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Abstract 

Advancing age alters the structural and functional determinants of convective and 

diffusive muscle oxygen (O2) flux.  However, capillary red blood cell (RBC) 

hemodynamics have not been investigated during contractions in muscles of old animals.  

PURPOSE: To test the hypothesis that aging induces significant alterations in capillary 

hemodynamics during electrically-induced contractions in the spinotrapezius muscle of 

old Fischer 344 x Brown Norway rats when compared to younger counterparts.  

METHODS: The spinotrapezius muscle was observed via intravital microscopy in 8 old 

(O: 26-30 months) and 5 young (Y: 6-8 months) animals. Wire electrodes elicited 1 Hz 

(6-8 volts) contractions for 3 minutes.  RBC flux (FRBC), velocity (VRBC), capillary 

hematocrit (HCAP), and total microvascular O2 delivery (Q& O2m) were measured both at 

rest and during the steady-state of muscle contractions.  RESULTS: At rest FRBC and 

VRBC were elevated in O compared to Y rats, while there was no difference in HCAP or 

Q& O2m between groups.  During the contracting steady-state, ∆FRBC (Y: 28.8 ± 7.7, O: -

2.9 ± 1.4 cells/s), ∆VRBC (Y: 253 ± 68, O: -4 ± 15 µm/s), ∆HCAP (Y: 0.02 ± 0.02, O: -0.03 

± 0.01 cells/µm), and ∆Q& O2m (Y: 892 ± 255, O: -24 ± 30 cells/s/mm) cells/s/mm were all 

lower (P < 0.05) in O compared to Y rats.  CONCLUSION: These results indicate that 

despite maintained total convective and diffusive O2 transport at rest, advancing age 

results in significant alterations in capillary hemodynamics during electrically-induced 

contractions.  These alterations likely contribute to the mechanisms responsible for the 

reduced exercise capacity commonly found in elderly populations. 
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CHAPTER 1 - Introduction 

Following maturation, advancing age is accompanied by both peripheral and 

central structural and functional alterations within the oxygen (O2) transport pathway that 

lead to a decline in maximal exercise tolerance and muscle function.  For example, the 

senescent myocardium may exhibit a reduced capacity to elevate cardiac output to meet 

the metabolic demands of exercise (Lakatta, 1990; Folkow & Svanborg, 1993) and 

skeletal muscle perfusion may be compromised (Wahren et al., 1974; Irion et al., 1987).  

Recently, additional focus has been placed on a reduced ability of the aging skeletal 

muscle microcirculation to extract O2 despite maintained convective O2 delivery 

(McGuire et al., 2001; Hepple et al., 2003), thereby implicating an important peripheral 

component in the exercise intolerance of elderly individuals. 

Within aging skeletal muscle there is a reduction in the number of feed arteries 

(Behnke et al., 2006) and capillaries as well as mitochondrial volume density (Conley et 

al., 2000).  In addition, aging affects the myogenic control of vascular conductance 

(Musch et al., 2004; Behnke et al., 2006), reduces the bioavailability of nitric oxide 

(NO), and attenuates endothelium-dependent vasodilation (Muller-Delp et al., 2002b; 

Muller-Delp, 2006) resulting in a reduced ability to regulate vascular tone.  These 

alterations are likely to contribute to the age-induced decrease in blood flow observed 

during dynamic leg exercise (Proctor et al., 1998) and electrically-induced muscle 

contractions (Hammer & Boegehold, 2005), which may be accompanied by a 

redistribution of flow among different fiber types (Musch et al., 2004).  Impaired active 

peripheral circulatory control results in temporal reduction of muscle O2 delivery relative 
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to the O2 demands of exercise (Behnke et al., 2005).  Until recently, capillary rarefaction 

was held responsible for the inability of aged muscles to extract O2 and sustain the 

transcapillary O2 fluxes found in their younger counterparts.  However, recent reports of 

maintained or increased capillarity and total capillary-myocyte interface relative to 

mitochondrial oxidative capacity do not support the presence of a capillary structural 

limitation to O2 flux in aged muscle (Hepple & Vogell, 2004; Mathieu-Costello et al., 

2005).  Given that the number of red blood cells (RBCs) along the capillary length at any 

given time serves as the primary determinant of tissue O2 diffusing capacity (Groebe & 

Thews, 1990), alterations in microcirculatory hemodynamics and RBC distribution 

constitute a likely mechanism for the reduced O2 flux and, as such, may contribute to the 

exercise intolerance of the elderly. 

To date, few studies have examined the effects of aging on microcirculatory 

hemodynamics, in part, because aging results in the proliferation of collagenous 

overgrowth and fascial attachments making optical clarity of the peripheral 

microcirculation difficult at best (Tyml et al., 1992; Russell et al., 2003).  Recently, our 

laboratory has utilized a modified form of the rat spinotrapezius muscle preparation for 

observation of microvascular function via video microscopy in health (Kindig et al., 

2002) disease (Kindig et al., 1999; Padilla et al., 2006) and aging (Russell et al., 2003) 

research.  The spinotrapezius represents an excellent muscle for microscopic analysis due 

to its mixed fiber type composition (Delp & Duan, 1996) and oxidative capacity similar 

to that of the human quadriceps (Leek et al., 2001).  Resting measurements have 

demonstrated that aging reduces the lineal density of RBC-perfused capillaries, and 

increases RBC velocity (VRBC) and flux (FRBC) within the continuously perfused 
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microvessels (see also (Tyml et al., 1992)) such that overall FRBC (i.e. microvascular O2 

delivery, Q& O2m) is maintained (Russell et al., 2003).  Additionally, measurements of 

arteriolar blood flow in the aged spinotrapezius during electrically-induced contractions 

have revealed that contractions up to 2 Hz may not elicit increases in arteriolar flow in 

contrast to the several-fold increase this contraction protocol induces in young muscles 

(Hammer & Boegehold, 2005).  However, to our knowledge, analysis of the effects of 

aging on peripheral capillary hemodynamics during contractions are completely absent 

from the literature. 

Therefore, the present investigation analyzed the spinotrapezius muscle of young 

(3-4 month old) and old (26-30 month old) Fischer 344 x Brown Norway rats to 

determine the effects of aging on capillary hemodynamics during electrically-induced 

contractions.  We tested the following original hypotheses: 1) Aged rats would exhibit a 

significantly attenuated increase in FRBC and VRBC in response to contractions, and 2) the 

attenuated FRBC and VRBC will be associated with a blunted increase in capillary 

hematocrit (HCAP) and, by implication, reduce total O2 extraction in aged vs. young 

muscles. 

 

 

 



 

 4 

CHAPTER 2 - Review of Literature 

Effects of age on functional capacity and muscle fatigue 

Beyond physical maturation, aging is a process that is marked by a decline in  

exercise tolerance and the capacity to perform physical work.  Specifically, aged  

individuals show a reduction in maximal O2 uptake (V
.
O2max) (Ogawa et al., 1992) and a 

decreased power output and increased rate of muscle fatigue during repeated quadriceps 

contractions (Petrella et al., 2005).  Aging-associated limitations in functional capacity 

and exercise tolerance have important implications for elderly populations where exercise 

may be a beneficial therapeutic intervention aimed at improving quality of life.  

Alterations in functional capacity may be due to varying combinations of aging-induced 

derangements in the structure and/or function of both central and peripheral components 

of the O2 transport pathway.  An elegantly-designed longitudinal study by McGuire and 

colleagues (McGuire et al., 2001) found that stroke volume is increased with age, thereby 

compensating for the aging-associated decline in maximal heart rate (HR) thereby 

maintaining maximal cardiac output.  This important finding has shifted the focus of the 

search for the primary mechanistic basis of aging-induced decrements in exercise 

tolerance away from central adaptations towards aging-induced alterations in the 

periphery. 

Aging-induced alterations in exercise hyperemia 

It is generally accepted that, in healthy young individuals, muscle blood flow 

(Q& m) to the submaximally exercising muscles is increased in such a fashion that the O2 
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delivery does not limit the V
.
O2 of the exercising muscle (V

.
O2m) either in the transition 

from rest to exercise or during the steady-state (Barstow et al., 1990; Grassi, 2000).  

However, many studies have investigated the possibility of a reduction in Q& m to active 

muscle with advancing age, which would act to limit exercise tolerance.  For example, 

several studies have reported Q& m reductions when comparing old rats to their younger 

counterparts during electrical stimulation of skeletal muscle (Irion et al., 1987; Hammer 

& Boegehold, 2005).  Similarly, in humans, Q& m to the active leg muscles is reduced 

during dynamic exercise in older men (Wahren et al., 1974; Proctor et al., 1998) and 

women (Proctor et al., 2003a).  Recently, Donato et al. (Donato et al., 2006) 

demonstrated that the difference in the leg Q& m response to exercise found between young 

and old subjects was a product of the response to the exercise stimulus itself, as opposed 

to variations in resting Q& m between age groups.  Collectively, the results of the 

aforementioned studies are in conflict with other reports where no difference in Q& m was 

found between young and old subjects during forearm exercise (Jasperse et al., 1994) or 

dynamic leg exercise (Olive et al., 2002; Proctor et al., 2003b).  Specifically, Olive et al. 

(Olive et al., 2002) demonstrated that exercising Q& m is a function of physical activity 

patterns but not age differences.   

 Despite contrasting reports concerning bulk blood flow in aged individuals, 

circulatory maladaptations may be occurring within the aged peripheral circulation that 

would reduce exercise capacity in the face of maintained bulk Q& m.  For example, using 

radiolabeled microspheres, Musch et al. (Musch et al., 2004) reported no difference 

between young and old rats total limb Q& m in response to treadmill running exercise.  
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However, they were able to demonstrate that aging elicited a redistribution of Q& m away 

from highly oxidative muscles towards highly glycolytic muscles.  It is likely that the 

reduced Q& m to the oxidative fibers seen during submaximal exercise is closely linked to  

the earlier onset of fatigue that is witnessed in the aged population via mismatching of the  

Q& m /V
.
O2m ratio.  In addition to Q& m redistribution, middle-aged men may tend to elicit a 

higher mean arterial pressure (MAP) and lower vascular conductance (Q& m = MAP x 

vascular conductance) during exercise when compared with younger men (Magnusson et 

al., 1994; Lawrenson et al., 2003; Poole et al., 2003).  The increase in perfusion pressure 

most likely reflects a heightened state of vasoconstriction (or reduced vasodilation) of the 

vessels supplying the working muscles (Proctor & Parker, 2006).  Overall, the 

redistribution of Q& m away from the highly oxidative fibers as well as a lower vascular 

conductance and increased driving pressure most likely translates into alterations that 

impair skeletal muscle microvascular function during exercise in old subjects.   

Aging-induced alterations within the microvasculature 

Although central (Ogawa et al., 1992) and peripheral (Musch et al., 2004) 

derangements to Q& m certainly exist in aged individuals, the effect that these perturbations 

have on capillary-tissue O2 exchange is speculative at best without direct functional 

assessment of the peripheral microcirculation.  Elegant modeling studies by Groebe and 

Thews (Groebe & Thews, 1986) and Friederspiel and Popel (Federspiel & Popel, 1986) 

have suggested that the total number of red blood cells that lie adjacent to a muscle fiber 

is the primary determinant of the diffusion capacity of O2 (DO2).  In turn, the DO2 is a 

principle determinant of skeletal muscle O2 extraction.  Alterations in either 
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microcirculatory structural or functional capacity could account for limitations to DO2 

with aging.  However, reports by Hepple et al. (Hepple & Vogell, 2004) and Mathieu-

Costello et al. (Mathieu-Costello et al., 2005) have demonstrated that capillarity and, 

more specifically, the capillary-fiber-interface is either maintained or improved in aged 

animals relative to the fiber oxidative capacity, thereby implicating derangements in 

microvascular function.    

Technological and ethical limitations have prevented direct observation of the 

peripheral i.e, muscle microcirculation in humans.  Therefore, a rat model has commonly 

been employed to examine functional microcirculatory indices of O2 delivery including 

FRBC, VRBC, capillary hematocrit (Hcap), capillary lineal density (number of capillaries per 

muscle width), countercurrent flow, and the partial pressure of O2 (PO2) in the 

microcirculation (Kindig et al., 1999; Kindig et al., 2002; Richardson et al., 2003; 

Russell et al., 2003; Behnke et al., 2005; Padilla et al., 2006).  In the rat, one of the 

muscles commonly used to examine the microcirculation is the spinotrapezius muscle 

(Kindig et al., 1998; Kindig et al., 1999; Kindig & Poole, 1999, , 2001; Kindig et al., 

2002; Russell et al., 2003).  The spinotrapezius muscle is located on the superficial dorsal 

region of the rat having its origin on the vertebral column and insertion on the scapula.  

The muscle is ideal for microcirculatory observation due to its mixed fiber type 

composition (Delp & Duan, 1996) and oxidative capacity similar to that of human 

quadriceps muscle (Leek et al., 2001).  Additionally, it can be readily exteriorized, there 

is an absence of fascia and large vessels obscuring the microvascular field, and it is very 

thin, making it suitable for transmission light microscopy.  Using intravital microscopy, 

Russell et al. (Russell et al., 2003) was able to demonstrate that differences exist in 
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capillary hemodynamics at rest between young and old rats.  Specifically, in old rats the 

lineal density of capillaries sustaining RBC perfusion was decreased, while VRBC and 

FRBC were increased within the flowing capillaries.  In addition, the number of capillaries 

demonstrating countercurrent flow, which provides for a higher average PO2 surrounding 

the myocyte (Kobayashi et al., 1990), was reduced.  These alterations were such that 

convective Q& O2m  (lineal density of flowing capillaries x mean FRBC) at rest was not 

affected.  The increased VRBC in aged rats supported the results of a previous 

investigation that reported an increased VRBC within the extensor digitorum longus 

muscle of old rats at rest (Tyml et al., 1992).   

In contrast to resting microvascular flow measurements in aged skeletal muscle, 

measurements in contracting aged muscle have remained elusive primarily due to 

reductions in visual clarity of the muscle when viewed under magnification.  Despite 

these limitations, Hammer and Boegehold (Hammer & Boegehold, 2005) utilized the rat 

spinotrapezius muscle and made measurements of arteriolar flow in young and old 

animals in response to 3 minutes of electrically-induced contractions of varying 

frequencies (.5, 1, and 2 Hz).  Their results demonstrated that up to 2 Hz contractions, 

aged rats elicited no consistent increase in arteriolar VRBC while consistent increases were 

observed in their younger counterparts.  However, a significant limitation to the study 

was that, due to contraction-mediated disruption of the microvascular field, the Q& m 

response was limited to assessment during the immediate post-contraction period.  More 

importantly, functional determination of RBC hemodynamics in the skeletal muscle 

microcirculation, the site of peripheral gas exchange, is still lacking.  The alterations in 

microcirculatory structure and function that exist in old rats at rest, and likely persist 
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during contractions, may reflect alterations in peripheral vascular control (see 

Discussion) which impair O2 delivery and exchange during exercise, despite maintenance 

of these variables under resting conditions. 

Summary 

Aged individuals demonstrate reductions in V
.
O2max and impairments in muscle 

function.  These maladaptations are consequent to a reduced Q& m, altered peripheral Q& m 

distribution, and/or variation in the control of vascular conductance.  While the effect that 

aging-induced alterations in peripheral O2 delivery have on skeletal muscle capillary 

RBC hemodynamics has been described at rest, to date, it is currently unknown if RBC 

capillary hemodynamics are altered in aged muscle during contractions.  Analyzing 

peripheral microcirculatory alterations during contractions is important because it has 

direct implications for peripheral gas exchange during exercise and, therefore, the ability 

of aged individuals to sustain dynamic exercise. 
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CHAPTER 3 - Methods 

Animals 

A total of 13 animals, 8 old (26-30 months) and 5 young (6-8 months) male 

Fischer 344 x Brown Norway F1 hybrid (F344xBN) rats were used in the present 

investigation.  These ages were chosen because they represent young adult (6-8 months) 

and senescent (26-30 months) rats in accordance with the lifespan of the F344xBN strain.  

Additionally, the F344xBN represents an ideal model to investigate the effects of healthy 

aging in that they are the result of a highly judicious breeding process designed to 

minimize the incidence of many typical aging-induced pathologies that might confound 

data interpretation.  All rats were maintained on a 12:12 hour light-dark cycle and 

provided food and water ad libitum.   

 Animals were initially anesthetized with pentobarbital sodium (30-50 

mg/kg i.p. to effect), with supplementation as necessary throughout the duration of the 

protocol, and placed on a heating pad.  Core temperature was measured via a rectal probe 

and maintained at ~37° C.  A catheter (Intramedic polyethylene-50 connected to 

polyethylene-10 tubing, Clay Adams Brand, Sparks, MD) was placed in the aortic arch 

via the right carotid artery for continuous monitoring of MAP and HR throughout the 

experiment.  Upon completion of each experiment, animals were euthanized via 

pentobarbital overdose.  All experimental procedures were approved by the Kansas State 

University Institutional Animal Care and Use Committee. 
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Muscle preparation 

The rat spinotrapezius muscle is a postural muscle, originating in the lower-

thoracic and upper-lumbar region of the vertebral column and inserting on the scapula, 

which also functions to stabilize the scapula, for example, during downhill treadmill 

running (Kano et al., 2004).  The left spinotrapezius muscle was exposed and exteriorized 

as described previously (Poole et al., 1997; Kindig et al., 2002; Russell et al., 2003), in a 

manner which preserves the vascular network and neural connections supplying the 

muscle (Bailey et al., 2000).  Briefly, the caudal end of the muscle was isolated from its 

insertion and sutured at 5 equidistant points to a thin wire manifold and attached to a 

stretching and swivel apparatus.  Thin stainless steel wire electrodes were sutured to both 

the peripheral caudal end and near the motor point on the more proximal ventral surface 

of the muscle, in a manner that elicited optimal muscle fiber shortening.  The manifold 

was secured to the platform with the ventral aspect of the muscle reflected upwards for 

microscopic observation.  Sarcomere length was initially set at ~2.7 µm, which prevents 

stretch-induced flow attenuations and elicits normal physiological capillary flow (Kindig 

& Poole, 1999).  Throughout the experiment, the spinotrapezius muscle was kept moist 

by constantly superfusing it with a Krebs-Henseleit bicarbonate-buffered solution 

equilibrated with 95% N2-5% CO2, and exposed surrounding tissue was covered with 

saran wrap (Dow Brands, Indianapolis, IN).  

Experimental protocol 

A microcirculatory field from the mid-caudal region of the spinotrapezius that 

provided optimal clarity for the visualization of a minimum of 5-6 capillaries was 

selected randomly for analysis.  Images were obtained with an intravital microscope 
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(Nikon Eclipse E600-Fn, Tokyo, Japan) equipped with a non-contact immersion lens 

(x40, numerical
 
aperture 0.8) under a final magnification of x1,184.  Images were 

transmitted in real time to a high-resolution color monitor (Sony Trinitron, PVM-1954Q, 

Ichinoniya, Japan) and recorded (JVC S-VHS Master XG) for future off-line analysis via 

videocassette recorder (JVC BR-S822U, Elmwood Park, NJ).  Resting data was obtained 

for 60 seconds, after which electrical stimulation (1 Hz twitch contractions, 2 ms 

duration, 6-8 volts) elicited muscle contractions for 180 seconds.  These stimulation 

parameters were selected based on the fact that in young healthy rats, utilizing the same 

preparation, they are known to induce significant increases in microcirculatory  

hemodynamic and metabolic variables (i.e. 2-3 fold increases FRBC and >4 fold increase  

in V
.
O2m; Behnke et al., 2002; Kindig et al., 2002).  Following the experimental protocol, 

100 µl blood samples were drawn for measurement of arterial blood gases, systemic 

hematocrit, pH, and blood lactate concentrations.  Both the right and left spinotrapezius 

muscles were carefully dissected, weighed, and frozen.  

Off-line analysis 

Capillary diameter (dC) was measured at rest using precision calipers at two 

different sites along each capillary where the endothelium was clearly visible.  Sarcomere 

length was determined in each muscle fiber where 11 consecutive A-bands could be 

clearly distinguished.  Capillary flow was observed in real-time and using frame-by-

frame analysis (30 frames/s).  The percentage of vessels sustaining continuous RBC 

perfusion was determined as: (number of continuously RBC-perfused vessels ÷ total 

number of vessels in a given muscle region) x 100.  FRBC was measured as the number of 

RBCs passing an arbitrary point per second (cells/s), and VRBC was measured as RBC 
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speed along the visible capillary length (µ/s).  Both FRBC and VRBC were measured in all 

clearly visible capillaries, within the same frames (where possible), at rest and between 

150-180s of contractions.  This time-frame (i.e., 150-180s) was assumed to be the 

contracting steady-state based on the observation that in aged contracting spinotrapezius 

muscle, the microvascular PO2 does not change over an identical time period (Behnke et 

al., 2005).  Where poor visual clarity did not allow FRBC and VRBC determination within 

the same frames, the hemodynamics were measured in as close temporal proximity as 

possible.  In all capillaries where FRBC and VRBC were measured, capillary tube 

hematocrit (HCAP) was calculated as HCAP = (RBCVOLUME x FRBC) ÷ [π x (dC/2)
2 
x VRBC], 

where RBCVOLUME was assumed to be 61 µm
3
 (Altman & Dittmer, 1974), and capillary 

cross-sectional shape was assumed to be circular in vivo (Mathieu-Costello et al., 1998).  

In some cases (particularly in aged muscles), poor clarity dictated measurement of VRBC 

and HCAP and the equation was rearranged to solve for FRBC (i.e. FRBC = ([π x (dC/2)
2
] x 

VRBC x HCAP) ÷ RBCVOLUME).  Q& O2m to the whole muscle region at rest and the steady-

state of contractions was calculated as the product of the lineal density of flowing 

capillaries x mean capillary FRBC. 

Statistical analysis 

All data are presented as mean ± SE.  Means were compared with paired and 

unpaired Student’s t-tests.  The level of significance was set at P ≤ 0.05. 
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CHAPTER 4 - Results 

MAP was not different between young (Y) and old (O) rats at rest (Y: 85 ± 4, O: 

104 ± 7 mmHg, P > 0.05) or during contractions (Y: 94 ± 2, O: 97 ± 11 mmHg, P > 

0.05), and did not change from rest to contractions in either group. 

Structural variables and capillary flow 

Structural and general capillary flow data are presented in Table 4-1.  The lineal 

density of capillaries was reduced (P < 0.05) while the percentage of capillaries 

supporting flow was similar (P > 0.05) in O compared to Y rats.  As a result, there was an 

aging-induced reduction (P < 0.05) in the lineal density of capillaries supporting RBC 

flow at rest and during contractions.  The percentage of capillaries exhibiting 

countercurrent flow was similar between groups (P > 0.05). 

RBC hemodynamics 

FRBC data is presented in Figure 4-1 for Y and O rats at rest and during 

contractions.  During contractions, FRBC increased (P < 0.05) from resting values in Y but 

not in O (P > 0.05).  Thus, from rest to contractions, the ∆FRBC (Y: 28.8 ± 7.7, O: -2.9 ± 

1.4 cells/s, P < 0.05) was lower in O rats.  VRBC data is presented in Figure 4-2 and, 

similar to FRBC, at rest VRBC was elevated in O rats while it was increased during 

contractions in Y (P < 0.05) but not O (P > 0.05) animals.  Thus, from rest to 

contractions, the ∆VRBC (Y: 253 ± 68, O: -4 ± 15 µm/s, P < 0.05) was lower in O rats.  

HCAP (Figure 4-3) was similar (P > 0.05) between Y and O rats at rest and contractions 

elicited no changes (P > 0.05) from resting values in either group.  However, the 
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contracting HCAP was lower in O (0.19 ± 0.02 cells/µm) compared to Y (Y: 0.25 ± 0.02 

cells/µm P < 0.05), and the transition to the contracting steady-state resulted in a lower 

∆HCAP in the O (-0.03 ± 0.01 cells/µm) versus Y (0.02 ± 0.02 cells/µm, P < 0.05) rats.   

Contractions resulted in an increase in Q& O2m in Y (1615 ± 402 cells/s/mm, P < 

0.05) with no change from resting values in O (780 ± 121 cells/s/mm, P > 0.05) rats 

(Figure 4-4).  Therefore, the ∆Q& O2m from rest to contractions that was evident in the Y 

(892 ± 255 cells/s/mm, P < 0.05) did not occur in the O (-24.2 ± 30 cells/s/mm) rats.  

RBC flux-velocity relationship 

In both age groups, there was a significant correlation (P < 0.05 for both) between 

FRBC and VRBC as determined from mean values for rest and contractions from each 

muscle (Figure 4-5).  The slope of this relationship dictates the capillary hematocrit and, 

accordingly, the steeper slope in the O compared to Y muscles reflects the reduced HCAP 

in O rats during contractions. 



 

 16 

Table 4-1: Structural variables and capillary flow  

 

 

              Young                      Old 

                 Rest                Contractions        Rest  Contractions 

 

Sarcomere length, µm            2.7 ± 0.1            N/A     2.7 ± 0.1        N/A 

 

Capillary diameter, µm            5.5 ± 0.3             N/A      6.1 ± 0.2        N/A 

    

Countercurrent flow, %             21 ± 3            N/A      16 ± 3         N/A 

 

Lineal density, capillaries/mm           32 ± 2            N/A      24 ± 1*        N/A 

 

Flowing capillaries, %             96 ± 2          96 ± 2      93 ± 2                     97 ± 2 

 

Flowing density, capillaries/mm        31 ± 3                   30 ± 1      22 ± 1*     24 ± 1* 

 

 

Values are means + SE.  Lineal density, lineal density of total capillaries; flowing 

density, lineal density of flowing capillaries.  * P < 0.05 compared to young. 
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Figure 4-1: RBC flux 
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Top Panel: Capillary red blood cell flux (FRBC) measured at rest and during the 

contracting steady-state in Y and O animals.  Bottom Panel: The change in FRBC from rest 

to contractions for both age groups.  * P < 0.05 compared to Y, φ P < 0.05 compared to 

rest. 

 



 

 18 

Figure 4-2: RBC velocity 
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Top Panel: Capillary red blood cell velocity (VRBC) measured at rest and during the 

contracting steady-state in Y and O animals.  Bottom Panel: The change in VRBC from 

rest to contractions for both age groups.  * P < 0.05 compared to Y, φ P < 0.05 compared 

to rest. 
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Figure 4-3: Capillary hematocrit 
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Top Panel: Capillary hematocrit (HCAP) measured at rest and during contractions in Y 

and O animals.  Bottom Panel: The change in HCAP from rest to contractions for both age 

groups.  * P < 0.05 compared to Y.
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Figure 4-4: Microvascular O2 delivery 
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Top Panel: Microvascular O2 delivery (Q& O2m) measured at rest and during contractions 

in Y and O animals.  Bottom Panel:  The change in Q& O2m from rest to contractions for 

both age groups.  * P < 0.05 compared to Y, φ P < 0.05 compared to rest. 
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Figure 4-5: RBC flux-velocity relationship 
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Relationship between red blood cell velocity (VRBC) and flux (FRBC) in Y (top panel) and 

O (bottom panel) muscles.  Open symbols: rest; closed symbols: contractions. 
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CHAPTER 5 - Discussion 

The present investigation is the first to examine the effects of aging on skeletal 

muscle capillary hemodynamics during contractions.  As demonstrated previously at rest, 

old muscles exhibit a reduced lineal density of RBC-flowing capillaries and within these 

capillaries there is an elevated VRBC and FRBC such that overall blood and O2 supply is not 

different from their young counterparts (Russell et al., 2003).  The principal novel finding 

of the present investigation is that it is possible to actively contract the spinotrapezius 

muscle of aged animals without further increasing VRBC or FRBC.  Furthermore, the 

increased HCAP normally observed in contracting muscles of young animals was absent in 

old rats.  Thus, compared with young rats, for an equivalent contractile stimulus, muscles 

from aged rats exhibit lower convective and diffusive capillary O2 delivery and any 

resultant attenuation in microcirculatory blood-muscle O2 flux is likely to contribute to 

the exercise intolerance evident in elderly populations.  

Comparisons to previous research  

In concert with the bulk of intravital microscopy studies, the present data 

indicates that the vast majority (i.e. > 80%) of capillaries sustains RBC flow at rest, and 

this value was not different for young and old rats (Y: 96%, O: 93%).  As demonstrated 

previously (Russell et al., 2003), the lineal density of total capillaries and the lineal 

density of flowing capillaries was reduced in old rats.   

Rest: The resting values for FRBC and VRBC reported herein for young rats are 

similar to previously published values.  In addition, and consistent with the findings of 
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Russell et al. (Russell et al., 2003) for old rats, FRBC (35.7 cells/s) and VRBC (406 µm/s) 

were both considerably higher than the established values for young rats (Sarelius & 

Duling, 1982; Kindig & Poole, 1998; Kindig et al., 2002; Russell et al., 2003).  Indeed, 

the present VRBC value is even higher than reported by Russell et al. (Russell et al., 2003) 

which may be the consequence of the slightly older age range (i.e., up to 30 vs. 28 

months) in the rats in the present investigation.  The HCAP of  0.23 and 0.22 cells/µm for 

young and old rats, respectively, are close to our values (Y: 27, O: 29 cells/µm) 

established for the F344xBN strain (Russell et al., 2003). 

Contractions:  During contractions, the young rats exhibited an increase in FRBC 

and VRBC.  In addition, the ∆HCAP from rest to contractions was elevated in young 

compared to old rats.  However, the difference was the result of a moderate increase in 

HCAP in the young combined with a small decrease in the old.   

As mentioned previously, to our knowledge the literature contains no previous 

reports of capillary hemodynamics in aged muscle during contractions.  Not-withstanding 

this fact, our data are consistent with those of Hammer and Boegehold (Hammer & 

Boegehold, 2005) who found no increase in rat spinotrapezius arteriolar Q& m  in response 

to electrically-induced muscle contractions utilizing stimulation parameters similar to our 

own.  In that investigation, 1 Hz contractions elicited no consistent increases in arteriolar 

diameter or VRBC in 24 month-old male Sprague-Dawley rats.  In contrast, some studies 

have found no difference between Q& m to exercising limbs in young and old subjects 

(Jasperse et al., 1994; Olive et al., 2002; Proctor et al., 2003b).  However, the current 

literature is certainly not definitive on this issue (Wahren et al., 1974; Proctor et al., 

1998; Proctor et al., 2003a) with differences possibly related to the activity level of the 
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population studied, the function of the active muscle(s), and/or the intensity of the 

exercise.  More importantly, recent evidence has established that large artery and limb 

blood flow may not be an appropriate analog of regional microvascular flow (Musch et 

al., 2004; Harper et al., 2006) which may explain the disparity between studies that have 

measured bulk arterial flow as distinct from microcirculatory flow (present results; 

Hammer & Boegehold, 2005). 

Implications for blood-muscle O2 transfer 

The O2 extraction analysis initially developed by Piiper and Scheid (Piiper & 

Scheid, 1981), and adapted for skeletal muscle by Wagner and colleagues (Roca et al., 

1992), can be used to predict the effect of aging on fractional O2 extraction within the  

microcirculation.  Specifically, blood-muscle O2 flux is primarily determined by the  

relationship between DO2 and Q& m such that V
.
O2m = Q& m (1 – e

-DO2/βQm), and therefore,     

V
.
O2m/Q& m = O2 extraction = 1 – e

-DO2/βQm, where DO2 is the diffusing capacity for O2 and 

β is the slope of the O2 dissociation curve in the physiologically relevant range.  In the 

microcirculation, FRBC is the instantaneous measurement of Q& m, therefore, O2 extraction 

= 1 – e
-DO2/βFRBC.  Substantial evidence supports that the principal site of O2 diffusion 

resistance lies between the RBC and the immediate subsarcolemmal space (Gayeski & 

Honig, 1983; Hepple et al., 2000), therefore, DO2 will be primarily determined by the 

total capillary surface area available for O2 exchange (Mathieu-Costello et al., 1991) and 

the number of RBCs present along the capillary length (Groebe & Thews, 1990).  At rest, 

the similar HCAP present between young and old rats suggests that the DO2 per capillary is 

maintained with aging.  However, the elevated FRBC at rest reduces the DO2/βFRBC ratio 
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within each capillary, and therefore diminishes the reserve capacity to increase O2 

extraction.  More importantly, the aging-induced reduction in the lineal density of 

flowing capillaries would reduce the mean DO2 per muscle area or volume.  This has 

important implications for exercise in that, if >90% of capillaries are supporting RBC 

flow at rest, the capacity for DO2 to increase during exercise is limited to increases in 

HCAP (i.e. longitudinal recruitment of capillary surface area along already-flowing 

capillaries).  Our data indicate that mild-moderate contractions of aged muscle are 

accompanied by a significantly lower HCAP (and therefore DO2) compared to young 

muscle.  This scenario would be expected to compromise the potential for elevating 

blood-myocyte O2 flux and, therefore, muscle oxidative function. 

Previously, we hypothesized that if the elevated VRBC evident in old muscles at 

rest lead to a correspondingly faster VRBC during high intensity exercise, the resultant 

shortening of RBC transit time might necessitate a reduction of intracellular PO2 to 

achieve the required level of blood-muscle O2 flux (Poole et al., 2006).  Because the 

contractions implemented in the present investigation did not elicit any increase in either 

perfusive or diffusive tissue O2 transport, this mechanism (i.e., reduced intracellular PO2) 

will have been solely responsible for augmenting blood-muscle O2 flux via greater  

fractional O2 extraction.  Such a mechanism at both moderate and high contraction  

intensities may be responsible, in part, for the slowed V
.
O2 kinetics (Babcock et al., 1994; 

Chilibeck et al., 1995) and increased O2 deficit evident in elderly populations.  
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Mechanisms of microcirculatory dysfunction 

Following the onset of contractions, the increase in Q& m occurs in a distinct 

biphasic response (Kindig et al., 2002).  The initial, rapid phase of the increase (phase I) 

is generally attributed to muscle pump combined with rapid vasodilation that may 

potentially be mediated, in part, by compressive forces acting on the vasculature in 

addition to K
+
 released from the contracting myocytes accumulating in the muscle 

interstitium (Bacchus et al., 1981; Tschakovsky et al., 2004; Clifford, 2007).  Phase I 

lasts 15-20 seconds and is followed by a more pronounced phase II which is attributed 

primarily to endothelial-mediated vasodilatory mechanisms that include NO, 

prostacyclin, endothelial derived hyperpolarizing factor, primarily reflecting metabolic 

regulation/feedback control.  The present observation that contractions resulted in no 

discernible alteration in capillary hemodynamics in aged muscle requires that aging 

impacts significantly both the muscle pump effect and arteriolar dilation.   

The absence of any increase in FRBC (Figure 5-1) requires that the muscle pump is 

ineffectual in the spinotrapezius muscle of old rats.  It may be argued that this muscle 

might not be expected to evoke a muscle pump effect due to the absence of a substantial 

muscle belly and the non-physiological muscle fiber recruitment pattern elicited by 

electrical stimulation.  However, Kindig et al. (Kindig et al., 2002) observed that a 

contraction stimulus identical to the one utilized herein results in a biphasic increase in 

FRBC in young rats, with the instantaneous (i.e. within ~1s) elevation in FRBC  normally 

attributed, in part, to a muscle pumping action (Tschakovsky et al., 1996).   

Healthy aging results in a decreased compliance of the venous vessels.  It is 

possible that at mild-moderate contraction intensities, aged skeletal muscle is unable to 
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produce the force required to compress the stiffened capacitance vessels and is, therefore, 

unable to produce negative venular pressures upon muscle relaxation.  Additionally, the 

chronic high microvascular flow (increased FRBC and VRBC) at rest in aged rats may offset 

the muscle pump effect by rapidly refilling the venules and minimizing any transient gain 

in the arteriolar-venule pressure gradient.  This scenario was originally suggested by 

Tschakovsky and Sheriff (Tschakovsky & Sheriff, 2004) as a possible explanation for the 

fact that the muscle pump did not further increase the exercise hyperemic response in the 

dog hindlimb when maximal pharmacological vasodilation was induced prior to the onset 

of conscious treadmill exercise (Hamann et al., 2003).  Old rat muscles might be 

subjected to both of these effects.   

During exercise, skeletal muscle vascular tone is controlled by both feed-forward 

(e.g., conducted, shear-stress induced), and feedback (e.g., metabolic regulation) 

mechanisms both of which may become impaired to different degrees with advancing 

age.  For example, aging is associated with reductions in functional sympatholysis 

(Dinenno et al., 2005; Parker et al., 2007), myogenic control (Muller-Delp et al., 2002a), 

and contraction-induced rapid vessel relaxation (Carlson et al., 2008).  Moreover, 

endothelium-dependent vasodilation is impaired (Muller-Delp et al., 2002b), with the 

dysfunction likely occurring preferentially in arterioles supplying oxidative but not 

glycolytic muscles (Woodman et al., 2002).  While several discrete signaling pathways 

contribute to the endothelium-dependent regulation of vascular tone, NO appears to play 

a principal role, particularly in oxidative muscles (Hirai et al., 1994).  It is well-

established that the NO-mediated dilation is reduced in aged vessels when compared to 

younger counterparts.  For example, aging reduces NO-mediated vasodilation in response 
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to contractions in the skeletal muscles of humans (Taddei et al., 2000; Schrage et al., 

2007) and rats (Muller-Delp et al., 2002b; Woodman et al., 2002; Spier et al., 2004).  

However, what remains unclear is whether or not at rest the aged vasculature has already 

utilized some of its dilatory capacity in order to accommodate the same bulk flow 

through fewer resistance vessels i.e., greater flow, and therefore dilation, per vessel 

(Behnke et al., 2006).  This may represent a reduction in the reserve capacity of one or 

more vasoregulatory pathways (i.e. endothelium-independent dilation) in preference to 

dilatory function per se as reported by others (Muller-Delp et al., 2002b; Woodman et al., 

2002).  The combination of these impaired vasoregulatory mechanisms is likely to 

require higher strength contractions to increase arteriolar flow above resting values and, 

importantly, will significantly compromise the reserve capacity to increase arteriolar  

flow during maximal exercise. 

Methodological considerations 

The stimulation parameters utilized herein are identical to those used previously 

in rats and allow for the restoration of visual clarity in ~15 frames between contractions - 

a necessary condition for determination of capillary hemodynamics.  Higher-intensity 

maximal-strength tetanic contractions would limit hemodynamic assessment to the 

immediate post-contraction recovery period.  Recovery of hemodynamic variables is 

sufficiently fast that such procedures would obviate measurement of true contracting 

values if, of course, they were different from rest (Ferreira et al., 2006).  Whereas we 

would predict that higher-intensity contractions would result in increases in capillary 

hemodynamics in old muscles, albeit to a lesser extent than that of younger muscles, we 

do not, at present, have the technical ability to conduct these studies.  Further 
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methodological considerations regarding the rat spinotrapezius preparation have been 

discussed in detail previously (Bailey et al., 2000; Kindig et al., 2002). 

Conclusion 

This study is the first to demonstrate that old age results in significant alterations 

in capillary hemodynamics in the rat spinotrapezius muscle during the mild-moderate 

metabolic stresses associated with submaximal electrically-induced 1 Hz twitch 

contractions.  Specifically, from rest to the contracting steady-state, when utilizing 

stimulation parameters that result in increased FRBC, VRBC, HCAP and Q& O2m in the 

spinotrapezius muscle of young animals, the aged rat spinotrapezius evidences no 

significant increases in these variables.  The attenuation of increases in both conductive 

and diffusive measures of O2 transport in aged muscle capillaries has significant 

implications for blood-muscle O2 delivery, and therefore, the ability for elderly 

individuals to sustain muscle oxidative function during dynamic exercise.  
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Figure 5-1: RBC flux dynamics 
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The percent change in red blood cell flux (FRBC) upon the initiation of contractions in 5 

randomly selected capillaries from old muscles.  Young data is the average FRBC response 

from previously published young healthy controls (Kindig et al., 2002; Richardson et al., 

2003).
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