ MSP02250

2260 END; /*IF FIRST WORD IN LINE NOT STRUCTURES STANDARD*/ MSP02260
/*OPERATOR*/ MSP02270

2280 IF NXTREAD = '1'B MSP02280

THEN 00; MSP02290

2300 NXTREAD = 'O'B; MSP02300

2310 TXTLINE = NXTLINE; MSP02310

2320 END; MSP02320

2330 ELSE MSPO2330

READ FILE(INFILE) INTO(TXTLINE); MSP02340

2350 END;/*IF STRUCTURES INPUT LINE AND NOT EOF */ MSPOC350
2360 END; /*00 WHILE(EOF = '0'(8)*/ MSP02360

2370 CALL PRINT; MSP02370

/* SUBROUTINE SETUP CREATES LINKED LISTS OF PREPOSITIONS AND */MSP02390
/* CONNECTIVES AND OF INFINITIVE PHRASES ALL LIKELY TO BE */11SP02400

/* FOUND IN STRUCTURES DESIGN CHARTS. THESE LISTS ARE USED AS */MSP02410
/* CHECKS AGAINST WORDS AND PHRASES OF THE INPUT LINES. */MSP02420

H- 7

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

/***/MS P 02430

2440 SETUP: PROCEDURE; MSP02440

2450 DCL (FLAG1,FLAG2) BIT(1) INIT(1193); MSP02450

2460 ON ENDFILE(PROFILE) FLAG1 = '0'13; MSP02460

2470 ON ENDFILE(IFFILE) FLAG2 = '10'S; MSP02470

2430 ALLOCATE PPEPCSITION_CCNNECTIVE; MSP02430

2490 LAGPC = HEADPC; MSPOZ490

2500 OPEN FILE(PRCFILE) INPUT; MSP02500

2510 READ FILE(PROFILE) INTO(TXTLINE); MSP02510

2520 CO WHILE(FLAG1 = '1'ES); MSP02520

2530 LAGPC->PCEOF = 0; MSP02530

2540 TXTWD = SUBSTR(TXTLINE,1,INDEX(TXTLINE, ") - 1); MSP02540

2550 LAGPC->R = LENGTH(TXTWD); MSP02550

2560 LAGPC->PC =TXTWO; MSP02560

2570 READ FILE(PRCFILE) INTO(TXTLINE); MSP02570

2530 IF FLAG1 = '1'6 THEN CO; MSP02530

2590 ALLOCATE PREPOSITION_CONNECTIVE SET(LAGPC->PCNEXT); MSP02590

2600 LAGPC = LAGPC->PCNEXT; MSP02600

2610 END; MSP02610

2620 END; MSP02620

2630 LAGPC->PCEOF = 1; MSP02630

2640 LAGPC = HEADPC; MSP02640

2650 ALLOCATE INFINITIVE; MSP02650

2660 LAGINF = HEADINF; MSP02660

2670 OPEN FILE(IFFILE) INPUT; MSP02670
2630 READ FILE(IFFILE) MEP02680

2690 DO WHILE(FLAG2 = '1'(3); r- P02690

2700 LAGINF->INFEOF = 0; MSP02700

2710 TXTWD = SUBSTR(TXTLINE,1,INDEX(TXTLINE, ") - 1); MSP02710

2720 LAGINF->T = LENGTH(TXTWD); MSP02720

2730 LAGINF->INF = TXTWD; MSP02730

2740 READ FILE(IFFILE) INTO(TXTLINE); MSP02740

2750 IF FLAG2 = '1.8 THEN DO; MSP02750

2760 ALLOCATE INFINITIVE SET(LAGINF->INFNEXT); MSP02760
2770 LAGINF = LAGINF->INFNEXT; MSP02770
2730 END; MSP02780
2790 END; MSP02790
2300 LAGINF->INFEOF = 1; MSPO2SCO

2810 LAGINF = HEADINF; MSP02310

2320 END SETUP; MSP02320
/***),*********/msp02s30
/**4*********************/m3p02840
/* PROCEDURE NEXTWD ASSIGNS TO THE VARIABLE TEXTWD THE NEXT WORD IN */MSP02850
/* THE LINE AFTER THE PRESENT VALUE OF TEXTWD. IF THE NEW VALUE OF */MSP02360
/* TXTWD IS THE LAST WORD IN THE LINE, THE 'ENDLINE' OPERATOR IS */MSP02370
/* LOGGED IN THE OPERATORS LIST. */MSPOCSSO
/*************+***/ms?02860

2900 NEXTWD: PROCEDURE; MSP02900
2910 TXTLINE = SUBSTR(TXTUNE,LENGTH(TXTWO) + 2); MSP02910

H-8

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

2920 TXTWD = SUBSTR(TXTLINE,1,INDEX(TXTLINE,") - 1); MSP02920
2930 IF INDEX(TXTWD,';') 0 MSP02930

THEN DO; MSP02940
2950 ENDLINE = '1'8; MSP02950
2960 IF INDEX(TXTWD,'$') -= 0 M5P02960

THEN TXTWD = SUBSTR(TXTWO,1,LENGTH(TXTWD) - 2); MSP02970
2980 ELSE TXTWD = SUBSTR(TXTWO,1,LENGTH(TXTWD) - 1); MSP02930
2990 END; MSP02990
3000 END NEXTWD; MSP03000

/***/mspnolo
/***/mspo3m)
/* PROCEDURE BRANCH LOGS THE OPERATORS AND OPERANDS IN A WARNIER-ORR */MSP03030
/* 'EITHER/OR' STATEMENT OCCURRING BEFORE THE RANGE DESCRIPTION. */MSP03040
/* THE LATTER ARE LOGGED BY A CALL TO PROCEDURE RANGE. */MSP03050
/***/m8p05060

3070 BRANCH: PROCEDURE; MSP03070
3080 DCL CHKSTRING CHARM; MSP03080
3090 OCL SAVEOPD CHAR(80) VARYING; MSP03090
3100 DCL OPRINDEX FIXED BINARY INIT(0); MSP03100
3110 IF INDEX(TXTLINE,'=') = 0 & INDEX(TXTLINE,'>') = 0 & MSP03110

INDEX(TXTLINE,'<') = a MSP03120
THEN DO; /* IF NO COMPARISON OPERATOR IN LINE, THEN */MSP03130

/* CONSTRUCTION MUST BE, FOR EXAMPLE, */MSP03140
/* 'MATCH FOUND #0-1', WHICH IS LOGGED AS */MSP03150
/* 'MATCH FOUND = TRUE . . */MSP03160

3170 CALL LOGOPD(SUBSTR(TXTLINE,1,INDEX(TXTLINE,'#') - 2)); MSP03170
3180 CALL LOGOPR('=1); MSP03180
3190 CALL LOGOPO('TRUE'); MSP03190
3200 ENO; MSPO3Z00
3210 ELSE DO; /* IF COMPARISON OPERATOR FOUND IN LINE, */MSP03210

/* THEN LOG LINE UP TO OPERATOR IN OPERANDS*/MSP03220
/* LIST, LOG OPERATOR OR OPERATORS IN OPERA*/M5P03230
/* TORS LIST (THERE HAY BE TWO, AS IN */MSP03240
/* 1)=1), AND MOVE BEGINNING OF TXTLINE */MSP03250
/* VARIABLE PAST OPERATOR(S) */MSP03260

3270 SAVEOPD = TXTLINE; MSP03270
3230 DO WHILE(INDEX(TXTWD,'=') -= 1 & INDEX(TXTWD,'>') -= 1 & MSP03280

INDEX(TXTWD,'<') -= 1); MSP03290
3300 CALL NEXTWD; MSP03300
3310 END; MSP03310
3320 CALL LOGOPR(SUBSTR(TXTWO,1,1)); MSP03320
3330 OPRINDEX = 1; MSP03330
3340 IF SUBSTR(TXTW0,2,1) = '=1 I SUBSTR(TXTW0,2,1) = '>' MSP03340

SUBSTR(TXTWD,2,1) = '<' MSP03350
THEN DO; MSP03360

3370 OPRINDEX = 2; MSP03370
3330 CALL LOGOPR(SUBSTR(TXTW0,2,1)); MSP03330
3390 END; MSP03390
3400 SAVEOPD = SUBSTR(SAVEOP0,1,LENGTH(SAVEOPD) LENGTH(TXTLINE) 1); MSP03400

H-9

PL// OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

3410 CALL LOGOPD(SAVEOPD); MSP03410
3420 IF OPRINDEX > 0 MSP0340.0

THEN DO; MSP03430
3440 TXTLINE = SUBSTR(TXTLINE,OPRINDEX + 2); MSP03440
3450 CALL LOGOPD(SUBSTR(TXTLINE,1,INDEX(TXTLINE,'W) - 2)); MSP03450
3460 END; MSP03460
3470 END; MSP03470
3480 CALL RANGE; MSP03430
3490 RETURN; MSP03490
3500 ENO BRANCH; MSP03500

/**/msR03510

/* PROCEDURE RANGE TRANSLATES STRUCTURES INPUT FOR 'EITHER/OR', */MSP03530
/* DO WHILE, AND DO UNTIL RANGES INTO WARNIER-ORR FORM AND LOGS THE */MSP03540
/* OPERATORS AND OPERANDS. */MSP03550

3570 RANGE: PROCEDURE; MSP03570
3580 TXTLINE = SUBSTR(TXTLINE,INDEX(TXTLINE,'#') + 1); MSP03580
3590 CALL LOGOPO(SUSSTR(TXTLINE,1,INDEX(TXTLINE,'-') - 1)); MSP03590
3600 TXTLINE = SUBSTR(TXTLINE,INDEX(TXTLINE,'-') + 1); MSP03600
3610 CALL LOGOPD(SUBSTR(TXTLINE,1,INDEX(TXTLINE,';') - 1)); MSP03610
3620 CALL LOGOPR('W); MSP03620
3630 CALL LOGOPR(1,1); MSP03630
3640 ENDLINE = '1'8; MSP03640
3650 RETURN; MSP03650
3660 ENO RANGE; MSP03060

/******k*************;***/mspo3670

/* PROCEDURE FNDINF SEARCHES FOR A MATCH TO THE LINKED LIST OF */MSP03690
/* INFINITIVE PHRASES AND LOGS IT IN THE LINKED LIST OF OPERATORS */MSP03700
/* IF A MATCH IS FOUND CR CALLS PROCEDURE PROBLEM IF NO MATCH IS */MSP03710
/* FOUND. */MSPC3720

3740 FNDINF: PROCEDURE; MSP03740
3750 DCL PHRASE CHAR(40) VARYING; MSP03750
3760 PHRASE = SUESTR(TXTLINE, INOEX(TXTLINE,") + 1); MSP03760
3770 PHRASE = 'TO ' II SUBSTR(PHRASE,1,INDEX(PHRASE,") - 1); MSF03770
3780 IF INDEX(PHRASE,';') -7- 0 MSP03780

THEN DO; MSP03790
3800 ENDLINE = '1'8; MSP03800
3810 PHRASE = SUBSTR(PHRASE,1,LENGTH(PHRASE) - 1); MSP03310
3320 IF INDEX(PHRASE,'$') -= 0 MSP03320

THEN MSP03330
PHRASE = SUBSTR(PHRASE,1,LENGTH(PHRASE) - 1); MSP03840

3850 END; MSP03850
3860 LAGINF = HEADINF; MSP03360
3370 DO WHILE(LAGINF->INFEOF = 0); MSP03870
3830 IF PHRASE = LAGINF->INF MSP03880

THEN DO; MSP03390

H-10

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

3900 CALL LOGOPR(LAGINF->INF); MSP03900

3910 CALL NEXTWD; MSP03910

3920 CALL NEXTWD; MSP03920

3930 RETURN; MSP03930

3940 END; MSP03940

3950 IF LAGINF->INFEOF = 0 MSP03950

THEN MSP03960

LAGINF = LAGINF->INFNEXT; MSP03970

3953 END;
MSP03980

3990 IF PHRASE = LAGINF->INF MS1903990

THEN DO; MSP04000

4010 CALL LOGCPR(LAGINF->INF); MSP04010

4020 CALL NEXTWD; MSP04020

4030 CALL NEXTWD; MSP04030

4040 RETURN; MSP04040

4050 END;
MSP04050

4060 ELSE DO; MSP04060

4070 CALL PROBLEM; MSP04070

4050 RETURN; MSP04080

4090 END;
MSP04090

4100 END FNDINF; MSP04100

/***msp0411
0

/***4******* ;i***************/mS p04120

/* PROCEDURE PROBLEM ALLOWS THE TERMINAL OPERATOR TO INTERACTIVELY */MSP04130

/* PARSE THE PARTS CF WARNIER-ORR LINES THAT CANNOT OTHERWISE BE */MSP04140

/* PARSED BY THIS PROGRAM BECAUSE THEY CONTAIN PREPOSITIONS, */MSP04150

/* CONNECTIVES, OR INFINITIVE PHRASES NOT IN THE MASTER LIST, */MSP04160

/* BECAUSE THEY ARE SYNTACTICALLY AMBIGUOUS, OR BECAUSE THEY CONTAIN */MSP04170

/* AN ERROR. MSP04130

/***/ P 4 190

4200 PROBLEM: PROCEDURE; MSP04200

4210 DCL (DSPLINE, WRITEVAR,PREP) CHAR(72) VARYING; MSP04210

4220 DISPLAY(SRCHLINE); MSP04220

4230 DISPLAY('IF NO PREPOSITIONS, CONNECTIVES, CR INFINITIVES, ENTER "N:"');MSP04230

4240 DISPLAY('IF "TO" APPEARS, ENTER "I:" AND PHRASE IF INFINITIVE'); MSP04240

4250 DISPLAY('IF "TO" APPEARS, ENTER "P:TO" IF PREPOSITION'); MSP04250

4260 DISPLAY('IF OTHER PREPOSITION CR CONNECTIVE, ENTER "P:" AND WORD'); MSP04260

4270 DISPLAY('IF LINE IS UNPROCESSIBLE, ENTER "U:"') REPLY(OSPLINE); MSP04270

4250 IF SUBSTR(DSPLINE,1,2) = 'N:' MSP04230

THEN DO; /* LOG REST OF LINE IN */MSP04290

/* OPERANDS LIST */MSP04300

4310 IF INDEX(SRCHLINE,'5') = 0 MSP04310

THEN CO; MSP04320

4330 SRCHLINE = SUBSTR(SRCHLINE,1,INDEX(SRCHLINE,';') - 1); MSP04330

4340 CALL LOGOPO(SRCHLINE); MSP04340

4350 RETURN; MSP04350

4360 ENO; MSP04360

4370 ELSE 00; MSP04370

4330 SRCHLINE = SUBSTR(SRCHLINE,1,INDEX(SRCHLINE,';') - 2); MSP04380

H-11

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMSER

4390 CALL LOGOPD(SRCHLINE);
4400 RETURN;
4410 END;

4420 END;
4430 IF SUSSTR(DSPLINE,3)

MSP04390
MSP04400
MSP04410
MSP04420
MSP04430

THEN 00; MSP04440
4450 WRITEVAR = SUBSTR(OSPLINE,3); MSP04450
4460 END; MSP04460
4470 IF SU3STR(DSPLINE,1,2) = 'P:' MSP04470

THEN DO; MSP04480
4490 PREP = " II WRITEVAR II "; MSP04490
4500 CALL LOGOPO(SU3STR(SRCHLINE,1,INOEX(SRCHLINE,PREP) - 1)); MSP04500
4510 CALL LOGOPR(kRITEVAR); MSP04510
4520 TXTLINE = SUBSTR(SRCHLINE,INDEX(SRCHLINE,PREP) + 1); MSP04520
4530 TXTLINE = SUBSTR(TXTLINE,INOEX(TXTLINE,") + 1); MSP04530
4540 TXTWD = SUBSTR(TXTLINE,1,INDEX(TXTLINE,") - 1); MSP04540
4550 IF INOEX(TXTWD,';') = 0 MSP04550

THEN MSP04560
ENDLINE = 'O'S; MSP04570

4580 ELSE DO; MSP04580
4590 ENDLINE = 'I'S; MSP04590
4600 TXTWD = SUSSTR(TXTWD,1,LENGTH(TXTWD) - 1); MSP04600
4610 IF INDEx(rxrgo,,V) -= 0 MSP04610

THEN TXTWD = SUBSTR(TXTWO,1,LENGTH(TXTWO) - 1); MSP04620
4630 CALL LOGOPD(TXTWO); MSP04030
4640 END; MSF04640
4650 RETURN; MSP04650
4660 END; MSP04660
4670 IF SUBSTR(DSPLINE,1,2) = 'I:' -MSP04670

THEN DO; MSP04680
4690 CALL LOGOPD(SU3STR(SRCHLINE,1,INOEX(SRCHLINE,WRITEVAR) - 2)); MSP04690
4700 CALL LOGOPR(WRITEVAR); MSPC4700
4710 TXTLINE = SUSSTR(SRCHLINE,INOEX(SRCHLINE,WRITEVAR) + 3); MSP04710
4723 TXTWD = SUESTR(TXTLINE,I,INDEX(TXTLINE,") - 1); MSP04720
4730 IF INDEX(TXTWD,';') -= 0 MSP04730

THEN MSP04740
ENDLINE = 'I'S; MSP04750

4760 ELSE DO; MSP04760
4770 CALL NEXTWD; MSF04770
4780 IF ENDLINE = '1'S MSP04780

THEN MSP04790
CALL LOGOPD(TXTWD); MSP04800

4810 ENO; MSP04810
4820 RETURN; MSP048C0
4830 END; MSP04830
4840 IF SUBSTR(DSPLINE,1,2) = 'U:' MSP04840

THEN 00; MSP04850
4860 DISPLAY('LINE UNPROCESSIBLE--PROGRAM ABORTED'); MSP04860
4870 STOP; MSP04870

H-12

PLJI OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

4880 END;
MSP04880

4690 END PROBLEM;
MSP04890

/***/tispo4900
/* PROCEDURE LOGOPR SEARCHES FOR A MATCH TO AN OPERATOR IN THE */MSPC4910

/* LINKED LIST CF OPERATORS AND INCREMENTS THE COUNT IF A MATCH IS */MSP04920

/* FOUND OR ADDS THE OPERATOR TO THE END CF THE LIST IF A MATCH IS */MSP04930

/* NOT FOUND.
*/MSPC4940

/**mspo4950

4970 LOGOPR: PPOCEDURE(POPR);
MSP04970

4960 DCL POPR CHAR(40) VARYING;
MSP04980

4990 LAGOPR = HEAOOPR;
MSP04990

5000 DO WHILE(LAGOPR->OPREOF = 0); MSP05000

5010 IF POPR = LAGOPR->OPR
MSP05010

THEN DO;
MSP05020

5030 LAGOPR->OPRCT = LAGOPR->OPROT + 1; MSP05030

5040 RETURN;
MSP05040

5050 END;
MSP05050

5060 IF LAGOPR->OPREOF = 0
MSP05060

THEN
MSP05070

LAGOPR = LAGOPR->OPRNEXT; MSP05080

5090 END;
MSP05090

5100 IF POPR = LAGOPR->OPR MSP05100

THEN DO;
MSP05110

5120 LAGOPR->OPRCT = LAGOPR->OPROT + 1; MSF05120

5133 RETURN;
MSF05130

5140 ENO;
MSP05140

5150 LAGOPR->OPREOF = 0;
MSP05150

5160 ALLOCATE OPERATOR SET(LAGOPR->OPRNEXT);
MSP05160

5170 LAGOPR = LAGOPR->OPRNEXT;
MSP05170

5180 LAGOPR->X = LENGTH(POPR); MSP05180

5190 LAGOPR->OPR = POPR; MSP05190

5200 LAGOPR->OPRCT = 1;
MSP05203

5210 LAGOPR->OPREOF = 1;
MSP05210

5220 RETURN;
MSP05220

5230 END LOGOPR;
MSP052.30

/***/msposc40
/***/msp05250
/* PROCEDURE LC:30PD SEARCHES FOR A MATCH TO AN OPERAND IN THE LINKED */MSP05260

/* LIST OF OPERANDS AND INCREMENTS THE COUNT IF A MATCH IS FOUND OR */MSP05270

/* ADDS IT TO THE END OF THE LIST IF A MATCH IS NOT FOUND. */MSP05280

5300 LOGOPD: PROCEDURE(POP0); M5P05300

5310 DCL POPO CHAR(40) VARYING; MSP05310

5320 LAGOPO = HEADOPD; MSP05320

5330 DO 14HILE(LAGOP0->OPDEOF = 0); MSP05330

5340 IF POPO = LAGOPO->OPO MSP05340

THEN DO;
MSP05350

5360 LAGOPD->CPDCT = LAGOPD->OPDCT + 1; MSP05360

H-13

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMSER

5370 RETURN; MSP05370

5380 END; MSP05380

5390 IF LAGOPD->OPDEOF = 0 MSP05390

THEN MSP05400

LAGOPD = LAGOP0->OPONEXT; MSP05410

5420 END; MSP05420

5430 IF POPO = LAGOPD->OPD MSP05430

THEN DO; MSP05440

5450 LAGOPD->OPDCT = LAGOPD->OPDCT + 1; MSP05450

5460 RETURN; MSP05460

5470 END; M5P05470

5480 ELSE DO; MSP05480

54R0 LAGOP0->OPDEOF = 0; MSP05490

5500 ALLOCATE OPERAND SET(LAGOPO->OPONEXT); MSP05500

5510 LAGOPD = LAGOP0->OPONEXT; MSP05510

5520 LAGOFD->A = LENGTH(POPD); MSP05520

5530 LAGCPD->OPD = POPO; MSP05530

5540 LAGOP0->OPOCT = 1; MSP05540

5550 LAGOP0->OPOEOF = 1; MSP05550

5560 RETURN; MSP05560

5570 END; MSP05570

5580 END LCGOPD; MSP05580

/***/Hsp05600
/* PROCEDURE PRINT PRODUCES TABLES OF OPERATOR AND OPERAND COUNTS */MSP05610

/* AND PRINTS OUT THE VALUES OF HALSTEAD'S COMPLEXITY MEASURES FOR */MSP05620

/* A WARNIER-ORR DIAGRAM. */MSP05630
/***/msp05640

5650 PRINT: PROCEDURE; MSP05650

5660 DCL (TOTOFRS,TOTOFDS,OPFS,OPDS) FIXED DECIMALI10,5); MSP05660

5670 DCL (EST_N,GAMMA,V_COM,EST_L,V,E,T,ETA,N) FIXED DEC1MAL(10,5); MSP05670

5660 OPEN FILE(OUTFILE) FAGESIZE(55) LINESIZE(80); MSP05680

5690 TOTOPRS = 0; MSP05690

5700 OPRS = 0; MSP05700

5710 TOTOPDS = 0; MSP05710

5720 CFOS = 0; MSP05720

5730 PUT FILE(OUTFILE) SKIP(3) EDIT('TABLE 1. OPERATORS OF',TITLE) MSP05730

(COL(22),A(22),X(1),A(30)); MSP05740

5750 PUT FILE(OUTFILE) SKIP(2) EDIT MSP05750

(' 1)MSP05760

(COL(7),A(72)); MSP05770

5780 PUT FILE(OUTFILE) SKIP; MSP05780

5790 PUT FILE(OUTFILE) SKIP EDIT('OPERATOR','COUNT') MSP05790

(COL(30),A(8),X(21),A(5)); MSP05800

5810 PUT FILE(OUTFILE) SKIP EDIT MSP05810
(' ')MSP05820

(COL(7),A(72)); MSPOS830

5340 PUT FILE(OUTFILE) SKIP; MSPOSS40
5550 LAGOPR = HEADOPR; MSPO56SO

H-14

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

5860 DO WHILE(LAGOPR->OPREOF = 0); MSP05860

5870 TOTOPRS = TOTOPRS + LAGOPR->OPRCT; MSP05870

5680 OPRS = OPRS + 1; MSPO5S80

5590 PUT FILE(OUTFILE) SKIP ED/T(OPRS,LAGOPR->OPR,LAGOPR->OPRCT) MSP05890
(COL(17),F(3),X(4),A(25),X(10),F(3)); MSP05900

5910 LAGOPR = LAGOPR->OPRNEXT; MSP05910

5920 END; MSP05920

5930 TOTOPRS = TOTOPRS + LAGOPR->OPRCT; MSP05930

5940 CPRS = OPRS + 1; MSP05940

5950 PUT FILE(OUTFILE) MSP05950

SKIP EDIT('ETA-1 =',OPRS,LAGOPR->OPR,LAGOPR->OPRCT) MSP05960

(COL(9),A(7),X(1),F(3),X(4),A(25),X(10),F(3)); MSP05970

5980 PUT FILE(OUTFILE) SKIP EDIT(' MSP05950
')(COL(7),A(35),X(15),A(10)); MSP05990

6000 PUT FILE(OUTFILE) SKIP EOIT(TOTOPRS,'= N1')(COL(59),F(3),X(1),A(4)); MSP06000

6010 PUT FILE(OUTFILE) PAGE; MSP06010

6020 PUT FILE(OUTFILE) SKIP(3) EDIT('TABLE 2. OPERANDS OF',TITLE) MSP06020
(COL(22),A(21),X(1),A(30)); MSP06030

6040 PUT FILE(OUTFILE) SKIP(2) EDIT MSP06040
(' ')MSP06050

(COL(7),A(72)); MSP06060

6070 PUT FILE(OUTFILE) SKIP; MSP06070

6080 PUT FILE(OUTFILE) SKIP EDIT('OPERAND','CCUNT')(COL(30),A,X(22),A); MSP06080

6090 PUT FILE(OUTFILE) SKIP EDIT MSP06090
(' 1)MSP06100
(COL(7),A(72)); MSP06110

6120 PUT FILE(OUTFILE) SKIP; MSP06120

6130 LAGOPO = HEADOPD; MSP06130

6140 DO WHILE(LAGOPD->OPDEOF = 0); MSP06140
6150 TOTOPDS = TOTOPOS + LAGOPD->OPDCT; MSP06150

6160 OPRS = CFDS + 1; MSP06160

6170 PUT FILE(OUTFILE) SKIP EDIT(OPDS,LAGOPD->OPO,LAGOPD->OPDCT) MSP06170
(COL(17),F(3),X(4),A(25),X(10),F(3)); MSP06180

6190 LAGOPO = LAGOPD->OPONEXT; MSP06190

6200 END; MSP06200

6210 TOTOPDS = TOTOPOS + LAGOP0->OPOCT; MSP06210

6220 OPOS = OPOS + 1; MSP06220

6230 PUT FILE(OUTFILE) MSP06230

SKIP EDIT('ETA-2 =',OPOS,LAGOPD->OPD,LAGOP0->OPOCT) MSP06240
(COL(9),A(7),X(1),F(3),X(4),A(25),X(10),F(3)); MSP06250

6260 PUT FILE(OUTFILE) SKIP EDIT(' MSP06260
')(COL(7),A(35),X(15),A(10)); MSP06270

6280 PUT FILE(OUTFILE) SKIP EDIT(TOTOPDS,'= N2')(COL(59),F(3),X(1),A(41); MSP06280
6290 PUT FILE(OUTFILE) PAGE; MSP06290
6300 PUT FILE(OUTFILE) SKIP(3) EDIT('NALSTEAD"S COMPLEXITY MEASURES FOR', MSPO6300

TITLE)(COL(11),A(34),X(1),A(30)); MSP06310
6320 PUT FILE(OUTFILE) SKIP(2); MSP06320
6330 ETA = OPRS + CFDS; MSP06330
6340 PUT FILE(OUTFILE) SKIP EDIT('VOCABULARY = ETA = ETA -1 + ETA -2 =', MSP06340

H-15

PL/I OPTIMIZING COMPILER COUNT: PROCEDURE OPTIONS(MAIN);

NUMBER

ETA)(COL(9),A(34),F(4)); 15P06350
6360 N = TOTOPRS + TOTOPDS; MSP06360
6370 PUT FILE(CUTFILE) SKIP(2) EDIT MSP06370

('LENGTH = N = N1 + N2 =',N) MSP063S0
(COL(9),A(22),F(5)); MSP06390

6400 EST_N = (OPRS * LOG2(OPRS)) + (CPDS * LOG2(OPDS)); MSP06400
6410 PUT FILE(CUTFILE) SKIP(2) EDIT MSP06410

('EST. N = ETA -1 LOG2 ETA -1 + ETA -2 LOG2 ETA -2 =',EST_N) MSP06420
(CCL(9),A(46),X(1),F(5,1)); MSP06430

6440 V = N * LOG2(ETA); MSP06440
6450 PUT FILE(OUTFILE) SKIP(2) EDIT MSP06450

('VOLUME = V = N L002 ETA =',V) MSP06460
(COL(9),A(25),X(1),F(7,1)); MSP06470

6480 EST_L = (2 / OPRS) * (OPDS / TOTOPDS); MSP06480
6490 PUT FILE(CUTFILE) SKIP(2) EDIT MSP06490

('EST. ABSTRACTI0N LEVEL = EST. L = (2/ETA-1)(ETA-2/N2) =', MSP06500
EST_L)(COL(9),A(55),X(1),F(6,4)); MSP06510

6520 V_COM = EST_L * V; MSP06520
6530 PUT FILE(CUTFILE) SKIP(2) EDIT MSP06530

('MOST COMPACT VOLUME = V* = LV =',VCOM) MSP06540
(COL(9),A(32),X(1),F(4,1)); MSP06550

6560 GAMMA = (EST_L**2) * V; MSP06560
6570 PUT FILE(CUTFILE) SKIP(2) EDIT MSP06570

('LANGUAGE LEVEL = GAMMA = (L**2) * V =',GAMMA) MSP06580
(COLI9),A(37),X(1),F(6,2)); MSP06590

6600 E = V / EST_L; MSP06600
6610 PUT FILE(OUTFILE) SKIP(2) EDIT MSP06610

('MENTAL EFFORT = E = V/L =,E) MSP06620
(COL(9),A(25),X(1),F(7,1)); MSP06630

6640 T = E / 10SO; MSP06640
6650 PUT FILE(OUTFILE) SKIP(2) EDIT MSP06650

('TIME (IN MINUTES) = T = E / (S * 60) =',T) MSP06660
(CCL(9),A(38),X(1),F(5,1)); MSP06670

6680 END PRINT; M5P06680
/44****************44***44**/msp06690

6700 ENO COUNT; MSP06700

PREDICTING PROGRAM COMPLEXITY FROM WARNIER-ORR DIAGRAMS

by

BARBARA WHITE

B.A., University of Kansas, 1965
M.A., University of Missouri, 1968

ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

1

ABSTRACT

Halstead's complexity metrics are an objective measure of program

complexity based on counts of the operators and operands in a program.

They include formulas for vocabulary, length, estimated length, language

level, abstraction level, mental effort, and programming time, and

considerable interest has been manifested in their practical

applications. In the present experiment, Halstead's metrics were

adapted to Warnier-Orr diagrams of program designs, and the Halstead

values for diagrams were compared to those for the programs written from

them. Six WO diagrams, six high -level -language programs and three

assembler -language programs were analyzed using an operator and operand

counting program. A statistically significant relationship was found

for diagram and high -level -language program estimated abstraction level,

and values of diagram and assembler -language programs for these three

metrics were also apparently related. From the results of this

preliminary study, it seems likely that Halstead values derived from a

WO diagram may be used to predict those of the program to be written

from the diagram.

