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INTRODUCTION
1. Introduction |

In the present construction of steel buildings, openings
through the:webs of steel beams are frequently necessary to
accommodate the passage of pipes, ducts and other utility
components. Thus, the strength of the beam may be weakened to
the extent that reinforcing is required in the vicinity of the
openings. In the past few years, both analytical and experi-
mental investigations have been made of the stresses around
various openings with and without reinforcing. Several theore-
tical solutions have been verified and are available for certain
cases of this problém. The purpose of this study was to deter-
mine the accuracy of an analytical solution based on a 'Finite
Element Method' by comparing these results with those of an
experimental program carried out at Kansas State University(l)*.
The results were 2lso compared with the results obtained using
a Vierendeel Analysis (1).

An A36 W12x45 steel beam with a 6" x 9" rectangular web
opening at middepth, subjected to combined bending and shear,
was treated as a thfee dimensional plate structure in this study,
The finite element method was used to investigate the stress
distribution around the rectangular hole. An existing computer

program (2) was made operational as a requirement of this report.

*Numbers in parentheses refer to corresponding items in the

" References ".



2. Objectives

The primary objectives of this report were:

a. To obtain a solution to the problem using the finite
element method.

b. To compare the results of this study with the
experimental results and with predictions based on the so-called
Vierendeel Method of analysis (1).

3. Scope

The study was limited to A36 steel W12xAi5 shapes with a
6" x 9" rectangular web opening centered on the neutral axis of
the béams, which were subjected to combined bending”and shear
with various values of the moment-shear ratio obtained by placing
a given concentrated load at the center of the span and
simultaneously varying the shear span length. Both reinforced
and unreinforced openings were studied. The reinforcing consisted
of horizontal bars located above and below the opening, on just

one side of the web,



LITERATURE REVIEW

In 1932, Muskhelishvili introduced the application of the
comformal mapping technique and complex integration to the
problems of plane elasticity (3).

In 1958, Heller, Brock and Bart presented a solution by the
complex variable method associated with Muskhelishvili for the
stresses around a rectangular opening with rounded corners in a
ﬁnifonmly loaded plate (4). In 1962, they used the same method
to investigate the stresses around a rectangular opening with
rounded corners in a beam subjected to bending and shear (5). In
both cases, they reached the conclusion that the maximum value of
the boundary stress is a function of both aspect ratio (height-
to-width) and cormer radius.

Snell, in 1962, used the finite element method to study the
effects of various reimforcing conmfigurations for rectangular
openings in plates subjected to uniaxial tension (6). After his
analytical and experimental studies, he reached the following
conclusions: (a) The finite element method couldrbe used for the
solution of this type of problem. (b) Reinforcing strips
parallel tb the direction of the applied load could effectively
‘be used to reduce stress concentration in plates with rectangular
openings. (c) The most effective length for these strips was
closely approximated by placing the reinforcing in such a way
that the ends were on lines drawn outward from the corners of the

opening in the plate at h5° angle to the plate . axes.
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In 1964, Segner made a study of the reinforcing requirements
around large rectangular web openings in W shape beams subjected
to varying combinations of bending moment and shear (7). His
theoretical approach was based on the theory that a member having
such openings centered on the neutral axis acts as a Vierendeel
truss and thus has a point of contraflexure at mid-length of each
opehing above and below the opening in the tee section. After his
experimental study, he concluded that the Vierendeel theory was
an appropriate analogy for this problem. Since then, the so-called
'Vierendeel Method' has frequently been used by designers to
calculate the elastic stresses around rectangular holes in the
web of W shape beams.,

Bower developed an analytical method, in 1966, also using
the complex stress function to predict the elastic stresses
around elliptic and circular holes in the webs of W shape beams
under a uniform locad. The applicability of this analysis depends
on the size and shape of the web hole and on the magnitude of
the moment—shear ratio at the center of the hole (8). In the
same year, he conducted tests on simply supported W shape beams
with circular or rectangular web openings loaded by concentrated
loads (9). He concluded that for circular and rectangular holes
the elastic analysis could accurately predict the tangential
stress along the hole and the bending stress on transverse
cross sections in the vicinity of the hole, when the hole did
not exceed half of the web depth. He also concluded that the

Vierendeel analysis predicts a reasonably accurate bending stress



except for local stress concentrations at the hole corners.

In 1969, Cheng experimentally analyzed the stresses around
a rectangular web opening in a W shape beam using the photostress
method and electrical resistance strain gage techniques (10).
One of his conclusions was that simple beam theory could not be
used to predict normal stress within the region on either side
of the opening for a distance approximately equal to the depth
of the beam. In this region the normal bending stress distri-

bution is non-linear.



METHOD OF ANALYSIS
1. Introduction

The concept of the finite element method was originally
introduced by Turner et al. in 1956 (11). 0. C. Zienkiewicaz
and Y. K. Cheng (12) also presented the theory necessary for
the analysis of a plane elastic continua. By using this method
a plane elastic continua is divided into elements interconnected
at a finite number of nodes. When the force-displacement
relationships for the individual elements are determined, the
general 'displacement method' of structural analysis procedure
can be conveniently followed.

In this report, the W shape beam is treated as a three-
dimensional structure. The elements then may be subjected to
both bending and 'in plane' forces. For a flat element these
leadings cause independent deformations, and the stiffness matrix
for plane stress and plate bending can each be determined
separately..The total element stiffness matrix can then be made
up by simply combining these two matrices. Flat triangular
elements are used with constant strain properties for the plane
stress components, and linear strain variation for bending.

For bending, a non-comforming shape function is used. The matrix
formulation of the finite element analysis as presented in
Reference (12) is included here for the purpose of providing

some insight into the method.



2. Formulation of the General Equations

The general displacement method equation is given (13) as

{F}® = [x1°(%}° (1)

column matrix of nodal forces for a particular

=5
n

element (in local coordinates),
[K]® = element stiffness matrix (in local coordinates),and

Oy

column matrix of nodal displacements for a

]

particular element (in local coordinates).

Internal displacements are expressed in terms of the nodal

displacements by
{£} = INI{8)° (2)
in which
(f} = column matrix of internal displacements in the
element, and
[N] = square matrix dependent upon the element geometry,
relating the internal displacements and nodal
displacements.

The strains at any point within the element can be determined

by
(€}=[B{8}° . (3)
in which
{E} = the column matrix of total strains at any point
within the element, and

[B] = square matrix obatined from the appropriate



strain-displacement relatienships governing the
element.

The relationship between stress and strain can be written

as
(o} = [p]{€} ()
in which |
{cr]: column matrix of stresses within the element, and
[D] = square matrix of material constants relating

internal stress to strain.
Substituting from equation (3) into equation (4) yields
{0} = (0] [BI{&}°. (5)

The element stiffness matrix can new be derived by using
an energy method (13). The total strain energy of the element
_is

* T
U =— fe} {g)av. (6)

2 v

Subsﬁituting from equations (3) and (5) into (6) yields

1 T 01T o
v = —[ ({§}*7 [s17 [0] [81{5)° av. (7)
The average work done by the nodal forces is
' 1
- eyT1¢e
W= —({F)Ts)°, (8)

Substituting from equation (1) into equation (8) yields
L
w =—({8)®)T [x1®{5)°. (9)
({8} oa° 5]

Since the external work W must equal the energy, U,

absorbed by the element, a comparison of equations (7) and (9)



reveals that
(xk1® = J_ (81" [p] [B] av. (10)
The element stiffness matrix in local coordinates must be
transformed into the global coordinate system in order to assemble

the elements. Let

{S}G = [TJ, {§}e and {F]e = [T] {ip}e (11)

[T] = transformation matrix,
{g}e = column matrix of nodal displacements for a
particular element ( in global coordinates ), and
{F}e = column matrix of nodal forces for a particular
element ( in global coordinates ).
Substituting from equation (11) into equation (1) yields
(F}e = (717 [xk1° [1] {3)°. (12)
The stiffness matrix of an element in the global coordinates
then becomes
[x3® = [r1T [k1® [Tl. (13)
When the overall equilibrium conditions are established
at the nodes of the structure, the resulting equations will
contain the displacements as unknowns. Once these have been
solved, the stresses can be found by using equation (5) for each
element, in turn.
3. Triangular Plate Element
a. Plate in Plane Stress
Let a typical triangular plate element with nodes

i, j and m noted in a counter-clockwise order be as shown in
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Fig. 1. The plane displacements of a node each have two components
u.
Sil={ .1} (14)
CAR
The six components of element displacements can then be

listed as a column vector.

di
{s) ={% ; o (15)

—a X

Fig. 1 Triangular Plate Plane Stress Element

The displacements at any point within an element are defined
by these six values as
} u(x,y)

| 0"
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in which u and v are the internal displacements in the x and y

directions, respectively. Two linear polynomials

=&
u =0y +oux +oly, and -
VS0 04X gy |
are chosen to represent the displacement field for the element,

On substituting the boundéry conditions

u=u, and v=v, at ( x5y 75 ),
u = uy and V= vy at (J.:j' ¥ P (18)
and u=u and v=v  at ( X0 Y )

into equation (17), the six undetermined coefficients can be
determined. For example,

U=y +olpxs + gy, and (19)

u= 0(1 +ol X +a¢3ym.
We can solve for “1’ X, and cl3 in terms of the nodal displace-
ments Uy u‘j and - In the same way “h’ oc5 and &g can be
obtained. We finally find that

_ 1
u = ?'A_E(ai+bix+ciy)ui+(a .+bjz¢—cjy)uj+(am+bmx+cmy)um],a.nd

J
v = %Z-['(ai+bix+ciy)vi+(aj+bjx+cjy)vj+(am+bmx+cmy)vm] (20)
in which
& T Xp w5
bi = Yj"ym = yjm’
¢4 = *m*3 = *mj
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By =V ¥y = Vo (21)
€5 T X1 ™%p T Xyme
&n = xin‘iji ’

Cp = XyXy = Xyy
and where
4 5 ¥y
24A= det|1 Xy ¥y |= 2 (area of triangle i, j, m ).
1 Xy v (22)
m

We can represent the relations in equation (20) in the form

of equation (16)
(£} = {:}= (N1 {&}® = [ vg', IN,", IN,® j{s}e (23)

where I is a two by two identity matrix and

N (ai+bix¢ciy)
i- 7 2 4 '
(aj+bjx+cjy)
Nj' = —rrA ! and (2[.1,)
(a,+b x+c y)

Np' = T E .
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The calculation of the coefficients can be simplified if the
reference coordinates are taken as the eentroid of the element.
When that is done, the relationships

X R H Xy = T4 W

and a; =—§£L =ay =8, (25)

result.

The total strain at any point within the element cam be

defined in terms of the displacements by well-known (14)

relationships
r rﬂu,
é:c 2X
_é 4 v -
(€ 4erH 4
€ u 2v
\ \ 8y 8X

Taking the appropriate partial derivatives of equation (20),

results in
(b, O, by, 0, by 0 3
Ie'] =-2-]i- 0, ¢, 0, c5 0, cf [3]9 (27)
(C1? bi’ cj, bﬁ' Cp? bm

or, to correspond with equation (3)

(e} =I[B] [5}°
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where
/
by O, by O, b, O 3
1 :
[B] = ;:; 0, ¢ 0, ¢y O, c. . (28)
kcl, bi’ cJ, bJ, Cp? bm )

The relationship between stress and strain is defined
by equation (4). For the plane stress case, three components

of stress correspond to.the strains already defined as
a
[a} =g . (29)
r

For a linearly elastic, homogeneous and isotropic material, the
matrix of material constants for this case is obtained from

Hooke's law as

\
E 1 A 0
D = Al 1 O L] 0
[D] Z:ZF (30)
0 0 (1l=u)/2 ]

For the plane strain case, a similar matrix can be formed.
The stiffness matrix of the element i, j, m is defined

by the relationship in equation (10) as
(k1® = [, (81T [D] [B] ¢ ax dy (31)

where t is the constant thickness of the element and the

integration is taken over the area of the triangular element.



Since neither of the matrices in equation (31) contains x nor y,

we have

[xJ® = [(B]Y [p] [B] ¢t A (32)

where Ais the area of the triangle as defined by equation (22).

b. Plate Bending Stress
Consider a triangular plate i, j, m coinciding with
ﬁhn X, y plane as shown in Fig. 2. At each node, displacements
{snl are introduced. These have three components: the first

a deflection w, in the Z-direction, the second a rotation (Gx)n

about the X-axis through the node and the third a rotation
(Dy)n about the Y-axis through the node.

Y

(F

Bx(Tox)

'
z v:(Fw)

Fig. 2 Triangular Plate Element in Bending

15
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The positive directions of the rotations are determined by the
right-hand screw rule and are shown as vectors directed along
the axes. The:three components of nodal displacement at a

node i can therefore be defined (16) as follows:

W, W.

1 1
(8} ={0xs| = { (255 - B3
Oyi (3%);

and the corresponding force vector

{Fi} = | (Faxli}e O (34)
)

(F

ey %

The shape functions now must be defimable in terms of
{5}9, that is in terms of nine parameters. A polynomial
expression is conveniently used. We can write

= f(x,y) = X+l +ofx2+ot +oL 2+otx3 (x2 +q 2)
w = vy—l'*'dz 3yf+ Sxy_ 6Y 7+0’8PYIY

oy (35)

The undetermined coefficients oy to o<9 can be evaluated by
writing the nine simultaneous equations linking the values of w
and its slopes at the nodes'when the coordinates take up their
appropriate values. For instance

2 2 3
Wy, = a1+o¢2xi+0t3y i+°‘h.xi +oc5xiyi+o¢6yi +a(7xi

2 2
"‘ds( pxi Yi"'qxiyi ) +°<9Yj_3l
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-Bw _ _ _ _ 2 2
(S —)1= —0G=%Y; 2067 -0 (px, “+2ax,y,)-300y; " , and (36)
W _ 2 2
(5% 15 %+R00 X, 406y, 4300, “+0 (2px, 3, +ay; ) -
We can write all nine equations in matrix form,

(8] = [e] (] (37
where [C] is a nine by nine matrix depending on nodal coordinates
and{cx} a vector of the nine undetermined coefficients. Invert-
ing [C] and solving for {c&] yields

(«} = [cTHs}. | (38)
It is now possible to write the expression for the displacement
within the element in the form of equation (2)

[£} = w=[N](8}° = [P] [c]™}{5}° (39)
where

[P] = (1, x, v, x2, XY, st XBisz'.V"'quzs YB)! (40)
and

p=4q=1, for Tochers function (2), or
p=0, qg= 1,‘ for Gallaghers function (2).
According to classical plate theory (16), for any point
in a plate, the gemeralized 'strain' can be defined as
32W
- ﬂ
& x

azw'

{E} = --—a—-;z (’-l-l)

ﬁ'zw
?axay
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and the corresponding generalized 'stress' as

M
(o} = {M} (% | (42)

with the notation and positive directions as shown in Fig. 3.

The actual stresses are determined by such expressions:as

6
0_x=--lgt'

TR
1] y =i:¥-s and (43)
6
xy’"'Jﬁgz )

t

T

Equation (41) can also be written in the form of equation (3)
{6 } = [B] {3}3. (3)
The vector, {e} , can be obtained directly from equation (35),

as -

(-20  -60x -2pogy) |

{e } = (-20¢ ~2q04x -60gy ) (44)
(20 L(px+ay)og )
which can be written as
fe} = (@) {u} =l [cTH{5}° (45)

and thus

[] = [Q] [c]™  (46)
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in which
o, o0, 0, =2, o, 0, -6x, -2py, O
(]=|0o, o0 o0 o0, 0, -2, O, -2x,-6y |.(47)
- o, o0, o0 o0, 2, 0, 0, 4(px+qy), O

The linear relationship between stress and strain is derived as

{o} ={mM}= (0] {e]. (48)
For an isotropic plate
3 1 u 0
[p] = = M 1 0 (49)
12(1—1?) ’
0 0 (1-u)/2

Fig. 3 Stress Resultants of 'Stresses' in Plate Bending
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The stiffness matrix can now, again, be developed by an

energy method as indicated in equation (10)
(x] = f 81T [p] [B] ax ay . (50)

Substituting equation (46) and taking t as a constant within

the element, yields
(%] = { [e17}*(ff [a1°[p] [ ax ay) [c]7 (51)

c. Combining 'In Plane' And Bending Actions

From the previous derivations, we obtain the stiffness

matrix and the relationships

(73" (2,F
{ 7P} = [xIP{ 5P
L Fmpj Smp
u, 1
. i _ 1
with {5 ip}= snd [Fip] - (52)
v | Vi

for in plane ( Plane stress ) action,

and .
b

F:°) 5,

bl _ reb/ ¢ b

Fiop = [KI{ 3

F Pl s b

m ) m
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with Wy ) Fwi
bl _ b] _
{5 i } ={6,) and {Fi , ={ Fori (53)
eyil Feyi

for plate bending action.

Before combining these stiffnesses it is important to note
two facts. The first is that the displacements prescribed for
'in plane' forces do not affect the bending deformations and
vice versa. The second is that rotation 6, does not enter as
a parameter into the definition of deformations in either mode.
It is convenient to take this rotation into account and associate
with it a fictious couple Foge It is also necesséry to insert
an appropriate number of zeros into the stiffness matrices.

Redefining, now, the combined nodal displacements as

{ 5 i} = ;i} (54)

and the corresponding 'forces' as
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(Y )
vy
Fai
F, = ’ (55)
{ l} Foxi T
Fayi
\ FOZiJ
we can write
Fy Si
_ e
Fyf= [k] sj (56)
Fm 5l!:l

or in the form of equation (1)

{F)° = [k1°{5}°. (1)

d. Transformation to Global Coordinates
The previous derivations of stiffness matrices
are based on local coordinates. Transformation of coordinates
to a common global system (which is denoted by X, y, 2, while
the local system is denoted by x, y, 2z, as shown in Fig. 4 )
will be necessary in order to assemble the elements and write

the appropriate equilibrium equations.



- |

of

il

Fig. 4 Local and Global Coordinates
The forces and displacements at a node, given in the global
system, are transformed to the local system by employing a
matrix [L] giving
(1) = {5} ema {F} = [@I{F} (57)
in which
A 0
[L] =[ ] ] (58)
- \0 A
where [ A ] is a three by three matrix of direction cosines

of the angles formed between the two sets of axes. That is

r"g A M
[*) =trz A5 Py (59)
Nox a7 Mz

In which » 5 = cosine of the angle between the x and x 2X€S»

-éﬁﬂ: These values can be determined firom the coordinates of
the nodes forming the element. For the whole set of forces

23
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acting on the nodes of an element we can then write the equation
in the form of equation (1ll1l), and finally obtain the stiffness

matrix in global coordinates as equation (13)

(k1 = 11T [k1® [T] (13)
in which, matrix [®] is given by
L 0 0
[T] =}o0 L o]. (60)
0o 0 L

e. Assembly of Elements
To obtain ‘& complete solution for the entire

structure, the two conditions of displacement compatibility
and equilib¥ium have to be satisfied throughout. When any set
of nodal displacements

5 1

5 2

{s}={( . (61)

is=listed for the whole structure in which all the elements
participate, the condition of displacement compatibility is
automatically satisfied. The overall equilibrium of the
complete assemblage is provided by establishing equilibrium
at the nodes of the structuré. Consider the structure to be

loaded by external forces [R]
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{R} = {. ? (62)

applied atrthe nodes.

We now have to combine all the elemenﬁ properties into the
stiffness massrix [K] for the complete structure. It is a matter
of simply superimposing the element stiffness matrices in the
appropriate positions of the matrix [K]. Then the force-

displacement’ relation for the whole structure can be written as
{R} =[K]{3]. (63)

The solution for the unknown displacements can be obtained once
the prescribed support displacements have been.substituted into
equatibn (63). The resulting displacememts are referred to the
global system, and before the stresses can be computed it is
necessary to transform these into the local system for each
element. The element stress matrix, equation (5), for 'in plane'
bending components can then be used. In the existing program
iised in this report, the stresses are assigned to the centroid
of each element and are converted to principal stresses and

their directions.
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4o Solution of Equations

The element stiffness matrices are formed one after the
other, and them added to the appropriate locations of the
overall matrix in accordance with the nodal numbers in the
. problem, Since the time necessary for inversion of a matrix
increases approximately as the cube of the matrix size, a parti-
tioning scheme is used to reduce the physical size of the stiffness
matrix, equation (13). The final partitioned form of the overall
sﬁiffness matrix can be shown as in Fig. 5., Physically, this
corresponds ta- the fadt that the nodal points of the structure
are divided into a number of partitions.connected in series as

illustrated in Fig. 6.

m———m—=msoon
Kr | C1 |
|
T
Cr | ¥r1| C11 :
|
| T
| 611 ¥ Crrz :
| |
| |
| * . »
| e K C
| N-1] ON-1
| 14
| Cn-1] ¥y

Fig., 5 Partitioned Stiffness Matrix
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elements needpd k
in partition I
———

elemernits needed
in partifion II

Fig. 6 Partitioning of A Structure

The final partitioned form of the overall matrix is sub-divided
into convenient parts which are written in a tridiagonalized
manner as follows:

(ky ¢ 0 o t + 0 0 o] (&, ) (P

I
¢! K. C..O +» « 0 o0 ol |5 p
1 Kir Cr1 IT 11
0 €. KorCorre o o ol |8 p
11 K1110111 TEL II1

.........&.>=<.f.(6m

. - . . * . . . . . .

0 0 0 0 -+ -+ Ky, O] |8y Py-1
T
O 0 0 0 - - Cyg, Ky ° 2 P
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This system of equations will be solved as follows:

The first two matrix equations can be written as

[k 1{5 1} + [e11{8 11} = {7}

and  [c;1°{$ 1} + [Rpp1{8 11} + [erp3{8 117} = {Pre}- 453)
The first .equation will yield

(5 1} = &2 {pg) - [x 37 [e1{8 4] (66)
and substituting into the second yields

([kpr] - [eg1" [k T CegD) {511} + [Cq1] {5III}

= {prz} - [og2" [xp17H {p . (67)
By defining new symbols,

[Ry] = ([Kpp] - [6717 (K717 [64]) and

(68)

(Prz} = {Prr} - [opd" &1 e}
equation (67) may be written as

[Kpy] {511} + [Crq] [5111} = {FII}’ (69)

from which{ﬁn} can be obtained as {5 I} is found in equation (66)
and then substituted into the next row equation to give [K;;i]
and Prog)-

This process of substitution and elimination goes on until

the last row is reached, that is,

Kyd {84} = [} (70)



where a direct inversion will yield {5N} .

The process is then revérsed and the known displacement
values are back-substituted into equations in the form of
equation (66), giving solutioﬁs for all of the unknowns.

To check the errors introduced in the solution of

equation (64), the residuals are calculated as

{7} =[?} - x1]s}.

(71)

29
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NUMERICAL EXAMPLES
1. Experimental Setup

As described in Reference (1) two simply supported W
shape 12x45 steel beams were each subjected to a concentrated
load at midspan, The centerline of the web opening was 20 inches
from the midspan. Each beam was tested with four values of
moment-shear ratio at the-Opening by varying the length of the
shear span from 100 inches to 40 inches in increments of 20
inches as shown in Fig, 7;

The web opening which was located on the cemtroidal axis
of the beam was 6 in deep and 9 in long with a 1/2 inch corner
radius as indicated in Fig. 8(a). Thus, thé width-to-depth
ratio of the opening was 1.5 and the nominal ratio of depth of
opening to depth of peam was 0.5, .

One beam was tested without reinforcing and several were
tested with horizontal reimforcing strips placed around the
opening. The reinforcing details for the beam of interest are
shown in Fig. 8(a) and (b). The cross sectional dimensions
of the beam used in this study were the nominal values as
indicated in Fig. 8(c). The modulus of elasticity was 29,000 ksi

[ ]
and the Poisson s ratio was taken as 0.3.

2. Solution By Superposition

In order to investigate the stress distribution around the
web opening by the finite element method a portion, A-B, was
assumed cut out of the beam as shown in Fig. 9(a). The 36 inch

section, A-B, was assumed to extend far enough past the hole on

either side that the actual stress condition in the section as it
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existed in the beam would be approximated by applying the
nominal end moments and shears to the section as a free body.
For the arialysis of each beam (with and without reinforcing),

a superposition technique was used in order to save computer

time. The sectioh A-B subjected to end shears and moments is
statically equivalent to the same section subjected to pure
bending plus shear with bending as indicated in Fig. 9. By

sﬁatic theory, the factors X, K2 can be evaluated for any

moment-shear ratio by solving the following two simultaneous

- equations
1000 Xl - 1000 Xz = MA
1000 X, o+ 1000 Xz = My

For both cases, there were four values of the moment-shear
ratio. The résulting factors are listed in Table 1 and Table 2
respectively.

For each beam, thus, we need only analyze the two sections
loaded by end momemts of 1000 k-in in the first case and by end
moments of 1000 k-in and end shears of 55.55 kips for the second
case, arranged as in Fig. 9(b) and (¢). These results multiplied
by the appropriate factorﬁixl? Xz and superimposed, yield the
complete solution for the varions values of the moment-shear

ratic.
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2P=12 kips
M/V v MA MB Xl X
(in) (k} (k=in) (k-=in)

80 6 372 588 0.48 0.108
60 6 252 4,68 0.36 0,108
540 6 132 348 0.24 0,108
20 6 12 228 0.12 0,108

Table 1. Factors for Beam without Reinforcing

2P=24 kips
M/V v M, Mg X X,
(in) (k) (k=in) (k-in)
80 12 Thly 1176 _0.96 0.216
60 12 504 936 0.72 0.216
Lo 12 261l 696 0.48 0.216
20 12 2L 456 0.24 0.216

Table 2. Factors for Beam with Reinforcing
3. Finite Element Solution

a. Displacement Boundary Conditions
For the pure bending case, Fig. 9(b}, the behavior is
symmetrical with respect to the X axis and antisymmetrical with
respect to the Y axis., For the bending with shear case, Fig, 9(c)
the behavior is antisymmetrical with respect to both the X and Y

axes., Under these conditions, it was possible to analyze only
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one-quarter of the section by introducing appropriate restraint
conditions on the boundary nodes as illustrated in Figs,.10 and 11.
b. Element Discretization

For the case without reinforcing the area of interest
was divided into a finite element mesh of 50 triangular elements
and 35 nodal points. This mesh is shown in Fig. 12. Smaller
triangular elements were used near the perimeter of the hole in
order to get- a better picture of stress distribution near the
hole. The rounded corners could not be approximated in this
analysis since the mesh size was too large. However, the fillets
would affect the stress distribution very little except in the
immediate vicinity of the opening. The nodal points were assigned
consecutively to 2 partitions. The partitions are indicated in
Fig. 12 by Roman numerals and dashed lines.

For the case with reinforcing strips, the area of

interest was also divided a mesh. This mesh contained 58
triangular elements and 40 nodes and is shown in Fig. 13. The
triangular elements on the web and flange were the same as those
of the previous case. The nodal points were assigned consecutive-
ly to 3 partitions. The partitions are indicated: in Fig. 13 by
Roman numerals and dashed lines. The heavy lines indicate the
common boundary lines of the flange and the web and the reinfor-
cing and the web. The exact length of the reinforcing used in
the experimental analysis did not fif the nodal point exactly.
In this analysis the reinforcing used was 1/2 " longer than

the actual length. The space between the reinforcing and the edge
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center line, in the X direction.

Fig. 10 Boundary Conditious For Beam Without Reinforoing
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of the opening was omitted since the element size was such that
this was the most reasonable location for the reinforcing.
C. Consistent Nodal Loads

The moments and shear forces on the free body, Fig. 10
and Fig. 11, could not be used directly. These moment and shear
were approximated by a series of concentrated loads applied at
the nodal points on the end section in this analysis. The
flexural stress at the end section was talculated by the simple

beam theory,

¢="T
Since the stress varies linearly along the boundary, the
congistent nodal forces were the static resultants of this
stress distribution. The general expressions for the

concebtration formula for a linearly varying distribution are

listed below.
Lt

/ Py, = T (zpl * PZ)
Lt

A 'y
3 L p;, = force intensity per
'Pl P2 unit area

t = thickness

The concentrated load at each nodal point was the sum of
the static resultants from the adjacent sides. The small differ-

ence between the sum of the moments produced by these concentrated
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forces, applied at the no&al points, about the neutral axis and

the statical moment at the section was proportionately resolved

into a series of small concentrated loads, which were then added
to the previous concentrated loads making the sum of the moments
produced by these nodal forces equal to the statical moment,

500 k-in. These concentrated loads are shown in Fig. 14(a).

The shear stress was calculated by the usual equation

b I

and the static resultants for the parabolic variation are shown

below.
2/3(p2—p1)Lt

p;b t

1 2
+ T L™t (Pz"?l)

2
2 5 1 2 2 Fl

P
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P; shear stress per unit area
t = thickness
The equivalent nodal forces at each node are the sum of
the static resultants from the adjacent dides. The shear stress

on the flange was assumed to be concentrated at the center point

of the flange. The equivalent nodal loads are shown in Fig. 14

(b).
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PRESENTATION AND DISCUSSION OF RESULTS
1. Normal Stresses

Figures 15 through 30 present a comparison of the normal
stresses due to in plane bending obtained from the finite element
method based on the mesh of Figs, 12 and 13, with the
experimental values (1) and the theoretical analysis based on
the 'Vierendeel Method® (1).

The dots and solid lines in the figﬁres represent the
results using the finite element analysis. Since the method of
finite elements used is an averaging procedure, the stresses
obtained with constant strain triangles do not reflect the -
actual stress for any particular point, but are constant
throughout an element. It is usual to assign the calculated
stress values to the element centroids and then to interpolate
linearly tc estimate the stress for a particular peint. Using
this procedure, the normal stresses were plotted on the figures
for sections C, D and E (Fig. 9a), and the solid lines passing by
those dots approximate the calculated stress variation for the
given sections. The points indicated by the small crosses
represent the experimental values and the dashed lines in the
figures represent the Vierendeel analysis values as given in
Reference (1).

From these figures, it can be seen that the normal stresses
obtained using the finite element analysis agree quité well with

the experimental data along section C (the centerline of the
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opening) for both the reinforced and the unreinforced cases, and
are also in good agreement with the predicftions based on the
Vierendeel Analysis.

Along section D (the edge of the odpening), the stresses
calculated from the fimite element approach, agree reasonably
well with the experimental data except at the edges of the
opening and at the flange. Because of the relatively large ele~
ment size used in this peport, it is difficult to get a good
approximation of the stress variation near the opening. The
dashed lines have been extended from the solid lines in order
to approximate the stresses near the edge. To get more reasonable
approximate values around this region, the area of interest
should be further subdivided. As for the top flange, the stress
plotted is the average value of the adjacent elemants at the
middepth of the flange, that represent the average value at the
flange. There is no way to get the value at the top edge of the
flange. As can be seen from those figures, the finite elemsnt
approach results in a more reasonable and accurate normal
stress @igtribution than ihe Vierendeel Analysis along section
D.

The normal stresses calculated byhthe finite element
method along section E (3" from the opening), as shown in Figs.
16, 18, 20, 22, 24, 26, 28 and 30 were also in all cases close
to the experimental data. The Vierendeel Analysis was not applied

to this region.
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2. Bending Stresses

For the beams with one-sided reinforcing strips, bending
stresses are induced in the web due to the unsymmetrical trans-
verse sections stiffened by the longitudinal reinforcing strips.
The bending stresses in the web are shown in Figs. 31, 32, 33
and 34. As Shown in these figures, the maximum average bending
stress occurs at the corner of the opening, where the stress
concentration occurs. The comparison of this maximum average
bending stress with the maximum normal stress in the vicinity of
the cormer showes the bending. stress to be approximately 5.5
percent of the maximum normal stress. From this comparison, it
-may be concluded that the use of one-sided reinforcing strips

had no significant effect on the normal stresses in the web.

3. Shear Stresses
In order to compare the results of this study with the data
given in Reference (1), the shear stresses obtained from the
individual results of a series were averaged to represent the
results for the series. Then the average values of the adjacent
elements were used to represeht the stress distribution for the
sections of interest as shown in Fig. 35 by dots and solid lines.
The dashed lines in the figﬁre represent the theoretical values
VQ

based on simple beam theory, Sxy =

indicated by small crosses represent the experimental data (1).

(1)e The points

It can be seen from Fig. 35 that, for the unreinforced opening,

" the results of the finite element analysis are in good agreement
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with the experimental data, except at section C. At section C

the stress distribution pattern is similar to the distribution

predicted by v = z g . However the magnitude of the calculated
stress is significantly higher than the experimental value.
It should be noted that the experimental data collected at this
point on the unreinforced beam tended to be low for all cases.
For the opening, with one-sided reinforcing as shown in
Fig. 35, reasonable agreement was obtained for all sections
between the finite element analysis and the experimental data.
From the comparison of the results, it can be concluded that the
finite elemsnt method can predict reasonably accurate stress

distributions for this class of problems.



CONCLUSIONS

From the comparison of-the results obtained by the finite
element method with the experimental and theoretical values,
some conclusions can be reached: |

1. The normal stresses obtained using the finite element
analysis were in good agreement with the experimental data for
the unreinforced cases and for the one-sided reinforced cases
under the four given moment-shear ratios.

2. Along the section at the centerline of the opening, the
normal stresses obtained using the finite element analysis were
close to the predictions based on the so-called 'Vierendeel
Analysis'. Away from that section, the finite element approach
predicts more reasomable amd accurate stress distributions than
those predicted by the Vierendeel Analysis for all cases.

3. The use of one-sided reinforcing strips had little
effect on the stregs distribution since the bending stresses
induced in the web were relatively small when compared with the

normal stresses.

L9
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ABSTRACT

The purpose of this investigation was to obtain the results
of an analytical solution for the problem of a beam with a
rectangular web opening based on a finite element method and to
compare these results with those of an experimental program
carried out at Kansas State University. The results were also
compared with the results obtained using a Vierendeel Analysis.
| An A36 W12xL5 Steel beam with a 6" x 9v rectangular web
opening at middepth, subjected to combined bending and shear
with four different moment-shear ratios was treated as a three
dimensional plate structure in this study. The beam without
reinforcing was studied first and then two longitudinal
reinforcing strips were placed on one side of the web, above
and below the opening.

The results based on the finite element analysis indicated
good agreement with the experimental data and provided a more
reasonable stress distribution than the so-called 'Vierendeel
Analysis' away from the center of the 0pening.. Furthermore, the
use of one-sided reinforcing strips had little effect on the stress
distribution since the bending stresses induced in the web

were relatively small compared with the normal stresses.



