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Abstract 

The potential for high variability in treatment effects across individuals has been 

recognized as an important consideration in clinical studies. Surprisingly, little attention has been 

given to evaluating this variability in design of clinical trials or analyses of resulting data. High 

variation in a treatment‟s efficacy or safety across individuals (referred to herein as treatment 

heterogeneity) may have important consequences because the optimal treatment choice for an 

individual may be different from that suggested by a study of average effects.  We call this an 

individual qualitative interaction (IQI), borrowing terminology from earlier work - referring to a 

qualitative interaction (QI) being present when the optimal treatment varies across „groups‟ of 

individuals. At least three techniques have been proposed to investigate treatment heterogeneity: 

techniques to detect a QI, use of measures such as the density overlap of two outcome variables 

under different treatments, and use of cross-over designs to observe „individual effects.‟ 

Connections, limitations, and the required assumptions are compared among these techniques 

through a quantity frequently referred to as subject-treatment (S-T) interaction, but shown here to 

be the probability of an IQI (PIQI).  Their association is studied utilizing a potential outcomes 

framework that can add insights to results from usual data analyses and to study design features 

to more directly assess treatment heterogeneity. 

Particular attention is given to the density overlap of two outcome variables, each 

representing an individual‟s „potential‟ response under a different treatment.  Connections are 

made between the overlap quantified as the proportion of similar responses (PSR) and the PIQI.   

Given a bivariate normal model, the maximum PIQI is shown to be an upper bound for ½ the 

PSR.  Additionally, the characterization of a conditional PSR allows for the PIQI boundaries to 



 

 

be developed within subgroups defined over observable covariates so that the subset contribution 

to treatment heterogeneity may be identified.  The possibility of similar boundaries is explored 

outside the normal model using the skew normal distribution.  Furthermore, a bivariate PIQI is 

developed along with its PSR counterpart to help characterize treatment heterogeneity resulting 

from a bivariate response such as the efficacy and safety of a treatment. 
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Abstract 

The potential for high variability in treatment effects across individuals has been 

recognized as an important consideration in clinical studies. Surprisingly, little attention has been 

given to evaluating this variability in design of clinical trials or analyses of resulting data. High 

variation in a treatment‟s efficacy or safety across individuals (referred to herein as treatment 

heterogeneity) may have important consequences because the optimal treatment choice for an 

individual may be different from that suggested by a study of average effects.  We call this an 

individual qualitative interaction (IQI), borrowing terminology from earlier work - referring to a 

qualitative interaction (QI) being present when the optimal treatment varies across „groups‟ of 

individuals. At least three techniques have been proposed to investigate treatment heterogeneity: 

techniques to detect a QI, use of measures such as the density overlap of two outcome variables 

under different treatments, and use of cross-over designs to observe „individual effects.‟  

Connections, limitations, and the required assumptions are compared among these techniques 

through a quantity frequently referred to as subject-treatment (S-T) interaction, but shown here to 

be the probability of an IQI (PIQI).  Their association is studied utilizing a potential outcomes 

framework that can add insights to results from usual data analyses and to study design features 

to more directly assess treatment heterogeneity. 

Particular attention is given to the density overlap of two outcome variables, each 

representing an individual‟s „potential‟ response under a different treatment.  Connections are 

made between the overlap quantified as the proportion of similar responses (PSR) and the PIQI.   

Given a bivariate normal model, the maximum PIQI is shown to be an upper bound for ½ the 

PSR.  Additionally, the characterization of a conditional PSR allows for the PIQI boundaries to 



 

 

be developed within subgroups defined over observable covariates so that the subset contribution 

to treatment heterogeneity may be identified.  The possibility of similar boundaries is explored 

outside the normal model using the skew normal distribution.  Furthermore, a bivariate PIQI is 

developed along with its PSR counterpart to help characterize treatment heterogeneity resulting 

from a bivariate response such as the efficacy and safety of a treatment. 
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Chapter 1 - Introduction 

“..,it appears that white sheep and pigs are injured by certain plants, whilst dark- coloured 

individuals escape.” ~ Charles Darwin 

 

“What is food to one to some becomes Fierce poison” ~ Lucretius  

 

 

The quotations above illustrate that individual differences in response to stimuli or 

„treatments‟ have been the subject of interest throughout recorded history. They further illustrate 

two kinds of interactions. Darwin points out an interaction in which one type of animal is harmed 

by a certain treatment whereas other animals are not harmed, but are not necessarily helped. In 

contrast, Lucretius points out a more dramatic type of interaction in which what is helpful to 

some is actually harmful to others. More formally, treatment heterogeneity is present when the 

effect of a treatment, say T, with respect to a reference treatment, R, varies across subsets or 

individuals in a population. A consequence of this heterogeneity is that different individuals or 

groups of individuals may respond to treatment in opposite directions, with treatment T having 

higher efficacy for some and treatment R having higher efficacy for others. At times this form of 

treatment heterogeneity may be accounted for by group or subset identification.  The term 

qualitative interaction (QI) has been used to describe this condition at the subset level (Peto, 

1982).   Gail and Simon (1985) developed a test to detect a QI, and when such tests are 

significant, optimal treatments may differ across subsets (Byar and Corle, 1977). 

Taking the idea of subsets to its limit, every person is unique and can be considered a 

separate subset.  Individual qualitative interaction (IQI) is present when at least two individuals 

respond in opposite direction to treatment.  However, since individuals can receive only one 
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treatment at any given time, T or R, IQIs are more difficult to detect than QIs and, as such, 

formal tests are nonexistent.   Still, the very existence of QIs suggests, as was recorded by 

Lucretius, IQIs are not only plausible, but probable.  Although the number of individuals in a 

population that may experience an IQI for any given T/R combination may be small relative to 

the number of individuals in the population, the extremity of this type of treatment heterogeneity 

motivates the need for further development in this area. The work presented in this dissertation 

provides a structure and a set of related procedures for both studying and quantifying the 

presence of IQI within populations. 

Notwithstanding the serious nature of IQIs, the challenges related to the study of 

treatment heterogeneity at the individual level have hindered advancement in this area.  

Consequently, researchers have focused on studying treatment heterogeneity at the subset level 

through the detection of subset interaction, of which QI is one type.  Simon (1982, p. 474) stated 

that despite the fact that no two patients are exactly alike “At some point it is necessary to settle 

upon a target population for whom we are willing to attempt to reach a reliable overall 

conclusion about therapeutic effects.”  Currently, the study of subset interaction alone may be 

too restrictive in light of existing research objectives in areas such as personalized nutrition, 

health care, and behavioral therapy (Lewis and Burton-Freeman, 2010; Marshall, 1997).  For 

example, Kent and Hayward (2007, p. 1209) report, “There remain important differences 

between individuals in each treatment group that can dramatically affect the likelihood of 

benefiting from or being harmed by a therapy.”  The challenge of evaluating treatment 

heterogeneity from an individual perspective has been addressed by some.  The statement by 

Senn (2001, p.1479) that personalized care, such as those mentioned above, “May be rather more 

difficult to realize than has been supposed,” is an example.  An inherent problem with 
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quantifying individual treatment heterogeneity is that the response to only T or R may be 

observed at any given time while the unobserved response is considered missing since it is 

potentially observable under the alternative treatment (see Rubin, 1983).  This makes directly 

estimating and displaying evidence of treatment heterogeneity at the individual level and, in 

particular IQIs, impossible without assumptions.  These ideas are illustrated in the soy treatment 

example introduced in the next section. 

1.1. Soy Treatment Trial 

1.1.1. Description and Initial Results 

Allison et al. (2003) published the results on the efficacy of a soy-based meal 

replacement program to treat obesity, which, among other improvements, indicated a significant 

reduction in average cholesterol levels for the soy-treatment group T over the reference or 

control group R.  A portion of the data from this trial is given in Table 1.1 including 16 of the 

original 73 observations (8 from each treatment group).  The measured response is base line 

minus end of trial cholesterol level over the 12 week trial period so positive values represent a 

decrease in cholesterol in that period.  The soy treatment group received both a soy-based meal 

diet and training to help control the patients‟ diets, while the patients on R received the 

nutritional training only.  For the data listed in Table 1.1, the first 8 patients were on treatment T 

and measured by X, while patients 9 through 16 were on treatment R and were measured by Y.  

Since the first 8 patients did not receive treatment R, their response to R was not recorded.  

Likewise, the response to T for patients 9 through 16 was not recorded.  To emphasize that these 

values would have been observed had treatment assignment gone the other way, the non-

observed or missing data for the 16 patients is indicated by an NA.   The average cholesterol 

reduction for the soy group was 21.75 (mg/dl), while observed average reduction in the 
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cholesterol level for the reference group was 6.75 (mg/dl). A t-test from the observed data for 

equal means indicates that on average the soy treatment was significantly                 

more effective than the reference treatment in helping to reduce the average cholesterol level. 

 

Soy-Treatment Example 

Observed and Missing    
Responses 

Unattainable 
Individual 

Comparisons 

Patient Soy(X) Ref. (Y) X-Y I(Y>X) 

1 17 NA ? ? 

2 41 NA ? ? 

3 35 NA ? ? 

4 -4 NA ? ? 

5 22 NA ? ? 

6 48 NA ? ? 

7 14 NA ? ? 

8 1 NA ? ? 

9 NA 1 ? ? 

10 NA 22 ? ? 

11 NA -5 ? ? 

12 NA 11 ? ? 

13 NA 31 ? ? 

14 NA 0 ? ? 

15 NA 4 ? ? 

16 NA -10 ? ? 

Average 21.75 6.75 ? ? 

Variance 344 192 ? ? 

Table 1.1: Soy treatment data 
This table provides the observed responses to a portion of the soy treatment trial, while at the same time 

illustrates the difficulty of assessing individual treatment heterogeneity with observable data.  The NAs 

represent the unobserved or missing values that could not be attained since that particular treatment was not 

given and the question marks indicate that no direct individual comparisons can be made for the individual. 
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1.1.2. Treatment Heterogeneity Assessment 

The question motivated by this work is whether there is any indication of an IQI in the 

population, given the sample data.  That is, despite           being significantly larger than 

        , were there any individuals for which    ?  The question marks in Table 1.1 

indicate that detection of     is not possible due to the missing data.  Likewise the 

determination of        is not possible, where      is an indicator function used to count the 

number of IQIs in the sample, i.e. those individuals responding opposite to the average.  Note 

that the increase in cholesterol from patient 4 despite having been treated with T may seem to 

indicate that this patient may have done better on R.  On the other hand, had patient 4 been given 

R, the increase in cholesterol may have been even more profound.  Likewise, the large drop in 

cholesterol recorded for patient 10 who was on R may have had an even more significant 

reduction if this patient was treated with T.  The important point is that without assumptions 

there is no way to know whether there exists an IQI, which would be detected by the occurrence 

of    .   

Figure 1.1 provides a graphical illustration of the problem created by the missing data 

and also serves as a backdrop for possible solutions.  The observed            values are 

denoted with open triangles along the   axis, which is displayed as the horizontal dotted line, and 

the observed              values are denoted with open circles along the   axis, displayed as 

the vertical dotted line.   The sample averages are plotted with the bullet at the point           

            .  Note that the data for the observed values are considered independent of each 

other since they originate from different individuals, and assignment to treatment was random.   

However, pairs of responses coming from the 16 individuals would necessitate that X and Y 

originate from a bivariate distribution since                     would each be considered 
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to have come from the same individuals.  Accordingly, under the assumption that X and Y result 

from a bivariate distribution, the shaded area of Figure 1.1 depicts the area over which    .  

Thus any      pair in this region provides evidence for an IQI in the population.  The challenge 

of course is finding a suitable match for the observed value in each pair, or to specify the proper 

bivariate distribution on       since the within individual correlation is not identifiable.  

Although extreme, the next section discusses two possible solutions, which illustrate some 

important properties of treatment heterogeneity. 

Figure 1.1: Soy treatment data and potential pairs 

The observed x values are shown as triangles along the horizontal axis shown as the dotted line, 

while the open circles are the observed y values are shown as the open circles along the vertical 

axis.  Although no pairs exist, the       pairs that would have fallen in the shaded region 

would be considered IQIs.  The mean estimates are plotted as                       . 
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1.1.3. Solution by Boundaries 

Suppose       follows a bivariate normal distribution with      .  Then by taking 

       the missing values may be imputed by  

                                                                             

Table 1.2 (a) displays the imputed values in bold using       .  Note that the sample averages do 

not change under this strategy.  Furthermore, a t-test for equal means is still significant    

            .  However, the amount of treatment heterogeneity may seem quite large under 

      as seen by the large variance of the 16     values, which is equal to 1026.  As expected, 

the high degree of treatment heterogeneity results in a rather large number of IQIs in the data.  In 

fact, 5 out of the 16 individuals (approximately 31%) respond better to R than to T despite the 

significant effect of T on average.  Each of the IQIs are identified as a shaded row, wherein both 

      and         .  Even though taking        is likely extreme, this imputation 

strategy shows that a test for equality of means, despite being rejected, fails to address questions 

related to treatment heterogeneity.   

 Table 1.2 (b) gives the results of an imputation strategy from the opposite extreme by 

taking       resulting in 

                                                                             

Again, the sample averages remain unchanged and a test for equal means is rejected    

            .  However, the analysis indicates that no treatment heterogeneity is present as 

indicated by a zero variance in the 16 reported     values.  That is, there is a constant effect 

from T with respect to R, so that every individual receives the same benefit, namely          

  , from T rather than R.  Clearly, there are no IQIs in this imputed data set.   
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1.1.3. Soy Trial Summary 

Although simplified, the soy treatment example illustrates some important points that 

should be considered in the study of treatment heterogeneity. First, just because there is a 

statistically significant average effect of T with respect to the average effect of R, a high 

proportion IQIs may yet be present in a population.  This example shows that even though 

                     , 30% of the population may exhibit an IQI.  Second, to eliminate 

the presence of treatment heterogeneity in a population,     must equal 1, which in many 

circumstances may be just as naïve as considering       .  Finally, the study of treatment 

(a)                              
 

(b)                             

Observed and Imputed     
Responses 

Individual Response 
Comparisons 

 Observed and Imputed    
Responses 

Individual Response 
Comparisons 

 Patient Soy (X) Ref. (Y) X-Y I(Y>X) 

 

Patient Soy (X) Ref. (Y) X-Y I(Y>X) 

1 17 12 6 0 
 

1 17 2 15 0 

2 41 -13 54 0 
 

2 41 26 15 0 

3 35 -7 42 0 
 

3 35 20 15 0 

4 -4 33 -37 1 
 

4 -4 -19 15 0 

5 22 7 16 0 
 

5 22 7 15 0 

6 48 -20 68 0 
 

6 48 33 15 0 

7 14 15 -1 1 
 

7 14 -1 15 0 

8 1 28 -27 1 
 

8 1 -14 15 0 

9 28 1 27 0 
 

9 16 1 15 0 

10 7 22 -16 1 
 

10 37 22 15 0 

11 34 -5 39 0 
 

11 10 -5 15 0 

12 18 11 7 0 
 

12 26 11 15 0 

13 -3 31 -34 1 
 

13 46 31 15 0 

14 29 0 29 0 
 

14 15 0 15 0 

15 25 4 21 0 
 

15 19 4 15 0 

16 39 -10 49 0 
 

16 5 -10 15 0 

Average 21.75 6.75 15 .31 
 

Average 21.75 6.75 15 0.00 

Variance 253 258 1027 - 
 

Variance 250 250 0 - 

Table 1.2: Assessing treatment heterogeneity by boundaries 

Panels (a) and (b) use       and      , respectively, to impute the missing values found in Table 

1.1.  In panel (a) both the number of IQIs and the variance in the sample becomes quite large, 

while in panel (b) both quantities are zero.   
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heterogeneity at the individual level may be conducted by a study of the variance of individual 

effects.  Note that in this example, it is implied that an individual effect is defined as     (the 

response of an individual treated with T relative to the individuals‟ response treated with R).  

That is, the          is directly related to the proportion of IQIs in the population.  Thus a 

study of treatment heterogeneity may be conducted by a study of the         . 

Admittedly, in this example it may seem reasonable to assume that     is rather large, 

since treatment T is simply an enhanced version of treatment R.  However, there are reported 

cases in which the response to treatment T relative to R may have an opposite effect on some 

individuals. For example, Lader (2011) states that as many as 5% of patients treated with a 

sedative will become aggressive or even violent after treatment.  It may be supposed that such 

patients would have been calmer had they not taken the sedative, or had taken some other 

treatment.   

Other applications include the measurement of variables related to the side effects of a 

treatment.  For example, it has been reported that soy products may increase the risk of breast 

cancer or initiate nutrient deficiencies in infants (Fang, Tseng, Daly, 2005; Setchell et al, 1998).  

Treatment heterogeneity on side effect variables may be evaluated using the techniques 

presented herein.  However, for simplicity the methods presented here are applied to only 

primary outcome variable(s) of interest.  The next section briefly discusses the importance of 

analyzing IQIs in an even more general setting. 

 

1.2. Additional Applications to IQI 

Evaluating the plausible heterogeneity in treatment response, and even more so the 

proportion of a population with an IQI, has other applications as well. Consider the context of 
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claims for weight loss products which can often be quite extravagant. The US Federal Trade 

Commission (FTC) states that “No [weight loss] product will work for everyone,” and therefore 

claims implying that a “product causes substantial weight loss for all users” is a likely sign of 

fraud (FTC statement). Is there evidence a company could provide to the FTC to show that in 

their randomized clinical trial (RCT) showing a positive mean effect, the plausible proportion of 

people who will have an effect less than a threshold   is negligible? Alternatively, is there 

evidence that the FTC could muster to show a company that their claim of a universal positive 

effect is almost certainly untrue despite there being a positive mean effect?  The results described 

herein may help clarify the issues involved when answering these questions. 

As a final example, one can imagine applications in legal settings (see, for example, 

Marchant 2001, 2010). Imagine that a plaintiff (e.g., a consumer) sues a defendant (e.g., a 

distributor of a drug, food, or pharmaceutical) claiming that use of defendant‟s product caused a 

stroke secondary to markedly elevated blood pressure (BP) as a result of using the product. 

Imagine further that defense experts present evidence that well-designed RCTs show an average 

effect of the product on BP to be less than or equal to zero. Plaintiff‟s experts reply that there is 

great interindividual variability in response and even though the average response is less than or 

equal to zero, some people will be hypersensitive hyper-responders with extreme BP increases. 

What evidence can the court bring to bear on the question of how probable it is that plaintiff was 

such a hyper-responder? The first question which must precede this is what evidence is there that 

hyper-responders in the opposite direction even exist and with what frequency? Again, the 

techniques presented in this dissertation can provide a plausible range of answers. 
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1.3. Dissertation Overview 

Chapter 2 provides a review of current literature in the area of treatment heterogeneity at 

both subset and individual levels.  The main topics include potential outcomes, subject-treatment 

interaction, crossover designs, subset and qualitative interaction, and density overlap or the 

proportion of similar response (PSR) based on two outcome or response variables.   

Chapter 3 outlines a new framework from which to study treatment heterogeneity at the 

individual level.  Under a bivariate normal model new connections are made between treatment 

heterogeneity and the PSR, which show the conditions under which the PSR may be used to 

represent the boundary for the maximum proportion of IQIs found within a population.  Other 

previously unspecified relationships between the PSR and the IQI are also characterized.  

Additionally, the PSR is shown to have a conditional counterpart, and the relationship between 

the PSR and the IQI is shown to hold over subsets defined over observable covariates.  This 

chapter also provides a new parameterization of the variance of individual effects defined by the 

difference between X and Y using the potential outcomes framework.  Based on a known 

covariate, the variance is shown to decompose into two components; one based on subset 

affiliation and the other based on individual differences within subsets.  Finally, the soy 

treatment example is revisited using the entire data set and additional insight is gleaned from the 

data about potential IQIs found within the population and subpopulations.  

 Chapter 4 explores the use of the PSR/IQI relationship outside the normal model by 

utilizing a bivariate skew normal distribution.  Since the PSR is largely based on the normal 

probability model, this chapter provides a new structure for evaluating and computing the PSR.  

Chapter 5 provides a natural extension to chapter 3 by developing the PSR/IQI relationship in a 

normal model for bivariate continuous outcomes, so that responses measuring both the efficacy 
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and safety of a treatment may be studied simultaneously.  A new development of the bivariate 

PSR and the bivariate IQI is presented here based on a bivariate response.  Finally, a summary 

and some possible new directions are given in Chapter 6. 
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Chapter 2 - Literature Review 

2.1. Potential Outcomes 

A problem in the study of treatment heterogeneity at the individual level, as mentioned in 

Chapter 1, is the inability to observe an individual‟s outcome to both treatments T and R 

simultaneously.  In fact, the unobserved response due to a treatment not given is a form of 

missing data (Rubin, 1983).  As illustrated in the soy treatment example given in Section 1.2, one 

strategy of handling the missing data is to use imputation methods.  Potential outcomes provide 

the structure for a counterfactual argument, which is the identification of an outcome that would 

have been observed if conditions, such as treatment assignment, would have happened another 

way.  In the potential outcomes framework, the outcome to every treatment assignment is 

considered whether observed or not.  Throughout this proposal X is used to measure an 

individual‟s response to treatment T and Y is used to measure an individual‟s response to the 

reference treatment R.  Thus, using both X and Y for the simultaneous measurement of T and R 

on the same individual has been called counterfactual (Dawid, 2000).  However, since both X and 

Y are potentially observable before the treatment is assigned, some prefer to use the term 

potential outcomes (Rubin, 1974). 

Even though the observation of both X and Y is not possible, using potential outcomes 

allows for the description of concepts such as the observation of both X and Y allows for a true 

effect of T with respect to R on an individual in a two treatment randomized controlled trial.  

Neyman (1923) introduced the use of this approach to define the “best estimate” for a mean as 

the average of the „potential‟ outcomes, and not just the average of the „observed‟ outcomes.  
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Rubin (1974, 1978) is credited with developing the potential outcomes framework, which is 

often called Rubin‟s causal model (Holland, 1986) in honor of his contribution, and because of 

its impact on causal inference.  Only a part of the potential outcome framework will be given 

here as it relates to the inference of nonestimable parameters defined in the potential outcomes 

framework.  Given         are potential outcome variables in a population,          is 

defined as the “true” individual effect of T opposed to R for the     individual.  Thus, a set of N 

subjects and their respective differences taken from a population of potential outcomes may be 

given as 

 
        

     
        

                                                           

Since only X or Y, not both, can be measured on each individual after the treatment 

assignment has been made, D is unobservable, and so the actual data will come from the values 

on the right of 

 
    
  

    

                         

 

 
 
 

  

  
  
 

    

   

 
 
 

                                

The fact that not all potential outcomes can be observed has been referred to as the 

fundamental problem of causal inference (Holland, 1986).  The values of         may be thought 

of as coming from an infinite bivariate population.  Furthermore, the distribution of D may be 

partially defined by the parameters               and                   
  

  
    

          . The „best estimate‟ of    as defined by Neyman is not available, as made 

clear by      .  However, given random treatment assignment, an unbiased estimate of    can be 

obtained from estimates of both    and    calculated from the observed data             on the 
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right side of       (Rubin, 1974).  Likewise estimates for both   
  and   

  can be calculated from 

data on the right side of      .  Again similar to the soy treatment example,   
  cannot be 

estimated since an important component of   
 ,    , is not estimable.  Thus, despite the fact that 

D is unobservable, the potential outcomes framework provides the basis for characterizing the 

presence and degree of variability in effects across individuals.  As noted by Gadbury (2004), 

treatment heterogeneity within the population is a function of   
 , so that treatment heterogeneity 

exists when    
    and is nonexistent when   

   .  Despite the importance of   
 , it cannot be 

directly estimated due to the afore mentioned fundamental problem of causal inference.  So, even 

though an individual effect can be defined using potential outcomes, the challenge of working 

with individual effects are that “strong and largely untestable assumptions” about    
  need to be 

made (Cox, 1992, p. 296).  Note again that these constraints are not unlike the constraints 

imposed on the imputation models given in          .  One assumption made throughout this 

proposal is that individuals‟ outcomes are not affected by the treatment assigned to other 

individuals, an assumption called non-interference (Cox, 1958). 

Alternatively,    and    may be thought of as coming from a finite population of size N.  

Then          may defined as the finite population average.  Given random assignment, the 

observed average difference equal to         , where    
 

 
   

 
    and    

 

 
   

 
   , is an 

unbiased estimate of   .  Similarly, finite population standard deviations given by    and    can 

be estimated using observed data.  If the finite population is a random sample of the super-

population of D with parameters    and   
 , then if the potential outcomes were observable,    

and   
    

    
          , where     is the finite population correlation between X and Y,  

are unbiased and consistent estimators of    and   
 , respectively. Using only observed data,     
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is not estimable in a finite population for the same reason that     is not estimable using an 

infinite bivariate population model. 

2.2. Subject-Treatment Interaction 

The fact that individuals may interact with particular drug formulations was 

acknowledged by Hwang et al. (1978), a phenomenon they called subject-by-product interaction 

in bioequivalence studies, and more recently called subject-by-formulation interaction (e.g. 

Endrenyi and Tothfolusi, 1998).  More generally, Cox (1992) used the term treatment-by-patient 

interaction and Gadbury et al. (2001) used the term subject-treatment (S-T) interaction to capture 

the idea that treatment heterogeneity exists at the individual level. 

Gadbury et al. (2001) defined a „true‟ individual effect as       and used this to 

delineate assumptions about   
 .   They show, given (X, Y) originate from an infinite bivariate 

normal distribution defined as 

 
  

  
         

  

  
   

  
        

         
                                              

where     is the correlation between X and Y, that   
           

    
           can be 

bound by taking       , and estimating all other parameters from the observed data given in 

     .  Furthermore, they show the probability of an individual receiving a harmful effect, or a 

negative effect, from T, is given by          
   

  
 , and bounded by 

  
   

   
    

       

           
   

   
    

       

                      

Note that the upper bound is achieved when         and the lower bound is achieved when  

      . When       and      , a condition which indicates a constant individual effect 

(Holland, 1986), then         .  Gadbury and Iyer (2000) provide maximum likelihood 
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estimates for the parameters              so that large sample confidence intervals can be 

placed on lower and upper bounds for        using estimates from the observed data.   

 In addition, Gadbury et al. (2001) showed that using a continuous covariate not affected 

by the treatment, say Z, that augments the potential outcomes (X, Y) can be used to reduce the 

overall variability of individual effects   
 , under the assumption that the distribution of D given 

     is normal with conditional mean  

                                                                           

and conditional variance 

    
      

      
                                                                    

    and     in       are the slope coefficients between Z and X and Z and Y, respectively, and 

      in       is the partial correlation of X and Y given Z. The conditional variances,     
  and 

    
  , are allowed to be different across the two treatment groups but are assumed to not depend 

on the value of Z. Coupled with       and      , Gadbury et al. (2001) showed that 

  
             

 
                             

   
   

Therefore, if evidence showed that        ,     
  may be less than   

  making it possible to 

reduce the bounds on        over     .  Thus similar to       the probability of an IQI for 

particular values of    may be bounded by  

  
        

     
      

           

               
        

     
      

           

                    

by letting the partial correlation       be 1 and -1, respectively.   Confidence intervals for the 

bounds on            given in       can be derived using bootstrap samples from the 
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observed data or using asymptotic properties of maximum likelihood estimators (cf. Gadbury et 

al., 2001). 

2.3. Cross-over Designs 

Perhaps the most straightforward design for studying IQI is a cross-over design. We 

illustrate the concepts for a two period two treatment cross-over design, assuming no carry over 

effects but that period effects may vary across individuals.  Since each individual is crossed over 

from one treatment to another after a washout period, an individual treatment effect may seem to 

be observable.  That is, the observed differences are      , for           and where the two 

values      , are observed in different periods. Table 2.1 illustrates an example where    .  

Again, the patients given treatment T are recorded with X and the patients given treatment R are  

 

Observed     Crossover Design 

Observed Responses Treatment Heterogeneity 

Patient 
Time 1 Time 2 True Effect 

Naïve Effect 
X Y X Y                 

1     NA NA     ? ?         

2     NA NA     ? ?         

3     NA NA     ? ?         

4     NA NA     ? ?         

5 NA         NA ? ?         

6 NA         NA ? ?         

7 NA         NA ? ?         

8 NA         NA ? ?         

Table 2.1: 

In this example 8 patients are crossed over between T and R.  The question marks illustrate that the 

evaluation of a „true‟ individual effect is not possible without assumptions.  The naïve effect 

assumes no effect due to the time variable. 
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recorded with Y.  Note that in Time 1 patients 1 through 4 are given T and patients 5 through 8 

are given R and the missing data are recorded with NA.  For Time 2 the treatments are reversed.  

A true check for an IQI would compare the difference between X and Y for each individual 

within each time.  However, since half of the data are missing a direct evaluation of the IQI is 

not possible as indicated by the question marks.  A straightforward, albeit naïve, estimate of the 

an IQI may be obtained from the last column by comparing the response to T and R for each 

individual, but across time periods. The proportion of values that are negative provide an 

estimate of the proportion of IQI present in the population.    

 Note that the observed intra-individual difference in the outcome measurement between 

the two periods in the last column of Table 2.1 inseparably includes the actual effect due to the 

treatment and the effect due to the period in which the outcome to treatment was observed.  

Hence, this column is labeled as the naïve effect since these two contributors cannot be separated 

at the individual level without introducing additional assumptions.  This can be further illustrated  

using the potential outcomes structure introduced in Section 2.1. Potential outcome variables are 

        at time 1 and         at time 2. There are two “true” individual treatment effects given 

by the variables,          at time 1 and          at time 2. In some applications it may 

be    
that is the effect of most interest. Another effect that may be of interest, and the one 

considered here, is the average over the two time periods, denoted as            . Once 

again,         is usually of interest but here we consider the available information to 

estimate                   
    

    
          . 

Assume there is a population model with density               . The joint density of the 

„full data‟ sample of n subjects (i.e., of the sample of potential outcomes) is 

                   
 
   .  Assume that    subjects are assigned to the sequence, TR, where TR 
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implies treatment T at time 1 and treatment R at time 2, and    subjects to the reverse sequence 

of treatments, RT, with        .  The density of observed outcome variables is of the form, 

                              . A large body of literature exists on estimating mean 

treatment effects, mean period effects, carry-over effects, etc. (e.g., Senn 2006a; Yang and 

Stufken 2008).  Mixed-effects models fit to data from a cross-over design with a random subject 

effect may even compute a “subject-treatment interaction variance” (e.g., Hauck et al. 2000; 

Endrenyi and Tothfalusi 1999).  However, this variance computed from observed data may not 

be the same as the variance,   
  above, without certain assumptions. Insight into this is given by 

the correlation matrix of the potential outcomes  

                  

 
 
 
 
 

       

 

      

  

     
      

 

      

      

     
      

 

      

      

       

 

      

   
 
 
 
 

   

Note the observed data only allows for direct estimation of       and      . Thus, in the 

absence of knowledge (or assumptions) regarding the other four correlations, neither   
  nor the 

level of IQI can be directly evaluated using observed data. 

If the Balaam design (Balaam 1968) is used, where some subjects remain on the same 

treatment over the two periods (i.e., TR, RT, TT, and RR sequences), then      
 and      can be 

estimated so that four of the six correlations are directly estimable from observed data, although 

direct estimation of   
   is still not possible.  However, assuming for instance that the correlations 

      

        

 and       

        

 , then   
  becomes estimable making direct estimation of the 

proportion of IQIs possible, with distributional assumptions on D. Without assumptions 

regarding the two nonestimable correlations, mathematical bounds for   
  can be estimated in 
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observed data - making use of the positive definiteness requirement of the four dimensional 

correlation matrix for the full data model.  

Required assumptions for direct estimation of   
  may be more plausible in certain 

applications than assumptions that are required without the multiple period feature of the design. 

As mentioned by others, repeated measures cross-over designs have advantages over single 

period designs for estimating subject-treatment interaction and its consequences (e.g., Senn 

2001). More methodological development is needed to define the required assumptions and 

resulting estimators from different types of cross-over designs, and potential outcomes may be 

the best structure to use when doing this.  

Consequently, cross-over designs can potentially provide more information regarding 

treatment heterogeneity than designs where only a single outcome is observed per individual.  

However, cross-over designs are not always practical to implement in many applications.  For 

example, the designs presented here assume no carry over effects (cf. Brown, 1980).  Other 

conditions often required for crossover designs may be whether the treatment is reversible, 

whether the disease is chronic, whether a four period crossover is practical, and/or whether the 

risk of carry-over can be reasonably achieved (cf. Senn, 2001).  Cross-over designs are not 

further considered here. 

2.4. Qualitative Interactions 

Interaction between subsets, or simply subset interaction (SI), is a form of treatment 

heterogeneity.  This type of treatment heterogeneity has been an important element in the 

discovery of “what treatment is most appropriate for what kinds of patients,” which, according to 

Simon (1982, p. 473) is “the overriding objective of clinical research.”  Thus, the importance of 

methods such as those introduced by Byar and Corle (1977) for selecting covariates, on which to 
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base subsets, becomes apparent.  Generally, SI occurs when the effects of T and/or R change 

based on the subset identifiable by an observable covariate (Milliken and Johnson, 1984, p. 113).  

Previous to Peto (1982) interaction effects were defined only in terms of the magnitude of the 

change over subsets, irrespective of whether the effects of T were greater than the effects of R 

across all subsets.  Peto‟s delineation of SI into two categories, which he termed quantitative if 

the effects of T remain larger than the effects of R across all subsets and qualitative if the most 

effective treatment changes across subsets, made a significant contribution to the study SI.  

Quantitative SI may be thought of as a less extreme form of SI and qualitative SI, a more severe 

form.  Gail and Simon (1985) used the expressions non-crossover interaction and crossover 

interaction as opposed to quantitative and qualitative interaction, respectively, and developed 

tests for each based on large sample theory.  The important contributions of Peto and Gail and 

Simon made possible tests to determine whether a treatment T, which is beneficial on average as 

opposed to R, may be harmful to some patients.  In addition to Gail and Simon, Silvapulle (2001) 

developed a test for QI based on finite sample theory, and Li and Chan (2006) proposed a 

potentially more powerful test than Gail and Simon‟s test for detecting QIs, which they called the 

extended range test. 

Qualitative and quantitative interactions, including their respective tests, can be applied 

to populations that include any number of subsets.  However, to illustrate the difference between 

qualitative and quantitative interactions, suppose there is a population with only two subsets     

and   .  Consider a population in which each individual within a subset is treated with either 

treatment T or control R, and the true mean outcomes to each treatment, within the subsets, are 

given by       
 and       

, for      .  These means, as defined here, refer to the mean response 

if all subjects in a subset were to receive T or R, and so could represent finite subpopulation 
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means. The true mean differences are given by          
       

.  If      , then there is no 

SI, and the population treatment effect is homogenous with respect to the subsets.  Populations in 

which both      and     , or both      and      when 1 2   are considered to have 

a quantitative interaction.  A qualitative interaction (QI) introduced in Chapter 1 is present when 

either      and      , or      and      is true. This was illustrated in a figure by Gail 

and Simon (1985, p 362) that is depicted as Figure 2.1 here.  QIs exist when the point         

lies in quadrants II and IV of Figure 2.1 and quantitative interactions exist when the    and    

pairs are in the I and III quadrants of Figure 2.1, with the exception of the line where    =   .   

 

Figure 2.1: Qualitative vs. Quantitative Interaction 

   and    represent the mean difference between two treatments in subsets 1 and 2, respectively.  

Subset qualitative interaction takes place when    and    occur in quadrants II and IV.  Subset 

quantitative interaction takes place when    and    occur in quadrants I and III, except where 

     , where no interaction occurs between subsets.   
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2.5. The Proportion of Similar Responses 

The proportion of a similar responses (PSR), sometimes referred to as the overlapping 

coefficient (Inman and Bradley, 1989), measures the area of overlap between the probability 

density functions (pdf‟s) of X and Y.  Although the term PSR was not used until 1996 (Rom and 

Hwang, 1996) the characterization of distributional similarities (or differences) as the overlap of 

their respective density curves has been used for more than a century.  According to Inman and 

Bradley (1989), Pearson (1895) used a measurement of non-overlap, which he called “ariel 

deviations,” previous to the development of the Pearson Chi-square goodness-of-fit test.  A paper 

published by Tilton (1937) made important connections between the density overlap 

measurement and the idea of „sigma scores‟ for normal distributions.  Tilton defined a sigma 

score as the difference in the means of the overlapping distributions relative to their common 

standard deviation.  In this sense, there is a deterministic relationship between the percentage of 

overlap and the sigma score.  Cohen (1969) later used the sigma score to determine the „effect 

size‟, or the difference between means in a population with respect to a common standard 

deviation.   

Rom and Hwang (1996) suggested that the density overlap of X and Y may be related to 

individual treatment heterogeneity, and introduced the PSR terminology.  They observed that for 

two normal distributions, the greater the difference between the variances of X and Y, the more 

individual treatment heterogeneity may be present in the population.  The connection between 

the PSR and treatment heterogeneity is that, when treatment variances are unequal, the density 

overlap must be less than 100%.   
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As an illustration, the entire shaded area in Figure 2.2 graphically portrays the PSR of X 

and Y when       and              .  The measurement of overlap is given by 

                                                                              

where                 are the pdf‟s of the outcome variables X and Y to treatments T and R, 

respectively. The calculation of the PSR depends on values of   such that             .  If the 

two distributions are equal,             for all   and the PSR is equal to 1.  If             

for any  , the PSR is equal to 0.  Given that both X and Y follow normal distributions, Inman and 

Bradley (1989) show that for the most general case under the given constraints, which is where 

  
    

 , there are two points, a lower point and an upper point denoted by          , where 

           , so that               and              .  Otherwise,            .  

Furthermore, they show           result from 

    
      

              
     

    
     

  
 

  
   

 
 

  
    

                              

 
 Figure 2.2:  An illustration of the PSR with unequal variances 

The PSR is the shaded area displayed as the overlap between the pdf‟s of two normally 

distributed outcome variables X and Y, where      , which can be calculated using         
Since   

    
 ,             in exactly two places    and   , as referenced by the dotted 

lines below the crossing points of the densities, where     and    can be calculated using       
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Figure 2.2 illustrates the case for        and   
    

 , indicating treatment T is beneficial on 

average.  The dashed vertical lines in Figure 2.2 show the points of equality directly over the 

points          .  The PSR is equal to the shaded area represented by the overlap between       

and       and, in addition to      , under the distributional assumptions that X and Y follow 

normal distributions, the PSR may be calculated by adding the three probabilities in equation 

       given here  

                                                                                                                  

and illustrated in Figure 2.2 by adding the three shaded regions separated by the dotted lines.  

When   
    

    , there is exactly one point of equality denoted by    
     

 
 , where 

              and the 

        
        

  
                                                    

Figure 2.3 illustrates this case. 

 

 Figure 2.3: An illustration of the PSR with equal variances 

The PSR is the shaded area displayed as the overlap between the pdf’s of the normally distributed outcome 

variables X and Y, where      .  Since   
    

 ,              , and otherwise            .  The PSR 

can be calculated using        and    can be found by taking the average of          . 
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Stine and Heyse (2001) propose a kernel density estimate of the PSR as an alternative to 

using normal densities.  The kernel density estimates for       and       take on the form  

    
    

 

  
 

 

  
   

    

  
  

  

   

          
    

 

  
 

 

  
   

    
  

  

  

   

                    

respectively, where   is the bandwidth,   is the sample size, and      is the kernel.  Subscripts 

are used to indicate that these values may be unique to the particular density of X or Y.   The PSR 

is then approximated numerically by   

              
        

                                                          

Typically, the bandwidth is the important parameter in a kernel density estimate (cf. 

Sheather, 2004), and simulations performed by Stine and Heyse show this holds with kernel 

density estimates of the PSR.  Intuitively, the area of overlap shrinks as the bandwidth shrinks.  

However, Stine and Heyse show that when the data are normal or mixed normal, the normal 

reference bandwidth given as              , where   is estimated from the data, produces 

kernel estimates of the PSR comparable to PSR estimates generated from maximum likelihood 

estimation that assumes normal distributions.  Thus they suggest using    or a multiple of    

when the data are considered to be close to normal. 

Since the overlap of the density curves provides a natural way to think about individual 

effects, the PSR has been used as a proxy for the proportion of IQIs in a population given 

treatments T and R (see Rom and Hwang, 1996; Stine and Heyse, 2001).   Gastwirth (1975) 

noted that the maximum values for the PSR and the              , which are 1 and 0.5, 

respectively, have the same interpretation.  Additionally, the overlap seems to suggest that as the 

PSR increases, the potential for a value from       to be less than a value from       also 
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increases.  As such, the PSR appears to be a sensible measurement to study IQIs.  Furthermore, 

they enjoy the added benefit of using either parametric or nonparametric kernel density 

estimation of the two densities (e.g. Stine and Heyse, 2001).  

However, in an assessment of the PSR, Senn (2006, pp. 3944-3945) points out, “If every 

patient benefits by having his or her outcome improved by the same amount [under treatment T] 

compared to what it would have been [under treatment R], then 100 percent of the patients have 

benefited” (brackets added to provide context).   Thus Senn identifies what is clear using the soy 

treatment example (see Table 1.1 (b)), which is, if D is a constant, then the number of IQIs in a 

population would always be equal to 0, even when the      .  Furthermore, Gastwirth (1975) 

questioned the utility of the PSR because values of   from either       or       that are in the 

interval         are free to move within the interval so long as    and    remain 

unchanged.  Inman and Bradley (1989, p.3871) further identified the PSR’s weakness by stating 

that “The magnitude of the overlap in itself does not indicate where the common probability 

mass is located.”   This concern was echoed by Stine and Heyse (p. 232) in which they concede 

that the PSR “Does not consider where differences occur.  If these locations are important, one 

might be better served by measuring the overlap differently.”  This is an important point since 

treatment heterogeneity is a function of the variance of    .  Even under the normality 

assumption, the PSR is limited as a measurement treatment heterogeneity since the PSR has no 

inherit mechanism for evaluating the correlation between X and Y. It uses only the marginal 

densities.  Thus, despite the apparent usefulness of the PSR, its utility cannot be fully realized for 

studying individual treatment heterogeneity or, more particularly IQIs, until a clear probabilistic 

meaning can be given for the area of the overlap.   
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Chapter 3 - The Probability of an IQI and the PSR 

The bulk of the ideas and methods presented in the rest of this dissertation constitute new 

research.  Those that are not new are only given to provide context.  The main ideas and results 

presented in Chapter 3 have been packaged in a paper that is being revised for The American 

Statistician (Poulson, Gadbury, and Allison, 2010).  Concepts discussed in Chapters 1 and 2 are 

brought together under the potential outcomes framework in Chapters 3, 4, and 5.  Table 3.1 

provides a quick reference to some terms, their definitions, and their abbreviations that have been 

given in previous chapters, and also others that will yet be developed and used throughout the 

remainder of this dissertation.  

 

Term Abbreviation Definition 

Treatment Heterogeneity n/a 
When the effect of T with respect to R changes over 

either subsets or individuals in a population 

Subset Interaction SI 
When the average effects of T with respect to R 

changes based on the group. 

Subset Qualitative 

Interaction 
QI 

When the most effective average response to treatment 

T or R depends on the subset. 

Subset Quantitative 

Interaction 
Non-QI 

When there is SI, but T remains the most effective 

treatment over all subsets. 

Subject-Treatment 

Interaction 
S-T Interaction 

When the effect of T with respect to R changes based 

on the individual. 

Individual Qualitative 

Interaction 
IQI 

When the most effective response to treatment T or R 

depends on the individual. 

Individual Quantitative 

Interaction 
Non-IQI 

When there is S-T Interaction, but T remains the most 

effective treatment over all individuals. 

Probability of an Individual 

Qualitative Interaction 
PIQI 

The probability that a selected individual in the 

population or subpopulation will respond opposite to 

the response suggested by the average effects. 

Table 3.1: Important terms, abbreviations, and definitions 
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3.1. Subset and Individual Qualitative Interaction 

The study of treatment heterogeneity at the individual level is synonymous with S-T 

interaction, which is characterized by   
 .  As outlined in Sections 1.1 and 2.2, S-T interaction 

exists when   
   , and is non-existent with   

   .  However, a component-wise delineation 

of S-T interaction helps to formulate the components of   
  as the proportion explained by SI and 

the proportion explained by S-T interaction.   Recall from Section 2.4 that SI may include QI 

and/or quantitative interaction (non-QI), with QI being the more severe type of SI.  Figure 2.1 

was used to provide a visual illustration of the differences between QI and non-QI.  Recall from 

Section 2.4 that, given a population of individual units and            groups, there are 

subsets denoted            in which each individual in a subset is given either treatment T or R.  

Thus, each subset is comprised of two means       
 and       

, and the differences are 

represented by          
       

.  Given two subsets,      , QI exists when the point 

        lies in quadrants II and IV of Figure 2.1 and non-QI exists when the    and    pairs are 

in the I and III quadrants of Figure 2.1, with the exception of the line where    =   .   

S-T interaction exists when the effects of T with respect to R change based on the 

individual.  Similar to SI, S-T interaction may include both individual qualitative interaction 

(IQI) and/or individual quantitative interaction (non-IQI), where IQI is the more severe form of 

S-T interaction.  Describing these types of interactions at the level of individuals is analogous to 

the description of SI except each subset contains only one individual . Thus, the mean outcomes 

to treatments T and R given in Section 2.4 for subset   given as       
 and       

 are now 

replaced by potential outcomes for the     individual,        , where    is the    outcome to 

treatment T and    the     outcome to treatment R.  These individual effects are unobservable 

because either   or  , not both, can be measured on each individual after the treatment 
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assignment. Utilizing the potential outcome framework, the S-T interaction can be defined 

similarly to SI by letting          replace   .  Thus, similar to QI, IQI exists when any two 

individuals in the population have treatment effects in opposite directions. Formally, IQI is 

present when if for any   and         and       or      and      .  Furthermore, non-

IQI exists when       , but either       or      over all  .  Again, by restricting       

as in Section 2.4, Figure 2.1 can be used to display the components of S-T interaction. By 

letting          and          be the individual treatment effects for two individuals, 

the IQI is illustrated by the same quadrants for a QI in Figure 2.1 with the axes labels replaced by 

   and   . Quadrants and I and III (except for the “constant effect” line where      ) indicate 

S-T interaction but would not be an IQI.  Now that each component of treatment heterogeneity 

has been defined, Figure 3.1 illustrates how treatment heterogeneity may be partitioned within a 

population.   

 

 

 

Figure 3.1: Delineation of treatment heterogeneity 
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3.2. IQI Bounds Based on the PIQI 

For subsets, QIs are of particular interest because treatments T and R have effects in 

opposite directions across subsets.  Likewise, IQI tends to be of particular interest with respect to 

individuals since T with respect to R have opposite effects across individuals.  For clarity of 

illustration, and without loss of generality, it will be assumed that the average outcome from T is 

larger than the average outcome from R so that      .  Furthermore, let both X and Y follow a 

bivariate normal distribution and let   
    , and    

       for the remainder of this chapter.  

Thus,            and   
                , since   

    
    

           

               .  Consequently, if the bivariate normal model given in       is assumed, 

the proportion of the population experiencing a negative effect of treatment T with respect to R 

defined by Gadbury (2004) can now be defined as the probability of an individual qualitative 

interaction (PIQI) given by 

              
   

  
                                                       

However, since X and Y are potential outcomes, the PIQI cannot be calculated due to     being 

inestimable.  The impact of choosing a suitable value for     may be illustrated graphically by a 

return to the soy treatment example introduced in Chapter 1.  Figure 3.2 panel (a) is duplication 

of Figure 1.1.  Recall that the       pairs that fall in the shaded region represent individuals 

that exhibit an IQI.  However, despite the 16 observed values, the only value that can be plotted 

is the mean pair                        indicated with the solid „bullet.‟  Thus without 

assumptions there would be no way of estimating the PIQI despite its form given in      .  

Specifying      , assuming                      and   
    

    
     , one may think 
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of the PIQI as random draws from this bivariate distribution.  That is, the probability of a random 

      pair falling in the shaded region constitutes the PIQI for this model specification.   

 
 

 

 

 

 

 

 

However, the PIQI is dependent on    .  If X and Y have a strong inverse relationship 

such as          , then the PIQI may be rather large as can be seen by the proportion of the 

Figure 3.2: A PIQI illustration using soy data 

This figure illustrates the development of the PIQI from the perspective of bivariate normal 

distribution.  The PIQI is the probability of an        being drawn from the bivariate distributions 

of      .  The shape of the distribution of      , and therefore the PIQI, is dependent upon 

the unidentifiable value of    . 
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bivariate density in the shaded region shown in Figure 3.2 panel (b).  Even if      , panel (c) 

shows that the PIQI may be rather larger than expected based on the area of the       density 

that falls in the shaded region.  In fact, even under          as panel (d) shows, the        

(                   computed from      ). 

The value of     that maximizes the PIQI is        under      , which means that 

      is a degenerate bivariate distribution and the        pairs fall on the line defined a 

slope of    that passes through the point                     .  Likewise, the PIQI is 

minimized when      .  Consequently, similar to      , minimum and maximum bounds for 

the PIQI can be expressed by  

                      
     

         
                                    

and  

                       
     

         
                                 

respectively.  As shown in       and       the calculation of the PIQI is a function of    , as 

expected, and as     becomes larger the PIQI gets smaller. Figure 3.3 approaches the PIQI from 

the univariate distribution of D rather than from the bivariate distribution of X and Y shown in 

Figure 3.2.  Figure 3.3 panel (a) displays the marginal distributions of X and Y for the case where 

                
    

   .  Their respective overlap is represented by the shaded area.  

Two potential distributions of       are given in panels (b) and (c) of Figure 3.3 for the 

different values of     equal to -1 and 0.5, respectively.  These two graphs demonstrate how the 

PIQI gets smaller as     gets larger from the perspective of the distribution of D. Note that panel 

(b) gives                   and represents the maximum value of       .  Not shown is 

the case for      , since in this particular case             
    

   so that the distribution of 
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D is degenerate and the       .  Panel (d) of Figure 3.3 shows that the PIQI, depicted with the 

dashed line, is a strictly decreasing function of    .  For reference, the solid line in panel (d) is 

the value of the ½ PSR shown in panel (a), which is not a function of    . 

 
 

 

Figure 3.3: The PSR and the PIQI as areas in a density 

Panel (a) gives the marginal densities of the normally distributed outcome variables X and Y 

where     ,      ,   
    

   and      .  The PSR is the shaded area.  Since 

      is unobservable, panels (b) and (c) illustrate potential densities of D under different 

correlations.  Panel (d) illustrates that the PIQI is a strictly decreasing function of    . 
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3.3. PSR Reparameterization 

The PSR was introduced in Section 2.5 and first illustrated in Figure 2.2 where   
    

 , 

which now implies that     .  As stated in Section 2.5, the PSR calculated from       has been 

used as a method for assessing S-T interaction.  Figure 3.2 illustrates why there is controversy 

over the PSR’s interpretation as a measure for treatment heterogeneity.  Panel (d) of Figure 3.3 

illustrates that the PIQI is a strictly decreasing function of    , and hence,   
 .  This should be 

expected since the PIQI is one measurement of treatment heterogeneity.  Figure 3.3 (d) also 

shows that ½ PSR, depicted with the solid line, is not a function of interindividual correlation 

   .  So even though the PIQI decreased from 0.31 to 0.16 from panels (b) to (c), ½ PSR remains 

a constant 0.31.  However, some connections between the PSR and the PIQI will show that the 

PSR is still a useful quantity in the area of treatment heterogeneity. 

In order to establish a connection between the PSR and the PIQI some important features 

of the PSR given in Section 2.5 as       are reparameterized. The reparameterization criteria was 

given in the previous section as      ,   
    , and    

      . Thus, under the normal 

model, when      there will be exactly two finite points of equality,       with       , 

where               and              .  As shown in the appendix (see A.3.1), under the 

reparameterization, both    and     now result from  

                
    

                         

      
                          

which provides the same solutions as      .  Again, under normality the PSR can be calculated 

by adding the three probabilities in       , as illustrated in Figure 2.2 by summing over the three 

areas separated by the dotted lines. 
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As a working example, suppose Figure 2.2 was generated from               

   and     .  Then based on      ,           and        , and from        the PSR is 

equal to 0.61.  Furthermore, to see how the PSR responds to changes over  , let      as in 

Figure 2.3.  Then             at a single value determined by    
     

 
.  The calculation of 

the PSR is then simplified to  

                        
     

  
                                   

Leaving all other parameters unchanged        and the          .  So given          

        and     , the entire shaded area in Figure 2.3 would be equal to 0.617. 

3.4. Connections Between the PSR and the PIQI 

 Proposition 3.1  

Given the distributions assigned earlier (bivariate normality of X and Y under      ) and the 

reparameterization in Section 3.2, when   
    

               

        
   

 
                                                                        

Proof:  

From       

          
     

         
  

      
     

  
  

    
   

 
            

Proposition 3.1 follows intuitively from        since the calculation of the         is 

calculated under the assumption that      , and the PSR makes no distinction on which mean 

is greater.  Furthermore, proposition 3.1 defines not only the constraints under which the PSR 

can be used to assign probabilities, but also gives probabilistic meaning to the PSR with respect 
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to individual effects; an issue heretofore not resolved.  Thus, using Figure 3.3, which displays the 

          given                   and       in panel (a), additionally shows the 

             
     

 
       displayed in panel (b). 

The following results are needed for proposition 2, which will establish a more general 

relationship between the PSR and the PIQI.  The results are given for     under      , but 

similar results can be obtained for    . 

 

Result 3.1: Given       , the sample space for the       pairs is restricted to the line  

           with probability one, where              and       .   

Proof:  

   
       

  
  

     
 

  
    

and 

                         

by definition.   

 

Result 3.2: Given        and setting    equal to   and denoting their common value by     

then, 

            
      

   
 

  and   

           

Proof of     follows directly from result 1 by substituting     for both   and   and solving for 

     Proof of           is given in the appendix (see A.3.2). 

 

Result 3.3:                   
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Proof:  

                
         

         
     

     

        
                                                                   

                                    
     

      
                                                                                      

                    
      

  
    

      
      

   

 
    

              

      
                          

                                   
     

      
                                                                                          

                      
      

  
      

      
     

   

 
      

             

      
   

                                      
     

      
    

        

      
                                         

    
     

      
                                                     

A graphical illustration of results 3.1 through 3.3 is given in Figure 3.4.  In particular note 

the representation of     from result 3.2, and the equality from result 3 in which the          

given as the lighter region to the left of     is equal to the          displayed as the darker 

shaded region on the right of    .  

 

 
Figure 3.4: Application of result 3.3 

The pdf’s of the normally distributed outcome variables X and Y are displayed, where       and     

so that   
    

 .  The point     is calculated from result 2, under the constraint that       , which 

results in the equality of the two shaded regions as given in result 3 in which                  . 
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Result 3.4: Given       and    ,   

                        and                   

Proof:  

Since     ,             for        , from result 3.3            .  Therefore,  

            for         , so                        . 

Since      ,             for       .  Therefore,                .   

 

 Proposition 3.2  

Given      , proposition 1, results 3.1 through 3.4, and     

        
   

 
                                                                  

Proof: Let     , then 

                                                                                                                            

                                                                        

                                  

                                                      

                             

                                                                            

Then, by result 3.4 and since     

        
   

 
                                                                                                               

Proof for      is similar.  Thus, from propositions 3.1 and 3.2,         
   

 
 when   

     . 

Figure 3.5 illustrates result 3.4.  Note that     so that       as in Figure 3.4.  The 

lighter shade is equal to the PSR, while the darker region is the area in excess of           

after subtracting the PSR.  Figure 3.6 illustrates propositions 3.1 and 3.2 from an alternative 

perspective.   Limiting   over the range      , the dashed line in Figure 3.6 represents the 

        and the solid line represents ½ PSR.  From this perspective it is seen that the         is 

an upper bound for ½ PSR.   
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A return to the working example further illustrates the concepts of propositions 3.1 and 

3.2 and Figures 3.4 through 3.6, where                  and     .  Recall that 

        ,          , and             .  As a consequence of result 3.3 is that 

                              .  Note then that the darker area in Figure 3.4 is 

equal to                             .  Furthermore, it can be seen that the 

difference between the              and             at     in Figure 3.5 is equal to 

   

 
 

    

 
       .  Note this difference gets smaller as   gets closer to 1 and disappears 

entirely as illustrated with the dotted line over     in Figure 3.6.      

Figure 3.5: Illustration of proposition 3.2  

The lighter shade is equal to the PSR and the darker shade is equal              .  As   

gets close to 1, the darker shade will go to zero.  Otherwise, the darker shade will be greater 

than zero. 

 



42 

 
 

 

 

 

 

 

 

3.5. Additional PSR/IQI Connections  

3.5.1. Expansion of the PSR as an Upper Bound 

Made clear from Figure 3.6, the         is an upper bound for ½ PSR.  This occurs 

when    .  But what is the relationship between the PIQI and the PSR more generally?  For 

example, note from Figure 3.3 panel (a) that the ½ PSR is an upper bound for the PIQI.  

Furthermore, since the PSR is observable, while the PIQI requires a value for     , 

additional connections between the PSR and the PIQI other than the         may prove 

useful.  Presented here are additional circumstances under which ½ PSR may be employed as a 

measurement for the PIQI, other than the case where   
    

  and       .   

Figure 3.6: The PIQI and the PSR as functions of k 

This figure illustrates propositions 3.1 and 3.2 in which the         shown as the dashed line is 

an upper bound for ½PSR shown as the solid line over   from 0 to 3.  The only point of equality 

is at     (see proposition 3.1) as shown with the vertical dotted line.  In this illustration 

         , and     . 
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As seen in Figure 3.6, the PIQI and the PSR are both functions of  .  Also seen in Figure 

3.3 panel (d) the PIQI is a function of    , while the PSR is not (refer to       and       ).  So 

for a fixed   there exists a     for which          
     .  Since     would be constrained by 

 , this value would be denoted by       .  Furthermore, since          
 is a strictly decreasing 

function of    , if it were determined, say a priori, that              , then  

          
                                                                            

would be an upper bound to the PIQI.  In which case, ½ PSR may be used to calculate and 

display the upper bound for the PIQI even though    . The calculation of        is the focus of 

proposition 3.3 given next. 

 Proposition 3.3  

Given      ,              , and     , if       holds, then 

       

 
     

       
   
  

 

 

     

   
                                                         

Proof:  

          
    

   

 
  

 

 
     

                

  

Thus, 

    
   

 
  

     

               

                                                    

Then, solving for        in        yields the result.   

Of course, when              and             
                   . 

Caution should be used when specifying any value of       , since the potential 

outcomes framework makes it clear that no observable data will be available for supporting 
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         .  However, given a priori knowledge of    , certain values of        may be 

reasonable. For example, since     is the correlation between X and Y on the same individual, 

      may be plausible in some situations.  In our working example, where          

         and     ,             .  Thus, given a priori that             ,          
   

      
    

 
       may be used to specify and display the upper bound on the PIQI as 

opposed to             .  Due to the seemingly large value of              in this 

example is that        is a function of         .  Here      since      and     , 

but if      and     , then             .  Working with different values for     has the 

same appeal here as it does with the imputation model introduced in Chapter 1 with the soy 

treatment example.  Generating imputations for given           would have the same result 

as suggesting that ½ the PSR is the upper bound for the PIQI.  Thus an estimate for the 

proportion of IQIs in the population would be approximately equal to ½ PSR. 

3.5.2. Utilization of the PIQI Lower Bound 

An argument can be made that the lower bound for the PIQI, which has been denoted and 

defined as         in       is at least as important as the         since the         offers only 

the “potential” for the existence of IQI within the population.  Whereas, if the          , 

then IQI exists.  Although this work does not draw any connections between the         and the 

PSR, an important result about the         exists shown by way of propositions 3.4 and 3.5 

given here.  First, note that similar to results 3.1 and 3.2 that fixing       setting    equal to   

denoting their common value by   , then 
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 Proposition 3.4 

Given       and         

                  
                   

Proof: For     

               
         

         
     

     

        
                                    

      
     

      
                                                    

                     
     

  
      

      

      
   

 
                               

                    
              

      
      

     

      
  

     
     

      
                                                      

                      
     

  
      

      

     
   

  
                                 

     
              

       
                          

                                    
        

       
      

     

      
                                        

    
     

      
                                                          

Note that since    ,         , which gives the results.    

A similar result holds for    . 

 Proposition 3.5 

Given        and    , 

          

Proof: 

          if and only if   
   .  When    ,   

   .    
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The importance of these results are that when              ,           and can 

be calculated using either       or proposition 3.4.  Figure 3.7 illustrates result 3.5 and 

propositions 3.4 and 3.5 by way of our working example in which               

   and     .  The dashed vertical line over 2 in panel (a) indicates     .  Consequently, 

                  
                     , which can be seen from the 

shaded areas of the densities for X, Y, and D shown in panels (b), (c), and (d), respectively of 

Figure 3.7.  Note that despite the different shapes, the areas are equal.  The interpretation is that a 

minimum of 16 percent of the individuals in the population will do better on the control than on 

the treatment even though          .  Alternatively expressed, the proportion of 

individuals that will exhibit an IQI in the population is 0.16.  Combining this information with 

the calculation of the              from Section 3.4, the bounds for the PIQI are (0.16, 0.37), 

which can be calculated from      and       . 



47 

 

 
 

 

 

 

 

 

 

3.6. Connections between SI and S-T Interaction 

So far it has been shown that          
  contributes to the PIQI, and the components 

of S-T interaction as either IQI or non-IQI have been identified.  Furthermore, the conditions 

Figure 3.7: Illustration of minimum PIQI 
This figure illustrates an example of result 3.5 and propositions 3.4 and 3.5 in the particular case 

of where     ,     ,  and    .  The densities of the normal outcome variables X and Y are 

displayed in panel (a).  The vertical dashed line is over the value      found using result 3.5.  

Panels (b), (c), and (d) show the marginal densities of X, Y, and D, respectively.  The shaded 

areas in each of these graphs are equal, illustrating proposition 3.4. 
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under which the         may be displayed as the PSR have been given.  However, information 

about SI, and its components, which include QI and non-QI, has not been considered.  Although 

it is true that the amount of S-T interaction does not change across the entire population, some 

S-T interaction may be explained by SI.  In fact, since the study of SI presupposes a grouping 

variable and some degree of homogeneity of treatment response within groups, with SI then 

explained by differences in treatment response across groups,   
  may be reduced within subsets.  

As such, in this section the degree to which SI contributes to   
  in hopes of reducing the PIQI 

within subsets is investigated.   

3.6.1. Subset and Individual Qualitative Interaction 

Recall from Section 3.1 in which for          , the number of subsets,          
 

      
 represents the average difference between the treatment groups in subset  , which can be 

estimated from observed data and, thus, some evaluation of QI made from the data by detecting 

situations where certain             , differ in sign. An IQI cannot be directly evaluated using 

observed data because the individual effects,   ,        , are not observable in the data.  

However, proposition 3.6, presented next, and the observations that follow establish some 

additional connections between QI and IQI. 

 Proposition 6 

If there is QI in the population, then there is IQI in the population. 

 

Proof: 

Assume a population with subsets    for          .  If QI is present, then there is a      

and        for some   and   .  Because means are defined as averages with respect to a 

population distribution, there must be at least one     individual in group   such that       and 

at least one    individual in group    such that        .  
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Corollary 3.1  If there is no IQI in the population, then there is no QI in the population. 

The proof follows from proposition 6. 

Additional Observations: 

1. The subsets may be thought of as delineated by a grouping variable, say Z. Thus a SI is 

a consequence of a treatment by Z interaction, an interaction that can be estimated in 

observed data with the appropriate design. Within levels of Z (i.e., within subsets), there 

may be an S-T interaction that cannot be directly evaluated in observed data. 

 

2. If there is no QI in a population, there still may be IQI within subsets of the population. 

 

3. If there is a constant individual treatment effect (Holland, 1986) within each subset, 

then an IQI is explained by subset interaction in the form of a QI and/or non-QI.  

Simple diagnostics are available to evaluate the bounds on treatment heterogeneity 

within subsets (including the constant effect assumption), and these are described in a 

later sub-section.  

3.6.2. The Conditional PSR 

So that the relationship established above between the PSR and the PIQI may be utilized 

within subsets, a new quantity termed the conditional PSR is introduced here, which is defined 

using the conditional distributions of X and Y given the observed covariate      so that 

                  
           

                                                             

To simplify notation, let      be denoted simply as    for the remainder of this 

chapter.  The conditional       has all the advantages of the marginal PSR, but at a particular 

value of   , thus displaying the overlap of conditional distribution at that value of Z.  As with the 

PSR, the relationship between       and        (introduced in the next section) depends on 

whether     
      

  , which may be reparameterized as     
     

     
 , where the conditional 
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   is given by   
 .  Note that when Z is continuous, for the constraint that   

    requires that 

      
           

  , since     
          

   and     
            

  .  Thus, 

specification of    

    requires that  

      
       

 

     
     

This constraint on   means that for the conditional variances to be equal          
      

    there 

is a constraint on how different the marginal variances    
        

   can be, and that difference is 

a function of the correlation parameters     and    . 

3.6.3. The Conditional PIQI and Continuous Covariates 

The development and definition of the conditional PIQI depends on the type of covariate; 

continuous or categorical.  First, a continuous covariate Z that augments potential outcomes 

     , as in Gadbury, Iyer, and Allison  (2001), is considered in this section, where the 

distribution of D given    is assumed to be normal with conditional mean  

                                                                          

and conditional variance, 

    
      

      
                                                                     

    and     in        are the slope coefficients between Z and X and Z and Y, respectively, and 

      in        is the partial correlation of X and Y given Z. The conditional variances,     
  and 

    
  , are allowed to be different across the two treatment groups but are assumed to not depend 

on the value of Z. The        is the conditional probability of IQI formed within the subset (or 

subpopulation) defined by the covariate Z.  Similar to equations       and       
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by letting the partial correlation       be 1 and -1, respectively.  Since,       could be greater 

than    when        , and both     
    

  and     
    

 , it is possible to identify subsets of 

the population for which       
           .    In fact, if   

  is completely determined by SI, 

then   
  within subsets denoted by     

  will be 0 so that the       
    will be 0.  This fact follows 

from observations 2 and 3 in Section 3.6.1. 

 

 Proposition 3.7 

Given       the conditional distributions      
 and      

, and a finite value of   , if   
   , 

then  

      
    

     

 
                                                                

The proof follows directly from the proofs of propositions 3.1 and 3.2 replacing the marginal 

means and variances of X, Y, and Z with their conditional counterparts.  Proposition 3.7 shows 

that the relationship between the       
    and the       holds over subsets of the population.  

Gadbury et al. (2001) showed that,  

  
             

 
                             

   
  

                                      
           

   
                                                                                    

so   
  is comprised of two components; those that can be attributed to SI and those that can be 

attributed to S-T interaction, within subsets. If        ,    
  is entirely a function of S-T 

interaction, then       
           .  However, if          

   , then both       
    

        and           for selected values of   .   The quantity,          
   

 , can be 
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estimated using the observed data, which serves as a diagnostic tool for detecting the presence 

and the degree of SI within a population as suggested by observation 3 in Section 3.6. 

Although the component wise delineation of   
  when Z is continuous is the product of 

previous work, these results provide the context for the next section, which provides a 

delineation of   
  when Z is categorical.   

3.6.4. The Conditional PIQI and Categorical Covariates 

The study of subset interaction presupposes a grouping variable and some degree of 

homogeneity of treatment response within groups, with QI then explained by differences in 

treatment response across groups. One reason for subset analysis then is to identify “which 

treatment is best for which kinds of patients,” (Byar and Corle 1997, p. 455). Standard methods 

seek to find such subsets through an investigation of interaction effects (Byar and Corle 1977; 

Simon 1982) or a direct test for a qualitative interaction (Gail and Simon 1985; Silvapulle 2001; 

Li and Chan 2006).  In each case the interaction is detectable by changes in the mean response 

across subsets.  This section presents the PIQI as a way to not only help identify such subsets, but 

also help to assess remaining treatment heterogeneity and its possible consequences within 

subsets. Using potential outcomes, the reduction in   
  given the grouping variable is shown to 

be proportional to the sum of squares used to test for a subset-treatment interaction.  Thus an 

effective grouping variable not only identifies sensitive subsets, but also reduces the PIQI within 

at least one subset. 

Suppose Z is a categorical covariate with   levels.  Only balanced designs are considered 

so that there are   units per group for a total of    experimental units.  Prior to grouping by Z, 

individual treatment effects are rewritten as,         , where          ,          , 
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and           , and    and    are the population averages for X and Y, respectively, as 

before.  So, 

                                                                                   

where  

 
   

   
         

 
 
   

  
        

         
                                                      

The variance parameters in       , are those used in section 2 for   
 . Now assume that a 

random sample of potential outcomes        ,           , are generated from the above 

population with parameters denoted above in          . We refer to this sample as a finite 

population because all potential outcomes are not observable post treatment assignment (i.e., 

only X or Y is observable for an individual).  Let     be the finite population correlation of X and 

Y and         be the residuals from a model fitted to potential outcomes data of the form in 

       . Then the finite population variance of D may be defined by 

                      
  

   

    
 

          
   

   

    
    

                           
          

   
   

    
 

          
   

   

    
     

           
 
          

   
   

  
   

    
   

where     and     are given by 
 

  
   

  
    and 

 

  
   

  
   , respectively.    If the potential outcomes 

were observable,   
  would be an unbiased and consistent estimator for   

  discussed in section 2.  

For a potential outcomes model that includes Z, let                 and            

    , where                    , and    
 and    

 represent the effect of subset   on 

outcomes X and Y so that             now gives  

                                                                          

where 
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and       is the partial correlation of X and Y given Z and     
  and     

  are conditional 

variances, assumed for now to be the same across levels of Z but allowed to be different across 

treatment groups within levels of Z.  The residual sum of squares for this “full” model that 

includes Z, fit to the    , are given by  

       

 

   

            
 

 

   

   

 

   

     
 

 

   

   

 

   

     
     

 

   

     
 

 

   

 

   

    
  

where               and               and where      is the mean of potential outcome values 

of X in the     group and similarly for     . The expression can then be used to generate 

    
  

  
 
        

  
   

      
 

  
 
        

  
   

      
 

   
 
            

  
   

      
 

       
      

                                                                                             

the conditional finite population variance (see appendix A.3.3) .  A comparison of the      and 

the SSE for the model given in           provides for the following proposition as shown in 

A.3.4 of the appendix: 

 Proposition 3.8 

Given            

    

      
  

      
  

       
    

  
   

      
                                           

where     
 is the finite population average of the   true individual treatment effects within the     

group of Z , given by     
 

 

 
    

 
   , and,    

 

  
      

 
   

 
            shows that the 

components of   
  (after scaling for a degrees of freedom adjustment) include both S-T 
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interaction within subsets specified by     
  and SI as a function of       

    
  

   . Thus when 

      
    

  
     , both the mean treatment effect and the PIQI within subsets varies across 

the subsets.  In the extreme case that     
   , the finite population S-T interaction is completely 

explained by the interaction across subsets, which indicates a constant individual effect of 

treatment T relative to treatment R within subsets.  In the other extreme that     
    

 , then Z is 

not useful for predicting subsets of individuals who may respond successfully to one treatment 

over the other (i.e., Z does not explain any S-T interaction that may be present in a population).  

A large SI implies, as expected, that the remaining amount of S-T interaction within groups (i.e., 

remaining unexplainable variance) is reduced by the grouping variable.   

Although      cannot be observed, a post treatment assignment estimate for the second 

term in       , 
       

    
  

   

      
, is available using observable data. For convenience, assume the 

first  
 

 
  units within each subset were assigned to treatment T and the second  

 

 
  units in each 

subset were assigned treatment R.  Observable statistics are      
 

 
    

   
   ,      

 

 
    

 
  

 

 
  

,  

     
 

  
     

   
   

 
   , and      

 

  
     

 
  

 

 
  

 
   .  An estimate for 

       
    

  
   

      
 is  

 
 
                          

  
   

  
 
    

                                                         

which is a scalar of the usual sum of squares for the SI term in a     factorial analysis of 

variance computation with 
 

 
 observations for each treatment group combination (see appendix 

A.3.5). Consequently, an F-test for the contribution of the interaction term as given in a standard 
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ANOVA table for such a model may not only be used to diagnose the degree of SI, but also 

provides evidence that     
  may be less than   

 , and hence,     
    

 .   

    
 , the first term in       , may be used to evaluate the PIQI within groups.  Given Z is 

an effective grouping variable, at least one group will have a smaller PIQI than the PIQI across 

all levels of Z. However, the counterfactual aspect of potential outcomes still prohibits direct 

evaluation of this term, but it is bounded by two quantities that can be evaluated using observed 

data. Bounds for the individual effect variance within subsets are given by 

     
      

  
 
     

       
      

  
 
 

as a result of taking         , but     
  and     

  cannot be calculated from observed data.  

However, estimates 

    
   

            
    

   
 
   

  
 

 
   

                                                                       

and 

    
   

            
  

  
 
 
  

 
   

  
 

 
   

                                                                   

can be calculated from observed data (again assuming that the first 
 

 
 observed units were 

assigned treatment T and the last 
 

 
 observed units were assigned treatment R).   

Estimating bounds for the PIQI requires distributional assumptions on the individual 

treatment effects.  If           
     

          , then bounds for the PIQI at a given     
  

are given as 
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Estimates for the parameters in these bounds,     
,     

 , and     
  , are given by          ,     

 , 

and      
 , respectively.  We also note that one can estimate     

  and     
  separately within each 

group with      

  and      

 , respectively, as opposed to “pooling” across groups as given by 

         .  This approach is equivalent to conducting a separate analysis within each subset.  As 

a result, it is possible that the bounds for       
 vary widely across subsets, with some subsets 

exhibiting the plausibility of more S-T interaction than others. A significant degree of SI is 

analogous to a significant F-test in a one-way ANOVA.  Once the significance is discovered, a 

search among pair-wise comparisons will reveal which means are statistically different.  

Although in a search for IQIs, a large SI does not necessarily mean a high degree of IQI in the 

population will be explained by SI, but only the potential for this to be the case.  A check for IQI 

across subsets will reveal the degree of IQI explained by SI.  Furthermore, if the SI interaction is 

not significant, then it would not be expected that the amount of IQI within subsets would be 

significantly reduced. 

3.7. Soy Treatment Trial Follow-up 

The soy treatment study published by Allison et al. (2003) was used in Chapter 1 as an 

introduction to the idea of analyzing IQIs within a population as an addition to standard tests.  

Although the full data were not given, it was reported that significant reductions in both average 

cholesterol levels and weight were detected for the soy treatment groups over the control groups.  

Recall that the estimated proportion of IQI based on the 16 individuals used in the example was 

0.31, which is now referred to as the        .  Furthermore, if   is equal to 1, then ½PSR is 

equal to 0.31 as well.  Otherwise,              .  Otherwise, there exists a        for which 

               
  , where         may be determined from the data.  An important part of the 
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work presented in this dissertation is to bring to an investigators attention the potential for IQI 

within a population represented by the        , as expressed in the reduced soy treatment 

example given in Section 1.1.  Thus a follow up on the IQI analysis will be presented here based 

on all 73 individuals and both the         and        .  The second part of an IQI analysis will 

also be presented, which involves the determination of how much of the IQI may be explained 

by a QI with an identifiable subset based on both either a continuous or a categorical covariate.  

That is the subset portion of an IQI analysis will be carried out. 

3.7.1. Soy-Treatment Example 

The variables considered here are cholesterol and weight, taken at baseline and again at 

weeks 4, 8, and 12.  Participant gender was also recorded.  Analysis will be conducted on the 37 

participants in the soy-treatment group and the 36 participants of the control group who 

completed 12 weeks of the study.  The two outcome variables considered are change in the 12 

week cholesterol level and change in the 12 week weight measurement.  The PIQI and the PSR 

are illustrated both without and with the use of a covariate.  Normal distributions are assumed for 

both the soy-treatment outcome variables, denoted by X, and the control treatment outcome 

variable, denoted by Y. 

3.7.2. IQI Analysis 

 Results are given for the change in the cholesterol level from baseline to week 12, so 

positive values are reductions in cholesterol.  The analysis results for change in weight were 

similar and thus, are not provided here. The sample statistics are given in Table 3.2.  In particular 

note                    
         and   

        result in a significant t-test for the null 

hypothesis      .  So, on average, the soy treatment is significantly better than the control 
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treatment in reducing mean cholesterol levels.  However, a test for equal means does not directly 

address the question of possible IQIs in the population.  Thus also given in Table 3.2 is the 

estimated The estimated             .  A test for   
    

  was rejected, so using          

                          also shown in Table 3.2.  Thus, despite the superior 

performance of the soy-treatment on average, it is „possible‟ that over 30% of the individuals 

could have improved cholesterol levels on the control using only the information in the data.   

 

Sample Results Based on Marginal Distributions 

                          

26.1 6.72 30.36 16.44 0.34 0.60 

 

3.7.3. Subset IQI Analysis: Continuous Covariate 

The next question is whether there may be subpopulations defined by a covariate over 

which the estimate of the proportion of IQIs in the population may be reduced.  This question 

will first be explored by defining populations defined by baseline cholesterol levels Z, which is a 

continuous covariate.  The estimated means of the conditional distributions of cholesterol 

reduction depends on treatment T or R by generating linear models for both X and Y with Z.  The 

sample results, including the estimated regression equations, are given in Table 3.3 and 

illustrated in Figure 3.8.   Most importantly, note that since                    .  Thus at 

least some of   
  is estimated to be explained by SI so that the reduction in conditional variance 

    
  suggests that there will be a reduction in the PIQI over a range of Z.   

Table 3.2: Marginal sample results for soy-treatment trial 
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Sample Results Based on Conditional Distributions 

                          

203.9 36.98 -45.3+0.35   -25.7+0.16   27.46 15.36 

 

The impact of conditioning on baseline cholesterol on the PIQI and the PSR within 

subpopulations defined over values of Z defined by     are given in Table 3.4.  The results from 

row (a) provide a more comprehensive treatment of the IQI analysis without conditioning.  The 

estimated standard error of          given in parentheses in Table 3.4 is a bootstrap estimate 

using 1000 bootstrap samples.  The estimated standard error suggests that the         may 

reasonably range from 0.25 to 0.43. Although the                estimates that at least 8% of 

the individuals would do better on the control, the estimated standard error of 0.071 indicates 

that the         may not be different from zero.  The corresponding            estimate is 

also reported with its corresponding standard error estimate equal to 0.0385.  Figure 3.9 panel 

(a) provides a graphical display of the PSR, again illustrated as the shaded area. 

Table 3.4 line (b) shows that by conditioning on Z,          is reduced to 0.055, when 

            and                  This improvement is only due to the reduction in 

    
         and     

        as opposed to   
         and   

       , respectively.  The 

corresponding reduction in the PSR is illustrated in Figure 3.9 panel (b) in which         

     .  Reference to rows (c) and (d)  of Table 3.4 along with Figures 3.8 and 3.9 show similar 

reductions in both the       
       

 and       . 

 

Table 3.3: Conditional sample results based on baseline cholesterol level 
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Figure 3.8: Estimated regression equations for soy treatment 

Soy (X) and Reference (Y) treatments plotted against initial cholesterol level (Z), and their 

respective estimated regression equations given in Table 3.2.   The vertical dotted lines are at 

the conditional PSR locations located at 204, 241, and 278, respectively, as shown row 2 of 

Table 2.4. 
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Graph/Row    ½              
         

 

a n/a 0.300 (0.0385) 0.082 (0.071) 0.340 (0.045) 

b      0.294 (0.039) 0.055 (0.067) 0.326 (0.050) 

c      0.249 (0.054) 0.015 (0.054) 0.296 (0.066) 

d      0.204 (0.073) 0.003 (0.057) 0.217 (0.087) 

 

 

 

 

 

 

 

 

                                
                                                   
                                    

Footnotes: *The standard error estimates are based on 1000 bootstrap sample 

 

 

Table 3.4: Soy treatment PSR and PIQI results from conditioning on baseline cholesterol 

Estimated marginal and conditional results for the PSR and the PIQI and their respective standard error 

estimates, shown in parentheses, between the change in cholesterol for soy treatment (X) and reference (Y).  

Conditional results are based on the baseline cholesterol level (Z).  The corresponding graphs are displayed 

in Figure 3.8.   
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Figure 3.9: Soy treatment PSR and conditional PSR illustrations 

Each panel displays the PSR, equal to the shaded area, as an overlap between the estimated 

densities and the estimated conditional densities of X and Y, where X is the cholesterol change 

for the soy-treatment group and Y is the cholesterol change for the control group.  Panel (a) is the 

overlap of the marginal densities, and panels (b), (c), and (d) are conditioned on the baseline 

cholesterol level, and correspond to values of    in Table 3.4, lines (b), (c), and (d). 
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3.7.4. Subset IQI Analysis: Categorical Covariate 

The gender variable may be used to determine whether both the PSR and the 

            may be reduced within subsets of the population defined over gender.  Due to a non 

significant interaction term between treatment and gender, the sums of squares due to the 

interaction is rather small indicating a small estimated reduction in the conditional variance 

         
  over    

  .  As such, a large difference in either the PSR or the PIQI would not be 

expected within any of the subsets.  Nevertheless, Table 3.5 provides some final estimates of the 

        and the        .  Although the PIQI seems to be smaller for men than women, the 

standard errors for these estimates (not reported) suggest that there may not be any difference. 

 

Group                 

Overall 0.082 0.340 

Men 0.081 0.306 

Women 0.154 0.356 

Table 3.5: Soy treatment PIQI results from conditioning on gender 
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Chapter 4 - IQI and the Skew Normal Distribution 

4.1. Introduction and Overview 

Since the results in the Chapter 3 require normality for both X and Y, this chapter studies 

the relationship between the PIQI and the PSR when either X or Y, or both, is not normally 

distributed.  Gastwirth (1975, p. 33) used Figure 4.1 to introduce the PSR depicted as the area 

with diagonal lines, which he referred to as the „overlap.‟    Figure 4.1 also serves as a reminder 

that such distributions, and thus such overlaps, occur naturally.  This chapter investigates under 

what constraints, if any, the PSR can be used as a proxy for the PIQI without the restriction of 

bivariate normality.  In particular, the main objective of this chapter is to investigate whether 

              (i.e. proposition 2 given in Chapter 3) remains true when the bivariate normal 

constraint is relaxed.  Given               does not hold generally, the secondary objective 

is to explore the constraints under which               does hold true. 

 

Figure 4.1: A skewed distribution introduced by Gastwirth 

This figure was originally published by Gastwirth (1975) to both exhibit and critique the PSR 

depicted as the shaded in area.  Such distributions occur frequently so questions about the „overlap‟ 

naturally result. 
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Because there are many bivariate distributions outside the normal, the first priority of this 

section will be to establish the conditions under which bivariate distribution the relationship 

between IQI and the PSR may be studied.  The potential outcome framework and the need to 

establish a basis for analyzing the correlation between X and Y makes the selection of the 

bivariate distribution not only important, but challenging.  Some of the reasons that the bivariate 

skew normal distribution makes a good choice include: a natural extension of the bivariate 

normal distribution, the correlation coefficient     is the same correlation operator as that of the 

normal distribution, closed form expressions exist for both the PIQI and the PSR, and the variety 

of shapes that may be represented for both the joint and marginal skew normal distributions.  

Three other approaches were investigated; simulating the bivariate population, using a mixture of 

normal distributions, and copulas, but are not considered further here.  Section 4.1 introduces the 

skew normal distribution.  Sections 4.2 and 4.3 develop the PIQI and the PSR under the skew 

normal model, respectively.  Non-parametric kernel density estimates of the PSR are investigated 

in Section 4.4.  Section 4.5 shows that               does not hold generally under the 

skew normal model, but shows the conditions under which this relationship is maintained. 

Finally, Section 4.6 addresses challenges related to establishing a useful relationship between an 

IQI and the PSR from the observed data, and Section 4.7 addresses future work under the skew 

normal model.  

4.2. An Introduction to the Skew Normal Distribution 

The joint skew normal distribution proposed in Azzalini and Valle (1996) and further 

developed by Azzalini and Capitanio (1999) offers some distinct advantages in this research 

including: the specification of a linear correlation parameter and the quantification of the PIQI in 
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closed form. However, before introducing the bivariate skew normal distribution, the next 

section offers a brief introduction to the univariate skew normal.  

4.2.1. The Univariate Skew Normal Distribution 

The skew normal distribution originally introduced by O‟Hagan and Leonhard (1976) 

and more fully developed by Azzalini (1985) provides a natural extension to the normal 

distribution, since it can be formed by simply adding a shape parameter to the normal 

distribution, denoted by   herein.  A skew normal random variable Z may then be denoted by 

           .  The pdf of Z is expressed as 

      
 

 
  

   

 
    

   

 
                                                          

where      and      are the standard normal pdf and cdf, respectively.  In Figure 4.2,   and   

are fixed at 0 and 1, respectively.  When    , Z is normally distributed (in this case standard 

normal since            ) as demonstrated with the solid line.  Also illustrated in Figure 

4.2, setting   equal to    shows when    , a skew normal distribution is skewed to the left 

and is skewed to the right when    .   
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Furthermore, when    ,        and          .  Thus like the normal distribution,    is 

the location parameter, and   is the scale parameter.  However, unlike the normal distribution the 

mean and variance of Z are influenced by the shape parameter in the following way: 

        
     

       
                                                               

Figure 4.2: Introduction to the shape parameter in a skew normal distribution  

Each of the three densities of Z, denoted by        are generated from a univariate skew normal 

distribution with common location and scale parameters equal to     and    , respectively.  The 

solid density curve is generated by setting    , which generates a normal density curve (standard 

normal in this case).  Setting      produced the dotted density curve and     produced the 

dashed density curve, demonstrating that when     the skew normal distribution is skewed to the 

left and that when     the skew normal distribution is skewed to the right.   
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and   

            
   

       
                                                         

Consequently, since the skew normal distribution generalizes the normal distribution,   and    

are not necessarily the mean and variance of Z, respectively.  

Figure 4.3 illustrates the flexibility of the skew normal distribution, as well as its 

application to the research presented here, by emulating Gastwirth‟s hand drawn graph shown 

above as Figure 4.1.  The skew normal densities of X and Y in Figure 4.3 are generated from 

    ,      , with a common     and    , which gives         ,         , and a 

common                   .  The shaded area depicts the PSR approximately equal to 

0.514.  Although the PSR may be calculated from the marginal skew normal densities utilizing 

      given in Chapter 2, the PIQI is developed from the joint skew normal distribution of X and 

Y introduced in the next section. 

4.2.2. The Bivariate Skew Normal Distribution 

Complete coverage of the joint skew normal distribution is given in Azzalini and Valle (1996) 

and Azzalini and Capitanio (1999).  Similar to the univariate skew normal distribution, a 

bivariate skew normal distribution of a random vector          is an extension of the 

bivariate normal distribution.    is generated by adding a vector of shape parameters    
  

    
    

 
 

 to a bivariate normal distribution given in       in Chapter 2, where    
 and    

 

denote the shape parameters of the joint distribution of X and Y, respectively.  

Thus               denotes the bivariate skew normal random vector where 
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and       

   
  

        

         
    

        

                                                      

The bivariate skew normal pdf is defined as 

                                                                                

where       is the bivariate normal pdf and      is the univariate standard normal cdf as given in 

      above.   Similar to the univariate case, when   
       , Z becomes bivariate normal.  

Perhaps the most important aspect of       is the retention of the correlation parameter     as a 

measurement of the linear association between X and Y.   Note also that the parameterization of 

the scale parameters in       is the same as that under bivariate normality, namely    
     so 

that   
      .  Figure 4.4 illustrates the potential impact of adding   

        to a 

Figure 4.3: Replication of Gastwirth’s overlap using skew normal densities 

This figure is a recreation of the hand drawn distributions and the resulting PSR published by 

Gastwirth (1975) and shown above in Figure 1.  Both       and       are skew normal 

densities generated according to the specifications given in the legend resulting in         , 

        , and a common                   .  The shaded region depicts the     
     . 
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bivariate normal distribution.  Panels (a) and (b) display density and contour plots, respectively, 

for a bivariate normal distribution with         ,         ,  and         .  Panels 

(c) and (d) are the density and contour plots of a bivariate skew normal distribution formed as 

result of adding   
         to the bivariate normal distribution displayed in panels (a) and 

(b).  The shape of       in panels (c) and (d) emphasize the complexity of working with the 

bivariate skew normal distribution.  In fact, the next result confirms that adding the shape 

parameter   
        to a bivariate normal distribution generates a dependency between the 

marginal distributions of X and Y through   
  even when there is no correlation. 

 

Result 4.1: Given                  , where   and   are defined as in       and      , 

respectively,   
                , and      , then the marginal distributions of X 

and Y are not independent. 

Proof: 

Without loss of generality let            .  Then, by       and       

        
                            

           

and 

    
        

                 
 
         

      
 
              

                                                    
       

Thus, 

         
                

        
                

 

Due to not only the dependent structure, but also the skewed nature of a bivariate skew normal 

distribution, the calculation of the PIQI is more complex when   
        than when   

  

     , which returns       to a bivariate normal distribution.  Section 4.2 develops the 

framework for expressing and computing the PIQI under the   
        constraint. 
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Figure 4.4: Introduction to the bivariate skew normal distribution 

Panels (a) and (b) depict the bivariate density and contour plot, respectively, for a bivariate 

normal distribution with location parameter vector                  , scale 

parameter vector                  , and correlation         .  The skew in the 

joint distribution of X and Y displayed in panels (c) and (d) are the result of adding a shape 

parameter vector                   to a bivariate normal distribution displayed in 

panels (a) and (b).  The skew present in panels (c) and (d) create some new challenges in the 

calculation of the PIQI. 
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4.3. Assessing IQI given a Bivariate Skew Normal Distribution  

In Chapter 3 the PIQI was defined in the context of the bivariate normal distribution.  At 

times the notation         was used to emphasize the PIQI’s dependency on      under the 

normality constraint.  Although the bivariate distribution may be altered, the definition 

                 
  holds irrespective of the distribution of D.  However, the calculation of 

the         and its dependency on     may change over different bivariate distributions. As 

shown in Chapter 3, when the distribution of X and Y is bivariate normal, the distribution of 

      is normal giving rise to      .  In this chapter, since the bivariate distribution is no 

longer constrained by normality, the distribution of D needs to be identified before the         

can be calculated and its dependency on     can be delineated.  The next section addresses these 

issues in the context of the bivariate skew normal distribution. 

4.3.1. The Distribution of D 

Azzalini and Capitanio (1999) provide general results for the distribution of a linear 

combination of        when        follows a bivariate skew normal distribution.  

Application of these results makes the development of the distribution of       possible.  

As given above in Section 4.2.1, a bivariate skew normal distribution of       is denoted as 

                  where both   and   are given in       and      , respectively.   From 

Azzalini and Capitanio (1999), a linear combination of       defined by a     matrix A is  

   
 
 
                                                                              

where 
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Note that    is a diagonal matrix composed of the square root of the diagonal elements of the 

variance-covariance matrix of      , and   is the correlation matrix for a bivariate standard 

normal random vector.   

The distribution of       can then be generated by taking          .  

Consequently, D is distributed as a univariate skew normal random variable with         , 

  
    

    
                         , and    equal to 

   
            

       

           

      

    
        

 

          
      

   
     

                

          
     

    
        

          
 

       

as shown in the appendix (see A.4.1). Thus    is a function of both     and  , and therefore, 

        is a function of     not only through   
  but also through   .  The         then may be 

strictly defined as 

                 
  

 

  
  

    

  
     

    

  
 

 

  

                        

where      .  Similar to the normal cdf, there is not a closed form solution for the skew 

normal cdf.  However, the „psn’ function in the „sn’ package in R                     



75 

generates a numerical calculation of       used in the remainder of this work (see appendix 

B.4.1). 

4.3.2. The Shape Parameter for the Distribution of D and the PIQI 

As highlighted in the previous section, when D follows a skew normal distribution,    

plays an important role in the calculation of the        .  This section delineates the relationship 

between the         and   .  Since    is a function of both     and  , restricting     makes 

the relationship between    and the         more transparent.  As shown in the appendix (see 

A.4.2), given    , the derivation of    is  

  
       

    
    

  
     

  

 
 

    
     

      
    

 
 
                                                

The role of the joint shape parameters    
 and    

 in        is more apparent than 

in     .  In fact, since the denominator of   
          over all         ,    

  , and 

   
  , the direction of the skew in the distribution of D                      

        is 

completely determined by the relationship between    
 and    

.  That is   
         when 

   
    

.  Otherwise,   
        .  Furthermore, when    

    
,   

         so that 

D is normally distributed.   In this case, both the calculation and the behavior of the         are 

the same as that of Section 3.  That is the        can be calculated from        wherein the 

          
   

  
   and the         and         are achieved at     equal to   and   , 

respectively as shown in       and      .   

A graphical illustration of               and       is given in panel (a) of Figure 4.5 

where, since     and    
    

  , D is normally distributed. Thus the         is a function 
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of     through   
  only, and   

                 is a strictly decreasing function of    .  

Therefore, from              is a strictly decreasing function of     and illustrated by the solid 

line. Panel (c) of Figure 4.5 provides an alternative perspective of this phenomenon.  The effect 

of     on the         is illustrated using the three pdf‟s of D in panel (c) where          

    is displayed by the solid line,                is displayed as the dashed line, and 

            is displayed as the dotted line.  Since   
  is decreasing as     increases and 

        is unchanged by    ,                  
 is shrinking with increases in    .  

Graphically this means that the shaded area under the density curve decreases as     increases.  

So in Figure 4.5 panel (c), the largest amount of shaded area occurs under the density represented 

by the solid line, which is generated under       .   

Figure 4.5 panel (b) is also a display of        , but in this case    
      

   so 

that   
             over all         , and thus the distribution of D is skew normal. 

As illustrated with the solid line in panel (b), the effect is that                   instead 

of       .  This example serves as an illustration and a proof of the next result. 

 

Result 4.2:  When       is not bivariate normal, the         may not occur at       .  

Figure 4.5 panel (d) illustrates why the         may not be equal to            when D is 

distributed as skew normal.  As opposed to the normal case when     , when     , 

the         is a function of     through both    
  and   .  For both panels (b) and (d),      

since    
    

, and therefore,          .  For example, when       ,      

            and         .  And when      ,                   and 

        .  The shift in      coupled with the shorter left tail and longer right tail of 

                 represented by the solid line, than that of                 represented  
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Figure 4.5: An illustration of the shape parameter on the distribution of D  

Each of these graphs are generated from     ,     ,    , and    . In panels (a) and (c) 

   
    

   so that      resulting in D being normally distributed.  In panels (b) and (d)    
   

and    
   so that      resulting in D being distributed as a skew normal.  Panel (a) illustrates that  

the         is a strictly decreasing function of     when D is normally distributed, as in Section 3, so 

that                                             .  Panel (b) shows that when D is not 

normally distributed the         may not be maximized at       , since for this example         
         .  Panel (c) shows that when     , the         is a function of     through   

  so that as 

    increases   
  decreases causing         to decrease. Graphically this means that the shaded area 

under the density curve decreases as     increases.  Panel (d) illustrates that when D is skew normal 

            ,         is a function of     through both    
  and   .  Furthermore, in panels (b) and (d), 

since     ,          .  The shape of       is constrained by           , and     .  

Graphically this means that                   represented by the solid line is shifted to the right 

and there is less shaded area under this density curve than under                   represented by 

the dotted line. 
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by the dotted line, is what ultimately causes the loss of the strictly decreasing behavior of the 

        as seen in panel (a).  Again, the shaded area in panel (d) is illustrating         

         
.  Due to the shift in      caused by     , the shaded area under 

                is less than that of               . 

 Not surprisingly, when     , the result of    
    

 and    , there is a similar but 

opposite effect on the shape of         , and therefore,     .  That is,         when 

    .  Propositions 4.1 and 4.2 given next show that            shift of to the left for smaller 

values of     is important in the development of the        . In each case it is assumed that X 

and Y are distributed as skew normal,    
    

, and    . 

 Proposition 4.1   

Given X and Y are bivariate skew normal,    
    

, and     

   is strictly increasing on          

Proof: see appendix A.4.3  

 

 Proposition 4.2   

Given X and Y are bivariate skew normal,    
    

, and     

        is strictly decreasing in          

Proof: Follows from proposition 4.1, but a formal proof is given in A.4.4 of the appendix. 

 

Corollary 4.1: Given X and Y are bivariate skew normal,    
    

, and     

                   

Proof: Follows from proposition 4.2. 

 

This section has highlighted some additional challenges in the derivation of the         

under skew normality.  Furthermore, important conditions have been set forth under which the 

        behaves similarly for both the normal and the skew normal distribution.  These results 
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indicate that the relationship between the         and the PSR will be somewhat more complex 

when D is distributed as skew normal since the skewness property of D, exhibited through   , 

not only affects the shape of      , but also     .  Furthermore, the dependence structure of the 

bivariate skew normal distribution resulting from    and     described in the previous section 

causes additional challenges.  In preparation for such connections, the next section develops the 

PSR under the bivariate skew normal model. 

4.4. The PSR under Skew Normality 

Work on the development of the PSR or density overlap outside the normal distribution 

has been limited.  Inman (see Bradley, 1985) and Bradley and Piantadosi (1992) are credited for 

work involving non-parametric PSRs, but unfortunately, their work was not published.  As with 

the PIQI, the difficulty in the development of the PSR without the normal constraint originates 

from the plethora of shapes over which the overlap may be formed.  This section provides the 

structure for the calculation of the PSR within the skew normal model.  Once the nature of the 

PSR has been developed, connections with the PIQI will be explored. 

4.4.1. Definitions and Properties of the PSR 

Irrespective of the distributions of X and Y, the definition of the PSR given in       

remains unaffected.  An illustration of a PSR generated under both X and Y distributed as skew 

normal is given Figure 4.3 in which the shaded area represents the PSR.  As characterized in 

Section 4.2, the number and location of the crossing points of the density curves of X and Y at 

which                         are important elements of the PSR calculation.  Recall that 

when X and Y are normally distributed and            , there are at most two points at which 

the pdf‟s of X and Y cross.  When there is a single crossing point, when    , the crossing point 
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is denoted by   .  When    , two crossing points exist; a lower and an upper denoted by    

and   , respectively.  When X and Y are normally distributed, a closed form expression for the 

derivation of the crossing points   ,   , and    was given in      .  Not surprisingly, when X 

and Y are distributed as skew normal, the maximum number of crossing points increases.  

Furthermore, due to the shape parameter of the skew normal density given in       a general 

closed form expression for the crossing points does not exist, although in some cases a formula 

for the crossing point does exist.   

The challenge of calculating crossing points stems from the myriad of shapes possible for 

      and       and their relationship when X and Y are skew normal.  These combinations are a 

product of the marginal shape parameters denoted by    
 and    

 and scale parameters 

summarized by  .  For example, when    
    

 and    , there is exactly one crossing 

point.  An example of this type is shown in Figure 4.3, where    
    

  .  In this case there 

is no formula for the crossing point and the PSR must be solved numerically as discussed below.  

Generally, the crossing points are influenced by whether    
 and    

 are greater than 0, less 

than 0, equal, whether    
    

or    
    

, and whether    ,    , or    .  The 

calculation of the PSR depends upon the combination of these parameters.  Four examples are 

given in Figure 4.6.  Crossing points   , and    are used in the same way as for the normal case 

when two crossing points exist.  When there is only one crossing point, it is labeled    instead of 

   as it is in the normal case.  However, when a combination of the densities of X and Y generate 

three crossing points, the point    is added to the points    and     to denote an “interior” 

crossing point.  Each crossing point in Figure 4.6 is labeled directly below the dotted line within 

each panel.  Furthermore, common with earlier examples, the shaded area in each panel 
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identifies the PSR.  The details necessary for calculating the PSR in each of the four panels in 

Figure 4.6 are given in Table 4.1.  Although these four examples do not provide a  

 
 

 

 

 

 

 

 

 

Figure 4.6: Initial PSR examples under the skew normal 

This figure illustrates how the number of crossing points and the PSR shown as the shaded 

area involving two skew normal distributions are function of   ,   , and   . Although many 

patterns exist, only four examples are given here.  However,  the number of crossing points 

will always equal either one, two, or three.  Table 1 complements this figure by provide the 

details for    ,   , and   for each panel.  The first column of table 1 identifies the apporpriate 

graph, and column (6) shows the algebraic representation of the PSR.  
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comprehensive treatment of the number of the potential combinations over which the PSR may 

exist, they provide insight into how the PSR changes based on changes in    
,    

, and  .  The 

letter given in column     of Table 4.1 corresponds to the panel given in Figure 4.6.  A complete 

treatment of Table 4.1 and Figure 4.6 is given next to provide a general framework for 

understanding the PSR and deriving its value. 

 

 

 

The nature of    
,    

, and   given in columns     through     do not give specific 

values, but represent common relationships between the parameters of the distributions of X and 

Y.  For each these examples and throughout this work, the location parameters are constrained by 

     .  For simplification, the shape parameters given in columns     and     are additive 

inverses of each other         
     

   and may take on any value based on this constraint.  

The relationship between the scale parameters    and    is captured by   and is restricted to 

either     or     as identified in column    .  The last two columns of Table 4.1 are for 

Figure 4.6 

Panel 

(1) 

   
 

(2) 

   
 

(3) 

k 

(4) 

Crossing 

Point(s) 

(5) 

PSR 

(6) 

a    
      

   k = 1                    

b    
      

   k > 1       
                  

         

c    
      

   k = 1          
                  

           
        

d    
      

   k > 1                    

Table 4.1:  Complement to PSR examples  

This table complements Figure 4.6.  Column (1) identifies the corresponding panel in Figure 4.6.   

Columns (2) – (4) represent the general parameterizations of the skew normal distributions, and 

columns (5) and (6) show the resulting crossing point(s) and the PSR delineation, respectively. 
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calculating the PSR.  Column     gives the number and notation for the crossing points, and 

column     provides a concise statement for the calculation of the PSR as an alternative to the 

more general formula given in       or the closed form expression used in the normal case given 

in       .    

Reference to row one of Table 4.1 then gives the description of panel (a) of Figure 4.6.   

This panel illustrates the general case constrained by    
   and     

  , so that the skews 

are in the opposite direction.  Further, since    
     

 and    ,              , and 

         .  Since there is only one crossing point denoted by    as shown in column    , 

and the                      as given in column    .  For this case, the crossing 

point can be obtained in closed form as given in the following result: 

 

Result 4.4:  Given X and Y are bivariate skew normal,      ,    
  ,    

  ,    
 

    
 and    , there is a single crossing point of       and       given by 

   
     

 
  

Proof: 

          
     

 
  

 

 
  

     

    

 
     

     

    

 
  

                        
 

 
  

     

  
      

     

  
  

                     
 

 
  

     

  
     

     

  
  

          
     

 
  

 

 
  

     

    

 
     

     

    

 
  

                     
 

 
  

     

  
     

     

  
   

and since      is the standard normal pdf   
     

  
    

     

  
 . Thus                   
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Again, although the crossing point for the case shown in panel (a) has a closed form solution, 

this is not the case in general. 

Having obtained the crossing point, the PSR may then be calculated by application of 

      and column     as follows: 

                         

 

  

                                                            

                    

 

  

                                                                  

  

  

      

                        
 

  
  

    

  
     

    

  
       

 

  
  

    

  
     

    

  
   

 

  

  

  

   

 

Since      and      are the normal pdf and cdf, respectively, once    is obtained, the 

PSR can be calculated by application of these functions.  Alternatively, the psn function supplied 

by the „sn’ package in R may be utilized for a direct calculation of the PSR.  Appendix B (see 

B.4.2) provides a function for calculating the PSR using the psn function, which was used 

throughout this work.  

Reference to Table 4.1 shows that the shift from panel (a) to panel (b) of Figure 4.6 is 

made by constraining    .  Given all other constraints from panel (a) are held constant, this 

constraint generates two crossing points labeled    and    as shown in panel (b) and cross-

referenced in column    .  Similar to the case in which both X and Y are normally distributed, 

this change necessitates a change in the calculation of the PSR by including three areas given as 

                               in column   .  However, due to the 
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complexity of working with the density of a skew normal distribution given in        there is not 

a closed form solution for    or    in this case.  When no closed form solution exists, a 

numerical algorithm is used, which employs the previously mentioned „sn‟ package in R to solve 

for the crossing points.  The program for finding both the number and value of the crossing 

points is included in appendix B (see B.4.2).  By taking     the numerical algorithm can solve 

for                , and thus the crossing points can be calculated to the desired accuracy.  

When it is important to recognize when the PSR is being evaluated using numerically solved 

crossing points, the PSR will be denoted as     .  Otherwise, the standard PSR contraction 

without the subscript will be employed. 

Panel (c) of Figure 4.6 returns to    , but reverses the shape parameters so that 

   
   and     

  , which illustrates a case involving three crossing points as identified in 

column    .  Each point is solved for numerically, and the      is computed by combining the 

four shaded areas separated by the dotted lines shown in panel (c), corresponding to column     

in Table 4.1.  The change from panel (c) to panel (d) is an example of the challenge of deriving 

the PSR when X and Y are skew normal.  By simply constraining     the number of crossing 

points may go from three to one even though the shape parameters remain unchanged.  Again, 

the crossing point for        and       denoted as    can be solved for numerically and the 

     can be obtained by adding the two components of the shaded area in panel (d) comprised 

of         and        .   

The purpose of the examples given in Figure 4.6 and Table 4.1 is not to provide a 

comprehensive treatment of all the cases in which the PSR may be observed and calculated when 

X and Y are distributed as skew normal.  Their purpose is two-fold.  First, to express the wide 

array of possibilities that exist for expressing the overlap and hence the PSR when X and Y are 
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not constrained to the normal distribution.  Even under the extreme constraints of these four 

cases considered, the nature of the PSR changes greatly.  Second, the purpose is to provide a 

general strategy for calculating the PSR and an illustration of the values required in order to 

evaluate the PSR.  Although each situation needs to be considered individually with respect to 

the relationship between and among the location, scale, and shape parameters, the strategy of 

calculating the crossing points and expressing the PSR in terms of combining mutually exclusive 

areas allows for both proper expression and calculation of the PSR.  The next section discusses 

an alternate strategy for computing the PSR. 

4.4.2. The Kernel PSR 

The kernel PSR proposed by Stine and Heyse (2001), denoted herein as      was 

introduced in         as 

              
        

        

where     
    and     

    are given in       .  The primary advantage of the      is the ability 

to generate a non-parametric estimate of the PSR when the distribution of either X or Y or both is 

not normally distributed, which is ideal for use under the skew normal model used in the current 

Chapter.  Furthermore, in the context the skew normal model, the      offers an alternative to 

the      when X and Y are skew normal and the crossing points need to be estimated 

numerically.  Recall the example used in Figure 4.3 provides a case where the crossing point had 

to be solved for numerically using the algorithm provided in appendix B.4.2.  In Figure 4.3 

       was used, which resulted in a crossing point estimate of         and a PSR estimate 

of           .  For comparison purposes Figure 4.7 was generated from           

generated values under the same skew normal specifications as Figure 4.3                
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   .  The            displayed as the shaded area in 

Figure 4.7 is very close to the           . The next section uses a small simulation study to 

formulate the important features of the kernel PSR. 

 
 

 

 

 

 

 

 

4.4.3. Simulation Results for the Kernel PSR 

In an effort to maximize the use of the      as an estimate of the PSR, this section 

discusses a small simulation directed at studying the effects of both the bandwidth choice and 

sample size effect on the efficiency of the     .  In most cases the kernel component of the 

kernel density estimators makes very little difference (see Sheather, 2004).  Simulations by Stine 

and Heyse (2001) for the      suggest this result holds for     
    and     

    as well.  Thus the 

standard normal kernel             is used throughout. The bandwidth employed by Stine 

and Heyse is a scalar of the normal bandwidth method introduced by Silverman (1986), which is 

Figure 4.7: Kernel PSR 

   
    and    

    are kernel density estimates of                       and 

                     , respectively, from       randomly generated values from 

each distribution.  The shaded area is the kernel estimated PSR equal to 0.513.  The same 

distribuions were used to generate Figure 3 in which          .  The equations for    
    

and    
    are given in       , and the bandwidth is a Sheather-Jones plug in estimate. 
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the optimal bandwidth choice if a distribution is normal based on the mean integrated squared 

error criteria.  Since Stine and Heyse investigated the effectiveness of      exclusively with 

normal data, the normal bandwidth was a reasonable choice.  However, non-normal data is 

assumed in this section so other bandwidths should be considered.  The investigation was 

conducted via simulation, with the results reported in Table 4.2. The first column of Table 4.2 

indicates the two bandwidths compared.  The first bandwidth is the Sheather-Jones (SJ) plug-in 

method with its results given across the first row.  The SJ method was chosen for its robust 

property effective across many distributions (see Sheather, 2004). Secondly, the normal 

bandwidth method utilized by Stine and Heyse, with its results given across the second row, is 

shown.  

To measure the effectiveness of the     , it was compared to the      where the 

crossing point was calculated using       .  The reference distributions for X and Y are those 

of Figures 4.3 and 4.7                                 
    

   .  1,000 samples 

generated 1,000        from these distributions for each of the sample sizes 50, 100, 250, 500, 

1000, and 2000.  Then the average generated by         
   

     
    

    
     was compared to the 

            computed with         accuracy.  Each cell in the body of Table 4.2 reports 

the absolute difference of the PSR estimates given as          
         . Thus for a sample size 

of        the reported value of 0.0579 represents a difference of nearly 6%.  With        

the difference drops to 0.0229 and drops less than 1% for each of the successive sample size 

increases at        and       .  Therefore, the      appears to be very stable for sample 

sizes of 500 or more.  The last row of Table 4.2 shows the effectiveness of using the normal 

bandwidth estimate used by Stine and Heyse as opposed to the SJ bandwidth reported in row 

one.  Although the Kernel PSR estimates are very close, not surprisingly, the differences for the 
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SJ bandwidth is consistently less than for the normal bandwidth.  For these reasons, the      

based on       and the SJ bandwidth has been used generate the      used in this work.  For 

convenience, an R program is included in appendix B for generating      (see B.4.3). 

 

 

 

 

 

  

  

 

4.4.4. Skew Normal Marginal Distributions 

Result     states that the marginal distributions of X and Y that come from         

given in       are not independent even when      .  This section helps identify part of the 

reason for this dependence.  More importantly, this section develops the marginal shape 

parameters    
 and    

vital to the calculation of the PSR.  Equations         , given above 

and used to construct the distribution of D, provide the basis for construction of the distributions 

of both X and Y by simply taking    equal to       and      , respectively.  Application 

of          shows that the marginal distributions of both X and Y are skew normal.  

Furthermore, the marginal location and scale parameters for both X and Y are the same for those 

of the bivariate distribution.  However, the marginal shape parameters are given by 

Bandwidth 
Simulation Size (n) 

50 100 250 500 1000 2000 

Sheather Jones 0.0579 0.0462 0.0308 0.0229 0.0173 0.0131 

Normal 0.0603 0.0490 0.0337 0.0257 0.0198 0.0154 

Table 4.2: Simulation check on bandwidth 

The summary results of a simulation designed to evaluate the effect of both sample size (n) 

and choice of bandwidth on the kernel PSR are given in this table.  The skew normal densities 

      and      , esimated by    
    and    

   , respectively, are parameterized as in Figures 

4.3 and 4.7, which gave           .  Estimates for the      were generated from an 

average of 1000 simulations denoted by         
  and the values given in the body of the table are 

         
          for each sample size and bandwidth combination. 

 



90 

   
 

   
    

   

      

       
  

                                                             

and      

   
 

   
       

      

       
  

                                                             

as shown in the appendix (see A.4.5).  Both    
 and    

 illustrate the interdependence of the 

bivariate skew normal parameters    
    

        .  Note that even when       the marginal 

shape parameters equal 

   
 

   

      

 

              
 

   

      

 

  

identifying the cause of dependency between the marginal distributions of X and Y highlighted 

in result    .  That is both    
 and    

remain functions of    
 and    

even when      .  

Given this dependency, it is instructive to study the effect of the bivariate skew normal 

parameters on the marginal shape parameters    
,    

, and   .  Figure 4.8 displays    
,    

, 

and    as the dashed, dotted, and solid line, respectively as functions of    
,    

,    , and   for 

some general cases.  Panel (a) shows that under the constraint that     and    
    

, both 

   
 and    

 are strictly increasing functions of    .  Furthermore, as     goes to 1    
 and 

   
 converge.  Finally, if    

    
, then    

    
 for all    ; a fact that can be seen from 

application of         and        .  

In contrast to panel (a) of Figure 4.8,     is fixed (       ) in panel (b) and k is 

allowed to change over      .  The zero slopes of    
 and    

in panel (b) confirms what 

is clear from         and        , which is that the marginal shape parameters are not a 
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function the joint scale parameters.     is a function of   as made clear from either panel (b) or 

inspection of      .  The only change in panel (a) to panel (c) is now    
    

, making     .  

Thus    
    

 for all    , but    
 and    

 still converge as     goes to 1.  Panel (d) shows 

the same effect as panel (b) even though    
    

.  Ultimately, the important characteristic 

resulting from the marginal distributions is the PSR, which leads to the next section. 

 

 
Figure 4.8: Assessment of shape parameters 

This figure illustrates the dependency of the shape parameters   ,    
, and    

 on      and   given the 

distributions of D, X, and Y are skew normal.  Each shape parameter is derived from the bivariate skew normal 

distribution of X and Y using equations      ,        , and        , respectively.  For panels (a) and (b)    
   

and    
   and for panels (c) and  (d)    

   and    
  .  Panels (a) and (b) illustrate       dependency on    

, 

   
,  , and     , while the marginal shape parameters    

 and    
 depend only on    

,    
, and    .  

Furthermore,     is a strictly increasing function of     when      and a strictly decreasing function of       

when     .  
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4.4.5. The PSR Calculation from Marginal Distribution  

The PSR is a function of the marginal distributions of X and Y.  An important result about 

the bivariate normal distribution of       is that the marginal distributions of X and Y are not 

a function of    .  Consequently, the PSR obtained from       and       is not a function 

of    . This result is illustrated graphically in Figure 4.9 panel (a), where, since    
    

   

of a skew normal distribution,       is distributed as bivariate normal with            

and          .  ½ PSR is given by both the      , displayed as the dotted line, and 

the      , displayed as the solid line. Each quantity graphically illustrates the PSR’s 

independence of     since they are constant equal to        over    .   Note that the       

shows random fluxuations due to the simulation size        .  Conversely, the        , 

displayed as the dashed line, decreases over          since the         is a function of 

    through   
 . 

When   
      

           , the effect of     
 and/or     

being a function of 

    is illustrated in Figure 4.9 panel (b), where     
           .  Note that as     

increases, ½PSR decreases as demonstrated by both       and       decrease in a similar 

fashion as the        shown with the dashed line.  As illustrated in Figure 4.5 panel (b), the 

PIQI is not always a decreasing function of     when X and Y are skew normal.  Such is the case 

with the PSR.  However, the important point is that the PSR is a function of     when X and Y 

are skew normal in a similar way that the PIQI is a function of    .  Panels (c) and (d) of Figure 

4.9 provide a graphical illustration of the PSR’s dependency on     from a density „overlap‟ 

perspective, where the bivariate distribution of       is distributed as 
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 Figure 4.9: An illustration of the PSR’s dependency on the correlation 
This figure illustrates the PSR‟s dependency on     when       is bivariate skew normal.  In this 

illustration the location parameters are set at      and     , and the scale parameters are set at 

          across each panel. In panels (a) and (b) ½ PSR is measured by both the       shown as 

the solid line and the       using       shown as the dotted line.  For reference, the PIQI is illustrated 

with the dashed line.  Panels (a) and (b) show that as       transitions from bivariate normal to 

bivariate skew normal signified by     
      transitioning from        to      .  Thus the PSR 

transitions from not being a function of     in (a) to becoming a strictly decreasing function of     in (b).  

The graphical display of panel (b) as depicted in the overlap of       and       is illustrated in the 

transition from panel (c) to panel (d). The shaded area representing both the overlap and ½PSR is 

significantly reduced as      changes from    in panel (c) to      in panel (d) in which ½PSR is reduced 

from       to      , respectively. 
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so that                                                   .  In panel (c)        and PSR 

illustrated by the shaded area is approximately equal to 0.629.  The marginal shape parameters 

are equal to    
   and    

   .  The transition to panel (d) is caused by changing     

    .  The increase in     produces    
      and    

     , which ultimately reduced the 

PSR to approximately 0.18 illustrated by the reduction in the shaded area in panel (d). Therefore, 

similar to superscripting the PIQI with      to emphasize this dependency, the PSR may need a 

superscript to emphasize the functional relationship between the PSR and      when      is 

bivariate skew normal.  Furthermore, for the remainder of this work the PSR will be calculated 

numerically using algorithm B.4.2 in appendix B and denoted as     .  So dropping the 

subscript „N‟ and adding the superscript     to the PSR gives        , which is taken to mean 

that the PSR is a function of      and has been calculated by solving for the crossing points 

numerically.  The next section establishes what connections can be made between the PIQI and 

the PSR under the bivariate skew normal distribution. 

4.5. Assessing the PIQI/PSR Relationship under Skew Normality 

The relationship between the PSR and the PIQI is taken from the perspective that X and Y 

come from a bivariate distribution.  This was the situation in Chapter 3 when       was 

distributed as bivariate normal, where, although     did not impact the PSR,     played an 

important role in the PIQI.  As established in Section 4.3, given the bivariate skew normal model 

the PSR is a function of     as well, so that under this model proposition 2.2, which states that   

                , is not necessarily true.  Thus there is no guarantee that         

        is true outside the bivariate normal model.  However, the main objective of this 

section is to assess the conditions under which                 is true, given       is 
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distributed as bivariate skew normal.  The determining factor in establishing whether          

        holds is the state of   .  These states are     ,     , and      .  The next 

section presents four cases; each representing specific parameter combinations for a bivariate 

skew normal distribution.  The first case is an example of     .  The second case is an 

example of     , and the last two cases are examples of     .  From these cases, some 

generalizations about the relationship between the PIQI and PSR over the different states of 

  can be made. 

4.5.1. Cases for Study 

Due to the several potential shapes for both the bivariate and marginal skew normal 

densities, there are many classes under which the relationship between the PIQI and the PSR may 

be studied, which make it difficult to form connections between the PSR and the PIQI that hold 

over all classes.  The strategy used here is to form sub-classes defined by the state of   , the 

value of  , and the value of     over the entire class of skew normal distributions so that some 

generalizations may be formed within the sub-classes.  Table 4.3 delineates four cases; each 

representative of a state of   .   

The first three columns represent the sub-classes of the skew normal, which are defined 

over the state of   .  A particular case number (#) is assigned in column 1, and the PSR 

computations are given in column three, but only under the restriction that       .  The 

remaining columns provide specific parameterizations that fall under the sub-classes. The exact 

values of the parameters are not important except that they generate the state of   .  For 

example, in case #1 since    
   and    

  , from        we have that      over    
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      and    .  In fact, given         we have that     ,    
  ,    

   , and 

    .   

Since the values of PIQI and PSR are both functions of   and    , their relationship is 

subject to change as      and   change.  Therefore, the PIQI/PSR connections need to be 

ascertained under different values of each.  The important sets of      are         and 

           The important sets of   are     and    .  The following sections are 

dedicated to establishing connections between the PIQI and the PSR under each state of    

and based on the important sets of      and  .  Furthermore the constraints that       

and           are in force throughout.   

  

Sub Classes of the Skew Normal Parameter Specification 

#   
                 

    
    

    
                

1                      2 1 1 -1 1 na 1 na 

2                      3 3 0 0 0 na 1 na 

3      
                   
                           

1 5 -4 4 -4 -0.4 1 2.4 

4      
                   
                   

-2 2 -4 4 -4 -0.4 1 2.4 

Table 4.3: Outlining special cases 
This table outlines four cases for the relationship between the PIQI and the PSR under the skew 

normal model.  Each case is differentiated by the relationship between the joint shape parameters 

   
 and    

 as summarized by    in column 2 and calculated in        since    .   The 

characterization of the PSR along with the marginal shape parameters and the crossing points are all 

given under the constraint       .  Other parameter specifications include              . 
 

This table identifies three general cases defined by   .  The  
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4.5.2. Case Study Results over the Correlation 

In order to ascertain the relationship between the PIQI and the PSR over    , in this 

section the     constraint will be enforced over the sets of         and        .  Also, 

similar to the location parameters of the normal model, each set of     state of    combination 

will be evaluated.  

4.5.2.1. Case Study Results for        

This section begins with an important proposition.  This proposition is motivated by 

results 3.1, 3.2, and 3.3; foundational for establishing the relationship between the PIQI and the 

PSR when       was bivariate normal.  Recall that results 3.1 and 3.2 establish the fact that 

when       , there exists a common value for x and y given by     
      

   
.  These results 

were not distribution dependent, so they hold for any bivariate distribution.  Result 3.3 showed 

that                               , but under the constraint that       was 

bivariate normal.  The next proposition does not depend on the bivariate distribution of       

nor on  .   

 Proposition 4.3  

Given       and           

                                          

Proof: 
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A proof for result 3.3 was given in Chapter 3.  However, as an alternative proof, result 

3.3 is also true due to proposition 4.3 and given the bivariate normal distribution            

       .  Recall from Section 4.2 that this fact is not necessarily true for the bivariate skew 

normal distribution.  A boundary for         at        over each state of    is given next. 

 State:      (example: case 1) 

Given      ,       , and     

                                

Proof: 

                          

                                              

since       , so 

                                                                        

                     

                                                     

State:      (example: case 2) 

Given      ,       , and     

                             

Proof: 

Since     and       , from             , and from              
 and    

 are 

equal to 0.  Therefore, D, X, and Y are normally distributed.  Consequently, by proposition 3.2 

                                  

 State:      (examples: cases 3 and 4) 

Given      ,       , and     

                            
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Proof: 

                                                              

                                                     

                                                              

                                                                                                     

                                                                                                                    

                                                                                                      

                                                                                                                                  

Consequently, for the class of bivariate skew normal distributions defined by        

and    , the                       boundary holds over all states of   .  A graphical 

illustration of each case is displayed in Figure 4.10.  The         represented with the dashed 

line is equal to or larger than       represented with the solid line over at the value       .  

The next section compares the         and ½ PSR over       , where it will be shown that 

the boundary does depend on the state of   .  

4.5.2.2. Case Studies for        

State:      (example: case 1) 

Given      ,       , and     

                 

Thus the          does not provide a boundary for         when     .  The 

illustration for case 1 in Figure 4.10 shows that the                , since the         

                   is less than                  .  The last two columns of Table 4.4, 

give the values for ½ PSR and the PIQI over seven ascending values of     to complement 

Figure 4.10.  Consequently, case 1 serves as proof that the         boundary given in 

proposition 2.2 does not hold under the bivariate skew normal model.   In fact, case 1 is a  
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working example in which                 does not hold for the class of bivariate skew 

normal distributions defined by             and    .  The reason for this boundary 

failure under this class of distributions is revealed by a close inspection of          .   When 

Figure 4.10: A study of the PSR and the PIQI under the special cases 

Each of the panels shows      as the solid line and the      as the dashed line.  The cases are 

those given in Table 4.3.  When       
    

  , as in case 1, both the          and the 

        are achieved at       .  However, when       
    

  , both are achieved at 

      .  
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  and    
    

  , both    
 and    

 are strictly increasing functions 

of     (see appendix A.4.6 for proof).  Furthermore, as shown in Table 4.4,    
 is increasing 

faster than    
.   Figure 4.8 panel (c) complements Table 4.4 illustrating graphically that    

 is 

increasing at a faster rate than    
.  Thus       is shifting to the right at a faster rate than       

is shifting to the right.  The effect here on the marginal distributions of X and Y are similar to the 

effect on the distribution of D when      , which causes the         to occur at       .  

That is, the maximum PSR occurs at       .  Table 4.4 charts the change in the marginal 

shape parameters in an effort to delineate the faster shift of Y over X to supplement the 

illustration in panel (c) of Figure 4.8.  Note in particular that although    
    

 over     

  , both    
 and    

 are converging on 3, while their difference    
    

 is going to zero.   

 

 

 

 

 

 

 

 

 

 

Specification Results 

       
    

    
    

    
    

                       

-1 2 1 1 -1 2 1 0.095 0.095 

-0.5 2 1 1.13 0 1.13 1.5 0.185 0.163 

-0.25 2 1 1.26 0.23 1.03 1.65 0.203 0.170 

0 2 1 1.41 0.45 0.96 1.79 0.215 0.168 

0.25 2 1 1.62 0.69 0.93 1.91 0.221 0.154 

0.5 2 1 1.89 1 0.89 2 0.224 0.125 

1 2 1 3 3 0 2.11 0.209 0 

Table 4.4: Shows the dependency of the PSR on the correlation 

This table complements Figure 4.10 case 1 by illustrating the cause of        being an 

increasing function     over         .  Both    
 and    

 are increasing functions of     

(illustrated in Figure 4.8 panel (c) and proven in Appendix A.4.6), but     
 is increasing faster 

demonstrated by    
    

 going to zero.  Thus       is shifting to the right faster than       

causing an increase in both the „overlap‟ and        .  For reference the         is affected 

similarly by    
    

 so that         is achieved at       . 
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State:      (example: cases 2, 3, and 4) 

Given      ,       ,    , and    
    

   

                                        

 Note that this result is only applicable to this specific case and not the class of bivariate 

skew normal distributions over the entire class defined by     .  The proof of this boundary 

comes from the fact that        is a strictly decreasing function of    , which can be verified 

from direct inspection of Figure 4.10 panels (b), (c), and (d).  Thus for any specific case in which 

       can be shown to be a strictly decreasing function of    , the                 

boundary holds.  The development of a more general boundary is discussed in Section 4.7.  The 

challenge of establishing        as a strictly decreasing function of     over the entire class of 

distributions defined by      ,     , and      can be seen by inspection of the        

formula given in Section 4.4, which was given as 

                       

 

  

                                                       

                        
 

  
  

    

  
     

    

  
       

 

  
  

    

  
     

    

  
   

 

  

  

  

  

since the marginal shape parameters for the distributions of X and Y are now denoted    
 and 

   
, respectively.  Inspection of the first term of the PSR reveals that as    

 gets larger as     

increases (which is true by A.4.6), the PSR decreases.  However,    also gets larger over    , 

which causes the PSR to get larger. 
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4.5.3. Case Studies for Unequal Variances 

In this section, the class of bivariate skew normal distributions only restriction is 

      .  Thus   may be any value in the interval       and    is allowed to take on any of 

the three states.  

State:      (example: cases 1, 2, 3, and 4) 

Given      ,       , and         

                                
 

Proof:   

Given       , then from proposition 4.3 

                                                                                                                                  

                                                                              

                                                         

                                                                            

                                                         

                                                                                        

                                                                            

                                                                                            

                                                                             

                                                                                                                                

 

Figure 4.11 provides a graphical illustration for the relationship between the PIQI and the 

PSR for each case over       under the current class of distributions.  The relationship 

displayed in each case shows that the PIQI, depicted as the dashed line, is greater than or equal to 

½PSR, shown as the solid line, over all values of        .  This result is similar to proposition 

2.2.  However, the fundamental difference is that in the current class of models neither the 

        nor the        may be maximized at       .   
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Figure 4.11: The relationship between the PSR and the PIQI over k 

Each of the panels shows the      as the dashed line and      as the solid line constrained by 

       for the four cases given in Table 4.3.  In all four cases                     . 
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4.6. The Observed PSR 

The utility of the PSR as a measure of treatment heterogeneity and in particular IQIs is 

grounded in the idea that X and Y come from a bivariate distribution.  Under the potential 

outcomes structure the bivariate distribution becomes a way to represent an individual‟s response 

to two treatments simultaneously.  The PSR results from the marginal distributions of X and Y, 

while the PIQI results from      ;  a linear combination of X and Y.  When       is 

normally distributed, as in Chapter 3, the PSR was unaffected by the fact that     was non-

identifiable since the marginal distributions of X and Y are not affected by the correlation 

between X and Y.  Consequently, the PSR was constant across         , while the PIQI was 

a strictly decreasing function of    .  Under the normal model, all parameters of the PSR are 

identifiable despite the fact that       is a model for potential outcomes.  As such, a natural 

and observable boundary given by              (proposition 3.2) was formed.  Boundaries 

for     allow for direct assessment of the relationship between the PIQI and the PSR.  For 

example, given       is normally distributed and    , given the lower boundary for     at 

  ,              . 

When       is distributed as skew normal, the relationship between the PSR and the 

PIQI is not so direct since both are affected by the non-identifiable quantity    .  Table 4.5 is 

used to illustrate the challenge of assessing the boundaries for the PIQI from the observed PSR 

by illustrating the number of ways a skew normal distribution may be used to generate Figure 

4.3.  In fact, two univariate skew normal distributions were used to generate Figure 4.3 based on 

the parameterizations outlined in row 1 of Table 4.5 along with      and     .  However, 

Figure 4.3 could just as easily have been generated from the bivariate parameterizations of any of 
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the last three rows of Table 4.5 in which each is primarily differentiated based on different 

values of   .  For example, if the row 2 of Table 4.5 parameterization was used to generate 

Figure 4.3, then the      boundary equal to               does not hold since 

             .  In fact, since     ,                                   , 

which is of course is still greater than                            .    

If X and Y were a result of the bivariate skew normal distribution parameterized by either 

row 3 or 4, then the boundary                       holds, since the        is a 

decreasing function of     under the      condition.  Which of these three skew normal 

bivariate distributions generated the overlap of       and       and the resulting        

      in Figure 4.3 is not determinable since     is unidentifiable.  Furthermore, the marginal 

shapes provide little help without constraints on     since           makes their dependency on 

    clear. 

 

 

 

 

 

 

 

Condition        
    

             
    

 PSR         

Univariate N/A N/A N/A 5 5 N/A 3 3 0.514 N/A 

     0.55 3 2 5.2 4.7 0.20 2.11 1.35 0.507 0.227 

     0.82 5 5 5 5 0 3 3 0.514 0.345 

     1.00 1 2 5 5 0 3 3 0.514 0.500 

Table 4.5: Non-identifiable nature of the skew normal 
Figure 4.3 was generated using two univariate skew normal distributions parameterized by the first 

row, where      and     .  However, the skew normal bivariate distributions given in rows 2, 3, 

and 4 may also be used to generate Figure 4.3 illustrating the challenge of establishing a relationship 

between the PIQI and the PSR when       is skew normal. 
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4.7. Future IQI Research using the PSR and the Skew Normal Model 

4.7.1. Exploit the Correlation Link 

So far the fact that under the skew normal model the PSR is also a function of     has 

been considered a setback to furthering the development of the relationship between the PIQI and 

the PSR.  However, the fact that both the PSR and the PIQI are functions of     could be used to 

a distinct advantage to developing the relationship.  In particular, note that each panel in Figure 

4.10 demonstrates that both        and the         behave similarly to     within each of the 

primary categories of   .  The similar response to     comes through the shape parameters;    

for the         and    
 and    

 for the       , which is where the dependency upon     

originates.  The following example demonstrates how the dependency upon     may be 

exploited in order to diagnose IQI taken from case 2 of Figure 4.10 where    
    

  .  

Based on the the condition that     , the boundary                       may be 

employed.  Suppose a priori information exists that sets         .  Consequently, 

               may actually be observed and serve as an upper bound for the        , 

which is unobservable.  Thus the fact that the PSR and the PIQI are linked by their common 

response to      makes way to utilize this connection in new and useful ways.  However, more 

structure and study is required to outline the nature of the PSR and the PIQI under the skew 

normal model. 

 4.7.2. Develop Relationships for Unequal Scale Parameters 

The class of bivariate skew normal distribuitons in Section 4.5.5 are classified in part by 

the constraint that     implying equal scale parameters for the distributions of X and Y.  The 

primary reason for this constraint is that the complicated formula for    given in       is 



108 

significantly simplified in        where    .   Thus the simplification makes it possible to 

capture the behavior of    and the PIQI as functions of    .  As seen in           the     

constraint is not necessary for either of  the marginal shape parameters    
 and    

.  Thus a 

greater understanding of how both     and   simultaneously affect   , and as a consequence the 

PIQI, may yield import relationships and more general results between the PIQI and the PSR. 

4.7.3. Proof for the PSR as a Strictly Decreasing function of the Correlation 

The boundaries for the class of skew normal distributions defined by     and      

given in Section 4.5.2 were noted as case specific.  The challenge presented was to determine 

that the        is strictly decreasing within this class.  A closed form expression establishing 

this fact has not been derived yet. 

4.7.4. Incorporate Location Shifts 

Recall that under the     constraint,       
    

   shifts the distribution of D to 

the right as illustrated in Figure 4.5.  Consequently, the         is no longer a strictly decreasing 

function of     as illustrated in Figure 4.10.  Figure 4.10 also illustrates that    
    

   has a 

very similar effect       .  It is important to note the definition of the             

     
   

     

  
    

   

  
  given in       when       is normally distributed is an 

expression regarding the difference of population means.   However, in the skew normal model 

          , and so the definition of the         may not have the same interpretations as it 

does when a normal model is specified.  A possible solution may be to use a location shift to 

account for the shifting of the distribution of D caused by   . 
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Chapter 5 - IQI and Bivariate Normal Respsonse 

5.1. Introduction to Joint Outcome Variables 

 Thus far the structure for studying and assessing IQIs was contained to a single outcome 

variable at a time.  This chapter provides a structure for studying IQIs with respect to two 

outcome variables simultaneously, such as a measure of safety and efficacy.  Furthermore, 

connections are made between the joint PIQI, formed by the study of individual effects over both 

outcome variables, and the joint PSR, generated by the overlap of the bivariate outcomes.  Both 

outcome variables are assumed to be continuous. 

 5.1.1. Concurrent Study of Two Outcome Variables 

 In some cases it is vital that treatment T be more effective than R over both outcome 

variables.  Bristol (2005) studied the simultaneous average effect of T over R on two outcome 

variables in which one response measured safety and the other measured efficacy.  Bristol‟s 

methodology was motivated from the need to develop a new treatment T to improve the safety of 

treatment R, while maintaining at least the same efficacy. In such cases it may be important to 

know the proportion of the population that may be subject to an IQI over either, or both, outcome 

variables.  Another situation, discussed by Lizotte, Bowling, and Murphy (2010), is motivated by 

the treatment of schizophrenia, which involves measurements on both symptoms and side effects 

producing two outcome variables of interest.  In this case no treatments are currently available 

that works best on both outcomes so that an IQI over one outcome may be expected, while IQIs 

over both outcomes may be considered unacceptable.  In situations like these, it may be 

important to know the proportion of the population that may experience an IQI over both 



110 

outcome variables simultaneously, a condition referred to as joint PIQI and denoted as       

herein.  This chapter develops the       and its counterpart, the joint PSR denoted by     . 

 5.1.2. Sets of Potential Outcomes 

The outcome variables are identified as variables 1 and 2 in this chapter.  Similar to 

previous chapters, which studied IQI over a single outcome variable, the response measured on 

variables 1 and 2 under both treatments T and R may be considered, although not observed.  

Thus    and    result from application of T and    and    result from application of R.  

Consequently, there are two „true‟ effects defined as          and          for each 

individual.  In this structure         and         may be considered two sets of potential 

outcomes, and although both    and    are definable, they are unobservable. Consistent with 

previous chapters, the assumption that T is more effective on average than R is conveyed by the 

constraint that    
     and     

     and, without loss of generality, it is assumed that 

positive values of the response variables are desirable. 

5.1.3. Soy Treatment for Reduction in Both Cholesterol and Weight 

In the soy-treatment working example the reduction in both cholesterol, say variable 1, 

and weight, say variable 2, may be considered simultaneously.  As demonstrated in Chapter 3, an 

investigation into IQI may be conducted on cholesterol and weight change individually.  

However, a simultaneous study of IQI over both variables may provide a very different story.  

For example, the         for cholesterol change was found to be approximately 0.34.  A 

reduction in the      
    over both variables             

          would suggest that 

individuals in the population show improvement in at least one response, either cholesterol or 

weight reduction, since the      
    gets smaller unless both      and     . 
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5.2. The Joint PIQI 

5.2.1. The Multivariate Normal Model 

The structure established in this chapter for study of IQI over two variables 

simultaneously begins with placing the two sets of potential outcomes in a multivariate normal 

model given as 

 
 
 
 
 
   

   

   
    

 
 
 
 

      

 

 
 
   

   

   

   
   

    

 
 
 
 
 

   

    

    
   

   

    
   

   

 

      
       

    
   

    

    
         

   

      
       

    
   

    

    
         

   

   
    

       

   
          

 
 
 
 
 
 

 

 

 
 

            

The correlation between outcome variables within treatment is denoted by    

  and    
 .  The 

correlation between outcome variables over different treatments is denoted by     

 and     

 .  The 

correlation within outcome variables over different treatment is denoted by    and    .  So 

   and     are the nonestimable correlations discussed in earlier chapters for one outcome 

variable. 

 A joint IQI may be defined as an individual that responds better to R than to T over both 

outcome variables simultaneously.  The proportion of these individuals in a population may be 

defined as the probability that           
  falls in the region of    defined by     

           , which is analogous to the shaded region defined by     in consideration of a 

single outcome variable shown in Figure 1.1 (a).  Thus the joint PIQI may be defined as 

                                                                                    

Under       the       is affected by the degree to which both    
     and     

     and the 

characterization of   since not all parameters in   are estimable. Investigation of       herein is 

simplified by assuming         (although these parameters are estimable with observed 

data) and          . Under these assumptions   may be simplified to 
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where again     and     quantify within outcome correlations over different treatments, 

correlations analogous to     in chapter 3.  From the constraints inherent in the distribution of 

potential outcomes in      , these correlations are not estimable from observed data and an 

assumption of           is not typically justifiable. 

5.2.2. The Joint Distribution of D 

Under the multivariate normal model in       and the correlation constraints imposed on 

  , the two true effects    and    follow a bivariate normal distribution with parameters    and 

  , and under assumptions made earlier     and    are independent,.  Furthermore, following a 

similar strategy for the reparameterization of   
 , let    

    
 ,    

    
   

 ,    

    
 , and 

   
    

   
  giving 

   
  

  
        

   
    

   
    

      
  

      
          

   
      

         
                

Thus the       given in       may now be expressed as  

     
                 

       

       
        

 
       

       
        

                    

and bounds for      
  may be given as 

  
       

       
     

 
       

       
     

       
    

       

       
     

 
       

       
     

        

Although   is unobservable, the bivariate distribution of   is illustrated with a contour plot in 

Figure 5.1 panel (a) under a presumed characterization of    in which   
    

     ,       

 , and          .  The distribution, centered at    represented with an „ ‟ and the shaded 
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area, is a depiction of the area over which       may be calculated.  Panel (b) displays          

over the shaded region displayed in panel (a).  The area under          provides a graphical 

display of the quantity given in      . 

 

Figure 5.1: Illustration of the bivariate density of D 

In panel (a) the bivariate pdf of D is illustrated with a contour plot.  Panel (b) is the shaded 

portion of           from panel (a). 
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5.3. The Joint PSR 

5.3.1. Definition and Calculation of the Joint PSR 

A joint PSR may be defined as the proportion of similar responses or „overlap‟ of two 

bivariate distributions.  Although a technical report given by Bradley and Piantadosi (1982) 

references development of a joint overlap, their work has been inaccessible.  Given two bivariate 

densities      
      and           , the joint PSR may be given as 

                
                                                               

Under bivariate normality, which will be assumed in this chapter, the joint distributions of 

      
  and       

  may be derived under appropriate linear combinations of      , where 

the off diagonal elements of   are equal to zero.  Figure 5.2 illustrates the      under the 

constraints that both       
  and       

  are bivariate normal and   
    

    .  Since 

   
     and     

    ,            is denoted with a „ ‟ and           is denoted with a 

„ ‟.  The axes are depicted with dotted lines and the      is illustrated by the overlap of the 

density contours.   
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5.3.2. Calculation of joint PSR under the Normal Model 

Based on       the calculation of      is made possible by identifying the points at which the 

pdf‟s of       
  and       

  are equal.  Similar to the point of equality    in the univariate 

setting for the case when     (see Figure 2.3), the      depends on a line of equality over the 

points        , which is denoted by       
     .  The solid line in Figure 5.3 panel (a) 

displays an example of such a line, which splits the overlap area in half, and where 

     
                    , and otherwise      

                .  The calculation of     
 

and    are given in the next proposition. 

Figure 5.2: Joint PSR 

The contour plots of the distributions of       
  centered at     and       

  centered at    .  

The overlap of the contours is the joint PSR.  Plotting region represents points         and        . 
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 Proposition 5.1   

Given      ,   
    

    , and          , the line of equality is defined by 

       
     , where 

   
 

   

     

     
     

 

     
     

           
       

   
    

                                   

Proof: 

 From (5.1) let         
     

 
 
,               

 
,    

   
 

    

  , and    
    

    

  , 

then if         and          

            

 

          
     

 

 
      

         
 

 
  

 

          
     

 

 
      

         
 

 
  

      
              

        

 
     

     
 
 

 
     

     
   

     
     

 
 

 
     
     

  

                                                      
                  

    

     

     
     

   

Figure 5.3: The lines of equality where the densities are equal 

The solid line is called the line of equality found by      .  The dashed line is perpendicular 

to the line of equality and found by      .   
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Calculation of the      under       may be facilitated by the calculation of a line perpendicular 

to the line of equality that goes through the points     
    

  and          , which is termed the 

line of perpendicularity and denoted by       
     .  The intercept and slope of this line 

can be calculated by 

   
 

   
       

   

       

              
       

       

                                         

The dashed line added to panel (a) of Figure 5.3 shown panel (b) illustrates the line of 

perpendicularity.  The intersection of the line of equality and the line of perpendicularity divides 

the overlap into four equal areas.  When     , the      can be expressed in closed form as 

          
   

    

 
    

   
    

 
       

   
    

 
    

   
    

 
  

      
   

    

 
    

   
    

 
       

   
    

 
    

   
    

 
                

The fact that these four terms are equal is shown in the appendix (see A.5.1).  Representation of 

the      in the form of        is important, since a simple transformation can change the means 

of the distributions so that    
    without changing the      (or „overlap‟).  Thus any      

generated under the constraints of      ,      ,   
    

    , and         is composed of 

four equal areas, and can be transformed to meet the conditions of       . 

5.4. Relationship between the joint PIQI and the joint PSR 

 Proposition 5.2  

Given      ,      ,   
    

    , and          
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Proof : 

Part 1:  Show that      
          at       

Let     , then    
     and from       

     
      

       

  
 
       

  
      

       

  
  

and from        

              
    

   
    

 
                      

                           
   

    

 
    

   
    

     

 
  

                                         
       

  
      

       

  
   

 

Part 2:  Show that      
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Part 3: Show that      
          at       

Let      , then    
     and    
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 An example of proposition 5.3 is illustrated in Figure 5.4 under the constraints of 

proposition 5.3 and        In panel (a)     
            and                   

Thus the distance between the origin       and           is equal to    and the distance 

between           and     
      is equal to   . In panel (a) the      

          and 

           .  In panel (b) the means of the bivariate distributions change to     
      

         
  and                 

  so that the distances between           and 

    
      remains equal to   .  Thus in panel (b)      

               .   

 
 

 

 

 

 

 

Figure 5.4: An illustration of proposition 5.3 

The contour plots of the distributions of       
  centered at     and       

  centered at 

   .  The overlap of the contours is the joint PSR.  Although the PSR remains unchanged across 

both panels, the         is smaller in panel (a).  In panel (a)              , while       

     .  However, in panel (b)                    . 
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5.5. Future work 

 The relationship between the      
    and the      given in proposition 5.2 is 

constrained by both   
    

  and        .  Such constraints may be overly restrictive for 

broad use of the boundary given in proposition 5.2.  Consequently, allowing for more flexibility 

by eliminating one or both of these constraints is recommended for further study.  Allowing   
  

and   
  to be different will impact both quantities.  First, the diagonal elements of    may no 

longer be equal, affecting the      .  Second, the shapes of          and          may be very 

different, thus the line of equality wherein                    will be affected, impacting the 

    .  Allowing for different variances within the bivariate distributions of       
  and 

      
  should have similar consequences.   

 Constraints on the correlations given in       may also inhibit the development of a more 

general connection between      
  and the     .  Future research is recommended which allows 

both     and     to be bound by    and 1 and both    and    to be estimated from the data.  

The variance-covariance matrix    in       provides the structure for studying the      
  and the 

     and any unidentified relationships that may exist. 

 The approach taken in this chapter is that a joint IQI is defined as an individual that 

experiences an IQI on both outcome variables concurrently.  The      
  quantity is then 

motivated by the shaded area represented in Figure 5.1 panel (a).  However, recall the interest in 

IQIs motivated by Bristol (2005), wherein an IQI across either one or both outcome variables is 

of significance.  Figure 5.5 illustrates the area of interest given as the shaded region over the 

distribution of  .  That is, the safety of a variable may be improved for an individual, but any 

IQI for the efficacy, which is expected to not change, is of primary interest. 
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Figure 5.5: An alternative joint PIQI Definition 

The entire shaded area represents the area over the density of D where an IQI over either outcome 

variable may exhibit an IQI.  The double shaded area represents the space of D over which both 

outcome variables exhibit an IQI. 
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Chapter 6 - Summary and Future Direction 

Sharma (2010, p. 1) states that “the problem of averages” is that “our entire medical 

philosophy of „evidence-based‟ medicine seems built on the assumption that averages can reflect 

the true benefit (or risk) of a drug, when in real life (or medical practice) there is no such thing as 

the truly average patient.”  Treatment heterogeneity, a particularly challenging phenomenon to 

analyze at the individual level, is at the root of Sharma‟s issue with „averages.‟ Evidence that 

treatment heterogeneity has been of interest to scientists and medical practitioners for well over a 

century has been presented herein (e.g. Darwin, 1871).  In the modern era, formal recognition of 

the problems associated with treatment heterogeneity among patients in clinical trials has been 

recognized as early as 1977 when individual bioequivalent regulation was introduced (Hwang et 

al., 1978).  Before that, policy for evaluating bioequivalence occurred exclusively at the level of 

average effects of T with respect to R.  Interestingly, the statement by Chow and Liu (2000, p. 

2719) that “Important clinical and/or scientific issues in design and analysis of individual 

bioequivalence still remain unsolved” reflects a continued lack of treatment heterogeneity 

analysis today.  Much of the work presented in this dissertation is intended to provide both a 

structure and methods to improve and enhance the analysis of treatment heterogeneity in a 

randomized controlled trial. The demand for individualized treatment regimes suggests that the 

study of treatment heterogeneity at the individual level is a worthwhile effort.  This work can 

help provide a basis for new discoveries.   
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6.1. Summary of Dissertation 

Chapter 3 introduced a new structure for studying individual treatment heterogeneity.   

The fact that S-T interaction can be decomposed into two components was shown.  This 

decomposition led to a new quantity; an IQI.  This quantity puts the focus on individuals, as 

suggested by Sharma, by looking for those individuals that respond opposite to the response 

suggested by a study of average effects.  A positive probability of an IQI (PIQI) means that there 

are individuals in the population that respond better to R than T even though the average effects 

suggest otherwise.  In Chapter 3 maximum and minimum bounds were placed on the PIQI using 

existing techniques.  The development of the PIQI permitted new connections to be made 

between S-T interaction and two existing methods for studying treatment heterogeneity; subset 

interaction and the PSR, or density overlap.  These connections led to a series of simple 

diagnostics‟ used to evaluate the PIQI in a population or a subpopulation.  Longford (1999) 

suggested that all clinical trial results should include some assessment of individual effects.  The 

diagnostics suggested in this work provide direct information about the more severe component 

of S-T interaction with very little investment in time and no additional data or structure imposed 

on the trial.  For example, the ideas presented herein may help establish individualized 

bioequivalence standards such as requiring the maximum PIQI be below a certain threshold. 

The connections between the PIQI and the PSR in Chapter 3 led to the development of 

Chapters 4 and 5.  Since Chapter 3 is constrained to the normal model, Chapter 4 explores the 

connections between the PIQI and the PSR using a skew normal model.  This chapter led to a 

completely new structure and development for both the PIQI and the PSR.  Chapter 5 also 

presents connections between the PIQI and the PSR, but for bivariate responses.  As a result, the 

probability of an IQI over two sets of responses to T with respect to R may be quantified. 
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6.2. Future Direction 

6.2.1. The PIQI used to Detect Response Improvements 

The PIQI focuses on the most severe form of S-T interaction.  An alternative strategy 

may be to define a similar quantity as the IQI, such as     , to represent individuals who respond 

in a positive direction to treatment such as              .  Thus it may be possible to 

detect subpopulations that respond positively to a treatment that has been shown to have no 

effect on average over the entire population (see Zhao, Dmitrienko, and Tamura, 2010).  

6.2.2. The PIQI minimum 

It has been reported that when treatment variances are unequal      , individual 

responses to T with respect to R would not be constant (Stine and Heyse, 2001).  This idea is 

reflected in the         since, when              .  This idea is also reflected in the 

overlap of two densities.  Suppose X and Y follow a normal distributions.  Then the overlap of the 

distributions will not be complete (equal 100%) unless X and Y have equal variances, even if 

     .  Likewise, if    ,     cannot equal 1.  The          is an important quantity, since, 

when          , there are individuals in the population that will exhibit an IQI for treatments 

T and R.  Despite the importance of         quantity, it has received little attention here.  Part of 

the reason is that there was no connection found between the         and the PSR.  However, 

there may be alternatives to studying the         outside the PSR that can lend insight to this 

important quantity.  For example, differences among the quantiles of the distributions of X and Y 

might also suggest that          .  Thus relationships between quantiles and the         may 

be found that will provide more understanding of IQI within a population.  Recall that Gail and 

Simon (1985) formalized tests for a QI.  Tests for differences in distributions by quantile 

comparisons include Kemp, Yang, Perng, and Nelson (1993) and Elmore, Hettmansperger, and 
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Xuan (2006).  Such methods may provide information about the PIQI and the         in 

particular. 

 

6.2.3. Reduction in the Variance of D using the Correlation 

 Other improvements revolve around methods to tighten the bounds on the PIQI.  There 

may be several ways to do this, most of which will center on reducing   
 .  Section 3.6 uses 

covariates to reduce   
 .  This can be done when there is more than one observation on the same 

treatment within groups.   An improvement to this strategy may come from Perrett and Higgins 

(2004).  Perrett and Higgins estimate, what they call, the between unit component of variation 

when there is no replication within treatment group.  Thus, following a similar strategy, it may 

be possible to remove the constraints on the within groups replication and still reduce   
  

6.2.4. Calculation of the PIQI Conditioning on the Observed Values 

An alternative idea is motivated by the soy treatment example.  As described in Section 

3.2, although data from the soy treatment has been observed, the PIQI as defined herein only uses 

the treatment means to specify the distribution for      .  That is,       is drawn from the 

population of interest without prior knowledge of an individual‟s response to either treatment.  

However, given the observed data, the value of the missing data may be modeled conditioned on 

the observed value of the response.  From this perspective, new bounds on the PIQI could be 

formed that may be smaller, conditioned on the observed outcome.  An example of how this 

might be done is given using the soy treatment example. 

Figure 6.1 panel (a) is a duplication of Figure 1.1.  Recall that the open triangles along 

the   axis are the observed values for the first 8 patients on treatment T and the open circles 

along the y axis are the observed values for patients 9 through 16 on treatment R.  These values 
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are given in Table 1.1 and given again here in Table 6.1 (a).  One strategy for investigating 

evidence of an IQI with the soy and reference treatments is to impute the missing data values 

             and            under a bivariate imputation model for direct comparison with 

the observed values.  Since           ,              are observed, the model would need to 

generate pairs of values.  Under the assumption that        is distributed as bivariate normal, 

models for the imputed values of X and Y may be given by  

                              
       

                                           

and  

                              
       

                                            

respectively, where           .  Recall that despite the missing data, all the parameters of 

         can be estimated from the data with the exception of the correlation    ,.  Thus in 

addition to the distributional assumption of normality, to employ           must be assumed as 

well.   However, leaving the observed values in the contour plots given in Figure 6.1 panels (b), 

(c), and (d) as opposed to Figure 3.2 panels (b), (c), and (d), respectively gives additional insight 

about possible IQIs in the sample, and therefore, the population.   

 As an example, consider Figure 6.1 panel (b).  If the correlation is postulated at     

     , then the two largest values of   being        and        are almost certain to 

produce an     and an     pair using        such that           and           are in the IQI 
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Figure 6.1: The PIQI generated from the conditional distributions of X and Y 

This figure illustrates the development of the PIQI from the conditional univariate 

distributions conditioned on the observed responses.  The shape of the distribution of 

     , and therefore, the conditional distributions of X and Y  are dependent upon the 

unidentifiable value of    . 
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(a)            Univariate Normal 

 

 (b)                              

Observed and Missing    
Responses 

Individual Response 
Comparisons 

 Observed and Imputed    
Responses 

Individual Response 
Comparisons 

 Patient Soy(X) Ref. (Y) X-Y I(Y>X) 

 

Patient Soy(X) Ref. (Y) X-Y I(Y>X) 

1 17 NA ? ? 
 

1 17 7 10 0 

2 41 NA ? ? 
 

2 41 -25 66 0 

3 35 NA ? ? 
 

3 35 -6 41 0 

4 -4 NA ? ? 
 

4 -4 30 -34 1 

5 22 NA ? ? 
 

5 22 6 16 0 

6 48 NA ? ? 
 

6 48 -25 73 0 

7 14 NA ? ? 
 

7 14 5 9 0 

8 1 NA ? ? 
 

8 1 43 -42 1 

9 NA 1 ? ? 
 

9 16 1 15 0 

10 NA 22 ? ? 
 

10 9 22 --13 1 

11 NA -5 ? ? 
 

11 41 -5 46 0 

12 NA 11 ? ? 
 

12 28 11 17 0 

13 NA 31 ? ? 
 

13 -3 31 -34 1 

14 NA 0 ? ? 
 

14 30 0 30 0 

15 NA 4 ? ? 
 

15 18 4 14 0 

16 NA -10 ? ? 
 

16 38 -10 48 0 

Average 21.75 6.75 ? ? 
 

Average 21.94 5.56 16.37 0.25 

           (c)                                 
 

(d)                                

Observed and Imputed    
Responses 

Individual Response 
Comparisons  

Observed and Imputed    
Responses 

Individual Response 
Comparisons 

 Patient Soy(X) Ref. (Y) X-Y I(Y>X) 

 

Patient Soy(X) Ref. (Y) X-Y I(Y>X) 

1 17 1 16 0 
 

1 17 0 17 0 

2 41 16 25 0 
 

2 41 12 29 0 

3 35 8 27 0 
 

3 35 15 20 0 

4 -4 -7 3 0 
 

4 -4 -25 21 0 

5 22 26 -4 1 
 

5 22 -10 32 0 

6 48 -7 55 0 
 

6 48 33 15 0 

7 14 10 4 0 
 

7 14 14 0 0 

8 1 4 -3 1 
 

8 1 -17 18 0 

9 40 1 39 0 
 

9 33 1 32 0 

10 47 22 25 0 
 

10 38 22 16 0 

11 0 -5 5 0 
 

11 1 -5 6 0 

12 12 11 1 0 
 

12 46 11 35 0 

13 24 31 -7 1 
 

13 61 31 30 0 

14 10 0 10 0 
 

14 10 0 10 0 

15 60 4 56 0 
 

15 20 4 16 0 

16 21 -10 31 0 
 

16 3 -10 13 0 

Average 24.25 6.56 17.69 .1875 
 

Average 24.13 4.75 19.38 0 

Table 6.1: Assessing treatment heterogeneity by imputation 

Panel (a) illustrates the difficulty of assessing individual treatment heterogeneity with observable 

data.  Panels (b) – (d) illustrate one method by imputing missing values.  Any method requires 

assumptions about the individual correlation structure    . Each panel references a corresponding 

panel from Figure 6.1. 
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 region (shaded region).  The reason being both    and     are considerably larger than    

     and even larger than             Reference to Table 6.1 (b) shows that use of          

produced an IQI for both individuals, where the individuals that exhibited and IQI are identified 

by the shaded rows.  In fact, the imputed data in Table 6.1 (b) shows that, using            

there were four IQIs for that case. 

 This information may be used in many ways.  One of which may be to see what value of   

    may be required before the pairs such as           and            have a high probability of 

not falling within the IQI region.  Figure 6.1 panel (c) illustrates that even when      , the 

imputed            and           pairs have a higher probability of falling within the shaded IQI 

region than outside the shaded region due to the large within treatment variability.  On the other 

hand one may ask what value of     should be necessary before the chance of an IQI is 

eliminated.  Figure 6.1 (d) illustrates the example with         .  Surprisingly, even with X 

and Y so highly correlated, the contour plot in panel (d) shows that the probability mass over the 

shaded area is positive.  In fact, in 1000 imputed data sets approximately half had at least one 

IQI.   The methods of utilizing conditional distributions based on the observed data have not 

been fully explored.  Likewise, the imputation models of           have not been fully 

developed.  For example, there is additional variance considerations associated with imputed 

data sets.   Also, the models may be improved by use of other observed covariates.  The 

increased information should yield important results in making statements about   
 , which may 

lead to an improved IQI analysis based on observed data in a study. 
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Appendix A - Proofs and Derivations 

 Chapter 3 Results 

Unless otherwise stated, the results for chapter 3 are derived assuming       is 

distributed bivariate normal with       ,   
    ,   

      , and    . 

 A.3.1: Equation (3.4) 

                
    

                         

      
 

Proof: 

            

 

     
  

 
  

       
 

 

       
  

 
   

       
 

                        
      

               

Solving for   gives the desired result.    

 A.3.2:  Second equation of Result 2 

          

Proof: 

Part 1:  Show        . 

Suppose       , then 

    
      

   
    

                                         

                                       , a contradiction. 

Part 2:  Show       . 

From       
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(a) Show 

    
         

      
           

Suppose  

    
      

     
 

       

      
                                

                                                   

                                                       

                                                                      

(b) Since                                   

      
    

                         

      
   

when     , then 

    
         

      
 

         

      
 

      
    

                         

      
      

  

 A.3.3: Equation (3.19) 

    
      

      
                 

 

Derivation: Given           

          
  

    

      
  

                
  

 
   

            
  

   

      
  

                 
  

 
   

     
  

      
 
   

     
     

 
   

     
  

   
 
       

 

      
  

                 
  

 
   

           
 
   

 
   

           
 
    

 
   

                     
 
   

 
   

 
   

      
  

                 
  

 
              

  
   

      
 

  
 
              

  
   

      
  

                              

  
 
   

                     
 
   

   
 
   

           
 
  
 
   

           
  

   
 
   

 

   
 
   

           
 
  
 
   

           
  

   
 
   

 

      
  

                
  

 
              

  
   

      
 

  
 
              

  
   

      
     

                  

   
 
   

           
 
  

 
   

           
  

   
 
   

               
 



137 

                    
      

                      

 A.3.4:  Proposition 3.8 

Given SSE is generated from the model         and             are distributed as in    

         

 
    

      
  

      
  

       
    

  
   

      
 

Proof: 

     
  

   

      
 

                

      
  

              
  

    
       

             
 
   

     
  

      
 
   

     
     

 
   

     
 
       

 
   

  
   

  
   

  
   

      
  

              
  

    
    

 
   

     
  

        
    

 
   

     
  

   
  
   

  
         

    
   

           
     

  
   

 
   

      
  

               
  

  
 
   

           
 
   

 
   

           
  

      
 
   

           
 
   

 
   

           
  

   
 
   

 
   

      
  

                          
                         

 
   

      
  

                
  

              
  

                 
  

                            
 
    

      
  

                
  

                            
  

    

      
  

                 
  

       
    

  
   

      
        

 

 

  A.3.5: Equation (3.21) 

The model from a balanced two-way ANOVA (given usual assumptions) with Treatment  

at two levels        (T and R) and treatment Z (a grouping variable) at           

levels and       
 

 
, where both   and  

 

 
 are greater than 1 may be given as        

               , where      is the response to individual   given treatment h from 

group  .  The sum of squares portion (SSTZ) of an F- test for SI is a scalar of  
 
 
                          

  
   

  
 
    

 

an estimate of 
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Proof: 

Given SSTZ is the sums of squares due to the interaction term     , then 
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 Chapter 4 Results 

Unless otherwise stated, the results for chapter 4 are derived assuming X and Y are skew 

normally distributed with       ,          ,   
    ,   

      , and    . 

 A.4.1: Equation (4.8) 

 

   

   
            

       

           

      

    
        

 

          
      

   
     

                

          
     

    
        

          
 

 

 

Proof (partial): 
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From here matrix algebra yields      .    

A.4.2: Equation 4.10 
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Proof: 
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 A.4.3: Proposition 4.1 

Given X and Y are distributed as skew normal,    
    

and     

            is strictly increasing on          

Proof: 

Let           , where    , then 

  
    

    
    

  
     

  

 
 

    
     

      
    

 
 
   

     
 

    
    

  
         

 
 

 
 

    
         

      
    

 
 
  

over all         .  This is true since in the numerator 

 
     

 
 

 
 

  
         

 
 

 
 

 

over all          because     , and in the denominator 

    
     

 
     

    
 
 

     
         

 
     

    
 
 

 

over all          because          

 A.4.4: Proposition 4.2 

Given X and Y are distributed as skew normal,    
    

and     

             is strictly decreasing in          

Proof:  

Let     and            

                     
    

           
 

  

                                                  



142 

                    
 

  
   

  
    

 

  
   

     
   

    
 

  
   

   
 

  

 

                     
 

  
       

    
 

  
          

         
 

  
        

 

  

 

         
    

             
 

  

            

                                                                   

The inequality holds since, 

  
      

     
 (by definition in Section 3) 

  
      

     
 (by proposition 4.3), 

each component of        
    

          (the integrand) is larger for       over the 

range       .  That is, 
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so that less area exists over the range       . 

Consequently,                             for                  

   , and              

 A.4.5: Equation         
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Proof (partial): 
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so that the numerator is 
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The result for    
         can be found similarly. 

 A.4.6:  

Given     and     ,  

   
 and    

 are strictly increasing functions of    . 

Proof : Provided for    
 in the case for when    

    
  . 

Let     and           .  When     ,    
    

. So from the numerator of 
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and from the denominator that 
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 Chapter 5 Results 

 

 A.5.1: Equation        

 Given the constraints of      ,      ,   
    

    , and          

          
   

    

 
    

   
    

 
       

   
    

 
    

   
    

 
  

      
   

    

 
    

   
    

 
       

   
    

 
    

   
    

 
          

Proof: 

Term 1: 

     
   

    

 
    

   
    

 
          

    
   

    

 
  

                        

   
    

     

 
            

       

  
  

 

Term 2: 
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Term 4: 
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the terms are equal.   
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Appendix B - R Programs 

 B.4.1: Equation       (Calculation of PIQI under the skew normal model) 

              #Function for PIQI under skew normality  

#Output: PIQI 

#Name of function: f.piqi.sn 

#Equation (4.9) to accomodate skew normality 

#sn package is for skew normal 

 

#Packages: 

library(MASS) 

library(sn) 

 

###JOINT DISTRIBUTION SPECIFICATIONS 

#Location 

#mu=c(mu.x,mu.y)  

 

#Scale 

#sigma=diag(c(sigma.x,sigma.y))  

 

#Shape 

#alpha.j=matrix(c(alpha.x.j,alpha.y.j),nrow=2)  

 

#Correlation 

#rho 

 

f.piqi.sn=function(mu,sigma,alpha.j,rho){ 

P=matrix(c(1,rho,rho,1),nrow=2) 

Sigma=sigma%*%P%*%sigma 

 

A.D=matrix(c(1,-1),nrow=2)  #Tha A matrix from pages 584-585 Azzalinni 

 mu.D=t(A.D)%*%mu 

 Sigma.D=t(A.D)%*%Sigma%*%A.D 

 sigma.D=sqrt(Sigma.D) 

 B.D=solve(sigma)%*%Sigma%*%A.D 

 alpha.D.num=sigma.D*solve(Sigma.D)%*%t(B.D)%*%alpha.j 

alpha.D.den=sqrt(1+t(alpha.j)%*%(P-B.D%*%solve(Sigma.D)%*% 

t(B.D))%*%alpha.j) 

 alpha.D=alpha.D.num/alpha.D.den 

 

PIQI=psn(0,location=mu.D,scale=sigma.D,shape=alpha.D) 

} 
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 B.4.2: PSR and Crossing Points 

#Function for PSR under skew normality  

#Output: PSR and the crossing points 

#Name of function: f.psr.sn 

#Equation (2.8) to accomodate skew normality 

#sn package is skew normal 

#E(X)<E(Y) for f.psr.sn to operate 

 

library(MASS) 

library(sn) 

 

###Function parameters 

#Location parameters 

#mu.x 

#mu.y 

 

#Scale parameters 

#sigma.x 

#sigma.y 

 

#Shape parameters 

#alpha.x.m 

#alpha.y.m 

 

#delta: specification of numerical accuracy for cross points 

#Range of x: x.lower, x.upper 

 

f.psr.sn<-function(mu.x,mu.y,sigma.x,sigma.y,alpha.x.m,alpha.y.m,delta,x.lower,x.upper){ 

x.range=seq(x.lower,x.upper,delta) 

fX=dsn(x.range,location=mu.x,scale=sigma.x,shape=alpha.x.m)#desnity for X 

fY=dsn(x.range,location=mu.y,scale=sigma.y,shape=alpha.y.m)#density for Y 

 

#########FIND CROSSING POINTS xL , xI, and xU 

 

count.x=ifelse(fY>fX,1,0) 

count.y=ifelse(fY<fX,1,0) 

count.diff=count.x-count.y 

for(i in 1:length(count.diff)){ 

 ifelse(count.diff[i]==0,count.diff[i]<-1,count.diff[i]<-count.diff[i]) 

 } 

 

#LOOP FOR FINDING NUMBER OF CROSSPOINTS 

cross_points.vector=rep(0,length(count.diff)) 

for(i in 1:length(count.diff-1)){ 

 ifelse(count.diff[i]==count.diff[i+1],cross_points.vector[i]<-0, 

 cross_points.vector[i]<-1) 

 } 

cross_points.number=sum(cross_points.vector) 
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#SOLUTION FOR ONE CROSSING POINT 

if (cross_points.number==1){ 

 xL=x.range[sum(count.x)] 

 xI=1000 

 xU=1000 

 

   prob.X.num=psn(xL,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

   prob.Y.num=1-psn(xL,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 

   PSR=prob.X.num+prob.Y.num 

   } 

 

#SOLUTION FOR TW0 CROSSING POINTS 

if ((cross_points.number==2)&(count.diff[1]<0)){ #K<1 

 #split into 3 X segments 

 count.seg.1=0 

 seq.1=1 

 while(count.diff[seq.1]<0) 

  {count.seg.1<-count.seg.1+1 

   seq.1<-seq.1+1 

       } 

 xL=x.range[count.seg.1] 

 

 count.seg.2=0 

 seq.2=1 

 while(count.diff[count.seg.1+seq.2]>0) 

  {count.seg.2<-count.seg.2+1 

   seq.2<-seq.2+1 

       } 

 xU=x.range[count.seg.2+count.seg.1] 

 xI=1000 

 

 prob.Y.1.num=psn(xL,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 prob.X.2.num=psn(xU,location=mu.x,scale=sigma.x,shape=alpha.x.m)- 

   psn(xL,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

 prob.Y.3.num=1-psn(xU,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 

   PSR=prob.Y.1.num+prob.X.2.num+prob.Y.3.num 

 } 

 

if ((cross_points.number==2)&(count.diff[1]>0)){ #K>1 

 #split into 3 X segments 

 count.seg.1=0 

 seq.1=1 

 while(count.diff[seq.1]>0) 

  {count.seg.1<-count.seg.1+1 

   seq.1<-seq.1+1 

       } 

 xL=x.range[count.seg.1] 

 count.seg.2=0 
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 seq.2=1 

 while(count.diff[count.seg.1+seq.2]<0) 

  {count.seg.2<-count.seg.2+1 

   seq.2<-seq.2+1 

       } 

 xU=x.range[count.seg.2+count.seg.1] 

 xI=1000 

 prob.X.1.num=psn(xL,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

 prob.Y.2.num=psn(xU,location=mu.y,scale=sigma.y,shape=alpha.y.m)- 

   psn(xL,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 prob.X.3.num=1-psn(xU,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

 

   PSR=prob.X.1.num+prob.Y.2.num+prob.X.3.num 

 } 

 

#SOLUTION FOR THREE CROSSING POINTS 

if (cross_points.number==3){ #ALPHA.X.M=inverse of ALPHA.Y.M 

 #split into 4 X segments 

 count.seg.1=0 

 seq.1=1 

 while(count.diff[seq.1]<0) 

  {count.seg.1<-count.seg.1+1 

   seq.1<-seq.1+1 

       } 

 xL=x.range[count.seg.1] 

 count.seg.2=0 

 seq.2=1 

 while(count.diff[count.seg.1+seq.2]>0) 

  {count.seg.2<-count.seg.2+1 

   seq.2<-seq.2+1 

       } 

 xI=x.range[count.seg.2+count.seg.1] 

 count.seg.3=0 

 seq.3=1 

 while(count.diff[count.seg.1+count.seg.2+seq.3]<0) 

  {count.seg.3<-count.seg.3+1 

   seq.3<-seq.3+1 

       } 

 xU=x.range[count.seg.3+count.seg.2+count.seg.1] 

  prob.Y.1.num=psn(xL,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 prob.X.2.num=psn(xI,location=mu.x,scale=sigma.x,shape=alpha.x.m)- 

   psn(xL,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

 prob.Y.3.num=psn(xU,location=mu.y,scale=sigma.y,shape=alpha.y.m)- 

   psn(xI,location=mu.y,scale=sigma.y,shape=alpha.y.m) 

 prob.X.4.num=1-psn(xU,location=mu.x,scale=sigma.x,shape=alpha.x.m) 

   PSR=prob.Y.1.num+prob.X.2.num+prob.Y.3.num+prob.X.4.num 

 } 

f.psr.ns_out=return(PSR,xL,xI,xU) 

} 



150 

 B.4.3: Kernel PSR calculation 

 

#Kernel PSR Calculation 

#Equation (2.13) 

library(sn) 

library(KernSmooth) 

 

##Parameter Specifications 

#Location parameters 

#mu.x 

#mu.y 

#Scale parameters 

#sigma.x 

#sigma.y 

#Shape parameters 

#alpha.x.m 

#alpha.y.m 

 

#SIMULATION TO PRODUCE MARGINALS 

 

n=500 

X<-rsn(n,mu.X,sigma.X,alpha.x.m)  

Y<-rsn(n,mu.Y,sigma.Y,alpha.y.m) 

 

hx=bw.SJ(X,method="dpi") #Sheather Jones plug-in bandwidth 

hy=bw.SJ(Y,method="dpi") #Sheather Jones plug-in bandwidth 

#hx<-1.06*sqrt(var(X))*n^(-1/5) #Proposed by Stine and Heyse 

#hy<-1.06*sqrt(var(Y))*n^(-1/5) #Proposed by Stine and Heyse 

kde.X<-bkde(X,bandwidth=hx,range.x=c(min(X,Y),max(X,Y))) 

kde.X.x<-kde.X$x 

kde.X.y<-kde.X$y 

kde.Y<-bkde(Y,bandwidth=hy,range.x=c(min(X,Y),max(X,Y))) 

kde.Y.x<-kde.Y$x 

kde.Y.y<-kde.Y$y 

plot(kde.X,type="l",lwd=2,axes=FALSE) 

lines(kde.Y,lwd=2,lty=2) 

 

l<-length(kde.X.x) 

d<-kde.X.x[2]-kde.X.x[1] 

 

d.psr<-numeric(l) 

for(i in 1:l){d.psr[i]<-min(kde.X.y[i],kde.Y.y[i])*d 

 } 

PSR_k=sum(d.psr) 
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