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Abstract 

Patients who suffer from sepsis or septic shock are of great concern in the healthcare 

system. Recent data indicate that more than 900,000 severe sepsis or septic shock cases 

developed in the United States with mortality rates between 20% and 80%. In the United States 

alone, almost $17 billion is spent each year for the treatment of patients with sepsis. Clinical 

trials of treatments for sepsis have been extensively studied in the last 30 years, but there is no 

general agreement of the effectiveness of the proposed treatments for sepsis. Therefore, it is 

necessary to find accurate and effective tools that can help physicians predict the progression of 

disease in a patient-specific way, and then provide physicians recommendation on the treatment 

of sepsis to lower risk for patients dying from sepsis. 

The goal of this research is to develop a risk assessment tool and a risk management tool 

for sepsis. In order to achieve this goal, two system dynamic mathematical models (SDMMs) are 

initially developed to predict dynamic patterns of sepsis progression in innate immunity and 

adaptive immunity. The two SDMMs are able to identify key indicators and key processes of 

inflammatory responses to an infection, and a sepsis progression. Second, an integrated-

mathematical-multi-agent-based model (IMMABM) is developed to capture the stochastic nature 

embedded in the development of inflammatory responses to a sepsis. Unlike existing agent-based 

models, this agent-based model is enhanced by incorporating developed SDMMs and extensive 

experimental data. With the risk assessment tools, a Markov decision process (MDP) is 

proposed, as a risk management tool, to apply to clinical decision-makings on sepsis.  

With extensive computational studies, the major contributions of this research are to 

firstly develop risk assessment tools to identify the risk of sepsis development during the 



 

  

immune system responding to an infection, and secondly propose a decision-making framework 

to manage the risk of infected individuals dying from sepsis. 

The methodology and modeling framework used in this dissertation can be expanded to 

other disease situations and treatment applications, and have a broad impact to the research area 

related to computational modeling, biology, medical decision-making, and industrial 

engineering. 
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Abstract 

Patients who suffer from sepsis or septic shock are of great concern in the healthcare 

system. Recent data indicate that more than 900,000 severe sepsis or septic shock cases 

developed in the United States with mortality rates between 20% and 80%. In the United States 

alone, almost $17 billion is spent each year for the treatment of patients with sepsis. Clinical 

trials of treatments for sepsis have been extensively studied in the last 30 years, but there is no 

general agreement of the effectiveness of the proposed treatments for sepsis. Therefore, it is 

necessary to find accurate and effective tools that can help physicians predict the progression of 

disease in a patient-specific way, and then provide physicians recommendation on the treatment 

of sepsis to lower risk for patients dying from sepsis. 

The goal of this research is to develop a risk assessment tool and a risk management tool 

for sepsis. In order to achieve this goal, two system dynamic mathematical models (SDMMs) are 

initially developed to predict dynamic patterns of sepsis progression in innate immunity and 

adaptive immunity. The two SDMMs are able to identify key indicators and key processes of 

inflammatory responses to an infection, and a sepsis progression. Second, an integrated-

mathematical-multi-agent-based model (IMMABM) is developed to capture the stochastic nature 

embedded in the development of inflammatory responses to a sepsis. Unlike existing agent-based 

models, this agent-based model is enhanced by incorporating developed SDMMs and extensive 

experimental data. With the risk assessment tools, a Markov decision process (MDP) is 

proposed, as a risk management tool, to apply to clinical decision-makings on sepsis.  

With extensive computational studies, the major contributions of this research are to 

firstly develop risk assessment tools to identify the risk of sepsis development during the 



 

  

immune system responding to an infection, and secondly propose a decision-making framework 

to manage the risk of infected individuals dying from sepsis. 

The methodology and modeling framework used in this dissertation can be expanded to 

other disease situations and treatment applications, and have a broad impact to the research area 

related to computational modeling, biology, medical decision-making, and industrial 

engineering. 
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Chapter 1 - Research Summary 

 1.1 Introduction and background 

Sepsis, currently defined as a systemic inflammatory response (SIR) in the presence of an 

infectious agent or trauma, is increasingly being considered an exaggerated, poorly regulated 

immune response to microbial products (1, 2). The progression to severe sepsis is marked by the 

generalized hypotension, tissue hypoxia, and coagulation abnormality (1). Severe sepsis can 

further develop into septic shock under the long-lasting severe hypotension (1) and ultimately 

lead to the death. 

Severe sepsis and septic shock during an infection are the major causes of death in an 

intensive care setting (3). There is an average of 250,000 deaths per year in the United States 

caused by sepsis (4). Among patients in intensive care units (ICUs), it ranks as the second 

highest cause of mortality (5) and the 10th leading cause of death overall in the US (6). Average 

of 750,000 sepsis cases happen annually and increasing (6). In addition, the quality of life for 

sepsis survivors is significantly reduced (6, 7). Care of patients with sepsis costs can be as much 

as $60,000 per patient. This cost results in a significant healthcare burden of nearly $17 billion 

annually in the USA alone (8). The development of sepsis in a hospitalized patient can lead to a 

longer length of stay in the hospital which implies stiffer financial burden. 

The human immune response evolves to protect the body from infection by harmful 

pathogens found in the environment (9). An initial stage of a systemic inflammatory response to 

an infection was recognized as an acute inflammatory response (AIR). This response is 

characterized by the activation and mobilization of white blood cells, the release of cytokines, 

and the modification of the vascular and lymphoid tissue (10, 11). Unfortunately, the activation 

of the immune system can become dysregulated and the immune responses or AIR can become 
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pathogenic. Indeed, an uncontrolled AIR may lead to possible sepsis or septic shock. Whether a 

patient will progress to sepsis, severe sepsis, or even septic shock is determined by a cascade of 

immune system components. 

Over the past two decades, the studies of mechanisms that lead to sepsis have made 

significant progress due to the discoveries of new inflammatory proteins and the interaction of 

host cells and pathogens. Recent data indicate that the interactions between the anti-

inflammatory responses and the pro-inflammatory responses, determine the prognosis of sepsis 

(12, 13). TNF-α is a pro-inflammatory cytokine that is released from various types of immune 

cells (14-20). HMGB-1, recognized as a late pro-inflammatory cytokines, contributes to the 

release of TNF-α, neutrophils as well as monocytes (21). More specifically, the presence of 

HMGB-1, which reaches its peak concentrations around eight to twelve hours after it is induced 

by TNF-α, may be a key component during the progression of AIR. If the level of HMGB-1 

remains elevated for long periods of time, the patient may at risk for more severe AIR or 

developing sepsis (22-24). Anti-inflammatory cytokines, such as IL-4, IL-10, IL-13, and IL-14 

play crucial roles in inhibiting the production of pro-inflammatory cytokines and in turn could 

slow down the progression of AIR (25, 26). For example, a higher concentration of IL-10 was 

found in less severe sepsis, and has a correlation with a subsequent decrease in TNF-α 

concentration in a mouse model (13). Clearly, the levels of pro- and anti-inflammatory mediators 

are closely linked to the development of severe sepsis and septic shock. However, there is little 

data on the quantitative relationships of the cytokine network, which can be used to predict the 

progression of disease. 

Clinical trials of treatments for sepsis have been extensively studied in the last 30 years 

(27-32), aiming at compromising the “deleterious” effects of bacteria or inflammatory cytokines. 
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TNF-α was previously recognized as a therapeutic target for sepsis infection because anti-TNF 

agents were tested to be early positive in some human septic shock model (33, 34). However, a 

large RCT found anti-TNF-α antibody was not effective on improving survival rates for 

subgroup of patients who had elevated TNF levels on the study entry (29).  

Inhibition of HMGB-1 production has been observed to improves survival in sepsis 

models in mice (35). Also, clinical experiments have demonstrated that monoclonal antibody 

therapy against HMGB-1 elevation can prevent septic patients from organ damage and 

subsequent organ dysfunction in experimental models (36-40). Such results suggested anti-

HMGB-1 antibody could be a promising candidate for treatment of septic patients (22). 

However, HMGB-1 antagonism has only proven to be beneficial in rodent models of sepsis, and 

data are needed to investigate their efficacy on higher species (41). 

Empiric broad-spectrum antimicrobial agents targeting the likely cause of infection was 

recommended to be initialed as soon as possible when treat septic patients (42). However, 

antibiotics alone were not sufficient for optimal treatment of patients with sepsis (42). Current 

recommendations are to administer appropriate antimicrobials within 1 hour of a diagnosis of 

severe sepsis or septic shock (43, 44). Nevertheless, it is still unclear when it is most beneficial to 

administer antimicrobials because variation was observed in outcomes of sepsis after administer 

antimicrobials (45). Furthermore, sufficient research regarding the effects of short and prolonged 

duration of antimicrobial therapy on patient recovery is lacking so that it is currently difficult to 

make a conclusion in terms of an appropriate length of antibiotic therapy.  

Biomedical researchers proposed and tested groups of treatment interventions aiming at 

various targets, but there is no general agreement of the effectiveness of the proposed treatments 

for sepsis. Only activated protein C (APC) has been approved for treatment of severe cases of 
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sepsis at the current stage (41). All the evidences above directed the need of developing 

treatment strategy for sepsis in future clinical research. 

 1.2 Research objectives 

The proposed treatments for sepsis have been disappointing based on several reasons. 

Firstly, it is difficult to predict the development of sepsis (46). For example, the use of anti-

inflammatory mediators, such as anti-TNF-α antibody may be ineffective when the patients with 

well-established sepsis enrolled (46). In addition, patients with sepsis are highly heterogeneous 

based on the source of infection, site of infection, duration of illness, and current immune status 

(46), thus it is impossible to develop a general treatment strategy suitable for all patients (47). 

Furthermore, the development of sepsis involves numerous biological responses, leading to the 

uncertainty in the outcomes of a sepsis progression. 

Riedemann et al. (41) stated, in their review on strategies for the treatment of sepsis, that 

“it is important to understand in more details the various dynamics of pathophysiological 

responses during sepsis that lead to hyperactive or suppressed immune and inflammatory 

responses”. A significant recent focus on modeling the immune response during sepsis has 

emerged to explore the complicated dynamic interaction of cells, tissues, and cytokines during 

infection (48-54). Existing mathematical/computational models that focus on inflammation 

provide evidence that the modeling technique is a valid approach for simulating disease 

progression (48-54). However, limitations to the existing models include: utilization of a small 

number of variables, limited control parameters, and failure to include extensive experimental 

data involved in real immune responses. Furthermore, Cross and Opal (32) pointed out the lack 

of rapid, reliable assays available to identify the stage or severity of sepsis and to monitor the use 

of immunomodulatory therapy. Such assays are unavailable because of the complexity of the 
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inflammatory response and the unpredictable nature of septic shock in individual patients; 

consequently increasing the difficulty of monitoring single or multiple components of 

inflammation with specific supportive therapies (32, 41). 

The motivation of this research was inspired by the evidences and contentions above. 

This research is aimed to develop a non-biased, predictive model of sepsis progression, and 

eventually a decision making tool for the treatment of sepsis, including two main research tasks 

as follows: 

1. Risk assessment: Develop predictive models to simulate the progression of sepsis. 

During this task, specific tasks are as follows: 

 Study the impact of cytokine network to the outcomes of inflammatory 

responses to an infection. 

 Identify key parameters and key processes during the development of 

sepsis. 

 Identify various dynamics of pathophysiological responses during sepsis. 

 Find out a group of biomarkers during sepsis progression. 

 Evaluate the effects of biomarkers to the outcomes of inflammatory 

responses to an infection.  

 Conduct therapy-directed experiments in silico for infected individuals 

with sepsis. 

2. Risk management: Develop a decision making tool to find out an optimal 

treatment bundle for treating infected individuals with sepsis. A recommendation 

on an optimal treatment (among a group of proposed treatments) for classified 

patients at various stages of hospitalization were provided. 
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 1.3 Proposed methodologies 

A mathematical model currently being developed as a dynamic knowledge representation 

offers a promising possibility for understanding complex local and global dynamics of disease 

progression. Using a series of known and hypothesized kinetics of components of biological 

systems from the current literatures, the proposed mathematical models combined the 

conventional logistics dynamics, the mass-action kinetics, Michaelis-Menten kinetics, and their 

nonlinear transformations into ordinary differential equations. These simple, sophisticated but 

generalized dynamic modeling techniques can be developed into mathematical models for better 

describing an AIR and SIR, by measuring the steady states of various components in 

inflammatory responses. Mathematical models of AIR/SIR in existing literatures are limited in 

variable selection. This research proposed mathematical models to calibrate the global dynamics 

of inflammatory responses by instilling the effects of the indicators (variables) in both innate 

immunity and adaptive immunity. The selection of the indicators is based on the knowledge 

about the molecular and physiological pathways of sepsis. To initially validate the proposed 

mathematical models, the behaviors of the mathematical models are compared with the results 

from the experimental designs under specific parameter-setting. If the results don’t match, the 

model reconfiguration will be implemented either by adjusting the relationship between the 

components (indicators) or fine tuning the value of parameters. After the initial validation, 

sensitivity analysis and stability analysis (using bifurcation theory) are conducted to identify the 

key parameters and the key processes in the sepsis progression, and provide insights into the 

appropriate ranges of the key parameters causing the uncertainty in the outcomes. This is one of 

the most difficult and fundamental steps since the mathematical models exhibited various 

outcomes, and facilitate the understanding of the complex interactions between the various 
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components of the AIR and SIR. Also, it is an initial modeling approach for further establishing 

an agent-based model (ABM) in which a careful analysis of a large amount of experimental data 

will be used as inputs. A detailed description of the mathematical models of inflammatory 

responses to an infection (Salmonella) is presented in Chapter 3 and Chapter 4. 

ABM simulates complicated non-linear dynamic relationships between components and 

intuitively maps a realistic biological system by incorporating spatial effects and stochastic 

nature into model construction. Compared to the traditional mathematical models, ABMs are 

developed to simulate the behaviors of heterogeneous population (cells and cytokines) in the 

spatial local interactions and map intuitively to a biological system through a series of simple 

rules and capture its inherent stochastic nature. Key elements of ABM include agents, a 

collection of decision-making entities (cells and cytokines) classified into different types based 

on entities described in a real biological system. Each type of agents executes certain behaviors 

appropriate for the biological system they represent. By implementing a pre-defined set of rules, 

agents (cells and cytokines) move in a certain direction and arbitrarily interact with other agents 

(cells and cytokines) in a spatial environment. Agent behaviors are updated in various locations 

according to update rules executed at discrete time steps. In order to calibrate quantitative 

changes in agent (cells and cytokines) number, a standard logistic function is used to measure 

cell population increases, Michaelis-Menten kinetics is applied to calibrate cytokine release, 

mass-action kinetics is employed to calibrate the activation process of circulating neutrophils and 

monocytes, and a decay function is used to measure the natural process of apoptosis by cells or 

catabolism of cytokines. In addition to mathematical models, experimental data such as 

replication rates of cells, production rate of cytokines, killing rates of Salmonella by phagocytic 

cells, activation rates of circulating neutrophils or monocytes, and apoptotic rate of cells or 
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catabolism of cytokines are calibrated from existing experimental studies. These data are 

incorporated into ABM as system parameters. A detailed description of the agent-based models 

of inflammatory responses to an infection (Salmonella) is presented in Chapter 5 and Chapter 6. 

In the absence of an analytic decision tool, physicians choose corresponding treatments 

for patients using heuristic strategies. Computational and artificial intelligence (AI) techniques 

are applied to predict optimal treatments, minimize side effects, reduce medical errors, and better 

integrate research and practice (55, 56). However, AI offers optimal clinical decision makings at 

single decision points. A decision making framework are necessary to extend optimal clinical 

decision makings from single decision points to multiple decision points (recognized as a 

decision-making horizon). Compared to AI, Markov decision process (MDP) is designed to 

make a sequence of optimal decisions at multiple decision epochs. Contemporary health care 

research has employed MDPs to solve difficult clinical decision making issues over time. For 

example, MDPs have been proposed to optimize sequential treatment strategies to improve 

quality of care (quality-adjusted life years) in clinics, or reduce the mortality rates of severe 

diseases. By specifying the objectives, physicians become aware of “rewards” or “costs” 

associated with a single treatment at specific time epochs. With a calculated transition matrix, 

decision makers (physicians) can calculate the total “rewards” for various treatment bundles 

under a certain decision making horizon, and choose the best treatment bundle. However, the 

biggest hindrance of a broader application of MDPs to clinical decision makings is data 

estimation (57). To resolve this difficulty, dynamic patterns of a disease progression were 

observed from ABM. The probability of one dynamic pattern (one state) transition to another 

dynamic pattern (another state) during a disease progression can be calculated using ABM. 

Those calculated transition probabilities are incorporated to a MDP as inputs. A detailed 
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description of the novel MDP with application to a clinical decision making is presented in 

Chapter 7. 

 1.4 Research map 

This research plans to provide scientific and effective predictive models for predicting 

various dynamic patterns during the development of inflammatory responses to an infection that 

sometimes progressed to problematic portions, known as “sepsis”. Furthermore, a decision 

making tool is proposed to help the clinicians treat each patient appropriately, which will 

significantly decrease the mortality rates of septic individuals, and reduce the huge cost of 

unnecessary prescription. 

Figure 1.1 shows a research map that describes the research objective, research 

methodologies, and potential research contributions. 

Figure 1.1 Research map 
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 1.5 Outlines 

The rest of dissertation is organized into seven sections: 1) Literature Review, 2) 

Mathematical Modeling of Innate Immunity Responses of Sepsis: Modeling and Computational 

Studies, 3) Mathematical Model of Innate and Adaptive Immunity of Sepsis: a Modeling and 

Simulation Study of Infectious Disease, 4) An Autonomous Multi-Agent Simulation Model for 

Acute Inflammatory Response, 5) A Novel Agent-based Model of Sepsis: a Study on the Hepatic 

Inflammatory Response in a Mouse infected by Salmonella, 6) A Novel semi-Markov decision 

process for Clinical Decisions Related to Individuals with Sepsis, and 7) Conclusions and 

Contributions. 
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Chapter 2 - Literature Review 

 2.1 Previous mathematical models of inflammatory responses to an infection 

In order to construct a mathematical model of sepsis, we searched literatures and found 

two representative system dynamics mathematical models (SDMMs) of AIR in previous studies. 

In 2004, Kumar et al. (54) presented a simplified 3-equation SDMM to describe mathematical 

relationships between pathogen, early pro-inflammatory mediators, and late pro-inflammatory 

mediators in sepsis progression. In 2006, Reynolds et al. (53) proposed a mathematical model for 

AIR that included a time-dependent, anti-inflammatory response in order to provide insights into 

a variety of clinically relevant scenarios associated with inflammatory response to infection. 

Existing mathematical models focused on inflammation in the literature proved that 

mathematical modeling is a valid approach for simulating disease progression (53, 54, 58-60). 

However, the number of variables used, the limited control of system parameters, and the 

inclusion of many variables involved in real immune response were not modeled in detail. 

Therefore, oversimplication in AIR models (53, 59) limited AIR behaviors and biological 

relevance of simulated results. For example, simulated results from AIR models (53, 59) failed to 

capture a dampened oscillated infection in AIR progression. In addition, existing mathematical 

models are incomplete representations of sepsis because simulated AIR in both mathematical 

models (53, 59) is considered as an initial stage of sepsis progression. Therefore, to improve on 

current models, we propose a 14-equation SDMM and an 18-equation SDMM to incorporate the 

most influential variables for septic response development during innate immune response and 

adaptive immune response. A detailed description of two SDMMs are provided in Chapter 3 and 

Chapter 4. 
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 2.2 Agent-based model: a surging tool to simulate infectious disease in the 

immune system 

Chapter 2.2 is based on the paper “Agent-Based Model: A Surging Tool to Simulate Infectious 

Diseases in the Immune System” published in Open Journal of Modeling and Simulation (2014), 

Vol. 2, No. 1, pp. 12-22. 

 Abstract 

Agent-based models (ABMs) are capable of constructing individual system components at 

different levels of representation to describe non-linear relationships between those components. 

Compared to a traditional mathematical modeling approach, agent-based models have an 

inherent spatial component with which they can easily describe local interactions and 

environmental heterogeneity. Furthermore, agent-based model maps interactions among agents 

inherently to the biological phenomenon by embedding the stochastic nature and dynamics 

transitions, thereby demonstrating suitability for the development of complex biological 

processes. Recently, an abundance of literature has presented application of agent-based 

modeling in the biological system. This review focuses on application of agent-based modeling 

to progression in simulation of infectious disease in the human immune system and discusses 

advantages and disadvantages of agent-based modeling application. Finally, potential 

implementation of agent-based modeling in relation to infectious disease modeling in future 

research is explored. 

Keywords: Agent-based Model; Complex Biological Processes; Progression of Infectious Disease 
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 2.2.1 Introduction 

Infectious disease, identified by clinical symptoms, is defined as the presence and growth 

of a various type of pathogen in an organism. Under most circumstances, intruding pathogens are 

eliminated by activating immune cells such as tissue macrophages and activated neutrophils in 

the immune system. If overwhelming immune response occurs, unbalanced responses between 

immune cells and cytokines lead to unexpected harmful outcomes for patients. Abundant 

research has recently focused on modeling immune responses to infectious disease such as sepsis 

or gut infection in order to explore complicated dynamic presentation of cells and cytokines in 

the immune system under the presence of infection. Modeling and simulation of immune 

responses to infectious disease could provide dynamic understanding of infectious disease 

progression and further acknowledge therapeutic targets for the infectious disease. 

As a standard approach, mathematical modeling is currently being developed as a 

dynamic knowledge representation offering a promising possibility for understanding complex 

local and global dynamics of infectious disease (53, 54). Using a series of known and 

hypothesized kinetics of biologic system components from current literature, mathematical 

models describe infectious disease processes by measuring the steady states of various 

components in the immune system. However, mathematical models fail to capture 

inhomogeneous information of various components over the simulation space and fail to describe 

possible deviations of various components from their aggregated behaviors. As a powerful 

computational modeling technique, Agent-based model (ABM) simulates complicated non-linear 

dynamic relationships between components and intuitively maps a more realistic biological 

system by incorporating spatial effects and stochastic nature into model construction. Key 

elements of ABM include agents, a collection of decision-making entities classified into different 
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types based on entities described in a real-world system. Each type of agents executes certain 

behaviors appropriate for the system they represent. By implementing a pre-defined set of rules, 

agents move in a certain direction and arbitrarily interact with other agents in a spatial 

environment. Agent behaviors are updated in various locations according to update rules 

executed at discrete time steps. Agent-based modeling inherently captures repetitive spatial 

interactions between agents in a stochastic process and, therefore, is a powerful tool to render 

valuable information and redraw an overall picture of a biological system. Even simple 

implementation of ABM requires well-established technology which relies on the power of 

computers to explore dynamics beyond the reach of pure mathematical methods (61, 62). 

Because of the inherent nature in computational structure, the agent-based model can be 

implemented on parallel computers very efficiently (63). This review specifically investigates 

previous applications of agent-based modeling to infectious disease associated with failure of the 

immune system to respond to intruding bacteria. Subsequent article sections are organized as 

follows: 1) review of existing research delineating ABM implementations on infectious disease, 

2) discussion of the advantages and disadvantages of ABM on modeling of infectious disease, 

and 3) prediction of future implementation of ABM on infectious disease and other types of 

disease in a broader way. 

 2.2.2 Agent-based Model of Sepsis 

Sepsis, currently defined as a systemic inflammatory response in the presence of an 

infectious agent or trauma, is increasingly considered an exaggerated, poorly regulated, innate 

immune response to microbial products (1, 2). Progression to severe sepsis is marked by 

generalized hypotension, tissue hypoxia, and coagulation abnormality (1). Severe sepsis can 

further develop into septic shock if long-lasting severe hypotension occurs (1) and ultimately 
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lead to death. The first application of agent-based modeling of sepsis is employed by An (48). 

An has produced a very abstract ABM of Acute Inflammatory Response, an initial stage of sepsis 

progression. His model is built on the interface between endothelial cells and blood at the 

capillary level to simulate behaviors of circulating neutrophils and monocytes in the presence of 

injury. Neutrophils and monocytes are defined as agents and their behaviors, including rolling, 

sticking, diapedesis and respiratory burst, are regulated by a series of state variables which obey 

fundamental occurrence in AIR environment derived from literature. The variable “total oxy 

deficit” measures total damage caused by AIR and the state variable “End Injury Vector 

Number” measures accumulated infection load during AIR progression in order to reflect the 

characteristics of AIR progression. Using a predefined rule system, multiple independent 

computer programs are executed with various initial injury extents to generate three general 

outcomes of AIR progression, including heal, SIRS, and overwhelming infection. Furthermore, 

the author generates a distributed outcome of AIR progression by calibrating the “oxy” and “End 

Injury Vector Number” in 500 selected iterations of simulation runs under the same extent of 

injury. Distribution outcomes confirm that AIR progression is stochastically represented and 

simulates heterogeneity of a patient population. At the end of his study, An concluded that his 

agent-based model could not represent a real system but is helpful for understanding essential 

steps in the inflammatory process at the level of his proposed model. For future research, he 

expects to produce simulated results that can be validated based on existing experimental studies 

and use more sophisticated ABMs to test therapies prior to clinical trials in order to refine 

clinical study design in pharmacological research. 

Following his previous work, An continued ABM construction to simulate and compare 

different therapeutic effects on the improvement of patients’ outcomes (49). The model is 
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developed at the cellular level and, as in the previous model, built on endothelial-blood interface. 

Compared to the previous model, however, he incorporated additional agents to represent 

sophistic interaction between cells and pathways of immune responses in AIR progression. 

Positive/negative feedback relationships and interactions between agents are represented and 

updated using simple arithmetic relationships guided by cellular/molecular mechanisms of AIR 

progression. The range of initial injury which generates SIR becomes the zone of interest. 

Distributions of a variable “end oxy deficit (EOD) with respect to different initial injury levels in 

infectious and sterile models with and without antibiotics, demonstrated that survivability of 

patients would improve by using antibiotics. Furthermore, An generated four recognizable 

dynamic behavior patterns of infection, including healing, immune-compromised SIRS, hyper 

inflammatory SIR, and overwhelming infection under different levels of initial injury. In the end, 

he intended to test and compare effects of various sets of anti-cytokine therapies which originate 

from existing clinical trials, animal study and proposed interventions using the proposed agent-

based model. Mortality rates associated with anti-cytokine therapies for a group of “patients” 

demonstrated that anti-cytokine sets are not statistically significant in regards to outcome 

improvement given design parameters of the clinical trials. Failure of the initial clinical trials, the 

author concluded, is because redundant pathways of innate immune response could cause 

therapy interventions to fail to hit the targeted pathway. An criticized the proposed agent-based 

model for being very abstract model, qualitatively calibrated and difficult to apply in clinics at 

the current level. More specific analysis, such as grouping septic patients, could account for 

mortality rates for specific groups of patients instead of a global mortality rate for patients as a 

whole. Furthermore, as a future research goal, quantitative agent-based models are expected to 
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calibrate patterns of inflammatory responses using basic scientific data in order to reproduce and 

illustrate effects of clinical interventions.  

Recently, Wu et al. proposed an integrated ABM embedded with a mathematical model 

to simulate AIR progression occurring at the interface between blood vessels and cells within the 

tissue (64). Five of the total agents are defined in the model: pathogen, resting neutrophils, 

activated neutrophils, damaged tissue and anti-inflammatory cytokines. The agents’ aggregated 

behaviors reflected characteristics of a class of cells or cytokines in AIR progression and 

provided biological insight into a series of immune response processes in AIR by describing 

intercellular interactions among the cells and cytokines. Interactions between agents obey 

fundamental immune response processes in the AIR environment derived from the literature, and 

change in the level of each type of agent is derived from ordinary differential equations. By 

implementing the ABM with corresponding initial profiles of the patients of interest and 

adjustable system parameters, behaviors of the agents and local intercellular interactions are 

captured by the simulated results. These results showed three different scenarios of AIR under 

various combinations of initial conditions: healthy response with low pathogen load, severe 

sepsis and persistent non-infectious inflammations. By analyzing outputs of patients (combined 

levels of pathogen, resting neutrophils, activated neutrophils, damaged tissue and anti-

inflammatory cytokines) with variation in different initial conditions, the authors concluded that 

variations in initial levels of pathogen, initial levels of anti-inflammatory cytokines, system 

parameters associated with anti-inflammatory cytokines, as well as system parameters associated 

with the pathogen, primarily influenced outputs of patients. The advantage of Wu’s agent-based 

model, compared to other agent-based models is to incorporate a dynamic mathematical 
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matching to recognized biological kinetics of AIR. However, experimental data incorporation as 

well as experimental validation is still under development. 

Other than modeling interactions between cells, Dong et al proposed an ABM framework 

to model intracellular dynamics of the NF-kB signaling module and further illustrate subsequent 

intercellular interactions among macrophages and T-helper cells through up-regulation of 

inflammatory mediators (50). Their approach explored hypothetical scenarios of AIR and 

potentially improved understanding of behaviors of the molecular species which could develop 

and expand to emergent behavior of the overall AIR system. Simulated results include five 

different scenarios under various initial conditions: a self-limited response where the 

inflammatory stimulus was cleared, a persistent infectious response where the inflammatory 

stimulus such as LPS failed to be eliminated, a persistent non-infectious inflammatory response 

where the inflammatory stimulus was eliminated but the inflammatory response was elevated by 

high concentration of inflammatory stimulus, and two other scenarios associated with endotoxin 

tolerance and potentiation effects.  The advantage of this agent-based model is integration of 

intracellular responses among inflammatory mediators followed by intercellular responses 

among immune cells. The disadvantage of this model is that it still uses a qualitative 

measurement of AIR and does not include experimental validation. 

 2.2.3 Agent-based model for other types of infectious disease 

Sepsis, or acute inflammatory response, is one kind of infectious disease of primary focus 

in healthcare and is used to explore immune responses to other types of infectious disease. Along 

with sepsis, we concluded that most infectious diseases are induced by a series of unbalanced 

immune responses in the immune system. Agent-based models play an essential role in building 

interactions between immune responses and gains insight into the unbalanced infectious disease 
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progression. In 2007, Mi et al., proposed an agent-based model to simulate underlying biological 

pathways, including interactions among macrophages, neutrophils, and fibroblasts and release of 

cytokines such as TNF-α and TGF-β1, as a cohesive whole, in diabetic foot ulcers (DFU) while 

also suggesting novel therapeutic approaches for treating DFU (65). The authors tested and 

proved that elevated TNF-α or reduced TGF-β1 result in delay of healing process compared with 

normal skin healing in DFU. Furthermore, they studied debridement intervention in DFU, 

proposed three types of therapeutic approaches for DFU, and demonstrated, using an agent-based 

model, that those types of therapeutic approaches could statistically suppress significant tissue 

damage in DFU. In 2008, Li et al., proposed an agent-based model for simulating inflammation 

of acute vocal fold injury (66). The agent-based model quantitatively reproduced and predicted 

trajectories of inflammatory cytokines such as TNF-α, IL-1β and IL-10 under four-hour specific 

treatments, including spontaneous speech, voice rest, and resonant voice in acute vocal fold 

injury. Simulation results have shown theoretical individual-specific trajectories of mediator 

levels across treatments while revealing potential application of agent-based modeling used to 

design patient-specific therapies in acute vocal fold injury or expansion to other clinical domains. 

Also in 2008, Dancik et al., proposed an agent-based model to describe natural dynamics of 

immune response to L.major infection (67). They simulated infection of macrophage by L. major 

infection as well as the recruitment of T cells in adaptive immunity response in the presence of 

chemokines, such as IL-8 to delineate underlying cellular mechanisms of L.major infection. By 

conducting sensitivity analysis, results indicated that strength and timing of adaptive immune 

response, resting macrophage speed, and transfer threshold of macrophages impact parasite load 

at the peak of infection. In 2011, an agent-based mode of activation of Pseudomonas aeruginosa 

virulence in the stressed gut was developed to characterize and translate information of the host 
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response to microbe into a behavioral rule of computational agents (68). Aggregated behavioral 

rules of computational agents, integrated by modular submodels, described intracellular 

pathways and cross-cells pathways in gut immunity. Model shows effects of initial Pseudomonas 

population on simulated host injury and measures effects of initial Pseudomonas population on 

gut flora and barrier function. Furthermore, the agent-based model is used to investigate the host-

pathogen system as it responds to different experimental conditions which are not developed yet, 

such as transient intestinal ischemia, host stress, and phosphate depletion. Finally, the authors 

discussed the discrepancy between observed results in agent-based models and experimental 

results from animal models and illustrated hypotheses concerning the source of discrepancy. 

Another agent-based model concerning gut immunity was proposed by Mei et al., in 2012 (69). 

They simulated the dynamics of gut immunity by delineating interactions among seven types of 

cells: epithelial cells, macrophages, dendritic cells, neutrophils, B cells, T cells and bacteria. Cell 

states are represented by a variable list and variable values are changed once cell states have 

changed. The author assigned three basic rules for changes in the states of cells: interaction with 

another cell, change in neighboring environment, and presence at the current state for a certain 

amount of time. Simulated results have shown that chemotactic movement and cytokine-induced 

cell-state change play critical roles in host-pathogen immune responses of gut immunity. 

 2.2.4 Implementing Software Platforms for Agent-based Model 

During the last decade, agent-based models are primarily used for modeling different 

aspects of real-world problems, such as economics, social networks, and host-pathogen 

interactions. Agent-based models in relation to economic and social networks deal with 

interactions among people and the impact of people’s aggregated behaviors on complex 

economic or social situation (70-72). Agent-based models in relation to host-pathogen system, 
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otherwise, deal with interactions among cells, associated cytokines and their impact on immune 

system (66-69). The agent-based community has developed several agent-based toolkits, 

including packaged software and open source platforms to help researchers build their own 

agent-based model applications. In this section, we review the most commonly used agent-based 

toolkits and describe their applications. 

In 2001, An used Starlogo to build an agent-based application to simulate AIR 

progression (48). Starlogo and later versions such as MacStarLogo, OpenStarLogo, and StarLogo 

TNG, are categorized by logo family and developed from the logo programming language. 

Starlogo is recognized as an educational kit for building agent-based applications. This platform 

emulates a parallel-processing computer, allowing for simultaneous execution of multiple 

independent computer programs with a high-level programming language called Starlogo. 

Starlogo uses a natural programming language to describe real systems, thereby, making it 

understandable and easy to implement without extensive programming efforts. The main user 

interface of Starlogo is comprised of two-dimensional grids. The agents can be divided into two 

categories: “patches” and “turtles.” "Patches" are fixed agents placed on background grids in the 

model workspace. “Turtles” are mobile agents that occupy a position or move freely on the 

surface of patches while executing certain functions or actions. Moreover, Starlogo offers a way 

to define agent set as “breed,” meaning that agent types with similar behaviors or under the 

control of the same mechanisms. “Breed” allows the modeler to define a class of agents with a 

set of common state variables and establish various functions or actions (autonomous behaviors) 

for agent types. Also, the modeler can generate output of a simulation and set parameters in a 

separate area from the Starlogo interface.  
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Researchers most frequently recommend and utilize the agent-based toolkit Netlogo (73). 

Compared with other toolkits within the logo family, Netlogo has a similar programming 

environment, including platform interface, agent types, and programming statements. Starlogo 

could easily be converted to Netlogo by adjusting certain statements. Netlogo is recognized by 

developers of agent-based modeling as an advanced version of Starlogo because it incorporates 

more agent types such as “link” and, consequently could construct more sophisticated systems 

(74). Furthermore, Netlogo includes a wide range of library models which could help new 

researchers prototype their own models. Therefore, Netlogo is recognized as the most 

professional platform for simulating real systems by providing a simple high-level programming 

language, built-in graphic interfaces, and comprehensive documentation (74).  

Besides built-in, high-level programming language, agent-based platforms such as 

Starlogo or Netlogo, Objective-C Swarm, and its derived, Java Swarm, provide well-experienced 

programmers conceptual frameworks for building agent-based models. The primary advantage of 

Objective-C Swarm and Java Swarm is they help organize different levels of agent-based models 

into hierarchy and eventually integrate those small agent-based models into a complex agent-

based model. This advantage plays an essential role in developing agent-based models for the 

immune system at the whole body level by integrating several small agent-based models at organ 

level. However, the disadvantages of Swam platform include lack of novice-friendly 

development tools, difficulty in building models because of low-level programming language, 

and low availability of documentation and tutorial material (74). 

Recently, another popular implementing software platform for agent-based models, 

called Repast Symphony, is used in building agent-based simulation (75). Mei’s research group 

proposed an agent-based simulator called Enteric Immunity Simulator (ENISI) Visual for 
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modeling gut immunity (69). ENISI Visual has an interface comprised of a series of grids. Each 

grid has a value indicating concentration of agents, and grid background colors change as states 

change. The implementer could run the simulator by setting up the initial numbers of indicators, 

simulation speed, steps, runs, and agent movements (random or chemotactic).  ENISI Visual 

simulator is implemented by Java language based on Repast Symphony, a popular platform for 

agent-based modeling (75). The homepage of Repast Symphony states that “Repast Symphony is 

an integrated, richly interactive, cross platform Java-based modeling system that runs under 

Microsoft Windows, Apple Mac OS X, and Linux. It supports the development of extremely 

flexible models of interacting agents for use on workstations and small computing clusters.” 

Specially, Repast Symphony could integrate the Netlogo model into Relogo. The interface of 

Repast Symphony is comprised of three main parts: the top line is the control panel, the left side 

is the user panel for setting initial values, and the right side is a visual window for observing 

agent movements and interactions. The advantage of Repast Symphony is that this software 

platform could highly customize agent behaviors and interaction among agents by incorporating 

a programming language such as Java. Few of current agent-based models have been built using 

Repast, but Repast could be a potential powerful agent-based tookit with its development in 

functions. 

Mason is recognized as a smaller and faster alternative to Repast, recently designed as a 

Java-based platform with a multi-agent simulation environment (74). Compared to other agent-

based platforms, Mason is recognized as a less mature simulation package but having the least 

execution time, which is appropriate to simulate agent behavior with much iteration for 

experienced programmers. We have compared implementation of different agent-based 

platforms in the following aspects listed in Table 2.1. 
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Table 2.1 Characteristics of various types of agent-based simulation platforms 

 Language Scheduling Generator Grid 

Space 

Built-in 

Agents 

Color Track 

Agents 

Swam Objective-C Fixed/Dynamic Mersen Non 

toroidal 

No Colormap Habitat 

cells 

Java 

Swam 

Java Fixed/Dynamic  Non 

toroidal 

No Colormap Habitat 

cells 

Repast Java/High-

level 

Fixed/Dynamic 

 

 toroidal No Built-in Java 

color class 

Habitat 

cells 

Mason Java-based Fixed/Dynamic  toroidal No Built-in Java 

color class 

Habitat 

cells 

Netlogo High-level Fixed/Partial 

Dynamic 

 toroidal Yes Color-scaling 

primitive 

Built-in 

patch 

 

Table 2.1 shows that different characteristics of five agent-based simulation platforms in 

seven aspects. Only Netlogo has built-in agent and built-in patches which could easily start with 

building interactions of agents and tracking agents’ movement. Other than Netlogo and Repast, 

Swam, Java Swam and Mason need to write in low-level language with careful design of 

programming. Especially, Swam need to have a generator to build agents and does not have 

toroidal interface. Five agent-based tookits have a mature color function. 

When one implements an agent-based model, execution speed is crucial to determine if 

the agent-based platform is effective. From Railsback’s implementations of 16 versions of agent-

based models (74), we summarized that Mason is the fastest agent-based platform compared to 

nearly all versions of the agent-based model. Repast and Netlogo closely follow in results, but 

Swam is the slowest agent-based platform, especially when complexity increases in model 

structure. In conclusion, we believe that Netlogo is an appropriate toolkit for new researchers for 

developing agent-based applications because of its simplified programming environment, easily 

implemented tool sets, well-developed library model, and well-established documentation 

support. 
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 2.2.5 Advantages of agent-based modeling on infectious disease 

Agent-based modeling has been employed to describe numerous processes in 

immunology (63). Complex, nonlinear biological immune processes responding to infection 

require integrated information to represent interaction effects among various components rather 

than reconstruct those processes by linearly summarizing characteristics of each single 

component. Compared to traditional differential equation models, Bonabeau (76) claims that 

agent-based modeling (ABM) is a powerful simulation modeling technique for naturally 

describing nonlinear relationships between components in immune responses as a whole. The 

author explained that ABM could simulate more complicated individual behaviors in spatial and 

local environments and further exhibit individual learning and adaptation by modeling and 

simulating behavior of the system’s constituent units and their interaction. Later, Bauer et al., 

(63) classified multiple applications of ABM in immunology. They reviewed various ABMs 

relevant to host-pathogen systems and discussed contributions to understanding immunology and 

disease pathology. They pointed out that ABMs are closer to the description and representation 

of a true biological system compared to traditional modeling techniques. By suggesting 

directions and velocities of cell movement in simulation, ABMs could easily provide insight into 

spatial or localized cell interaction in host-pathogen systems while addressing limitations of 

traditional modeling techniques such as ordinary differential equations and partial differential 

equations. 

A well-detailed agent-based model derived from verified research tells a story about 

immune system response to various insults. First, by translating basic science evidences of 

infectious disease into behavioral computational agents, agent-based model is intuitive and 

easy to understand. Secondly, agent-based model is capable of reconstructing the interactions 
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between cells and cytokines in relation to specific disease and therefore simulating different 

kinds of infectious disease. Thirdly, an agent-based model can be developed further by 

incorporating new types of agents or the interactions of specific types of agents with other 

agents, leading to greater understanding of the control mechanism for cellular behavior.  

Moreover, ABM is built with a random event generator, and therefore, is able to simulate the 

stochastic nature of immune responses to infectious disease. Analysis of various consequences 

of disease progression for heterogeneous patients can be accomplished by getting insight into 

the stochastic nature of immune responses. The randomness in an agent-based model is 

largely embedded in the process of agent interactions, such as one agent choosing to interact 

with one neighboring agent rather than another. Furthermore, agents could execute certain 

functions in different locations when they move or interact with other types of agents. For 

example, in most immune responses, neutrophils execute a series of functions such as moving 

rolling and adhering upon gradient to endothelial cells when they are in a blood vessel. Once 

they enter a nearby tissue they execute different functions and interact with various types of 

cytokines and immune cells. In an agent-based model, behavior of agents and the interactions 

of one agent with another are highly randomized and spatially-dependent which could not be 

described by other modeling approaches. Most importantly, in most circumstances, agent-

based models are employed to support the development and design of clinical trials. By 

incorporating single agent-treatment or multi-agent treatment, the agent-based model could 

demonstrate the evidences observed in experimental design using computational results. ABM 

could test effects of proposed treatments, prior to clinical trials, and help in designing future 

potential experiments especially focused on the exploration of new therapeutic approaches. 

Current therapeutic experiments emphasize mediator-directed treatments. The number of 
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those experiments largely increases with the development of new knowledge of investigated 

mediators. 

 2.2.6 Limitations of agent-based modeling of infectious disease 

Agent-based models clearly have several striking advantages; however, they also have 

some limitations. Firstly, an agent-based model is defined as an “instructive” tool and cannot 

represent real immune responses in infectious disease because it fails in one-to-one mapping of 

components and processes to biological systems. Biological immune responses responding to 

infection are recognized as a series of complex processes including both intracellular 

transductions (process of DNA being transferred) and intercellular pathways between cells. 

Those biological processes will be developed with evolved understanding and continued 

investigation of cellular and molecular mechanisms. Proposed agent-based models are very 

abstract descriptions of real systems and are still under development. The challenge of 

constructing an agent-based model in practice is to appropriately choose the degree of 

abstraction and avoid unnecessary information while incorporating essential information for 

recognizable results.  

Also, agent behavior and interactions between agents in infectious disease are based on 

the understanding of basic cellular and molecular mechanisms in immune responses. 

However, knowledge concerning some interactions may not exist or are still under exploration 

(77). Furthermore, patterns of immune responses evolved from agent interactions are observed 

in agent-based models and, compared with results from experimental studies, serve as 

validation and refinement of agent-based models. However, existing experimental studies may 

provide contrary information to basic biological mechanisms and patterns of immune 

responses, which complicates building and validating an agent-based model. Various 
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experimental conditions, data sampling methods, and experimental designs could contribute to 

the conflicting results as no uniform standard exists to perform those clinical trials. 

Additionally, most existing agent-based models are limited in quantitative validation 

of simulated results from experimental designs. Instead, they generate qualitative results to 

represent patterns of progression of infectious disease. However, to further validate the agent-

based model, quantitative measurements are necessary to match simulated results with 

experimental results reported. The validation process requires a large amount of experimental 

data in order to incorporate or translate those data into an agent-based model. During the 

validation process, major difficulties occur, such as when some data is unavailable or the data 

format is not uniform by measurements, leading to incomplete translation of biological 

information into qualitative simulation.  

Furthermore, an agent-based model requires high-level of computational efforts to 

simulate the detailed interactions among classes of agents in immune responses of infectious 

disease. The agent-based model is designed to describe the aggregated level of components by 

simulating individual agent behavior and interactions, and therefore, requires extensive 

computational effort and the computation efficiency is quite low. If 10 types of agents are 

defined in an agent-based model and each type of agent initially has 100 agents. A total of 

1000 agents’ behaviors need to be encoded and decoded when executing the agent-based 

model.  In the case of overwhelming infection, the number of bacteria (one type of agent) can 

explode to 108 and a large amount of computational power is therefore needed to run the 

model. 
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 2.2.7 Future direction of agent-based modeling of infection 

Limitations of current agent-based models provide opportunities for future research. One 

of the initial steps needed in future research is to refine current agent-based models by adding 

more sophisticated cellular and molecular pathways in immune system when the immune system 

responding to various types of infectious disease. For instance, in simulating sepsis progression 

current agent-based models could be enhanced by adding anti-inflammatory pathways in both 

innate and adaptive immunity. The agent-based model for simulating diabetic foot ulcers could 

be improved by incorporating collagen contraction in the wound-healing process (50). By taking 

into account more molecular interactions and transductions inside cells, the agent-based models 

could build a bridge between intracellular mechanism and intercellular interactions. The current 

agent-based models primarily focus on the interface of blood borne endothelial cells as a 

platform to simulate the initial start of immune responses. The long-term goal of agent-based 

models is to construct various structures modeling different organs, eventually simulating the 

physiology at the organ level, and link immune responses at the organ level to systemic 

responses on a whole-body scale. 

With the development of current biological experiments, experimental data could be 

obtained using experimental designs as inputs into the agent-based model, and quantitative 

results could be expected in future research. In addition, the existing agent-based models use 

simple arithmetic rules to regulate and control interactions and movement among agents. In 

future research, we hope to describe aggregated behaviors of agents in immune responses using 

well-formed and complete mathematical expressions derived from known and hypothesized 

kinetics of components of biologic systems. 
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The current agent-based models require a large computational effort. For instance, 

Netlogo models, one of many software platforms for the agent-based model, are limited to a few 

thousand agents running abstract rules on a high-performance computer (78). In particular, a 

large number of repetitive local interactions among agents greatly increases the running time of 

the agent-based model. To reduce this computational hurdle, one could use agent-owned 

variables (local variables) to define each type of agent (64).  Values of agent-owned variables 

will be updated every time period predefined in the model. Similarly, the number of agent types 

will be updated corresponding to the change in the agent-owned variables. The relationship 

between the change in number of cells and change in the agent-owned variables is described in 

Figure 2.1. 

Figure 2.1 Basic structure of agent changing 

 

Figure 2.1 shows that agent-specific variables induce the change in the number of agents 

Similarly, dynamic agent compression allows a set of homogeneous agents stored in 

compact bins to make the model more efficient in its use of memory and computational cycles, 

therefore allowing the user to scale up complexity of the model and run the model more 

efficiently by increasing execution speeds (79). Furthermore, the Gillespie algorithm proposed 
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the generation of a statistically correct trajectory for stochastic simulation and streamlining the 

execution of computational steps (80). More computational algorithms, as well as enhancement 

of computer power, are expected to implement multi-scale agent-based models. Parallel 

computers also have a potential to improve ABM applications in the future. 

 2.3 Markov Decision Process: a decision-making framework for improving 

quality of care in Healthcare System 

 Abstract 

Since the last twenty years, Markov Decision Process (MDP) has been explored by researchers 

as an analytical tool with a sound theoretical base to assist hospital physicians in making 

sequential dynamic decisions regarding treatments. An increasing amount of treatment options to 

various types of diseases and unpredictable patients’ responses to various treatments result in 

significant bias of clinical outcomes, thus hindering achievement of quality of care in the current 

healthcare system. Computational-based framework, such as Markov Process, was initially 

proposed to solve this hindrance by identifying optimal treatment strategies in clinical settings. 

Compared to traditional computation-based framework, such as Markov Process, MDP is more 

flexible and accurate, allowing decision makers to adjust treatment strategies under a variety of 

reasonable objectives. Such objectives can be maximizing expected quality adjusted life days of 

individual patients, minimizing the length of patients’ hospital stay, or minimizing the risk of 

patients dying from a specific disease. The objective of MDP is to provide a “best” treatment 

plan, optimizing a particular quality of care objective. In this review, we summarize various 

types of MDP models and review their application for healthcare, specifically focusing on their 

usage in dealing with treatment strategies. Furthermore, we discuss computational algorithms for 
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solving categorized MDP models and provide a numerical example to illustrate an 

implementation of basic MDP. The paper describes the role and the challenge of MDP 

application in current healthcare system and propose potential directions for future research. 

Keywords: Markov Decision Process, Treatment strategies, Healthcare 

 2.3.1 Introduction 

Effects of medical treatments are uncertain and depend on factors such as the frequency 

of treatment administrated, timing of the treatment, and how individual patients respond to the 

treatment. Therefore, physicians have difficulty making a “best” judgment on when and how to 

appropriately treat a patient, especially for a complicated disease with consideration of multiple 

clinical indicators. Recent clinical data indicates that patients receive effective diagnoses and 

treatments less than 50% of the time at the hospital (55), exacerbating the inefficiency and low 

quality of care of the current healthcare system. Since the last two decades, the Markov decision 

process (MDP) has been proposed as an operational, under-utilized discrete-time stochastic 

dynamic programming tool for discovering optimal solutions to clinical decision problems (81). 

Compared to other decision models such as Markov model, MDP is designed for decision-

makers who make sequential decisions at multiple time epochs (57). In MDP, the decision maker 

can observe the state of a system they are interested in, and decide to act or not at each discrete 

time epoch. The time epoch at which a decision maker makes a decision is called a decision 

epoch. At each decision epoch, the decision maker can choose one action from an action set. 

Based on the action chosen, the state of the system transmits to other states according to a known 

probability distribution and simultaneously receives rewards related to the chosen action. 

Rewards are accumulated along a decision horizon and an MDP ensures an optimal total reward 

for a particular criterion, such as maximizing expected quality adjusted life days of individual 
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patient, if an optimal sequence of decisions is chosen. MDP is popular in medical decision 

problems because it can be applied to a situation in which a decision is made at multiple time 

epochs which is the common medical practice. Furthermore, MDP is more computationally 

efficient compared to traditional decision modeling, such as decision trees, and therefore more 

suitable to solve various types of medical decision problems with a large state space. However, 

MDP is limited because it requires enough quantitative data and an appropriate description of a 

patient’s state, discussed later in this review. Subsequent article sections are organized as 

follows: 1) Introduction of fundamental MDP structure, 2) Summary of MDP types and related 

computational algorithms, 3) Review of existing literature delineating MDP application in 

medical research, 4) Discussion of the impact of current MDP on quality of care improvement in 

various clinical settings, and 5) Discussion of MDP implementation in future medical research 

and proposed potential technical solutions to current complications in MDP application. 

 2.3.2 Fundamental structures of MDP and its extended formulation 

MDP consists of four basic elements: states (variable of interest), actions, transition 

probabilities, and rewards. For clinical decision-making, physicians care for a patient’s health 

condition, typically utilizing conceptive terms such as healthy and ill to describe a patient’s 

health state. These terms could be further specified by a combined level of indicators, such as 

pathogen level and the level of serum neutrophils, describing the current health status of a 

patient. Since an inherent stochastic nature exists in biological processes, individual patients 

respond to an action (or treatment in clinical decisions) in a variety of ways, leading to possible 

multiple ended-stages after the action (treatment). MDP employs transition probability to 

indicate the likelihood of moving from one state to another state. After a transition probability, 

rewards are assigned specific values to describe consequences in relation to the action 
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(treatment). Rewards are accumulated in a mathematical expression after a sequence of actions; 

with the objective of MDP to maximize the total expected rewards. MDP also attempts to find a 

“best” policy (sequence of actions) that maximizes total expected rewards. Figure 2.2 shows the 

relationship between states, actions, transition probabilities and rewards in a fundamental MDP 

structure. 

Figure 2.2 Relationship between states, actions, transition probabilities and rewards 

in MDP 

 

In Figure 2.2, State 1 transit to State 2 with a transit probability P12 under an action 

(treatment), obtaining a reward value R12. Similarly, State 1 transit to State n with a transit 

probability P1n under the same action (treatment), obtaining a reward R1n. State 1 is recognized as 

a recurrent state if it retains its current state by implementing an action (treatment). State n is an 

absorbing state that cannot transit to another state once in an absorbing state. In clinical terms an 

absorbing state typically refers to a death. 

MDP is categorized by length of the decision horizon. A finite-horizon MDP is defined 

as a MDP with a finite decision time frame, and an infinite-horizon MDP is defined as a MDP 

with an infinite decision time frame. Finite-horizon MDP is limited by computational 

intractability as problem complexity increases (82). Compared to a finite-horizon MDP, an 
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infinite-horizon MDP is converged and solvable in polynomial time under reasonable 

assumptions because the objective function of an infinite-horizon MDP can be expressed as 

special linear programs (83). However, decisions in clinical settings are time-concerned, and 

application of an infinite-horizon MDP in clinics may induce delayed optimal policy. In addition, 

most MDP applications we reviewed had a finite decision frame, so we presumed that a finite-

horizon MDP is more applicable to medical decision than an infinite-horizon MDP. To create a 

uniform mathematical formulations in this review, we defined a basic MDP following 

Puterman’s notations (84). Corresponding notations and definitions are summarized in Table 2.2. 

Table 2.2 Definition of notations and their range in value 

Not

ation 

Definition Range in Value 

A Action set All feasible 

actions 

𝑌𝑡 An action made at t th decision epoch 𝑌𝑡𝜖𝐴 

𝜆 Discount factor (0, 1] 

𝐴𝑋𝑡
 Available actions when state is 𝑋𝑡 𝐴𝑋𝑡

𝜖𝐴 

St+1 State set at (t+1)th decision epoch All feasible 

states 

S State  All feasible 

states 

𝑟𝑡+1(𝑗) 
Reward received at state j at (t+1)th 

decision epoch 

All real 

numbers 

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡) The probability of transmitting to state j 

from state 𝑋𝑡 when action 𝑌𝑡 is made at t th 

decision epoch 

[0, 1] 

𝑋𝑡 The state of system at t th decision epoch 𝑋𝑡𝜖𝑆 

𝑟𝑁(𝑋𝑁) Reward received at state 𝑋𝑁 at N th 

decision epoch, N -1 could be defined as last 

decision epoch in a finite-horizon MDP 

All real 

numbers 

𝑟𝑡(𝑋𝑡, 𝑌𝑡) Reward received at state 𝑋𝑡 at t th 

decision epoch when action 𝑌𝑡 is made  

All real 

numbers 

𝑟𝑡+1(𝑗) Reward received at state j at (t+1)th 

decision epoch 

All real 

numbers 

𝑢𝑁
∗ (𝑋𝑁) Optimal utility function when state is 𝑋𝑁 

at time N, N – 1 can be defined as last decision 

epoch in a finite-horizon MDP 

All real 

numbers 
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𝑢𝑡
∗(𝑋𝑡) Optimal utility function when state is 𝑋𝑡 

at t th decision epoch 

All real 

numbers 

𝑢𝑡+1
∗ (𝑗) 

Optimal utility function when state is 𝑗 at 

(t+1)th decision epoch 

All real 

numbers 

𝜋 Policy A sequence of 

actions chosen by a 

decision maker 

𝑢𝑡+1
𝜋 (𝑗) Utility function when state is j at (t+1)th 

decision epoch under a policy 𝜋 

All real 

numbers 

m The predefined number of iterations 

within step 3 in modified policy iteration 

algorithm 

Normally less 

than 10 

𝑢0
∗(𝑗) Initial optimal utility function when state 

is j at the initial decision epoch 

All real 

numbers 

𝑉𝑡
𝑘+1(𝑋𝑡) The optimal utility function at (k+1)th 

iteration within step 3 when state is 𝑋𝑡 at t th 

decision epoch in modified policy iteration 

algorithm 

All real 

numbers 

𝑌𝜀(𝑋𝑡) The optimal action when state is 𝑋𝑡 at t th 

decision epoch in modified policy iteration 

algorithm 

𝑌𝜀(𝑋𝑡)𝜖𝐴 

 

As follows, a finite-horizon MDP typically utilizes two performance criterions to discern 

an optimal policy. 

Total expected reward in a finite-horizon MDP with discrete decision epochs: 

𝑣𝑁
𝜋(𝑠) = 𝐸𝑠

𝜋 {∑ 𝑟𝑡(𝑋𝑡, 𝑌𝑡)

𝑁−1

𝑡=1

+ 𝛾𝑁(𝑋𝑁)} 

Total discounted expected reward in a finite-horizon MDP with discrete decision epochs: 

𝑣𝑁
𝜋(𝑠) = 𝐸𝑠

𝜋 {∑ 𝜆𝑡−1𝑟𝑡(𝑋𝑡, 𝑌𝑡)

𝑁−1

𝑡=1

+ 𝜆𝑁−1𝛾𝑁(𝑋𝑁)} 

𝛾𝑁(𝑋𝑁)  denotes the reward obtained at the end stage 𝑁 (last stage in a finite-horizon 

MDP), and 𝑟𝑡(𝑋𝑡, 𝑌𝑡) is the reward obtained at time t when the state of a system at time 𝑡 is 𝑋𝑡 

and the action made at time 𝑡 is 𝑌𝑡.  The difference between the total expected reward and the 
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total discounted expected reward is that the total discounted expected reward is calculated with a 

factor 𝜆 (0 ≤ 𝜆 < 1). The factor is defined as a discount factor, and 𝜆𝑡−1 is accumulated along 

the decision horizon to represent a decaying effect of actions (treatments). The concept of a 

discount factor is proposed under the assumption that patients are less likely to recover from 

illness if they get a delayed treatment since their health conditions deteriorates with the 

development of the illness. In an infinite-horizon MDP, three performance criterions are applied 

to discern an optimal policy. The three performance criterions including total expected reward, 

total discounted expected reward, and average reward per stage is formulated as follows. 

Total expected reward in an infinite-horizon MDP with discrete decision epochs: 

𝑣𝑁
𝜋(𝑠) = 𝐸𝑠

𝜋 {∑ 𝑟𝑡(𝑋𝑡, 𝑌𝑡)

𝑁−1

𝑡=1

+ 𝛾𝑁(𝑋𝑁)} 

𝑣𝜋(𝑠) = lim
𝑁→∞

𝑣𝑁
𝜋 (𝑠) 

Total discounted expected reward in an infinite-horizon MDP with discrete decision 

epochs: 

𝑣𝑁
𝜋(𝑠) = 𝐸𝑠

𝜋 {∑ 𝜆𝑡−1𝑟𝑡(𝑋𝑡, 𝑌𝑡)

𝑁−1

𝑡=1

+ 𝜆𝑁−1𝛾𝑁(𝑋𝑁)} 

𝑣𝜋(𝑠) = lim
𝑁→∞

𝑣𝑁
𝜋 (𝑠) 

Average reward per stage in an infinite-horizon MDP with discrete decision epochs: 

𝑣𝑁
𝜋(𝑠) = 𝐸𝑠

𝜋 {
1

𝑁
(∑ 𝑟𝑡(𝑋𝑡, 𝑌𝑡)

𝑁−1

𝑡=1

+ 𝛾𝑁(𝑋𝑁))} 

𝑣𝜋(𝑠) = lim
𝑁→∞

𝑣𝑁
𝜋 (𝑠) 

In an infinite-horizon MDP, 𝑣𝜋(𝑠) is used to denote a reward when the decision time 

frame approaches infinity under different performance criterions. The objective of finite-horizon 
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and infinite-horizon MDPs is to find an optimal policy 𝜋∗  (sequence of actions) which can 

maximize various objectives such as total expected reward, total discounted expected reward, 

and average reward per stage. To solve a finite-horizon MDP, a common algorithm, such as 

backward induction, is employed (84, 85), while a simulation-based algorithm, such as multi-

stage adaptive sampling algorithm could be applied to solve an infinite-horizon MDP (86). 

General computational algorithms for solving various types of MDPs are discussed in the next 

section. 

The underlying states of patients are not always perfectly observed in clinics, as for 

example is the pain scale of a patient. Sometimes, diagnosis to determine the current health state 

of patients can be applied before administering treatments, enabling physicians to treat patients 

more accurately and efficiently. The MDP with uncertain states is referred to as Partially 

Observable Markov Decision Processes (POMDP) (84, 87). POMDP is proposed to employ a 

general framework to model sequential clinical decisions with hidden states of patients. Total 

expected reward of POMDPs could be represented as a combination of linear segments solved 

using an exact value iteration algorithm. However, computational time of solving POMDP is 

exponential in actions and hidden states, resulting in computationally intractability with 

moderately sized state spaces (88). Therefore, heuristics algorithms or approximation techniques 

should be applied to generate solutions to a complicated POMDP (89-93). 

A main feature of MDP is being memory-less, which means the effects of treatments in 

the past don’t account into the states of patients in the future. However, the treatment process in 

clinics is typically memorialized. Under the assumption that treatment process is memorialized, 

treatment effects could be carried through several stages of the treatment process and future 

states of patients could be dependent on their current states and their previous states, including 
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treatment given in the past. Therefore, compared to other MDPs, a semi-MDP built on 

continuous decision epochs is more applicable under this assumption in a normal clinical 

situation. To construct a Semi-MDP, a series of concepts and notations must be introduced, as 

referred to Puterman’s work (84). 

As stated, each type of MDP approach has certain advantages and disadvantages. An 

infinite-horizon MDP is advantageous because of ease of implementation and computation, 

while a finite-horizon POMDP and Semi-MDP are more applicable in reality compared to a 

standard MDP. A finite-horizon POMDP with diagnosis procedures that apply to patients before 

treatments has ability to observe episodes of patients before transitioning to severe states. 

However, both finite-MDP and infinite-MDP approaches fail to consider the continuous effect of 

treatments. A Semi-MDP which describes continuous or delay-effects of treatments through the 

previous period to the next periods capture actual treatment effects in clinics. Thus, we conclude 

that Semi-MDP (84) is a feasible, realistic decision process for general medical decision 

problems. 

 2.3.3 Fundamental algorithms of solving MDP 

A variety of computing techniques can be applied to solve MDP problems under different 

expectations. In this section, we focus on general algorithms, such as backward induction 

algorithm, value iteration, policy iteration, and modified policy iteration, whose application is 

dependent on the type of MDP problem. For example, backward induction algorithm is generally 

applied to a finite-horizon MDP. 

 2.3.3.1 Backward induction algorithm 

Backward induction algorithm generates an optimal solution of a MDP model by 

calculating the accumulated reward value from last decision epoch backwards towards the first 
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decision epoch. As a commonly used algorithm, backward induction algorithm is typically 

applied to a finite-horizon MDP. The general procedure of backward induction algorithm (84) is 

summarized as follows, and corresponding notations in the following procedures refer to Table 

1. 

Set t=N, and  

𝑢𝑁
∗ (𝑋𝑁) = 𝑟𝑁(𝑋𝑁) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋𝑁 𝜖 𝑆 

Substitute t-1 for t and compute 𝑢𝑡
∗(𝑋𝑡) for each 𝑋𝑡 𝜖 𝑆 by 

𝑢𝑡
∗(𝑋𝑡) = max

𝑌𝑡∈𝐴𝑥𝑡

{𝑟𝑡(𝑋𝑡, 𝑌𝑡) + ∑ 𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡+1
∗ (𝑗)

𝑗∈𝑆𝑡+1

} 

If t=1, stop. Otherwise return to step 2. 

 2.3.3.2 Value iteration algorithm 

Value iteration algorithm can be applied to an infinite-horizon MDP model to identify an 

optimal policy. The major procedure of value iteration algorithm is to calculate the expected 

reward at each state by incorporating rewards from previous states in an iterative procedure until 

the expected rewards calculated on two successive steps are close enough (referring to step 3) or 

the difference between expected rewards calculated on two successive steps eventually 

converges (85, 94). The schematic description of value iteration algorithm is summarized as 

follows, and corresponding notations in the following procedures refer to Table 1. 

Set t=1, and  

𝑢1
∗(𝑋1) = 𝑚𝑎𝑥{𝑟𝑡(𝑋𝑡, 𝑌𝑡)} 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒, 𝑤ℎ𝑒𝑟𝑒  𝑌𝑡 𝜖 𝐴  

When t≥1 

𝑢𝑡+1
∗ (𝑗) = 𝑚𝑎𝑥 {𝑟𝑡+1(𝑗) + ∑ 𝜆

𝑋𝑡𝜖𝑆

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
∗(𝑋𝑡)} , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 
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Stop when the following inequality holds, 

max
𝑗∈𝑆

|𝑢𝑡+1
∗ (𝑗) − 𝑢𝑡

∗(𝑗)| < 𝜀, 𝑤ℎ𝑒𝑟𝑒 𝜀 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 2.3.3.3 Policy iteration algorithm 

Another common algorithm applied to an infinite-horizon MDP model is policy iteration 

algorithm. Compared to value iteration algorithm, policy iteration algorithm directly manipulates 

the policy rather than discerning it via difference calculations between two optimal value 

functions at each execution. For a finite-state with finite-action infinite-horizon MDP, policy 

iteration algorithm can be reasonably implemented since feasible policies should converge to an 

optimal policy in a finite number of steps. In policy iteration algorithm, the decision maker 

chooses an initial policy (set of actions) and calculates total expected discounted rewards at each 

state by executing the chosen policy. After total expected discounted rewards are calculated, the 

decision maker checks if improvement can occur by changing any action on states. Therefore, 

policy iteration is transmuted to a set of linear equations with the objective of minimizing 

difference between two total expected discounted rewards functions in the space of polices. 

Optimal policy is obtained when no improvement is observed. Schematic description of policy 

iteration algorithm is summarized as follows, and corresponding notations in the following 

procedures refer to Table 2.2. 

Set initial policy π, and  

𝑢𝑡+1
𝜋 (𝑗) = 𝑟𝑡+1(𝑗) + ∑ 𝜆

𝑋𝑡𝜖𝑆

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
𝜋(𝑋𝑡), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 

When t≥1 

𝑢𝑡+1
∗ (𝑗) = 𝑚𝑎𝑥 {𝑟𝑡+1(𝑗) + ∑ 𝜆

𝑌𝑡𝜖𝐴

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
∗(𝑋𝑡)} , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑎𝑡𝑒 
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Stop when the following inequality holds,  

max
𝑗∈𝑆

|𝑢𝑡+1
∗ (𝑗) − 𝑢𝑡+1

𝜋 (𝑗)| < 𝜀, 𝑤ℎ𝑒𝑟𝑒 𝜀 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 2.3.3.4 Modified policy iteration algorithm 

Modified Policy Iteration algorithm, a combination of value iteration algorithm and 

policy iteration algorithm, outperforms features of both those algorithms. The primary purpose of 

implementing modified policy iteration algorithm is to reduce complexity in computation when 

calculating utility function in value iteration algorithm and avoiding maximization over the set of 

decision rules in policy iteration algorithm. Convergence of modified policy iteration algorithm 

varies depending on different order sequences, and modified policy iteration converges at least 

linearly and bounded at a rate of convergence for any order sequence (84). Schematic description 

of modified policy iteration algorithm is summarized as follows, and corresponding notations in 

the following procedures refer to Table 2.2. 

Set t = 0, t is from 0 to N-1, where t represents the t th decision epoch. Specify 𝑢0
∗(𝑗), 𝜀, 

𝜆, and m. j belongs to state S0 at the initial decision epoch. 

Choose an action with respect to each state by  

𝑌𝑡+1(𝑋𝑡)𝜖 argmax
𝑌𝑡𝜖𝐴𝑡

{𝑟𝑡(𝑋𝑡, 𝑌𝑡) + ∑ 𝜆

𝑗𝜖𝑆𝑡+1

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
∗(𝑗)} 

Set k = 0, where k represents the number of iterations within step 3 

𝑉𝑡
0(𝑋𝑡) = max

𝑌𝑡𝜖𝐴𝑡

{𝑟𝑡(𝑋𝑡, 𝑌𝑡) + ∑ 𝜆

𝑗𝜖𝑆𝑡+1

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
∗(𝑗)} 

If 

‖𝑉𝑡
0(𝑋𝑡) − 𝑢𝑡

∗(𝑗)‖ < 𝜀(1 − 𝜆)/2𝜆 
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go to step 4. Otherwise go to (c). 

If k = m, go to (e). Otherwise, compute 𝑉𝑡
𝑘+1(𝑋𝑡) by 

𝑉𝑡
𝑘+1(𝑋𝑡) = 𝑟𝑡(𝑋𝑡, 𝑌𝑡) + ∑ 𝜆

𝑗𝜖𝑆𝑡+1

𝑃𝑡(𝑗|𝑋𝑡, 𝑌𝑡)𝑢𝑡
∗(𝑗) 

Increment k by 1 and return to (c). 

Set 𝑢𝑡+1
∗ (𝑗) = 𝑉𝑡

𝑚(𝑋𝑡), increment t by 1, and go to step 2. 

Set 𝑌𝜀(𝑋𝑡) = 𝑌𝑡+1(𝑋𝑡) and stop. 

 2.3.4 MDP applications on septic patients 

Contemporary health care research has employed MDPs to solve difficult clinical 

modeling issues. For example, MDPs have been proposed to optimize sequential treatments 

strategies to improve quality of care in clinics or reduce the mortality rate of severe diseases. In 

the absence of an analytic decision tool, physicians choose corresponding treatments to patients 

using heuristic strategies. By implementing MDPs, physicians become aware of “rewards” or 

“costs” associated with a single treatment at specific time epochs.  With a calculated transition 

matrix, decision makers (physicians) can predict the total “reward” regarding various treatment 

bundles, while making recommendation with respect to optimal sequence of treatment strategies. 

The following subsections review MDP application in various clinical settings and illustrate 

advantage of using MDP for clinical treatment decisions. 

Sepsis, currently defined as a systemic inflammatory response in the presence of an 

infectious agent or trauma, is increasingly considered an exaggerated, poorly regulated innate 

immune response to microbial products (1, 2). The progression to severe sepsis is marked by 

generalized hypotension, tissue hypoxia, and coagulation abnormality (1). Severe sepsis can 

further develop into septic shock under long-lasting severe hypotension, ultimately leading to 
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death. The complex nature of the inflammatory response and the unpredictable nature of septic 

shock in individual patients render the effect of targeting isolated components of inflammation 

with supportive therapy difficult to predict (32, 41). Rangel-Frausto et al. (8) conducted a 

prospective study of 2,527 patients with systemic inflammatory response syndrome (SIRS) in a 

9-month study period to predict reduction in organ dysfunction and mortality using anti-agent 

therapy. During the study period, Rangel-Frausto et al. categorized patients into five distinct 

states, including no SIR, SIRS, Sepsis, Severe Sepsis, and Septic Shock. Data was collected by 

experienced, specially trained nurses to calculate transition probability from one stage to another 

for a 1-, 3- and 7-day time interval. The authors computed transition rates from collected data 

and transformed the transition rates to transition probabilities by employing Beck and Pauker 

formulation (95). Based on calculated transition probabilities, Rangel-Frausto et al. developed a 

Markov matrix to describe the likelihood of change in a patient’s initial states to final states at 

various time intervals of interest. From Markov Modeling, the author determined that patients 

with highest mortality rate after one day of septic shock would have lower mortality rates if their 

length of hospital stay increases. Furthermore, the authors calculated the probability of 

progression from sepsis to severe sepsis to be an average of 72%, but with use of antisepsis 

agent, the authors’ Markov model predicted the probability of developing severe sepsis would 

decline to 36%. Rangel-Frausto et al. developed the first version of MDP application to sepsis 

treatment, but their application was oversimplified because it only accounted for a single abstract 

antisepsis agent. Previous research indicated the effectiveness of multiple treatment plans for 

sepsis, such as anti-TNF, BPI, activated protein-C (41, 46); therefore, a combination of 

treatments for sepsis could become a focus in intensive care units (ICUs) (32). Considering 

sepsis mortality rates differentiate among groups and races, Bäuerle et al. (96) developed a three-

http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%A4uerle%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10827322
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state Markov model to predict the risk profile of various groups of patients. Kreker (97) proposed 

a finite-horizon MDP and POMDP to explore the influence of testing decisions on hospital 

discharge decisions. In Kreker’s MDP approach, patients’ states were ranked by total Sepsis-

related Organ Failure Assessment (SOFA) scores (98) with an integer value ranging from 0 to 

24, and the total 25 SOFA score values were aggregated into four patient health states: 1: {0, 1}; 

2: {2, 3}; 3: {4, 5, 6, 7}; 4: {8-24}. The states changed after physicians chose to retain patients in 

hospital or discharge them. Using backward induction algorithm (84), the model was solved to 

show the existence of an optimal non-stationary policy entitled control-limit policy. Under 

control-limit policy, the author demonstrated fewer sick patients (health state 1 and 2) should be 

discharged from hospitals during the early phase of sepsis progression (1-3 days), only healthiest 

patients (health state 1) should be discharged from hospitals (4-6 days), and only the patients in 

state 4 {8-24} should remain in the hospital. Compared to the proposed MDP, patients’ true 

health states were no longer modeled as SOFA scores, but they were represented by the value of 

a measured single cytokine level in the proposed POMDP. The POMDP model defined two 

specific states associated with patients, or two vectors pertaining to complete and partial 

observable health state information. Based on current observable elements or any partially 

observable element obtained through testing procedures at the last decision epoch, a physician 

must decide at each decision epoch, if they should discharge the patient from the hospital, 

administer continued treatment to the patient without testing, or continue treating the patient 

using standard treatment plus additional cytokine test. After defining and formulating POMDP, 

the proposed POMDP is identified as a discrete POMDP on a finite-decision horizon after 

admission, in which a decision was made at the end of a day. The testing cost is converted to the 

units of patient life days using cost-effective analysis (99); therefore, the total expected reward 
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value is calculated as a function of the patient’s length of hospital stay. More specifically, the 

author defined a belief variable to demonstrate accuracy of the cytokine test. For example, the 

belief variable is 0.95 indicates that the probability of testing a high cytokine level in accordance 

with a high actual level of cytokine is 95%. Based on the optimal policy generated by POMDP, 

the physicians can optimize the patient’s total expected length of stay by choosing one of the 

actions (discharge, continue standard treatment, or order a cytokine test) at the end of a day. 

 2.3.5 MDP application on other types of disease 

In 2000, Magni (100) et al. proposed an MDP approach to determine optimal intervention 

time for mild hereditary spherocytosis (HS), a disease identified by a chronic destruction of red 

blood cells. Three treatments, including no surgery, cholecystectomy and splenectomy, were 

considered in relation to patients’ gallstone state and patients’ spleen state. The utility function 

was measured as the objective of maximizing the patient’s quality-adjusted life years, and 

transition probabilities between states were estimated from published tables and previous studies. 

The author concluded that, if employing the same therapeutic protocols with static approach, the 

patients had a higher quality adjusted life days in MDP approach. The author also suggested that 

a splenectomy should not be considered for 6-year old HS children who didn’t have gallstones 

but have spleen. Under this case, the splenectomy should be postponed until they are 15 unless 

gallstones are found before they are 15. Also in 2000, Hauskrecht et al. (89) proposed a POMDP 

to model and analyze the complex decision process for Ischemic Heart Disease (IHD) and 

discussed the advantage of POMDP over standard decision formalisms. IHD is caused by an 

imbalance between the supply and demand of oxygen to the heart, and progression of this disease 

is uncertain due to multiple factors. Patients who have IHD are defined as two states: live or 

dead. The states of patients are hierarchically structured, providing a detailed patient description 
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when the patient is known to be alive. For example, an IHD patient could be described as an 

alive patient with moderate coronary artery disease, severe chest pain, or positive rest EKG 

result. Moreover, patients’ underlying states such as status of the coronary artery disease cannot 

be observed directly. Hauskrecht et al. implemented investigative actions to obtain additional 

information about patients’ underlying states and used as medical evidence for choosing 

appropriate treatment action. The hierarchical structure of a patient’s state decomposes the 

probability distribution at various levels, thereby reducing computational complexity of the 

model. The probability of patients evolving from one state to another is calculated or 

summarized from previously published data or from the suggestion of domain experts and the 

chance of being at an underlying stats is calculated based on previous states and associated 

actions. The objective of POMDP is to develop a therapy plan that would minimize expected 

cumulative treatment cost. The authors integrated the costs associated with surgeries, costs 

associated with patient pain, and the costs associated with patients’ states into a discounted, 

infinite-horizon utility function. Hauskrecht et al. employed revised heuristic procedures to solve 

their model and their recommendations, to a large extent, meet the expectation of the 

cardiologists even though areas for model improvement are needed. Overall, Hauskrecht et al. 

claimed that POMDP is an efficient framework to generate good medical strategies. Recently, 

Shechter (81) et al. developed the first human immunodeficiency virus (HIV) MDP model to 

address the question of optimal time to initiate HIV therapy, with a goal of maximizing the 

expected lifespan of HIV patients. The author criticized other theoretical or computational 

studies for possibly generating incorrect outcomes, ignoring the possibility of patient death, and 

underestimating stochastic progression of patient health. The proposed MDP model had a four-

state space, indicating by four distinct categories of CD4 count of HIV patients. Using a least-
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squares linear model and cubic smoothing spline, the author predicated HIV patients’ CD4 count 

based on natural history data and recorded monthly CD4 counts. Each month the number of 

transitions from each CD4 category to the other categories was counted across all HIV patients, 

and the transition probability matrix of movement between CD4 categories and absorbing state 

of death was constructed. Using constructed transition probability matrix, the proposed MDP 

was simulated for the purpose of maximizing expected remaining lifetime. Their conclusion 

showed that maximum expected lifetime was obtained when the treatment was initiated earlier. 

 2.3.6 Future research of MDP in healthcare 

Length of hospital stay is an essential indicator to measure quality of care in healthcare, 

typically measured in the number of days that patients stay in hospitals. Thus, physicians 

carefully monitor length of hospital stay for septic patients because the longer septic patients stay 

in the hospital, the higher the probability of ending with severe status and associated hospital 

costs (32). MDP is objectively designed to help physicians identify proper treatment 

interventions, thereby minimizing the length of hospital stays. Normally, various treatments 

could render different clinical outcomes of patients. MDP can also be used to compare the 

effectiveness of various treatments, using measures such as mortality rate in relation to usage of 

corresponding anti-therapies. Furthermore, intervention time of treatments can be easily 

monitored and re-planned by implementing MDP frameworks.  Rather than treating patients at 

each decision epoch, MDP allows decision makers to reconsider sophisticated strategies based 

on stochastic measurements and achieve optimal goals. Inspired by previous research presented 

in this review, we have demonstrated that MDP is an appropriate and effective decision-aid tool 

to model and solve medical decision problems under various expectations. 
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Numerous versions of MDP implementation have been proposed since the early 1950s, 

but MDP framework is recognized as an essential sequential decision making tool for medical 

research since the last ten years, and MDP’s advantages have been demonstrated in previous 

applications. However, a few fertile research questions in MDP are still under considerations. 

Details contained in the states of MDP are critical because they provide distinct information 

about patients’ states.  Currently MDP models utilize a trade-off between the model accuracy 

and the states detailed description considering computational complexity. 

In general, the objective of MDP, formulated as a discounted utility function, has various 

forms due to biased rewards. Rewards are calibrated through various types of objectives such as 

effectiveness of treatments, costs of treatments, etc., while these estimators are subjective rather 

than objective scientific data. For example, the reward of receiving one treatment is categorized 

from level 0 to level 10, but the actual effectiveness of receiving that treatment is difficult to 

determine based on patient variations, clinical environments, and other factors. To remedy 

uncertain reward values within treatments, approach such as reinforcement learning algorithm 

has been proposed to track changes in rewards and achieves optimal solutions (101). However, 

the value of reward, typically suggested by experts in clinical domains, is difficult to obtain from 

solid scientific data resource. 

Another difficulty is constructing an accurate transition probability matrix mostly due to 

lack of sufficient clinical data, and high cost of medical survey or medical experiments. In 

practice, transition probability that governs the likelihood of moving from one state to another 

must be estimated at various decision epochs for different individuals, resulting in a need for 

large scale medical observations and associated costs. As the number of states or feasible 

treatments increases, derivation of a transition probability distribution becomes more difficult 
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because the transition probability distribution is intractable from clinical experiments or clinical 

observations. Since an accurate transition probability matrix is crucial for generating an optimal 

treatment strategy for individual patients in MDP, the method of constructing an appropriate 

transition probability matrix has become an expanding research area for future research.  

Insights into MDP framework limitations cause us to claim that other modeling 

approaches, such as mathematical modeling and computational simulation could aid in the 

construction of future MDPs. By implementing computational simulation such as agent-based 

modeling (102), practical clinical data or simulated clinical data could be retrieved and integrated 

into MDPs as inputs. Compared to other modeling techniques, agent-based model can map 

inherent intercellular interactions in disease progression to a simulation environment. This 

characteristic of agent-based modeling allows decision makers to retrieve a transition probability 

matrix in a stochastic way, potentially impacting the application of personalized treatments in 

future therapeutic development. In addition, an agent-based model is capable of establishing a 

computational experiment and testing underlying states of patients prior to clinics, consequently 

leading clinical research to data-concerned, pre-clinical simulation, saving costs associated with 

conducting clinical trials. Agent-based modeling and other types of modeling approaches could 

aid decision makers in acquiring valuable clinical information prior to clinical trials, and measure 

transition probability between patients’ states. Most importantly, decision makers can construct 

their own transition probability matrix via computational simulation tools; and these transition 

probability matrixes could be updated as new clinical conditions required. With an aid of agent-

based modeling, MDPs could describe heterogeneity of disease behaviors in individual patients; 

thereby greatly improve quality of care in future healthcare system. 
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Chapter 3 - Mathematical modeling of innate immunity responses of 

sepsis: modeling and computational studies 

Chapter 3 is based on the book chapter “Mathematical Modeling of Innate Immunity Responses 

of Sepsis: Modeling and Computational Studies” to be published in Healthcare Analytics: From 

Data to Knowledge to Healthcare Improvement (2016), ISBN-13: 978-1118919392, ISBN-10: 

1118919394. 

 Abstract 

In general, sepsis is recognized as the “blood poisoning disease” because sepsis occurs 

when harmful chemical substances enter the blood. In clinics, sepsis is formally defined as a 

potentially life-threatening complication of diseases accompanied by symptoms such as high 

fevers, hot, flushed skin, elevated heart rate, altered mental status and so on. If sepsis progresses 

to severe sepsis or septic shock, organ dysfunction occurs, which leads to a high chance of death. 

Patients who suffer from sepsis or septic shock are of great concern in the healthcare 

system. Recent data indicate that more than 900,000 severe sepsis or septic shock cases 

developed in the United States with mortality rates between 20% and 80%. In the United States 

alone, almost $17 billion is spent each year for the treatment of patients with sepsis. Therefore, it 

is necessary to find an accurate and effective tool that can help physicians predict the progression 

of disease in a patient-specific way to prevent possible severe sepsis or septic shock to lower risk 

for patients. 

This chpater presents a fourteen-equation system dynamics mathematical model 

(SDMM), which model and simulate the basic components of the innate immune response during 

Acute Inflammatory Response (AIR), the initial stage of sepsis. Our goal is to formally model 
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and provide insights into the dynamic effects of biomarkers in AIR, especially focus on 

interactions between pro-inflammatory and anti-inflammatory cytokines during the development 

of disease. Our simulated results described dynamic patterns of AIR based on patients’ initial 

immune conditions and reveal the important but underexplored dynamic behaviors of anti-

inflammatory cytokines on sepsis progression. After the initial model calibration and validation, 

sensitivity analysis and stability analysis was carried out using bifurcation analysis to explore the 

system stability during episodes of sepsis progression under various initial and boundary 

conditions. 

We present a new SDMM in this chapter. The strength of this model is that it 

incorporates the interactions and interplays between pro-and anti-inflammatory cytokines and the 

possible pathogenesis of AIR based on the host’s physiological conditions. 

Keywords: Acute Inflammatory Response, Pro-Inflammatory Cytokines, Anti-Inflammatory 

Cytokines, System Dynamics Mathematical Model 

 3.1 Background 

Sepsis, currently defined as a systemic inflammatory response in the presence of an 

infectious agent or trauma, is increasingly being considered an exaggerated, poorly regulated 

innate immune response to microbial products (1, 2). The progression to severe sepsis is marked 

by the generalized hypotension, tissue hypoxia, and coagulation abnormality (1). Severe sepsis 

can further develop into septic shock under the long-lasting severe hypotension (1) and 

ultimately lead to the death. 

Severe sepsis and septic shock during an infection are the major causes of death in an 

intensive care setting (3). There is an average of 250,000 deaths per year in the United States 

caused by sepsis (4). Among patients in intensive care units (ICUs), it ranks as the second 
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highest cause of mortality (5) and the 10th leading cause of death overall in the US (6). Average 

of 750,000 sepsis cases happen annually and increasing (6). In addition, the quality of life for 

sepsis survivors is significantly reduced (6, 7). Care of patients with sepsis costs can be as much 

as $60,000 per patient. This cost results in a significant healthcare burden of nearly $17 billion 

annually in the USA alone (8). The development of sepsis in a hospitalized patient can lead to a 

longer length of stay in the hospital which implies stiffer financial burden. Cross et al. in their 

research (32) pointed out “the availability of rapid and reliable assays that could be used to 

quickly identify the stage or severity of sepsis and to monitor therapy may optimize the use of 

immunomodulatory therapy”. However, no such assays are available because the complex nature 

of the inflammatory response and the unpredictable nature of septic shock in individual patients 

render the effect of targeting isolated components of inflammation with supportive therapy 

difficult to predict (32, 41). 

The human immune response evolves to protect the body from infection by harmful 

pathogens found in the environment (9). This response is characterized by the activation and 

mobilization of white blood cells, the release of cytokines, and the modification of the vascular 

and lymphoid tissue (10, 11). Unfortunately, the activation of the immune system can become 

dysregulated and the immune responses or Acute Inflammatory Responses (AIR) can become 

pathogenic. Indeed, an uncontrolled AIR may lead to possible sepsis or septic shock. Whether a 

patient will progress to sepsis, severe sepsis, or even septic shock is determined by a cascade of 

immune system components. These include, pro-inflammatory cytokines such as tumor necrosis 

factor-α (TNF-α), interferon gamma (IFN-γ), interleukins (IL)-1, IL-6, IL-8, and high motility 

group box-1 (HMGB-1) (32, 103). These cytokines are released to recruit more activated 

phagocytes to the location of infection to help eliminate the causal pathogen(s). Unfortunately, 
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this process likely causes tissue damage (104). In addition, anti-inflammatory cytokines such as 

IL-1ra, IL-4, IL-10, IL-6, and Transforming Growth Factor-β (TGF-β) are also released to serve 

as negative regulators of the response (12, 104). 

Recent data indicate that the interactions between the anti-inflammatory responses and 

the pro-inflammatory responses, determine the prognosis of AIR (13, 104). More specifically, 

the presence of HMGB-1, which reaches its peak concentrations around eight to twelve hours 

after it is induced by TNF-α, may be a key component in the progression of AIR. If the level of 

HMGB-1 remains elevated for long periods of time, the patient may at risk for more severe AIR 

or developing sepsis (22-24). Also, clinical experiments have demonstrated that monoclonal 

antibody therapy against HMGB-1 elevation can prevent septic patients from organ damage and 

subsequent organ dysfunction in both animals and humans trials (36-40). Anti-inflammatory 

cytokines, such as IL-4, IL-10, IL-13, and IL-14 also play crucial roles in inhibiting the 

production of pro-inflammatory cytokines and in turn slowing down the progression of AIR (25, 

26). For example, circulating levels of IL-6 can be used to predict the severity of acute 

respiratory distress syndrome, sepsis, and the associated acute pancreatitis (105). Clearly, the 

levels of pro- and anti-inflammatory mediators are closely linked to the development of severe 

sepsis and septic shock. 

As mentioned above, the levels of cytokines and their presence over time play very 

important roles in AIR and the development of sepsis; however, there is little data on the 

quantitative relationships of the cytokine network, which can be used to predict the progression 

of disease. Kumar et al. (54) presented a simplified three-equation SDMM to describe 

mathematical relationships between pathogen, early pro-inflammatory mediators, and late pro-

inflammatory mediators, respectively. However, the model is overly simplified and fails to 
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represent the overall prognosis of AIR. It lacks several key components including phagocytes, 

anti-inflammatory cytokines, and the resultant tissue damage. Later, Reynolds et al. (53) 

proposed a mathematical model for AIR that included a time-dependent, anti-inflammatory 

response in attempt to provide insights into a variety of clinically relevant scenarios associated 

with the inflammatory response to infection. However, this model missed essential mathematical 

expression of early and late pro-inflammatory mediators (TNF-α) and (HMGB-1) that are 

important biomarkers used in the progression of sepsis during treatments. 

The collective disadvantage of current existing mathematical models is that they are 

incomplete. They only represent some of the essential factors in AIR. Therefore, to improve on 

current models, we have developed a fourteen-equation SDMM in an attempt to incorporate the 

most critical variables involved in the development of the septic response and the innate immune 

system during the AIR. In particular, we have included equations to represent pathogen load, 

phagocyte (including neutrophils and monocytes) activation, early and late pro-inflammatory 

cytokine mediators, tissue damage, and anti-inflammatory cytokine mediators. 

 3.2 System dynamic mathematical model (SDMM) 

A mathematical model currently being developed as a dynamic knowledge representation 

may be a powerful tool to help understand the complex local and global dynamics of AIR and 

the development of sepsis. Using a series of known and hypothesized kinetics of biochemical 

and immunological components from the existing literature, this approach provides a 

comprehensive attempt to model the progression of sepsis. This method combines conventional 

Logistics dynamics, the laws of Mass-action, Michaelis-Menton kinetics, and their nonlinear 

transformations into ordinary differential equations. We propose this modeling technique to 
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describe AIR and the Systemic Inflammatory Response (SIR) processes by measuring either the 

steady state or changes of the various components during simulated inflammatory responses. 

The first step in our analysis was to create a mathematical model to reflect the global 

dynamics of sepsis. The variables were selected based on what is known about the molecular and 

physiological mediators that are important to the development of sepsis. We initially validated 

the mathematical model by comparing the model outcomes to data from actual experiments. If 

the results didn’t match, equations were rewritten or the model was reconfigured to adjust 

relationships between the components (indicators). After the initial validation, we conducted 

sensitivity and stability analyses (based on bifurcation theory). The goal was to identify which 

parameters and processes were critical in influencing modeled outcomes. We believe that 

construction of the mathematical model for exhibiting various outcomes and facilitating the 

understanding of complex interactions between various components in AIR and SIR response, 

will be one of the most difficult and fundamental steps of using the mathematical model in the 

future as a platform to generate experimental-dependent results by incorporating a large amount 

of experimental data.  In order to help on reading, we have summarized a framework of the 

mathematical model in Figure 3.1. 

 3.2.1 Pathogen strain selection 

We chose Salmonella as a “targeted” pathogen strain in our mathematical model and 

simulated immune responses to Salmonella in the liver of mice. We chose Salmonella because it 

is Gram-negative bacteria and Salmonella sepsis widely impacts developing countries, 

commonly occurred in young children (106). Furthermore, immune responses to Salmonella 

sepsis have been investigated in mice’s experiments for past several years (107-112) and hence it 

is effective for us to get either data or evidence support for our mathematical model. 
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Figure 3.1 Framework of the system dynamic mathematical model 

 

 
 

 3.2.2 Kupffer Cell local response model 

Macrophages are one of first lines of the innate host defense system against bacterial 

pathogens. They are important because they are not only antimicrobicidal cells but also they play 

a role in the initiation of the adaptive immune response (113). Therefore, macrophages often 

determine the outcomes of an infection (113). In septic responses, the liver frequently plays a 

major role in host defense (114). Furthermore, hepatic macrophages (also known as Kupffer cells 

or resident liver macrophages) constitute 80%-90% of tissue resident macrophages in the body 

and significantly influence the propagation of liver inflammation (115, 116). Majority of bacteria 

that enter the blood stream are taken up and eliminated by Kupffer cells within the liver (117). 
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During the initial stage of an acute inflammatory response, Kupffer cells will eliminate the 

pathogens, specifically Salmonella, during the local immune responses. 

The Kupffer cell-related local immune response was defined as the interactions between 

the pathogen and Kupffer cells (115) and was modeled as follows: 
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In Eq. (3.1), P denotes the pathogen load. kpg represents a constant growth rate for 

pathogens and P∞ represents maximum carrying capacity of the pathogen. The parameter 𝑟𝑝𝑚𝑘 

represents phagocytosis rate of Kupffer cells when Kupffer cells start to engulf pathogens. 

Although phagocytosis rate is dependent on time in a slow-S-shape curve (118), the phagocytosis 

rate changes only slightly per hour if we assume the phagocytosis rate versus time is linear, and 

therefore we relaxed this condition in our model and assumed it was constant (118). Eq. (3.2) 

represents the changes of the Kupffer cells over a unit time period, and Mkf denotes the amount 

of Kupffer cells resided in liver available for pathogen binding. The parameter term, kmk, 

represents a constant proliferation (replenishment) rate for Kupffer cell population and K∞ 

represents maximum carrying capacity of Kupffer cells. The parameter term, kmkub, represents the 

unbinding rate of binding Kupffer cells and 𝑢𝑚𝑘 represents the killing rate of free Kupffer cells 

induced by binding to intruding pathogens. 

Here, a standard logistic function is used to model the pathogen population growth with 

limited maximal carrying capacity, which is the first term (𝑘𝑝𝑔𝑃 (1 −
𝑃

𝑃∞
)) in Eq. (3.1) (119). 

The second term of Eq. (3.1) models the local Kupffer cell responses, the decrease in pathogen 
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population phagocytized by initial tissue resident macrophages (Kupffer cells). This process 

includes two steps: pathogen-ligand binding to the receptors of Kupffer cells and the actual 

phagocytosis by Kupffer cells. We used a Hill-type function and receptor-ligand kinetics to 

model the two basic steps (109, 113, 115, 120-122). First, we define the rate of pathogen binding 

to Kupffer cells as a Hill-type function (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

). Here, n represents a strong affinity of pathogen 

binding to Kupffer cells and kc1 is the pathogen concentration occupying half of Kupffer cell 

receptors.  Second, we modeled pathogen to Kupffer cell receptors using receptor-ligand kinetics 

(
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗ ), where P* represents pathogen concentration. We determined the pathogen 

concentration using the number of pathogens divided by the maximum carrying capacity of 

pathogen (108 cells in mouse (112)). The final variable to determine the pathogen is the 

phagocytosis rate of pathogens by Kupffer cells (represented by rpmk) times the portion of 

pathogens binding to Kupffer cells (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗). 

We assumed that Kupffer cells population growth followed a standard logistic growth 

pattern with a constant proliferation (replenishment) rate denoted as kmk, and a maximal carrying 

limit, K, represented by the first term (𝑘𝑚𝑘𝑀𝑘𝑓 (1 −
𝑀𝑘𝑓

𝑀∞
)) in Eq. (3.2). Since the binding of a 

pathogen did not preclude the phagocytosis of additional bacterial after the completion of 

phagocytosis, we used receptor-ligand kinetics to model the release of Kupffer cells from the 

binding-complex, which is represented by the second term (𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏) in Eq. (3.2) and 𝑘𝑚𝑘𝑢𝑏 

represents the rate of the motile enterobacteria (i.e., Salmonella) are phagocytosed by the free 

Kupffer cells and made available for additional interactions with motile enterobacteria. The 

decreasing number of free Kupffer cells is due to two things: the free Kupffer cells binding to 

pathogen, which is described by the third term (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗), also the natural decay of free 

http://en.wikipedia.org/wiki/Motility
http://en.wikipedia.org/wiki/Enterobacteriaceae
http://en.wikipedia.org/wiki/Motility
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Kupffer cells represented by the fourth term  (𝑢𝑚𝑘𝑀𝑘𝑓) in Eq. (3.2). The free Kupffer cells 

become binding Kupffer cells once they bind to pathogen, which is described by the first 

term  (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗)  in Eq. (3.3). The second term  (𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏)  in Eq. (3.3) measures 

decreasing (releasing) portion of binding Kupffer cells.  The definition of parameters and 

corresponding experimental data for each system parameter in Kupffer local response model are 

summarized in Table A.1. 

Experimental results show that 50% Salmonella are phagocytosed by Kupffer cells in 

liver, and we used this fact to determine the number of Kupffer cells that phagocytoses half of 

Salmonella equal to the number of Kupffer cells in the liver (110). Experimental data also show 

that Salmonella ingestion can kill macrophages, and such macrophages will no longer return to 

the active state for pathogen binding if they are killed (111). Our assumption was that the 

“dissociation” rate of Kupffer cells is equivalent to 1-infected rate of Kupffer cells. This is based 

on data showing Kupffer cell activity could range from 0.1 to 0.77 from known infection rates 

(111). Other parameters are either directly derived from published observations in literature or 

will be estimated from our model. Our sensitivity analysis revealed that this system is highly 

sensitive to the proliferation (replenishment) rate of Kupffer cells (kmk). 

The data are represented by plotting the number of motile enterobacteria and Kupffer 

cells (arbitrary units) versus time (hours) based on the variation in the proliferation rate 

(including the growth rate of Kupffer cells, as well as the recruitment rate of monocytes from the 

blood vessels) of Kupffer cells (kmk) in Figure 3.2 (a) and (b). 

Figure 3.2 indicates that Kupffer cells alone are not able to resolve an infection when the 

“proliferation rate” of Kupffer cells is less than 0.5/h. In this simulation, all Kupffer cells are 

phagocytosing pathogens and there are no Kupffer cells available to phagocytose additional 
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motile enterobacteria, and hence phagocytosis fails to continue. However, the pathogen could be 

cleared completely if Kupffer proliferation rate is set relatively high. In our model, we assume 

the proliferation rate of Kupffer cells in liver comprises two parts: the natural growth rate of 

Kupffer cells and the recruiting rate of monocytes from the nearby blood vessels. The results of 

the experimental studies show that the local growth rate of Kupffer cells is low and stable with 

0.015/h (123, 124). Therefore, we conclude that the increase in proliferation rate of Kupffer cells 

is due to the increasing recruitment rate of monocytes from blood vessels, with those recruited 

monocytes contributing to the clearance of local infection. Based on our simulation results, we 

could further inference that Kupffer cells are not a major responder to resolve an overwhelming 

acute inflammatory response episode, which allows us to model the effects of other immune cells 

during AIR such as neutrophils and monocytes. 

Figure 3.2 (a) Concentration of pathogen load versus time, for three different 

proliferation rates of Kupffer cells in Kupffer local response model. (b) Concentration of 

Kupffer cells versus time, for three different proliferation rates of Kupffer cells in the 

Kupffer local response model. The horizontal axes represent the time in hours, and the 

vertical axes represent concentration in arbitrary units 
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 3.2.3 Neutrophils immune response model 

The results in the Kupffer immune response model show that Kupffer cells may not be 

sufficient to eliminate the infection, especially when the local infection is overwhelming. The 

Kupffer cells in local immune response release pro-inflammatory cytokines such as TNF-α, 

which contribute to the recruitment of neutrophils in the circulation and accumulation of 

neutrophils in the liver (transmigration) (125-127). The transmigration can be mediated by a 

chemokine gradient (e.g., TNF-α, IL-1, CXC chemokines, and PAF) established towards the 

hepatic parenchyma which generally involves the adhesion molecules on neutrophils (β2 

integrins) and on endothelial cells (intracellular adhesion molecules, ICAM-1). After 

transmigration, neutrophils adhere to distressed hepatocytes through their β2 integrins and 

ICAM-1 expressed on hepatocytes. Neutrophils contact with hepatocytes mediate oxidative 

killing of hepatocytes by initiation of respiratory burst and neutrophil degranulation leading to 

hepatocellular oncotic necrosis.  Neutrophils, as a double-effect mediator, will either 

phagocytose pathogens or induce tissue damages by killing distressed hepatocytes (127). 

Furthermore, activated neutrophils (priming) will release TNF-α and therefore recruit even more 

neutrophils to the site of infection (128). The release of cytokines follows trafficking machinery 

and the cytokines are released via protein-protein interactions initiated by the ligand binding to 

the receptors (129, 130). The mechanism of cytokine release is depicted in Figure 3.3. 

During the process of cytokine release, R-SNARE protein complex on the membrane of 

the secretory organelle will interact with Q-SNARE protein complex on the membranes of 

different types of immune cells, which allows membrane fusion and extrusion of cytokines from 

the granule interior (129). We model a protein-protein interaction as Michaelis-Menten kinetics 

(131) and derive our neutrophil immune response model as follows: 
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Figure 3.3 Mechanism of cytokine release 
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Eq. (3.4) is further derived from Eq. (3.1) in the Kupffer local immune response by 

incorporating the phagocytotic effects of neutrophils, which is represented by term 

𝑟𝑝𝑛
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]

(𝑁𝑓+𝑁𝑏)𝑃
∗. Details about parameters are defined in Table A. 2. Eq. (3.5) and Eq. 

(3.6) are cited from Eq. (3.2) and Eq. (3.3).  

Eq. (3.7) represents the changes of the pro-inflammatory cytokines (denoted by T) such as 

TNF-, released by both binding tissue resident Kupffer cells (Mkb) and binding activated 

Neutrophils (Nb) along with a constant degradation rate (ut).  Since TNF-α was released after 

pathogens binding to the receptors of tissue resident macrophages or neutrophils, we model the 

process of TNF-α release as a combination of Michaelis–Menten kinetics and receptor-ligand 

kinetics (10). In Eq. (3.7), the release of TNF-α from Kupffer cells is initiated by a receptor-

ligand kinetics and secondly following enzymatic kinetics (Michaelis-Menten) represented by 

the term (
𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏  

𝑚𝑡1+𝑀𝑘𝑏
) where rt1max represents the maximal production rate of TNF-α by binding 

Kupffer cells.  It is well known that the release of TNF-α is a combined effect of both receptor-

ligand kinetics and enzymatic kinetics, and therefore, we incorporate both terms 

together(
𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏 

𝑚𝑡1+𝑀𝑘𝑏
)𝑀𝑘𝑏  in the model to represent the combined effects of the TNF- releasing 

processes. Similarly, we use the same principle to model the release of TNF-α contributed by 

activated neutrophils in the second term in Eq. (3.7). The third term in Eq. (3.7), 𝑢𝑡𝑇, measures 

the degradation of TNF-α, with ut representing the degradation rate of TNF-α.   

In Eq. (3.8), the first term 𝑘𝑟𝑑𝑁𝑅(1 −
𝑁𝑅

𝑁𝑆
) is a standard logistic function to measure the 

increase in number of resting neutrophils per time unit (hour), which is represented by the influx 

of neutrophils into blood vessel per hour. The second term 𝑟1𝑁𝑅(𝑇 + 𝑃)∗  describes that the 

decrease in number of resting neutrophils per time unit is due to neutrophils activation process 
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promoted by pro-inflammatory mediator TNF-α where 𝑇∗ denotes the concentration of TNF-α, 

and 𝑃∗  denotes the concentration of pathogens (126-128). The third term in Eq. (3.8) 𝜇𝑛𝑟𝑁𝑅 

represents the natural decay of resting neutrophils and unr is defined as the apoptotic rate of 

resting neutrophils per time unit in hours.  In Eq. (3.9), the first term exactly equals to the second 

term in Eq. (3.8) since the increase population of activated neutrophils results directly from the 

population of resting neutrophils being activated. The second term of Eq. (3.9), used mass action 

kinetics (𝑘𝑛𝑢𝑏𝑁𝑏) to model the release of activated phagocytes from the binding-complex and 

make activated phagocytes available for additional interaction with pathogens, where 𝑁𝑏 

represents the binding-complex and 𝑘𝑛𝑢𝑏 represents the rate of activated phagocytes releasing 

from the binding-complex. The third term of Eq. (3.9), similar to the third term in Eq. (3.8) 

modeling the natural apoptosis of activated neutrophils.  

Eq. (3.10) is similar to the derivation of Eq. (3.3) in Kupffer local response model. We used 

a hyperbolic tangent function in Eq. (3.11) to represent a slow-saturation influx rate of 

neutrophils into hepatic parenchyma and therefore represent the rate of resting neutrophils being 

activated. The definition and corresponding experimental data for newly added system 

parameters in neutrophils immune response model are summarized in Table A. 2. 

By substituting the above experimental data into our neutrophil immune response model, we 

plot the pathogen loads, TNF-a, resting neutrophils, activated neutrophils versus time (hours) 

using mathematica, and the computed results are shown in Figure 3.4 (a), (b), (c), and (d). 

Figure 3.4 (a) Concentration of pathogen versus time in neutrophil immune response 

model at the first 120 hours of simulation. (b) Concentration of TNF-α versus time in 

neutrophil immune response model at the first 120 hours of simulation. (c) Concentration 

of resting neutrophils versus time in neutrophil immune response model at the first 120 

hours of simulation. (d) Concentration of activated neutrophils versus time in neutrophil 

immune response model at the first 120 hours of simulation. (e) Concentration of pathogen 

versus time in neutrophil immune response model at the first 240 hours of simulation. (f) 

Concentration of TNF-α versus time in neutrophil immune response model at the first 240 
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hours of simulation. (g) Concentration of resting neutrophils versus time in neutrophil 

immune response model at the first 240 hours of simulation. (h) Concentration of activated 

neutrophils versus time in neutrophil immune response model at the first 240 hours of 

simulation. X axes represent time (hours), and Y axes represent concentration in arbitrary 

unit 
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Compared to the result in Figure 3.2 (a), the result in Figure 3.4 (a) shows that pathogen 

load peaks out and decreases significantly in a short time period (around 10 hours from our 

neutrophil immune response model) if the effects of neutrophils are incorporated. Regardless of 

the overall effects of immune cells in the liver, experimental studies have shown that mice at 6 

hours after infection exhibit a large decrease (0.6log10) in bacteria correlating with the influx of 

neutrophils (117). The bulk of clearance of bacteria or pathogen is largely due to influx of 

neutrophils and their programmed mechanism to ingest bacteria and other harmful 

microorganisms (132). Being one of the major immune cells arrived early at the site of infection; 

neutrophils play an essential role in the initial stage of AIR and further influence the downstream 

progression of AIR. Also, previously activated neutrophils release pro-inflammatory cytokines 

such as TNF-α, and newly released TNF-α helps to recruit more neutrophils from blood vessels 

to the site of infection. Our neutrophil immune response model recapitulates the patterns of TNF-

α reported in literature that TNF-α concentration in the liver increases to a peak at 6 hour after 

infection and trends down toward baseline by 24 hour (Figure 3.4 (b)) (133). The peak level of 

activated neutrophils occurs around 10 hours after infection, later than occurrence of TNF-α’s 

peak level, and trends down toward the baseline in 3 days (72 hours) after infection from our 

simulation results (Figure 3.4 (d)). Furthermore, we observed infection is “oscillated” during first 

500 hours of simulation in Figure 3.4 (e), (f), (g) and (h), which matches to biological 

experimental data in literature (132). The relationships among pathogen, TNF-α, and activated 

neutrophils, shown in Figure 3.5, are interconnected with each other, based on our model. 

Figure 3.5 provides a simple logistic chart to illustrate the interactions between each 

component in our neutrophil immune response model. An increase in pathogen (denoted as P in 

Figure 3.5) will induce the production of TNF-α and further help to recruit more activated 
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neutrophils (denoted as N in Figure 3.5), which contribute to the decrease in pathogen load. We 

conclude that the clearance of pathogen is more dependent on the effects of infiltrating 

neutrophils in liver than on the Kupffer Cells in liver after comparing the results from both 

models. 

Figure 3.5 Interactions between pathogen, activated neutrophils, and TNF-α 

 

 

 3.2.4 Damaged tissue model 

The complexity in AIR is due to the multiple effects induced by inflammatory cells. We 

show that the recruitment of neutrophils helps to clear local pathogen level; however, those 

inflammatory cells are harmful at the same time because they release toxic molecules such as 

reactive oxygen species (ROS), which could cause damage to the host tissue (127, 128). Recent 

experimental results show neutrophils' 2 integrins adhere to the ICAM-1 receptors of 

hepatocytes and accelerate the killing process of distressed hepatocytes (134). We assume the 

binding process of neutrophils to hepatocytes also follows ligand-receptor kinetics and derive the 

following damaged tissue model. 
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In Eq. (3.12), D denotes the number of apoptotic hepatocytes or dead hepatocytes) and 

𝑟ℎ𝑛 represents the rate of apoptotic hepatocytes killed by activated neutrophils and 𝑟𝑎ℎ represents 

the recovery rate of apoptotic hepatocytes. The ligand-receptor kinetics 
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

𝑁𝑓𝐷
∗ is used to 

represent the amount of apoptotic hepatocytes that bind to activated neutrophils, with the binding 

rate being modeled as a Hill-type function 
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

. The activated neutrophils have recently been 

found to kill the apoptotic hepatocytes (134). After neutrophil adhered to apoptotic hepatocytes, 

the neutrophils release reactive oxygen species and proteases, which accelerate the death of 

apoptotic hepatocytes (134, 135). Multiplying 
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

𝑁𝑓𝐷
∗ by rhn, the entire first term in Eq. 

(3.12) represents the number of apoptotic hepatocytes killed by activated neutrophils per hour, 

which is the total number of dead hepatocytes per hour. The maximal number of apoptotic or 

dead hepatocytes will not exceed the total number of hepatocytes in liver (represents by A∞). In 

addition, we use rah to represent the recovery rate of apoptotic hepatocytes and the second term 

in Eq. (3.12) is defined as the amount of recovering apoptotic hepatocytes. The definition of 

parameters and corresponding experimental data in damaged tissue model are summarized in 

Table A.3, and Figure 3.6 shows the concentration of dead hepatocytes versus time (hours). 

Our simulation result shows that the population of dead hepatocytes significantly 

increases by 12 hours. The dead hepatocytes are defined as accumulated apoptotic hepatocytes 

over time.  In the Gal/ET shock model (135), neutrophils extravasate in response to 15–20% of 

hepatocytes undergoing apoptosis at 6 hour and the neutrophil attack expands the tissue damage 

to 40–50% of hepatocytes by 7 hour. Our simulation results correspond to the evidence that 

about 15% of hepatocytes are undergoing apoptosis at 9 hours and the tissue damage is 

expanding to around 40% of hepatocytes by 10 hours with the attack of neutrophils. 
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Figure 3.6 (a) Concentration of dead hepatocytes versus time in damaged tissue 

model at the first 100 hours of simulation. (b) Concentration of dead hepatocytes versus 

time in damaged tissue model at the first 240 hours of simulation. X axes represent time (in 

hour) and Y axes represent concentration in arbitrary unit 

 

 3.2.5 Monocytes immune response model 

Recent biological experiments from the literatures (136, 137) have shown that monocyte, 

recruited by the presence of HMGB-1, plays an essential role in the liver inflammation and liver 

fibrosis. Upon liver injury, the inflammatory Ly6cC (Gr1C) monocyte subset as precursors of 

tissue macrophages in blood vessel near the infected site will be attracted and recruited to the 

injured liver via CCR2-dependent bone marrow egress. The chemokine receptor CCR2 and its 

ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury and further promote 

the progression of liver fibrosis (115, 138). Since evidence showed that tumor necrosis factor 

(TNF-α) induced a marked increase in CCL2/MCP-1 production in dose- and time-dependent 

manners (139), we assume the influx of monocytes from the blood vessel to liver is induced by 

effects of both HMGB-1 and TNF-α and model the influx of monocytes similar to the kinetics of 

neutrophils influx. According to existing literature, HMGB-1 is released by necrotic cells and 

activated monocytes in response to TNF-α simulation (24, 139, 140). Hence, we model the 

release of HMGB-1 using receptor-ligand kinetics as well as enzymatic kinetics, similar to the 

release of TNF-α, by incorporating the effects of necrotic cells and activated monocytes. 
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In Eq. (3.13), we incorporate the effect of phagocytosis by monocytes into Eq. (3.4) since 

monocytes phagocytose Gram-negative bacteria by a CD14-dependent mechanism (141). We 

recall hill-type function Equation (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐4
𝑛 ]

) to represent the receptor-ligand binding kinetics 

between pathogens and activated monocytes. Since binding activated neutrophils are engulfed by 

infiltrating monocytes (142), we use 𝑢𝑚𝑛𝑁𝑏𝑀𝑓
∗ to calibrate the killing process of binding activated 

neutrophils by activated monocytes, which modify Eq. (3.10) to Eq. (3.14). Eq. (3.15), Eq. 

(3.16), and Eq. (3.17) describe the activation and migration of resting monocytes from blood 

vessel to infected tissue. In Eq. (3.15), Eq. (3.16), and Eq. (3.17), MR, Mf , and Mb represents the 

resting monocytes, free activated monocytes, and binding activated monocytes, respectively. The 

principles used to build those three equations are similar to the principle used to build Eq. (3.8), 

Eq. (3.9), and (3.10) for the neutrophil immune response model. Eq. (3.18) calibrates the release 

of HMGB-1 per hour by activated monocytes (monocytes-derived macrophage) and apoptotic 

hepatocytes, and the process of releasing HMGB-1 is similar to the process of releasing TNF-α. 

Most experiments in the literatures have shown that HMGB-1 is a delayed pro-inflammatory 
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cytokine and is released late in the course of AIR (23, 24, 143). The definition of parameters and 

corresponding experimental data in the monocyte immune response model are summarized in 

Table A. 4. 

We plot the population size of resting monocytes in blood vessel, activated monocytes in 

liver and concentration of TNF-α, and HMGB-1 versus time (hours) in Figure 3.7 (a), (b), (c) 

and (d). 

Figure 3.7 (a) Concentration of resting monocytes versus time in monocyte immune 

response model at the first 240 hours of simulation. (b) Concentration of activated 

monocytes versus time in monocyte immune response model at the first 120 hours of 

simulation. (c) Concentration of TNF-α versus time in monocyte immune response model at 

the first 120 hours of simulation. (d) Concentration of HMGB-1 versus time in monocyte 

immune response model at the first 120 hours of simulation. Horizontal axes represent time 

(in hours), and vertical axes represent concentrations in arbitrary units 

 

 

From Figure 3.7 (b), the recruitment of monocytes to liver reaches it maximal level 

around 40 hours after the introduced infection in our model, compared with 3 days in an 

experimental model (144), which demonstrates that monocytes arrive later to the site of 



 

73 

infection, following the recruitment of neutrophils. Our simulation results correspond to the 

evidence from experimental study that serum HMGB1 levels were not significantly altered for 

the first 10 hours and then significantly increased at 18 hours after the introduced infection as 

shown in Figure 3.7 (d) (23, 36). Comparing the peak level of HMGB-1 with the peak level of 

TNF-α, the peak level of HMGB1 is smaller and the release time of HMGB-1 is slower than the 

release time of TNF-α (10 hours vs. 6 hours post-infection). Furthermore, our simulation results 

show that HMGB-1 is readily detectable at 10 hours and is maintained at peak, plateau levels 

from 18 to 32 hours after infection, which is similar to the results from experimental studies (23). 

Our simulation results suggest that HMGB-1, as a late pro-inflammatory cytokine, down-

regulates the AIR induced by TNF-α production. 

 3.2.6 Anti-inflammatory immune response model 

IL-10 is an anti-inflammatory cytokine. Plasma levels are elevated in animal models of 

endotoxemia and inhibit the release of pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) from 

monocytes/macrophages, thus preventing subsequent tissue damage (145). This anti-

inflammatory mediator is produced by macrophages, dendritic cells (DC), B cells, and various 

subsets of CD4 and CD8_T cells (146) and follows the same mechanism as pro-inflammatory 

(TNF-α and HMGB-1) release. Since our main focus in this paper is to model the innate immune 

responses, we ignore the release of IL-10 by B cells and T cells during the adaptive immune 

responses. Hence, we model the release of IL-10 in a similar way as pro-inflammatory cytokine 

release. 
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In Eq. (3.19), CA represents the concentration of anti-inflammatory cytokine (IL-10) 

during AIR. (
𝑟𝑐𝑎𝑚𝑎𝑥𝑀𝑏 

𝐶𝐴ℎ+𝑀𝑏
) represents the release rate of anti-inflammatory cytokine (IL-10) by 

activated monocytes, derived from enzymatic kinetics. The first term in Eq. (3.19) calibrates the 

increase in number of anti-inflammatory cytokines every hour and the second term 𝑢𝑐𝑎𝐶𝐴 

calibrates the decrease in number of anti-inflammatory cytokines every hour due to a natural 

degradation. The corresponding parameters and their values are defined in Table A.5. 

We plot the concentration of TNF-α, HMGB-1, and IL-10 versus time (hours) in Figure 

3.8 (a), (b) and (c). 

Figure 3.8 (a) Concentration of TNF-α versus time in anti-inflammatory immune 

response model at the first 80 hours of simulation. (b) Concentration of HMGB-1 versus 

time in anti-inflammatory immune response model at the first 80 hours of simulation. (c) 

Concentration of IL-10 versus time in anti-inflammatory immune response model at the 

first 80 hours of simulation. Horizontal axes represent time (in hours) and Vertical axes 

represent concentration in arbitrary unit 

 

 

Experimental studies in mice have shown that early predominance of pro-inflammatory 

cytokines transitions to anti-inflammatory predominance at 24 h (13, 133). Figure 3.8 (a), (b) and 

(c) shows that the time to approach the peak levels of TNF-α, HMGB-1, and IL-10 are 6 hours, 

18 hours, and 24 hours respectively and demonstrates that anti-inflammatory responses will 

follow pro-inflammatory responses and play a role in the later phase of AIR. In the following 

section, we will discuss the inhibiting effects of anti-inflammatory cytokines and the 

comprehensive structure of our mathematical model of innate immunity in the AIR. 
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 3.2.7 Mathematical models of innate immunity of AIR 

 3.2.7.1 Inhibition of anti-inflammatory cytokines 

Before we incorporate mathematical models of subsystems into a comprehensive 

mathematical model of innate immunity in AIR, we will review the mechanism of inhibition of 

anti-inflammatory cytokines to the course of infection. IL-10 was found to inhibit protein kinase 

activation (IKK activity) induced by LPS binding to the CD14 receptor and to consequently 

block the downstream Ras signaling pathway (147). Furthermore, IL-10 inhibits both TNF-α and 

LPS-induced NF-κB DNA binding, gene transcription, and cytokine synthesis (148-150). The 

mechanism of IL-10 inhibition of protein production is shown in Figure 3.9. 

Figure 3.9 Mechanism of IL-10 inhibition 

 

 

By IKK activity, NF-κB as a protein complex is released from cytoplasm into the cell 

nucleus and binds to DNA in order to accomplish NF-κB-dependent DNA transcription (151). 
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We assume the NF-κB protein complex binding to DNA as an enzyme-kinetics, since DNA-

binding proteins, such as transcription factors, have recently been found to exhibit enzymatic 

activity during the process of transcription (152). Furthermore, we assume and model IL-10 

inhibition as an enzyme inhibition process, since IL-10 inhibits the process of DNA-protein 

binding, as well as transcription. The mathematical formation of IL-10 inhibition will, therefore, 

follow simplified competitive enzyme kinetics (𝛼 denoted as adjustment) as follows. 
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After incorporating the inhibition function of IL-10, we derive a comprehensive 

mathematical model for innate immunity of AIR, and C∞ represents the dissociation rate of IL-10 

with initial estimated value equivalent to 0.02. 

 3.2.7.2 Mathematical model of innate immunity of AIR 
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 3.3 Stability analysis 

To study the model behaviors under various parameter settings and initial conditions, 

stability analysis are conducted for each subsystem during model construction using bifurcation 

diagrams. Bifurcation diagrams are graphical tools to visualize the behaviors of dynamic system 

change with parameters, which are generated by Matcont in this paper. Matcont is a Matlab 

continuation package with a graphic user interface (GUI) for the interactive numerical study of 

parameterized nonlinear ODEs. It allows to compute curves of equilibria, limit points, Hopf 

point, limit cycles, fold, torus, and branch point bifurcation of limit cycles and so on (153).  

In bifurcation diagrams, Y-axis represents equilibrium of state variable and X-axis 

represents value of system parameter that generates equilibrium. Therefore, bifurcation diagrams 

reflect change in equilibrium of dynamic system (either change in number of equilibrium or 

change in numerical value of equilibrium) in relation to the change in numerical value of system 

parameter. We analyzed stability of dynamic system by identifying types of bifurcation point in 
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bifurcation diagrams since bifurcation points are defined as points where stability changes from 

stable to unstable. In our bifurcation diagrams, there are two typical bifurcation points: limit 

point (marked as “LP” in Matcont) and Hopf point (marked as “H” in Matcont). Neutral Saddle 

Point is marked as “NS” in bifurcation diagram, however it is not a bifurcation point for the 

equilibrium since it is identified as a hyperbolic saddle. Figure 10 shows stability of equilibria of 

state variable pathogens change in relation to system parameters change in neutrophil subsystem. 

 3.3.1 Neutrophil subsystem stability analysis 

Figure 3.10 (a) Computed equilibrium curve of pathogens in relation to system 

parameter kpg in neutrophil subsystem. (b) Computed equilibrium curve of pathogens in 

relation to system parameters rpn in neutrophil subsystem. (c) Computed equilibrium curve 

of pathogens in relation to system parameters un in neutrophil subsystem. (d) Computed 

equilibrium curve of pathogens in relation to system parameters rt2max in neutrophil 

subsystem 

 



 

79 

LPs in bifurcation diagrams of neutrophil subsystem appear when two equilibria merge 

into one equilibrium, and thus, the number of equilibrium of dynamic system changes when LPs 

are detected. LPs are also turning points at which dynamic system changes from stability to 

instability. In Figure 3.10 (a), there is stable equilibrium of pathogen when system parameter kpg 

increases from 0 to 4.93, when kpg equals to 4.93, LP is identified and unstable equilibrium of 

pathogen is generated as kpg decreases from 4.93 to 0. Therefore, equilibrium of pathogen of our 

neutrophil subsystem is bistable when kpg is from 0 to 4.93. Similarly, equilibrium of pathogen in 

Figure 3.10 (b) is bistable when system parameter rpn is from 25 to 200. In Figure 3.10 (c), 

equilibrium of pathogen before LP is stable, and the equilibrium is bistable when un is from 0.05 

to 0.21. 

A Hopf bifurcation, identified in Figure 3.10 (d), is a periodic bifurcation in which a new 

limit cycle is born form a stationary solution. Hopf Point is a point is a turning point for periodic 

orbits, and Hopf Point is detected when system parameter rt2max changes. The detected Hopf 

Point in Figure 3.10 (d) is used to start a limit cycle continuation, where two cycles collide and 

disappear. Since the first Lyapunov coefficient (154) is positive, there exists an unstable limit 

cycle, bifurcating from this equilibrium. Figure 3.11 (a) and (b) shows the family of limit cycles 

bifurcating from detected Hopf Point in Figure 3.10 (d). The family of limit cycles is represented 

using limit cycle planes such as TNF-a-pathogen plane and Nf –pathogen plane. Figure 3.11 (c) 

shows a limit cycle sphere represented by a TNF-a, Nf , and pathogen Plane. Figure 3.11 (d) 

indicates the presence of two limit cycles occurs when rt2max equal to 5495.6394 or 6265.0029. 

In Figure 3.11 (c), the first family of limit cycle (a red small cycle in the center of sphere) 

spiral outward as system parameter rt2max decreases, and the second family of limit cycle appears 

when rt2max decreases to 5495.6394 (a red cycle line appears). As rt2max increases from 
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5495.6394, the second family of limit cycle spiral outward again, when rt2max increases to 

6265.0029, an unstable equilibrium is detected in Figure 3.12. If value of rt2max is between 

5495.6394 and 6265.0029, the equilibria of neutrophil subsystem are stable and converged 

shown by Figure 3.13. 

To conclude, we have detected system parameters kpg, rpn, and rt2max contributing to 

bistability of our neutrophil subsystem. Furthermore, we observe system parameter rt2max (the 

maximum release rate of TNF-a by activated neutrophils) is essential for generating a closed 

trajectory of neutrophil subsystem. A significant unstable infection oscillation occurs when rt2max 

increases to 6265.0029. 

Figure 3.11 (a) Family of limit cycles bifurcating from the Hopf point in TNF-a and 

pathogen plane. (b) Family of limit cycles bifurcating from the Hopf point in Nf and 

pathogen plane. (c) Equilibria and limit cycles in (Nf, pathogen, and TNF-a)-space. (d) 

Period of the cycle as function of rt2max 
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Figure 3.12 (a) Numerical relationships between Nf, pathogen, and TNF-a in 

unstable neutrophil subsystem at equilibrium when rt2max is equal to 6265.0029. (b) 

Pathogen diverges in unstable neutrophil subsystem at equilibrium when rt2max is equal to 

6265.0029. (c) Activated Neutrophils diverges in unstable neutrophil subsystem at 

equilibrium when rt2max is equal to 6265.0029. (d) TNF-as diverges in unstable neutrophil 

subsystem at equilibrium when rt2max is equal to 6265.0029 

 

Figure 3.13 (a) Numerical relationships between Nf, pathogen, and TNF-a in stable 

neutrophil subsystem at equilibrium when rt2max is between 5495.6394 and 6265.0029. (b) 

Pathogen converges in stable neutrophil subsystem at equilibrium when rt2max is between 

5495.6394 and 6265.0029. (c) Activated Neutrophils converges in stable neutrophil 

subsystem at equilibrium when rt2max is between 5495.6394 and 6265.0029. (d) TNF-a 

converges in stable neutrophil subsystem at equilibrium when rt2max is between 5495.6394 

and 6265.0029 
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 3.3.2 Monocyte subsystem stability analysis 

Figure 3.14 (a) Computed equilibrium curve of pathogens in relation to system 

parameter krd in monocyte subsystem. (b) Computed equilibrium curve of pathogens in 

relation to system parameters unr in monocyte subsystem. (c) Computed equilibrium curve 

of pathogens in relation to system parameters un in monocyte subsystem. (d) Computed 

equilibrium curve of pathogens in relation to system parameters rt2max in monocyte 

subsystem. (e) Computed equilibrium curve of pathogens in relation to system parameters 

mt2 in monocyte subsystem 

 

Continue stability analysis on monocyte subsystem indicates change in system 

parameters krd, unr, and un induce bistability of monocyte subsystem. From Figure 3.14 (a), (b), 

and (c), we know monocyte subsystem is bistable if at least one of the three conditions meets: krd 
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is between 0 to 0.32, unr is between 0 to 0.28, and un is between 0 to 0.21. Specifically, we have 

observed rt2max (the maximum release rate of TNF-α by activated neutrophils) and mt2 (the 

number of activated neutrophils releasing half of TNF-α) are essential for oscillated monocyte 

subsystem. Limit cycles are bifurcating from Hopf point, shown in Figure 3.14 (d) and (e), 

similar to neutrophil subsystem. Therefore, we conclude that the oscillated infection is 

significantly dependent on the amount of released TNF-α and further recruited neutrophils in 

AIR. However, the released monocytes and associated cytokines such as HMGB-1, playing no 

roles in contributing to oscillation in AIR progression. 

 3.3.3 Full model stability analysis 

Built upon monocyte subsystem, our full model incorporate the effect of anti-

inflammatory cytokines and our stability analysis show the stability of our full model is 

significantly dependent on the effect of anti-inflammatory cytokines, especially when medium 

effect of anti-inflammatory cytokines are incorporated (dissociation rate of IL-10 equal to 

logarithm 4). Our stability analysis, in Figure 3.15, shows the Hopf Points move forward as rt2max 

and mt2 increases when medium effect of anti-inflammatory cytokines is incorporated. 

Medium effect of anti-inflammatory cytokines: 

In Figure 3.15 (a) and (b), comparing to Figure 3.14 (d) and (e), we see the Hopf Point is 

detected when rt2max and mt2 increases to a bigger value since the anti-inflammatory cytokines 

inhibit the activation of phagocytic cells (neutrophils and monocytes). This trend indicates the 

infection oscillation requires, with the medium effect of anti-inflammatory cytokines, more pro-

inflammation (including TNF-α and activated neutrophils) compared to our monocyte subsystem 

without including the effect of anti-inflammatory cytokines. The strengthened (increased rt2max 

and mt2) pro-inflammatory immune responses could also induce stable or unstable equilibria, and 
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therefore leads to a dampened oscillated infection or diverged infection, similar to our 

observations in Figure 3.12 and Figure 3.13. However, we have observed our AIR progression, if 

high effect of anti-inflammatory cytokine is incorporated (dissociation rate equal to logarithm 6) 

at the beginning of infection, will induce a stable overwhelming pathogen load. These 

observations inspire us the effects of anti-inflammatory cytokines play a vital role in AIR 

progression and could be either positive or negative to AIR progression dependent on levels of 

anti-inflammatory cytokines. 

Figure 3.15 (a) Computed equilibrium curve of pathogens in relation to system 

parameter rt2max if medium effect of anti-inflammatory cytokine is incorporated. (b) 

Computed equilibrium curve of pathogens in relation to system parameters mt2 if medium 

effect of anti-inflammatory cytokine is incorporated 

 

 

 3.4 Discussion 

 3.4.1 Effects of initial pathogen load on sepsis progression 

Using our system dynamic mathematical model, we analyzed the impact of effect of 

bacteria load on phagocytic cells, inflammatory cytokines, and damaged tissue at low, medium, 

and high level during innate immunity of AIR. The computed results are shown in Figure 3.16, 

3.17, and 3.18. 
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 3.4.1.1 Low initial load of pathogen (p(0)=100) 

Figure 3.16 (a) Concentration of pathogen in the presence of low initial load of 

pathogen. (b) Concentration of activated neutrophils in the presence of low initial load of 

pathogen. (c) Concentration of activated monocytes in the presence of low initial load of 

pathogen. (d) Concentration of TNF-a in the presence of low initial load of pathogen. (e) 

Concentration of HMGB-1 in the presence of low initial load of pathogen. (f) Concentration 

of dead hepatocytes in the presence of low initial load of pathogen. Horizontal axes 

represent time (in hours) and Vertical axes represent concentration in arbitrary unit 
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 3.4.1.2 Medium initial load of pathogen (p(0)=10000) 

Figure 3.17 (a) Concentration of pathogen in the presence of medium initial load of 

pathogen. (b) Concentration of activated neutrophils in the presence of medium initial load 

of pathogen. (c) Concentration of activated monocytes in the presence of medium initial load 

of pathogen. (d) Concentration of TNF-a in the presence of medium initial load of pathogen. 

(e) Concentration of HMGB-1 in the presence of medium initial load of pathogen. (f) 

Concentration of dead hepatocytes in the presence of medium initial load of pathogen. 

Horizontal axes represent time (in hours) and Vertical axes represent concentration in 

arbitrary units 
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 3.4.1.3 High initial load of pathogen (p(0)=100000) 

Figure 3.18 (a) Concentration of pathogen in the presence of high initial load of 

pathogen. (b) Concentration of activated neutrophils in the presence of high initial load of 

pathogen. (c) Concentration of activated monocytes in the presence of high initial load of 

pathogen. (d) Concentration of TNF-a in the presence of high initial load of pathogen. (e) 

Concentration of HMGB-1 in the presence of high initial load of pathogen. (f) 

Concentration of dead hepatocytes in the presence of high initial load of pathogen. 

Horizontal axes represent time (in hours) and Vertical axes represent concentration in 

arbitrary units 
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Based on our computed results, we conclude a resolved healthy state, pathogen falls 

below threshold during the oscillation as well as other phagocytic cells and inflammatory 

cytokines, when initial pathogen load is low. We recognize a persistent infection pattern 

happening, when initial pathogen load is medium, if inflammatory responses are still active 

(damaged tissue oscillates during infection). If initial pathogen load is high, an overwhelming 

bacteria load occurs eventually and leading to a high risk of death. 

 3.4.2 Effects of pro-and anti-inflammatory cytokines on sepsis progression 

Interactions and balances between pro-inflammatory cytokines and anti-inflammatory 

cytokines are essential to the progression of the AIR. Previous experiments on mice (13) have 

found a close link between severity of sepsis and the balance and time course of inflammatory 

cytokines. Experiments from existing literature showed that excess production of pro-

inflammatory cytokines has been associated with multiple organ-system dysfunction (severe 

sepsis), post-fluid resuscitation hypertension (septic shock), and mortality (12). Based on our 

simulation results, the response of TNF-α is maximal at an early stage of AIR. Following TNF-α, 

the late pro-inflammatory HMGB-1 and the anti-inflammatory IL-10 will typically dominate 

AIR progression and ultimately determine the possible outcomes of AIR. Therefore, local TNF-α 

level elevation may not end with multiple organ-system dysfunctions and anti-TNF-α treatment 

alone could be ineffective in the early stages of AIR, consistent with clinical trials (145). 

Biological results show that effect with IL-10 increases mortality in the murine model 

(133). In general, effectiveness of IL-10 on sepsis progression is inconsistent in experimental 

studies. A group of experimental studies showed that IL-10 improved the outcome of mice 

undergoing cecal ligation and puncture (CLP), while antibody against IL-10 contributed to 

worsened outcome or even mortality (13, 155). In contrast, other investigators failed to confirm 
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the improvement by showing no difference on survival rate between pretreatment with IL-10 and 

non-pretreatment with IL-10 in mice after CLP (156). Using our system dynamic mathematical 

model, we analyzed the impact of effect of IL-10 (measured by system parameter CA) on bacteria 

load, phagocytic cells, and damaged tissue at high, medium, and low level during innate 

immunity of AIR. The computed results are shown in Figure 3.19, 3.20, and 3.21. 

 3.4.2.1 High effect of anti-inflammatory cytokines 

Figure 3.19 (a) Concentration of pathogen in the presence of high effect of IL-10. (b) 

Concentration of activated neutrophils in the presence of high effect of IL-10. (c) 

Concentration of activated monocytes in the presence of high effect of IL-10. (d) 

Concentration of dead hepatocytes in the presence of high effect of IL-10. Horizontal axes 

represent time (in hours) and Vertical axes represent concentration in arbitrary units 
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 3.4.2.2 Medium effect of anti-inflammatory cytokines 

Figure 3.20 (a) Concentration of pathogen in the presence of medium effect of IL-10. 

(b) Concentration of activated neutrophils in the presence of medium effect of IL-10. (c) 

Concentration of activated monocytes in the presence of medium effect of IL-10. (d) 

Concentration of dead hepatocytes in the presence of medium effect of IL-10. Horizontal 

axes represent time (in hours) and Vertical axes represent concentration in arbitrary units 

 

 

Our simulation results have shown that the high effect of anti-inflammatory cytokine (IL-

10) inhibits the release of activated immune cells (activated neutrophils and activated 

monocytes) as well as subsequent cytokine production. The levels of damaged tissue 

significantly decrease with the presence of the anti-inflammatory cytokine, which in turn 

moderates the progression of the AIR and reduces the risks of the sepsis development. Our 

quantitative results are supported by an abundance of experimental studies in the literatures, 

which have shown that IL-10 down-regulates the production of secreted cytokines by inhibiting 
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the various behaviors of activated immune cells (25, 26, 157). Moreover, existing experimental 

results have suggested that anti-inflammatory mediator inhibits the activation of phagocytes and 

reduces the ability of activated phagocytes to attack pathogen (39) and therefore is associated 

with mortality and severity of infection in sepsis (133, 158). Based on the above evidence, our 

computed results suggest that the high effect of anti-inflammatory cytokines is a “double edged-

sword” for AIR since it would either decrease the mortality associated with tissue damage or 

increase the mortality associated with high load of bacteria. 

 3.4.2.3 Low effect of anti-inflammatory cytokines 

Figure 3.21 (a) Concentration of pathogen in the presence of low effect of IL-10. (b) 

Concentration of activated neutrophils in the presence of low effect of IL-10. (c) 

Concentration of activated monocytes in the presence of low effect of IL-10. (d) 

Concentration of dead hepatocytes in the presence of low effect of IL-10. Horizontal axes 

represent time (in hours) and Vertical axes represent concentration in arbitrary units 
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With the low effect of anti-inflammatory cytokines, our computed results have shown 

low effect of anti-inflammatory cytokine (IL-10) fails to inhibit the release of activated immune 

cells (activated neutrophils and activated monocytes) as well as subsequent cytokine production. 

The levels of damaged tissue significantly accumulate during the first 500 hours (about 20 days) 

of infection. In the presence of low effect of the anti-inflammatory cytokine, AIR is at a high risk 

of development to organ dysfunction and eventually progression to septic shock. 

To further investigate the effects of anti-inflammatory cytokines, we simulate a medium 

effect of anti-inflammatory cytokines and compare simulated results to both high effect of anti-

inflammatory cytokines and low effect of anti-inflammatory cytokines. Our computed results 

show bacteria load decreases during the first 100 hours of infection, together with the total 

amount of dead hepatocytes. Furthermore, we have observed the production of both activated 

neutrophils and activated monocytes declines to baseline near 0 at the end of simulation, which 

indicates a positive trend of sepsis progression to a healthy pattern. Thus, we conclude that the 

level of anti-inflammatory cytokines plays a vital role in determining the direction of sepsis 

progression, and the levels of anti-inflammatory cytokines and the time of intervention of anti-

inflammatory cytokines will largely influence the outcomes of AIR. 

 3.5 Conclusion 

In this chapter, we propose a system dynamic mathematical model and show that the 

model has significant potential to help predict the possible pathogenesis of AIR based on a 

patient's physiological conditions. Also, we show that the model is able to give insight into the 

innate immunity of sepsis progression by exploring various combinations of levels of phagocytes 

and cytokines. Our focus is especially on the effects of anti-inflammatory cytokines on pathogen 

load, phagocytic cells, and tissue damage. We observed that the outcomes of sepsis progression 
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could be improved by in presence with IL-10 at a medium level at an early stage of infection. 

Furthermore, our model quantitatively measures the levels of phagocytes (neutrophils and 

monocytes), compared with existing mathematical models, which provide qualitative estimates.  

One of the assumptions of our model is that we currently only include innate immunity, 

and therefore the results of our model could only represent an early stage of AIR. Adaptive 

immunity occurs following the innate immune response and includes B-cells, T-cells, and 

antibodies released from B-cells, which contribute to pathogen clearance (77). IL-10 is known to 

be released by various subsets of T-cells, which may lead to overproduction of the anti-

inflammatory cytokines by the compensatory anti-inflammatory response and, eventually, an 

increased risk of secondary infection and poor prognosis (77, 146). For further research, we 

expect to explore the prominent effects of anti-inflammatory mediators on the outcomes of AIR 

progression by incorporating adaptive immunity and its effects on anti-inflammatory cytokine. 

Also, we will propose an agent-based model of sepsis progression and compare the results from 

the system dynamic mathematical model and the agent-based model. 

The system dynamic mathematical model proposed in this chapter is a robust and 

accurate representation of the comprehensive innate immune responses within an AIR/Sepsis 

episode.  This underlining model is general enough and flexible enough that it can be further 

used to predict the possible outcomes and prognosis for different patient demographics with 

different model parameters using the experimental data from the literature. 
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Chapter 4 - Mathematical Model of Innate and Adaptive Immunity 

of Sepsis: a Modeling and Simulation Study of Infectious Disease 

Chapter 4 is based on the paper “Mathematical Model of Innate and Adaptive Immunity of 

Sepsis: A Modeling and Simulation Study of Infectious Disease” published in BioMed Research 

International (2015), in press. 

 Abstract 

Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics 

mathematical model (SDMM) is examined to describe the basic components of SIR and sepsis 

progression. Both innate and adaptive immunities are included, and simulated results in silico 

have shown that adaptive immunity has significant impacts on the outcomes of sepsis 

progression. Further investigation has found that the intervention timing, intensity of anti-

inflammatory cytokines, and initial pathogen load are highly predictive of outcomes of a sepsis 

episode. Sensitivity and stability analysis were carried out using bifurcation analysis to explore 

system stability with various initial and boundary conditions. The stability analysis suggested 

that the system could diverge at an unstable equilibrium after perturbations if rt2max (maximum 

release rate of Tumor Necrosis Factor (TNF)-α by neutrophil) falls below a certain level. This 

finding conforms to clinical findings and existing literature regarding the lack of efficacy of anti-

TNF antibody therapy. 

Keywords: System Dynamics Mathematical Model, Sepsis, Stability Analysis, Bifurcation, 

Healthcare 
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 4.1 Introduction 

Sepsis, currently defined as a systemic inflammatory response (SIR) to an infectious 

agent or trauma, is increasingly considered an exaggerated, poorly regulated innate immune 

response to microbial products (1, 2). Under health conditions, intruding pathogens are 

eliminated by immune cells in the immune system. If overwhelming immune response occurs, 

unbalanced responses between immune cells lead to unexpected harmful patient outcomes such 

as high fevers, flushed skin, and elevated heart rate, resulting in sepsis. Possible progression to 

severe sepsis is marked by generalized hypotension, tissue hypoxia, and organ dysfunction (2). 

Severe sepsis can further develop into septic shock under long-lasting severe hypotension (159), 

ultimately leading to death. 

Severe sepsis and septic shock during an infection are the primary causes of death in 

intensive care settings (3). On average, sepsis causes 250,000 deaths per year in the United States 

(4). Among patients in intensive care units (ICUs), sepsis is the second highest cause of mortality 

(5) and the 10th leading cause of death overall in the United States (6). An average of 750,000 

sepsis cases occur annually, and this number continues to increase each year (5). Care of patients 

with sepsis can cost as much as $60,000 per patient, resulting in a significant healthcare burden 

of nearly $17 billion annually in the United States (7, 8). Sepsis development in a hospitalized 

patient can lead to extended hospital stays and consequently increase financial burdens. Cross 

and Opal (32) pointed out the lack of rapid, reliable assays that could be used to identify the 

stage or severity of sepsis and to monitor the use of immunomodulatory therapy. However, no 

such assays are available because complexity of the inflammatory response and the unpredictable 

nature of septic shock in individual patients render the effect of targeting isolated components of 

inflammation with supportive therapy difficult to predict (32, 41).  
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Development of a non-biased, predictive model and model-derived policies that prevent 

patients from experiencing severe consequences of sepsis (e.g., organ dysfunction) is critical for 

improving ICU patient care. As studies of mechanisms leading to sepsis development 

significantly progress due to discoveries of new inflammatory proteins and increased knowledge 

of the interaction of host cells and pathogens, mathematical models have been developed as 

dynamic knowledge representation of complicated biological processes. Specifically, the models 

have been used to simulate dynamic patterns of selected essential indicators in disease 

progression by integrating cellular and molecular pathways in an immune system. These 

mathematical models offer potential for understanding complex dynamic systems and, therefore, 

are used by researchers from various fields to simulate immune response to specific disease (53, 

54, 58, 59). Development of modeling techniques could allow novel strategies for disease 

treatment, oriented at compromising harmful effects of inflammatory responses, to be proposed 

or tested in model simulations.  

In order to construct a mathematical model of sepsis, we searched literatures and found 

two representative system dynamics mathematical models (SDMMs) of Acute Inflammatory 

Response (AIR) in previous studies. In 2004, Kumar et al. (54) presented a simplified 3-equation 

SDMM to describe mathematical relationships between pathogen, early pro-inflammatory 

mediators, and late pro-inflammatory mediators in sepsis progression. In 2006, Reynolds et al. 

(53) proposed a mathematical model for AIR that included a time-dependent, anti-inflammatory 

response in order to provide insights into a variety of clinically relevant scenarios associated with 

inflammatory response to infection. 
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 4.2 System dynamics mathematical model development 

Existing mathematical models focused on inflammation in the literature proved that 

mathematical modeling is a valid approach for simulating disease progression (53, 54, 58-60). 

However, the number of variables used, the limited control of system parameters, and the 

inclusion of many variables involved in real immune response were not modeled in detail. 

Therefore, oversimplication in AIR models (53, 59) limited AIR behaviors and biological 

relevance of simulated results. For example, simulated results from AIR models (53, 59) failed to 

capture a dampened oscillated infection in AIR progression. In addition, existing mathematical 

models are incomplete representations of sepsis because simulated AIR in both mathematical 

models (53, 59) is considered as an initial stage of sepsis progression. Therefore, to improve on 

current models, we developed an 18-equation SDMM to incorporate the most influential 

variables for septic response development during innate immune response and adaptive immune 

response. We included equations to represent pathogen load, phagocyte (including neutrophil 

and monocyte) activation, early and late pro-inflammatory cytokine release, tissue damage, anti-

inflammatory cytokine release, CD4+ T cell activation, CD8+ T cell activation, B cell activation, 

and antibody release. Indicator selection was based on knowledge of cellular and molecular 

pathways of sepsis from experts in the field and extensive literature review (3, 12, 24, 103, 108, 

113, 117, 118, 127, 132, 138, 142, 157). We chose Salmonella as a “targeted” pathogen strain in 

our mathematical model and simulated immune responses to Salmonella in the liver of mice. 

Immune responses to Salmonella infections have been investigated extensively in (107-112); 

therefore, an abundance of data exists for accurate incorporation of relationships among 

variables to support our SDMM. We used a series of known and hypothesized kinetics of 

biological system components, including conventional logistics function, law of mass action, and 
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Michaelis-Menten kinetics to build SDMM from subsystems and mimic interactions between 

indicators. We combined these formulated but generalized dynamic modeling techniques into a 

comprehensive SDMM framework to describe sepsis progression, by measuring the steady state 

of various components in inflammatory responses. In the following seven subsections, we 

present a detailed description of mathematical construction for each subsystem in a mouse 

hepatic inflammatory response during SDMM development. 

 4.2.1 Process description 

AIR typically occurs when immune cells, such as tissue macrophage, detect intruding 

pathogens or existing tissue damage and emit a signal to resting phagocytes, such as neutrophil 

and monocyte (two types of immune cells), in the blood vessels near the infected tissue. Resting 

phagocytes are activated and migrate towards the site of pathogens or damaged tissue that have 

recognizable proteins on surface similar to proteins of immune cells. Once activated phagocytes 

reach the infection site, they engulf and consume the pathogens. Meanwhile, these activated 

phagocyte cells release pro-inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), 

Interleukins (IL)-1, Interleukins (IL)-6, Interleukins (IL)-8, and High-Mobility Group Protein B1 

(HMGB-1) that activate and recruit additional resting phagocytes from circulation to the 

infection site. All activated phagocytes eliminate pathogens and secrete substances that 

accelerate the killing of healthy cells and induce inflammation in the initial process of 

inflammatory response. In the later stage of AIR progression, several types of anti-inflammatory 

mediators, such as Interleukins (IL)-10, are released by activated phagocytes (primarily 

monocyte-derived-macrophage). These anti-inflammatory cytokines inhibit the production of 

pro-inflammatory cytokines, consequently inhibiting further recruitment of resting phagocytes. 



 

99 

We translated biological processes of AIR to a logical chart, as shown in Figure 1. An explicit 

description for each biological process is presented in the following six subsections. 

Figure 4.1 Types of indicators (cells and cytokines) and their interactions in AIR 

progression. Italic and bold letters represent variables in our SDMM 

 

 4.2.2 Step 1: Kupffer Cell local response model 

Macrophages, one of the innate host’s first lines of defense against bacterial pathogens, 

are antimicrobicidal cells that often determine outcomes of an infection (113). Furthermore, 

hepatic macrophages (also known as Kupffer Cells or resident liver macrophages) constitute 

80%-90% of tissue resident macrophages in the body and significantly influence propagation of 
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liver inflammation (115, 116). Kupffer Cells within the liver trap and eliminate a majority of 

bacteria that enter the blood stream (117). During the initial stage of AIR, Kupffer Cells 

eliminate pathogens, specifically Salmonella, during local immune responses. 

We developed a Kupffer Cell local response model, defined as interactions between the 

pathogen and Kupffer Cell (115), consisting of the following: 
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In Eq. (4.1), P denotes pathogen load, kpg represents a constant growth rate for pathogens, 

and P∞ represents maximum carrying capacity of the pathogen. Parameter 𝑟𝑝𝑚𝑘  represents 

phagocytosis (killing) rate of Kupffer Cells when Kupffer Cells begin to kill pathogens. 

Although phagocytosis rate is dependent on time in a slow-S-shape curve (118), the phagocytosis 

rate does not change if the phagocytosis rate versus time is assumed to be linear. Therefore, we 

relaxed the condition that phagocytosis rate is constant in our model and assumed 𝑟𝑝𝑚𝑘 was 

constant (118). Eq. (4.2) represents changes of Kupffer Cells over a unit of time, and Mkf denotes 

the amount of Kupffer Cells in the liver that is available for pathogen binding. Parameter term 

kmk represents a constant proliferation (replenishment) rate for Kupffer Cell population, and K∞ 

represents maximum carrying capacity of Kupffer Cells in the liver of mice. Parameter term kmkub 

represents the unbinding rate of binding Kupffer Cells and 𝑢𝑚𝑘 represents the killing rate of free 

Kupffer Cells induced by binding to intruding pathogens.  

A standard logistic function was used to model pathogen population growth with limited 

maximum carrying capacity, identified as the first term (𝑘𝑝𝑔𝑃 (1 −
𝑃

𝑃∞
)) in Eq. (4.1) (119). The 
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second term of Eq. (4.1) models local Kupffer Cell responses, or decrease in pathogen population 

phagocytized by initial tissue resident macrophages (Kupffer Cells). The process of phagocytosis 

includes two steps: pathogen-ligand binding to receptors of Kupffer Cells and phagocytosis by 

Kupffer Cells. We used a Hill-type function and receptor-ligand kinetics to model the two basic 

steps (109, 113, 115, 120-122). First, we defined the rate of pathogen binding to Kupffer Cells as 

a Hill-type function (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

) in which n represents a strong affinity of pathogen binding to 

Kupffer Cells and kc1 is Kupffer Cell concentration that phagocytoses half the pathogens. 

Second, we modeled pathogen to Kupffer Cell receptors using receptor-ligand kinetics 

(
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗ ), where P* represents pathogen concentration. We determined pathogen 

concentration using the number of pathogens divided by maximum carrying capacity of the 

pathogen (108 cells in the liver of mouse (112)). The final variable to determine pathogen 

decrease was the phagocytosis rate of pathogens by Kupffer Cells (represented by rpmk) times the 

portion of pathogens binding to Kupffer Cells (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗). 

We assumed that Kupffer Cells population growth followed a standard logistic growth 

pattern with a constant proliferation (replenishment) rate, denoted as kmk, and a maximum 

carrying limit, K, represented by the first term (𝑘𝑚𝑘𝑀𝑘𝑓 (1 −
𝑀𝑘𝑓

𝐾∞
)) in Eq. (4.2). Because 

pathogen binding did not preclude phagocytosis of additional pathogens after completion of 

phagocytosis, we used receptor-ligand kinetics to model the release of Kupffer Cells from the 

binding-complex, represented by the second term (𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏) in Eq. (4.2); 𝑘𝑚𝑘𝑢𝑏 represents the 

rate Salmonella are phagocytosed by free Kupffer Cells and made available for additional 

interactions with Salmonella. The decreasing number of free Kupffer Cells was due to free 

Kupffer Cells binding to pathogen, described by the third term (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗), and the natural 
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decay of free Kupffer Cells represented by the fourth term (𝑢𝑚𝑘𝑀𝑘𝑓) in Eq. (4.2). Free Kupffer 

Cells become binding Kupffer Cells once they bind to pathogen, as described by the first 

term  (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐1
𝑛 ]

𝑀𝑘𝑓𝑃
∗)  in Eq. (4.3). The second term  (𝑘𝑚𝑘𝑢𝑏𝑀𝑘𝑏)  in Eq. (4.3) measures 

decreasing (releasing) portion of binding Kupffer Cells. The definition of parameters and 

corresponding experimental data for each system parameter in Kupffer Cell local response model 

are summarized in Table A.1 (refer to Appendix A). 

 4.2.3 Step2: Neutrophil immune response model 

Simulated results (data not shown) from our Kupffer Cell local response model indicated 

that Kupffer Cells may not sufficiently eliminate infection, especially when the local infection is 

overwhelming. Furthermore, evidences in biological studies have shown that recruitment of 

neutrophils (one type of immune cells) from circulation to the infection site significantly 

contributes to AIR progression because neutrophils is capable to kill pathogens. Neutrophils 

accumulation is induced by a pro-inflammatory cytokine called “TNF-α” that is released by 

Kupffer Cells or activated neutrophils in the tissue. Release of cytokines follows trafficking 

machinery, and cytokines are released via protein-protein interactions initiated by ligand binding 

to receptors (129, 130). The mechanism of cytokine release is depicted in Figure 4.2. 

We modeled a protein-protein interaction as Michaelis-Menten kinetics (131) and derived 

our neutrophil immune response model as follows: 
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Figure 4.2 Mechanism of cytokine release 
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Eq. (4.4) was further derived from Eq. (4.1) in the Kupffer local immune response by 

incorporating phagocytic effects of neutrophils, represented by term 𝑟𝑝𝑛
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐2
𝑛 ]

(𝑁𝑓+𝑁𝑏)𝑃
∗. Eq. 

(4.5) and Eq. (4.6) are cited from Eq. (4.2) and Eq. (4.3). 

Eq. (4.7) represents changes of pro-inflammatory cytokines (denoted by T), such as TNF-

α, released by binding tissue resident Kupffer Cells (Mkb) and binding activated neutrophils (Nb).  

Because TNF-α was released after pathogens bound to receptors of tissue resident Kupffer Cells 

or activated neutrophils, we modeled the process of TNF-α release as a combination of 

Michaelis–Menten kinetics and receptor-ligand kinetics (10). In Eq. (4.7), the release of TNF-α 

from Kupffer Cells was initiated by receptor-ligand kinetics, followed by enzymatic kinetics 

(Michaelis-Menten), represented by the term (
𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏 

𝑚𝑡1+𝑀𝑘𝑏
) where rt1max represents the maximum 

production rate of TNF-α by binding Kupffer Cells. The release of TNF-α is a combined effect 

of receptor-ligand kinetics and enzymatic kinetics; therefore, we incorporated both terms 

(
𝑟𝑡1𝑚𝑎𝑥𝑀𝑘𝑏 

𝑚𝑡1+𝑀𝑘𝑏
)𝑀𝑘𝑏 in the model to represent combined effects of TNF-α releasing processes. 

Similarly, we used receptor-ligand kinetics and Michaelis-Menten kinetics to model the release 

of TNF-α from binding activated neutrophils in the second term of Eq. (4.7). The third term in 

Eq. (4.7), 𝑢𝑡𝑇 , measures degradation of TNF-α, with ut representing the degradation rate of 

TNF-α per hour.   

In Eq. (4.8), the first term 𝑘𝑟𝑑𝑁𝑅(1 −
𝑁𝑅

𝑁𝑆
)  is a standard logistic function to measure 

increase in the number of resting neutrophils per time unit (hour), represented by the influx of 

neutrophils into blood vessels per hour. The second term 𝑟1𝑁𝑅(𝑇 + 𝑃)∗  indicates that the 

decrease in number of resting neutrophils per time unit is due to the neutrophils activation 

process promoted by pathogen and pro-inflammatory cytokine TNF-α, where 𝑇∗  denotes 
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concentration of TNF-α and 𝑃∗ denotes concentration of pathogens (126-128). The third term in 

Eq. (4.8), 𝜇𝑛𝑟𝑁𝑅 , represents the natural decay of resting neutrophils; unr is defined as the 

apoptotic rate of resting neutrophils per time unit in hours. In Eq. (4.9), the first term exactly 

equals the second term in Eq. (4.8) because the increased population of activated neutrophils 

directly resulted from activation of the population of resting neutrophils. The second term of Eq. 

(4.9) used mass action kinetics (𝑘𝑛𝑢𝑏𝑁𝑏) to model the release of activated neutrophils from the 

binding-complex and make activated neutrophils available for additional interaction with 

pathogens, where 𝑁𝑏 represents the binding-complex and 𝑘𝑛𝑢𝑏  represents the rate of activated 

neutrophils released from the binding-complex. Similar to the third term in Eq. (4.8), the third 

term of Eq. (4.9) models natural apoptosis of activated neutrophils. Eq. (4.10) is similar to the 

derivation of Eq. (4.3) in the Kupffer local response model. We used a hyperbolic tangent 

function in Eq. (4.11) to represent a slow-saturation influx rate of neutrophils into hepatic 

parenchyma, thereby representing the rate of activated resting neutrophils. The definition and 

corresponding experimental data for newly added system parameters in the neutrophil immune 

response model are summarized in Table A. 2 (refer to Appendix A). 

 4.2.4 Step3: Damaged tissue model 

Complexity in AIR progression is due to multiple effects induced by inflammatory cells. 

Recruitment of neutrophils helps clear local pathogen levels; however, those inflammatory cells 

are harmful because they release toxic molecules such as reactive oxygen species (ROS), that 

can damage host tissue (127, 128). Recent experimental results have shown that neutrophils' β2 

integrins adhere to ICAM-1 receptors of hepatocytes and accelerate the killing process of 

distressed hepatocytes (134). 
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We assumed the binding process of neutrophils to hepatocytes (healthy liver cells) also 

followed ligand-receptor kinetics; therefore, we derived the following damaged tissue model: 
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In Eq. (4.12), D denotes the number of apoptotic hepatocytes or dead hepatocytes, 𝑟ℎ𝑛 

represents the rate of apoptotic hepatocytes killed by activated neutrophils, and 𝑟𝑎ℎ represents the 

recovery rate of apoptotic hepatocytes. Ligand-receptor kinetics 
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

𝑁𝑓𝐷
∗  represents the 

amount of apoptotic hepatocytes that bind to activated neutrophils, with binding rate modeled as 

a Hill-type function
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

. Activated neutrophils have recently been found to kill apoptotic 

hepatocytes (134). After neutrophils adhere to apoptotic hepatocytes, neutrophils release harmful 

chemical substances such as reactive oxygen species and proteases that accelerate death of 

apoptotic hepatocytes (134, 135). When multiplying 
[𝐷𝑛]

[𝐷𝑛+𝑘𝑐3
𝑛 ]

𝑁𝑓𝐷
∗ by rhn, the entire first term in 

Eq. (4.12) represents the number of apoptotic hepatocytes killed by activated neutrophils per 

hour, which is the total number of dead hepatocytes per hour. The maximum number of 

apoptotic or dead hepatocytes does not exceed the total number of hepatocytes in the liver 

(represented by A∞). In addition, rah represents the recovery rate of apoptotic hepatocytes, and the 

second term in Eq. (4.12) is defined as the amount of recovering apoptotic hepatocytes. The 

definition of parameters and corresponding experimental data for newly added system 

parameters in damaged tissue model are summarized in Table A.3 (refer to Appendix A). 

 4.2.5 Step4: Monocyte immune response model 

Recent biological experiments from the literature (136, 137) have shown that monocyte, 

recruited by the presence of HMGB-1, significantly impacts liver inflammation and liver 
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fibrosis. Upon liver injury, inflammatory Ly6cC (Gr1C) monocyte subset, as precursors of tissue 

macrophages in blood vessels near the infected site are attracted and recruited to the injured liver 

via CCR2-dependent bone marrow egress. The chemokine receptor CCR2 and its ligand MCP-

1/CCL2 promote monocyte subset infiltration upon liver injury and further promote the 

progression of liver fibrosis (134, 138). Because evidence has shown that tumor necrosis factor 

TNF-α induces a marked increase in CCL2/MCP-1 production in dose- and time-dependent 

manners (139), we assumed the influx of monocytes from blood vessels to liver is induced by 

effects of HMGB-1 and TNF-α. Therefore, we modeled the influx of monocytes similarly to 

kinetics of neutrophils influx. According to existing literature, HMGB-1 is released by necrotic 

cells and activated monocytes (117, 139, 140). Therefore, we modeled the release of HMGB-1 

using receptor-ligand kinetics and enzymatic kinetics, similar to the release of TNF-α, by 

incorporating effects of necrotic cells and activated monocytes. 
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In Eq. (4.13), we incorporate the effect of phagocytosis by monocytes into Eq. (4.4) 

because monocytes phagocytose pathogen by a CD14-dependent mechanism (141). We recalled 
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the Hill-type function equation (
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐4
𝑛 ]

) to represent receptor-ligand binding kinetics between 

pathogens and activated monocytes. Because binding activated neutrophils are engulfed by 

infiltrating monocytes (142), we used 𝑢𝑚𝑛𝑁𝑏𝑀𝑓
∗  to calibrate the killing process of binding 

activated neutrophils by activated monocytes, thereby modifying Eq. (4.10) to Eq. (4.14). Eq. 

(4.15), Eq. (4.16), and Eq. (4.17) describe activation and migration of resting monocytes from 

blood vessels to infected tissue. In Eq. (4.15), Eq. (4.16), and Eq. (4.17), MR, Mf , and Mb 

represent resting monocytes, free activated monocytes, and binding activated monocytes, 

respectively. Principles used to build those three equations are similar to the principle used to 

build Eq. (4.8), Eq. (4.9), and (4.10) for the neutrophil immune response model. Eq. (4.9) 

calibrates the release of HMGB-1 per hour by activated monocytes and apoptotic hepatocytes. 

The process of releasing HMGB-1 is similar to the process of releasing TNF-α. The definition of 

parameters and corresponding experimental data for newly added system parameters in the 

monocyte immune response model are summarized in Table A. 4 (refer to Appendix A). 

 4.2.6 Step5: SDMM of Innate Immunity 

As one type of anti-inflammatory cytokines, IL-10 was found to prevent subsequent 

tissue damage by inhibiting activation of phagocytes, including neutrophils and monocytes 

(145). This anti-inflammatory mediator, produced by macrophages, dendritic cells (DC), B cells, 

and various subsets of CD4+ and CD8+T cells (146), follows the same mechanism as pro-

inflammatory (TNF-α and HMGB-1) release. Because our main focus in this paper was to model 

innate immune responses, we ignored the release of IL-10 by B cells and T cells during adaptive 

immune responses; therefore, we modeled the release of IL-10 similarly to pro-inflammatory 

cytokine release: 
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In Eq. (4.19), CA represents the number of anti-inflammatory cytokine (IL-10) during 

AIR, and (
𝑟𝑐𝑎𝑚𝑎𝑥𝑀𝑏 

𝐶𝐴ℎ+𝑀𝑏
)  represents the release rate of anti-inflammatory cytokine (IL-10) by 

activated monocytes, derived from enzymatic kinetics. The first term in Eq. (4.19) calibrates the 

increase in the number of anti-inflammatory cytokines every hour and the second term 𝑢𝑐𝑎𝐶𝐴 

calibrates the decrease in the number of anti-inflammatory cytokines every hour due to natural 

degradation. Corresponding parameters and their values are defined in Table A.5 (refer to 

Appendix A). After incorporating (𝐶𝐴, 𝑥) =
𝑥

(1+
𝐶𝐴
𝐶∞

)
, the inhibition function of IL-10, we derived 

a comprehensive mathematical model for innate immunity of AIR as follows. C∞ represents the 

dissociation rate of IL-10 with initial estimated value equivalent to 0.02. 
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In this 14-equation SDMM, variables P, Mkf, Mkb, T, NR, Nf, Nb, r1, D, MR, Mf, Mb, H, and 

CA represent levels of pathogen, free Kupffer Cell, binded Kupffer Cell, TNF-α, resting 

neutrophil, free activated neutrophil, binded activated neutrophil, rate of resting neutrophil 

activated under infection, damaged tissue, resting monocyte, free activated monocytes, binded 

activated monocytes, HMGB-1, and IL-10, respectively. These variables are identified and 

selected as essential indicators in AIR. All system parameters (kpg et al.), which reflect the 

strength of the host’s immune system, are adjustable during model simulation. Detailed 

description of system parameters is presented in the Appendix A. 

 4.2.7 Step 6: SDMM incorporated with adaptive immunity 

Innate immunity plays a significant role in regulating pathogen clearance through 

multiple types of cell interactions, providing the first line of defense during early stages of 

inflammation. Compared to innate immunity, adaptive immunity is typically recognized as a late 

stage of immune response to infection activated by antigen-presenting cells (APCs) (11). The 
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nature of adaptive immune response is more complicated than innate immune responses and 

involves numerous interactions among cells and cytokines. To simplify adaptive immunity, we 

selected four representative cells including CD4+ T cells, CD8+ T cells, B cells, and antibodies, 

to simulate a series of immune responses during pathogenic inflammation. The 18-equation 

SDMM incorporated with adaptive immunity is presented as follows: 
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Eq. (4.48) describes the recruiting process of CD4+ T cells during adaptive immunity. 

The first term 𝑘𝑐𝑑4𝑇𝐶𝐷4 (1 −
𝑇𝐶𝐷4

𝑇𝑐𝑑4∞
) in Eq. (4.48) is a standard logistic function to describe the 

natural migration process of CD4+ T cells to the site of infection, and 𝑘𝑐𝑑4  is a constant 

parameter to define the recruitment rate of CD4+ T cells from lymph node to the site of infection 

under undefined mechanisms in our SDMM. Activated monocytes that are phagocytizing 

pathogens were recognized as one type of APCs; APCs display major histocompatibility 

complex class II (MHCII) peptide on the surface available for binding to T cell antigen-specific 

receptor (TCR) (160). APCs also activate the TCR on CD4+ T cells and enhance CD4+ T cell 

migration to the site of infection through a TCR-MCHII receptor-ligand response (11), 

represented by the second term,  𝑟𝑐𝑑4𝑀𝑏 (
𝑀𝑏

𝑛

𝑀𝑏
𝑛+𝑘𝑐8

𝑛 )𝑀𝑏
∗𝑇𝐶𝐷4 . Similar to the receptor-ligand 

response we modeled in innate immunity, we used a Hill-type (
𝑀𝑏

𝑛

𝑀𝑏
𝑛+𝑘𝑐8

𝑛 ) function to model the 

binding rate of activated monocytes to CD4+ T cells. Receptor-ligand kinetics 
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𝑟𝑐𝑑4𝑀𝑏 (
𝑀𝑏

𝑛

𝑀𝑏
𝑛+𝑘𝑐8

𝑛 )𝑀𝑏
∗𝑇𝐶𝐷4 represent the amount of CD4+ T cells activated by activated 

monocytes. Our model assumes that T cells become activated under TCR-MCHII receptor-ligand 

response; however, we recognize that the activation process of T cells is much more complicated 

than we modeled because T cell activation requires at least two signals in order to become fully 

activated (160-163). CD4+ T cells that undergo apoptotic are phagocytized by activated 

monocytes (164), represented by the third term in Eq. (4.48). We assume that free activated 

monocytes and binding activated monocytes phagocytize binding CD4+ T cells, represented by a 

receptor-ligand response 𝑘𝑐𝑑4𝑀
[𝑇𝑐𝑑4

𝑛]

[𝑇𝑐𝑑4
𝑛+𝑘𝑐10

𝑛 ]
𝑇𝐶𝐷4

∗(𝑀𝑏 + 𝑀𝑓) , with the binding rate equal to 

𝑘𝑐𝑑4𝑀
[𝑇𝑐𝑑4

𝑛]

[𝑇𝑐𝑑4
𝑛+𝑘𝑐10

𝑛 ]
 and the phagocytosis rate equal to 𝑘𝑐𝑑4𝑀 . The fourth term, 𝑢𝑐𝑑4𝑇𝐶𝐷4, in Eq. 

(4.48) describes a natural apoptosis process of CD4+ T cell during migration and activation 

processes.  

Similar to Eq. (4.48), Eq. (4.49) describes the recruitment process of CD8+ T cells during 

adaptive immunity. The activation process of CD8+ T cells through a major histocompatibility 

complex class I peptide (MHCI)-TCR mechanism follows similar receptor-ligand kinetics of 

CD4+ T cells, represented by the second term, 𝑟𝑐𝑑8𝑀𝑏 (
𝑀𝑏

𝑛

𝑀𝑏
𝑛+𝑘𝑐8

𝑛 )𝑀𝑏
∗𝑇𝐶𝐷4,  in Eq. (4.49). The 

activation process of CD4+ T cells and CD8+ T cells is depicted in Figure. 4.3. 

CD4+ T and CD8+ T cells mediate the host response to sepsis in various ways. 

Experimental studies have shown that TH1 effector cells proliferated by CD4+ T cells can 

improve the phagocytosis rate of Kupffer Cells, activated neutrophils, and activated monocytes 

through a receptor-ligand response (165). To simplify our SDMM, we used CD4+ T cell 

population to substitute for TH1 effector cell population, and we measured a decrease in the 

amount of pathogens via CD4+ T cell-dependent interactions using receptor-ligand kinetics, 
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represented by the sixth term 𝑟𝑝𝑐𝑑4
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐6
𝑛 ]

𝑇𝐶𝐷4𝑃
∗ in Eq. (4.34). CD8+ T cells are cytotoxic cells 

because their primary function is to kill infected target cells (165, 166). Therefore, we 

incorporated receptor-ligand kinetics into the third term in Eq. (4.35), the fourth term in Eq. 

(4.40), and the third term in Eq. (4.45) to measure the decrease in binding Kupffer Cells, binding 

activated neutrophils, and binding activated monocytes. In SDMM, we used the population of 

binding Kupffer Cells, binding activated neutrophils, and binding activated monocytes to 

represent the population of infected cells under the assumption that binding cells bind to 

pathogens. Therefore, the population of binding cells was also used to represent the population of 

APCs in our SDMM. 

Figure 4.3 A simplified mechanism of T cell activation 

 

 

Macrophage activation is related to IFN-gamma released by T cells (167-169). Because 

we did not calibrate INF-gamma in our SDMM, we calculated the monocyte activation process 

using CD4+ T cell and CD8+ T cell populations instead of interferon-gamma (IFN-gamma) 
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population for simplicity. Under this assumption, we revised the second term in Eq. (4.43) and 

the first term in Eq. (4.44) to  
𝑟2𝑀𝑅(𝐻+𝑇+𝑇𝐶𝐷4+𝑇𝐶𝐷8)∗

(1+
𝐶𝐴
𝐶∞

)
. The newly revised term, 

𝑟2𝑀𝑅(𝐻+𝑇+𝑇𝐶𝐷4+𝑇𝐶𝐷8)∗

(1+
𝐶𝐴
𝐶∞

)
, incorporates the CD4+ T cell and CD8+ T cell populations to reflect the 

role of CD4+ T cells and CD8+ T cells in the resting monocyte activation process. 

Th1 or Th2 effector cells activate B cells to release antibodies (11). Eq. (4.50) describes 

the activation process of B cells by the CD4+ T cell population under the assumption that the 

CD4+ T cell population can represent Th1 and Th2 effector cell populations due to model 

simplification. The first term 𝑘𝐵𝐵 (1 −
𝐵

𝐵∞
) in Eq. (4.50) measures the migration process of B 

cells from lymph nodes to the site of infection, which is derived from a standard logistic 

function. Derivation of the second term, 𝑟𝐵𝑡
[𝐵𝑛]

[𝐵𝑛+𝑘𝑐9
𝑛 ]

𝐵∗𝑇𝑐𝑑4, in Eq. (4.50) is similar to derivation 

of the second terms in Eq. (4.48) and Eq. (4.49), following a receptor-ligand kinetics. Decrease 

in B cell population was induced by natural apoptosis, represented by the third term, 𝑢𝐵𝐵, in Eq. 

(4.50). Plasma cells secrete antibodies (11), but we did not incorporate this specific mechanism 

into our SDMM. Instead, we modeled that antibodies were released by B cells. In Eq. (4.51), the 

release of antibodies from B cells is represented by the first term, (
𝑟𝐴𝑏𝑚𝑎𝑥𝐵 

𝑚𝐴𝑏+𝐵
)𝐵,  following 

receptor-ligand kinetics and enzymatic kinetics (Michaelis-Menten), similar to TNF-α, HMGB-

1, IL-10 release process described in innate immunity. The second term, 𝑢𝐴𝑏𝐴, in Eq. (4.51) 

describes the natural catabolism of antibodies. When antibodies are released from plasmas cells, 

TH cells define the isotype of the antibody (11); we did not model specific isotype of antibodies 

in our model. Antibodies can opsonize pathogen and contribute to further pathogen clearance at 

the late stage of inflammation (11, 165), as represented by the fifth term, 𝑟𝑝𝐴𝑏
[𝑃𝑛]

[𝑃𝑛+𝑘𝑐5
𝑛 ]

𝐴𝑃∗, in Eq. 
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(4.34). The definition and corresponding experimental data for newly added system parameters 

in SDMM incorporated with adaptive immunity are summarized in Table A. 6 (refer to the 

Appendix A). 

 4.3 Simulated results 

Using SDMM, we identified three distinct dynamic patterns of indicators that represent 

three states of AIR progression: Healing Process, Persistent Infection, and Organ Dysfunction. 

Based on our computed results, we concluded that a Healing Process occurs when the level of 

pathogens, level of phagocytic cells (neutrophils and monocytes), and level of inflammatory 

cytokines (TNF-α, HMGB-1, and IL-10) oscillates below threshold during infection. We 

recognized that a Persistent Infection occurs if inflammatory responses are active (damaged 

tissue oscillates above threshold during infection). We also recognized that Organ Dysfunction 

occurs if an overwhelming load of bacteria is observed. Computed results are shown in Figure 

4.4. 

In order to initially validate our SDMM, model behaviors were compared to results from 

experimental designs under specific parameter-settings. If results did not match, model 

reconfiguration was implemented by adjusting the relationship between components (indicators) 

or fine-tuning parameter values. We compared our simulated results to experimental results 

(170) and simulated results from a latest version of an AIR progression mathematical model 

(53). We observed that our simulated results had better agreement with experimental results 

compared to simulated results from the previous mathematical model because our simulated 

results captured a dampened oscillated infection. We recognized that this improvement of 

simulation accuracy is a result of additional cellular and molecular pathways of AIR progression 

incorporated into our SDMM compared to previous mathematical models (53, 54). For example, 
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we simulated the effect of monocytes in our SDMM by incorporating interactions of monocytes 

with other cells and cytokines. In contrast, previous mathematical models simulated the 

combined effect of neutrophils and monocytes with the limitation of oversimplication of AIR 

progression. Our simulated results indicated that time required for peak levels of TNF-α, 

HMGB-1, and IL-10 is approximately 12 hrs, 18 hrs, and 24 hrs, respectively. These results are 

consistent with results from clinical trials (157), as shown in Figure 4.5. 

Figure 4.4 Dynamic patterns of AIR progression related to various initial levels of 

indicators and adjustable system parameters. X-axis represents time (in hours) and Y-axis 

represents number of indicators (pathogen, dead hepatocyte, activated neutrophil, 

activated monocyte, TNF-α, HMGB-1, and IL-10) during AIR progression. (a) Combined 

dynamic patterns of indicators represent a Healing Process in AIR progression (pathogen 

initial counts = 100). (b) Combined dynamic patterns of indicators represent a Persistent 

Infection in AIR progression (pathogen initial counts = 10000). (c) Combined dynamic 

patterns of indicators represent Organ Dysfunction in AIR progression (pathogen initial 

counts = 100000) 
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Figure 4.5 Dynamic patterns of TNF-α, HMGB-1, and IL-10 in mice livers during 

AIR generated from our SDMM. X-axis represents time (in hours) and Y-axis represents 

number of indicators 

 

 

 

We also explored the impact of pathogen initial load on phagocytic cells, inflammatory 

cytokines, and damaged tissue at low, medium, and high levels during AIR progression. We 

found that dynamic patterns of AIR progression were identified as “Healing Process” if the 

initial number of pathogens was set below 3.2 (result was transformed to a base-10 logarithm) in 

simulation; dynamic patterns of AIR progression were identified as “Persistent Infection” if the 

initial number of pathogens was set between 3.2 and 5.9 (result was transformed to a base-10 

logarithm) in simulation; and dynamic patterns of AIR progression were identified as “Organ 

Dysfunction” if the initial number of pathogens was set above 5.9 (result was transformed to a 

base-10 logarithm) in simulation. During some simulation replications, our findings are 

inconsistent with evidences found from experimental studies (171-173) that indicated outcomes 

of AIR progression are more likely to lead to a healthy state with a low-dose of pathogens, which 

will be further illustrated in the discussion section.  

By incorporating adaptive immunity to SDMM, we generated dynamic patterns of 

pathogen count, dead hepatocyte count, activated neutrophil count, activated monocyte count, 

TNF-α, HMGB-1, IL-10, CD4+ T cell, CD+ 8 T cell, B cell, and antibodies using Mathematica 

(Wolfram Mathematica 9.0).  Computed results are shown in Figure 4.6, 4.7. 
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Figure 4.6 An adaptive immunity influence on outcomes of sepsis progression 

(pathogen initial counts = 10000). X-axis represents time (in hours) and Y-axis represents 

number of indicators 
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Figure 4.7 An adaptive immunity influence on outcomes of sepsis progression 

(pathogen initial counts = 100000). X-axis represents time (in hours) and Y-axis represents 

number of indicators 
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Based on our computed results, we observed pathogen count converged toward 0 at 

approximately 14 days (336 hrs) post infection during a Persistent Infection when the effect of 

adaptive immunity was incorporated into the full model. Compared to Persistent Infection 

observed in innate immunity (shown in Figure 4.4 (b)), the activated neutrophil count and 

HMGB-1 count converged toward 0 at approximately 25 days (600 hrs) post infection. 

Convergence in TNF-α count occurred at approximately 14 days post infection, earlier than 

convergence in HMGB-1 count in innate immunity. The peak level of activated monocytes 

increased to 26000, which was 2 times higher than the peak level of activated monocytes 

observed in innate immunity. No additional dead hepatocytes were observed after 25 days (600 

hrs) post infection because cells (activated neutrophils and activated monocytes) and cytokines 

(TNF-α, HMGB-1, and IL-10) associated with further tissue damage converged toward 0, 

indicating adaptive immunity positively impacted outcomes of sepsis progression. 

By incorporating CD4+ T cells, CD8+ T cells, B cells and antibodies into innate 

immunity, we observed that elevated pathogen count during Organ Dysfunction began to drop at 

approximately 20 days post infection (500 hrs), and the process of pathogen clearance induced 

by adaptive immunity persisted approximately 5 days post infection. Pathogen count returned to 

0 at 25 days post infection (720 hrs). Cells (activated neutrophils and activated monocytes) and 

cytokines (TNF-α, HMGB-1, and IL-10) associated with innate immunity dropped significantly 

during simulation, but  CD4+ T cells, CD8+ T cells, and B cells persistently elevated after 500 

hrs post infection, indicating adaptive immunity’s contribution to pathogen clearance during the 

late stage of sepsis progression. A mice model infected with a high dose of Escherichia coli 

(174) showed that the number of CD4+ T cells, CD8+ T cells, and B cells persisted throughout 7 
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days, thereby conforming to dynamic patterns of CD4+ T cells, CD8+ T cells, and B cells 

observed in our SDMM. 

 4.4 Stability analysis 

In order to study model behaviors under various parameter settings and initial conditions, 

bifurcation diagrams were used to conduct stability analysis for each subsystem during model 

construction. The objective of stability analysis was to identify key parameters or key processes 

in sepsis episodes. Numerical analysis that we used is similar to the previous study (60). 

We started with stability analysis by calculating equilibrium points in Kupffer Cell local 

response model. The equilibrium points were derived by setting equations in Kupffer Cell local 

response model free of the time (time is denoted by t in equations), which imply that: 

𝒌𝒑𝒈𝑷̅(𝟏 −
𝑷̅

𝑷∞
) − 𝒓𝒑𝒎𝒌

[𝑷̅𝒏]

[𝑷̅𝒏+𝒌𝒄𝟏
𝒏 ]

𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ 𝑷̅∗ = 𝟎    (4.52) 

𝒌𝒎𝒌𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ (𝟏 −

𝑴𝒌𝒇̅̅ ̅̅ ̅̅

𝑲∞
) + 𝒌𝒎𝒌𝒖𝒃𝑴𝒌𝒃

̅̅ ̅̅ ̅̅ −
[𝑷̅𝒏]

[𝑷̅𝒏+𝒌𝒄𝟏
𝒏 ]

𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ 𝑷̅∗ − 𝒖𝒎𝒌𝑴𝒌𝒇

̅̅ ̅̅ ̅̅ = 𝟎  (4.53) 

[𝑷̅𝒏]

[𝑷̅𝒏+𝒌𝒄𝟏
𝒏 ]

𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ 𝑷̅∗ − 𝒌𝒎𝒌𝒖𝒃𝑴𝒌𝒃

̅̅ ̅̅ ̅̅ = 𝟎    (4.54) 

To solve Eq. (4.52), Eq. (4.53), and Eq. (4.54), we firstly added Eq. (4.53) to Eq. (4.54), 

which eliminate the Eq. (4.53) and Eq. (4.54) to Eq. (4.55): 

𝒌𝒎𝒌𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ (𝟏 −

𝑴𝒌𝒇̅̅ ̅̅ ̅̅

𝑲∞
) − 𝒖𝒎𝒌𝑴𝒌𝒇

̅̅ ̅̅ ̅̅ = 𝟎    (4.55) 

By solving Eq. (4.52) and Eq. (4.55) together, we could obtain the following feasible 

equilibrium points: 

If kmkub ≠ 0, 

(𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0 )𝑜𝑟 (𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ = 𝑃∞, 𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) 𝑜𝑟 ( 𝑀𝑘𝑓
̅̅ ̅̅ ̅̅ =  

𝑘∞(𝑘𝑚𝑘 − 𝜇𝑚𝑘)

𝑘𝑚𝑘

,  𝑃̅ = 0,𝑀𝑘𝑏
̅̅ ̅̅ ̅ = 0) 

The above equilibrium points are valid if the following conditions are satisfied: 

k∞ ≠ 0, P∞ ≠ 0, kc1 ≠ 0, n > 0 
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From the derived feasible equilibrium points, we obtained two disease free equilibrium 

points given as: 

(𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) 𝑜𝑟 (𝑀𝑘𝑓
̅̅ ̅̅ ̅ =

𝑘∞(𝑘𝑚𝑘 − 𝜇𝑚𝑘)

𝑘𝑚𝑘
, 𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0)  

We further calculated the associated Jacobian matrix to determine stability of the disease 

free equilibrium points, the Jacobian matrix was given as follows: 

[
 
 
 
 
 𝒌𝒑𝒈 −

𝟐𝒌𝒑𝒈𝑷̅

𝑷∞
−

𝒓𝒑𝒎𝒌𝑴𝒌𝒇̅̅ ̅̅ ̅̅ 𝝈

𝑷∞
, −𝒓𝒑𝒎𝒌

𝑷̅𝒏+𝟏

(𝑷̅𝒏+𝒌𝒄𝟏
𝒏 )𝑷∞

, 𝟎

−
𝑴𝒌𝒇̅̅ ̅̅ ̅̅ 𝝈

𝑷∞
, (𝒌𝒎𝒌 − 𝒖𝒎𝒌) −

𝟐𝒌𝒎𝒌𝑴𝒌𝒇̅̅ ̅̅ ̅̅

𝑲∞
−

𝑷̅𝒏+𝟏

(𝑷̅𝒏+𝒌𝒄𝟏
𝒏 )𝑷∞

, 𝒌𝒎𝒌𝒖𝒃

𝑴𝒌𝒇̅̅ ̅̅ ̅̅ 𝝈

𝑷∞

𝑷̅𝒏+𝟏

(𝑷̅𝒏+𝒌𝒄𝟏
𝒏 )𝑷∞

, −𝒌𝒎𝒌𝒖𝒃]
 
 
 
 
 

 (4.56) 

Where, σ =
𝑛𝑃̅2𝑛−𝑛𝑃̅𝑛(𝑃̅𝑛+𝑘𝑐1

𝑛 )

(𝑃̅𝑛+𝑘𝑐1
𝑛 )

2  

Replacing the first disease free equilibrium point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0 ) into the 

Jacobian matrix above (Eq. (4.56)), we can further derive the following Jacobian matrix: 

𝑱𝟏 = [

𝒌𝒑𝒈 𝟎 𝟎

𝟎 𝒌𝒎𝒌 − 𝒖𝒎𝒌 𝒌𝒎𝒌𝒖𝒃

𝟎 𝟎 −𝒌𝒎𝒌𝒖𝒃

]    (4.57) 

In order to find the associated eigenvalues with (4.57), we solved the following equation: 

𝐝𝐞𝐭 (𝑱𝟏 − 𝝀𝑰) = [

𝒌𝒑𝒈 − 𝝀 𝟎 𝟎

𝟎 𝒌𝒎𝒌 − 𝒖𝒎𝒌 − 𝝀 𝒌𝒎𝒌𝒖𝒃

𝟎 𝟎 −𝒌𝒎𝒌𝒖𝒃 − 𝝀

] = 𝟎  (4.58) 

Using Mathematica (Wolfram Mathematica 9.0), we obtained the eigenvalues of Eq. 

(4.58) as follows: 

λ11 = -kmkub, λ21 = kpg, λ31= kmk - umk 

Thus, we concluded that the first disease free equilibrium point is stable if and only if the 

following conditions are satisfied: 

kmkub > 0 and kpg < 0 and kmk < umk 
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Following a similar procedure above, we replaced the second disease free equilibrium 

point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ =  

𝑘∞(𝑘𝑚𝑘−𝜇𝑚𝑘)

𝑘𝑚𝑘
,  𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) into the Jacobian matrix in Eq. (4.56). 

The Jacobian matrix associated with the second disease free equilibrium point was 

revised to: 

𝑱𝟐 = [

𝒌𝒑𝒈 𝟎 𝟎

𝟎 𝒖𝒎𝒌 − 𝒌𝒎𝒌 𝒌𝒎𝒌𝒖𝒃

𝟎 𝟎 −𝒌𝒎𝒌𝒖𝒃

]     (4.59) 

Again, by solving Eq. (4.60): 

𝒅𝒆𝒕 (𝑱𝟐 − 𝝀𝑰) = [

𝒌𝒑𝒈 − 𝝀 𝟎 𝟎

𝟎 𝒖𝒎𝒌 − 𝒌𝒎𝒌 − 𝝀 𝒌𝒎𝒌𝒖𝒃

𝟎 𝟎 −𝒌𝒎𝒌𝒖𝒃 − 𝝀

] = 𝟎   (4.60) 

We obtained the eigenvalues associated with the second disease free equilibrium point, 

and the eigenvalues were expressed as follows: 

λ12 = -kmkub, λ22 = kpg, λ32= umk - kmk 

Thus, the stability of the second disease free equilibrium can be achieved if and only if 

the following conditions are satisfied: 

kmkub > 0 and kpg < 0 and kmk > umk 

Because kpg (the growth rate of pathogen) was assumed to be always larger than 0, we 

concluded that the disease free equilibrium points for Kupffer Cell local response model are 

always unstable.  

In order to verify our conclusion, we did a numerical study on the second disease free 

equilibrium point(𝑀𝑘𝑓
̅̅ ̅̅ ̅ =  12000000,  𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0).We found the disease free equilibrium 

point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ =  12000000,  𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) changed if pathogen load was changed from 0 to 2 

at equilibria (a small perturbation was given), the simulated results of change in the disease free 

equilibrium point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ =  12000000,  𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0)  are shown in Figure 4.8. 
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Figure 4.8 Change in the disease free equilibrium point (𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ =  𝟏𝟐𝟎𝟎𝟎𝟎𝟎𝟎,  𝑷̅ =

𝟎,𝑴𝒌𝒃
̅̅ ̅̅ ̅̅ = 𝟎) when P = 2 and kpg =1.2 

 

 

We also analyzed stability of the pathogen saturation equilibrium point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ =

𝑃∞, 𝑀𝑘𝑏
̅̅ ̅̅ ̅ = 0). By numerical analysis, we concluded that the pathogen saturation equilibrium 

point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0, 𝑃̅ = 𝑃∞, 𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) is stable if the following conditions are satisfied: 

kmk < 0.5 and umk > 0.2 

When kmk > 0.5, the pathogen saturation equilibrium point (𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0,  𝑃̅ = 𝑃∞, 𝑀𝑘𝑏

̅̅ ̅̅ ̅ =

0) became unstable. Simulated results of change in the pathogen saturation equilibrium point 

(𝑀𝑘𝑓
̅̅ ̅̅ ̅ = 0,  𝑃̅ = 𝑃∞, 𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0)  are shown in Figure 4.9. 

Figure 4.9 Change in the pathogen saturation equilibrium point (𝑴𝒌𝒇
̅̅ ̅̅ ̅̅ = 𝟎,  𝑷̅ =

𝑷∞,𝑴𝒌𝒃
̅̅ ̅̅ ̅̅ = 𝟎) when Mkf = 2 and kmk = 0.9 

 

 

Stability analysis of equilibrium points in Kupffer Cell local response model indicated 

that Kupffer Cell local response model is not a stable system. The disease free equilibrium point 

(𝑀𝑘𝑓
̅̅ ̅̅ ̅ =  12000000,  𝑃̅ = 0,𝑀𝑘𝑏

̅̅ ̅̅ ̅ = 0) changed when the second infection occurred (P was 
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changed from 0 to 2). However, recruiting more Kupffer Cells positively contributed to the 

pathogen clearance after a saturated infection (P = P∞), as shown in Figure 4.9. 

Bifurcation diagrams are graphical tools to visualize dynamic system behavior changes 

with parameters. In this paper, we used Matcont to generate bifurcation diagrams. Matcont, a 

Matlab continuation package with a graphic user interface (GUI) for interactive numerical study 

of parameterized nonlinear ordinary differential equations (ODEs), computes curves of 

equilibria, limit points, Hopf point, limit cycles, fold, torus, and branch point bifurcation of limit 

cycles (153).  

In bifurcation diagrams, Y-axis represents equilibria of state variable and X-axis 

represents value of system parameter that generates equilibria. Therefore, bifurcation diagrams 

reflect change in equilibria of dynamic systems (change in number of equilibria or change in 

numerical value of equilibria) in relation to change in numerical value of system parameters. We 

analyzed stability of dynamic systems by identifying types of bifurcation points in bifurcation 

diagrams because bifurcation points are defined as points at which stability changes from stable 

to unstable. Two typical bifurcation points were evident in our bifurcation diagrams: limit point 

(marked as “LP” in Matcont) and Hopf point (marked as “H” in Matcont). Neutral Saddle point 

was marked as “NS” in the bifurcation diagram, but it is not a bifurcation point for equilibrium 

because it is identified as a hyperbolic saddle. Figure 4.10 shows that change in equilibria of 

state variable pathogen is related to change in system parameters in the neutrophil immune 

response model. 

LPs in bifurcation diagrams of neutrophil immune response model appeared when two 

equilibria merged into one equilibrium; the number of equilibria of dynamic systems changed 

when LPs were detected. LPs are also turning points at which dynamic systems change from 
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stability to instability. In Figure 4.10 (a), stable equilibria of pathogen are observed when system 

parameter kpg increases from 0 to 4.93. When kpg equals 4.93, LP is identified and unstable 

equilibria of pathogen are generated as kpg decreases from 4.93 to 0. Therefore, equilibria of 

pathogen of our neutrophil immune response model are bistable when kpg ranges from 0 to 4.93. 

Similarly, equilibria of pathogen in Figure 4.10 (b) are bistable when system parameter rpn 

ranges from 25 to 200. In Figure 4.10 (c), equilibria of pathogen are bistable when un ranges 

from 0 to 0.21. 

Figure 4.10 (a) Computed equilibrium curve of pathogen in relation to system 

parameter kpg in neutrophil immune response model. (b) Computed equilibrium curve of 

pathogen in relation to system parameter rpn in neutrophil immune response model. (c) 

Computed equilibrium curve of pathogen in relation to system parameter un in neutrophil 

immune response model. (d) Computed equilibrium curve of pathogen in relation to system 

parameter rt2max in neutrophil immune response model 
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A Hopf bifurcation, identified in Figure 4.10 (d), is a periodic bifurcation in which a new 

limit cycle is born from a stationary solution. Hopf point, a turning point for periodic orbits, is 

detected when system parameter rt2max changes. The detected Hopf point in Figure 4.10 (d) 

begins a limit cycle continuation in which two cycles collide and disappear. Because the first 

Lyapunov coefficient (154) is positive, an unstable limit cycle exists, bifurcating from this 

equilibrium. Figure 4.11 (a) and (b) show the family of limit cycles bifurcating from detected 

Hopf point in Figure 4.10 (d). The family of limit cycles is represented using limit cycle planes, 

such as TNF-a-pathogen plane and Nf –pathogen plane. Figure 4.11 (c) shows a limit cycle 

sphere represented by a TNF-a, Nf , and pathogen plane. Figure 4.11 (d) indicates that two limit 

cycles occur when rt2max equals 5495.64 or 6265.00. 

Figure 4.11 (a) Family of limit cycles bifurcating from the Hopf point in TNF-a and 

pathogen plane. (b) Family of limit cycles bifurcating from the Hopf point in Nf and 

pathogen plane. (c) Equilibria and limit cycles in (Nf, pathogen, and TNF-a)-space. (d) 

Period of the cycle as function of rt2max 

 

 



 

130 

In Figure 4.11 (c), the first family of limit cycle (small red cycle in the center of the 

sphere) spirals outward as system parameter rt2max decreases, and the second family of limit cycle 

appears when rt2max decreases to 5495.64 (a red cycle line appears). As rt2max increases from 

5495.64, the second family of limit cycle spirals outward again. When rt2max increases to 

6265.00, an unstable equilibrium is detected, as depicted in Figure 4.12 (a). If value of rt2max is 

between 5495.64 and 6265.00, equilibria of the neutrophil immune response model are stable 

and converged, as shown in Figure 4.12 (b). This finding infers either a high release rate of TNF-

α (rt2max is above 6265.00) or a low release rate of TNF-α (rt2max is below 5495.64), thereby 

inducing generation of unstable equilibria in the neutrophil immune response model. From a 

biological response perspective, high release rate of TNF-α indicates overproduction of pro-

inflammatory cytokines related to overwhelming pro-inflammation; low release rate of TNF-α 

leads to failure to recruit a sufficient amount of neutrophils related to infection clearance. Based 

on our stability analysis, we found that the release rate of TNF-α can positively or negatively 

influence outcomes of AIR progression, thereby conforming to experimental perturbation 

findings regarding effectiveness of anti-TNF-α therapies (46, 47, 175). 

Continued stability analysis on the monocyte immune response model indicated that 

change in system parameters krd, unr, and un induces bistability of the monocyte immune 

response model. We observed that the monocyte immune response model was bistable if at least 

one of the following three conditions was met: krd was between 0 to 0.32, unr was between 0 to 

0.28, or un was between 0 to 0.21. Specifically, we observed that rt2max (maximum release rate of 

TNF-α by activated neutrophil) and mt2 (number of activated neutrophils at which the reaction 

rate is half of the maximum production rate) are essential for oscillated monocyte immune 

response model. Similar to the neutrophil immune response model, limit cycles bifurcate from 
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Hopf point, Therefore, we conclude that the oscillated infection is dependent on the amount of 

released TNF-α and recruited neutrophils in AIR progression. However, released monocytes and 

associated cytokines such as HMGB-1 do not contribute to oscillation in AIR progression. 

Figure 4.12 (a) Pathogen, activated neutrophil and TNF-α diverge at unstable 

equilibria in neutrophil immune response model when rt2max is above 6265.00 (b) Pathogen, 

activated neutrophil, and TNF-α converge at stable equilibria in neutrophil immune 

response model when rt2max is between 5495.64 and 6265.00 

 

 

Building upon the monocyte immune response model, we incorporated the effect of anti-

inflammatory cytokine (IL-10) into the full model. We observed that Hopf point was detected 

when rt2max increased to 128000 because anti-inflammatory cytokine inhibited activation of 

phagocytic cells (neutrophils and monocytes). This trend indicates that infection oscillation 

(harmful outcomes) requires additional pro-inflammation activated by neutrophils in the full 

model, compared to monocyte immune response model without including the effect of anti-

inflammatory cytokine. Therefore, our simulated results demonstrated that AIR progression is 

more likely to end with healing process if the effect of anti-inflammatory cytokine is 

incorporated. 
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Strengthened (increased rt2max and mt2) pro-inflammatory immune responses could also 

induce stable or unstable equilibria, leading to a dampened oscillated infection or diverged 

infection, similar to our observations in Figure 4.12. However, we observed that if high effect of 

anti-inflammatory cytokine was incorporated (dissociation rate equal to a base-10 logarithm 8) at 

the beginning of infection, AIR progression resulted in an unstable overwhelming pathogen load 

at equilibria (refer to Figure 4.12(a)). However, a stable dampened oscillated pathogen load at 

equilibria (refer to Figure 4.12(b)) was observed if medium effect of anti-inflammatory cytokine 

(dissociation rate equal to a base-10 logarithm 5) was incorporated. These observations 

confirmed that effects of anti-inflammatory cytokine can be positive or negative to AIR 

progression depending on levels of anti-inflammatory cytokine. 

We conducted bifurcation analysis for the model incorporated with adaptive immunity, 

similar to bifurcation analysis we conducted in the neutrophil subsystem, monocytes subsystem, 

and full model. We selected four bifurcation diagrams as shown in Figure 4.13. 

As shown in Figure 4.13 (a), two Hopf bifurcations were detected at kpg = 2.8 and kpg = 

4.1. Similarly, Hopf bifurcations were also detected in Figure 4.13 (b) and Figure 4.13 (c) when 

rpn = 17, rpn= 38, or un = 0.047. Compared to innate immunity, incorporation of adaptive 

immunity induced a further stablized limit cycles, bifurcation from the equilibrium. Our stability 

analysis shown in Figure 4.13 (d) illustrates that the Hopf bifurcation move to lower rt2max value 

compared to Hopf bifurcation detected in innate immunity. The change in bifurcations indicated 

the contribution of adaptive immunity to sepsis progression. 

In Figure 4.14 (a), (b), and (c), the first family of limit cycle (small red cycle in the center 

of the sphere, marked as LPC) spiral outward as system parameter kpg decreases, and the second 

family of limit cycle appears when kpg decreases to 2.4 (a red cycle line appears). As kpg increases 
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from 2.4, the second family of limit cycle spirals outward again. A period doubling is detected 

when kpg increases to 3, marked as PD in Figure 4.14. Because the first Lyapunov coefficient is 

negative, limit cycle bifurcations from the equilibrium are stable compared to unstable limit 

cycles detected in the neutrophil subsystem. 

Figure 4.13 (a) Computed equilibrium curve of pathogen in relation to system 

parameter kpg in the full model incorporated with adaptive immunity. (b) Computed 

equilibrium curve of pathogen in relation to system parameters rpn in the full model 

incorporated with adaptive immunity. (c) Computed equilibrium curve of pathogen in 

relation to system parameters un in the full model incorporated with adaptive immunity. 

(d) Computed equilibrium curve of pathogen in relation to system parameters rt2max in 

the full model incorporated with adaptive immunity 
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Figure 4.14 (a) Family of limit cycles bifurcation from the Hopf point (Kpg = 2.8) in 

TNF-α and pathogen plane. (b) Family of limit cycles bifurcating from the Hopf point (Kpg 

= 2.8) in Nf and pathogen plane. (c) Equilibria and limit cycles in (Nf, pathogen, and TNF-

α)-space. (d) Period of the cycle as function of kpg 

 

(a) (b)

(c) (d)
 

 4.5 Discussion 

Experimental results in literature have suggested that anti-inflammatory mediator inhibits 

activation of phagocytes and reduces the ability of activated phagocytes to attack pathogen (39), 

consequently related to mortality and severity of infection in sepsis (133, 158). However, other 

experimental studies have shown that anti-inflammatory cytokine down-regulates production of 

secreted cytokines by inhibiting various behaviors of activated immune cells, thereby reducing 

the risk of tissue damage (25, 26, 157). Our computed results from SDMM suggested that the 

effect of anti-inflammatory cytokines could be a “double-edged sword” for AIR because anti-

inflammatory cytokine would either decrease mortality associated with tissue damage or increase 
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mortality associated with high load of bacteria. With a low effect of anti-inflammatory cytokine 

(dissociation rate equal to a base-10 logarithm 2), our computed results showed that anti-

inflammatory cytokine fails to inhibit the release of activated immune cells (activated neutrophils 

and activated monocytes) and subsequent cytokine production. Levels of damaged tissue 

significantly accumulated during the first 500 hours (approximately 20 days) of simulation. With 

the high effect of anti-inflammatory cytokine (dissociation rate equal to a base-10 logarithm 8), 

our simulated results and stability analysis demonstrated that sepsis progression leads to 

increased chance of death caused by overwhelming pathogen load at the end of simulation. 

To further investigate effects of anti-inflammatory cytokines, we simulated a medium 

effect of anti-inflammatory cytokine (dissociation rate equal to a base-10 logarithm 5) and 

compared simulated results to high effect of anti-inflammatory cytokine and low effect of anti-

inflammatory cytokine. Our computed results showed that pathogen load decreases during the 

first 100 hours of infection in combination with the total amount of dead hepatocytes. 

Furthermore, we observed that production of activated neutrophils and activated monocytes 

declined to baseline near 0 at the end of simulation, indicating a positive trend of sepsis 

progression to a healthy pattern. Therefore, we conclude that the level of anti-inflammatory 

cytokines significantly impacts direction of sepsis progression. We also conclude that levels of 

anti-inflammatory cytokine and time of intervention of anti-inflammatory cytokines determine 

outcomes of AIR under specific system configuration. Based on simulated results from our 

SDMM, we inferred that the survival rate of the host (chance of ending with a Healing Process) 

could be improved if a medium level of IL-10 injection was set between 3 hrs and 6 hrs after 

infection. 
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We assert that care must be taken when applying simulated results to clinics before the 

implementer fully understands the underlying setting of the simulation. Because it was difficult 

to simultaneously incorporate every intermediate biological process of inflammatory response, 

reasonable assumptions must be made when building a mathematical model. In our SDMM, we 

did not model Salmonella replicating within neutrophils. However, experimental study (176) 

asserted that neutrophils and macrophages were the primary sites for Salmonella proliferation in 

a mouse. Therefore, Salmonella replication could be considered in the future model if additional 

literature supported this fact. Various T cell types were reported to be able to express IL-10 

under various conditions (177). Therefore, IL-10 production estimation is difficult because IL-10 

levels produced by T cells were various due to stimuli type or the strength of stimuli. In our 

model, we did not differentiate helper T cells to specific types that are identified in biological 

process. Plasma cells secrete antibodies (11), but we did not incorporate this specific mechanism 

in our SDMM. Instead, we modeled that B cells released antibodies. When antibodies are 

released from plasmas cells, TH cells define the isotype of the antibody (11); however, we also 

did not model specific isotype of antibody in our model. Furthermore, we ignored the fact that 

antibody opsonization induces stimulation of cytokine release when they are phagocytized by 

inflammatory cells. For example, we ignored the fact that cytokine release from the processes 

that antibody-opsonized Salmonella are phagocytized by neutrophils and macrophages (11). 

Also, we ignored effects of other pro-inflammatory cytokines such as IL-1, IL-12, and IL-8 in 

our SDMM. Biological immune responses responding to infection are recognized as a series of 

complex processes including intracellular transductions (transfer of DNA) and intercellular 

pathways between cells. These biological processes will be developed with evolved 

understanding and continued investigation of cellular and molecular mechanisms (115), which 
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could be further research interests in the field. In our SDMM, we used numerical count, or the 

number of indicators in the simulation, as the estimate of cell or cytokine number in AIR. In 

practice, physicians must translate data to measurable units of indicators similar to how we 

translated clinical data to simulation data. Furthermore, our conclusion regarding IL-10 was 

drawn based on specific simulation settings including setting system parameters and initial loads 

of indicators. Initial system setting must be fully understood before considering application of 

IL-10 level for per-clinic experiments.  

Based on our simulated results regarding anti-inflammatory cytokine, we propose a 

hypothesis testing: If medium levels of anti-inflammatory antibody were injected into the host 

with sepsis between 3 hrs and 6 hrs would survival rates of the host improve under 

hyperinflammation? The purpose of this hypothesis testing is to detect effective zones of the 

anti-inflammatory antibody related to Healing Process of AIR in order to help develop 

therapeutic agents in pre-clinical trials. 

According to our simulation study, we found that initial levels of pathogen significantly 

impact dynamic patterns of AIR progression. However, inconsistency in observations between 

our simulated results and existing experimental studies force us to propose another hypothesis 

testing: What is the range of initial loads in pathogen with a maximum likelihood of leading to a 

Healing Process? After discussing with experts in the field, our initial assumption is that if the 

initial load of pathogen is low, AIR progression have a chance to end with a Persistent Infection 

because immune responses fail to be fully activated at the beginning of infection. However, if the 

initial load of pathogen is high, the immune system fails to control and regulate infection that 

could also lead to Organ Dysfunction. The purpose of this hypothesis testing is to detect 
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dangerous zones of initial loads in pathogens in order to develop effective therapeutic targets in 

pre-clinical trials. 

Mathematical modeling, at various levels, could regulate individual components of 

inflammation and provide insights into biological interactions in order to understand complex 

inflammatory processes during sepsis progression. However, the traditional mathematical model 

has unique disadvantages. First, the model fails to capture stochastic process for heterogeneous 

populations. Second, the model fails to describe local interactions between heterogeneous 

populations, such as the movement of tissue macrophage towards the local pathogen in the 

infected area. In order to improve simulation accuracy and overcome disadvantages of the 

mathematical model, a hybrid modeling framework may be used to model and simulate sepsis 

progression in future research (102). 

 4.6 Conclusion and future research 

We proposed an 18-equation system dynamic mathematical model and showed that the 

model has significant potential to predict possible pathogenesis of sepsis based on the host’s 

physiological conditions. Also, we showed that the model provides essential biological insight 

into innate immunity and adaptive immunity of sepsis episodes by exploring various 

combinations of phagocyte and cytokine levels. We focused primarily on the combined effects of 

pathogen load, phagocytic cells, tissue damage, anti-inflammatory cytokine, CD4+ T cell, CD8+ 

T cell, B cell, and antibodies by adding cellular pathways during sepsis progression. We 

observed that outcomes of sepsis progression could be improved with IL-10 at a medium level in 

an early stage of infection (between the first 3 hrs and the first 6 hrs after infection). 

Furthermore, our model quantitatively measured levels of phagocytes (neutrophils and 
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monocytes) and captured a dampened oscillated infection in AIR progression, compared to 

existing mathematical models that provide more accurate qualitative estimates. 

Adaptive immunity contributes to further pathogen clearance after innate immunity 

because it includes B cells, T cells, and antibodies released from B cells (77). We conducted an 

initial study of adaptive immunity during sepsis progression by incorporating CD4+ T cells, 

CD8+ T cells, B cells, and antibodies to the SDMM. We observed that CD4+ T cell count, CD8+ 

T cell count, B cell count, and antibody count were persistently elevated, which contributed to 

the pathogen clearance during a late stage of sepsis progression. Because we did not specify T 

cell type during SDMM, IL-10 production by T cells was not considered in the current SDMM. 

IL-10 production by T cells potentially leads to overproduction of anti-inflammatory cytokines 

by compensatory anti-inflammatory response and eventually increases risk of secondary 

infection and inaccurate prognosis (77, 146). For further research, we expect to explore 

prominent effects of anti-inflammatory mediators secreted by T cells as they relate to outcomes 

of sepsis progression. 

The system dynamic mathematical model proposed in this paper is a robust, accurate 

representation of comprehensive immune responses within a sepsis episode. This underlying 

model is general and flexible to be used to predict possible outcomes and prognosis for various 

hosts’ initial conditions with various model parameters using experimental data from the 

literature. In addition, hypothesis testing proposed based on our simulated results could be a 

reference to help reduce unnecessary clinical trials and focus on essential processes of sepsis. 
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Chapter 5 - An Autonomous Multi-Agent Simulation Model for 

Acute Inflammatory Response 

Chapter 5 is based on the paper “An Autonomous Multi-Agent Simulation Model for Acute 

Inflammatory Response” published in International Journal of Artificial Life Research (2011), 

Vol. 2, No. 2, pp. 105-121. 

 Abstract 

This research proposes an agent-based simulation model combined with the strength of 

systemic dynamic mathematical model, providing a new modeling and simulation approach of 

the pathogenesis of AIR. AIR is the initial stage of typical sepsis episode, often leading to severe 

sepsis or septic shocks. The process of AIR has been in the focal point affecting more than 

750,000 patients annually in the United States alone. Based on the agent-based model presented 

herein, clinicians can predict the sepsis pathogenesis for patients using the prognostic indicators 

from the simulation results, planning the proper therapeutic interventions accordingly. 

Impressively, the modeling approach presented creates a friendly user-interface allowing 

physicians to visualize and capture the potential AIR progression patterns. Based on the 

computational studies, the simulated behavior of the agent-based model conforms to the 

mechanisms described by the system dynamics mathematical models established in previous 

research. 

Keywords: Acute Inflammatory Mediator, Agent-based Model System, Dynamic Model, Multi-

agent Simulation Model, Simulation Model 
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 5.1 Introduction 

The function of the human immune system is to respond to intruding pathogens or 

damage tissues (e.g., trauma) and to prevent them from spreading to the entire body by 

producing warning chemical signals, activating relevant immune cells in the blood circulation 

system near the infected area, and then killing the intruded pathogen or microbial organisms. The 

process to protect the human body from further infection by harmful stimuli is commonly 

referred as the immune responses or acute inflammatory responses. However, an uncontrolled 

series of Acute Immune Responses (AIR) may lead to possible sepsis, severe sepsis or sepsis 

shocks since the immune cells and their released cytokines eliminate pathogens and microbial 

organisms but which also kill neighboring healthy cells. Recent census found that more than 

750,000 severe sepsis or spies shock cases developed from sepsis in the US (4) with mortality 

rates between 20% and 80% (28). In the United States alone, almost $17 billion is spent each 

year, treating patients with sepsis (4). Therefore, it is necessary to find an effective methodology 

that can help physicians predict the outcomes of an AIR, prevent possible severe sepsis or septic 

shocks, and control the involved risks for patients, which is the focus of this research. 

This article presents a new modeling approach to predict the evolution of the Acute 

Inflammatory Response (AIR) which is the initial stage of sepsis pathogenesis. This predictive 

agent-based model (ABM) uses the system dynamics model developed by Reynolds et al. (53) as 

a benchmark. 

The organization of this paper is as follows: first we present the basic biological process 

of AIR, using a system dynamics model developed in previous research. Next, the agent-based 

model embedded with an existing system dynamics model is presented while its implementation 

detail is discussed. Outcomes of the agent based simulation are demonstrated and a sensitivity 
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analysis is presented. Finally, conclusions and potential applications of the proposed model are 

discussed. 

 5.2 Biological mechanism of acute inflammatory response 

The Acute Inflammatory Response, which can be the initial stage of sepsis, usually 

occurs when the human immune system detects intruding pathogens or existing tissue damages 

and sends out a signal (e.g., Interleukin-8 (IL-8) and C5a, the process is referred to as the 

chemotaxis) to the resting phagocyte cells such as the neutrophils initially and followed by the 

monocytes (two typical immune cells in the human body) in the blood vessel near the infected 

tissue. The resting phagocyte cells are activated and start to migrate towards the pathogens or 

damaged tissue whose recognizable protein on the surface is similar to those of the immune cells. 

Once the activated phagocyte cells reach the infection site, they start to engulf and consume the 

pathogens. Meanwhile, these activated phagocyte cells release pro-inflammatory cytokines such 

as Tumor Necrosis Factor (TNF), Interleukins (IL-1), IL-6, IL-8 and High Mortality Group Box-

1 (HMGB-1) that activate more phagocyte cells and recruit them to the infection site. All those 

activated phagocyte cells not only eliminate the pathogens but also secrete substances which 

contribute to killing healthy cells and induce more inflammation in the initial progression of 

sepsis. Almost at the same time, several types of anti-inflammatory mediators such as IL-6, IL-

10, soluble TNF receptors (sTNFRs) and IL-1 receptor antagonist (IL-1ra) are also released by 

the activated phagocyte cells in this stage. These anti-inflammatory mediators inhibit the 

production of pro-inflammatory mediators and therefore inhibit recruiting more phagocyte cells 

(12). 
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 5.3 System dynamics modeling of AIR 

Undoubtedly, the complex mechanism of the AIR allows various possibilities of sepsis 

progression which may lead to a healthy response or a septic shock. Thus, based on insights into 

the biological mechanism of AIR a three equation system dynamics model was developed by 

Kumar et al. (54). In the three equations model, pathogen level, early pro-inflammatory 

mediator, and late pro-inflammatory mediators were defined respectively. Moreover, those three 

essential indicators in AIR were measured by three individual equations. However, considering 

many other important indicators involved in AIR, a more complete system dynamics model 

based on five equations was developed by Reynolds et al. (53). This model is shown next: 
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In this five equations model, the variables P, NR, N*, D and CA  represent pathogen level, 

resting phagocyte cells, activated phagocyte cells, damaged tissue and anti-inflammatory 
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mediators respectively. All the system parameters (Knn et al.) reflect the strength of the immune 

system but their detailed description is beyond the scope of this paper. 

The measurements in both mathematical models are based on time-based rates, so their 

function is to calibrate the change in number of indicators in AIR with the progress of time. 

Since the change in number of indicators in the next time unit depends on the previous number 

of indicators, the mathematical models alone are not convenient to automatically calibrate the 

indicators during the development of acute inflammatory response. Thus, two Simulink models 

in MatLab were implemented to separately simulate both mathematical models. The results from 

the simulation reflect the progression of acute inflammatory responses since it measures the 

corresponding changes in the number of pathological and physiological markers during the acute 

inflammatory response. One of the results from the Simulink model of five equations system 

dynamics model is shown in Figure 5.1 to demonstrate the feasibility of measurement. 

Figure 5.1 Simulation results of the five equations model 
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In Figure 5.1, the Y axis represents the change of pathological indicators in AIR, and the 

X axis represents the simulation time corresponding to the progression of AIR. Thus the models 

established are capable of reflecting the progression of AIR. 

Both mathematical models provided a high level review of the AIR progression by 

defining the changes in the number of indicators which react with the cells or in the blood 

circulation system. However, the actual immune system response is much more complicated and 

is highly stochastic in nature. For example, the strength of immune response differs among the 

organs of the patient. Thus, the system dynamics models presented so far have limited ability of 

capturing these variations since they use deterministic scalar parameters. In order to model the 

important stochastic nature of the biological system in focus and allow the ability to include the 

correct boundary conditions we expand the modeling method to an agent based modeling 

approach as shown next. 

 5.4 An agent-based model (ABM) embedded with system dynamics 

mathematical model 

The agent-based model employs agents representing the various indicators in the 

progression of AIR. With each type of agent defined based on the variables described in the 

system dynamics model, it constructs the link between the system dynamics models and a real 

AIR environment. Moreover, agents can have autonomous and probabilistic behaviors, and 

therefore, provide improved modeling capability capturing the stochastic nature of the AIR 

progression episode. Compared to system dynamics models, the agent-based modeling approach 

is more flexible and more realistic. Furthermore, our ABM embedded with system dynamics 

models is applied at the intercellular level and expands to the tissue level, an improvement over 

the agent-based models previous established (48, 49, 178). Thus, this ABM embedded with 
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system dynamics mathematical models has advantages of both system dynamics and traditional 

ABM models. 

In this modeling approach, there are nine agent types: (1) pathogen, (2) resting 

phagocytes, (3) activated phagocytes, (4) damaged cells, (5) IL-10s, (6) TNF-αs, (7) IL-1s, (8) 

HMGB-1s, and (9) IL-6s. Since the damaged tissue in the system dynamics model is hard to 

calibrate, we use damaged cells agent in our agent-based model as a representation of the extent 

of tissue damaged. The agent types and their description are shown in Table 5.1. 

Table 5.1 Agent type and its description 

Agent Type Description 

Pathogen Instigator of AIR; AIR starts when pathogen intrude into body 

Resting Phagocytes Inactive immune cells such as neutrophils and macrophages existing 

in the blood vessel 

Activated Phagocytes Activate immune cells that respond with intruding pathogen and 

secrete corresponding cytokines such as TNF-αs, IL-1s etc 

Damaged Cells Normal cells damaged by intruding pathogen or cytokines released 

by the activated phagocytes 

IL-10s Anti-inflammatory mediator released by the activated phagocytes 

TNF-αs Early pro-inflammatory mediator released by the activated 

phagocytes 

IL-1s Early pro-inflammatory mediator released by the activated 

phagocytes 

HMGB-1s Late pro-inflammatory mediator released by the activated 

phagocytes 

IL-6s Late pro-inflammatory mediator released by the activated 

phagocytes 
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Each type of agent is defined as a homogeneous set of agents that may contain thousands 

of body cells, microorganisms or microbial antagonisms. For instance, the pathogen agent set 

contains pathogen agents, each consisting of thousands of pathogens. Figure 5.2 shows the 

logical structure of the agent set in the agent-based model. 

Figure 5.2 Basic structure of agents changing 

 

As increase or decrease (e.g., creation, death or transformation) in the number of cells for 

a particular type of agent is executed by changing the current states of that agent in the agent set, 

and the current state of any agent is tracked by a set of pre-defined state variables. Since the 

ABM is implemented as loops and each loop is corresponding to one simulation time unit, the 

amount of changes in state variables follows a deterministic behavior similar to the systemic 

dynamic Eq. (5.1), (5.2), (5.3), (5.4), (5.5). In our agent based model, pathogen, resting 

phagocytes, activated phagocytes, damaged tissue and IL-10s are the five main agents whose 

state changes are defined by the system dynamics model (i.e., Eqs. (5.1) - (5.5)). Each positive 

mathematical term in the equations such as 
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cells in one agent while negative terms are used to define the decrease process. Figure 5.3 shows 

a comprehensive structure of the agent based model. 

Figure 5.3 Comprehensive structure of the agent based model 

 

 

As an example, one of the state variables defined in the agent based model is called 

“increased-number-of-pathogen-cells-in-one-agent”. This state variable measures the increased 

number of pathogen cells in one pathogen agent and it will keep increasing by 

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per loop when the agent based model evolves. When the cell population in a pathogen agent 

grows beyond a predefined boundary condition, (maximal number of cells in a pathogen agent), 

the total number of pathogen agents will increase by one and the value of this state variable in 
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newly generated pathogen agent is set to its proper level. Also often, one agent will turn into 

another agent or generate other types of agents depending on the real physiological behaviors 

patterns modeled in the ABM. Therefore, the proposed ABM is quite flexible and functional in 

modeling the microbial pathogenesis of the AIR. 

In addition, the stochastic behaviors of the agents are included in the ABM to enhance the 

probabilistic nature of agents’ creation, deaths and transformations. Once the state of the agent 

reaches a point of change (defined as the boundary conditions of the system), the agent will 

choose one of four possibilities: keep the original agents population, increase it population, be 

eliminated, or transform into another type of agent. For example, pathogen agent will be 

eliminated when the pathogen dosages in the agent turns to 0. The resting phagocytes will 

transform into activated phagocytes during the chemotaxis process when pathogens exist in the 

surrounding environment. The states of one type of agent s can be changed by other agents either 

of the same type or of different types, allowing interaction between various types of agents. 

Moreover, the possibility of those creations, deaths and transformation is easier to define as the 

probability distribution in the ABM. For instance, the growth rate of pathogens could be assigned 

as normal distribution with mean equal to 0.1 and deviation equal to 0.01. Thus, the proposed 

autonomous multiagent-based model effectively describes the processes of acute inflammatory 

response, quantitatively defining the relationships among the various indicators (e.g. pathogen, 

resting phagocyte cells, activated phagocyte cells, damaged tissue, pro-inflammatory mediators 

and anti-inflammatory mediators) and capturing the complex and stochastic interactions among 

the pathological or physiological indicators. 

Unlike the mathematical model, the ABM computer simulation allows the implementers 

and users to simulate and observe the interactions among different agents, thus it is more 
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intuitive and flexible than the traditional mathematical models (this will be further demonstrated 

in the next section). However, the ABM approaches generally require large amount of computing 

resources for a precise simulation of complex behaviors. The use of large agent populations 

results in more accurate system behaviors but could require large amount of computer memory, 

and a detailed simulation may be time consuming. 

The novel ABM approach presented above permits us to implement the simulation 

models on microcomputers platforms with moderate configuration. Such simulation experiments 

were completed within few minutes. 

 5.5 Implementation of the agent-based model 

The ABM presented in the previous section, as a methodology, is well-suited for 

modeling the complicated relationships and behaviors in the progression of acute inflammatory 

response. However, the implementation needs a certain type of computer simulation tool. In this 

research, we used Netlogo 4.0.4 (179), a Java based modeling platform for implementing the 

proposed agent-based model. This tool allows modelers to specify the behaviors of hundreds or 

thousands of “agents”, which makes it possible to explore the connections between the microbial 

agent behaviors and the macro-level patterns that emerge from the interactions of multiple 

autonomous agents. 

The main user interface of Netlogo is made up two-dimensional grids. The agents can be 

divided into two categories: “patches” and “turtles”. The “patches” are fixed agents placed on the 

background grids in the model workspace. The “turtles” are mobile agents who could occupy a 

position or move freely on the surface of patches and execute certain functions or actions. In the 

AIR agent-based model, the damaged cell agents are defined as patches because they simulate 

the tissue or artery cells, which are not movable. All the other eight agent types are defined as 
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“turtle”. Moreover, Netlogo offers a way to define agent set as “breed” which means agent types 

whose behaviors are similar or controlled by the same mechanisms. This allows the modeler to 

define a class of agents with a set of common state variables and establish various functions or 

actions (autonomous behaviors) for agent types. Also, the modeler can generate the output of a 

simulation and set parameters in a special area of the Netlogo interface. 

 5.6 Predictive results of the simulation model 

 5.6.1 Deterministic results of the simulation model 

In this section, the simulation tool developed is used as a predictive model for the 

prognosis of AIR. The predictive model is a useful tool to assess patients with different initial 

pathogens load levels or physiological conditions. To predict the pathogenesis of acute 

inflammatory response, the simulation model is run with the corresponding initial profiles of the 

patients of interest and a combination of adjustable system parameters, resulting is the behavior 

shown, for example, in Figure 5.4. 

In Figure 5.4, the trajectories of all the indicators show that a patient with a low-level 

initial pathogen load is more likely to recover from an acute inflammatory response episode. 

Here all the indicators (pathogens, resting phagocyte cells, activated phagocyte cells, damaged 

tissue and anti-inflammatory mediators) return to a relatively low level and stay in stable state 

after a moderately long period of simulation. Furthermore, the mechanism of acute inflammatory 

response could be explained by the predicted outcomes from the ABM simulation. That is, the 

activated immune cells could quickly eliminate a low-level pathogen load at the early stage of 

the episode. Without more pathogens recruited, the activated immune cells will then gradually 

decrease. The anti-inflammatory mediators (depicted as the IL-10 level) will decrease as well 
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with the lack of production of activated immune cells. It is clear that the damaged tissue will 

increase initially with the effect of activated immune cells; however, they smoothly recover from 

the damaged status to normal cells under the tissue regeneration process. 

Figure 5.4 Healthy response with low pathogen load 

 

In contrast, Figure 5.5 depicts a different prognosis of AIR. The predictive ABM 

demonstrates that the pathogens will initially decrease rapidly and then sharply increase to 

saturation level if the initial load of pathogens is elevated. Meanwhile, the value of system 

parameter pnK  (180) of the predictive ABM decreases from 0.01 to 0.005 responding to the 

relatively-high initial load of pathogens. The system parameter pnK  represents the efficiency of 

pathogens elimination by activated phagocyte cells ( 01.0pnK  means 1 percent of pathogens 

will be consumed by 1 measure unit of activated phagocytes cells per hour). The change of its 

value shows that the effectiveness of the immune system of a hypothetical patient who had a 

high initial load of pathogens decreases with time. Thus, the pathogens could not be entirely 
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eliminated at the acute initial stage of the episode. After the number of activated immune cells 

decrease to a relatively low level (depicted as the activated PMN granulocyte), the pathogens 

elevate in a logistic growth form. This situation is frequently referred as a possible prognosis of a 

septic shock. 

Figure 5.5 Severe sepsis 

 

Moreover, the persistent non-infectious inflammation could happen if the number of 

activated phagocyte goes to saturation, which is shown in Figure 5.6. 

Under this condition, a patient could die from further inflammation reactions caused by 

the persistent pro-inflammatory cytokines released by the activated phagocyte even though the 

level of pathogens vanishes. Thus, it would eventually lead to multiple organ failure and death 

(181). 
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Figure 5.6 Persistent non-infectious inflammations 

 

 5.6.2 Stochastic results of the simulation model 

Our agent-based model has the special ability of modeling the stochastic process of AIR. 

In this case, the change of indicators follows a certain distribution since randomization exists 

when indicators interact with each other. For example, the growth rate of pathogen is not 

deterministic but having a normal distribution with mean and variance. This situation is common 

especially when the inner environment of cells varies corresponding to different individual 

patients. 

When the pathogen growth has a normal distribution of (0.25, 0.04) for mean and 

variance, the progression of the episode can be observed (52). After running the simulation 20 

times, it is found that the curve of those indicators such as activated-pmns, IL-10s have a 
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narrower gap between maximum number and minimum number (52). While, the pathogen with 

probabilistic growth rate has the bigger deviation over multiple replications (52). 

 5.7 Sensitivity analysis of the agent-based model 

Predictive results show that the pathogenesis of AIR did have a strong relationship with 

the threshold of pathogen level. However, the range of initial pathogen loads leading to a healthy 

response or towards an undesired acute inflammatory response is not clear. Thus, this section 

explores the sensitivity of the AIR episode to different initial loads of pathogen dosage. Figure 

5.7 illustrates the impacts of the initial pathogen loads and shows that the model is quite sensitive 

to the pathogenesis of AIR while the influence of anti-inflammatory mediators is kept at a 

relatively low level. 

Figure 5.7 AIR response to the range of the initial pathogen load 

 

In Figure 5.7, the initial load of pathogens (the X-axis) starts from 0 and is increased by 

120 for each simulation run. The Y-axis ranges from 0 to 1 representing the state of AIR, with a 

value of 0 presenting a healthy acute inflammatory response and 1 represents a possible severe 

sepsis outcome. It is clearly seen that under an initial pathogen load below 480 the progression of 
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AIR leads to a healthy response. Statistically, the initial value of pathogens which cause the 

different prognosis of AIR is 480 ± 2.56 with 95% confidence interval after multiple simulation 

experiments. 

This result is achieved under a low anti-inflammatory mediator environment. Our 

simulated prognosis experiments suggest that the initial anti-inflammatory mediator or the 

system parameters controlling the change of anti-inflammatory mediators are sensitive to the 

AIR pathogenesis. Thus, next we tested the influences of anti-inflammatory mediator on the 

progression of AIR. A set of simulation runs using different combinations of initial loads of anti-

inflammatory mediator (IL-10s), and initial loads of activated phagocytes, under the condition of 

low initial load of pathogen (range from 0 to 480), were executed. The results are shown in 

Figure 5.8. 

Figure 5.8 The influence of initial load of anti-inflammatory mediator and activated 

phagocyte to the outcomes of AIR 

 

This experiment shows that there are two essential pivot points for a change of the AIR 

prognosis. One relates to the initial number of anti-inflammatory mediator, and the other to the 

initial level of activated phagocytes. When the initial load of activated phagocyte ranges from 0 

to 200 the AIR episode is stable and healthy regardless the initial value of anti-inflammatory 
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mediator. An initial load of activated phagocyte higher than 200 cells will expose patients to an 

elevated risk for severe sepsis when initial load of anti-inflammatory mediator is lower than 600. 

This means that an uncontrolled AIR episode in which overly activated immune cells lacking 

proper self-generated or medicated anti-inflammatory controls could develop, even with a low 

initial pathogen load. 

Based on the analysis, one can realize that patient still experience different AIR outcomes 

due to the variation in their immune systems, even though they have the same threshold of 

pathogen induction. Since the initial value of system parameters in ABM are associated with the 

initial conditions of patients, it is necessary to consider the relationships between the initial 

values of physiological indicators and the system parameters as defined in the system dynamics 

mathematical model. 

First we consider the influence of system parameter nnK  and npK  on the AIR in equation 

(5.1). The reduction of the pathogens is assumed to follow the standard competitive enzyme 

inhibition effects among the three agents namely, the activated phagocytes, current pathogen 

load, and damaged tissue (182). The nnK  represents the ability of activated phagocyte cells to 

recruit more resting phagocytes to the infectious location, and the npK  calibrates the number of 

resting phagocyte cells to be activated in order to eliminate the existing pathogens. Based on 

three different initial pathogen loads, our simulation results have shown that there is a certain 

relationship between these two system parameters contributing to a stable ultimate state of AIR. 

That is, the numbers of activated phagocytes needs to be balanced in order to achieve a healthy 

AIR response. Otherwise, the acute inflammatory response will turn out to be a persistent non-

infectious or septic shocks episode.  
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Our simulated result showed that if npK  decreased and 
nnK  increased (the number of 

activated phagocytes induced by pathogens could be supplemented by previously activated 

phagocytes), the patient can still be on track for a healthy response. However, since the boundary 

of activation rate of resting phagocytes by previously activated phagocytes is much lower than 

activation rate of resting phagocytes by pathogens, the patients with a relatively low activation 

rate of resting phagocytes by pathogens under the condition of previously suffering infection or 

trauma still could not recovery from sepsis by increasing the value of nnK . This explains why 

patient populations such as HIV infected patients or those with organ transplant are more likely 

to suffer immune-deficiency after AIR (54). 

To conclude, we summarize the sensitivity of the other system parameters in our ABM 

simulation. The test of sensitivity of our system parameters is based on the observation of curve-

changing of indicators. It is believed that one parameter is sensitive to the AIR progression if the 

curve of indicators goes to different directions when this specific parameter interested changes 

and others fix. The results are shown in Tables 5.2 , and 5.3. 

These tables provide insights for various indicators and system parameters which are 

sensitive to the AIR progression and are essential for a better understanding of the pathogenesis 

of the AIR. The potential benefits of this research include helping physicians plan proper 

medication interventions for patients who develop AIR. Moreover, a greater benefit to clinicians 

will be provided if some of the essential system parameters could be converted or translated into 

the patient’s physiological indicators, which will create an individualized predication of the AIR 

progression. 
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Table 5.2 The sensitivity of AIR progression to the initial load of indicators 

Initial value of indicators in the AIR 

progression 

If it is sensitive to the AIR progression 

Pathogen Very sensitive 

Activated Phagocytes Sensitive under certain condition 

Damaged cells Not quite sensitive 

Anti-inflammatory mediator Very sensitive specially when the initial load of 

pathogen is low 

 

Table 5.3 The sensitivity of the AIR progression to various system parameters 

Pathogen system parameters If it is sensitive to the AIR progression 

pgK  (183) Very sensitive 

pmK , mS , S , mi ,(10, 184) mpK  Not quite 

pnK  Sensitive 

Activated phagocyte system parameters  

nnK , npK , ndK  Sensitive 

ni (185) Very sensitive 

Damaged cells system parameters  

dnK , di (23) Not quite 

IL-10s system parameters  

cnK , ci (40, 180, 186, 187) Sensitive 

cndK , cS (39) Not quite 
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 5.8 Discussion and conclusion 

Systemic inflammation and multiple organ dysfunctions are two of the major causes of 

mortality today (188, 189). With the advent and improvement of antibiotics and organ support 

therapy, these conditions have become increasingly relevant (1). The incidences of systemic 

inflammation are also expected to increase with further advancement of medical technology and 

the aging of our population (4). The application of system dynamics equations proposed in the 

existing literature is limited by the lack of modeling stochastic phenomena such as an AIR 

episode and difficulty in measuring the required parameters. An agent-based model is presented 

herein, capable of synthesizing the information acquired from the biological process (interaction 

between indicators) into a modeling/calibrating process while preserving the complexity of the 

acute inflammatory response process. 

Thus, the proposed agent-based model combined the strength of the system dynamics 

models with that of the simpler agent-based model, decomposing the dynamics model into 

multiple autonomous agents and capturing the stochastic nature of a biological system. 

In order to validate the ABM simulation we compared results from the DNA-Neumococo 

Study Group with our simulation. This group sampled 353 patients with community –acquired 

pneumonia and found that bacterial load is highly correlated with the outcomes in patients with 

pneumonia. The bacterial load of ≥103 copies per milliliter occurred in 29.0% of patients (27 of 

93 patients; 95% CI, 20.8 to 38.9%) being associated with a statistically significant higher risk of 

septic shocks, the need for mechanical ventilation, and hospital mortality (190). Our simulated 

prognosis experiments also have shown that the initial pathogen load is highly associated with 

prognosis of AIR pathogenesis. 
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In addition, maintenance of elevated levels of anti-inflammatory mediators or the 

transient administration of the anti-inflammatory mediator in patients who would otherwise 

survive or evolve to septic death is needed (53). This finding corresponds to the simulated results 

from our model that either AIR turns to healthy response or high rate of severe sepsis when the 

initial load of anti-inflammatory mediator is elevated. Thus, the proper management of anti-

inflammatory mediators plays an important role in the acute phase of infection. The fact that a 

significant body of recent clinical evidence suggests that low-dose immune-suppression with an 

anti-inflammatory mediator may in fact improve outcomes in patients with severe infection, 

particularly in patients with an insufficient anti-inflammatory response (191) is also illustrated by 

the outcome of our model. 

The major strength of the proposed agent-based modeling and simulation approach is that 

it can help to predict the possible pathogenesis of acute inflammatory response based on the 

patients’ initial physiological conditions. Furthermore, the new approach it is more flexible, 

visible and more accurate than existing of mathematical models. Even with the complex non-

deterministic system presented herein, the proposed ABM uses only few types of agents in the 

simulation, and it is modular, more flexible and applicable for the development of more complex 

and accurate models for simulating disease progression. 

For further research, we expect to use real clinical data such as the measurement of 

pathogen load, activated immune cells, resting immune cells as well as the measurement 

representing damaged tissue as input to this model. This will allow applying this predictive 

agent-based model towards real clinical environments after a proper calibration. Furthermore, 

even though the system’s parameters could be predicted by the model, these parameters are 

difficult to measure clinically in practice. Thus our next step is to convert the current system 
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parameters into physiological indicator such as temperature, blood pressure, CD14 markers, etc. 

that are easier to measure. These parameters will be sued then to model the progression of a 

sepsis pathogenesis for different patients using patient specific physiological markers. 
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Chapter 6 - A Novel Agent-based Model of a Hepatic Inflammatory 

Response (to Salmonella) 

 Abstract 

Sepsis is defined as a systemic inflammatory response syndrome caused by an infection, 

primarily bacteria. Sepsis accompanied by organ dysfunction, defined as severe sepsis, can 

progress with persistently low blood pressure and intravascular coagulation, eventually resulting 

in septic shock. Severe sepsis and septic shock have a mortality rate of approximately 40% to 

60%, and the increasing incidences of sepsis translate to a large financial burden on the 

healthcare system. Sepsis is a complicated process that involves numerous interactions among 

cells, cytokines, and tissues. The complexity of sepsis results in various dynamic patterns 

manifested in unique ways for each patient; however, computational techniques such as 

modeling complicated interactions among cells and cytokines in silico allow observation of those 

individual patterns. This paper presents a novel integrated-mathematical-multi-agent-based 

model (IMMABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by 

Salmonella that progressed to problematic proportions, known as “sepsis progression,” in some 

circumstances. This IMMABM incorporated experimental HIR data into a computational model. 

To our knowledge, this IMMABM is the first version of an agent-based model that measures 

quantitative indicator levels in HIR by incorporating extensive experimental data. Based on over 

200 published studies, this IMMABM describes interactions among 23 agents and incorporates 

226 system parameters to simulate a mouse HIR in silico. Under model assumptions, our 

simulated results reproduced dynamic patterns of HIR reported in existing experimental studies. 

We identified four distinct patterns in HIR, including a healing response, persistent infection, a 
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hyperinflammatory response, and organ dysfunction. As shown in vivo, our model also 

demonstrated that the initial infection dose of Salmonella significantly impacted HIR outcomes. 

In addition, the course of HIR varied when the initial Salmonella dose ranged from 300 counts to 

1300 “counts” (the in silico equivalent to colony forming units, CFU). The occurrence of a 

healing response, persistent infection, hyperinflammatory response, or organ dysfunction was 

also highly related with the initial Salmonella dose. We determined that high mobility group 

box-1 (HMGB-1), C-reactive protein (CRP), and the interleukin-10: tumor necrosis factor-α (IL-

10/TNF-α) ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, 

significantly correlated with outcomes of HIR. Therefore, this novel IMMABM links underlying 

biological processes to computational simulation and begins to enable quantitative simulation 

and prediction of sepsis progression in silico. 

Keywords 

IMMABM, Mouse Hepatic Inflammatory Response, Salmonella, Complex Biological 

Processes, Sepsis 

 6.1 Introduction 

Sepsis is initially activated by the presence and growth of pathogens in an organism. 

Under normal healthy circumstances, intruding pathogens are eliminated by the activation of 

immune cells, such as tissue macrophages and activated neutrophils, in the immune system (192, 

193). If an overwhelming immune response occurs, an unbalanced response between immune 

cells and cytokines may lead to unexpected harmful outcomes for patients, resulting in sepsis. In 

clinics, sepsis is defined as a potentially life-threatening complication of disease accompanied by 

symptoms such as high fevers, elevated heart rate, and altered mental status. If sepsis progresses 

to severe sepsis or septic shock, organ dysfunction occurs, leading to a high chance of death (1).  
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Severe sepsis and septic shock during an infection are the major causes of death in 

intensive care settings (3). An average of 250,000 deaths per year in the United States (US) are 

caused by sepsis (4). Among patients in intensive care units (ICUs), sepsis ranks as the second 

highest cause of mortality (5) and the 10th leading cause of death overall in the US (6). An 

average of 750,000 sepsis cases occur annually, and this number continues to increase (5). Care 

of patients with sepsis can cost as much as $60,000 per patient, resulting in a significant 

healthcare burden of nearly $17 billion annually in the US (7, 8). Sepsis in a hospitalized patient 

can lead to extended hospital stays and subsequently increase financial burdens. Cross and Opal 

(32) discussed the lack of rapid, reliable assays available to identify the stage or severity of 

sepsis and to monitor the use of immunomodulatory therapy. Such assays are unavailable 

because of the complexity of the inflammatory response and the unpredictable nature of septic 

shock in individual patients; consequently increasing the difficulty of monitoring single or 

multiple components of inflammation with specific supportive therapies (32, 41).  

A significant recent focus on modeling immune responses during sepsis has emerged in 

an effort to explore the complicated dynamic presentation of cells, tissues, and cytokines during 

infection. In 2004, Kumar et al. (54) presented a simplified 3-equation system dynamics 

mathematical model (SDMM) to describe mathematical relationships between pathogen, early 

pro-inflammatory mediators, and late pro-inflammatory mediators in sepsis progression. In 2006, 

Reynolds et al. (53) proposed a mathematical model for acute inflammatory response (AIR) that 

included a time-dependent, anti-inflammatory response in order to provide insights into a variety 

of clinically relevant scenarios associated with inflammatory response to infection. Modeling and 

simulation of immune responses to sepsis could provide a dynamic understanding of the 

infectious disease process and may reveal targets for therapeutic intervention. Mathematical 
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modeling may be refined to allow additional understanding of complex local and systemic 

dynamics of infectious disease (53, 54). Using a series of known and hypothesized kinetics of 

biological system components from the literature, current mathematical models describe 

infectious disease processes by measuring steady states of various components in the immune 

system. Unfortunately, these models fail to capture heterogeneous information of various 

components in the simulations and fail to account for deviations from various components’ 

aggregated behaviors (194).  

The agent-based model (ABM), a powerful computational modeling technique, simulates 

complicated nonlinear dynamic relationships between components and intuitively maps a 

realistic biological system by incorporating spatial effects and the stochastic nature of the 

immune response into model construction (76, 195). One key element of ABM includes agents, a 

collection of decision-making entities classified into types based on components described in the 

real-world system. Each type of agent executes behaviors that can mimic the system they 

represent when aggregated. Implementation of a predefined set of rules allows agents to move in 

a designed direction and arbitrarily interact with other agents in a spatial environment. Agent 

behaviors are updated in various locations according to update rules executed at discrete time 

steps. ABM inherently captures repetitive spatial interactions between agents in a stochastic 

process or under a known probability distribution, making it a powerful tool to render valuable 

information and simulate a biological system. Implementation of ABM requires well-established 

technology that relies on computers to explore dynamics beyond the reach of pure mathematical 

methods (61, 62). The inherent nature of computational structure allows ABM to be efficiently 

implemented on parallel computers (63).  



 

168 

This paper presents a novel integrated-mathematical-multi-agent-based model 

(IMMABM) of an inflammatory response and possible sepsis progression. The paper specifically 

focuses on IMMABM implementation into complicated cellular and molecular pathways during 

a mouse hepatic inflammatory response (HIR) stimulated by Salmonella. This IMMABM was 

constructed based on interactions between 23 selected agents and 226 incorporated system 

parameters summarized over 200 publications. System parameters were calibrated from various 

in vivo experimental models, using as much data as possible from actual Salmonella infections 

observed in mouse systems. Corresponding citations are available in the reference section and 

supplementary material. Simulated results from IMMABM showed that four distinct dynamic 

patterns emerge during mouse HIR: a healing response, persistent infection, a 

hyperinflammatory response, and organ dysfunction. Emerging simulations were verified 

through a pattern-oriented analysis found in available mouse experimental studies. Furthermore, 

simulated results from IMMABM determined that expression of high mobility group protein 1 

(HMGB-1), C-reactive protein (CRP), interleukin 10 (IL-10): Tumor necrosis factor alpha (TNF-

α) ratio, and the CD4+ T cell: CD8+ T cell ratio are highly correlated with the outcomes of 

mouse HIR. We also correlated mouse HIR to the initial Salmonella challenge level during 

IMMABM simulation. 

This paper is organized into five sections to present details of IMMABM construction 

and corresponding simulated results: 1) previously published examples of agent-based models, 2) 

development of this IMMABM for mouse HIR, 3) simulated results and model validation, 4) our 

conclusions and discussion, and 5) future research. 
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 6.2 Agent-based model of inflammatory responses in previous publications 

An (48) described the first application of ABM of sepsis in which he produced a very 

abstract ABM of an acute inflammatory response (AIR), an initial stage of sepsis. His model was 

built on the interface between endothelial cells and blood at the capillary level in order to 

simulate behaviors of circulating neutrophils and monocytes in the presence of injury. Neutrophil 

and monocyte behaviors, including rolling, sticking, diapedesis, and respiratory burst, were 

regulated by a series of state variables, and obeyed fundamental observations in an AIR 

environment derived from the literature. Figure 6.1 shows interacting behaviors of macrophages, 

neutrophils, and red blood cells in An’s ABM. 

Figure 6.1 Interacting behaviors among macrophages, neutrophils, and red blood 

cells 

 

 As shown in the Figure 6.1, each square represents a specific intercellular location near 

the infection site in an ABM model (48). Macrophages and neutrophils were recruited from 

blood vessels to the location of infection based on known biological mechanisms. State variables 

related to macrophages and neutrophils varied from location to location when the agent-based 
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simulation was executed. The accumulated value of macrophage and neutrophil-dependent state 

variables was used to calibrate global variables such as “total oxy deficit” and “End Injury 

Vector Number.” “Total oxy deficit” measured total damage caused by AIR, and “End Injury 

Vector Number” measured accumulated infection load during AIR progression in order to reflect 

characteristics of AIR progression. This particular model generated a distributed outcome of AIR 

progression by calibrating the “oxy” and “End Injury Vector Number” in 500 iterations of 

simulation runs under identical extent of injury parameters. Distribution outcomes simulated 

heterogeneity of a patient population and confirmed that ABM could represent stochastic 

characteristics of AIR progression (48). 

An (48) concluded that his ABM could not represent a real system but that his approach 

increased understanding of complex steps in the inflammatory process at the sophistication level 

of his model. Subsequent efforts by An (49) continued use of ABM to simulate and compare 

various therapeutic effects for improvement of patient outcomes. The next-generation model (49) 

was developed at the cellular level and, as in the previous effort, built on the endothelial-blood 

interface. The second-generation ABM incorporated additional agents to represent the interaction 

between cells and pathways of immune responses in AIR progression. Positive/negative 

feedback relationships and interactions between agents were represented and updated using 

arithmetic relationships guided by cellular/molecular mechanisms of AIR progression. The range 

of initial injury generating a systemic inflammatory response (SIR) became the “zone of 

interest”. Distributions of a variable “end oxy deficit (EOD)” related to initial injury levels in 

infectious and sterile models with and without antibiotics and demonstrated that patient 

survivability improved with the use of antibiotics. An suggested that the second-generation ABM 

was difficult to apply in clinics because the proposed ABM had limitations such as being 
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extremely abstract”, having a “lack of experimental validation” and had “limited mathematical 

matching to recognized kinetics (49). 

In 2011, Wu et al. (52), proposed an integrated ABM embedded with a mathematical 

model to simulate AIR progression at the interface between blood vessels and cells within a 

hypothetical generalized organ. Five total agents were defined in the model: pathogen, resting 

neutrophils, activated neutrophils, damaged tissue, and anti-inflammatory cytokines. 

Implementation of the ABM with corresponding initial profiles of patients of interest and 

adjustable system parameters allowed simulation of agent behaviors and local intercellular 

interactions. The ABM in Wu et al (52) is advantageous compared to other ABMs because it 

incorporates ordinary differential equations into recognized biological kinetics of AIR. However, 

experimental data incorporation and experimental validation were not included. 

Recently, Dutta-Moscato et al. (51) proposed a multi-scale agent-based silico model of 

liver fibrosis using an ABM to simulate an HIR. The authors simulated key cellular and 

molecular processes by incorporating interplays between agents such as TNF-α, TGF-β1, and 

Kupffer Cells. The authors found that the pattern of collagen deposition during liver 

inflammation conformed well to the known patterns of collagen deposition during inflammation 

in rat livers treated with Chemokine ligand 4 (CCL4). However, the authors claimed their 

version of ABM was limited because it sacrificed detailed mechanisms of the HIR and it was not 

calibrated against an in vivo time course of liver injury (51). 

In addition to modeling interactions between cells, Dong et al. (50) proposed an ABM 

framework to model intracellular dynamics of the NF-kB signaling cascade, illustrating 

subsequent intercellular interactions among macrophages and T-helper cells through the up-

regulation of inflammatory mediators. Their approach explored hypothetical scenarios of AIR 
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and potentially improved understanding of molecular behaviors that could develop and expand to 

emergent behavior of the entire AIR system. This ABM provided unprecedented integration of 

molecular interactions involved in signaling cascades activated in response to lipopolysaccharide 

(LPS) stimulation. The disadvantages of this ABM were that it utilized a qualitative AIR 

measurement and did not include experimental validation. 

 6.3 Development of IMMABM for hepatic inflammatory response of a mouse 

Existing ABMs that focus on inflammation provide evidence that agent-based modeling 

is a valid approach for simulating disease progression (48-52). However, limitations to the 

existing models include: utilization of a small number of agent types, limited control system 

parameters, and failure to include many critical variables (agents) involved in real immune 

responses. Furthermore, previous ABMs focused on a general modeling approach of 

inflammatory responses. However, because outcomes of an inflammatory response vary due to 

the source of infection, the relevant species, or various strains of one species, a general modeling 

framework of inflammatory response cannot accurately model sepsis progression. In addition, a 

general ABM framework may cause difficulty in model validation due to discrepancies in 

modeling platforms and differences in experimental models.  

In an effort to improve existing ABMs, we proposed an IMMABM to simulate mouse 

HIR caused by Salmonella at the tissue level. By specifying the infected species, source of 

infection, and site of infection, the scope of the IMMABM allowed us to improve modeling 

approach accuracy without loss of generality. This IMMABM is also the first ABM to simulate 

mouse HIR stimulated by Salmonella. This ABM required that each interaction incorporated into 

the model was based on actual data from observations made during experimental infections in 

vivo or measurements made ex vivo or in vitro, thereby resulting in an incorporation of data from 
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210 publications related to mouse hepatic inflammation induced by Salmonella. When data were 

not available, we extrapolated from related Gram-negative bacteria or other pathogens, keeping 

in mind that fidelity to actual Salmonella infections was necessary. Therefore, we summarized 

interactions among cells, tissues, and cytokines during mouse HIR and we calibrated quantitative 

changes in the HIR with experimental data and necessary mathematical expressions for agent 

modeling. Consequently, this approach is superior because previous ABMs were limited in 

incorporating essential molecular and cellular interactions of the inflammatory response, 

resulting in simulation inaccuracies. In addition, results generated from most existing ABMs are 

limited in the lack of realistic units (qualitative calibration), thereby increasing the difficulty of 

matching simulated results with real experimental results during model validation. We attempted 

to calibrate variables based on unit relationships observed in the experimental systems. 

 6.3.1 Simulation environment 

This IMMABM attempted to simulate a Salmonella infection at the level of the mouse 

liver. The liver, enriched with resident tissue macrophages (Kupffer Cells), is recognized as a 

key organ of the immune system that is vital for elimination of a Salmonella infection (15, 176). 

We chose Salmonella as a “targeted” pathogen strain because it is responsible for millions of 

deaths in developing countries every year (106). Furthermore, immune responses to Salmonella 

infections have been investigated extensively (107-112). Therefore, an abundance of data is 

available for accurate incorporation of relationships among variables (agents) in order to support 

our IMMABM. 
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 6.3.2 Software platform 

We used Netlogo, a platform with a simplified programming environment, easily 

implemented tool sets, and well-established documentation support, in order to implement the 

IMMABM (102). The primary user interface of Netlogo is comprised of two-dimensional (2D) 

grids, and agents can be divided into two categories: “patches” and “turtles.” "Patches" are fixed 

agents placed on background grids in the model workspace. “Turtles” are mobile agents that 

occupy a position or move freely on the surface of patches and execute certain functions or 

actions regulated by the simulated system. In our IMMABM, we defined all agents as “turtles” 

because all agents in our simulation were movable. Netlogo also applies a class called “breed” to 

define agent types with similar behaviors or types that are controlled by the same mechanism. 

The concept of “breed” allows the modeler to define a class of agents with a set of common state 

variables and establish various functions or actions (autonomous behaviors) for agent types. The 

interface of Netlogo allows the modeler to set initial parameters and observe simulation results. 

 6.3.3 Simulation initial setting 

We generated a 200 × 200 2D grid in Netlogo as the simulation interface, designed to 

simulate a 2D reflection of a mouse liver. We divided the entire interface of Netlogo into five 

regions to represent the liver sinusoid, sinusoid endothelial cells (SECs), the space of Disse, the 

site of hepatocytes, and portal triad in the liver (14). The initialized interface of Netlogo is shown 

in Figure 6.2. Kupffer Cell numbers are approximately one-fourth the number of hepatocytes in 

the liver (196). SEC numbers are approximately one-third the number of hepatocytes, and 

approximately one-eighth the number of mast cells exist compared to the number of hepatocytes 

(196, 197). The initial number of hepatocytes was determined by an automated process of filling 

the region with hepatocytes in a 200 × 200 2D grid. The hepatocytes filled each patch in the 
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hepatocyte region, as shown in Figure 6.2). For simulation size presented in this paper, the 

number of hepatocytes was initialized to 80,200. Considering the numeric proportion between 

hepatocytes, Kupffer Cells, SECs, and mast cells, we set the initial number of Kupffer Cells to 

20,160, SECs to 26,466, and mast cells to 10,426. 

Figure 6.2 Simulated area of the HIR in the Netlogo interface at simulation step 

equal to 0 (initial status) 

 

 6.3.4 Process of IMMABM development 

IMMABM was developed as an agent-oriented computer program to describe agent rules 

and behaviors. Each agent type was defined as “breed” in Netlogo, and each “breed” in 

IMMABM had specific state variables. By assigning 0 or 1 to the state variables, the agents were 

regulated to execute a series of functions based on various locations and interfaces. Interactions 
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between agents were highly stochastic, and we incorporated mathematical expressions such as 

logistic growth function, mass-action kinetics, Michaelis-Menten kinetics, and decay functions to 

quantitatively measure complicated biological processes. Furthermore, the process of writing 

computer codes for IMMABM strictly followed conditional statement “if-then” rules, 

conforming to biological mechanisms of HIR. 

The primary objective of our IMMABM was to incorporate available experimental data 

into computational simulation. Data such as infiltration time of immune cells, replication rate of 

Salmonella, and degradation rate of associated mediators allowed us to advance ABM 

application by mapping biological processes that occur during HIR to our IMMABM. By 

integrating experimental data and mathematical expressions derived from hypothesized kinetics, 

we attempted to quantitatively simulate dynamic patterns of HIR. In addition, a global variable 

defined as “Infection Time” in IMMABM reflected simulation execution time and mimicked 

kinetic associations between a series of responses. In our simulation, 1 tick (representing 1 

simulation step in the simulation software) represented 1 hr in an actual biological process, and 

numeric counts of an agent were updated per tick to correspond to the biological response time in 

the experiments. 

Incorporation of data from 210 publications and our experience with Salmonella 

infections and infectious disease processes motivated us to select a total of 23 essential cells and 

cytokines as agent types in this IMMABM. In this paper, we use italic format to highlight agent 

type for convenience. Each agent type, further defined as “breed”, could contain multiple 

entities. Among the 23 types of agent, we defined 20 primary agent types: Hepatocyte, 

Hepatocyte Debris, Kupffer Cell, Salmonella, Mast Cell, Resting Neutrophil, Activated 

Neutrophil, Resting Monocyte, MDMI (monocyte-derived type 1 macrophage), MDMII 
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(monocyte-derived type 2 macrophage), TNF-α (tumor necrosis factor-α), HMGB-1 (high 

mobility group box-1), IL-10 (interleukin-10), CD4 T Cell, CD8 T Cell, B Cell, Antibody, CRP 

(C-reactive protein), NET (neutrophil extracellular traps), and Histamine. We also defined three 

auxiliary agent types: SEC (sinusoidal endothelial cell), Signal, or Anti-Signal. The rule system 

for these agents was based on the literature. A sequence of interactions among primary agents 

and primary agent behaviors during interactions are introduced in Section 6.3.4.1. 

 6.3.4.1 Primary agent behaviors 

Salmonella, a “trigger” to begin HIR, was the first agent to move and interact with 

Kupffer Cells, thereby initializing HIR. The percentage of Salmonella killed by Kupffer Cells 

was set from 15% to 16% of the total Salmonella population per hour because 90% to 95% of 

Salmonella were phagocytosed (engulfed) by Kupffer Cells in 6 hrs (198). Salmonella that 

survived in Kupffer Cells turned Kupffer Cells into an “apoptotic” state and “proliferated” within 

Kupffer Cells (172, 173). “Die” in Netlogo occurs when an agent in the simulation is forced to 

disappear, but “proliferate” is defined as new agent generation in the simulation. State variables 

associated with agent type were used to define various states of individual agents. 

Implementation of state variables is introduced in Section 6.3.4.3. The maximum number of 

Salmonella that “proliferate” within one Kupffer Cell was limited to 50 (176). The newly 

generated Salmonella were released to liver tissue after “apoptotic” Kupffer Cells “died” between 

6 and 14 hrs (172). These released Salmonella were assigned to a state variable 

“salmonellaNewlyReleasedFromKupfferCell” in order to express aborted interaction with 

Kupffer Cells and prepare for “proliferation” in surrounding Hepatocytes or SECs (176, 199). 

When Activated Neutrophils or MDMIs were recruited to the site of infection, Neutrophils or 

MDMIs “killed” Salmonella (172, 198, 200, 201). Experimental data showed that every 
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neutrophil phagocytized approximately 3 to 13 Salmonella per hour, and every MDMI 

phagocytized approximately 1 to 7 Salmonella per hour (202). In addition to immune cells, CRP 

released from Hepatocytes and Antibody released from B Cells also contributed to the “killing” 

of Salmonella (10, 203-206). 

Hepatocytes account for approximately 60% of the total number of cells in the liver 

(196). In our IMMABM, Hepatocytes were primary locations for Salmonella “proliferation”, and 

the Hepatocytes become “apoptotic” once they interacted with Salmonella or TNF-α (15, 198, 

199). “Apoptotic” Hepatocytes released acute stress proteins such as CRP, or cytokines such as 

TNF-α, and HMGB-1 (203, 204, 207, 208). In addition, “Apoptotic” Hepatocytes could undergo 

a natural aging process or interact with infiltrating Activated Neutrophils (127, 209, 210). 

“Apoptotic” Hepatocytes that interacted with Activated Neutrophils “died” immediately and 

released their interacted Salmonella to the liver tissue (198). Alternatively, “Apoptotic” 

Hepatocytes underwent natural aging and became Hepatocyte Debris after 2 or 3 hrs (211). In 

addition to death, Hepatocyte was also regenerated at a rate of 1.32×10-3 to 6.80×10-3 per hour to 

simulate proliferation of Hepatocyte in a mouse’s liver (212). 

We modeled five primary phagocytic cells in our IMMABM, including Kupffer Cell, 

Mast Cell, Activated Neutrophil, MDMI, and MDMII. Kupffer Cells reside principally within the 

lumen of liver sinusoids, adherent to SECs that comprise blood vessel walls (14). The first 

phagocytic cells that interacted with Salmonella in the liver (113, 115, 116) were Kupffer Cells 

that killed approximately 90% to 95% of the Salmonella population in 6 hrs; however, 5% to 

10% of Kupffer Cells were killed by Salmonella during the same time period (198). Kupffer Cells 

released cytokines such as TNF-α which helped recruit other phagocytic cells such as Activated 

Neutrophils to the site of infection or incurs further damage to Hepatocytes (15, 171). Kupffer 
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Cells also released IL-10. IL-10 represents anti-inflammatory cytokines in this model and is 

capable of inhibiting the release of TNF-α. As typical phagocytic cells, Kupffer Cells “killed” 

various types of cell debris such as hepatocyte debris (to represent their scavenging or “clean up” 

function), Antibody-opsonized Salmonella, and CRP-opsonized cell debris (10, 205). The 

apoptosis  of Kupffer Cells occurs at a rate of 4.20 ×10-3 to 3.20×10-2 per hour (123). 

Replenishment of Kupffer Cells came from MDMIs and MDMIIs at a rate of 6.30×10-3 to 

7.90×10-3 per hour (123). Similar to Kupffer Cells, Activated neutrophils also “killed” 

Salmonella, Antibody-opsonized Salmonella, CRP-opsonized cell debris, and released cytokines 

such as TNF-α or IL-10 (10, 17, 205, 213). Biologically, Activated Neutrophils were recently 

recognized to  release NETs to eliminate Salmonella (214, 215). Activated Neutrophils 

underwent natural aging or were “killed” by Kupffer Cells (14). “Apoptotic” Activated 

neutrophils underwent apoptosis, indicated by a state variable labeled “apoptotic.” The 

“apoptotic” Activated Neutrophils were killed by MDMIs (216). MDMIs were activated from 

Monocytes between 6 hrs to 24 hrs post-infection (137, 138). The activation level of Monocytes 

was dependent on the existing number of Salmonella, TNF-α, HMGB-1, “apoptotic” Activated 

neutrophil, CD4 T cell, and CD8 T cell. The activation amount was calculated based on 

Michaelis-Menten kinetics, as discussed in Section 6.3.4.4. Upon activation, Monocyte became 

MDMI or MDMII (216). MDMI “killed” Salmonella and released TNF-α (216), while MDMII 

“killed” “apoptotic” Activated Neutrophils and released HMGB-1 and IL-10 as mediators to 

resolve the inflammation (142, 216). MDMI and MDMII helped activate T cell recruitment (164), 

and both MDMI and MDMII released IL-10 when they “killed” apoptotic CD4 T Cell or CD8 T 

Cell (166). 
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CD4 T Cell, CD8 T Cell, and B Cell occupied spaces in the portal triad (10, 11). 

Activation of CD4 T Cell, CD8 T Cell, or B Cell occurred when MDMI or MDMII were detected 

(164), at which point the activated CD4 T Cell, CD8 T Cell, or B Cell moved from the portal 

triad to the liver sinusoid (217). CD4 T Cell released TNF-α or IL-10 when they interacted with 

phagocytic cells interacting with Salmonella, and CD 4 T Cell improved the phagocytic rate of 

phagocytic cells (206). CD8 T Cell “killed” phagocytic cells that interacted with Salmonella (10, 

206). CD4 T Cell and CD8 T Cell underwent natural apoptosis, and both “apoptotic” CD4 T Cell 

and CD8 T Cell were “killed” by MDMI or MDMII (166). B Cell released Antibody to form an 

Antibody-Salmonella complex, and the Antibody-Salmonella complex was killed by phagocytic 

cells, simulating  opsonization  (206). The binding process is described in Section 6.3.4.2. 

TNF-α, HMGB-1, and IL-10 are cytokines released from phagocytic cells. TNF-α was 

released from Kupffer Cell, Mast Cell, “apoptotic” Activated Neutrophil, MDMI, and Hepatocyte 

(14-20, 216). TNF-α caused Hepatocyte to become “apoptotic” (15). HMGB-1 was released from 

MDMII and “apoptotic” Hepatocyte (24, 139, 218), and IL-10 was released from Activated 

Neutrophil, MDMII, and CD4 T Cell (16, 77, 213, 216, 218, 219). IL-10 prevented secretion of 

TNF-α, HMGB-1, and IL-10 from interacting with phagocytic cells or T cells (147-150, 219, 

220). Procedurally, TNF-α, HMGB-1, and IL-10 “died” to reflect their clearance away from the 

simulation. Interactions among and between 21 agents in the IMMABM are shown in Figure 6.3 

(anti-signals and signals were not included), and a comprehensive description of agent behaviors 

is presented in Table B.7. 

 6.3.4.2 Agent and agent complex movement 

Agent movement in IMMABM was determined by agent behaviors described in Section 

6.3.4.1. For example, Resting Neutrophils or Resting Monocytes moving to SECs were driven by 
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Signals released from cytokines or cells (24, 127, 171, 206, 216, 221-223). When Signals 

appeared on SECs, Resting Neutrophils or Resting Monocytes moved to SEC locations. Mass-

action kinetics determined the number of moving Resting Neutrophils or Resting Monocytes, as 

described in Section 6.3.4.4. Biological interaction between two agents occurred in IMMABM 

simulation if two agents occupied the same patch. 

Figure 6.3 An overview of primary agent interactions in IMMABM 

 

Salmonella that replicated within Kupffer Cells, MDMIs, SECs, and Hepatocytes (172, 

173, 176, 199, 216) were released to nearby patches when infected cells “died”. Released 

Salmonella randomly moved to the nearest Hepatocytes and damaged those Hepatocytes. 

We used a “link” breed to model movements of the Antibody-Salmonella complex or 

CRP-cell complexes because the two components of the complex need to move simultaneously. 
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For example, when an Antibody-Salmonella complex moved to one phagocytic cell, Antibody 

and Salmonella moved in the same direction for the same distance (10). The Antibody-

Salmonella complex’s killing process using the phagocytic cell occurred when the distance 

between the complex and the phagocytic cell was less than one patch-size. 

 6.3.4.3 State variable updates 

Each agent type had its own state variables in IMMABM. These state variables helped 

differentiate individual agents in the same agent type in order to allow individual agents to 

execute various behaviors based on agent rules. The value of state variables was either 0 or 1, 

and the function of a state variable was similar to a switch: 0 represented “off”, and 1 represented 

“on”. If a state variable was equal to 1, individual agents that had that state variable would 

express specific attributes or execute biological functions. For example, Kupffer Cell had a state 

variable named “kupfferCellBindToIL10”. The value of the state variable was equal to 1 when 

Kupffer Cell interacted with IL-10, and individual Kupffer Cells that had the state variable 

“kupfferCellBindToIL10” equal to 1 did not release TNF-α. Salmonella that proliferated within 

Kupffer Cell had a state variable named “salmonellaReplicateWithinKupfferCell” equal to 1; 

Salmonella that had “salmonellaReplicateWithinKupfferCell” equal to 1 generated new agents 

until the state variable “salmonellaReplicateWithinKupfferCell” was reset to 0. Kupffer Cell was 

assigned to a state variable named “kupfferCellKillBySalmonella” equal to 1 when Kupffer Cells 

interacted with Salmonella that had the state variable “salmonellaReplicateWithinKupfferCell” 

equal to 1. Kupffer Cells had the state variable “kupfferCellKillBySalmonella” equal to 1 “die” 

after 6 simulation ticks, and the state variable “salmonellaReplicateWithinKupfferCell” of 

interacted Salmonella was reset to 0. Resting neutrophil were activated in order to move to SECs 

in response to signaling by TNF-α, HMGB-1, or Salmonella signaling, consequently becoming 
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Activated neutrophil. Activated neutrophil moved to the “apoptotic” Hepatocytes with a state 

variable labeled “hepatocyteUndergoApoptosis” equal to 1. “Apoptotic” Hepatocytes that 

interacted with Activated neutrophils “died” immediately due to the killing process of 

“apoptotic” Hepatocyte by Activated neutrophil (137, 200). A comprehensive description of 

agent rule updates is presented in Table B.8. 

 6.3.4.4 Mathematical equations in programming  

In order to calibrate quantitative changes in agent number during HIR, we used a 

standard logistic function to measure cell population increases, Michaelis-Menten kinetics to 

calibrate cytokine release, mass-action kinetics to calibrate the activation process of circulating 

neutrophils and monocytes, and a decay function to measure the natural process of apoptosis by 

cells or catabolism of cytokines. 

For example, we calibrated the Salmonella population to increase using a standard 

logistic growth function (119) as follows: 











P

P
Pk

dt

dP
pg 1      (6.1) 

In Equation (6.1), P represents the Salmonella count, Kpg represents a constant growth 

rate for Salmonella, and P∞ represents maximum carrying capacity of the Salmonella. Growth 

rates and carrying capacities of Salmonella varied when Salmonella replicated within various 

cells. Corresponding experimental data is presented in Table B.9. 

The activation process of circulating neutrophils was promoted by the pro-inflammatory 

mediator TNF-α, Salmonella, and HMGB-1 (24, 127, 171, 206, 221). We used a mass-action 

kinetics equation (224) to calibrate the activation process of circulating neutrophils as follows: 

 *** HPTrN
dt

dN
R      (6.2) 
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In Equation (6.2), N represents Activated Neutrophil count and NR represents Resting 

Neutrophil count. T* denotes concentration of TNF-α, P* denotes concentration of Salmonella, 

and H* denotes concentration of HMGB-1. 

The release of cytokines obeyed trafficking machinery, and cytokines were released via 

protein-protein interactions initiated by ligand binding to receptors (129, 130). Therefore, we 

used Michaelis-Menten kinetics (131) to calibrate the cytokine release process as follows: 

CellCell

CellK

dt

dC

half 
 max

     (6.3) 

In Equation (6.3), C represents cytokine count and Kmax represents the maximum 

production rate of cytokines secretion by the cell. Cell denotes current numbers of the cell 

intending to release the cytokine and Cellhalf denotes cell numbers when half the maximum 

production rate of the cytokine was reached in the IMMABM. 

Natural cell apoptosis or cytokine catabolism occurred at every tick; thus, we assumed 

that the decrease in cell or cytokine counts followed a simple decay function as follows: 

CK
dt

dC
c      (6.4) 

In Equation (6.4), C represents cell or cytokine count and Kc represents a constant decay 

rate for cells or cytokines. 

 6.3.4.5 Model calibration and parameter estimation 

In addition to mathematical models, we calibrated experimental data such as replication 

rates of cells, production rate of cytokines, killing rates of Salmonella by phagocytic cells, 

activation rates of circulating neutrophils or monocytes, and apoptotic rate of cells or catabolism 

of cytokines from existing experimental studies. These data were incorporated into IMMABM as 

system parameters. We collected experimental data from studies that were most similar to our 
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simulation setting. We also estimated parameters during simulation if data were not available 

from experimental studies. For example, we estimated that the CRP-opsonized debris moved to 

inflammatory cells (e.g. Kupffer Cell, mast cell, neutrophils, MDMI, and MDMII) with an equal 

chance of 0.2. All experimental data (including calibrated and estimated data) and corresponding 

system parameters are presented in Table B.9. 

In IMMABM, we used agent count to represent cell number with the awareness that 

cytokine production rate has a unique experimental unit compared to cell number. Thereby, 

cytokine production rate had to be transformed into an agent number in order to make the 

experimental data consistent in IMMABM. Therefore, we used one agent count to represent one 

real experimental unit. For example, we estimated that one phagocytic cell can bind 1.23×10-17 g 

IL-10 from experimental data (225). Therefore, we used one IL-10 agent count to represent 

1.23×10-17 g IL-10 in real experiments. Similarly, we calibrated that 1.25×10-5 µg CRP could 

bind to one phagocytic cell (226). Thus, we used one CRP agent count to represent 1.25×10-5 µg 

CRP in real experiments. Data showed that 2.82×10-5 pg TNF-α damaged one hepatocyte per 

hour (227), so we used one TNF-α agent count to represent 2.82×10-5 pg TNF-α in order to 

transform experimental units into the agent count. Unfortunately, however, NET structure is 

fragile, thereby making it  difficult to quantify NETs in experiments (228). The rate at which 

NETs kill Salmonella was also difficult to establish (229). Therefore, since neutrophil elastase 

(NE) is required for NET formation and NE is an essential component of NET (214), we used the 

rate at which NE kill Salmonella to substitute for the rate at which NETs kill Salmonella. 
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 6.4 Simulated results and model validation 

 6.4.1 Statistical analysis 

Results are expressed as mean ± standard error (SE). Data normality was checked using 

both histogram and quantile-quantile (Q-Q) plot. For normally distributed data, group 

comparisons were performed using one-way analysis of variance (ANOVA). For non-normally 

distributed data, Mann-Whitney U tests were conducted to compare groups. All tests were 

performed using R 3.1.2. (230). A P < 0.05 was considered statistically significant at the 

significance level α=0.05. 

 6.4.2 Change in selected indicator levels observed under various Salmonella loads 

The IMMABM generated quantitative results by running simulations with various initial 

Salmonella counts (equivalent to infection dose). The input data, converted as described to 

mathematical expressions and incorporated into the computer code, assembled cellular and 

molecular variables in order to generate a hypothetical immune response. Clinical and 

experimental data showed that the risk of patients dying from sepsis is significantly correlated to 

the initial dose of pathogen (231). Therefore, we hypothesized that HIR would have a higher 

likelihood of progressing to septic shock and death if the infection was initially high. To test this 

hypothesis, we ran our simulations using Salmonella doses of 200 counts, 600 counts, 800 

counts, and 1200 counts, and we ran 100 replications for each proposed Salmonella dose. Results 

from these simulations were initially generated to identify dynamic patterns of indicators in HIR 

with various initial Salmonella doses, as shown in Figure 6.4. 
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Figure 6.4 Response of different variables (agents) over the first 24 hrs after 

Salmonella infection (load) of 200 counts, 600 counts, 800 counts, and 1200 counts. Mean 

counts of indicators were measured at each of time points of simulation (replications =100) 
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We observed that Salmonella counts, phagocytic cell (MDMI and MDMII) counts, and 

inflammatory cytokine (TNF-α, HMGB-1 and IL-10) counts increased as Salmonella infection 

(load) increased. Specifically, the number of phagocytic cells and the concentration of 

inflammatory cytokines significantly increased (based on one-way ANOVA tests with 

significance level α = 0.05 and P < 0.05) when Salmonella infection (load) increased from 800 

counts to 1200 counts. A significant decrease (based on one-way ANOVA tests with significance 

level α = 0.05 and P < 0.05) in hepatocyte counts was also observed when Salmonella infection 

(load) increased from 800 counts to 1200 counts. The dose-response hypothesis test initially 

indicated that the HIR was correlated to Salmonella infection, which was consistent with 

experimental data (231). 

 6.4.3 Dynamic patterns of HIR resulting from Salmonella infection 

We found four identifiable patterns in simulated HIR, as shown in Figures 6.5, 6.7, 6.9, 

and 6.11, respectively. Corresponding changes in the interface of Netlogo simulation were 

captured and are shown in Figures 6.6, 6.8, 6.10, and 6.12. 

When the initial infection with Salmonella was 200 counts, the number of Hepatocyte 

Debris and CRP increased for the first 18 hrs of simulation but then progressively decreased to 0, 

demonstrating no additional pathology at later stages of the simulation. The Salmonella counts, 

Activated Neutrophil, NET, TNF-α, HMGB-1, MDMI, and MDMII levels in the simulation 

sharply increased at the beginning of the infection but progressively decreased as the infection 

progressed. We inferred that this combination of variables is similar to a host curing an infection, 

so we referred to it as a healing process (Figure 6.5). We detected that a small number of 

hepatocytes (less than 0.3% of total hepatocyte counts) were damaged at simulation step 15 

(Figure 6.5: Hepatocyte Count). We also found that only a few neutrophils and monocytes (less 
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than 200 cell counts) were activated when the initial Salmonella infection was 200. Ultimately, 

damaged hepatocytes were replaced with new (healthy) hepatocytes as the simulation proceeded 

(Figure 6.6). 

Figure 6.5 Healing response after Salmonella infection (load) of 200. (Mean counts ± 

SE) of indicators were measured at each of time points of simulation (replications = 100) 
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Figure 6.6 Examples of the Netlogo interface at selected time points (5-240 hrs) after 

infection with 200 Salmonella. Note: 1 step is equivalent to 1 hr. post infection 
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Experimental studies in mice have shown early expression of pro-inflammatory cytokines 

in response to Salmonella infection (13). A comparison of the peak level of HMGB-1 to the peak 

level of TNF-α reveals that the peak level of HMGB-1 is lower and that the time required to 

reach maximum concentrations of TNF-α was less than the time required for HMGB-1 (average 

of 9 hrs versus 24 hrs post infection) (13, 18, 23). Our simulated results recapitulated this TNF-α 

and HMGB-1 pattern. We found that the peak level of TNF-α ranged from 1.40 × 10-3 to 2.64 × 

10-3pg. Because we modeled liver dimensions based on the model size (200 × 200 2-D grid), we 

assumed that TNF-α secretion was proportional to the model size and that intensity of TNF-α 

secretion was proportional to the initial challenge of Salmonella dose. Under those two 

assumptions, this response paralleled TNF-α levels (160 to 210 pg) found in a mouse model 

responding to 107 CFU Escherichia coli (a medium dose) (18, 176). Similarly, the kinetics and 

amounts of secreted HMGB-1 correlated with the peak level of an HMGB-1 response seen in 

experimental observations if model size was taken into account (23). We observed that the 

increase in HMGB-1 levels began later in our model (approximately 16 hrs; Figures 6.4, 6.6, 6.8, 

and 6.10) compared to production kinetics observed in in vitro stimulation assays (23), However, 

kinetics of our model were consistent with the delayed contribution HMGB-1 is proposed to have 

during sepsis (232). 

Recruitment of monocytes to the liver rose sharply around 24 hrs after infection in our 

model, which is consistent to approximately 1 day in an actual experimental system (144). 

Approximately 50% Salmonella decreased within 6 hrs after initiation of HIR (Figure 6.5: 

Salmonella Count), paralleling kinetics previously observed in mice (117). During actual 

infections, the decrease in bacterial load correlated with the influx of neutrophils (117). We 

observed a similar trend in the simulation (Figure 6.6). We used CRP levels and Hepatocyte 
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Debris to reflect the level of tissue damage that occurred after infection. CRP is released by the 

liver in response to stress, infection, and/or damage (203, 205, 233), and the debris simulates 

dead and dying hepatocytes. Our simulated results showed that CRP rose initially after infection, 

but CRP concentration fell sharply after the infection was cured as part of the “Healing 

Response”. A similar pattern of CRP concentrations was identified in healthy patients infected 

by bacteria in clinical cases (234). 

In some simulation replications, when the initial Salmonella infection was 600, the 

outcome more closely resembled a persistent infection, defined as the state in which Hepatocyte 

Debris, CRP, and Salmonella levels initially declined but subsequently increased to much higher 

levels before the infection was resolved at approximately 90 hrs. (Figure 6.7 (b)). Under this 

condition, Activated Neutrophil numbers declined along with the decline in bacterial numbers 

and NET values did not return to baseline for approximately 50 more hrs. We also observed 

oscillations in levels of cytokine mediators TNF-α and HMGB-1 as the infection was resolved 

(Figure 6.7 (b)). Moreover, this resolution correlated with oscillating Salmonella numbers during 

the waning 25 to 60 hrs of the infection. Others have observed oscillatory patterns in host 

responses to other types of bacteria in mouse infections (170). Therefore, we were reassured that 

the simulation captured the essence of a real infection. The CRP pattern during persistent 

infection (Figure 6.7 (a)) was significantly distinct from the CRP pattern observed in the healing 

response (Figure 6.5). As shown in Figure 6.7 (a), the CRP level rose initially after the infection 

and waxed and waned for another 2 to 3 days. On the 4th day after infection, CRP levels 

diminished sharply and damaged hepatocytes began their recovery, similar to the CRP pattern 

reported in a clinical study (234). 
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Figure 6.7 (a) Persistent infection after Salmonella infection (load) of 600. (Mean 

counts ± SE) of different variables (agents) were measured at each of time points of 

simulation (replications = 10). (b) Persistent infection after Salmonella infection (load) of 

600. Counts of different variables (agents) were measured at each of time points of one 

selected simulation 

 

(a) 
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(b) 



 

195 

Figure 6.8 Examples of the Netlogo interface at selected time points (5-240 hrs) after 

infection with 600 Salmonella. Note: 1 step is equivalent to 1 hr. post infection 
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Detectable hepatocyte damage began at simulation step 10 (10 hrs post infection), and a 

significant increase in hepatocyte damage was observed beginning at stimulation step 15 (15 hrs 

post infection). Hepatocyte damage was persistently observed for 7 days. As the persistent 

infection proceeded, a large area of hepatocyte damage, which would translate to liver damage in 

an animal model, was observed (Figure 6.8). Our simulated results paralleled hepatocyte damage 

seen in vivo after  experimental infections where recovery (or “healing”) of hepatocytes was 

detected after 7 days and continued for approximately 30 days (235). These data are consistent 

with the idea that a persistent infection will induce a higher mortality rate compared to a healing 

response because acute tissue damage is more detrimental to the host (Figure 6.7 (a): Hepatocyte 

Count). Remarkably, we observed that oscillations in agent counts were damped when calculated 

mean values of the agent counts for simulation replications (Figure 6.7 (a). The oscillations we 

observed in a single simulation run Figure 6.7 (b)) of IMMABM indicate that the individuals 

with persistent infection could have identifiable oscillated patterns during HIR. 

HIR could also result in a pattern we termed as a hyperinflammatory response (Figure 6.9 

and Figure 6.10). During this type of response, Salmonella counts dropped within the first 24 hrs 

of HIR (Figure 6.9: Salmonella Count). However, a significant elevation in phagocytic cells 

(Figure 6.9: Activated Neutrophil Count, MDMI Count, MDMII Count) and inflammatory 

cytokines was observed (Figure 6.9: TNF-α, HMGB-1 and IL-10) compared to the healing and 

the persistent infection responses, causing severe hepatocyte damage that could lead to death 

(Figure 6.9: Hepatocyte Count). Interestingly, we observed that the ranges of agent counts in the 

hyperinflammatory response (Figure 6.9) were more variable compared to the healing and 

persistent infection responses (Figure 6.5 and Figure 6.7). This made it difficult to accurately 

predict outcomes in this type of HIR. However, we suggest that when the mean values of TNF-
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α, HMGB-1 and IL-10 exceeded the mean values identified in the hyperinflammatory response 

(Figure 6.9: TNF-α Count, HMGB-1 Count and IL-10 Count), this serves as a warning signal of 

HIR progression to a hypothetical death status as the simulation proceeded. In a few simulation 

replications, we observed that all the hepatocytes were killed or damaged (Hepatocyte count = 0) 

within the first 48 hrs of infection during HIR characterized as hyperinflammatory (data not 

shown). These data suggest that a hyperinflammatory response could lead to a higher mortality 

rate compared to a persistent infection because of the acute and severely damaged hepatocytes 

observed. 

The last pattern of HIR that we observed was characterized by progressively increasing 

Salmonella counts. Under this condition, Salmonella and inflammatory cytokines continued to 

rise as the simulation proceeded. Therefore, we classified the combined pattern of increasing 

Salmonella counts and inflammatory cytokine counts (TNF-α, HMGB-1, and IL-10) as “organ 

dysfunction”, as shown in Figure 6.11 and Figure 6.12. Organ dysfunction appeared to be so 

problematic because in HIR the liver contained less than 1/4 of the healthy hepatocytes after 24 

hrs compared to the number present at the time of the initial infection (Figure 6.11). Specifically, 

the simulation stopped under the condition that no more healthy hepatocytes existed. We only 

calibrated the data of organ dysfunction for the first 24 hrs of HIR because healthy hepatocytes 

died out at 24 hrs of simulation in some replications. According to our simulations, a sign of 

organ dysfunction might be characterized by continued increases in Salmonella, TNF-α and, 

HMGB-1 counts and continued high levels of CRP. The acute rise and a slow decrease in CRP 

levels observed in our model were consistent with CRP concentration patterns identified in 

patients with septic shock (236). This adds validity to the simulated results from our IMMABM. 
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Figure 6.9 Hyperinflammatory response after Salmonella infection (load) of 800. 

(Mean counts ± SE) of indicators were measured at each of time points of simulation 

(replications = 10) 
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Figure 6.10 Examples of the Netlogo interface at selected time points (5-240 hrs) 

after infection with 800 Salmonella. Note: 1 step is equivalent to 1 hr. post infection 

 

To conclude, we found that a healing response, where Salmonella, other phagocytic cells, 

and inflammatory cytokines quickly fell below threshold levels, was more likely to occur when 

the initial Salmonella load was low. We identified a persistent infection pattern if inflammatory 

responses were active (characterized as when Salmonella and inflammatory cell levels oscillate 

during infection). However, if the initial Salmonella load was high, a hyperinflammatory 

response or organ dysfunction was most likely to occur, leading to the death of infected 

individuals. In addition, when these simulated results were compared to experimental data, the 

simulations paralleled indicator patterns reported in actual mouse experiments (13, 23, 117, 144, 

170, 234, 235). It also became clear that predicting a final outcome from the emerging dynamic 

patterns of HIR became more difficult when initial Salmonella loads were above 500 counts (See 

Section 6.4.4). 
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Figure 6.11 Organ dysfunction after Salmonella infection (load) of 1200. (Mean 

counts ± SE) of indicators were measured at each of time points of simulation (replications 

= 10) 
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Figure 6.12 Examples of the Netlogo interface at selected time points (5-240 hrs) 

after infection with 1200 Salmonella. Note: 1 step is equivalent to 1 hr. post infection 

 

 6.4.4 Outcome assessment 

We ran simulations using initial Salmonella doses ranging from 100 counts to 1400 

counts in increments of 100 counts with 100 replications per dose for a total of 1400 replications 

in the IMMABM. HIR outcomes clearly skewed toward a healing response at doses less than 500 

counts. However, as the initial Salmonella doses increased, it became clear that the dynamic 

patterns of HIR could diverge in the health outcomes (healing response vs. persistent infection 

vs. hyperinflammatory response vs. organ dysfunction). For example, when the initial Salmonella 

load was 800 counts, all four dynamic patterns of HIR could emerge (Figure 6.13). Nevertheless, 

when initial Salmonella counts were below 500, the healing response was identified over 98% of 

the time. However, when the initial Salmonella count exceeded 1300 counts, only hypothetical 
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death status (hyperinflammatory response or organ dysfunction) was identified from IMMABM 

simulation (Figure 6.14). In order to compare potential survival and mortality rates of HIR under 

various initial Salmonella challenge loads, we generated a probability distribution that ended 

with the healing response, persistent infection, hyperinflammatory response, or organ 

dysfunction of HIR against various Salmonella initial loads (Figure 6.14 and 6.15). The 

probability of HIR ending in each possible outcome clearly changes as the dose increases from 

100 counts to 1400 counts (Figure 6.14). 

Experimental data and stochastic processes embedded in IMMABM were essential in 

order to map HIR to a computational simulation because HIR is an inherently stochastic process. 

Experimental studies proved that cellular and soluble mediator interactions and numerical 

changes in their levels were dependent on location and time. For example, the Salmonella killing 

rate by one neutrophil can range from 2.94 to 12.94 Salmonella/per neutrophil/hr according to a 

human model (202). The data illustrated in Figure 6.14 suggests that IMMABM was able to 

capture the stochastic nature of the host response during HIR by showing that interactions among 

agents and the outcomes of the simulations varied for each run. Consistent with its embedded 

stochastic nature, the IMMABM allowed us to determine the probability of each possible 

outcome in individuals, thereby allowing reasonable predictions of HIR outcomes. For example, 

the simulated results in Figure 6.15 demonstrated as Salmonella initial loads increased, the 

probability increased that HIR would end with hyperinflammatory response or organ 

dysfunction. In contrast, lower initial challenge doses were more likely to be identified as healing 

response or persistent infection. 
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Figure 6.13 Four distinct patterns observed in IMMAB simulation when Salmonella 

infection (load) of 800. (Mean counts ± SE) of indicators were measured at each of time 

points of simulation. (a). Observed healing response (replications = 100) (b). Observed 

persistent infection (replications = 10) (c). Observed hyperinflammatory response. 

(replications = 10) (d). Observed organ dysfunction. (replications = 10) 

 

(a) 
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205 
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Figure 6.14 Probabilities of leading to healing response, persistent infection, 

hyperinflammatory response, and organ dysfunction in HIR when the Salmonella initial 

loads ranging from 100 counts to 1400 counts 

 

Figure 6.15 Probabilities of leading to healing response, persistent infection, 

hyperinflammatory response, and organ dysfunction with the same initial Salmonella load 

in the HIR 
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 6.4.5 Biomarkers of HIR 

As described in Section 6.4.2, HMGB-1 and CRP emerged as biomarkers for HIR 

because their expression patterns closely correlated to HIR outcomes. Our simulated results 

showed that CRP and HMGB-1 were significantly elevated during hyperinflammatory and organ 

dysfunction responses compared to the healing response (Figures 6.6 vs. Figures 6.9 and 6.11). 

Similar to our simulated results, persistent elevation of HMGB-1 and CRP was also observed in 

experimental studies (22, 236, 237). 

In clinical practice, the IL-10: TNF-α ratio is one recommended biomarker used to 

monitor sepsis progression (238, 239). Therefore, we calculated the average IL-10: TNF-α ratio 

for a healing response, a hyperinflammatory response, and organ dysfunction during infection in 

10 simulation runs. Using Mann-Whitney U tests, we found that the average IL-10: TNF-α ratios 

in both the hyperinflammatory and organ dysfunction were significantly lower compared to the 

healing response (P = 0.0061 and P = 0.0152) (Figure 6.16). We infer that the IL-10: TNF-α ratio 

in the IMMABM accurately captures that elevated IL-10: TNF-α ratio were associated with 

patients’ healing process (12). 

Figure 6.16 Comparison of IL-10: TNF-α ratio among healing response, 

hyperinflammatory response, and organ dysfunction responses against various infection 

time. Mean values of IL-10: TNF-α ratios were measured at each of time points of 

simulation (replications = 10) 
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 The CD4+ T cell: CD8+ T cell ratio is relatively lower in patients with sepsis, compared 

to control groups (non-sepsis patients) (240, 241). Simulated results from IMMABM reported 

that there is a significant lower CD4+ T cell: CD8+ T cell ratio when HIR has progressed to 

hyperinflammatory (P = 0.0083) or organ dysfunction responses (P =0.0041) after 15 hrs of 

infection (Figure 6.17). Therefore, these T cells also appear to be accurately reflected in the 

IMMABM compared to the clinical studies (240, 241). 

Figure 6.17 Comparison of CD4+ T Cell: CD8+ T Cell ratio among healing response, 

hyperinflammatory response, and organ dysfunction responses against various infection 

time. Mean values of CD4+ T cell: CD8+ T cell ratios were measured at each of time points 

of simulation (replications = 10) 

 

Our simulated results showed that the MDMII: MDMI ratio was less significantly 

correlated to the outcomes of HIR as compared to the IL-10: TNF-α ratio and the CD4+ T cell: 

CD8+ T cell ratio. During the healing response, the MDMII: MDMI ratio was not significantly 

higher (P = 0.2623) than the ratio during hyperinflammatory response but it was significantly 

elevated (P = 0.0019) compared to the ratio in organ dysfunction (Figure 6.18). Although it is 

clear that MDMI polarization is common in bacterial infections (242), it is less clear if that kind 

of polarization is associated with host dysfunctional responses. Therefore, it is possible that our 

simulated data reflect the in vivo ambiguity. Alternatively, MDMII: MDMI ratio may not be 

appropriate in the liver compartment. Refinement of the model will be necessary to help resolve 
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this. In spite of this, the IMMABM in its current format, has identified some biomarkers that 

reflect the in vivo situation (Table 6.1). This suggest that the IMMABM is beginning to function 

in a useful manner by paralleling actual host responses. 

Figure 6.18 Comparison of MDMII: MDMI ratio among healing response, 

hyperinflammatory response, and organ dysfunction responses against various infection 

time. Mean values of MDMII: MDMI ratios were measured at each of time points of 

simulation (replications = 10). 

 

Table 6.1 Relationship between dynamic patterns of hepatic inflammatory response 

and dynamic patterns of essential biomarkers in IMMABM 

Dynamic patterns of 

hepatic inflammatory 

response 

Dynamic 

patterns of CRP 

Dynamic 

patterns of 

HMGB-1 

IL-10: TNF-α 

(ratio) 

CD4+ T cell: 

CD8+ T cell 

(ratio) 

Healing Response Sharply increase 

and smoothly 

decay 

Smoothly decay Low High 

Persistent Infection Oscillating 

decay 

Oscillating decay  Medium High 

Hyperinflammatory 

Response 

Sharply increase 

and smooth 

decay 

Significantly 

elevated and 

decay 

High Low 

Organ Dysfunction Sharply increase 

and slow decay 

Significantly 

elevated 

High Low 
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 6.5 Conclusion and discussion 

This paper describes a novel IMMABM developed to simulate HIR in a mouse infected 

with Salmonella. The IMMABM described interactions between selected agents as a 

representation of HIR during Salmonella infection and required understanding of key cellular 

and molecular processes of HIR at the tissue level. Most importantly, the IMMABM was 

validated through a series of comparisons between simulated results and experimental studies.  

Four distinct dynamic patterns (healing response, persistent infection, hyperinflammatory 

response, and organ dysfunction) were identified during IMMABM simulation. One significant 

finding from the simulations was that outcomes of HIR were highly correlated to initial 

Salmonella counts. When initial Salmonella counts were below 500, hepatic infection had 98% 

probability to develop into healing response during 100 simulation runs. When initial Salmonella 

counts were between 500 and 1300 counts, outcomes of HIR were uncertain. As initial counts of 

Salmonella increased, HIR had higher probability to end with hyperinflammatory or organ 

dysfunction responses. Furthermore, CRP, HMGB-1, IL-10: TNF-α ratio, and CD4+ T cell: 

CD8+ T cell ratios emerged as biomarkers during HIR. If CRP and HMGB-1 were persistently 

elevated, HIR was more likely to end in a hyperinflammatory or organ dysfunction response. If 

the IL-10: TNF-α ratio or CD4+ T cell: CD8+ T cell ratio dropped significantly during HIR, a 

hyperinflammatory or organ dysfunction response would occur. 

 6.5.1 Insights into simulated results 

This IMMABM began to capture the essence of adaptive immunity during HIR. T cell 

activation occurs within 24 hrs of HIR in vivo (174). Therefore, we incorporated adaptive 

immunity, including essential lymphocytes such as CD4+ and CD8+ T cells, as well as B cells, 

into our simulation. We found that incorporation of T cells could be detrimental to hepatic 
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infection because the hyperinflammatory response that we identified in the simulations paralleled 

observations made in a murine sepsis model (174). In addition, we found that antibodies released 

during HIR failed to significantly affect organ dysfunction based on the release rate of antibodies 

and the binding amount of antibody to one Salmonella we calibrated (243-245). 

It appears that severe hepatocyte damage was mostly caused by a persistent elevation of 

inflammatory cytokines such as HMGB-1. This would indicate that our model is beginning to 

accurately reflect the biological situations since this parallels the in vivo experience (22, 36, 237, 

246) where a persistent elevation of HMGB-1 in patients with severe sepsis and mice with organ 

damage have high HMGB-1 concentrations. 

Strategies for sepsis treatment have been discussed extensively in recent years (2, 29, 32-

34, 43, 44, 247), but no general agreement exists regarding efficacy of these strategies. This lack 

of consensus is due to the complex nature of what causes sepsis to progress, including different 

clinical and experimental settings, and heterogeneous groups of patients with infections caused 

by various microorganisms (47). As the IMMABM is constructed now and by future 

refinements, this tool will allow us to explore various types of treatments to evaluate their 

possible effectiveness and could help in the design of future preclinical experiments. For 

example, during IMMABM simulation, we designed an experiment using a hypothetical 

antimicrobial agent (i.e. an antibiotic that could kill Salmonella), an anti-TNF-α agent (i.e. an 

antibody therapy), and a combination of anti-HMGB-1 agent and anti-TNF-α agent. We 

incorporated these treatments into the IMMABM, and compared the effects of the three 

hypothetical treatments to the outcomes of HIR. Simulated data showed that the treatment 

effectiveness was highly correlated with when treatments were started during the simulation in 

the IMMABM (Fig. 6.19). Specifically, antimicrobial agents caused significant improvement in 
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the survival rates when started during the first hour of HIR.  Interestingly, current 

recommendations are to administer appropriate antibiotics  within 1 hour of a diagnosis of severe 

sepsis or septic shock (43, 44). In contrast, the optimal treatment window for anti-TNF-α agents 

was between 6 hours and 8 hours (Fig 6.19), which may explain why anti-TNF-α treatment did 

not effectively improve survival for patients in some clinical studies (29, 30). The combination 

of anti-HMGB-1 and anti-TNF-α was more effective in improving the survival rates when 

treatment was started between 7 hours and 11 hours, compared to using only anti-TNF-α (Fig. 

6.19). 

Figure 6.19 Assessment of therapy in IMMABM. Hypothetical antimicrobial agents, 

anti-TNF-α agents, and a combination of anti-TNF-α and anti-HMGB-1 agents were 

administered to determine their impact in HIR. The “Probability of survival” label 

represents the probability of HIR ending with a healing response. We assume 1 

antimicrobial agent kills 1 CFU Salmonella, 1 anti-TNF-α agent degrades 2.82×10-5 pg 

TNF-α, and 1 anti-HMGB-1 agent degrades 2.82×10-5 pg HMGB-1. The administration of 

the treatment therapies was done one time IMMABM starting at 0 hour to 24 hours 

(abscissa). 20 simulation replications were conducted for each treatment regimen (1500 

simulation replications were conducted for this experiment) 
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These findings support contentions that timing of therapy is critical to success (41, 45, 

46). Given the consistent outcome between our simulations and existing studies (29, 30, 32, 43, 

44), it suggests that our IMMABM is beginning to accurately reflect some aspects of HIR. 

IMMABM can provide an initial silico test for proposed therapeutic agents. Although 

experimental studies have shown that sepsis in humans is not a model of veterinary sepsis and 

implementation of an animal sepsis model to human medicine must be further validated (45), 

IMMABM modeling techniques could be applied to human medicine and the IMMABM can be 

refined as future human data becomes available in the future. 

 6.5.2 Model simplification and generalizations 

ABM has been employed to describe complex and nonlinear biological immune 

processes responding to infection (102). Compared to traditional differential equation models, 

ABM is more similar to the description and representation of a true biological system because 

ABM can incorporate stochastic and spatial processes of cell interactions in a host-pathogen 

system. The IMMABM in this study simulated dynamic patterns of essential indicators in a 

mouse HIR and captured quantitative changes in dynamic patterns of HIR under various initial 

levels of Salmonella. Furthermore, IMMABM allowed us to simulate distribution of changes in 

dynamic patterns and provided insights into the probability of those changes. 

Although ABMs are advantageous compared to mathematical models (194), they are 

limited as an “instructive” tool and cannot represent real immune responses in disease 

progression because they fail in one-to-one mapping of components and processes to biological 

systems. Since every intermediate biological processes of HIR cannot be simultaneously 

incorporated into the IMMABM, reasonable assumptions must be made when building an ABM. 

Moreover, an ABM is built based on simplification of biological responses. For example, in our 
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IMMABM, we did not model that Salmonella replicates within neutrophils even though we 

know that they are a primary replication site in vivo (176). Therefore, this type of Salmonella 

replication could be considered for inclusion in a future model. ABM assumptions can also be 

more complicated than leaving out some biological responses. 

We modeled that TNF-α induced apoptosis of hepatocytes because TNF-α secretion from 

activated Kupffer Cells induces apoptosis in hepatocytes (15). However, another study showed 

hepatocyte apoptosis was induced by TNF-α only in combination with the transcriptional 

inhibitor actinomycin D (ActD) (248). Because our model considered a general concept of HIR 

at the current stage, we modeled that TNF-α would induce hepatocyte apoptosis if TNF-α were 

bound to hepatocytes. 

Mast cells release many biologically active molecules and chemical substances, such as 

protease and IL-6, which decrease or increase survival rates of septic patients (249-251). 

Salmonella that bind to mast cells eventually die because of the substances secreted by mast 

cells. Therefore, in order to simplify our ABM, we considered only some main functions of mast 

cells during inflammation. For many years, mast cells were believed to phagocytize Salmonella 

(252). However, a recent experiment showed (253) that mast cells bind to Salmonella, making 

them unable to phagocytize Salmonella. Therefore, we did not model that mast cells phagocytize 

Salmonella. Instead, we modeled that Salmonella binds to mast cells which initiates the release 

of TNF-α from the engaged mast cells. 

T cell subpopulations have been reported to express IL-10 under various conditions 

(177), making it  difficult to estimate IL-10 production. Because IL-10 levels released from T 

cells varies due to the type or concentration of stimuli, we modeled that CD4+ T cells produce IL-
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10 and we estimated the average release rate of IL-10. We did not differentiate helper T cells to 

specific types (e.g. Th2 or Treg) identified in biological process. 

Plasma cells secrete antibody (11), but we did not incorporate this specific B cell 

population into our ABM. We modeled that B cells released antibody knowing that this does not 

mimic the real biological system. Likewise, when antibody is released from plasmas cells, TH 

cells define the isotype of the antibody (11). However, we did not model specific antibody 

isotypes in our model. Furthermore, we ignored the fact that antibody opsonization also induces 

stimulation of the release of various cytokines and the type of FcR engagement can alter cell 

function (254, 255). We also did not incorporate that antibody-opsonized Salmonella are 

phagocytized better by neutrophils and macrophages compared to Salmonella alone (11). 

We did not model natural killer cells in our ABM and we ignored effects of other pro-

inflammatory cytokines such as IL-1, IL-12, and IL-8. Also, biological immune responses to 

infection are recognized as a series of complex processes including intracellular signal 

transductions (including activation of gene transcription) and intercellular interactions between 

cells. These biological processes can be developed over time and will evolved as our 

understanding of these processes becomes more sophisticated (102). Therefore, our IMMABM is 

still under development and has the potential to incorporate many of the variables that we have 

left out at the present time. 

One final important consideration is that an ABM requires a high level of computational 

effort in order to simulate the detailed interactions between classes of agents in the HIR. This is 

particularly true because the ABM is designed to describe the aggregated level of components by 

simulating individual agent behavior and interactions. These processes are occurring in parallel 

and require extensive computational effort and high computational efficiency (102). An average 
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of 18 mins was required to run 300 simulation steps in one replication of IMMABM for a 

healing and persistent infection response in the IMMABM. The computational time was 

significantly more for hyperinflammatory or organ dysfunction responses. In those cases, 

computational efficiency required an average of 10 mins per simulation step (average of 50 hours 

if run 300 simulation steps, and total 208.3 days (approximation) for 100 replications of 

simulation).  Therefore, one of the factors that limits the number of variables included in an 

ABM is the computer power available. 

 6.6 Future research 

Limitations of current ABMs provide opportunities for future enhancements. A major 

step forward will include the addition of one or more of the sophisticated cellular and molecular 

pathways discussed in Section 6.5. 

The activation of the coagulation cascade is characteristically seen in patients with sepsis 

(256). Activated protein C (APC), as an endogenous protein with the ability to modulate 

coagulation, has currently been approved to be the only pharmacologic therapy in the treatment 

of severe sepsis (31, 256), highlighting the importance of coagulation and fibrinolysis in sepsis 

(31). Thus, modeling complement cascades of inflammatory responses and possible progression 

to coagulation episodes during sepsis would also help the understanding of both inflammation 

and coagulation and associated therapeutic targets during sepsis progression. An explicit 

modeling of coagulation cascades such as blood changing from a liquid to a gel needs to 

incorporate to IMMABM in order to describe hemostasis during sepsis. 

Mediator-directed treatments could be incorporated into this IMMABM in order to 

implement pre-clinical treatment tests in silico. Initial silico simulation of IMMABM allowed us 

to recognize that a combination of anti-TNF-α and anti-HMGB-1 agents could significantly 
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improve survival rates in HIR. Furthermore, we also observed that the time drugs were 

administered also impacts HIR outcomes. This not only provides evidence that the core 

IMMABM is sound, it also provides hope that it can be developed into an effective tool to assist 

in physicians in their clinical decision-making process. 

Current ABMs also require computational resources. For the current 200 × 200 2D grid 

simulation size, the average simulation implementation time ranged from 10 mins to 2 hrs per 

replication. Computational time exponentially increased as the number of interactions among 

agents increased because of the numerous repetitive interactions. Therefore, another future 

direction of ABM research could be to reduce this computational hurdle by designing new and 

efficient computational algorithms. 
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Chapter 7 - A novel semi-Markov decision process for clinical 

decisions related to individuals with sepsis 

Chapter 7 is based on the paper “A Novel Semi-Markov decision process for clinical decisions 

related to individuals with sepsis” to be submitted to Medical Decision Making. 

 Abstract 

Applications of Markov decision processes (MDPs) to the clinical decision-making 

process have been widely explored since late 1990s. However, MDP implementation has proven 

to be challenging because MDPs require a data-intensive estimation step in order to generate 

reasonable transition models. Therefore, this chapter proposes a novel decision-making 

framework for clinical decisions that employs generated transition probabilities from agent-based 

modeling to conventional MDPs, thereby resolving data estimation difficulties of MDPs. A 

finite-horizon semi-Markov decision process is employed in order to capture the transition time 

between various states of septic individuals, potentially allowing estimation of changes in 

infected individuals’ states in evolutionary time. 

Simulated results of this study demonstrated that the effectiveness of proposed treatment 

strategies (antimicrobial agents, anti-HMGB-1 agents, or a combination of agents) for septic 

individuals was correlated to the current states of an infected individual. The conclusion was 

made that the proposed treatment strategy should be adjusted based on length of required 

hospitalization. Simulated results also showed that anti-HMGB-1 agents could negatively impact 

the treatment of septic individuals and that treatment effectiveness of anti-HMGB-1 agents was 

sensitive to the current states of infected individuals. 
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 7.1 Introduction 

In the absence of analytical decision-making tools, physicians often use heuristic 

strategies in order to select corresponding patient treatments. Computational and artificial 

intelligence (AI) techniques are typically applied in order to predict optimal treatments, 

minimize side effects of drugs, reduce medical errors, and accurately integrate research and 

practice (55, 56). However, because AI is applicable for clinical decision-making only at single 

decision points, a decision-making framework is needed in order to extend clinical decision-

making from single decision points to a required decision-making time horizon. MDPs have 

recently become subjects of research interest because they help physicians accurately make 

difficult clinical decisions on a decision-making time horizon (95, 257, 258). Contemporary 

health care research has employed MDPs for the purpose of making sequential clinical decisions 

with multiple objectives. For example, MDPs have been proposed for optimization of sequential 

treatment strategies in order to improve quality of care in clinics or reduce mortality rates of 

severe diseases. By implementing MDPs, physicians become aware of rewards or costs 

associated with a single treatment at specific time epochs. With a calculated probability 

transition matrix, decision makers (physicians) can predict total reward among various treatment 

bundles and then be able to recommend optimal treatment strategies. 

Compared to MDP applications in domains such as robotics, manufacturing, and 

inventory control, MDP applications in health care are relatively few (55, 57, 257). This study 

included review of previous successful applications of MDPs to difficult medical decisions. 

Lefévre (259) applied a continuous-time Markov decision model in order to control the spread of 

infectious disease in a closed population. The model determined optimal strategies that 

minimized expected discounted costs associated with infected individuals over an infinite 
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decision horizon. Hu et al. (260) employed a partially observable Markov decision process 

(POMDP) in order to select appropriate drug infusion plans for anesthesia administration (57). 

Magni (100) et al. developed an MDP approach that determined optimal intervention time for 

mild hereditary spherocytosis (HS), a disease identified by chronic destruction of red blood cells. 

Hauskrecht and Fraser (89) used a POMDP to model and analyze the complex decision process 

for Ischemic Heart Disease (IHD), and they discussed the advantages of POMDP compared to 

standard decision formalisms. Alagoz (261) formulated an MDP in order to determine optimal 

timing of liver transplantation for maximization of patients’ quality-adjusted life expectancy. 

Faissol et al. (262) used an MDP to determine ideal timing for testing and treatment when 

disease progression is previously unknown. Alterovitz et al. (263) utilized an MDP in order to 

maximize the probability of image-guided medical needles reaching the desired target. Maillart 

(264) developed and solved a POMDP in order to evaluate breast cancer screening polices. 

Shechter et al. (81) presented the first human immunodeficiency virus (HIV) MDP model that 

addresses the question of optimal time for HIV therapy initiation, with a goal of maximizing the 

expected lifespan of HIV patients. Denton et al. (265) applied an MDP in order to optimize the 

start time of statin treatment for cardiovascular risk reduction. Chhatwal et al. (266) proposed an 

MDP for determination of optimal breast-biopsy decisions for individual patients over a finite 

decision horizon. Existing MDPs prove that MDPs are valid approaches for clinical decision-

making, with potential for development as bedside decision-making tools under certain modeling 

assumptions. 

 7.2 Background 

Sepsis is defined as a systemic inflammatory response syndrome (SIRS) primarily caused 

by bacterial infection (1). Sepsis accompanied by organ dysfunction, defined as severe sepsis, 
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can progress with persistently low blood pressure and intravascular coagulation, eventually 

resulting in septic shock (1). Severe sepsis and septic shock have a mortality rate of 

approximately 20% to 80% (267); an average of 250,000 deaths per year in the United States 

(US) are caused by sepsis (4). Sepsis during an infection is a primary cause of death in intensive 

care settings (3). Among patients in intensive care units (ICUs), sepsis ranks as the second 

highest cause of mortality (5) and the 10th leading cause of death overall in the United States (6). 

An average of 750,000 sepsis cases occur annually, and this number continues to increase each 

year (5). Care of patients with sepsis can cost as much as $60,000 per patient, resulting in a 

significant health care burden of nearly $17 billion annually in the United States (7, 8). 

Clinical trials for sepsis treatment have been conducted since 1963, at which time high 

doses of corticosteroids were shown to be beneficial for infected patients (268). However, 

subsequent clinical trials failed to show significant benefits for septic patients administered high 

doses of corticosteroids (269). Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory 

mediator that is released from various types of immune cells in response to an infection (14-20). 

TNF-α was recognized as a therapeutic target for sepsis because anti-TNF-α agents tested 

positive in mouse models (27, 270, 271) and two human models with septic shock (33, 34). 

However, a randomized controlled trial (RCT) failed to identify anti-TNF-α agent effectiveness 

for improving survival rates for patients with elevated TNF levels upon study entry (29). High-

mobility group box 1 protein (HMGB-1), recognized as a late pro-inflammatory mediator, 

stimulates monocytes to produce TNF-α and other inflammatory proteins (21, 272). 

Experimental results have shown that inhibition of HMGB-1 production improves survival in 

experimental models of sepsis (35, 273). Such results make HMGB-1 an especially promising 

candidate as a target for treatment of septic patients because elevated serum concentration of 
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HMGB-1 was found in septic patients (22, 41, 237). A recent study discovered that deletion of 

intracellular HMGB-1 in hepatocytes leads to increased cell death during liver 

ischemia/reperfusion (I/R) (208). Because inhibition of a single inflammatory component is 

disappointing in the efficacy of treatment for sepsis, Cross et al. proposed a combination theory 

in 2003, stating that “A dramatic breakthrough with monotherapy is unlikely. It is now time to 

test a new paradigm based on an improved understanding of the pathophysiology of the septic 

process and the recognition that we must step beyond single-agent therapy” (32). Although use 

of antimicrobials was proposed for sepsis treatment, antimicrobials were found to be insufficient 

for optimal treatment of patients with sepsis (42). Empiric broad-spectrum antimicrobial agents 

that target the likely cause of infection have been recommended for immediate initialization for 

septic treatment (42). A current recommendation is to administer appropriate amount of 

antimicrobials within 1 hr of severe sepsis or septic shock diagnosis (43, 44). However, 

identification of the most beneficial time to administer antimicrobials remains unknown because 

variation in sepsis outcomes has been observed after antimicrobial administration (45).  

All evidences have highlighted the need for treatment strategy development for future 

clinical research. Clinical trials of sepsis treatments have been extensively studied, but only 

activated protein C (APC) has been approved for treatment of severe sepsis cases (41). Various 

reasons have contributed to the failure of sepsis treatment in clinical trials. First, monitoring of 

sepsis development before patient enrollment in clinical trials is difficult, resulting in ineffective 

use of anti-inflammatory mediators, such as TNF-α, when patients with well-established sepsis 

enroll. Second, patients with sepsis are highly heterogeneous based on source of infection, site of 

infection, duration of illness, and current immune status (46); therefore, development of a 

practical, general treatment strategy suitable for all septic patients is impossible (47). Third, 
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sepsis development involves numerous biological responses, leading to uncertainty in sepsis 

progression outcomes. Because clinical trials with single agents have proven to be inadequate 

and insufficient for sepsis treatment (32), combinations of several agents have been proposed for 

treatment (32, 46). 

 7.3 Previous MDPs on clinical decision makings for patients with sepsis 

A general application of MDPs to clinical decision-making was reviewed in Section 7.2. 

This section emphasizes application of MDPs to clinical decision-making for patients with 

sepsis. In 1998, Rangel-Frausto et al. conducted a 9-month study of 2,527 patients with SIRS 

(274). Using anti-agent therapy, this study developed Markov modeling in order to predict 

reduction in organ dysfunction and mortality. On average, the probability of progression from 

sepsis to severe sepsis was found to be 72%, but with use of an anti-sepsis agent, Markov 

modeling predicted that the probability of developing severe sepsis would decline to 36%. In 

2000, Bäuerle et al. developed a Markov model in order to predict the risk profile of various 

groups of septic patients in intensive care units (96). In 2007, Kreker proposed a finite-horizon 

MDP and POMDP that explored hospital discharge strategies for patients with sepsis (97). 

Kreker used total Sepsis-related Organ Failure Assessment (SOFA) scores to define four patient 

health states. The MDP suggested that patients in State 1 and State 2 should be discharged from 

the hospital during the early phase of hospital stays (1 day to 3 days). All other patients (State 3 

and State 4) should remain in the hospital for one additional day, compared to the patients in 

State 1 and State 2. From Days 4 to 6 days of hospital stay, only patients in State 1 (healthiest 

patients) should be discharged from the hospital; other patients should remain in the hospital for 

one more day. During Days 7 through 29, all patients, with the exception of the sickest patients 

(State 4), should be discharged from the hospital. The POMDP model applied the level of a 

http://www.ncbi.nlm.nih.gov/pubmed?term=B%C3%A4uerle%20R%5BAuthor%5D&cauthor=true&cauthor_uid=10827322
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cytokine in order to define the health states of patients. This POMDP also used a belief variable 

(probability of a high cytokine level in a cytokine test in accordance with a high level of cytokine 

the clinician believes prior to the test) to indicate partial observable health-state information of 

patients. In order to maximize the patient’s expected survival in the hospital, the clinician could 

solve the POMDP and choose to continue patient treatment using standard care without testing, 

continue patient treatment using standard care and a cytokine test, or discharge the patient from 

the hospital without testing. 

This chapter proposes the first application of a finite-horizon semi-Markov decision 

process (FHSMDP) in an attempt to address challenges related to current medical decision-

making for sepsis treatment. To the best of the author’s knowledge, this proposed FHSMDP is 

also the first application of a finite-horizon semi-Markov decision process (SMDP) to clinical 

decision-making. In this study, using the developed integrated-mathematical-multi-agent-based 

model (IMMAB), a probability transition matrix was generated and incorporated into the 

FHSMDP framework. This novel decision-making framework allows clinicians to optimize a 

sequence of treatment strategies for infected individuals. Compared to discrete-Markov decision 

processes, SMDP advantageously calculated the effect of treatments to health states of infected 

individuals, thereby providing accurate recommendations for treatment strategies. Previous 

research has indicated that a combination of sepsis treatments could be more effective than a 

single therapeutic agent during sepsis progression (32, 41, 46). This study tested the 

effectiveness of a combination of treatments (antimicrobial agents and anti-HMGB-1 agents) for 

infected individuals and reported the observations in silico simulations.  

The rest of this chapter is organized as follows. Section 7.4 introduces the model 

formulation of FHSMDP, and Section 7.5 illustrates the algorithm to solve the FHSMDP. Main 
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computational results are stated in Section 7.6 and initially compared to clinical studies. Section 

7.7 includes the conclusion, and future research is proposed in Section 7.8. 

 7.4 Model Formulation 

 7.4.1 Classes of MDPs 

MDPs typically model uncertain dynamic systems and provide decision-making policy 

for a dynamic system (84). A policy is a set of actions a decision maker chooses in order to 

optimize (maximize or minimize) a predefined performance criterion (84). MDPs are categorized 

according to various criteria, including whether the time between decision epochs is continuous 

or whether a patient’s state contains partially observed information. Based on the decision time 

horizon, each type of MDPs can be further classified as finite or infinite-horizon. Figure 7.1 

illustrates the four types of MDPs based on various criteria. 

A conventional discrete-time MDP consists of five elements: state, action, transition 

probability, reward, and decision epoch. Evolution of a typical discrete-time MDP involves 

several steps. First, the decision maker chooses an action from an action set based on a system’s 

current state when a decision is made. A reward (or a cost) is received when an action is made, 

and the current state transitions to a new state (or retains the current state) based on a transition 

probability. The decision maker takes action based on the new state at the time at which the next 

decision is made. This process continues until the end of the decision time horizon. In MDPs, a 

decision epoch is a point in time at which a decision is made; decisions are made at discrete time 

intervals in discrete-time MDPs. 

Other types of MDPs can be developed from a discrete-time MDP using various 

modifications. For example, SMDPs are unique discrete-time MDPs because the time interval 
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between decision epochs in SMDPs is modeled as a continuous random variable (275). If the 

random variable follows exponential distribution, an SMDP is regarded as a continuous-time 

MDP (CTMDP) (84).  Sometimes, however, the state of a system is not entirely known or only 

partially observed by the decision maker, such as uncertainty regarding the underlying disease. 

This type of MDP with partially observed states is called POMDP. 

Figure 7.1 Classification of MDPs 
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POMDPs have been developed for application to clinical decision-making, especially 

clinical decisions that must be made with unknown patient information (89, 97, 260, 264). 

Discrete-MDPs and POMDPs must assume that a clinician provides patient treatments at 

predetermined discrete decision epochs. However, a clinician also must monitor changes in a 

patient’s state and recommend appropriate treatment when the state of the patient changes or a 

hypothetical death state persists. Compared to a discrete-MDP, an SMDP models a clinical 

decision-making problem in a more nature way because SMDPs allow clinicians to choose 

appropriate treatments for patients at randomly selected decision epochs. 

 7.4.2 Basic elements of SMDP 

In this study, an SMDP was used to develop optimal strategies for treating individuals 

with sepsis. A patient’s state was described as a combination of levels of selected biomarkers 

during sepsis development. Each selected biomarker had three distinct levels: Low (L), Medium 

(M), and High (H). A state set (S) was comprised of all possible states, and the number of states 

in a state set was equivalent to the number of biomarkers 3. A detailed description of a state set is 

presented in computational results in Appendix C. 

Based on the literature review in Section 7.2, antimicrobial agents and anti-HMGB-1 

agents were selected as initial therapeutic interventions to treat individuals with sepsis. 

Computational studies were used to test effects of antimicrobial agents on outcomes of septic 

patients. Effects of a combination of antimicrobial agents and anti-HMGB-1 agents for sepsis 

treatment were also tested. 

The transition probability was formulated as ),|( ikij assp to denote the chance of state si 

transition to state sj at the next decision epoch, given that treatment aik was chosen at state si  

(276). Compared to a discrete-time MDP, the probability of time for transiting from state si to 
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any other states (including state si) at the next decision epoch within time t followed a certain 

distribution function, denoted as ),|( iki astF . ),|( ikij assQ , known as a stochastic kernel in an 

SMDP, was used to represent the probability of state si transition to state sj at the next decision 

epoch within time t, given that treatment aik was chosen at state si. The stochastic kernel 

),|( ikij assQ was formulated as follows: 

  ),|(),|(,|, ikijikiikij assPastFasstQ      (7.1) 

Where, 
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Cost in this application was defined as the probability of an infected individual dying 

from sepsis at state si under treatment aik, denoted by ),( iki asP . Cost ),( iki asP measured the risk 

of an infected individual dying from sepsis, given that treatment aik was chosen at state si. 

 7.4.3 Objective function of FHSMDP 

The objective of this SMDP was to determine an optimal policy (sequence of treatments) in 

order to minimize the risk of an infected individual dying from sepsis progression within a 

certain time window. Because 24 to 51% of patients met severe sepsis criteria within the first 24 

hrs of becoming infected (277), the first 24 hrs after hospitalization were considered an initial 

decision-making time horizon for treating individuals with sepsis. Therefore, the following 

FHSMDP was formulated to measure accumulated probability of an infected individual dying 

from sepsis over 24 hrs of hospitalization: 
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 iki astD ,|  in Equation (7.3) represents the probability of an infected individual remains 

at state si (NOT transition to other states) within time t , given that an infected individual 

received a treatment aik at state si. The first term,     dtastDasP ikiiki  


0
,|1, , in Equation (7.2) 

describes the accumulated probability of an infected individual dying from sepsis between the 

decision epoch n and the decision epoch (n+1), given that the infected individuals stays at state 

si.  iki asP ,  is a cost function to measure the risk of death (probability) for a patient when the 

patient stays at state si and receive treatment aik. The second term,    


,,|,
0

in

Ss

ikij sVasstQ
j




, 

in equation (7.2) calculates the accumulated probability of an infected individual dying from 

sepsis between the decision epoch n and the decision epoch (n+1), given that the infected 

individual transits to other states (sj), where  
ikij asstQ ,|,  is a stochastic kernel.  tsV jn  


,1  

is a value function (accumulated risk of death for a patient at state si), with the left decision-

making horizon equal to λ-t (the patient could stay in the hospital for (λ-t) hours). λ is a 

continuous variable between 0 and 24 hrs. 

 7.4.4 FHSMDP data sources 

Input data to FHSMDP were estimated using IMMABM, a platform developed to 

simulate Salmonella infection in a mouse liver. Based on data over 200 reports and reviews, this 

IMMABM describes interactions between 23 agents in order to simulate a mouse’s hepatic 

inflammatory response (HIR) in silico. By integrating experimental data and mathematical 

expressions derived from hypothesized kinetics, an attempt was made to quantitatively simulate 

dynamic patterns of an HIR in IMMABM. 
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By specifying the infected species, source of infection, and site of infection, the scope of 

the IMMABM allowed improvement of modeling approach accuracy without loss of generality. 

Furthermore, IMMABM allows clinicians to observe sepsis development and capture stochastic 

processes involved in inflammatory responses to an infection. Figure 7.2 and Figure 7.3 shows 

hypothetical death states (hyperinflammatory response and organ dysfunction) simulated by 

IMMABM using Netlogo, a software platform employed to conduct IMMABM simulations (73). 

Figure 7.2 Netlogo interface at selected time points (5 - 240 hrs) with 

hyperinflammatory response 

 

Figure 7.3 Netlogo interface at selected time points (5 - 240 hrs) with organ 

dysfunction 
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Stochastic kernels and cost functions of the FHSMDP were calculated using IMMABM, 

but those calculations were based on a veterinary model. Therefore, treatment strategies 

developed from FHSMDP failed to directly apply to human patients in clinics. However, this 

FHSMDP framework can be applied for development of treatment strategies for septic patients 

once human data are available for incorporation into IMMABM. 

 7.5 Solving the FHSMDP 

The value iteration algorithm presented in Huang is the basis for solving FHSMDP (278). 

The implementation process of a value iteration algorithm is summarized as follows: 

 Initialization 

When k =0, 

      horizondecisionplanningaisTTSseveryforsVlet ii ,,0,0,*

0  
 

 Iteration 

Compute using the following iterative equation: 

          tsVasstQdtastDasPsV jk

Ss

ikijikiikiik

j

 


  


 ,,|,,|1,,
00

1   (7.4) 

    


 RtasstQastD ikijSsiki

j

,,|,,|  

 Optimal stopping 

If, 

        horizondecisionplanningisTTSseveryforsVsV iikik ,,0,,, **

1  
 

Stop. Otherwise, go to Iteration. ɛ is an extreme small number. 

In this study, IMMABM was used to propose a novel framework in order to solve 

FHSMDPs. This framework, broadly structured based on integration of computational simulation 

driven by real data and analytic decision-making tools, can be applied to general clinical 
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decision-making. A flow diagram of the proposed framework is shown in Figure 7.4, in which 

data are summarized (collected) from experimental studies (clinical data). 

Figure 7.4 Proposed decision-making framework 

 

 

 

Unknown data can be estimated in an agent-based model (ABM) through a series of silico 

simulations. By incorporating those data to the ABM, clinicians or physicians can observe and 

predict changes in a patient’s state as an initial step for development of a treatment strategy. 

An ABM can also generate input data to an MDP. Based on generated input data such as 

transition probabilities, the MDP develops a sequence of treatments for patients. Developed 

strategies from MDPs can be further validated by the ABM in silico through a feedback loop. 

The ABM and MDP are adjustable based on clinical decision-makings on specific diseases. 

 7.6 Computational results 

Clinical and experimental data have shown that antimicrobial agents and anti-HMGB-1 

agents contribute to improved survival rates of septic individuals (35, 42-44, 273). 

Computational Study I in this study tested the effects of antimicrobial agents on sepsis 

development in infected individuals. As indicated by Cross, a combination of anti-agent 
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therapies may be more effective in treating sepsis as compared to a single anti-agent therapy 

(32). Computational Study II tested the effects of a combination of antimicrobial agents and 

anti-HMGB-1 agents on sepsis treatment. A detailed description of computational study I and 

computational study II is provided in Appendix C. 

 7.6.1 Computational study I 

Three distinct states of individuals were defined based on the level of Salmonella. State 1 

represented a low level of Salmonella in an individual. An individual was assigned State 2 if a 

medium level of Salmonella was present, and State 3 described a high level of Salmonella in an 

individual. Antimicrobial agents were incorporated into the IMMABM whenever a change in the 

health state of an individual was observed, given that the individual previously had a medium or 

high level of Salmonella. Detailed description of state definitions, model assumptions, and 

FHSMDP calculation is provided in Appendix C. Objective values obtained from the FHSMDP 

are shown in Figure 7.5. 

Figure 7.5 (A) Accumulated risk of an infected individual dying from sepsis from 0 - 

8 hrs of hospital stays. (B) Accumulated risk of an infected individual dying from sepsis 

from 0 - 24 hrs of hospital stay. Treatment 1: antimicrobial agent, treatment 2: anti-HMGB-

1 agent, treatment 3: a combination of antimicrobial agent/antiHMGB-1 agent 

 

 



 

235 

Simulated results from FHSMDP indicated that antimicrobial agents reduced 

accumulated risk of death for septic individuals with medium levels of Salmonella who 

experienced a long period of hospital stays (8 – 24 hrs). However, infected individuals with high 

levels of Salmonella were more likely to die than individuals with medium levels of Salmonella 

as the length of hospital stay increases. The chance of death significantly increased with 

increased length of hospitalization, as shown in Figure 7.5 (B). 

In Figure 7.5 (A), simulated results imply that antimicrobial treatment is more effective 

for treating infected individuals with high levels of Salmonella within (0 – 5 hrs) of 

hospitalization, indicating that antimicrobial treatment should be given to infected individuals 

with high levels of Salmonella within (0 – 5 hrs) of hospitalization. Because the assumption was 

made that patients began hospitalization immediately after initial infection, the treatment time 

window for heavily infected individuals was recommended as 0 – 1 hrs after hospitalization, 

matching with the conclusion in (43, 44). From 5 – 24 hrs of hospitalization, simulated results 

showed that infected individuals with high levels of initial infection had increased likelihood of 

achieving a death state, even with antimicrobial treatments, as compared to infected individuals 

with medium levels of initial infection. From 0 – 24 hrs of hospitalization, simulated results 

recommended administration of antimicrobial agents to infected individuals with medium levels 

of Salmonella. 

 7.6.2 Computational study II 

Computational Study I defined the health state of individuals using a combination of 

Salmonella levels and HMGB-1 levels. Detailed information of state definitions, modeling 

assumptions, and FHSMDP calculation is provided in Appendix C. Accumulated risks of death 

generated from FHSMDP are shown in Figures 7.6, 7.7, 7.8, and 7.9. 
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Figure 7.6 Accumulated risk of infected individuals dying from sepsis (hypothetical 

death states) at s5 from 0-24 hrs of hospital stays using various treatment strategies. 

Treatment 1: antimicrobial agent, treatment 2: anti-HMGB-1 agent, treatment 3: a 

combination of antimicrobial agent/antiHMGB-1 agent 
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Figure 7.7 Accumulated risk of infected individuals dying from sepsis (hypothetical 

death states) at s6 from 0-24 hrs of hospital stays using various treatment strategies. 

Treatment 1: antimicrobial agent, treatment 2: anti-HMGB-1 agent, treatment 3: a 

combination of antimicrobial agent/antiHMGB-1 agent 
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Figure 7.8 Accumulated risk of infected individuals dying from sepsis (hypothetical 

death states) at s8 from 0-24 hrs of hospital stays using various treatment strategies. 

Treatment 1: antimicrobial agent, treatment 2: anti-HMGB-1 agent, treatment 3: a 

combination of antimicrobial agent/antiHMGB-1 agent 
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Figure 7.9 Accumulated risk of infected individuals dying from sepsis (hypothetical 

death states) at s9 from 0-24 hrs of hospital stays using various treatment strategies. 

Treatment 1: antimicrobial agent, treatment 2: anti-HMGB-1 agent, treatment 3: a 

combination of antimicrobial agent/antiHMGB-1 agent 
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 7.6.3 Evaluation 

Computational studies from FHSMDP showed that the effectiveness of anti-agent 

treatments was significantly correlated to the length of hospital stay and the health states of 

infected individuals. The following paragraphs in this section describe the impacts of length of 

hospital stay on infected individuals and states of infected individuals in relation to clinical 

decision-making using proposed treatment strategies. 

As shown in Figure 7.6, infected individuals at s5 (medium level of Salmonella and 

medium level of HMGB-1) who received anti-HMGB-1 agents had increased chances of death 

from 0 to 6 hrs of hospital stay as compared to infected individuals who received antimicrobial 

agents and infected individuals who received a combination of antimicrobial agents and anti-

HMGB-1 agents. As hospital stays extended, simulated results failed to show significance 

differences in likelihood of death between infected individuals treated with antimicrobial agents, 

infected individuals treated with anti-HMGB-1 agents, and infected individuals treated with a 

combination of antimicrobial agents and anti-HMGB-1 agents. 

For infected individuals at state s6 (medium level of Salmonella and high level of 

HMGB-1), simulated results showed no significant differences in survival rates between infected 

individuals who received antimicrobial agents, infected individuals who received anti-HMGB-1 

agents, and infected individuals who received a combination of antimicrobial agents and anti-

HMGB-1 agents. Simulated results are shown in Figure 7.7. 

As shown in Figure 7.8, treating infected individuals at state s8 (high level of Salmonella 

and medium level of HMGB-1) using a combination of antimicrobial agents and anti-HMGB-1 

agents could be deleterious as compared to treatment using only antimicrobial agents during 0 - 

24 hrs of hospital stay. 
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Simulated results in Figure 7.9 show that infected individuals at state s9 should receive 

anti-HMGB-1 agents or a combination of antimicrobial agents and anti-HMGB-1 agents in order 

to decrease the likelihood of death. The difference in chance of death between infected 

individuals who received antimicrobial agents, infected individuals who received anti-HMGB-1 

agents, and infected individuals who received a combination of antimicrobial agents and anti-

HMGB-1 agents decreased as length of hospital stay increased. 

HMGB-1, a downstream pro-inflammatory mediator of TNF-α (232), was recognized as 

a potential therapeutic target for treating sepsis (37, 279). Simulated results from this study 

showed that use of anti-HMGB-1 agents could be deleterious to septic individuals (Figure 7.8), 

but use of anti-HMGB-1 agents could effectively treat individuals infected with sepsis (Figure 

7.9). A previous experiment (280) reported that pretreatment of anti-HMGB-1 monoclonal 

antibody significantly enhanced retinal ischemia-reperfusion injury in a rate model, as shown in 

Figure 7.5 (A) and Figure 7.8 (A). Therefore, observations of the double sword effect of anti-

HMGB-1 in this study were assumed to be due to various injection times of anti-HMGB-1 agents 

to infected individuals at state s5, s6 , s8 , and s9. 

 7.7 Conclusion and discussion 

The ABM, a powerful computational modeling technique, simulates complicated 

nonlinear dynamic relationships between components and intuitively maps a realistic biological 

system by incorporating spatial effects and the stochastic nature of the immune response into 

model construction (76, 195). A recent extensive application of ABMs in order to simulate 

inflammation (48-52) provided evidence that agent-based modeling is a valid approach for 

simulating disease progression. The proposed decision-making framework employed transition 

probabilities generated from an IMMABM as inputs to conventional MDP, thereby reducing the 
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difficulty of conventional MDPs for calculating transition probabilities (57). Furthermore, an 

ABM can predict dynamic patterns of disease progression and help initially screen therapeutic 

targets for disease treatment. Because an ABM is vital for the proposed decision-making process, 

construction of a rigorous ABM is an essential step for the establishment of the proposed 

decision-making framework. Although development of a rigorous ABM for simulation of disease 

progression is challenging due to lack of clinical data incorporation, involvement of intermediate 

biological responses, and limited understanding of various biological processes (102), this novel 

decision-making framework allows clinicians to test the effectiveness of a sequence of proposed 

treatments prior to clinical trials. 

The IMMABM in this study simulated HIR progression when Salmonella initial loads 

were 3200 counts (in silico equivalent to colony forming units [CFU]). A total of 200 counts 

antimicrobial agents or 800 counts anti-HMGB-1 agents (in silico 1 count of anti-HMGB-1 

degrades 2.82×10-5 pg HMGB-1) were incorporated into the IMMABM when the states of septic 

individuals changed. Simulations showed that outcomes of HIR were significantly correlated to 

Salmonella initial counts. The HIR had a higher likelihood of progressing to hypothetical death 

states (hyperinflammatory response or organ dysfunction) if Salmonella initial loads were high. 

Therefore, the amount of antimicrobial agents or anti-HMGB-1 agents incorporated into the 

IMMABM should be enhanced if a high initial load of Salmonella is detected in septic 

individuals. 

In addition, a fixed amount of antimicrobial agents or anti-HMGB-1 agents were 

incorporated into the IMMABM at each decision epoch. During IMMABM simulations, 

averaged 72960 counts of HMGB-1 (in silico 1 count of HMGB-1 equivalent to 2.82×10-5 pg 

HMGB-1) was observed when infected individuals were at state s3. If 800 anti-HMGB-1 agents 
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were administered to infected individuals at state s3, the probability of transition to a healthy 

state was approximately 9%. The hypothesis was made that an increased amount of anti-HMGB-

1 agents injected at state s3 could lead to an increased chance of ending with a healthy state. This 

hypothesis will be tested in future studies. 

The IMMABM was constructed to simulate mouse HIR infected by Salmonella. As 

indicated by Hotchkiss et al., “The theory that death from sepsis was attributable to an 

overstimulated immune system was based on studies in animals that do not seem to reflect the 

clinical picture in human” (247). An ABM of human inflammatory responses to an infection 

would help establish accurate prediction of dynamic patterns of human inflammation and provide 

accurate data incorporation for the decision-making framework for septic patients. 

In this study, states of infected individuals were defined based on a boundary rule. For 

example, maximum levels of Salmonella during selected 50 simulation runs were recorded. 

According to the maximum level of Salmonella, the upper limit of low levels of Salmonella were 

defined as equivalent to one- third the maximum level of Salmonella; the upper limit of medium 

levels of Salmonella were defined as equivalent to two-thirds the maximum level of Salmonella.  

Detailed descriptions of state definitions are provided in Appendix C. 

This study tested the efficacy of incorporating antimicrobial agents and a combination of 

antimicrobial agents and anti-HMGB-1 agents to infected individuals during HIR. Silico results 

showed that a combination of antimicrobial agents and anti-HMGB-1 agents was not 

significantly effective in reducing accumulated risk of death as compared to administration of 

only antimicrobial agents. HMGB-1 was recognized as a late pro-inflammatory mediator during 

inflammation; an elevated level of HMGB-1 would be correlated to the death of infected 

individuals (22, 23, 237). Incorporation of anti-TNF-α agents between 6 hrs and 8 hrs of 
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infection improved survival rates of infected individuals with HIR in multiple simulation runs. 

However, because computational studies conducted for this study were initial therapeutic tests 

for treating infected individuals, the effectiveness of additional tests, such as a combination of 

anti-TNF-α agents and anti-HMGB-1 agents or a combination of antimicrobial agents, anti-TNF-

α agents, and anti-HMGB-1 agents, for treating septic individuals must be verified in future 

studies. 

 7.8 Future research 

The proposed decision-making framework in this chapter is a general methodology that 

can be applied in order to develop strategies for treating other diseases, such as cancer. 

Researchers can formulate their individual decision-making platforms by specifically modifying 

this decision-making framework. 

Future research will pursue several objectives. First, additional therapeutic tests will be 

conducted using a combination of antimicrobial agents and anti-TNF-α agents and a 

combination of antimicrobial agents, anti-TNF-α agents, and anti-HMGB-1 agents. The tests will 

be designed to fully explore the impact of treatment combinations for individuals infected with 

sepsis, as proposed by Cross et al. (32). A comparative study on proposed treatments could help 

clinical decision makers, such as clinicians, determine optimal treatment bundle for septic 

individuals. Second, sensitivity analysis on various antimicrobial loads, anti-TNF-α agents, or 

anti-HMGB-1 injection to infected individuals at various decision epochs will be conducted in 

order to identify optimal treatment plans for infected individuals. Third, the impact of initial 

Salmonella counts on the effectiveness of treatment combinations will be explored in order to 

develop appropriate, individualized treatment strategies for each septic patient. 
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Chapter 8 - Conclusions and Contributions 

 8.1 Conclusions 

In this dissertation, two SDMMs were developed to simulate various dynamic patterns of 

inflammatory responses to an infection (Salmonella). Furthermore, two ABMs were built, with 

an incorporation of mathematical expressions from SDMMs, to accurate reflect the possible 

pathogenesis of sepsis based on the host’s physiological conditions. Ultimately, a novel decision 

making framework was developed to apply to a clinical decision making on the treatment for 

sepsis. 

Main conclusions draw from this dissertation are: 

1. Three dynamic patterns, “healing process”, “persistent infection”, and “organ 

dysfunction”, were identified from developed SDMMs in a quantitatively way. 

Four identifiable patterns were found in IMMABM, including “healing process”, 

“persistent infection”, “hyperinflammatory response”, and “organ dysfunction”. 

Specifically, a dampened oscillated pattern observed in experimental studies was 

captured using both SDMMs and IMMABM. 

2. System parameters such as kpg, rpn, un, rt2max, kmkub, umk and kmk were identified in 

SDMMs as “key parameters” because the changes in their values impacted the 

outcomes of inflammatory responses to an infection (Salmonella). 

3. The 18-equation SDMM showed that CD4+ T cell count, CD8+ T cell count, B 

cell count, and antibody count were persistently elevated, which contributed to the 

pathogen clearance during a late stage of sepsis progression. 

4. Both SDMMs and ABMs showed that the outcomes of inflammatory responses to 

an infection (Salmonella) were highly correlated with pathogen (Salmonella) 
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initial loads. The chance of death were increased as the pathogen initial loads 

increased. 

5. In IMMABM, outcomes of inflammatory responses to an infection (Salmonella) 

was found to clearly skew toward a “healing response” at Salmonella doses less 

than 500 counts. As the initial Salmonella doses increased, the dynamic patterns 

of inflammation could diverge in the health outcomes (healing response vs. 

persistent infection vs. hyperinflammatory response vs. organ dysfunction). 

6. Biomarkers such as HMGB-1, CRP, IL-10: TNF-α ratios, and CD4+ T cell: 

CD8+ T cell ratios were highly correlated with the outcomes of an HIR in 

IMMABM. The elevation in HMGB-1 level, CRP level, and a decrease in IL-10: 

TNF-α ratios and CD4+ T cell: CD8+ T cell ratios indicated a risk of death (was 

developing to “hyperinflammatory response” or “organ dysfunction”). 

7. The therapy-directed tests in IMMABM showed that Antimicrobial agents 

significantly improved the survival rates during the first hour of HIR.  In contrast, 

the optimal treatment window for anti-TNF-α agents was between 6 hours and 8 

hours. The combination of anti-HMGB-1 and anti-TNF-α was more effective in 

improving the survival rates when treatment was started between 7 hours and 11 

hours, compared to using only anti-TNF-α. The therapy-directed silico 

simulations demonstrated that anti-agents impacted the survival rates of septic 

individuals at various treatment time windows. 

8. When infected individuals at s5 (a medium level of Salmonella and a medium 

level of HMGB-1 were observed in IMMABM), antimicrobial agent treatment or 

a combination of antimicrobial agent and anti-HMGB-1 agent treatment should be 
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injected to infected individuals from 0 - 6 hours after hospitalization. From 6 - 9 

hours after hospitalization, there is no significant difference in the efficacy of the 

treatment between choosing antimicrobial agent treatment, anti-HMGB-1 agent 

treatment, and a combination of antimicrobial agent and anti-HMGB-1 agent 

treatment. From 9 - 24 hours, anti-HMGB-1 agent treatment is more effective in 

treating infected individuals, compared to antimicrobial agent treatment or a 

combination of antimicrobial agent and anti-HMGB-1 agent treatment.  

9. When infected individuals at s6 (a medium level of Salmonella and a high level of 

HMGB-1 were observed in IMMABM), there is no significant difference in the 

efficacy of the treatment between choosing antimicrobial agent treatment, anti-

HMGB-1 agent treatment, and a combination of antimicrobial agent and anti-

HMGB-1 agent treatment. 

10. When infected individuals at s8 (a high level of Salmonella and a medium level of 

HMGB-1 were observed in IMMABM), antimicrobial agent treatment is the best 

treatment among antimicrobial agent treatment, anti-HMGB-1 agent treatment, 

and a combination of antimicrobial agent and anti-HMGB-1 agent treatment from 

0 – 24 hours of hospitalization.  

11. When infected individuals at s9 (a high level of Salmonella and a high level of 

HMGB-1 were observed in IMMABM), there is no significant difference in the 

efficacy of treatment between antimicrobial agent treatment, anti-HMGB-1 agent 

treatment, and a combination of antimicrobial agent and anti-HMGB-1 agent 

treatment from 0 hour – 1 hour after hospitalization. From 1 – 24 hours after 

hospitalization, either anti-HMGB-1 agent treatment or a combination of 
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antimicrobial agent and anti-HMGB-1 agent treatment had a lower accumulated 

risk of death over hospitalization, compared to antimicrobial agent treatment. 

 8.2 Contributions 

Major contributions of this dissertation to the area of computational modeling, decision 

making, and clinical research are listed as follows: 

1. This research developed a 14-equation SDMM and an 18-equation SDMM to 

predict various dynamic patterns of inflammatory responses to an infection. Key 

parameters were identified using stability analysis. Levels of indicators during the 

development of sepsis was quantitatively simulated over time. Compared to 

existing mathematical models, the developed SDMMs provided more accurate 

qualitative estimates. 

2. For the first time, this research incorporated extensive experimental data to an 

agent-based model to simulate a hepatic inflammatory response (HIR) in a mouse 

infected by Salmonella. Relationships between dynamic patterns of inflammatory 

responses and dynamic patterns of essential biomarkers were studies for the first 

time in silico simulation.  

3. This study, for the first time, presented a mapping of probabilities of leading to 

various dynamic patterns of inflammatory responses to pathogen (Salmonella) 

initial loads. This mapping provided a predictive tool for estimating the mortality 

rate of an infected individuals, given the pathogen initial loads were measured. 

4. This dissertation is the first one to propose a concept of a general decision making 

framework with application to clinical decision makings. Furthermore, this 

research developed the first application of a finite-horizon semi-Markov decision 
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process (FHSMDP) in an attempt to address the challenges in current medical 

decision makings for the sepsis treatment. This proposed FHSMDP is also the 

first application of a finite-horizon SMDP to the clinical decision makings. 

Results obtained in this study would provide recommendations for clinicians to 

select an optimal sequence of treatments for an infected individual during the 

hospitalization. 
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Appendix A - Supplementary Tables for SDMMs 

Table A.1 Definition of parameters and experimental values in Kupffer local 

response model 

Parameters Description Value References 

𝑘𝑝𝑔 
Salmonella growth rate 

1.2-3.6/h (108) 

𝑃∞ 
Salmonella carrying capacity 

108cells (112) 

𝑟𝑝𝑚𝑘 Rate at which pathogens are killed by 

Kupffer cells 

0.03/per kupffer cell/h (110) 

𝑛 The extent of Salmonella binding to Kupffer 

cells 

2 Estimated 

𝑘𝑐1 Number of Kupffer cells which phagocytose 

half of Salmonella 

0.03 𝑐𝑒𝑙𝑙𝑠/ℎ (110) 

𝑘𝑚𝑘 Proliferation rate of Kupffer cells under 

inflammation 

0.015-2/h Estimated 

𝐾∞ 

Kupffer cells carrying capacity 

(16 − 20) × 106𝑐𝑒𝑙𝑙𝑠

𝑔 𝑙𝑖𝑣𝑒𝑟
 

(281) 

𝑘𝑚𝑘𝑢𝑏  
Unbinding rate of binding Kupffer cells 

0.1-0.77/h (111) 

𝑢𝑚𝑘 Killing rate of free Kupffer cells induced by 

binding to pathogens 

0.23-0.9/h (111) 

 

Table A.2 Definition of parameters and experimental values in neutrophils immune 

response model 

Parameters Description Value References 

𝑟𝑝𝑛 Rate at which pathogens are killed by 

neutrophils 
20-100/per neutrophil/h (282) 

𝑟𝑡1𝑚𝑎𝑥 The maximum number of TNF-α being 

released by Kupffer cells per enzyme 

molecule per hour 

10/h Estimated 

𝑟𝑡2𝑚𝑎𝑥 The maximum number of TNF-a being 

released by neutrophils per enzyme molecule 

per hour 

1000/h Estimated 

𝑚𝑡1 Number of Kupffer cells at which the reaction 

rate is half of maximal production rate 
10000 cells Estimated 

𝑚𝑡2 Number of activated neutrophils at which the 

reaction rate is half of maximal production 

rate 

10000 cells Estimated 
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𝑘𝑐2 Concentration of neutrophils which 

phagocytose half of Salmonella 
𝑎𝑏𝑜𝑢𝑡 1.5 × 10−4/ℎ (283) 

𝑢𝑡 
Degradation rate of TNF-α 

0.025-0.5/h 

(measured in kidney) 

(284) 

𝑘𝑟𝑑 Influx rate of neutrophils into blood vessel 0.1 − 0.72/ℎ (285) 

𝑁𝑠 Maximum amount of neutrophils in liver 3.5 × 105 (117) 

𝜇𝑛𝑟 Apoptotic rate of resting neutrophils 0.069-0.12/h (185) 

𝜇𝑛 Apoptotic rate of activated neutrophils 0.05/h (185) 

𝑘𝑛𝑢𝑏 Unbinding rate of activated neutrophils 0.01-0.5/h Estimated 

𝑘𝑟1  Auxiliary parameter associated with the 

activation rate of resting neutrophils 

3/h Estimated 

𝑢𝑟1 Degradation rate of parameter r1 to maintain a 

slow-saturation curve 

0.003/h Estimated 

 

Table A.3 Definition of parameters and experimental values in damaged tissue 

model 

Parameters Description Value References 

𝐴∞ Number of hepatocytes in liver 3.2 × 108𝑐𝑒𝑙𝑙𝑠/ℎ mouse phenome database 

𝑟ℎ𝑛 Rate at which activated neutrophils kill 

apoptotic hepatocytes 

9000/per neutrophil/h Estimated 

𝑘𝑐3 Concentration of activated neutrophils 

which phagocytose half of apoptotic 

hepatocytes 

 0.04 𝑐𝑒𝑙𝑙𝑠/ℎ Estimated 

𝑟𝑎ℎ Recovery rate of apoptotic hepatocytes 0.5-2/hour (207) 

 

Table A.4 Definition of parameters and experimental values in monocytes immune 

response model 

Parameters Description Value References 

𝑘𝑚𝑟  Influx rate of monocytes into blood vessel 0.5/ℎ (285) 

𝑟𝑝𝑚 Rate at which pathogens are killed by 

inflammatory monocytes  
7/per monocyte/h 

(202) 

𝑟2 Influx rate of monocytes in liver 80/hours (144) 

𝑀𝑠 Maximum amount of inflammatory 

monocytes in liver 
50000 

(125) 

𝜇𝑚𝑟 Apoptotic rate of resting monocytes 0.2 Estimated 

𝜇𝑚 Apoptotic rate of activated monocytes 

(monocytes-derived-macrophage) 
0.08 

(286) 
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𝑟ℎ1𝑚𝑎𝑥  The maximum number of HMGB-1 being 

released by monocytes per enzyme 

molecule per hour 

0.001 

Estimated 

𝑚ℎ1 Number of monocytes generate half of 

maximal HMGB-1 production rate 
10000 

Estimated 

𝑛 Hill-type coefficient associated with 

monocytes 
2 

Estimated 

𝑘𝑐4 Number of monocytes which phagocytose 

half of Salmonella 
0.002𝑐𝑒𝑙𝑙𝑠/ℎ 

(202)  

𝑘𝑢𝑚𝑏 Unbinding rate of binding activated 

monocytes 
0.4 

(36) 

𝑢ℎ Degradation rate of HMGB-1 0.5-3 Estimated 

𝑢𝑚𝑛 Rate at which activated neutrophils are 

killed by inflammatory monocytes 
200 

Estimated 

 

Table A.5 Definition of parameters and experimental values in anti-inflammatory 

immune response model 

Parameters Description Value References 

𝑟𝑐𝑎𝑚𝑎𝑥 

The maximum number of IL-10 being 

released by monocytes per enzyme 

molecule per hour 

10000 Estimated 

𝐶𝐴ℎ 
Number of monocytes generate half of 

maximal HMGB-1 production rate 
10000 Estimated 

𝑛 
Hill-type coefficient associated with 

monocytes 
2 Estimated 

𝑢𝑐𝑎 Degradation rate of IL-10 0.02 Estimated 

 

Table A.6 Definition of parameters and experimental values in full model with 

adaptive immunity  

Parameters Description Value References 

𝑘𝑐𝑑4 
The influx rate of CD4+ T cells to blood 

vessel 
0.014 (174) 

𝑇𝑐𝑑4∞ 
CD4+ T cell carrying capacity in the 

blood vessel 
27.4 × 106 (174) 

𝑢𝑐𝑑4 Degradation rate of CD4+ T cells 0.00083-0.001 (174) 

𝑘𝑐𝑑8 
The influx rate of CD8+ T cells to blood 

vessel 
0.0625 (174) 

𝑇𝑐𝑑8∞ 
CD8+ T cell carrying capacity in the 

blood vessel 
5 × 106 (174) 

𝑢𝑐𝑑8 Degradation rate of CD8+ T cells 0.00079-0.001 (174) 

𝑘𝐵 The influx rate of B cells to blood vessel 0.0122 (174) 

𝐵∞ 
B cell carrying capacity in the blood 

vessel 
28.6 × 106 (174) 

𝑢𝐵 Degradation rate of B cells 0.00012-0.00016 (287, 288) 
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𝑟𝐴𝑏𝑚𝑎𝑥 
The maximum production amount of 

antibody by B cells 
0.00053 (243-245) 

𝑚𝐴𝑏 
Number of B cells at which the reaction 

rate is half of maximum production rate 
10000 Estimated 

𝑢𝐴𝑏 Degradation rate of antibody 0.0035-0.01 (289) 

𝑟𝑝𝐴𝑏  
Rate at which pathogens are killed by 

antibody 
1 

Estimated based on 

(243, 245, 289) 

𝑘𝑐5 
Concentration of antibody which kill 

half of Salmonella 
0.035 Estimated 

𝑟𝑝𝑐𝑑4 
Rate at which pathogens are killed by 

CD4+ T cells 
8 (176, 202, 290) 

𝑘𝑐6 
Concentration of CD4+ T cells which 

kill half of Salmonella 
0.0015 Estimated 

𝑟𝑀𝑘𝑏𝑐𝑑8 
Rate at which binding Kupffer Cells are 

killed by CD8+ T cells 
0.25 (290) 

𝑘𝑐7 

Concentration of CD8+ T cells which 

kill half of binding antigen presenting 

cells 

0.0015 Estimated 

𝑟𝑁𝑏𝑐𝑑8 
Rate at which binding activated 

neutrophils are killed by CD8+ T cells 
0.25 (290) 

𝑟𝑀𝑏𝑐𝑑8 
Rate at which binding activated 

monocytes are killed by CD8+ T cells 
0.25 (290) 

𝑟𝑐𝑑4𝑀𝑏  
Rate at which CD4+ T cells bind to 

activated monocytes 
4 (290) 

𝑟𝑐𝑑8𝑀𝑏  
Rate at which CD8+ T cells bind to 

activated monocytes 
4 (290) 

𝑘𝑐8 
Activated monocyte concentration 

produce half occupation on T cells 
0.0075 Estimated 

𝑟𝐵𝑡  Rate at which B cells bind to T cells 1-10 Estimated 

𝑘𝑐9 
B cell concentration produce half 

occupation on T cells 
0.045 Estimated 

𝑘𝑐𝑑4𝑀 
Rate at which binding CD4+ T cells are 

killed by activated monocytes 
0.73-2 (291) 

𝑘𝑐𝑑8𝑀 
Rate at which binding CD8+ T cells are 

killed by activated monocytes 
0.73-2 (291) 

𝑘𝑐10 
Concentration of activated monocytes 

which kill half of binding T cells 
0.018 Estimated 
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Appendix B - Supplementary Materials for IMMABM 

Table B.7 Agent Types and Agent Behaviors in IMMABM Based on Biological 

Behaviors (Agent types in “Agent Behavior(s)” are highlighted in Italic format, except 

terminology Salmonella enterica serovar Typhimurium (Salmonella) is Italic format in both 

“Biological Behavior(s)” and “Agent Behavior(s)”) 
Note: biological behaviors that are lack of references (citations) indicate that the behaviors are implied from the literature in general. 

Agent Type 

(Biological 

Indictor) 

 

Shape (s) in 

IMMABM 

 

Biological Behavior(s) (BB) 

 

Agent Behavior(s) (Netlogo process) 

Agent Type(s) 

that the 

specific agent 

type interacts 

with 

Salmonella 

(Salmonella) 

 1. Samonella are 
phagocytized by 
Kupffer Cells (198, 
292). 

2. Salmonella are killed 
by Kupffer Cells (198, 
292). 

3. Salmonella replicate 
within apoptotic 
Kupffer Cells (172, 
173). 

4. Salmonella escape 
from apoptotic 
Kupffer Cells. 

5. Salmonella infect 

SECs and replicate 

within SECs (176) . 

6. Salmonella released 

from infected SECs 

persistently infect 

and replicate within 

neighboring cells.  

7. Released Salmonella 
infect healthy 
hepatocytes (176, 
199). 

8. Salmonella replicate 
within infected 
hepatocytes (176, 
199). 

9. Salmonella escape 
from apoptotic 
hepatocytes (200). 

10. Salmonella released 
from infected 
hepatocytes and 
persistently infect 
and replicate within 
liver tissue. 

11. Released Salmonella 
are phagocytized by 
neutrophils (198, 
200). 

12. Salmonella are killed 
by neutrophils (198, 
200). 

13. Escaped Salmonella 

1. salmonellaPhagocytizeByKupfferCell
SubRoutine [BB.1] 

2. salmonellaKillByKupfferCellSubRouti
ne [BB.2] 

3. salmonellaReplicateWithinKupfferCel
lSubRoutine [BB.3] 

4. salmonellaReplicateWithinSECsSubR
outine [BB. 5] 

5. salmonellaReplicateWithinHepatocyt
eSubRoutine [BB.7, BB.8] 

6. salmonellaPhagocytizeByActivatedN
eutrophilSubRoutine [BB. 11, BB. 12] 

7. salmonellaPhagocytizeByMDMISubR
outine [BB. 13, BB.14] 

8. salmonellaReplicateWithinMDMISub
Routine [BB. 15] 

9. newlyReleasedSalmonellaFromApopt
oticCellsInteractWithSECsOrHepatoc
yteOrMastCellSubRoutine [BB. 4, 
BB.6, BB.9, BB. 10, BB. 17] 

10. salmonellaGetTrappedByNETsSubRo
utine [BB. 16] 

11. For BB. 18, see CRP Behaviors(s). 3 
12. For BB. 19, see CRP Behaviors(s). 4 
13. For BB. 20, see CRP Behaviors(s). 5 
14. For BB. 21, see CRP Behaviors(s). 6 

and 7 
15. For BB. 22, see Antibody 

Behaviors(s). 4 
16. For BB. 23, see Antibody 

Behaviors(s). 5 
17. For BB. 24, see Antibody 

Behaviors(s). 6 
18. For BB. 25, see Antibody 

Behaviors(s). 7 and 8 
19. salmonellaDieBecauseOtherChemical

sReleaseByMastCellSubRoutine [BB. 
26] 

1. KupfferCell  

2. Hepatocyte  

3. SEC 

4. 

ActivatedNeutr

ophil 

5. NET 

6. MDMI 

7. MastCell 

8. Antibody 

9. CRP 
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are phagocytized by 
monocyte-derived-
macrophage type I 
(MDMI) (172, 201). 

14. Salmonella are killed 
by monocyte-
derived-macrophage 
type I (172, 201). 

15. Salmonella replicate 

within monocyte-

derived-macrophage 

type I (216). 

16. Salmonella are 

trapped and killed by 

neutrophil 

extracellular traps 

(NETs) as a complex 

of Myeloperoxidase 

(MPO) and 

neutrophil elastase 

(NE). MPO and NE 

are released from 

neutrophil 

degranulation (214, 

215, 293). 

17. Salmonella bind to 

mast cells (252, 253). 

18. Salmonella that bind  

CRP are killed by 

Kupffer Cells (205). 

19. Salmonella that bind  

CRP are killed by 

mast cells (205). 

20. Salmonella that bind  

CRP are killed by 

neutrophils (205). 

21. Salmonella that bind  

CRP are killed by 

macrophages (205). 

22. Salmonella that bind 

by antibody are killed 

by Kupffer Cells (10). 

23. Salmonella that bind 

by antibody are killed 

by mast cells (10). 

24. Salmonella that bind 

by antibody are killed 

by neutrophils (10). 

25. Salmonella that bind 

by antibody are killed 

by macrophages (10). 

26. Salmonella growth is 

inhibited by other 

undefined 

mechanism (294). 

Hepatocyte 

(Hepatocyte) 

 1. Hepatocytes are 

infected by 

Salmonella and 

undergo apoptosis 

(176, 198). Apoptotic 

hepatocytes become 

hepatocyte debris. 

1. hepatocyteBecomeHepatocyteDebrisInduc
edBySalmonellaSubR-outine [BB. 1] 

2. hepatocyteBecomeHepatocyteDebrisInduc
edByTNFAlphaSubRo-utine [BB. 2] 

3. hepatocyteReleaseCRPIfAnyMDMIWasDet
ectedSubRoutine [BB. 3] 

4. apoptoticHepatocyteKillByNeutrophilSubR

1. Salmonella 

2. TNF-α 

3. 

ActivatedNeutr

ophil 
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2. Hepatocytes are 

activated  with TNF-α 

and become 

apoptotic (15). 

Apoptotic 

hepatocytes become 

hepatocyte debris. 

3. CRP is released by 

hepatocytes in 

response to IL-6 

released by 

macrophages (203, 

204). 

4. Salmonella-infected 
hepatocytes interact 
with activated 
neutrophils which 
accelerates the 
apoptosis (127, 209, 
210). 

5. Apoptotic 

hepatocytes release 

TNF-α (207). 

6. Apoptotic 

hepatocytes release 

HMGB1 (208). 

7. Hepatocytes 
regenerate (295). 

outine [BB. 4] 
5. apoptoticHepatocyteProduceTNFAlphaSub

Routine [BB. 5] 
6. apoptoticHepatocyteProduceHMGB1SubR

outine [BB. 6] 
7. hepatocyteRegenerateSubRoutine [BB. 7] 

HepatocyteD

ebris 

(Hepatocyte 

debris) 

 1. Hepatocyte debris is 
phagocytized  by 
Kupffer Cells (15). 

2. Hepatocyte debris is 
phagocytized  by 
mast cells.  

3. Hepatocyte debris 
can also be 
phagocytized  by 
neutrophils (127). 

4. Hepatocyte debris 
can also be 
phagocytized  by 
monocyte-derived-
macrophage type I 
(296, 297). 

5. Hepatocyte debris 
can also be 
phagocytized  by 
monocyte-Derived-
Macrophage Type II 
(MDMII) (296, 297). 

6. Hepatocyte debris 
bind to CRP (205). 

7. Hepatocyte debris 
binding to CRP are 
phagocytized  by 
inflammatory cells 
including Kupffer 
Cells, neutrophils, 
mast cells, MDMI, 
and MDMII (205). 

8. Hepatocyte debris 
undergo natural 
degradation. 

1. hepatocyteDebrisPhagocytizeByInflammat
oryCellSubRoutine [BB. 1, BB.2, BB. 3, BB. 
4, and BB. 5] 

2. For BB. 6, see CRP Behaviors(s). 14 
3. For BB. 7, see CRP Behaviors(s). 15, 16, 

17, 18, and 19 
4. hepatocyteDebrisDieByNatureSubRoutine 

[BB. 8] 

1. KupfferCell 

2. MastCell 

2. 

ActivatedNeutr

ophil 

3. MDMI 

4. MDMII 

5. CRP 

RestingNeutr  1. Circulating neutrophil 1. restingNeutrophilInfluxToLiverSinusoidFro SEC 
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ophil 

(Circulating 

neutrophil) 

numbers increase 
after infection (298). 

2. Circulating 
neutrophils roll along 
sinusoidal 
endothelial cells 
(216, 299). 

3. Circulating 
neutrophils get 
signals from 
sinusoidal 
endothelial cells 
(216, 299). 

4. Circulating 
neutrophils are 
activated by TNF-α, 
Salmonella, and 
HMGB-1 (24, 127, 
171, 206, 221). 

5. Circulating 
neutrophils undergo 
aging and undergo 
apoptosis (300). 

mBoneMarrowSubRou-tine [BB. 1] 
2. restingNeutrophilMoveToSECsFollowingSi

gnalSentFromCytokineAndGetActivatedSu
bRoutine [BB. 2, BB. 3, and BB. 4] 

3. restingNeutrophilUndergoAgingByNatureS
ubRoutine [BB. 5] 

ActivatedNeu

trophil 

(Activated 

neutrophil) 

 1. Activated circulating 
neutrophils adhere to 
sinusoidal 
endothelial cells 
(216, 299). 

2. Activated neutrophils 
migrate to liver 
Kupffer Cells (14). 

3. Activated neutrophils 
interact with 
Salmonella (14, 200, 
301). 

4. Activated neutrophils 

migrate to apoptotic 

hepatocytes which 

are infected by 

Salmonella (200). 

5. Activated neutrophils 
undergo natural 
aging (302, 303).  

6. Apoptotic 
neutrophils interact 
with CRP (205). 

7. Apoptotic 
neutrophils 
interacted with CRP 
are  phagocytized  by 
inflammatory cells 
(205). Apoptotic 
neutrophils die after 
phagocytosis. 

8. Activated neutrophils 
inhibit neutrophil 
movement to the site 
of infection by taking 
up CRP that has 
bound to  cell debris 
[see CRP 1]. 

9. Apoptotic 
neutrophils are 
engulfed by MDMII 
(216). 

1. restingNeutrophilMoveToSECsFollowingSi
gnalSentFromCytokineAndGetActivatedSu
bRoutine [BB. 1, BB. 8] 

2. activatedNeutrophilInteractWithKupfferCe
llSubRoutine [BB. 2] 

3. activatedNeutrophilPhagocytizeByKupffer
CellSubRoutine [BB. 2] 

4. activatedNeutrophilMoveToSiteOfSalmon
ellaSubRoutine [BB. 3] 

5. activatedNeutrophilMoveToSiteOfApoptot
icHepatocyteSubRoutine [BB. 4] 

6. activatedNeutrophilUndergoAgingByNatur
eSubRoutine [BB. 5] 

7. For BB. 6, see CRP Behaviors(s). 20 
8. For BB. 7, see CRP Behaviors(s). 21, 22, 

23, 24, and 25 
9. apoptoticActivatedNeutrophilPhagocytize

ByMDMII [BB. 9] 
10. activatedNeutrophilProduceTNFAlphaSub

Routine [BB. 10] 
11. activatedNeutrophilProduceIL10SubRoutin

e [BB. 11] 
12. activatedNeutrophilProduceNETsSubRouti

ne [BB. 12] 
13. For BB. 13, see IL-10 Behavior(s). 4 and 5 
14. activatedNeutrophilWhoPhagocytizeSalmo

nellaUndergoApoptosisByInteractWithCD8
TCellSubRoutine [BB. 14] 

1. SEC 

2. KupfferCell 

3. Salmonella 

4. Hepatocyte 

5. CRP 

6. IL-10 

7. MDMI 

8. MDMII 

9. MastCell 

10. 

ActivatedNeutr

ophil 
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10. Activated neutrophils 
release cytokines 
such as TNF-α and IL-
10 after neutrophil 
simulation by 
bacterial LPS (17, 77, 
213). 

11. Activated neutrophils 
undergo 
degranulation and 
release MPO and NE 
after neutrophils 
simulation by 
bacterial LPS (293). 

12. Activated neutrophils 
release NETs (214). 

13. Activated neutrophils 
bind to IL-10 (220) 
[see model 
assumption 16]. 

14. Activated neutrophils 
that phagocytize 
Salmonella undergo 
apoptosis if bind to 
CD8+ T cells (10). 

RestingMono

cyte 

(Circulating 

monocyte) 

 1. Circulating 
monocytes are 
released after 
infection (111). 

2. Circulating 
monocytes roll in the 
blood vessel (216, 
222). 

3. Circulating 
monocytes get 
signals and are 
activated to adhere 
to endothelial cells 
(216, 222, 223). 

4. Circulating 
monocytes are 
activated by TNF-α, 
Salmonella, HMGB-1, 
and TH1 effector cells 
and apoptotic 
activated neutrophils 
(14, 24, 142, 144, 
216, 222, 298, 304-
306). 

5. Monocytes become 
MDMIs when they 
encounter  
Salmonella or TNF-α 
(16, 216). 

6. Monocytes become 

MDMIIs when they 

encounter  apoptotic 

activated neutrophils 

(16, 216). 

 

7. Circulating 
monocytes undergo 
aging and undergo 
apoptosis (307). 

1. restingMonocyteInfluxToLiverSinusoidFro
mBoneMarrowSubRou-tine [BB. 1] 

2. restingMonocyteMoveToSECsFollowingSig
nalSentFromCytokineAndGetActivatedSub
Routine [BB. 2, BB. 3, and BB. 4] 

3. restingMonocyteBecomeMDMIOrMDMIIB
yInteractWithCorresp-ondingCellO-
rCytokineSubRoutine [BB. 5, BB. 6] 

4. restingMonocyteUndergoAgingByNatureS
ubRoutine [BB. 7] 

 

1. Salmonella 

2. TNF-α 

3. 

ActivatedNeutr

ophil 

4. SEC 

MDMI  1. MDMIs migrate to 1. restingMonocyteBecomeMDMIOrMDMIIB 1. Salmonella 
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(monocyte-

Derived-

Macrophage 

Type I) 

the site of Salmonella 
(16, 216). 

2. MDMIs phagocytize 
(kill) Salmonella at 
certain rate(16, 216). 

3. MDMIs release TNF-ɑ 

(216). 

4. MDMIs are killed by 
Salmonella (172, 
201). 

5. MDMIs undergo 
natural aging (308). 

6. Aging MDMIs interact 
with CRP (205). 

7. Aging MDMIs 
interacted with CRP 
are phagocytized by 
inflammatory cells 
(205). 

8. MDMIs phagocytize 
CRP bound to  cell 
debris and release 
cytokines such as 
TNF-α (205, 309). 

9. MDMIs (partially) 
transform to Kupffer 
Cells (123, 310, 311). 

10. MDMIs bind to IL-10 
[See model 
assumption 16]. 

11. MDMIs, as APCs, 
attract T cells from 
lymph node to the 
site of infection 
(164). 

12. MDMIs phagocytize 
apoptotic T cells 
(166). 

13. MDMIs release IL-10 
by phagocytizing 
apoptotic T cells 
(166). 

14. MDMIs that 
phagocytize  
Salmonella undergo 
apoptosis if they bind 
to CD8+ T cells (10). 

yInteractWithCorresp-ondingCellO-
rCytokineSubRoutine [BB. 1] 

2. MDMIPhagocytizeSalmonellaSubRoutine 
[BB. 2] 

3. MDMIProduceTNFAlphaByPhagocytizeSal
monellaOrCRPTypeComplexSubRoutine 
[BB. 3, BB. 8] 

4. MDMIKillBySalmonellaSubRoutine [BB. 4] 
5. MDMIUndergoAgingByNatureSubRoutine 

[BB. 5] 
6. For BB. 6, see CRP Behavior(s). 26 
7. For BB. 7, see CRP Behavior(s). 27, 28, 29, 

30, and 31 
8. MDMITransformToKupfferCellSubRoutine 

[BB. 9] 
9. For BB. 10, see IL-10 Behavior (s). 4 and 5 
10. For BB. 11, see CD4TCellBehavior(s). 1 

and CD8TCellBehavior (s). 1  
11. For BB. 12, see CD4TCellBehavior(s). 4 

and CD8TCellBehavior (s). 3 

12. MDMIProduceIL10ByPhagocytizeApoptoti
cCD4TCellOrCD8TCellS-ubRoutine [BB. 13] 

13. MDMIWhoPhagocytizeSalmonellaUndergo
ApoptosisByInteract-
WithCD8TCellSubRoutine [BB. 14] 

2. CRP 

3. IL-10 

4. KupfferCell 

5. 

ActivatedNeutr

ophil 

6. MastCell 

7. MDMI 

8. MDMII 

9. CD8TCell 

10. Hepatocyte 

 

MDMII 

(monocyte-

Derived-

Macrophage 

Type II) 

 1. MDMIIs migrate to 
apoptotic activated 
neutrophils (142, 
216, 304). 

2. MDMIIs phagocytize 
apoptotic activated 
neutrophils (142, 
216, 304). 

3. MDMIIs release 
HMGB-1 after   
phagocytizing 
apoptotic activated 
neutrophils (216). 

4. MDMIIs release IL-10 
after phagocytizing 
apoptotic activated 
neutrophils (216). 

5. MDMIIs phagocytize 
apoptotic T cells 

1. restingMonocyteBecomeMDMIOrMDMIIB
yInteractWithCorresp-ondingCellO-
rCytokineSubRoutine [BB. 1] 

2. MDMIIPhagocytizeApoptoticNeutrophilSu
bRoutine [BB. 2] 

3. MDMIIProduceHMGB1ByPhagocytizeApop
toticNeutrophilSubRoutine [BB. 3] 

4. MDMIIProduceIL10ByPhagocytizeApoptoti
cNeutrophilOrApoptoticTCellSubRoutine 
[BB. 4, BB. 6] 

5. For BB. 5, see CD4TCellBehavior(s). 4 and 

CD8TCellBehavior(s). 3 

6. MDMIIUndergoAgingByNatureSubRoutine 
[BB. 7] 

7. For BB. 8, see CRP Behavior(s). 32 
8. For BB. 9, see CRP Behavior(s). 33, 34, 35, 

36 and 37 

9. For BB. 10, see CRP Behavior(s). 7 

1. 

ActivatedNeutr

ophil 

2. CRP 

3. IL-10 

4. CD4TCell 

5. CD8TCell 

6. KupfferCell 

7. MastCell 

8. MDMI 

9. MDMII 
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(166). 
6. MDMIIs release IL-10 

after phagocytizing 
apoptotic T cells 
(166). 

7. MDMIIs undergo 
natural aging (308). 

8. Aging MDMIIs bind 
CRP (205). 

9. Aging MDMIIs that 
bind  CRP are 
phagocytized by 
inflammatory cells 
(205). 

10. MDMIIs phagocytize 
CRP bound to  cell 
debris and release 
cytokines (205). 

11. MDMIIs (partially) 
transform to Kupffer 
Cells (123, 310, 311). 

12. MDMIIs bind  IL-10 
[See model 
assumption 16]. 

13. MDMIIs, as APCs, 
attract T cells from 
lymph node to the 
site of infection 
(164). 

10. MDMIITransformToKupfferCellSubRoutine 

[BB. 11] 

11. For BB. 12, see IL-10 Behavior(s). 4 and 5 
12. For BB. 13, see CD4TCellBehavior(s). 1 

and CD8TCellBehavior(s). 1 

10. Hepatocyte 

TNF-ɑ 

(Tumor 

necrosis 

factor alpha) 

 1. TNF-α is released by 
Kupffer Cells upon 
interacting with 
Salmonella (14). 

2. TNF-α is released by 
Kupffer Cells upon 
interacting with 
hepatocyte debris 
(15). 

3. TNF-α is released by 
Kupffer Cells upon 
interacting with 
activated neutrophils 
(14). 

4. TNF-α is released by 
MDMIs (16, 216). 

5. TNF-α is released by 
activated neutrophils 
(17). 

6. TNF-α is released by 
apoptotic 
hepatocytes (18). 

7. TNF-α is released by 
mast cells (19, 20). 

8. TNF- α migrates to 
hepatocytes (15). 

9. TNF- α damages 
healthy hepatocytes 
(15). 

10. TNF-ɑ undergoes 
natural catabolism 
(312-314). 

1. For BB. 1, see KupfferCell Behavior(s). 2 
2. For BB. 2, see KupfferCell Behavior(s). 2 
3. For BB. 3, see KupfferCell Behavior(s). 2 
4. For BB. 4, see MDMI Behavior(s). 3 
5. For BB. 5, see ActivatedNeutrophil 

Behavior(s). 10 
6. For BB. 6, see Hepatocyte Behavior(s). 5 
7. For BB. 7, see MastCell Behavior(s). 3 and 

4 
8. For BB. 8, see Hepatocyte Behavior(s). 2 
9. For BB. 9, see Hepatocyte Behavior(s). 2 
10. TNFAlphaUndergoCatabolismByNatureSub

Routine [BB. 10] 

Hepatocyte 

HMGB-1 

(High 

mobility 

group 

 

 

1. HMGB-1 is released 
by MDMIIs in 
response to 
apoptotic neutrophils 
(139, 218). 

1. For BB. 1, see MDMII Behavior(s). 3 
2. For BB. 2, see Hepatocyte Behavior(s). 6 
3. HMGB1UndergoCatabolismByNatureSubR

outine [BB. 3] 
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protein B1) 2. HMGB-1 is released 
by apoptotic 
hepatocytes (24). 

3. HMGB-1 undergoes 
natural catabolism 
(38, 219, 315). 

IL-10 

(Interleukin 

10) 

 1. IL-10 is produced by 
MDMIIs (16, 216, 
219). 

2. IL-10 is released by 
activated neutrophils 
(77, 213). 

3. IL-10 is produced by 
T cells (206). 

4. IL-10 diffuses to the 
site of Kupffer Cells 
and inhibits the 
release of TNF-ɑ. 

5. IL-10 diffuses to the 
site of activated 
neutrophils and 
inhibits the release of 
TNF-α (220). 

6. IL-10 diffuses to the 
site of MDMIs and 
inhibits the release of 
TNF-ɑ (219). 

7. IL-10 diffuses to the 
site of MDMIIs and 
inhibits the release of 
HMGB-1 (147-150). 

8. IL-10 diffuses to the 
site of MDMIIs and 
inhibits the release of 
IL-10 (147-150). 

9. IL-10 diffuses to the 
site of mast cells and 
inhibits the release of 
TNF-ɑ [see model 
assumption 16]. 

10. IL-10 undergoes 
natural catabolism 
(316-318). 

 

1. For BB. 1, see MDMII Behavior(s). 4 
2. For BB. 2, see ActivatedNeutrophil 

Behavior(s). 11 
3. For BB. 3, see CD4TCell Behavior(s). 3 
4. IL10InteractWithInflammatoryCellsSubRou

tine [BB. 4, BB. 5, BB. 6, BB. 7, BB. 8, and 
BB. 9] 

5. IL10BindToInflammatoryCellsSubRoutine 
[BB. 4, BB. 5, BB. 6, BB. 7, BB. 8, and BB. 
9] 

6. IL10UndergoCatabolismByNatureSubRouti
ne [BB. 10] 

1. KupfferCell 

2. MDMI 

3. MDMII 

4. 

ActivatedNeutr

ophil 

5. MastCell 

KupfferCell 

(Kupffer Cell) 

 1. Kupffer Cells are 

killed by Salmonella 

(172, 173). 

2. Kupffer Cells release 

TNF-α after 

interacting with 

Salmonella (319). 

3. Kupffer Cells release 

TNF-ɑ after 

phagocytizing 

hepatocyte debris 

(15). 

4. Kupffer Cells release 
TNF-α after 
interacting with 
activated neutrophils 
(14, 126). 

5. Kupffer Cells bind to 
IL-10 (147)[See 
model assumption 

1. kupfferCellKillBySalmonellaSubRoutine 
[BB. 1] 

2. kupfferCellProduceTNFAlphaInteractWithS
almonellaOrHepatocyteDebrisOrActivated
NeutrophilSubRoutine [BB. 2, BB. 3, and 
BB. 4] 

3. For BB. 5, see IL-10 Behavior(s). 4 and 5 
4. For BB. 6, see MDMI Behavior(s). 8 and 

MDMII Behavior(s). 10 
5. kupfferCellUndergoAgingByNature [BB. 7] 
6. For BB. 8, see CRP Behavior(s). 8 
7. For BB. 9, see CRP Behavior(s). 9, 10, 11, 

12, and 13 
8. For BB. 10, see KupfferCell Behavior(s). 2 
9. kupfferCellWhoPhagocytizeSalmonellaUnd

ergoApoptosisByInteractWithCD8TCellSub
Routine [BB. 11] 

10. kupfferCellProduceIL10ByIngestApoptotic
HepatocyteSubRoutine [BB. 12] 
 

 

1. Salmonella 

2. 

HepatocyteDeb

ris 

3. Hepatocyte 

4. 

ActivatedNeutr

ophil 

5. IL-10 

6. CRP 

7. KupfferCell 

8. MastCell 

9. MDMI 
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16]. 
6. Kupffer Cells are 

replaced by 

monocyte-Derived 

MDMIs/MDMIIs (123, 

310, 311). 

7. Kupffer Cells undergo 
natural apoptosis  
(310, 311). 

8. Apoptotic Kupffer 
Cells interact with 
CRP (205). 

9. Apoptotic Kupffer 
Cells decorated  with 
CRP are phagocytized 
by inflammatory cells 
(205). Apoptotic 
Kupffer Cells die after 
phagocytosis. 

10. Kupffer Cells 
phagocytize CRP-
opsonized cell debris 
and inhibit the 
production of TNF-α. 
The phagocytic ability 
of Kupffer Cells is 
enhanced by CRP-
opsonized particles 
(205)[see model 
assumption 21]. 

11. Kupffer Cells that 
phagocytize  
Salmonella undergo 
apoptosis if they bind 
to CD8+ T cells (10). 

12. Kupffer Cells Release 
IL-10 (204). 

10. MDMII 

11. CD8TCell 

MastCell 

(Mast cell) 

 1. Mast cells self-
renewal (252, 320). 

2. Mast cell 
degranulation is 
activated by 
interacting with a 
complex of antibody 
and Salmonella (249). 

3. Mast cells release 
histamine by 
degranulation (249, 
321). 

4. Mast cells binding to 
Salmonella release 
TNF-α (249). 

5. Mast cells release 

TNF-α upon 

interacting with 

antibody-opsonized 

Salmonella (19, 20). 

6. TNF-α and histamine 
help to recruit T cells 
from lymph node to 
the site of infection 
(249, 322). 

7. Mast cells bind to IL-
10 and fail to release 
TNF-α [see model 

1. mastCellProliferateSubRoutine [BB. 1] 
2. mastCellProduceHistamineByInteractWith

AntibodySalmonellaComplexSubRoutine 
[BB. 2, BB. 3] 

3. mastCellProduceTNFAlphaByBindingToSal
monellaSubRoutine [BB. 4] 

4. mastCellProduceTNFAlphaByInteractWith
AntibodySalmonellaComplexSubRoutine 
[BB. 5] 

5. For BB. 6, see CD4TCell Behavior(s). 1 and 
CD8TCellBehavior (s). 2 

6. For BB. 7, see IL-10 Behavior(s). 4 and 5 
7. mastCellUndergoApoptosisByNatureSubR

outine [BB. 8] 

1. Salmonella 

2. Antibody 

3. 

ActivatedNeutr

ophil 

4. Hepatocyte 

5. MastCell 

6. MDMI 

7. MDMII 

8. CD4Tcell 

9. CD8Tcell 
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assumption 16]. 
8. Mast cells undergo 

natural aging (10). 

 

CD4TCell 

(CD4 T cell) 

 1. CD4+ T cells in lymph 
node (10). 

2. CD4+ T cells are 
activated by APCs to 
proliferate and 
differentiate into TH1 
effector cells to 
release TNF-α (166, 
206). 

3. CD4+ T cells are 
activated by APCs to 
proliferate and 
differentiate into TH2 
effector cells to 
release IL-10 (206).  

4. TH1 effector cells 
activate infected 
Kupffer Cells to kill 
Salmonella (206). 

5. TH1 effector cells 
activate infected 
macrophages to kill 
Salmonella (206). 

6. Apoptotic  CD4+ T 
cells are 
phagocytized by 
MDMIIs (164). 

7. CD4+ T cells (fails to 
bind to APCs) 
undergo apoptosis 
(206). 

1. CD4TCellMigrateFromPortalTriadToLiverSi
nusoidSubRoutine [BB. 1] 

2. CD4TCellProduceTNFAlphaByInteractWith
APCsSubRoutine [BB. 2, BB. 4, and BB. 5] 

3. CD4TCellProduceIL10ByInteractWithAPCsS
ubRoutine [BB. 3] 

4. apoptoticCD4TCellPhagocytizeByMDMI0r
MDMIISubRoutine [BB. 6]  

5. CD4TCellUndergoAgingByNatureSubRouti
ne [BB. 7] 

1. MastCell 

2. 

ActivatedNeutr

ophil 

3. KupfferCell 

4. MDMII 

 

 CD8TCell 

(CD8 T cell) 

 1. CD8+ T cells in lymph 

node (10). 

2. CD8+ T cells induce 

the apoptosis of 

infected cells 

(infected cells are the 

inflammatory cells 

that Salmonella 

inhabit) (10, 166, 

206). 

3. Apoptotic CD8+ T 

cells are 

phagocytized by 

MDMIIs (164). 

4. CD8+ T cells (fails to 

bind to APCs) 

undergo apoptosis 

(206). 

1. CD8TCellMigrateFromPortalTriadToLiverSi
nusoidSubRoutine [BB. 1] 

2. CD8TCellInduceApoptosisOfKupfferCellOr
NeutrophilOrMDMIWhoPhagocytizeSalmo
nellaSubRoutine [BB. 2] 

3. apoptoticCD8TCellPhagocytizeByMDMIOr
MDMIISubRoutine [BB. 3] 

4. CD8TCellUndergoAgingByNatureSubRouti
ne [BB. 4] 

1. MastCell 

2. 

ActivatedNeutr

ophil 

3. KupfferCell 

4. MDMII 

 

BCell (B cell)  1. B cells in lymph node 
(11). 

2. B cells are activated 
by TH1 or TH2 cells to 
proliferate and 
release antibody 
(206). 

3. B cell (fails to bind to 
T helper cells or 
antigen) undergo 
apoptosis (206). 

1. BCellMigrateFromPortalTriadToLiverSinus
oidSubRoutine [BB. 1] 

2. BCellProduceAntibodySubRoutine [BB. 2] 
3. BCellUndergoAgingByNatureSubRoutine 

[BB. 3] 

1. CD4TCell 

 

Antibody  1. Antibody is released 1. For BB. 1, see BCell Behavior(s). 2 1. MastCell 
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(Antibody)  

 

 

from activated B cells 
(206). 

2. Antibody Interacts 
with Salmonella 
(multiple antibodies 
to one Salmonella) 
(10). 

3. Antibody-opsonized 

Salmonella interacts 

with mast cells and 

initiates the 

degranulation of 

mast cells (249). 

4. Antibody-bound to  
Salmonella is 
phagocytized  by 
Kupffer Cells (higher 
phagocytosis rate 
here). This process 
refers to 
opsonization (10). 

5. Antibody-bound to 
Salmonella is 
phagocytized  by 
mast cells (higher 
phagocytosis rate 
here). This process 
refers to 
opsonization (10). 

6. Antibody-bound to  
Salmonella is 
phagocytized  by 
neutrophils (higher 
phagocytosis rate 
here) (10). 

7. Antibody-bound to  
Salmonella is 
phagocytized  by 
macrophage-derived-
macrophage type I 
(higher phagocytosis 
rate here) (10). 

8. Antibody-bound by 

Salmonella is 

phagocytized  by 

macrophage-derived-

macrophage type II 

(higher phagocytosis 

rate here) (10). 

2. antibodyInteractWithSalmonellaSubRoutin
e [BB. 2] 

3. For BB. 3, see MastCell Behavior(s). 4 
4. antibodySalmonellaComplexPhagocytizeB

yKupfferCellSubRoutine [BB. 4] 
5. antibodySalmonellaComplexPhagocytizeB

yMastCellSubRoutine [BB. 5] 
6. antibodySalmonellaComplexPhagocytizeB

yNeutrophilSubRoutine [BB. 6] 
7. antibodySalmonellaComplexPhagocytizeB

yMDMISubRoutine [BB. 7] 
8. antibodySalmonellaComplexPhagocytizeB

yMDMIISubRoutine [BB. 8] 

2. Salmonella 

3. KupfferCell 

4. 

ActivatedNeutr

ophil 

5. MDMI 

6. MDMII 

 

CRP (C-

reactive 

protein) 

 1. CRP inhibits 

neutrophil 

movement to the site 

of infection in a 

human model with 

adult respiratory 

distress syndrome 

(323, 324). 

2. CRP is released by 
hepatocytes in 
response to IL-6 
released by 
macrophages (203, 
204). 

3. CRP-bound 

1. For BB. 1, see RestingNeutrophil 
Behavior(s). 2 

2. For BB. 2, see Hepatocyte Behavior(s). 3 
3. CRPSalmonellaComplexPhagocytizeBykupf

ferCellSubRoutine [BB. 3] 
4. CRPSalmonellaComplexPhagocytizeByMas

tCellSubRoutine [BB. 4] 
5. CRPSalmonellaComplexPhagocytizeByNeu

trophilSubRoutine [BB. 5] 
6. CRPSalmonellaComplexPhagocytizeByMD

MISubRoutine [BB. 6] 
7. CRPSalmonellaComplexPhagocytizeByMD

MIISubRoutine [BB. 7] 
8. CRPBindToApoptoticKupfferCellSubRoutin

e [BB. 8] 
9. CRPOpsonizedApoptoticKupfferCellPhagoc

1. Salmonella 

2. 

ActivatedNeutr

ophil 

3. KupfferCell 

4. MDMI 

5. MDMII 

6. MastCell 

7. 

HepatocyteDeb
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Salmonella are 
phagocytized  by 
Kupffer Cells (205). 

4. CRP-bound 
Salmonella are 
phagocytized  by 
mast cells (205). 

5. CRP-bound 
Salmonella are 
phagocytized  by 
neutrophils (205). 

6. CRP-bound 

Salmonella are 

phagocytized  by 

MDMIs (205). 

7. CRP-bound 

Salmonella are 

phagocytized  by 

MDMIIs (205). 

8. CRP binds to 

apoptotic Kupffer 

Cells (205). 

9. CRP-bound apoptotic 
Kupffer Cells are 
phagocytized  by 
inflammatory cells 
(205). 

10. CRP binds to 
apoptotic 
hepatocytes (205). 

11. CRP-bound apoptotic 

hepatocytes are 

phagocytized by 

inflammatory cells 

(205). 

12. CRP binds to 

apoptotic neutrophils 

(205). 

13. CRP-bound apoptotic 
neutrophils are 
phagocytized by 
inflammatory cells 
(205). 

14. CRP binds to 
apoptotic monocyte-
derived-macrophage 
type I (205). 

15. CRP-bound apoptotic 
monocyte-derived-
macrophage type I 
are phagocytized by 
inflammatory cells 
(205). 

16. CRP binds to 
apoptotic monocyte-
derived-macrophage 
type II (205). 

17. CRP-bound apoptotic 
monocyte-derived-
macrophage type II 
are phagocytized by 
inflammatory cells 
(205). 

18. CRP undergo natural 

ytizeByKupfferCellSubRoutine [BB. 9] 
10. CRPOpsonizedApoptoticKupfferCellPhagoc

ytizeByMastCellSubRoutine [BB. 9] 
11. CRPOpsonizedApoptoticKupfferCellPhagoc

ytizeByNeutrophilSubRoutine [BB. 9] 
12. CRPOpsonizedApoptoticKupfferCellPhagoc

ytizeByMDMISubRoutine [BB. 9] 
13. CRPOpsonizedApoptoticKupfferCellPhagoc

ytizeByMDMIISubRoutine [BB. 9] 
14. CRPBindToHepatocyteDebrisSubRoutine 

[BB. 10] 
15. CRPOpsonizedHepatocyteDebrisPhagocyti

zeByKupfferCellSubRoutine [BB. 11] 
16. CRPOpsonizedHepatocyteDebrisPhagocyti

zeByMastCellSubRoutine [BB. 11] 
17. CRPOpsonizedHepatocyteDebrisPhagocyti

zeByNeutrophilSubRoutine [BB. 11] 
18. CRPOpsonizedHepatocyteDebrisPhagocyti

zeByMDMISubRoutine [BB. 11] 
19. CRPOpsonizedHepatocyteDebrisPhagocyti

zeByMDMIISubRoutine [BB. 11] 
20. CRPBindToApoptoticNeutrophilSubRoutin

e [BB. 12] 
21. CRPOpsonizedApoptoticNeutrophilPhagoc

ytizeByKupfferCellSubRoutine [BB. 13] 
22. CRPOpsonizedApoptoticNeutrophilPhagoc

ytizeByMastCellSubRoutine [BB. 13] 
23. CRPOpsonizedApoptoticNeutrophilPhagoc

ytizeByNeutrophilSubRoutine [BB. 13] 
24. CRPOpsonizedApoptoticNeutrophilPhagoc

ytizeByMDMISubRoutine [BB. 13] 
25. CRPOpsonizedApoptoticNeutrophilPhagoc

ytizeByMDMIISubRoutine [BB. 13] 
26. CRPBindToApoptoticMDMISubRoutine 

[BB. 14] 
27. CRPOpsonizedApoptoticMDMIPhagocytize

ByKupfferCellSubRoutine [BB. 15] 
28. CRPOpsonizedApoptoticMDMIPhagocytize

ByMastCellSubRoutine [BB. 15] 
29. CRPOpsonizedApoptoticMDMIPhagocytize

ByNeutrophilSubRoutine [BB. 15] 
30. CRPOpsonizedApoptoticMDMIPhagocytize

ByMDMISubRoutine [BB. 15] 
31. CRPOpsonizedApoptoticMDMIPhagocytize

ByMDMIISubRoutine [BB. 15] 
32. CRPBindToApoptoticMDMIISubRoutine 

[BB. 16] 
33. CRPOpsonizedApoptoticMDMIIPhagocytiz

eByKupfferCellSubRoutine [BB. 17] 
34. CRPOpsonizedApoptoticMDMIIPhagocytiz

eByMastCellSubRoutine [BB. 17] 
35. CRPOpsonizedApoptoticMDMIIPhagocytiz

eByNeutrophilSubRoutine [BB. 17] 
36. CRPOpsonizedApoptoticMDMIIPhagocytiz

eByMDMISubRoutine [BB. 17] 
37. CRPOpsonizedApoptoticMDMIIPhagocytiz

eByMDMIISubRoutine [BB. 17] 
38. CRPUndergoCatabolismByNatureSubRouti

ne [BB. 18] 

ris 
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Model Assumption: 

1. We assume that resting neutrophils (circulating neutrophils) proliferate in the bone borrow and 

traffic to the vessel near the site of infection when the infection occurs. This assumption is 

based on observations in a study (298) which showed massive neutrophil infiltration into 

peritoneum after 2 hrs of infection. 

2. We assume MDMI and MDMII will conduct some similar functions  such as phagocytosis  of 

apoptotic T cells (166).  Some  observations failed to differentiate the behaviors of MDMI and 

MDMII (166). 

3. We assume that HMGB-1 contributes to activation of neutrophils and monocytes. This 

assumption is based on recent identified biological activities of HMGB-1 including upregulation 

of endothelial adhesion molecules during the infection (24). 

4. We assume that resting monocytes (circulating monocytes) develop in the bone borrow and are 

circulating in the vessel near the site of infection when the infection occurs. This assumption is 

based on observations in a study (216) which showed massive monocyte infiltration following  

neutrophil infiltration. 

catabolism (325).  
 

NETs 

(Neutrophil 

extracellular 

traps)  

 1. NETs are released by 
neutrophils (214). 

2. NETs interact with 
Salmonella (214, 215, 
293). 

3. NET undergoes 
natural catabolism. 

1. For BB. 1, see ActivatedNeutrophil 
Behavior(s). 12 

2. NETTrappSalmonellaSubRoutine [BB. 2] 
3. NETUndergoApoptosisByNatureSubRoutin

e [BB.3] 

Salmonella 

SECs 

(Sinusoid 

endothelial 

cells) 

 

 

 

 

 

 

 

1. SECs are infected by 
Salmonella (176). 

 

 

 

 

 

1. For BB. 1, see Salmonella Behavior(s). 9 Salmonella 

Signals 

(Signal) 

 

 

 

 

 

 

 

1. Signals are sent by 
Salmonella, cytokines 
such as TNF-α and 
HMGB-1, or cells 
such as activated 
neutrophils and  CD4+ 
T cells to recruit 
circulating neutrophil 
or circulating 
monocytes to the site 
of infection. 

1. For BB. 1, see RestingNeutrophil 
Behavior(s). 2 and RestingMonocyte 
Behavior(s). 2 

 

RestingNeutrop

hil 

RestingMonocy

te 

AntiSignals 

(Anti-signal) 

 

 

 

 

1. Anti-Signals are sent 
by activated 
neutrophils bind to 
CRP (323)[89, 90]. 

1. For BB. 1, see ActivatedNeutrophil 
Behavior(s). 2 

RestingNeutrop

hil 

RestingMonocy

te 
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5. We assume that activated neutrophils produce IL-10 after their interaction with Salmonella 

because it was observed that a rapid IL-10 production occurred during the early stages of sepsis 

(213). 

6. We assume the level of apoptotic activated neutrophils contributes to the activation process of 

resting monocytes (circulating monocytes) based on studies (14, 142, 304) which showed 

activated macrophages phagocytize and ingest apoptotic neutrophils during infection.  

7. We assume that TNF-α contributes to activation of neutrophils and monocytes. This assumption 

is based on recent identified biological evidence that TNF-α up-regulates endothelial adhesion 

molecules during the infection (298) and improved endothelial adhesion to induce monocyte 

trafficking to hepatic sites of Gram-positive bacterial infection (144). Other studies supporting 

this assumption are cited (222, 305, 306). 

8. We assume that Salmonella contributes to activation of monocytes. This assumption is based on  

evidence showing that monocyte-derived-macrophages phagocytize Gram-negative bacteria 

(16). 

9. We assume resting monocytes (circulating monocytes) undergo a constant basal level of 

apoptosis (a constant decay rate per hr). This assumption is based on data showing that  

circulating monocytes are programmed to undergo apoptosis in the absence of stimulation 

(307). 

10. We assume TNF-α undergoes a degradation process. Experimental studies (various biological 

models) demonstrated TNF-α has a decay rate during infection (312-314). 

11. We assume HMGB-1 undergoes a degradation process. Experimental studies (various biological 

models) demonstrated HMGB-1 has  a decay rate during infection (38, 219, 315). 

12. We assume IL-10 production inhibits the secretion of inflammatory cytokines (including TNF-α, 

HMGB-1 and IL-10) in our model. This assumption is based on biological evidence showing that 

IL-10 production inhibited the secretion of inflammatory cytokines  (147-150). 

13. We assume IL-10 undergo a natural catabolism since experimental studies demonstrated IL-10 

had a decay rate during infection (316-318). 

14. We assume each agent type has an equal chance of interacting with other agent types by 

following the agent rule. 

15. We assume activated neutrophils can phagocytize multiple Salmonella (one ligand to multiple 

receptor mechanisms) at a time. However, Salmonella can’t interact with multiple activated 

neutrophils at a time. Similarly, MDMIs can phagocytize multiple Salmonella at a time. However, 

Salmonella can’t interact with multiple MDMIs at a time. 

16. There is controversy about the replenishment of Kupffer Cells (123, 310, 326, 327); however, we 

assume Kupffer Cells are only replaced by bone marrow-derived macrophages due to the fact 

only bone marrow-derived KCs engaged in inflammatory responses (311).  

17. We assume Kupffer Cells, mast cells, neutrophils, monocyte-derived-macrophage type I, and 

monocyte-derived-macrophage type II, interact with IL-10 since we assume IL-10 inhibits the 

production of pro-inflammatory cytokines in assumption 12. 

18. We assume Kupffer Cells undergo apoptosis in the context of Kupffer cell turnover being 

observed (310, 311). 

19. We assume one MDMII can phagocytize more than one apoptotic activated neutrophil as 

observed previously  (302). 
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20. We model T cell progenitors and B cell progenitors in the lymph node instead of thymus to 

generate mature CD4+ T cells, CD8+ T cells and B cells in our agent-based model. 

21. We assume Kupffer Cells stop producing TNF-α by phagocytizing CRP-opsonized particles based 

on observations that synthetic CRP greatly decreased the production of TNF-α in a mouse model 

stimulated with E.coli (204). 

22. Mast cells were observed to present high-affinity FcγR receptor (328). We assume mast cells can 

phagocytize CRP-opsonized particles based on phagocytosis of CRP-opsonized particles  

proceeds through FcγRI in a mouse model (329, 330).  

23. We determined NETs secretion from neutrophil degranulation is dependent on the quantity of 

secreted neutrophil elastase (NE) from neutrophil degranulation. This assumption is based on 

the observation  that NETs is a complex of NE (214). Since we failed to directly find a 

quantitation of NETs secretion from neutrophils, we believe that using secreted NE level to 

represent secreted NETs could be a reasonable assumption.  

24. The activation of macrophages is related to IFN-gamma released by T cells (167-169). Since we 

didn’t calibrate IFN-γ in our model, we simplify to calculate macrophage activation process using 

CD4+ T cell and CD8+ T cell count in our model instead of IFN-γ count. 

Since we didn’t incorporate IL-6 in our model, we assume that CRP is released by hepatocytes 

(233) in response to monocyte infiltration because data  show that monocytes are the main 

producer for IL-6 (331). 

Table B.8 Agent Behaviors and Agent Update Rules in IMMABM 
NOTE: DATA IN THE AGENT RULE SECTION ARE FROM TABLE B. 9 

WORLD 

The world is a 200 units x 200 units square. 

Initialization (The initialization is setup under normal conditions) 

1. Hepatocytes are created. The initial number of hepatocytes is 80,200. 

2. Sinusoidal endothelial cells (SECs) are created and parallel arrangement in a 
two-dimensional world. They are structural agents which model the boundary of 
the liver sinusoid. The initial number of SECs is 26,466, which is approximately 
1/3 of hepatocyte population. 

3. The liver sinusoid is created. They are modeled as “patches” with boundary 
lined by SECs. Liver sinusoid is separated from the hepatocytes by the space of 
Disse. 

4. The space of Disse is created as “patches” to model locations between 
hepatocytes and the liver sinusoid. 

5. Kupffer Cells are created adherent to SECs in the liver sinusoid. The initial 
number of Kupffer Cells is 20,160, which is approximately 1/4 of the hepatocyte 
population. Kupffer Cells are in a parallel arrangement in a two-dimensional 
world. 

6. Mast cells are placed in the space of Disse. The initial number of mast cells is 
10,426, which is approximately 1/8 of the hepatocyte population. Mast cells are in 
a parallel arrangement in a two-dimensional world. 

7. Circulating neutrophils are created in the liver sinusoid, which take the place of 



 

290 

being normally formed in the bone marrow. The initial number of circulating 
neutrophils is 1000. Circulating neutrophils are circle shaped with “multi-lobed 
nuclei” inside. 

8. Circulating monocytes are created in the liver sinusoid, which take the place of 
being normally formed in the bone marrow. The initial number of circulating 
monocytes is 1000.  Circulating monocytes are by circle shaped with “circle-
shaped nuclei” inside. 

9. The portal triad is represented as “patches” to model the site of  T cells and B 
cell generation. 

10. Circulating CD4+ T cells are created in portal triad. The initial number of 
circulating CD4+ T cells is 739, which is approximately 14% of total lymphocytes 
in the lymph node. CD4+ T cells are represented as yellow circles in the portal 
triad. 

11. Circulating CD8+ T cells are created in portal triad. The initial number of 
circulating CD8+ T cells is 482, which is approximately 9% of total lymphocytes 
in the lymph node. CD8+ T cells are represented as green circles in portal triad. 

12. Circulating B cells are created in portal triad. The initial number of circulating B 
cells is 3,235, which is approximately 60% of total lymphocytes in the lymph 
node. B cells are represented as blue circles in the portal triad. 

ABM RULES (1 TICK REPRESENTS 1 HR DURING SIMULATION) 

AGENTS 

Kupffer Cell. (Called KupfferCell in the ABM.) 

1. Phagocytose 90 ~ 95% Salmonella over 6 ticks.  
2. 5% ~ 10% of the Kupffer Cells are killed by Salmonella from 4 tick - 6 ticks. 

[Active] Kupffer Cells are killed by Salmonella. [Inactive] Kupffer Cells are killed 
by Salmonella if interact with CD4+ T cells.  

3. Phagocytose hepatocyte debris.  
4. Phagocytose activated circulating neutrophils in the liver sinusoid. 5% of the 

activated circulating neutrophils are phagocytosed by Kupffer Cells per tick. 
Activated circulating neutrophils are defined as circulating neutrophils that are 
attracted to SECs.  

5. [Inactive] Secretes TNF-α. Activated if it interacts with Salmonella, hepatocyte 
debris, or activated circulating neutrophils. Rate of TNF-α released from Kupffer 
cells is 2.09×10-5 ~ 2.30×10-4 pg/Kupffer Cell/tick. TNF production is computed 
with Michaelis-Menten Kinetics: 
TNF-α [new] = ((maximum production rate * Kupffer Cell [who release TNF-α])/(Kupffer Cell 

count at which the reaction rate is half of maximum production rate + Kupffer Cell [who release 

TNF-α])) × Kupffer Cell [who release TNF-α]. Maximum production rate is equivalent to 

2.30×10-4 pg/Kupffer Cell/tick. 

6. [With 14.3% probability] Bind to IL-10. [Inactive] Produce TNF-α.  

7. Kupffer Cells are replenished at a rate of 0.63% ~ 0.79% of monocyte-derived-
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macrophage type I or monocyte-derived-macrophage type II per tick.  
8. [Inactive] Secretes IL-10. Activated if they ingest apoptotic hepatocytes. Rate of 

IL-10 released from Kupffer Cells is 4.98×10-6 pg/Kupffer Cell/tick. IL-10 
production is computed with Michaelis-Menten Kinetics: 
IL-10 [new] = ((maximum production rate * Kupffer Cell [who release IL-10])/(Kupffer Cell 

count at which the reaction rate is half of maximum production rate + Kupffer Cell [who release 

IL-10])) × Kupffer Cell [who release IL-10].  Maximum production rate is equivalent to 4.98×10-6 

pg/Kupffer Cell/tick. 

9. [With 16.7% probability] Apoptotic Kupffer cells interact with CRP. 
10. [With 20% probability ] CRP-opsonized apoptotic Kupffer cells are phagocytized 

by Kupffer cells, or mast cells, or monocyte-derived-macrophage type I, or 
monocyte-derived-macrophage type II, or neutrophils.  

a. If CRP-opsonized apoptotic Kupffer Cells are phagocytized by Kupffer Cells, [Inactive] 
secretes TNF-α. [Increase] phagocytic rate. 

b. If CRP-opsonized apoptotic Kupffer Cells are phagocytized by monocyte-derived-
macrophage type I, [Active] secretes TNF-α. [Increase] phagocytic rate. 

c. If CRP-opsonized apoptotic Kupffer Cells are phagcytized by neutrophils, [Inactive] 
neutrophil adhere to SECs.  

11. CRP-opsonized apoptotic Kupffer Cells die if the number of ticks is higher than 1 
tick, the lifespan of apoptotic cells. Reset states of interacted agents. 

12. [With 20% probability] Kupffer Cells phagocytize CRP-opsonized Salmonella, 
CRP-opsonized apoptotic mast cells, CRP-opsonized apoptotic monocyte-
derived-macrophage type I, CRP-opsonized apoptotic monocyte-derived-
macrophage type II, CRP-opsonized apoptotic neutrophils, or CRP-opsonized 
apoptotic hepatocytes. [Inactive] secretes TNF-α. [Increase] phagocytic rate. 

13. [Inactive] Kupffer Cells which phagocytose Salmonella undergo apoptosis. 
[Active] If they interact with CD8+ T cells. Kupffer Cells die if the number of 
ticks is higher than 4. 

Salmonella. (Called Salmonella in the ABM.) 

1. [Inactive] 90 ~ 95% Salmonella are phagocytized by Kupffer Cells over 6 ticks. 
[Active] if they interact with Kupffer Cells. 

2. Phagocytosed Salmonella are killed by Kupffer Cells if the total number of ticks 
is higher than the lifespan of Salmonella in Kupffer Cells. The lifespan of 
Salmonella in Kupffer Cells is generated from a random-generator with a uniform 
distribution from 0 to 6 ticks. 

3. Salmonella survive and replicate within apoptotic Kupffer Cells. The maximum 
number of Salmonella in one Kupffer Cell is 50. The replication rate is 0.42 ~ 
1.04/tick. Salmonella population is computed with the logistic equation: 
Salmonella [new] =replication rate * Salmonella [old] *(1-Salmonella [old]/Salmonella carrying 

capacity in Kupffer Cells). Salmonella carrying capacity in Kupffer Cells = 4558000. 

4. Apoptotic Kupffer Cells die and release Salmonella. Released Salmonella interact 
with SECs, hepatocytes, NETs, antibody, CRP or normal inflammatory cells 
(including Kupffer Cells, mast cells, neutrophils, monocyte-derived-macrophage 
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type I). The chance of interaction is dependent on the random movement of the 
Salmonella agent.  

5. [Inactive] Released Salmonella infect SECs. [Active] if they interact with SECs. 
The replication rate is 0.32/tick. The maximum number of Salmonella in one 
SEC is 3. The Salmonella population is computed with a logistic equation: 
Salmonella [new] =replication rate * Salmonella [old] *(1-Salmonella [old]/Salmonella carrying 

capacity in SECs). Salmonella carrying capacity in SECs=67000. 

6. [Inactive] Released Salmonella from killed (dead) SECs move to mast cells, 
hepatocytes or interact with nearby inflammatory cells (including neutrophils 
and MDMIs). [Active] if SECs die. Infected SECs die after 1 tick.  

7. [Inactive] Released Salmonella infect and replicate within healthy hepatocytes. 
[Active] if released Salmonella interact with hepatocytes. Replication rate is 0.05 
~ 0.26/tick. State variable named “hepatocyteInteractWithSalmonella” is 
updated from 0 to 1. The maximum number of Salmonella in one hepatocyte is 3. 
Salmonella population is computed with a logistic equation: 
Salmonella [new] =replication rate * Salmonella [old] *(1-Salmonella [old]/Salmonella carrying 

capacity in hepatocytes). Salmonella carrying capacity in hepatocytes=817000. 

8. Salmonella are released from apoptotic hepatocytes and infect nearest 
hepatocytes. The chance of interaction is dependent on the random movement of 
the Salmonella agent.  

9. [Inactive] Released Salmonella are phagocytosed by neutrophils. [Active] if 
interact with neutrophils. Phagocytic rate of Salmonella by neutrophils is 2.94 ~ 
12.94 Salmonella/neutrophil/tick. The maximum number of Salmonella 
interactions with an activated neutrophil is 17. 

10. Phagocytized Salmonella are killed by neutrophils if the total number of ticks is 
higher than 2 ticks. 

11. [Inactive] Released Salmonella are phagocytosed  by monocyte-derived-
macrophage type I. [Active] if interact with monocyte-derived-macrophage type 
I. Phagocytic rate of Salmonella by monocyte-derived-macrophage type I is 1.18 
~ 6.74 Salmonella/macrophage/tick. 

12. Phagocytosed Salmonella are killed by monocyte-derived-macrophage type I if 
the total number of ticks is higher than 2 ticks. 

13. Salmonella survive and replicate within apoptotic monocyte-derived-macrophage 
type I. The replication rate is 0.9 ~ 10.9/tick. The Salmonella population is 
computed with a logistic equation: 
Salmonella [new] =replication rate * Salmonella [old] *(1-Salmonella [old]/Salmonella carrying 

capacity in macrophages). Salmonella carrying capacity in macrophages =4558000. 

14. [Inactive] Released Salmonella are killed by neutrophil extracellular traps 
(NETs). [Active] if they interact with NETs. The NETs is a complex of 
Myeloperoxidase (MPO) and neutrophil elastase (NE). 22.79% of Salmonella are 
trapped and killed by 1µM NETs per tick. 

15. [Inactive] Released Salmonella bind to mast cells. [Active] if they interact with 
mast cells. The chance of an interaction is determined by an estimated 



 

293 

probability. 
16. [With 20%  probability] CRP-opsonized Salmonella are phagocytosed by 

phagocytic cells (Kupffer Cells, or mast cells, or neutrophils, or monocyte-
derived-macrophage type I, or monocyte-derived-macrophage-type II). [Update] 
phagocytosis rate. 

17. CRP-opsonized Salmonella die if the number of ticks is higher than 1 tick, the 
lifespan of Salmonella. Reset states of interacted agents. 

18. [With 20% probability] Antibody-opsonized Salmonella are phagocytosed by 
phagocytic cells (Kupffer Cells, or mast cells, or neutrophils, or monocyte-
derived-macrophage type I, or monocyte-derived-macrophage type II). [Update] 
phagocytosis rate. 

19. [With 20% probability] Antibody-opsonized Salmonella die if the number of ticks 
is higher than 1 tick, the lifespan of Salmonella. Reset states of interacted agents. 

20. [Inactive] Salmonella undergo apoptosis by other factors. [Active] if they bind to 
mast cells. Apoptosis rate is estimated. 

Hepatocyte. (Called Hepatocyte in the ABM.) 

1. [Inactive] Hepatocytes are infected by Salmonella and become apoptotic. 
[Active] if they interact with Salmonella. The chance of interaction is dependent 
on the random movement of Salmonella.  

2. [Inactive] Hepatocytes become apoptotic by interacting with TNF-α. [Active] if 
they interact with TNF-α. The interaction between TNF-α and hepatocytes is 
dependent on the random diffusion of TNF-α.  

3. [Inactive] Produce CRP. [Active] if monocyte infiltration is detected. The rate is 
0.2pg/hepatocyte/tick. CRP production is computed with Michaelis-Menten 
Kinetics: 
CRP [new] = ((maximum production rate * Hepatocyte [old])/(Hepatocyte count at which the 

reaction rate is half of maximum production rate +Hepatocyte [old])) × Hepatocyte [old]. 

Maximum production rate is equivalent to 0.2pg/hepatocyte/tick. 

4. [Inactive] Apoptotic hepatocytes are cleaned up by neutrophils. [Active] if they 
interact with neutrophils. The phagocytosis rate of hepatocytes by neutrophils is 
0.05 ~ 0.2 hepatocytes/neutrophil/tick. 

5. Apoptotic hepatocytes become hepatocyte debris if the total number of ticks is 
higher than 2 or 3 ticks (2 or 3 is randomly assigned by a random generator). 

6. Apoptotic hepatocytes release HMGB-1. The rate is 6.25×10-

5pg/hepatocyte/tick. HMGB-1 production is computed with Michaelis-Menten 
Kinetics: 
HMGB-1[new] = ((maximum production rate * Hepatocyte [apoptotic])/(Hepatocyte count at 

which the reaction rate is half of maximum production rate +Hepatocyte [apoptotic])) × 

Hepatocyte [apoptotic]. Maximum production rate is equivalent to 6.25×10-5pg/hepatocyte/tick. 

7. Apoptotic hepatocytes release TNF-α. The rate is 7.14×10-5 -9.18×10-5 

pg/apoptotic hepatocyte/tick. TNF-α production is computed with Michaelis-
Menten Kinetics: 
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TNF-α[new] = ((maximum production rate * Hepatocyte [apoptotic])/(Hepatocyte count at 

which the reaction rate is half of maximum production rate +Hepatocyte [apoptotic])) × 

Hepatocyte [apoptotic]. Maximum production rate is equivalent to 9.18×10-5 pg/apoptotic 

hepatocyte/tick. 

8. Hepatocytes regenerate. The replication rate is 1.32×10-3 ~ 6.80×10-3 /tick. The 
hepatocyte population is computed with a logistic equation: 
Hepatocyte [new] =replication rate * Hepatocyte [old] *(1-Hepatocyte [old]/hepatocyte carrying 

capacity). Hepatocyte carrying capacity = the initial number of hepatocytes 

Hepatocyte debris. (Called HepatocyteDebris in the ABM.) 

1. Hepatocyte debris is phagocytosed by phagocytic cells including Kupffer Cells, 
mast cells, neutrophils, monocyte-derived-macrophage type I, and monocyte-
derived-macrophage type II. The phagocytic rate is dependent on random 
dispersion of hepatocyte debris. The radius of random dispersion is patch-size. 

2. [With 20% probability] CRP interacts with hepatocyte debris. CRP-opsonized 
hepatocyte debris is phagocytosed by phagocytic cells including Kupffer Cells, 
mast cells, neutrophils, monocyte-derived-macrophage type I, and monocyte-
derived-macrophage type II. The phagocytic rate is dependent on random 
movement of phagocytic cells.  

3. Hepatocyte debris degrades naturally. The degredation rate of is estimated. 
Resting neutrophil. (Called RestingNeutrophil in the ABM.) 

1. Resting neutrophil migrate to the liver sinusoid from bone marrow upon 
infection. The influx rate to the liver sinusoid is 0.125 ~ 14/tick. The resting 
neutrophil population is computed with a logistic equation: 
Resting neutrophil [new] =influx rate * Resting neutrophil [old] *(1-Resting neutrophil [old]/ 

resting neutrophil carrying capacity). Resting neutrophil carrying capacity = 6.9×103. 

2.  [Inactive] Resting neutrophils get signals and move to SECs. [Active] if 
Salmonella, TNF-α, and HMGB-1 are detected after 2 ticks. [Set breed] Activated 
neutrophils. Activation rate is 0.09~0.46/hrs. Activated neutrophil population is 
computed with law of mass-action:  
Activated neutrophil [new] =activation rate * Resting neutrophil population * (Salmonella 

population + TNF-α + HMGB-1) / Total population. Total population = 

hepatocyteInitialNumber + mastCellInitialNumber + kupfferCellInitialNumber + 

SECsInitialNumber. 

3. Resting neutrophils undergo aging and apoptosis. The rate of apoptosis is 0.05 ~ 
0.092/tick. 

Activated neutrophil. (Called ActivatedNeutrophil in the ABM.) 
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1. Activated neutrophils move towards the site of Kupffer Cells, or apoptotic 
hepatocytes or Salmonella.  

2. Activated neutrophils undergo aging. State variable named 
“activatedNeutrophilBecomeApoptotic” is updated from 0 to 1 if apoptosis 
starts. The rate of apoptosis is 0.098/tick.  

3. Apoptotic neutrophils interact with CRP. 
4. [With 20% probability ] CRP-opsonized apoptotic activated neutrophils are 

phagocytized by Kupffer Cells, or mast cells, or monocyte-derived-macrophage 
type I, or monocyte-derived-macrophage type II, or neutrophils.  

a. If CRP-opsonized apoptotic activated neutrophils are phagocytosed by Kupffer Cells, 
[Inactive] secretes TNF-α. [Increase] phagocytic rate. 

b. If CRP-opsonized apoptotic activated neutrophils are phagocytosed by monocyte-
derived-macrophage type I, [Active] secretes TNF-α. [Increase] phagocytic rate. 

c. If CRP-opsonized apoptotic activated neutrophils are phagcytosed by neutrophils, 
[Inactive] neutrophil adhere to SECs.  

5. CRP-opsonized apoptotic activated neutrophils die if the number of ticks is 
higher than 1 tick, the lifespan of apoptotic activated neutrophils. Reset states of 
interacted agents. 

6. [Inactive] Apoptotic neutrophils are ingested by monocyte-derived-macrophage 
type II. [Active] if neutrophils interact with monocyte-derived-macrophage type 
II. Apoptotic neutrophils die after 1 tick. 

7. [Inactive] Activated neutrophils produce TNF-α. [Active] if they interact with 
Salmonella. The rate is 0.19 ~ 2.00 pg/neutrophil/tick. 
TNF-α production is computed with Michaelis-Menten Kinetics: 

TNF-α [new] = ((maximum production rate * Activated neutrophil [interact with 

Salmonella])/(Activated neutrophil count at which the reaction rate is half of maximum 

production rate +Activated neutrophil [interact with Salmonella])) × Activated neutrophil 

[interact with Salmonella]. Maximum production rate is equivalent to 2.00 pg/neutrophil/tick. 

8. [Inactive] Activated neutrophils produce IL-10. [Active] if interact with 
Salmonella. The rate is 8.44×10-5 ~ 1.03×10-4 pg/neutrophil/tick. IL-10 production 
is computed with Michaelis-Menten Kinetics: 
IL-10 [new] = ((maximum production rate * Activated neutrophil [interact with 

Salmonella])/(Activated neutrophil count at which the reaction rate is half of maximum 

production rate +Activated neutrophil [interact with Salmonella])) × Activated neutrophil 

[interact with Salmonella]. Maximum production rate is equivalent to 1.03×10-4 

pg/neutrophil/tick. 

9. [Inactive] Activated neutrophils release MPO, NE, and NETs by degranulation. 
[Active] if interact with Salmonella. New values are computed with the equation: 
NETs [new] = MPO [new] =NE [new] (NETs is a complex agent of MPO and NE) 

10. [With 20% probability] Bind to IL-10. [Inactive] Produce TNF-α or IL-10.  
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11. [Inactive] Activated neutrophils that phagocytose Salmonella undergo apoptosis. 
[Active] If neutrophils interact with CD8+ T cells. Activated neutrophils die if the 
number of ticks is higher than 4 ticks. 

Resting monocyte. (Called RestingMonocyte in the ABM.) 

1. [Inactive] Resting monocytes migrate to the liver sinusoid from bone marrow 
upon infection. [Active] After 2 ticks. Influx rate to the liver sinusoid is 1 ~ 
1.75/tick. The resting monocyte population is computed with a logistic equation: 
Resting monocyte [new] =influx rate * Resting monocyte [old] *(1-Resting monocyte [old]/ 

resting monocyte carrying capacity). Resting monocyte carrying capacity = 1.4×103. 

2.  [Inactive] Resting monocytes get a signal and move to SECs. [Active] if 
Salmonella, TNF-α, HMGB-1, and apoptotic neutrophils are detected. [Set 
breed] monocyte-derived-macrophage type I if interact with Salmonella. [Set 
breed] monocyte-derived-macrophage type II if interact with apoptotic 
neutrophils. Activation rate is 0.25~4.82/hrs. New population is computed with 
law of mass-action: 
(Monocyte-derived-macrophage type I [new] + monocyte-derived-macrophage type II 

[New])=activation rate * Resting monocyte population * (Salmonella population + TNF-α + 

HMGB-1 + apoptotic neutrophils) / Total population. Total population = 

hepatocyteInitialNumber + mastCellInitialNumber + kupfferCellInitialNumber + 

SECsInitialNumber. 

3. Resting monocytes age and undergo apoptosis. The rate of apoptosis is 6.90×10-3 

~ 2.10×10-2/tick. 
Monocyte-derived-macrophage type I. (Called MDMI in the ABM.) 

1. Phagocytose Salmonella [See Salmonella 11].  

2. [Inactive] Monocyte-derived-macrophage type I produce TNF-α. [Active] if they 

phagocytose Salmonella. The rate is 1.70×10-4 pg/macrophage/tick. TNF-α 
production is computed with Michaelis-Menten Kinetics: 
TNF-α [new] = ((maximum production rate * Monocyte-derived-macrophage type I [interact 

with Salmonella])/(Monocyte-derived-macrophage type I count at which the reaction rate is half 

of maximum production rate + Monocyte-derived-macrophage type I [interact with Salmonella])) 

× Monocyte-derived-macrophage type I [interact with Salmonella]. Maximum production rate is 

equivalent to 1.70×10-4 pg/macrophage/tick. 

3. [Inactive] Produce IL-10. [Active] if they phagocytose apoptotic T cells. The rate 
is 2.02×10-5pg/monocyte-derived-macrophage type I/tick. IL-10 production is 
computed with Michaelis-Menten Kinetics: 
IL-10 [new] = ((maximum production rate * Monocyte-derived-macrophage type I [interact with 
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apoptotic T cells])/(Monocyte-derived-macrophage type I count at which the reaction rate is half 

of maximum production rate + Monocyte-derived-macrophage type I [interact with apoptotic T 

cells])) × Monocyte-derived-macrophage type I [interact with apoptotic T cells]. Maximum 

production rate is equivalent to is 2.02×10-5pg/monocyte-derived-macrophage type I/tick. 

4. Monocyte-derived-macrophage type I are killed by Salmonella. The killing rate is 
estimated. [Active] Monocyte-derived-macrophage type I are killed by 
Salmonella. [Inactive] Monocyte-derived-macrophage type I are killed by 
Salmonella if they interact with CD4+ T cells. 

5. Monocyte-derived-macrophage type I undergo aging. The rate needs to be 
estimated. State variable named “MDMIBecomeApoptotic” is updated from 0 to 
1. 

6. [With 20% probability ] CRP-opsonized apoptotic monocyte-derived-
macrophage type I are phagocytosed  by Kupffer Cells, or mast cells, or 
monocyte-derived-macrophage type I, or monocyte-derived-macrophage type II, 
or neutrophils.  

a. If CRP-opsonized apoptotic monocyte-derived-macrophage type I are phagocytosed by 
Kupffer Cells, [Inactive] they secrete TNF-α. [Increase] phagocytic rate. 

b. If CRP-opsonized apoptotic monocyte-derived-macrophage type I are phagocytosed by 
monocyte-derived-macrophage type I, [Active] secretes TNF-α. [Increase] phagocytic 
rate. 

c. If CRP-opsonized apoptotic monocyte-derived-macrophage type I are phagcytosed by 
neutrophils, [Inactive] the neutrophils adhere to SECs.  

7. CRP-opsonized apoptotic monocyte-derived-macrophage type I die if the 
number of ticks is higher than 1 tick, the lifespan of apoptotic monocyte-derived-
macrophage type I. Reset states of interacted agents. 

8. [With 20% probability] Monocyte-derived-macrophage type I phagocytose CRP-
opsonized Salmonella, CRP-opsonized apoptotic mast cells, CRP-opsonized 
apoptotic monocyte-derived-macrophage type I, CRP-opsonized apoptotic 
monocyte-derived-macrophage type II, CRP-opsonized apoptotic neutrophils, or 
CRP-opsonized apoptotic hepatocytes. [Active] secretes TNF-α. [Increase] 
phagocytic rate. 

9. 0.63% ~ 0.79% of monocyte-derived-macrophage type I transform to Kupffer 
Cells every tick. [set breed] Kupffer Cells [See Kupffer Cell 7]. 

10. [With 20% probability] Bind to IL-10. [Inactive] Produce TNF-α.  
11. Monocyte-derived-macrophage type I activate T cell activation. 
12. [Inactive] Monocyte-derived-macrophage type I who phagocytose Salmonella 

undergo apoptosis. [Active] If interact with CD8+ T cells. Monocyte-derived-
macrophage type I die if the number of ticks is greater than 4 ticks. 

Monocyte-derived-monocytes type II. (Called MDMII in the ABM.) 

1. Phagocytose apoptotic neutrophils [See Activated neutrophil 6]. 
2. [Inactive] Produce HMGB-1. [Active] if phagocytosing apoptotic neutrophils. 

The rate is 9.38×10-3 ~ 4.97×10-1 pg/monocyte-derived-macrophage type II/tick. 
HMGB-1 production is computed with Michaelis-Menten Kinetics: 
HMGB-1 [new] = ((maximum production rate * Monocyte-derived-macrophage type II [interact 
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with apoptotic neutrophils])/(Monocyte-derived-macrophage type II count at which the reaction 

rate is half of maximum production rate + Monocyte-derived-macrophage type II [interact with 

apoptotic neutrophils])) × Monocyte-derived-macrophage type II [interact with apoptotic 

neutrophils]. Maximum production rate is equivalent to 4.97×10-1 pg/monocyte-derived-

macrophage type II/tick. 

3. [Inactive] Produce IL-10. [Active] if phagocytosing apoptotic neutrophils or 
phagocytosing apoptotic T cells. The rate is 2.02×10-5pg/monocyte-derived-
macrophage type II/tick. Assume they produce the same rate of IL-10 under 
both conditions. IL-10 production is computed with Michaelis-Menten Kinetics: 
IL-10 [new] = ((maximum production rate * Monocyte-derived-macrophage type II [interact with 

apoptotic neutrophils or apoptotic T cells])/(Monocyte-derived-macrophage type II count at 

which the reaction rate is half of maximum production rate + Monocyte-derived-macrophage 

type II [interact with apoptotic neutrophils or apoptotic T cells])) × Monocyte-derived-

macrophage type II [interact with apoptotic neutrophils or apoptotic T cells]. Maximum 

production rate is equivalent to is 2.02×10-5pg/monocyte-derived-macrophage type II/tick. 

4. Phagocytose apoptotic T cells. 
5. Undergo natural aging. The rate needs to be estimated. State variable named 

“MDMIIBecomeApoptotic” is updated from 0 to 1. 
6. [With 20% probability ] CRP-opsonized apoptotic monocyte-derived-

macrophage type II are phagocytosed by Kupffer Cells, or mast cells, or 
monocyte-derived-macrophage type I, or monocyte-derived-macrophage type II, 
or neutrophils.  

a. If CRP-opsonized apoptotic monocyte-derived-macrophage type II are phagocytosed by 
Kupffer Cells, [Inactive] secretes TNF-α. [Increase] phagocytic rate. 

b. If CRP-opsonized apoptotic monocyte-derived-macrophage type II are phagocytosed by 
monocyte-derived-macrophage type I, [Active] secretes TNF-α. [Increase] phagocytic 
rate. 

c. If CRP-opsonized apoptotic monocyte-derived-macrophage type II are phagcytosed  by 
neutrophils, [Inactive] the neutrophils adhere to SECs.  

7. CRP-opsonized apoptotic monocyte-derived-macrophage type II die if the 
number of ticks is higher than 1 tick, the lifespan of apoptotic monocyte-derived-
macrophage type II. Reset states of interacted agents. 

8. [With 20% probability] Monocyte-derived-macrophage type II phagocytose  
CRP-opsonized Salmonella, CRP-opsonized apoptotic mast cells, CRP-
opsonized apoptotic monocyte-derived-macrophage type I, CRP-opsonized 
apoptotic monocyte-derived-macrophage type II, CRP-opsonized apoptotic 
neutrophils, or CRP-opsonized apoptotic hepatocytes. [Active] secretes TNF-α. 
[Increase] phagocytic rate. 

9. 0.63% ~ 0.79% of monocyte-derived-macrophage type II transform to Kupffer 
Cells every tick. [set breed] Kupffer Cells [See Kupffer Cell 7]. 

10. [With 20% probability] Bind to IL-10. [Inactive] Produce HMGB-1.  
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11. Monocyte-derived-macrophage type II activate T cell activation. 
Mast cell. (Called MastCell in the ABM.) 

1. Proliferate at a rate of 9.45×10-4 ~ 1.37×10-2/tick. 
2. [Inactive] Produce histamine. [Active] If interact with antibody-opsonized 

Salmonella. The rate is 0.12-0.18 pg /mast cell/tick. Histamine production is 
computed with Michaelis-Menten Kinetics: 
Histamine [new] = ((maximum production rate * Mast cell [interact with antibody-opsonized 

Salmonella])/(Mast cell count at which the reaction rate is half of maximum production rate + 

Mast cell [interact with antibody-opsonized Salmonella])) × Mast cell [interact with antibody-

opsonized Salmonella]. Maximum production rate is equivalent to 0.18 pg /mast cell/tick. 

3. [Inactive] Produce TNF-α. [Active] if bind to Salmonella or bind to antibody-
opsonized Salmonella [See Salmonella 15]. The rate is 1.33×10-7 ~ 1.52×10-7 
pg/mast cell/tick. TNF-α production is computed with Michaelis-Menten 
Kinetics: 
TNF-α [new] = ((maximum production rate * Mast cell [bind to Salmonella])/(Mast cell count at 

which the reaction rate is half of maximum production rate + Mast cell [bind to Salmonella])) × 

Mast cell [bind to Salmonella]. Maximum production rate is equivalent to is 1.52×10-7 pg/mast 

cell/tick. 

4. [Inactive] Recruit T cells to liver sinusoid. [Active] If both histamine and TNF-α 
are detected.  

5. [With 20% probability] Bind to IL-10. [Inactive] Produce TNF-α.  
6. [With 20% probability] Mast cells phagocytose CRP-opsonized Salmonella, CRP-

opsonized apoptotic Kupffer Cells, CRP-opsonized apopototic hepatocyte debris, 
CRP-opsonized apoptotic neutrophils, CRP-opsonized monocyte-derived-
macrophage type I, or CRP-opsonized monocyte-derived-macrophage type II.  

7. Undergo natural aging. The apoptotic rate needs to be estimated. 
CD4 T cell. (Called CD4TCell in the ABM.) 

1. [Inactive] Migrate from the portal triad to the liver sinusoid. [Active] if MDMIs 
or MDMIIs or both histamine and TNF-α are detected. The migration rate is 
1.24×10-3-2.75×10-2/hrs. CD4+ T cell population is computed with a logistic 
equation: 
CD4+ T cell [new] =influx rate * CD4+ T cell [old] *(1-CD4+ T cell [old]/ CD4+ T cell carrying 

capacity). CD4+ T cell carrying capacity = 1373425. 

8. [Inactive] Produce TNF-α. [Active] If interact with APCs including Kupffer 

Cells, neutrophils, or monocyte-derived-macrophage type I. The rate is 6.94×10-

7pg/T cell/hrs. TNF-α production is computed with Michaelis-Menten Kinetics: 
TNF-α [new] = ((maximum production rate * CD4+ T cell [bind to APCs])/( CD4+ T cell count 
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at which the reaction rate is half of maximum production rate + CD4+ T cell [bind to APCs])) × 

CD4+ T cell [bind to APCs]. Maximum production rate is equivalent to is 6.94×10-7 pg/CD4+ T 

cell /tick. 

9. [Inactive] Produce IL-10. [Active] If interact with APCs including Kupffer Cells, 
neutrophils, or monocyte-derived-macrophage type I. The rate is 8.33×10-7-
9.69×10-7pg/T cell/hrs. IL-10 production is computed with Michaelis-Menten 
Kinetics: 
IL-10 [new] = ((maximum production rate * CD4+ T cell [bind to APCs])/( CD4+ T cell count at 

which the reaction rate is half of maximum production rate + CD4+ T cell [bind to APCs])) × 

CD4+ T cell [bind to APCs]. Maximum production rate is equivalent to is 9.69×10-7 pg/CD4+ T 

cell /tick. 

2. [Inactive] Apoptotic CD4+ T cells are phagocytosed by monocyte-derived-
macrophage type I or monocyte-derived-macrophage type II. [Active] If they 
interact with monocyte-derived-macrophage type I or monocyte-derived-
macrophage type II. 

3. Undergo natural aging. The apoptotic rate needs to be estimated. 
CD8 T cell. (Called CD8TCell in the ABM.) 

1. [Inactive] Migrate from the portal triad to the liver sinusoid. [Active] if MDMIs 
or MDMIIs or both histamine and TNF-α are detected. The migration rate is 
6.25×10-2/hrs. CD8+ T cell population is computed with a logistic equation: 
CD8+ T cell [new] =influx rate * CD8+ T cell [old] *(1- CD8+ T cell [old]/ CD8+ T cell carrying 

capacity). CD8+ T cell carrying capacity = 250625. 

2. [Inactivate] Apoptosis of Kupffer Cells, neutrophils, and monocyte-derived-
macrophage type I who phagocytose Salmonella. [Active] If interact with APCs 
including Kupffer Cells, neutrophils, and monocyte-derived-macrophage type I. 

3. [Inactive] Apoptotic CD8+ T cells are phagocytosed by monocyte-derived-
macrophage type I or monocyte-derived-macrophage type II. [Active] If interact 
with monocyte-derived-macrophage type I or monocyte-derived-macrophage 
type II. 

4. Undergo natural aging. The apoptotic rate needs to be estimated. 
B cell. (Called BCell in the ABM.) 

1. [Inactive] Migrate from the portal triad to the liver sinusoid. [Active] if MDMIs 
are detected. The migration rate is 4.30 ×10-4-2.40×10-2/hr. The B cell population 
is computed with a logistic equation: 
B cell [new] =influx rate * B cell [old] *(1-B cell [old]/ B cell carrying capacity). B cell carrying 

capacity = 1433575. 

2. [Inactivate] Produce antibody. [Activate] if they interact with CD4+ T cells. The 
rate is 4.88×10-4-2.81×10-3 pg/B cell/hr. 
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3. Undergo natural aging. The apoptotic rate needs to be estimated. 
Antibody. (Called Antibody in the ABM.) 

1. Antibodies are produced by B cells [See B cell 2]. 
2. Interact with Salmonella to form antibody-opsonized Salmonella. The average 

amount of antibody binding to one Salmonella is 5.31 pg. 
3. [With 20% probability] Antibody-opsonized Salmonella interact with mast cells 

[See Mast cell 2].  
4. [With 20% probability] Antibody-opsonized Salmonella interact with phagocytic 

cells including Kupffer Cells, or mast cells, or neutrophils, or monocyte-derived-
macrophage type I, or monocyte-derived-macrophage type II. [Increase] 
Phagocytosis rate of if interaction with phagocytic cells is detected. [Set] 
Antibody decays if the interaction with phagocytic cells is detected. 

CRP. (Called CRP in the ABM.) 

1. [Inactive] Inhibits resting neutrophil recruitment. [Active] if CRP-opsonized 
apoptotic Kupffer Cells, CRP-opsonized apoptotic activated neutrophils, CRP-
opsonized apoptotic MDMIs, or CRP-opsonized apoptotic MDMIIs. 

2. CRP is released by hepatocytes [See Hepatocyte 3]. 
3. [With 16.7% probability] CRP binds to Salmonella.  
4. [With 20% probability] CRP-opsonized Salmonella are phagocytosed  by 

phagocytic cells [See Salmonella 16] 
5. [With 20% probability] CRP-opsonized apoptotic Kupffer Cells are phagocytosed 

by phagocytic cells [See Kupffer Cell 12]. 
6. [With 20% probability] CRP-opsonized hepatocyte debris are phagocytosed by 

phagocytic cells [See Hepatocyte debris 2]. 
7. [With 20% probability] CRP-opsonized apoptotic neutrophils are phagocytosed 

by phagocytic cells [See Activated neutrophil 4]  
8. [With 20% probability] CRP-opsonized apoptotic monocyte-derived-macrophage 

type I are phagocytosed by phagocytic cells [See monocyte-derived-macrophage 
type I 6] 

9. CRP-opsonized apoptotic monocyte-derived-macrophage type II are 
phagocytosed  by phagocytic cells [See monocyte-derived-macrophage type II 6] 

10. Undergo natural catabolism. The rate is 0.26/tick. 
TNF-α. (Called TNF-α in the ABM.) 

1. [See Kupffer Cell 5] 
2. [See Monocyte-derived-macrophage type I 2] 
3. [See Activated neutrophil 7] 
4. [See Hepatocyte 7] 
5. [See Mast cell 3] 
6. Migrate to the nearest hepatocytes by random migration.  
7. [See Hepatocyte 2] 
8. Undergo natural catabolism. The catabolism rate needs to be estimated. 

HMGB-1. (Called HMGB-1 in the ABM.) 

1. [See Monocyte-derived-macrophage type II 2] 
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2. [See Hepatocyte 6] 
3. Undergo natural catabolism. The catabolism rate needs to be estimated. 

IL-10. (Called IL-10 in the ABM.) 

1. [See Monocyte-derived-macrophage type II 3] 
2. [See Activated neutrophil 8] 
3. [See T cell 3] 
4. [See Kupffer Cell 6, Activated neutrophil 10, Monocyte-derived-macrophage type 

I 10, Monocyte-derived-macrophage type II 10, Mast cell 5] 
5. Undergo natural catabolism. The catabolism rate needs to be estimated. 

Histamine. (Called Histamine in the ABM.) 

[See Mast cell 2] 

NETs. (Called NETs in the ABM.) 

[See Activated neutrophil 9] 

Sinusoid Endothelial Cell. (Called SEC in the model files.) 

A auxiliary agent type which models edges of liver sinusoid. A boundary agent has a 

thin rectangular shape. Salmonella infect sinusoid endothelial cells with certain 

probability. The probability is determined by random movement of the Salmonella 

agent. SECs are infected by Salmonella [See Salmonella 5] 

Signals. (Called Signal in the model files.) 

An auxiliary agent type that help to recruit resting neutrophils or resting monocytes in 

the liver sinusoid.  This represents all other factors not specifically represented in the 

model.   

Anti-Signals. (Called AntiSignal in the model files.) 

An auxiliary agent type that inhibit resting neutrophils or resting monocytes adhere to 

SECs.  This represents all other factors not specifically represented in the model. 
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Table B.9 Experimental data and value of system parameters in IMMABM 

Agent Type 
(Biological 
Indicator) 

 
Experimental Data [ED] 

 
System Parameter Value in IMMAB 

Salmonella 
(Salmonella) 

1. Salmonella carrying 
capacity in Kupffer Cells is 
4,558,000 bacteria in a rat 
model (176). 

2. Salmonella carrying 
capacity in hepatocytes is 
817,000 bacteria in a rat 
model (176). 

3. Salmonella carrying 
capacity in liver endothelial 
cells is 67,000 bacteria in a 
rat model (176). 

4. Salmonella carrying 
capacity in macrophages is 
4,558,000 bacteria in a rat 
model [an estimate based 
on Salmonella carrying 
capacity in Kupffer Cells]. 

5. Salmonella growth rate in 
macrophages is 0.9 fold/hr 
from 0 to 10hrs, and 10.9 
fold/hr from 10 to 16 hrs, 
and 2.7 fold/hr from 16 to 
25 hrs (measured in the 
spleen of mice) (108). 

6. Salmonella growth rate in 
epithelial cells is 0.32 
fold/hr from 48 to 72 hrs 
(measured in the liver of 
rat) (176).  

7. Salmonella growth rate in 
Kupffer Cells is 0.42-1.04 
fold/hr in rat model (176). 

8. Salmonella growth rate in 
hepatocytes is 0.05-0.26 
fold/hr in rat model (207). 

9. 22.79% of E. coli (Gram-
negative bacteria) are killed 
by 1µM neutrophil elastase 
(NE) per hour (332). The 
rate at which Salmonella 
are trapped by NETs is not 
available (229). Since the 
NETs were a complex of 

1. salmonellaCarryCapacityInKupfferCell 
= 4558000 

2. salmonellaCarryCapacityInHepatocyte 
=817000 

3. salmonellaCarryCapacityInSECs = 
67000 

4. salmonellaCarryCapacityInMDMI = 
4558000 

5.  
a) salmonellaReplicationRateInMDMI

From0To10 = 0.9 
b) salmonellaReplicationRateInMDMI

From10To16  = 10.9 
c) salmonellaReplicationRateInMDMI

From16To25 = 2.7 
6. salmonellaReplicationRateInSECsPerHo

ur = 0.32 
7.  

a) salmonellaReplicationRateInKupffe
rCellLowerLevelPerHour =0.42 

b) salmonellaReplicationRateInKupffe
rCellUpperLevelPerHour =1.04 

8.  
a) salmonellaReplicationRateInHepato

cyteLowerLevelPerHour = 0.05 
b) salmonellaReplicationRateInHepato

cyteUpperLevelPerHour = 0.26 
9. percentageOfSalmonellaBeingTrapped

ByNETPerHour = 0.2279 
10.  

a) percentageOfSalmonellaPhagocytiz
eByKupfferCellLowerLevel = 0.90 

b) percentageOfSalmonellaPhagocytiz
eByKupfferCellUpperLevel = 0.95 

c) timeOfSalmonellaKillByKupfferCell 
= 6 

11.  
a) timeOfSalmonellaDieInduceByNeut

rophil = 2 
b) timeOfSalmonellaDieInduceByMD

MI = 2 
 
12. maximumNumberOfSalmonellaBeingKi

lledByNeutrophil = 17 
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Myeloperoxidase (MPO) 
and NE, we extrapolated 
the data above to estimate 
the rate of Salmonella killed 
by NETs. 

10. There are controversial 
observations about 
whether Salmonella 
replicates within 
neutrophils. One study 
(198) stated that 
Salmonella were rarely 
found inside neutrophils in 
control mice. However, 
others (199) made an 
argument that neutrophils 
and macrophages were at 
the main site for Salmonella 
proliferation in the mouse 
because they found >95% 
of the Salmonella 
colocalized to the 
neutrophils and 
macrophages at any time 
point examined. My model 
reflects that Salmonella 
replication rarely occurs 
within neutrophils because 
I failed to find any 
appropriate papers to 
support the concept that 
Salmonella replicates within 
neutrophils.  

11. The Phagocytosis rate of 
Salmonella by Kupffer Cells 
is 90-95% of Salmonella 
(90-95% Salmonella are 
ingested by Kupffer Cells 
within first 6 hrs by 
phagocytosis) (198). 

12. Phagocytosis by 
macrophages stimulated 
with LPS takes 
approximately 2.5 hrs 
(90min for phagosome 
maturation + 60 min for 
engulfing process) (118). 

13. The maximum number of 

13. maximumNumberOfSalmonellaBeingKi
lledByMDMI = 30 

14. maximumNumberOfSalmonellaBeingKi
lledByKupfferCell = 50 

15. maximumNumberOfSalmonellaReside
WithinSECs = 3 

16. maximumNumberOfSalmonellaReside
WithinHepatocyte = 15 

17. timeOfSalmonellaCRPComplexDie = 1 
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Salmonella phagocytized by 
one neutrophil is 17 (202). 

14. The maximum number of 
Salmonella phagocytized by 
one monocyte-derived 
macrophage is 30 (202). 

15. The maximum number of 
Salmonella phagocytized by 
one Kupffer Cell is 50 (176). 

16. The maximum number of 
Salmonella resides within 
one SEC is 3 (176). 

17. The maximum number of 
Salmonella resides within 
one hepatocyte is 15 (333). 

18. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

KupfferCell 
(Kupffer  cell) 

1. Kupffer Cell machinery is 
disrupted and cells die 6-14 
hrs after Salmonella 
infection (172) . 

2. By direct cell contact with 
target cells, T cells could 
deliver a cytotoxic signal 
that induces apoptosis in 
target cells in 
approximately 4 hrs (on 
average)(335). 

3.  
a) Rate of TNF-α secreted 

by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 2.16×10-4-2.30×10-

4pg/Kupffer Cell/hr 
from 0-3 hrs (18). 

b) Rate of TNF-α secreted 
by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 4.88×10-5-8.36×10-5 
pg/Kupffer Cell/hr from 

1.  
a) lowerTimeOfKupfferCellKillByS

almonella = 6  
b) upperTimeOfKupfferCellKillByS

almonella = 14  
2. timeOfKupfferCellWhoPhagocytize

SalmonellaDieByInteractWithCD8T
Cell = 4 

3.  
a) maximumReleaseRateOfTNFAl

phaFromKupfferCellPerHourFro
m0To3 = 2.30E-4 

b) maximumReleaseRateOfTNFAl
phaFromKupfferCellPerHourFro
m3To6 = 8.36E-5 

c) maximumReleaseRateOfTNFAl
phaFromKupfferCellPerHourFro
m6To10 = 2.09×10-5 

4. amountOfTNFAlphaBeingRepresent
edByOneAgent = 2.82E-5 

5. maximumReleaseRateOfIL10ByKup
fferCellPerHour = 7.38E-4 

6. amountOfIL10BeingRepresentedBy
OneAgent = 1.23E-5 

7. timeOfApoptoticKupfferCellCRPCo
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3-6 hrs (18). 
c) Rate of TNF-α secreted 

by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 2.09×10-5 pg/Kupffer 
Cell/hr from 6-10 hrs 
(18). 

4. The average amount of 
TNF-α damage one 
hepatocyte is 2.82×10-5pg in 
a mouse model (227). 

5. Rate of IL-10 secretion by 
Kupffer Cells is 6.15×10-4 -
7.38×10-4pg/Kupffer Cell/hr 
in a mouse model injected 
with E.coli (18). 

6. The binding rate of IL-10 to 
one cell is approximately 
1.23×10-5 pg/cell (225). 

7. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

mplexDie = 1 

RestingNeutro
phil 

(Circulating 
neutrophil) 

1. The neutrophil influx into 
blood vessels from bone 
marrow stores starts at 
approximately 1 hr (243). 

2. Neutrophil influx rates from 
bone marrow to blood 
vessel in a human model 
(243). 
a. Neutrophil influx rate 

from bone marrow into 
blood vessel is 14 fold 
/hr over a period of 1-
1.5 hrs. 

b. Neutrophil influx rate 
from bone marrow into 
blood vessel is 0.39 
fold/hr over a period of 
1.5-4 hrs. 

c. Neutrophil influx rate 
from bone marrow into 

1. timeOfNeutrophilStartToInfluxIntoL
iverSinusoid = 1 

2.  
a) influxRateOfRestingNeutrophil

ToLiverSinusoidFrom0To2 = 14 
b) influxRateOfRestingNeutrophil

ToLiverSinusoidFrom2To4 = 
0.39 

c) influxRateOfRestingNeutrophil
ToLiverSinusoidFrom4ToEnd = 
0.125 

3. restingNeutrophilCarryCapacityInLi
verSinusoid = 6900 

4.  
d) rateOfRestingNeutrophilUnder

goAgingPerHourLowerLevel = 
0.05 

e) rateOfRestingNeutrophilUnder
goAgingPerHourLowerLevel = 
0.095 
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blood vessel is 0.125 
fold/hr over a period of 
4-6 hrs. 

3. Neutrophil counts in blood 
vessels in a mouse model 
anesthetized with ketamine 
and xylazine was 6.9×103 
cells/ul (336, 337) 

4. Circulating neutrophils 
undergo apoptosis at a rate 
of 0.05-0.092 fold/hr (half-
life is 6-10 hrs) (185, 285) 

RestingMonoc
yte 

(Circulating 
monocyte) 

1. Monocytes infiltration into 
blood vessels begins at 
approximately 2 hrs after 
infection in a mouse lung 
model infected with 
Escherichia coli (338). 

2. Influx rate of monocytes 
into blood vessels in a 
mouse lung model infected 
with Escherichia coli is 1-
1.75 fold/hr (338). 

3. Monocyte carrying capacity 
in blood vessel was 1.4×103 
cells/ul (336, 337). 

4. The influx rate of Ly6Chigh 
monocytes into the liver in 
a rat infected with L. 
monocytogenes (Gram-
positive bacteria) is 0.25-
4.82 fold/hr(144). 

5. Circulating monocytes 
undergo apoptosis at a rate 
of 6.90×10-3 -2.10×10-2 
fold/hr (this is based on 
data showing circulating 
monocytes have a half-life 
about one to three days) 
(339). 

1. timeOfRestingMonocyteInfluxIntoLi
verSinusoid = 2 

2.  
a) influxRateOfRestingMonocyteT

oLiverSinusoidPerHourLowerLe
vel = 1 

b) influxRateOfRestingMonocyteT
oLiverSinusoidPerHourUpperLe
vel = 1.75 

3. restingMonocyteCarryCapacityInLiv
erSinusoid = 1400 

4.  
a) activationRateOfRestingMonoc

ytePerHourLowerLevel = 0.25 
b) activationRateOfRestingMonoc

ytePerHourUpperLevel = 4.82 
5.  

a) apoptoticRateOfRestingMonoc
yteByAgingPerHourLowerLevel 
= 0.0069 

b) apoptoticRateOfRestingMonoc
yteByAgingPerHourUpperLevel 
= 0.021 

 
 

Hepatocyte 
(Hepatocyte) 

1. Hepatocyte replication 
rates after partial 
hepatectomy (212). 
a. Hepatocyte replication 

rate is 2.65×10-3 - 
3.17×10-3 fold/hr over a 
period of 0-98 hrs. 

b. Hepatocyte replication 

1.  
a) hepatocyteReplicationRatePer

HourFrom0To98LowerLevel = 
2.65E-3 

b) hepatocyteReplicationRatePer
HourFrom0To98UpperLevel = 
3.17E-3 

c) hepatocyteReplicationRatePer
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rate is 4.08×10-3 -
6.80×10-3 fold/hr over a 
period of 98-135 hrs. 

c. Hepatocyte replication 
rate is 1.32×10-3 -
3.95×10-3 fold/hr over a 
period of 135-173 hrs. 

d. Hepatocyte replication 
rate is 4.08×10-3 -
5.27×10-3 fold/hr over a 
period of 173-247 hrs. 

e. Hepatocyte replication 
rate is 2.12×10-3 -
2.65×10-3 fold/hr over a 
period of 247-336 hrs. 

2. Hepatocyte are infected by 
Salmonella at an infected 
rate is 0.003 
Salmonella/hepatocyte/hr 
(333).  

3. The time from initiation of 
apoptosis by hepatocytes to 
completion ranges from 2-3 
hrs. These data were 
inferred from a general 
model that didn’t specify 
apoptosis rates for various 
organs (211). 

4. Mouse circulating CRP level 
increases from 0.3mg/ml to 
6 mg/ml by 24 hrs after 
endotoxin injection (340). 
The rate of CRP released 
from hepatocytes is 
approximately 2×10-7 

µg/hepatocyte/hr (337, 
340). This is the only paper 
that I could find that 
measured circulating CRP 
levels in mice. Most of CRP 
levels are measured in 
human models. 

5. The binding rate of CRP to 
one phagocytic cell is 
approximately 1.25×10-

5µg/cell (226).  
6. Rate of TNF-α secreted by 

hepatocytes infected with 

HourFrom98To135LowerLevel 
= 4.08E-3 

d) hepatocyteReplicationRatePer
HourFrom98To135UpperLevel 
= 6.8E-3 

e) hepatocyteReplicationRatePer
HourFrom135To173LowerLevel 
= 1.32E-3 

f) hepatocyteReplicationRatePer
HourFrom135To173UpperLevel 
= 3.95E-3 

g) hepatocyteReplicationRatePer
HourFrom173To247LowerLevel 
= 4.08E-3 

h) hepatocyteReplicationRatePer
HourFrom173To247UpperLevel 
= 5.27E-3 

i) hepatocyteReplicationRatePer
HourFrom247ToEndLowerLevel 
= 2.12E-3 

j) hepatocyteReplicationRatePer
HourFrom247ToEndUpperLevel 
= 2.65E-3 

2. rateOfHepatocyteBeingInfectedByS
almonellaPerHour = 0.003  

3.  
a) timeOfHepatocyteBecomeDebr

isLowerLevel = 2 
b) timeOfHepatocyteBecomeDebr

isUpperLevel = 3 
4. maximumReleaseRateOfCRPByHep

atocytePerHour = 2.00E-7 
5. amountOfCRPBeingRepresentedBy

OneAgent = 1.25E-5 
6. maximumReleaseRateOfTNFAlphaB

yApoptoticHepatocytePerHour = 
9.18E-5 

7. maximumReleaseRateOfHMGB1By
ApoptoticHepatocytePerHour = 
6.25E-5 
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Salmonella is 7.14×10-5 -
9.18×10-5 pg/hepatocyte/hr 
(207). 

7. Rate of HMGB-1 secretion 
by apoptotic hepatocytes in 
Sham-operated mice is 
approximately 6.25×10-

5pg/hepatocyte/hr (208, 
337). 

HepatocyteDe
bris 

(Hepatocyte 
Debris) 

1. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

1. timeOfHepatocyteDebrisCRPCompl
exDie = 1 

ActivatedNeut
rophil 

(Activated 
neutrophil, 

mostly focus 
on neutrophils 
at the site of 

infection) 

1. Influx rate of circulating 
neutrophils in a rat model 
of acute pulmonary 
inflammation stimulated 
with LPS of Escherichia coli 
is 0.21-0.46 fold/hr (302). 
Another study (221) 
showed that activated 
neutrophils infiltrate into 
the site of infection at a 
rate of 0.09-0.16 fold/hr 
(influx rate is measured as 
the influx rate of 
neutrophils into the 
peritoneum). 

2. Massive neutrophils 
infiltration into the 
peritoneum occurred after 
2 hrs (298). Activated 
neutrophils infiltrate into 
the site of infection by 2 hrs 
after infection in mice 
infected in the peritoneum 
with Salmonella (221). 

3. Killing rate of Escherichia 
coli (E. coli is recognized as 
a Gram-negative bacteria) 
by neutrophils is 2.94-12.94 
E.coli/neutrophil/hr (202).  

4. It takes 5-20 neutrophils to 
injury one hepatocyte by 

1.  
a) activationRateOfRestingNeutro

philPerHourLowerLevel = 0.09 
b) activationRateOfRestingNeutro

philPerHourUpperLevel = 0.46 
2. timeOfNeutrophilStartToInfluxIntoS

iteOfInfection = 2 
3.  

a) phagocytizeRateOfSalmonellaB
yActivatedNeutrophilPerHourL
owerLevel = 2.94 

b) phagocytizeRateOfSalmonellaB
yActivatedNeutrophilPerHourU
pperLevel = 12.94 

4.  
a) killingRateOfApoptoticHepatoc

yteByNeutrophilPerHourLower
Level = 0.05 

b) killingRateOfApoptoticHepatoc
yteByNeutrophilPerHourUpper
Level = 0.2 

5. percentageOfNeutrophilBeingKilled
ByKupfferCell = 0.05 

6. apoptoticRateOfActivatedNeutroph
ilByNaturePerHour = 0.098 

7. timeOfActivatedNeutrophilWhoPha
gocytizeSalmonellaDieByInteractWi
thCD8TCell = 4 

8. maximumReleaseRateOfIL10ByNeu
trophilPerHour = 1.03E-4 

9.  
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cell-cell contact (210, 341). 
Also, activated neutrophils 
accelerate the killing 
process of apoptotic 
hepatocytes (134). 

5. 30% of circulating activated 
neutrophils are 
phagocytized by Kupffer 
Cells in a mouse model by 6 
hrs after LPS injection (342).  

6. Activated neutrophils 
undergo apoptosis at a rate 
of 0.098 fold/hr (assuming a 
constant decrease)(the 
apoptosis was based on 
mice with meningitis)(185).  

7. By direct cell contact with 
target cells, T cells could 
deliver a cytotoxic signal 
that induces apoptosis in 
target cells in 
approximately 4 hrs (on 
average) (335). 

8. Rate of IL-10 secretion by 
neutrophils in spetic mice 
upon CLP is 8.44×10-5-
1.03×10-4 pg/neutrophil/hr 
(213). 

9.  
a) Rate of TNF-α secretion 

by neutrophils in a 
mouse model injected 
with E.coli LPS is 0.19-
0.27pg/neutrophil/hr 
over a period of 0-1 hr 
(343-347). 

b) Rate of TNF-α secretion 
by neutrophils in a 
mouse model injected 
with E.coli LPS is 1.47-
2.00 pg/neutrophil/hr 
over a period of 1-1.5 
hrs (343-347).  

10. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 

a) maximumReleaseRateOfTNFAl
phaByNeutrophilFrom0To1 = 
0.27 

b) maximumReleaseRateOfTNFAl
phaByNeutrophilFrom1ToEnd = 
2 

10. timeOfApoptoticNeutrophilCRPCo
mplexDie = 1 

11. timeOfNeutrophilKillByKupfferCell 
= 2 

12. timeOfApoptoticNeutrophilKillByM
DMII = 1 
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cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

11. Phagocytosis by 
macrophages stimulated 
with LPS takes 
approximately 2.5 hrs 
(90min for phagosome 
maturation + 60 min for 
engulfing process) (118).  

12. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

 

NET (NET) 1. Rate of NE secretion by 
neutrophils was 3.2×10-7 
µM /neutrophil during the 
first 1 hr, and the stopped 
(348). 

1. amountOfNETBeingRepresentedBy
OneAgent = 3.2E-7 

MDMI 
(monocyte-

Derived-
Macrophage 

Type I) 

1. Ly6Chigh monocytes are 
recruited to the liver in a rat 
model by 6 hrs after 
infection with L. 
monocytogenes (Gram-
positive bacteria) (144). 
Also, monocyte infiltration 
to peritoneum was 
detected to increase at 6 
hrs after infection in a 
mouse model with 
Zymosan-induced 
peritonitis (298).  

2. Kupffer Cells are 
replenished hourly by 0.63 - 
0.79% of monocyte-
derived-macrophage type I 
or monocyte-derived-
macrophage type II upon 
zymosan injection in the 
mouse model (123). 

3. By direct cell contact with 
target cells, T cells could 
deliver a cytotoxic signal 

1. timeOfMonocyteInfluxIntoSiteOfInf
ection = 6 

2.  
a) rateOfMDMITransformToKupff

erCellLowerLevel = 0.0063  
b) rateOfMDMITransformToKupff

erCellUpperLevel = 0.0079 
3. timeOfMDMIWhoPhagocytizeSalm

onellaDieByInteractWithCD8TCell = 
4 

4. maximumReleaseRateOfTNFAlphaB
yMDMIPerHour = 1.7E-4 

5. maximumReleaseRateOfIL10ByMD
MIPerHour = 2.02E-5 

6. timeOfApoptoticMDMICRPComplex
Die = 1 
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that induces apoptosis in 
target cells in 
approximately 4 hrs (on 
average) (335). 

4. Rate of TNF-α secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
1.70×10-4 pg/ peritoneal 
macrophage/hr over a 
period of 0-3 hrs (18).  

5. Rate of IL-10 secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
2.02×10-5 pg/ peritoneal 
macrophage /hr over a 
period of 0-3 hrs (18). 

6. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

MDMII 
(monocyte-

Derived-
Macrophage 

Type II) 

1. Kupffer Cells are hourly 
replenished by 0.63% - 
0.79% of monocyte-
derived-macrophage type I 
or monocyte-derived-
macrophage type II upon 
zymosan injection in mice 
model (123). 

2. Rate of IL-10 secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
2.02×10-5 pg/ peritoneal 
macrophage/hr over a 
period of 0-3 hrs (18). 

3.  
a) Rate of HMGB-1 

secretion by peritoneal 
macrophages in a rat 
model is 9.38×10-3-
3.8×10-2pg/peritoneal 
macrophage/hr over a 

1.  
a) rateOfMDMIITransformToKupff

erCellLowerLevel = 0.0063  
b)  

rateOfMDMIITransformToKupff
erCellUpperLevel = 0.0079 

2. maximumReleaseRateOfIL10ByMD
MIIPerHour = 2.02E-5 

3.  
a) maximumReleaseRateOfHMGB

1ByMDMIIFrom8To12 = 3.8E-2 
b) maximumReleaseRateOfHMGB

1ByMDMIIFrom12To16 = 
1.69E-1 

c) maximumReleaseRateOfHMGB
1ByMDMIIFrom16ToEnd = 
4.97E-1 

4. timeOfApoptoticMDMIICRPComple
xDie = 1 
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period of 8-12 hrs (349, 
350).  

b) Rate of HMGB-1 
secretion by peritoneal 
macrophages in a rat 
model is 1.03×10-1-
1.69×10-1pg/peritoneal 
macrophage/hr over a 
period of 12-16 hrs 
(349, 350). 

c) Rate of HMGB-1 
secretion by peritoneal 
macrophages in a rat 
model is 2.72×10-1-
4.97×10-1pg/peritoneal 
macrophage/hr over a 
period of 16-24 hrs 
(349, 350). 

4. Phagocytosis of apoptotic 
cells by macrophages takes 
approximately 1 hr (on 
average), and the 
phagocytosis of necrotic 
cells by macrophages takes 
approximately 3 hrs (on 
average) (334). 

MastCell 
(Mast cell) 

1. Mast cells undergo self-
renewal after CCI4 injection 
in a rat model, the 
proliferation rate is 
9.45×10-4-3.10×10-3 /hr 
(320).  

2. Rate of TNF-α secretion by 
mast cells in a mouse model 
injected with CLP ranges 
from 1.33×10-7 to 1.52×10-7 
pg/mast cell/hr (351). 

3. Rate of TNF-α secretion by 
peritoneal mast cells 
stimulated with antigen (a 
collection of soluble 
excretory and secretory 
products of adult N. 
brasiliensis) was 1.48×10-4-
1.76×10-4 pg/mast cell/hr 
(352). We use these rates to 
estimate the rates of TNF-α 
secretion by mast cells 

1.  
a) proliferateRateOfMastCellPerH

ourLowerLevel = 9.45E-4 
b) proliferateRateOfMastCellPerH

ourUpperLevel  = 0.0031 
2. maximumReleaseRateOfTNFAlphaB

yMastCellPerHour = 1.52E-7 
3. maximumReleaseRateOfTNFAlphaB

yMastCellIfInteractWithAntibodySa
lmonellaComplexPerHour = 1.76E-4 

4. maximumReleaseRateOfHistamine
ByMastCellIfInteractWithAntibodyS
almonellaComplexPerHour = 0.18 
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during degranulation in 
IMMAB. 

4. Mast cells release histamine 
during systemic 
degranulation induced by 
polymicrobial septic 
peritonitis in a mouse 
model. The rate of 
histamine release by mast 
cells is 0.12-0.18 pg /mast 
cell/hr (321, 337). 

CD4TCell (CD4 
T cell) 

1. The activation rate of CD4 T 
cells in the spleen of mice 
injected with E. coli ranges 
from 1.24×10-3 to 2.75×10-2 

fold/hr (174).  
2. The CD4 T cells carrying 

capacity is approximately 
27.4×106 cells in the first 7 
days after infection (174). 

3. Rate of IL-10 secretion by 
Th2 cells stimulated with IL-
4 is 8.33×10-7-9.69×10-

7pg/Th2 cell/hr (353). 
4. Rate of TNF-α secretion by 

T cells in a mouse model 
infected with E. coli was 
6.94×10-7pg/T cell/hr (174). 

1.  
a) influxRateOfCD4TCellToLiverSin

usoidPerHourLowerLevel = 
1.24E-3 

b) influxRateOfCD4TCellToLiverSin
usoidPerHourUpperLevel = 
2.75E-2 

2. CD4TCellCarryCapacityInLiverSinus
oid = 27.4E6 

3. maximumReleaseRateOfIL10ByCD4
TCellPerHour = 9.69E-7 

4. maximumReleaseRateOfTNFAlphaB
yCD4TCellPerHour = 6.94E-7 

CD8TCell (CD8 
T cell) 

1. The activation rate of CD8 T 
cells in the spleen of mice 
injected with E. coli is 
approximately 6.25×10-2 
fold/hr (174). 

2. The CD8 T cells carrying 
capacity is approximately 
5×106 cells in the first 7 
days after infection (174). 

1. InfluxRateOfCD8TCellToLiverSinuso
idPerHour = 6.25E-2 

2. CD8TCellCarryCapacityInLiverSinus
oid = 5000000 

BCell (B cell) 1. The activation rate of B cells 
in the spleen of mice 
injected with E. coli ranges 
from 4.30 ×10-4 to 2.40×10-2 
fold/hr (174). 

2. The B cells carrying capacity 
is approximately 28.6×106 
in the first 7 days after 
infection (174). 

1.  
a) influxRateOfBCellToLiverSinuso

idPerHourLowerLevel = 4.3E-4 
b) influxRateOfBCellToLiverSinuso

idPerHourUpperLevel = 2.4E-2 
2. BCellCarryCapacityInLiverSinusoid = 

28600000 
 

TNFAlpha 
(Tumor 

1. Kupffer Cells secrete TNF-a 
a) Rate of TNF-α secreted 

1.  
a) maximumReleaseRateOfTNFAl
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necrosis factor 
alpha) 

by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 2.16×10-4-2.30×10-

4pg/Kupffer Cell/hr 
from 0-3 hrs (18).  

b) Rate of TNF-α secreted 
by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 4.88×10-5-8.36×10-5 
pg/Kupffer Cell/hr from 
3-6 hrs (18). 

c) Rate of TNF-α secreted 
by Kupffer Cells in 
Sham-operated mice 
upon injection of E.coli 
is 2.09×10-5 pg/Kupffer 
Cell/hr from 6-10 hrs 
(18). 

2.  
a) Rate of TNF-α secretion 

by neutrophils in a 
mouse model injected 
with E.coli LPS is 0.19-
0.27pg/neutrophil/hr 
over a period of 0-1 hr 
(343-347). 

b) Rate of TNF-α secretion 
by neutrophils in a 
mouse model injected 
with E.coli LPS is 1.47-
2.00 pg/neutrophil/hr 
over a period of 1-1.5 
hrs (343-347). 

3. Rate of TNF-α secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
1.70×10-4 pg/ peritoneal 
macrophage/hr over a 
period of 0-3 hrs (18).  

4. Rate of TNF-α secretion by 
mast cells in a mouse model 
injected with CLP ranges 
from 1.33×10-7 to 1.52×10-7 
pg/mast cell/hr (351). 

5. Rate of TNF-α secretion by 

phaFromKupfferCellPerHourFro
m0To3 = 2.30E-4 

b) maximumReleaseRateOfTNFAl
phaFromKupfferCellPerHourFro
m3To6 = 8.36E-5 

c) maximumReleaseRateOfTNFAl
phaFromKupfferCellPerHourFro
m6To10 = 2.09×10-5 

2.  
a) maximumReleaseRateOfTNFAl

phaByNeutrophilFrom0To1 = 
0.27 

b) maximumReleaseRateOfTNFAl
phaByNeutrophilFrom1ToEnd = 
2 

3. maximumReleaseRateOfTNFAlphaB
yMDMIPerHour = 1.7E-4 

4. maximumReleaseRateOfTNFAlphaB
yMastCellPerHour = 1.52E-7 

5. maximumReleaseRateOfTNFAlphaB
yMastCellIfInteractWithAntibodySa
lmonellaComplexPerHour = 1.76E-4 

6. maximumReleaseRateOfTNFAlphaB
yCD4TCellPerHour = 6.94E-7 
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peritoneal mast cells 
stimulated with antigen (a 
collection of soluble 
excretory and secretory 
products of adult N. 
brasiliensis) was 1.48×10-4-
1.76×10-4 pg/mast cell/hr 
(352). We use these rates to 
estimate the rates of TNF-α 
secretion by mast cells 
during degranulation in 
IMMAB. 

6. Rate of TNF-α secretion by 
T cells in a mouse model 
infected with E. coli was 
6.94×10-7pg/T cell/hr (174). 

HMGB1 (High-
Mobility 

Group Box 1) 

1. Rate of HMGB-1 secretion 
by apoptotic hepatocytes in 
Sham-operated mice is 
approximately 6.25×10-

5pg/hepatocyte/hr (208, 
337).  

2.  
a) Rate of HMGB-1 

secretion by peritoneal 
macrophages in a rat 
model is 9.38×10-3-
3.8×10-2pg/peritoneal 
macrophage/hr over a 
period of 8-12 hrs (349, 
350). 

b) Rate of HMGB-1 
secretion by peritoneal 
macrophages in a rat 
model is 1.03×10-1-
1.69×10-1pg/peritoneal 
macrophage/hr over a 
period of 12-16 hrs 
(349, 350). 

c) Rate of HMGB-1 
secretion by peritoneal 
macrophages in a rat 
model is 2.72×10-1-
4.97×10-1pg/peritoneal 
macrophage/hr over a 
period of 16-24 hrs 
(349, 350). 

1. maximumReleaseRateOfHMGB1By
ApoptoticHepatocytePerHour = 
6.25E-5 

2.  
a) SD 

maximumReleaseRateOfHMGB
1ByMDMIIFrom8To12 = 3.8E-2 

b) maximumReleaseRateOfHMGB
1ByMDMIIFrom12To16 = 
1.69E-1 

c) maximumReleaseRateOfHMGB
1ByMDMIIFrom16ToEnd = 
4.97E-1 

 
 
 

IL10 1. Rate of IL-10 secretion by 1. maximumReleaseRateOfIL10ByKup
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(Interleukin 
10) 

Kupffer Cells is 6.15×10-4 -
7.38×10-4pg/Kupffer Cell/hr 
in a mouse model injected 
with E.coli (18). 

2. Rate of IL-10 secretion by 
neutrophils in spetic mice 
upon CLP is 8.44×10-5-
1.03×10-4 pg/neutrophil/hr 
(213). 

3. Rate of IL-10 secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
2.02×10-5 pg/ peritoneal 
macrophage /hr over a 
period of 0-3 hrs (18). 

4. Rate of IL-10 secretion by 
peritoneal macrophages in 
Sham-operated mice upon 
injection of E.coli is 
2.02×10-5 pg/ peritoneal 
macrophage/hr over a 
period of 0-3 hrs (18). 

5. Rate of IL-10 secretion by 
Th2 cells stimulated with IL-
4 is 8.33×10-7-9.69×10-

7pg/Th2 cell/hr (353). 

fferCellPerHour = 7.38E-4 
2. maximumReleaseRateOfIL10ByNeu

trophilPerHour = 1.03E-4 
3. maximumReleaseRateOfIL10ByMD

MIPerHour = 2.02E-5 
4. maximumReleaseRateOfIL10ByMD

MIIPerHour = 2.02E-5 
5. maximumReleaseRateOfIL10ByCD4

TCellPerHour = 9.69E-7 

CRP (C-
reactive 
protein) 

1. CRP undergoes degradation 
at an estimated rate of 0.26 
fold/hr (Plasma half-life of 
CRP is about 19 hrs and is 
constant under all 
conditions of health and 
disease, this data was 
extrapolated from a human 
model) (325). 

 

Antibody 
(antibody) 

1. The antibody production 
amount by one B cell in a 
human model infected by 
Salmonella is 4.88×10-4-
2.81×10-3pg/B cell/hr (244).  

2. The binding amount of 
antibody to one Salmonella 
is 5.31 pg/Salmonella (243, 
245). 
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Data assumptions: 

1. Hepatocytes account for 60% of liver cells, Kupffer Cells account for 15% of liver cells, SECs 

account for 20% of liver cells (196), and mast cells account for 7.5% of liver cells (197). 

2. In general, we assume the change in rate is constant because we observed changes in data of 

interests in most of experimental studies following linear curves. 

3. For some experimental data, we used multiple rates of synthesis or secretion.  These multiple 

rates are explained in our experimental data table above. 

4. Some experimental data is comprised of multiple linear segments, and therefore we calibrated 

rates for each linear segment to measure various rates for multiple responding time periods. 

5. The release/secretion rates of various cytokines (TNF-α, HMGB-1 and IL-10) by inflammatory 

cells such as neutrophils, Kupffer Cells and monocyte-derived-macrophages are described as a 

function of time, by possibly incorporating the effect of decay/catabolism.  

6. Experimental data are integrated into our agent-based model as inputs by ignoring different 

experimental conditions/settings such as different initial loads of bacteria injection, different 

bacteria strains, different animal models, etc.  This limitation could be reduced by additional 

experiments done under the same experimental conditions/settings.  

7. It was not possible to extrapolate the data for our agent-based model from one simple 

experimental model. The strategy we used was to focus on mouse Salmonella infection studies 

that were published in papers available in the NCBI.  When necessary, we used data from 

broader systems such as Gram-negative infections (i.e. E. coli) or even Gram positive bacterial 

infections.  Therefore, we are aware that some of these assumptions may not be correct. 
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Appendix C - Supplementary Material for FHSMDP 

 Computational Study I 

Notation and SMDP formulation 

State set: 

s1 = [0, 1152)             s2 = [1152, 2304)             s3 = [2304, ∞) 

s1: Salmonella loads fall into the range [0, 1152) 

s2: Salmonella loads fall into the range [1152, 2304) 

s3: Salmonella loads fall into the range [2304, ∞) 

Action set: 

A : {a1 = No action, a2 = Antimicrobials} 

Planning decision horizon: 

λ = 0 - 24 hrs, and λ is a continuous variable 

The following notations are used: 

 ikij assP ,| : The probability that the current state si transits to state sj at the next 

decision epoch, given action aik made at state si. 

 iki astF ,| : The probability that the next decision epoch occurs within time t, given 

action aik made at the current state si. 

 iki asP , : The probability of an infected individual ending with “hyperinflammatory 

response” or “organ dysfunction”, given aik made at the current state si. 

 ikij asstQ ,|, : The probability that the current state si transits to the state sj at the next 

decision epoch within time t, given aik made at the current state si.  
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 iki astD ,| : The probability that current state si transits to other states at the next 

decision epoch within t, given aik made at the current state si.  

Modeling assumptions 

a. Decision epochs occur whenever the state changes, and a decision epoch occurs if the state 

remains at s3 for 5 hrs. 

b. The range of indicator counts are dependent on the initial loads of Salmonella. In this 

numerical example, the initial load of Salmonella was set to 3200. 

c. If taking an action a2, 50 counts antimicrobial agents (1 agent count in silico responds to 1 

colony forming unit (CFU) of Salmonella) were added to the silico experiment each time at 

decision epoch. 

d. There is no decision epoch when the system remains at s1. 

e. We calculated  ikij assP ,|  and  iki astF ,|  by observing the changes in the number of 

indicators (states) for 30 simulation runs. 

Compute inputs of value iteration algorithm using IMMABM 

 Derive  iki astF ,|  

Firstly, calculate  iki astP ,|  using the following mathematical formulation: 

 
runssimulationofnumbertotalthe

sstatecurrenttheatmadeaactiongiventtimewithinoccursepochdecisionnexttheofNo
astP iik

iki

,.
,| 

 Secondly, estimate  iki astF ,|  using calibrated  iki astP ,| , as shown in Figure C.1: 

We calibrated  iki astP ,|  using simulated data from IMMABM, and estimated 

 iki astF ,|  using obtained  iki astP ,| . We assumed the line segments between calibrated data 
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follows a linear relationship in order to simply the calculation, the functions of estimated lines 

are shown as follows: 
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Figure 8.1 Calibrated  iki astP ,|  from IMMABM and estimated lines for  iki astF ,|  
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 Calculate  ikij assP ,|  using the following mathematical formulation: 

 
runssimulationofnumbertotalthe

sstateataactionunderepochdecisionnextatsstatetotransitssstatecurrentofNo
assP

iikji

ikij

,.
,|   

Using IMMABM,  ikij assP ,|  is obtained as follows： 

(state si, action aik) No. of transitions to (sj)  P(sj|si, aik) 

(s2, a21) 17 (s1) 

0 (s2) 

13 (s3) 

P(s1|s2, a21)=17/30 

P(s2|s2, a21)=0 

P(s3|s2, a21)=13/30 

(s2, a22) 21(s1) 

0 (s2) 

9 (s3) 

P(s1|s2, a22)=21/30 

P(s2|s2, a22)=0 

P(s3|s2, a22)=9/30 

(s3, a32) 0 (s1) 

29 (s2) 

1 (s3) 

P(s1|s3, a32)=0/30 

P(s2|s3, a32)=29/30 

P(s3|s3, a32)=1/30 

 Calculate  ikij asstQ ,|,  using the following mathematical formulation: 

     ikiikijikij astFassPasstQ ,|,|,|, 
 

     































6,
30

17

64,
15

7
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1

42,
6

1
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11

21,
340

51

68

17

10,
10

1

,|,|,|, 21221212121

t

tt

tt

tt

tt

astFassPasstQ  

       RtastFassPasstQ ,0,|,|,|, 21221222122  
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 Calculate  iki astD ,| using the following mathematical formulation: 

   ikijSsiki asstQastD
j

,|,,|  
  
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 Calculate  iki asP ,  using the following mathematical formulation: 

 
runssimulationofnumbertotalthe

ndysfunctioorganwithendingsindividualectedofNoresponselammatoryhyperwithendingsindividualectedofNo
asP iki

inf.infinf.
,




 

P(s2, a21) =19/30 P(s2, a22) =7/30 P(s3, a32) = 17/30 
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 Computation Study II 

Notation and SMDP formulation 

State set: 

s1 = [Sl, Hl]              s2 = [Sl, Hm]              s3 = [Sl, Hh]              

s4 = [Sm, Hl]              s5 = [Sm, Hm]              s6 = [Sm, Hh]              

s7 = [Sh, Hl]              s8 = [Sh, Hm]              s9 = [Sh, Hh]              

Sl: Salmonella loads fall into the range [0, 1152) 

Sm: Salmonella loads fall into the range [1152, 2304) 

Sh: Salmonella loads fall into the range [2304, ∞) 

Hl: HMGB-1 levels fall into the range [0, 400) 

Hm: HMGB-1 levels fall into the range [400, 800) 

Hh: HMGB-1 levels fall into the range [800, ∞) 

Action set: 

A : {a1 = Antimicrobials, a2 = Anti-HMGB-1s, a3 = Antimicrobials and Anti-HMGB-1s } 

Planning decision horizon: 

λ = 0 - 24 hrs, and λ is a continuous variable  

The following notations are used: 

 ikij assP ,| : The probability that the current state si transits to state sj at the next 

decision epoch, given action aik made at state si. 

 iki astF ,| : The probability that the next decision epoch occurs within time t, given 

action aik made at the current state si. 
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 iki asP , : The probability of an infected individual ending with “hyperinflammatory 

response” or “organ dysfunction”, given aik made at the current state si. 

 ikij asstQ ,|, : The probability that the current state si transits to the state sj at the next 

decision epoch within time t, given aik made at the current state si.  

 iki astD ,| : The probability that current state si transits to other states at the next decision 

epoch within t, given aik made at the current state si.  

Modeling assumptions 

a. Decision epochs occur whenever the state changes, and a decision epoch occurs if the state 

remains at s3 for 5 hrs or the state remains at s3, s6, s9 for 2 hrs. 

b. The range of indicator counts are dependent on the initial loads of Salmonella. In this 

numerical example, the initial load of Salmonella was set to 3200. 

c. If taking an action a1, 50 counts antimicrobial agents (1 agent count in silico responds to 1 

colony forming unit (CFU) of Salmonella) were added to the silico experiment each time at 

decision epoch. 

d. If taking an action a2, 400 counts anti-HMGB-1 agents (1 agent count in silico responds to 1 

unit of HMGB-1, equivalent to 2.82 × 10-5 pg) were added to the silico experiment when 

HMGB-1 levels fall into Hm, and 800 counts anti-HMGB-1 agents were added to the silico 

experiment when HMGB-1 levels fall into Hl. 

e. If taking an action a3, follow c and d. 

f. There is no decision epoch when the system remains at s1. 

g. We calculated  ikij assP ,|  and  iki astF ,|  by observing the changes in the number of 

indicators (states) for 20 simulation runs.  
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Compute inputs of value iteration algorithm using IMMABM 

 Derive  iki astF ,|  

Firstly, calculate  iki astP ,|  using the following mathematical formulation: 

 
runssimulationofnumbertotalthe

sstatecurrenttheatmadeaactiongiventtimewithinoccursepochdecisionnexttheofNo
astP iik

iki

,.
,| 

Secondly, estimate  iki astF ,|  using calibrated  iki astP ,| , as shown in Fig. C.2: 

Figure 8.2 Calibrated  iki astP ,|  from IMMABM and estimated lines for  iki astF ,|  
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We calibrated  iki astP ,|  using simulated data from IMMABM, and estimated 

 iki astF ,|  using obtained  iki astP ,| . We assumed the line segments between calibrated data 

follows a linear relationship in order to simply the calculation, the functions of estimated lines 

are shown as follows: 
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







2,1

21,
5

3

5

1

10,
5

4

,| 525

t

tt

tt

astF    






















2,1

21,
10

9

20

1

10,
20

19

,| 535

t

tt

tt

astF  

 






















2,1

21,
10

9

20

1

10,
20

19

,| 616

t

tt

tt

astF    






















2,1

21,
10

7

20

3

10,
20

17

,| 626

t

tt

tt

astF  

 






















2,1

21,
5

4

10

1

10,
10

9

,| 636

t

tt

tt

astF    






























4,1

43,
5

3

10

1

32,
5

3
-

2

1

21,
5

1

10

1

10,
10

3

,| 717

t

tt

tt

tt

tt

astF    

 






















2,1

21,
10

9

20

1

10,
20

19

,| 818

t

tt

tt

astF    






















2,1

21,
5

3

5

1

10,
5

4

,| 828

t

tt

tt

astF  
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 






















2,1

21,
10

7

20

3

10,
20

17

,| 838

t

tt

tt

astF    






















2,1

21,
5

3

5

1

10,
5

4

,| 919

t

tt

tt

astF  

 






















2,1

21,
5

1

5

2

10,
5

3

,| 929

t

tt

tt

astF    






















2,1

21,
10

3

20

7

10,
20

13

,| 939

t

tt

tt

astF  

 Calculate  ikij assP ,|  using the following mathematical formulation: 

 
runssimulationofnumbertotalthe

sstateataactionunderepochdecisionnextatsstatetotransitssstatecurrentofNo
assP

iikji

ikij

,.
,|   

Using IMMABM,  ikij assP ,|  is obtained as follows： 

(state si, action aik) No. of transitions to (sj)  P(sj|si, aik) 

(s2, a22) 7 (s1) 

13 (s3) 

P(s1|s2, a22)=7/20 

P(s3|s2, a22)=13/20 

(s3, a32) 5 (s2) 

15 (s3) 

P(s2|s3, a32)=5/20 

P(s3|s3, a32)=15/20 

(s4, a41) 3 (s1) 

1 (s2) 

3 (s3) 

3 (s5) 

1 (s6) 

7 (s7) 

P(s1|s4, a41)=3/20 

P(s2|s4, a41)=1/20 

P(s3|s4, a41)=3/20 

P(s5|s4, a41)=3/20 

P(s6|s4, a41)=1/20 

P(s7|s4, a41)=7/20 



 

332 

2 (s8) P(s8|s4, a41)=2/20 

(s5, a51) 15 (s3) 

5 (s6) 

P(s3|s5, a51)=15/20 

P(s6|s5, a51)=5/20 

(s5, a52) 1 (s2) 

13 (s3) 

1 (s4) 

4 (s6) 

1 (s8) 

P(s2|s5, a52)=1/20 

P(s3|s5, a52)=13/20 

P(s4|s5, a52)=1/20 

P(s6|s5, a52)=4/20 

P(s8|s5, a52)=1/20 

(s5, a53) 3 (s2) 

12 (s3) 

5 (s6) 

P(s2|s5, a53)=3/20 

P(s3|s5, a53)=12/20 

P(s6|s5, a53)=5/20 

(s6, a61) 20 (s3) P(s3|s6, a61)=20/20 

(s6, a62) 1 (s2) 

18 (s3) 

1 (s6) 

P(s2|s6, a62)=1/20 

P(s3|s6, a62)=18/20 

P(s6|s6, a62)=1/20 

(s6, a63) 2 (s1) 

18 (s3) 

P(s1|s6, a63)=2/20 

P(s3|s6, a63)=18/20 

(s7, a71) 5 (s4) 

1 (s5) 

3 (s8) 

11 (s9) 

P(s4|s7, a71)=5/20 

P(s5|s7, a71)=1/20 

P(s8|s7, a71)=3/20 

P(s9|s7, a71)=11/20 

(s8, a81) 1 (s3) 

6 (s6) 

13 (s9) 

P(s3|s8, a81)=1/20 

P(s6|s8, a81)=6/20 

P(s9|s8, a81)=13/20 
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(s8, a82) 2 (s3) 

1 (s5) 

5 (s6) 

12 (s9) 

P(s3|s8, a82)=2/20 

P(s5|s8, a82)=1/20 

P(s6|s8, a82)=5/20 

P(s9|s8, a82)=12/20 

(s8, a83) 1 (s2) 

9 (s3) 

2 (s6) 

8 (s9) 

P(s2|s8, a83)=1/20 

P(s3|s8, a83)=9/20 

P(s6|s8, a83)=2/20 

P(s9|s8, a83)=8/20 

(s9, a91) 3 (s3) 

15 (s6) 

2 (s8) 

P(s3|s9, a91)=3/20 

P(s6|s9, a91)=15/20 

P(s8|s9, a91)=2/20 

(s9, a92) 6 (s3) 

1 (s4) 

13 (s6) 

P(s3|s9, a92)=6/20 

P(s4|s9, a92)=1/20 

P(s6|s9, a92)=13/20 

(s9, a93) 4 (s3) 

13 (s6) 

3 (s8) 

P(s3|s9, a93)=4/20 

P(s6|s9, a93)=13/20 

P(s8|s9, a93)=3/20 

 

 Calculate  ikij asstQ ,|,  using the following mathematical formulation: 

     ikiikijikij astFassPasstQ ,|,|,|, 
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     



























6,
20

7

62,
200

49

400

7

21,
50

7

100

7

10,
100

21

,|,|,|, 22222212221

t

tt

tt

tt

astFassPasstQ  

     



























6,
20

13

62,
200

91

400

13

21,
50

13

100

13

10,
100

39

,|,|,|, 22222232223

t

tt

tt

tt

astFassPasstQ  

      9,8,7,6,5,4,2,,0,|,|,|, 222222222   jRtastFassPasstQ jj  

     






















2,
4

1

21,
20

3

5

1

10,
20

1

,|,|,|, 32332323232

t

tt

tt

astFassPasstQ  

     






















2,
4

3

21,
20

9

5

3

10,
20

3

,|,|,|, 32332333233

t

tt

tt

astFassPasstQ  

      9,8,7,6,5,4,1,,0,|,|,|, 323323323   jRtastFassPasstQ jj  

     






















5,
20

3

54,
80

9

400

3

40,
1600

57

,|,|,|, 41441414141

t

tt

tt

astFassPasstQ  
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     






















5,
20

1

54,
80

3

400

1

40,
1600

19

,|,|,|, 41441424142

t

tt

tt

astFassPasstQ

      






















5,
20

3

54,
80

9

400

3

40,
1600

57

,|,|,|, 41441434143

t

tt

tt

astFassPasstQ  

     






















5,
20

3

54,
80

9

400

3

40,
1600

57

,|,|,|, 41441454145

t

tt

tt

astFassPasstQ

      






















5,
20

1

54,
80

3

400

1

40,
1600

19

,|,|,|, 41441464146

t

tt

tt

astFassPasstQ  

     






















5,
20

7

54,
80

21

400

7

40,
1600

133

,|,|,|, 41441474147

t

tt

tt

astFassPasstQ  

     






















5,
10

1

54,
40

3

200

1

40,
800

19

,|,|,|, 41441484148

t

tt

tt

astFassPasstQ  

      9,4,,0,|,|,|, 414414414   jRtastFassPasstQ jj  
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     













1,
4

3

10,
4

3

,|,|,|, 51551535153

t

tt
astFassPasstQ  

     













1,
4

1

10,
4

1

,|,|,|, 51551565156

t

tt
astFassPasstQ  

      9,8,7,5,4,2,1,,0,|,|,|, 515515515   jRtastFassPasstQ jj  

     






















2,
20

1

21,
100

3

100

1

10,
25

1

,|,|,|, 52552525252

t

tt

tt

astFassPasstQ  

     






















2,
20

13

21,
100

39

100

13

10,
25

13

,|,|,|, 52552535253

t

tt

tt

astFassPasstQ  

     






















2,
20

1

21,
100

3

100

1

10,
25

1

,|,|,|, 52552545254

t

tt

tt

astFassPasstQ  

     






















2,
5

1

21,
25

3

25

1

10,
25

4

,|,|,|, 52552565256

t

tt

tt

astFassPasstQ  
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     






















2,
20

1

21,
100

3

100

1

10,
25

1

,|,|,|, 52552585258

t

tt

tt

astFassPasstQ  

      9,7,5,1,,0,|,|,|, 525525525   jRtastFassPasstQ jj  

     






















2,
20

3

21,
200

27

400

3

10,
400

57

,|,|,|, 53553525352

t

tt

tt

astFassPasstQ  

     






















2,
5

3

21,
50

27

100

3

10,
100

57

,|,|,|, 53553535353

t

tt

tt

astFassPasstQ  

     






















2,
4

1

21,
40

9

80

1

10,
80

19

,|,|,|, 53553565356

t

tt

tt

astFassPasstQ  

      9,8,7,5,4,1,,0,|,|,|, 535535535   jRtastFassPasstQ jj  

     






















2,1

21,
10

9

20

1

10,
20

19

,|,|,|, 61661636163

t

tt

tt

astFassPasstQ  

      9,8,7,6,5,4,2,1,,0,|,|,|, 616616616   jRtastFassPasstQ jj  
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     






















2,
20

1

21,
200

7

400

3

10,
400

17

,|,|,|, 62662626262

t

tt

tt

astFassPasstQ  

     






















2,
10

9

21,
100

63

200

27

10,
200

153

,|,|,|, 62662636263

t

tt

tt

astFassPasstQ  

     






















2,
20

1

21,
200

7

400

3

10,
400

17

,|,|,|, 62662666266

t

tt

tt

astFassPasstQ  

      9,8,7,5,4,1,,0,|,|,|, 626626626   jRtastFassPasstQ jj  

     






















2,
10

1

21,
25

2

100

1

10,
100

9

,|,|,|, 63663616361

t

tt

tt

astFassPasstQ  

     






















2,
10

9

21,
25

18

100

9

10,
100

81

,|,|,|, 63663636363

t

tt

tt

astFassPasstQ  

      9,8,7,6,5,4,2,,0,|,|,|, 636636636   jRtastFassPasstQ jj  
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     






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 Calculate  iki astD ,| using the following mathematical formulation: 
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 Calculate  ii asP ,  using the following mathematical formulation: 
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runssimulationofnumbertotalthe
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inf.infinf.
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P(s2, a22) =16/20 P(s3, a32) =18/20 P(s4, a41) = 19/20  P(s5, a51) = 20/20 

P(s5, a52) = 20/20 P(s5, a53) = 19/20 P(s6, a61) = 20/20 P(s6, a62) = 20/20 

P(s6, a63) = 20/20 P(s7, a71) = 20/20 P(s8, a81) = 20/20 P(s8, a82) = 20/20 

P(s8, a83) = 20/20 P(s9, a91) = 20/20 P(s9, a92) = 20/20 P(s9, a93) = 20/20 
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