INVESTIGATION OF THE PHYSICAL PROPERTIES OF RESERVOIR ROCKS BY ELECTRIC WELL LOGGING, IN GRAHAM COUNTY, KANSAS

by

GAMBHIR SINGH

B. A., Agra University, India, 1959 M. A., Agra University, India, 1961

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Geology

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

Approved by:

Valte

Major Professor

LD	
2668	
74	
1965	
51.17	
C. 4	L
Docum	ient

TABLE OF CONTENTS

INTRODUCTION	1
Purpose of Investigation	1
Location of the Area	1
Review of Literature	2
Procedure	2
ELECTRICAL MEASUREMENTS IN THE BORE HOLE	4
Spontaneous Potential	6
PHYSICAL PROPERTIES OF RESERVOIR ROCKS	7
Permeability	7
Porosity	8
Fluid Saturation	9
Salinity	9
Temperature	10
ELECTRIC LOG ANALYSIS	11
FIELD HOLLEY	11
Specific Gravity	11
Physical Properties of the Formations	11
Smoky Hill Chalk	11
Porosity	20
Permeability	20
Salinity	27
Fort Hays Limestone	27
Porosity	28
Permeability	29

Salinity	•	•	•••	•	•	•	•	•	•	•	•	29
Codell Sandstone	•	•	• •	•	•	•	•	•		•	•	29
Wittie's Method for Porosity	•	•	•••	•	•	•	•	•	•	•	•	3 0
Water Saturation	•			•	•	•		•	•		•	30
Permeability					•	•	•		•	•	•	31
Salinity	•				•	•	•	•		•	•	31
Blue Hill Shale					•		•		•		•	31
Sw and \emptyset by Rocky Mountain Method							•	•	•		•	32
Permeability			• •				•	•	•		•	33
Salinity										•		33
Fairport Chalky Shale								•			•	33
Sw and $ otin$ by Rocky Mountain Method							•				•	34
Permeability												35
Salinity							•					35
STATIGRAPHY AND ELECTRIC INTERPRETATION												36
Precambrian												36
Cambrian System												36
Croixian Series												36
Ordovician System												36
Lower Ordovician												36
Arbuckle Group												36
Electric Interpretation												36
Middle Ordovician												37
Simpson Group												37
Viola Group												37
Mississippian System												37
							134	2011	100		12.11	

Osage Series	•	٠	•	•	•	• •	•	•	•	•	•	٠	•	37
Pennsylvanian System	•	•	•	•	•		•	•	•	•	•	•	•	37
Desmoinesian Series		•	•	•	•	• •	•	•	•	•	•	•	•	37
Cherokee Group		•	•	•	•		•	•	•	•	•	•	•	37
Electric Interpretation	•	•		•	•	• •	•		•	•	•	•	•	37
Marmaton Group	•	•	•	•	•		•	•	•	•	•	•	•	37
Missourian Series	•	•	•	•	•	• •	•	•	•	•	•	•	•	38
Pleasanton Group	•	•	•	•	•		•	•	•	•	•	•	•	38
Lansing-Kansas City Group		•	•	•	•		•	•	•	•	•	•	•	38
Electric Interpretation	•	•	•	•			•	•	•	•	•	•	•	38
Virgilian Series			•	•					•	•	•	•	•	38
Pedee Group		•		•					•	•	•		•	38
Douglas Group									•	•	•	•	•	38
Shawnee Group		•							•	•	•	•	•	38
Electric Interpretation							•							39
Wabaunsee Group					•					•			•	39
Electric Interpretation		•	•						•				•	39
Permian System													•	39
Wolfcampian Series		•									•		•	39
Admire Group											•			39
Council Grove Group					•				•		•		•	39
Electric Interpretation		•	•		•					•				39
Chase Group					•					•				40
Electric Interpretation														40
Leonardian Series														40
Summer Group														40

Electric Interpretation	•	•	•		•	•	•	•	•	•	•	•	•	40
Nippewalla Group	•	•	•	• •		•	•	•	•	•	•	•	•	40
Electric Interpretation		•			•	•	•	•	•	•	•	•	•	41
Jurassic System		•	•		•	•	•	•	•	•	•	•	•	41
Cretaceous System	•	•	•	• •	•	•	•	•	•	•	•	•	•	41
Commanchean Series		•			•	•	•	•	•	•	•	•	•	41
Gulfian Series	•	•	•			•	•	•	•	•		•	•	41
Colorado Group		•				•	•	•	•	•	•		•	41
Electric Interpretation		•	•	• •	•	•	•	•		•	•	•	•	42
Tertiary System	.*	•	•		•	•	•	•	•	•	•	•	•	42
Pliocene Series	•	•	•	• •		•	•	•	•	•	•	•	•	42
Quaternary System		•	•			•	•	•	•	•	•	•	•	43
Pleistocene Series		•	•			•	•	•	•	•	•	•	•	43
STRUCTURE	•	•	•			•	•	•	•	•	•	•		43
CONCLUSIONS	•	•	•			•	•	•	•	•	•		•	44
ACKNOWLEDGMENTS	•	•	•			•	•	•	•	•	•	•	•	46
BIBLIOGRAPHY		•				•	•	•	•	•	•	•	•	47
APPENDIX		•				•			•	•	•		•	50

- identica - Marcine Marcine

NOMENCLATURE

Α	 A function of layer depths resistivities r and λ
AM	 Normal spacing
AO	 Lateral curve spacing
a	 Radius of drill hole
b	 Radius of invaded zone
BHT	 Bottom hole temperature in ^O F.
С	 Salinity in ppm
E	 Electromotive force in millivolts
F	 Formation resistivity factor
G	 Geothermal gradient
I	 Electric current flow through a point electrode
Io	 Bessel function of first order zero kind
к	 Coefficient in SP formula
k	 Permeability in millidarcies
Ко	 Bessel function of second kind zero order
n	 Saturation exponent
Pc	 Capillary pressure
Q	 Flow velocity
r	 Radius from the electrode
Ri	 Resistivity of the invaded zone
Rm	 Resistivity of the mud
Rmc	 Resistivity of the mud cake
Rmf	 Resistivity of the mud filtrate
Ro	 Resistivity of the formation when 100% water saturated

Rt	 Resistivity of uncontaminated zone
Rw	 Resistivity of the formation water
(Rw)e	 Equivalent water resistivity
Sw	 Water saturation
т	 Absolute temperature
V	 Electric potential
Vi	 Potential in the invaded zone
Vm	 Potential function within the mud
Vt	 Potential in the uncontaminated zone
x,y,z	 Cartesian coordinates
ø	 Porosity in percent
λ	 Parameter of integration
Δh	 Difference in height
∆sp.gr.	 Difference in water and oil specific gravity
ΔRt	 Difference in true resistivities
∇^2	 Laplacian operator

INTRODUCTION

Purpose of Investigation

This investigation was attempted for the quantitative interpretation of porosity, permeability, fluid saturation, salinity and temperature of petroleum reservoir rocks by use of electric logs from Graham County, Kansas. The investigation included the correlation of wells by using physical formation characteristics. This type of investigation is of considerable importance in searching for potential petroleum reservoirs.

Location of the Area

Graham County is located in northwestern Kansas and is the fourth county east of the Colorado-Kansas State line (Appendix, Fig. 9). The county is bordered on the north by Norton County, on the east by Rooks County, on the south by Trego County, and on the west by Sheridan County. It includes 25 townships--Ts. 6 S. to T. 10 S., and Rs. 21 W. to 25 W., and covers approximately 891 square miles. This county is a part of the high plains of the Great Plains Physiographic Province and topographically is an upland moderately dissected by streams, differing from the flat upland found farther west in the State.

Two-thirds area of this county is drained by the South Fork Solomon River and its tributaries in the central part of the county. North Fork Solomon river and its tributaries drain the northern part of the county while Saline river and its tributaries drain the southern part of the county.

Review of Literature

Previous investigation of Graham County consisted of stratigraphic and structural regional studies, and studies of individual oil and gas pools. Darton (1905) conducted studies on geology, structure and water resources of central great plains (1918). Structure was also described by Twenhofel (1925). The Dakota group was described by Bass (1926). Prescott published a report on geology and groundwater resources of Graham County (1955). Koester (1935), Merrian and Atkinson (1955) discussed the tectonic development of the Central Kansas Uplift and the Cambridge Arch.

The stratigraphy of Kansas was described by Moore (1951). Landis and Keroher (1942) reviewed the lithology of subsurface well cuttings. The Cambrian-Ordovician rocks in Kansas were described by Keroher and Kirby (1948); the Mississippian rocks by Lee (1939) and the Cretaceous and Tertiary formations by Swineford (1947) and Frye (1956). Low Southwest oil pool--a successful seismic discovery in Graham County was discussed by Richard L. Winchell (1959). Stratigraphy and structure as determined by Kansas Sample Log Service strip logs were also described by Sandlin in his master's thesis (1957). A Central Kansas correlation study was published by LANE-WELLS with a composite radioactive log. Halliburton Well Cementing Company calculated porosity and water saturation of Lansing-Kansas City formations by resistivity and radiation guard log.

Procedure

The information used in locating the formations was obtained by interpretation of electric logs of this county available in the Department of Geology. Some gamma ray logs, sonic logs, induction logs, neutron logs,

2

laterologs, micrologs and microlaterologs were also used to supplement the data.

For calculating porosity, permeability, fluid saturation and salinity, Schlumberger's Log Interpretation Charts were used. Fluid saturation and porosity in limestone formations were calculated by Tixier's Rocky Mountain (Schlumberger's Charts D-8 and D-10) and Porosity Index methods (Chart B-2), while Archie's equation (Sw = $\sqrt{\frac{Ro}{Rt}}$) and Humble equation (F = $\frac{0.62}{g^{2.15}}$) were used in shale and sandstone formations. But the Rocky Mountain method was usually used due to the absence of 100 percent water saturated (Ro) sand zones in this area. This method was also used in evaluating other tight formations.

Schlumberger's empirical equation for permeability $\binom{\sqrt{2}}{K} = 250 \frac{g^3}{S_W}$ was not widely used due to a weakness inherent in the fact that the permeability is dependent on the sixth power of the porosity and second power of the water saturation. Thus the errors are raised to the square and sixth powers in calculating the permeability. Therefore permeability was calculated by Tixier's Resistivity Gradient method (Chart E-2). For salinity determination Schlumberger's Resistivity-Salinity Chart (A-6) was used. This chart did not indicate the true salinity in salt-formations. This might be due to the fact that temperature gets higher in salt formations and for a constant water resistivity, apparent salinity decreases as temperature abnormally increases in salt beds.

Temperatures of the formations were calculated by Geothermal Gradient Chart (A-2). A mean surface temperature has been taken, 80° F., which has been statistically determined by Schlumberger corporation and P.G.A.C. for this area.

A stratigraphic correlation chart (Fig. 10) was also constructed to show relative thickness and physical characteristics of the formations by using four electric well logs in different sections and a well in Gove County, Kansas (Appendix, Fig. 13).

ELECTRICAL MEASUREMENTS IN THE BORE HOLE

Electric logging records the resistivities of the subsurface formations and the spontaneous potentials generated in the bore holes.

Electrical resistance is the opposition offered by any substance to the flow of an electric current through it.

By Ohm's Law the rate of flow of electric current I in a conductor is proportional to the electric potential difference ΔV causing that flow. The proportionality constant is called resistance R:

and

$$\Delta V = IR$$

$$R = \frac{\Delta V}{I}$$
(1)

The points M and N may be considered as representative of two spherical shells and A an electrode (Fig. 1). If the rock around A is considered to be homogeneous with a specific resistance , the resistance across a thin shell of thickness Δr will be:

Fig. 1. Electrode system for electric logging.

$$\Delta R = \frac{\rho_{\Delta r}}{A} = \frac{\rho_{\Delta r}}{4\pi r^2}$$

and the total resistance between the shells of radius ${\bf r}_1$ and ${\bf r}_2$ will be:

$$R = \frac{\rho}{4\pi} \int_{r_1}^{r_2} \frac{\Delta r}{r^2}$$

Integrating:

$$= -\frac{\rho}{4\pi} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$
$$= \frac{\rho}{4\pi} \cdot \frac{r_2 - r_1}{r_1 - r_2}$$
(2)

By equating (1) and equation (2):

$$\frac{\Delta V}{I} = \frac{\rho}{4\pi} \cdot \frac{r_2 - r_1}{r_1 - r_2}$$

5

$$P = 477 \cdot \frac{\Delta V}{I} \cdot \frac{r_1 \cdot r_2}{r_2 - r_1}$$

Thus the resistance of the rock, opposite the two electrodes M and N can be computed.

The potential of a point on such a spherical surface of radius r_1 with respect to infinity is:

$$V = \int_{r_1}^{\infty} \frac{I P}{4\pi r^2} dr$$
$$= \frac{I P}{4\pi} \left(-\frac{1}{r} \right]_{r_1}^{\infty}$$
$$= \frac{I P}{4\pi r}$$

Spontaneous Potential

The electrochemical potential is defined by

$$E = \frac{RT}{F}$$
 Loge $\frac{a_1}{a_2}$

a₁ and a₂ = activities of Nacl solutions
 R = Gas constant
 F = Faraday
 T = Absolute temperature

Activities are usually known on a mole basis, so equation becomes:

$$E = \frac{RT}{nF}$$
 Loge $\frac{a_1}{a_2}$

n = number of equivalents of mole.

And the potential developed by ionic movement for any liquid junction:

$$E = -\frac{RT}{F} \int_{1}^{2} \sum_{i} \frac{ti}{Zi} d \log a_{i}$$

ti = transference number of i th ions
ai = its activity
Zi = its valence

Activities a₁ and a₂ may be replaced by electrical conductivities of two solutions or its reciprocal Resistivity R:

$$E_{(volts)} = -\frac{RT}{F} \log \frac{R_2}{R_1}$$

R₁ = Resistivity of water, Rw
R₂ = Resistivity of mud filtrate Rmf

Therefore:

$$E = -\frac{RT}{F} \log \frac{Rmf}{Rw}$$

PHYSICAL PROPERTIES OF RESERVOIR ROCKS

Permeability

The permeability of a reservoir rock may be defined as its fluid conductivity or ability to let fluids to flow through its pore network at practical rates under reasonable pressure differentials. The empirical relationship was developed by Darcy who studied the flow of water through unconsolidated sands. The rate of filtration of fluid through a mudcake is given by:

$$Q = \frac{KA}{\mu} \cdot \frac{\Delta p}{x}$$

Q = flow velocity

 μ = viscosity of flowing fluid

 $\Delta p = pressure differential$

x = thickness of cake

K = permeability of the cake

Over a period of time the total amount of filtrate that passes through the cake is:

$$V = \int_{0}^{t} Q dt$$
$$= \int_{0}^{t} \frac{KA}{\mu} \cdot \frac{\Delta p}{x} dt$$

Porosity

Porosity is a measure of the void space within a rock expressed as a fraction or percentage of the bulk volume of the rock:

$$\phi = \frac{Vb - Vs}{Vb} = \frac{Vp}{Vb}$$

where

Ø = porosity
Vb = bulk volume of the rock
Vs = net volume occupied by solids (grain volume)
Vp = pore volume.

Porosity determines the volume of oil and gas present, and all recovery computation must be based on a knowledge of its value.

Fluid Saturation

Pore space occupied by fluids is called fluid saturation. The fluid may be oil, gas or water.

The fluids can be calculated:

 $S_{(water)} = \frac{water}{pore \ volume}$ $S_{(oil)} = \frac{oil}{pore \ volume}$ $S_{(gas)} = 1 - Sw - So.$

Salinity

Formation waters and drilling muds usually contain solutions of several different chemicals. The predominating chemical is sodium chloride. In case other chemicals are present, it is necessary to convert the amounts of such chemicals into their equivalent weights of sodium chloride.

The resistivity of formation waters and drilling mud at a certain temperature will differ due to the concentrations and the nature of the ions. When fluid resistivity is known from other sources, then we can calculate salinity in parts per million (ppm) or grains per gallon (by Schlumberger Chart A-5) as it is only the function of water resistivity and temperature. The following equation indicates that when water resistivity increases, salinity decreases:

and

$$C = \frac{5000}{Rw}$$

 $R_W = \frac{5000}{2}$

C = salinity.

Temperature

We can solve Laplace's differential equation for calculating the temperature inside the well, as temperature increases towards the center of the earth:

$$\frac{2}{\sqrt{T}} = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$
$$\frac{\partial T}{\partial t} = 0$$

and:

$$\sqrt[2]{T} = \frac{1}{r} \cdot \frac{d^2(rT)}{dr^2} = 0$$

and integrating:

٠.

 $T = A + \frac{B}{r}$ B = Geothermal gradient A = Mean surface temperature r = radius of the earth T = temperature t = time

T increases as r decreases.

LaPlace equation is applicable to an earth wherein the temperature is not a function of time. In this above equation temperature is a function of radial distance only.

This satisfies our equation for calculating temperatures of different formations in the bore hole:

T^o = A + (G x Depth/100')
G = Geothermal gradient (0.8 to 1.2 degrees F./100')

ELECTRIC LOG ANALYSIS

WELL: IDA KEITH No. 3

FIELD: HOLLEY

LOCATION: SEC. 10-95-24W

Total Depth: 4040' Rm Mud Resistivity: 0.9 ohm-meters at BHT (BHT) Bottom Hole Temperature: 108° F. Bit Size (hole Size): 77/8"

Oil: 47 API Gravity

$$\therefore \text{ Specific Gravity} = \frac{141.5}{\text{API} + 131.5} = \frac{141.5}{47 + 131.5} = 0.789$$

Physical Properties of the Formations

Smoky Hill Chalk: -564' - Bottom

Formation Temperature:

$$T^{\circ} = A + (G \times Depth/100')$$

$$A = Average surface temperature 80^{\circ} F.$$

$$G = Geothermal gradient 0.70$$

$$T^{\circ} = 80 + (0.7 \times 564/100)$$

$$= 84^{\circ} F.$$

and

Log Datas: SP = - 30 millivolts

$$Rt(AO) = 30$$
 ohm - meters

Rm of the formation = $\frac{BHT}{Form. Temp.}$ x Rm BHT

.".
$$Rm = \frac{108}{84} \times .90 = 1.17$$
 ohm - m

Rmf of the formation = 0.75 Rm

or Rmf by use of Schlumberger's Chart (A-4)

$$Rmf = 90 \text{ ohm} - m$$

To find Rw:

 $E = -\frac{Rt}{F} \int_{1}^{Sol. 2} \sum_{i} \frac{Ti}{Zi} d \log a_{i}$ $Em = -\frac{Rt}{F} \log \frac{(a_{na}^{+}) w}{(a_{na}^{+}) mf}$ $a_{na}^{+} = a_{c1}^{-} = a^{-+} NACL$ $a^{-+}_{nac1} = \sqrt{(a_{na}^{+}) (a_{c1}^{-})}$ $Em = -2.3 \frac{RT}{F} \log \frac{(a^{-+}) w}{(a^{-+}) mf}$

where

2.3
$$\frac{RT}{F}$$
 = 59 at 75° F.

A-2

and:

2.3
$$(2^{T} c1 - 1) \frac{RT}{F} = 12 at 75^{\circ} F.$$

.".
$$K = (59 + 12) = 71 \text{ at } 75^{\circ} \text{ F.}$$

Thus:

$$SP = -71 \ \log \log \frac{(a^+) \ w}{(a^+) \ amf}$$

It becomes:

$$SP = -71 \log \log \frac{Rmf}{(Rw)e}$$

or

$$-30 = -K \log 10 \quad \frac{Rmf}{(Rw)e}$$

and

$$\frac{\text{Rmf}}{(\text{Rw})e} = \frac{30}{-71}$$
 (log10)
= 2.65

$$\frac{\text{Rmf}}{(\text{Rw})e} = 2.65$$
 (By Schlumberger's Chart A-10)

$$(Rw)e = \frac{Rmf}{\frac{Rmf}{(Rw)e}}$$

$$= \frac{.90}{2.65} = .34 \text{ ohm} - \text{m}$$

Rw = .40 ohm - m (Chart A-12)

$$\frac{\text{Ri}}{\text{Rm}} = \frac{22}{1.17}$$

= 19

Corrected for borehole $\frac{Ri}{Rm} = 17$ (Chart B-2)

$$\frac{Rt}{Rm} = \frac{30}{1.17}$$

= 25.6

corrected for bore hole $\frac{Rt}{Rm} = 21$ (Chart B-2)

. corrected Ri for bore hole = (17×1.17) = 20 ohm - m

correct

$$R_t = (21 \times 1.17)$$

= 25 obm - m

Tixier Rocky Mountain Method for Calculating Sw and Porosity

$$Ri = \frac{F \times R_z}{Si^2}$$

$$Rt = \frac{F \times R_w}{Sw^2}$$

$$\frac{Ri}{Rt} = \frac{Rz}{Rw} \cdot \frac{Sw^2}{Si^2}$$
Si = Sw in invaded zone

or

$$\frac{Sw^2}{Si^2} = \frac{Ri/Rt}{Rz/Rw}$$
$$\frac{Ri}{Rt} = \frac{20}{25} = 0.80$$

Rmc AND Rmt DETERMINATION (Average Values)

16

A-10

17

TRUE Rw VS. EQUIVALENT (Rw)e

A-12

ELECTRICAL LOG SIMPLIFIED RESISTIVITY DEPARTURE CURVES

19

B-2

and:

$$\frac{\text{Rmf}}{\text{Rw}} = \frac{.90}{.40} = 2.25$$

... Sw = 42% (By Schlumberger's Chart D-8).

10

Porosity:

$$F = Sw^2 \frac{Rt}{Rw}$$

= (.42)² $\frac{25}{.40}$ =

By Humble equation:

$$F = \frac{0.62}{d^{2.15}}$$

$$\therefore \quad \phi = \frac{0.62}{2.15 \sqrt{F}} = \frac{0.62}{2.15 \sqrt{10}} = 27\%$$

Porosity By Tixier Chart D-10:

$$\frac{Rt}{Rm} \cdot \frac{Rm}{Rw} = \frac{Rt}{Rw} = \frac{25}{.40} = 62.5$$
$$\therefore \quad \phi = 27\%$$

Permeability: (By Tixier Resistivity Gradient Method)

Rt = Ro +
$$\frac{\Delta Rt}{\Delta h}$$
 h
Rt = Difference in true resistivities
 Δh = Difference in depth
h = Height above the water table where Rt is measured.

Z = 0.075

Z = 0.035 Rz Rmf Rw Rmf .40 -.50 . . 60 . .70 -8 -6

REFERENCE: Tixier, M. P. "Electric Log Analysis in the Rocky Mountains." Oil & Gas Journal, June 23, 1949.

21

D-8

POROSITY DETERMINATION

POROSITY BALANCE

FOR ROCKY MOUNTAIN METHOD

If balance does not exist, move from the calculated porosity.

 along a 45° line until the correct porosity is (R; Method) met (case of Rt wrong). Exception: R IL ≃ Rt when

R16c/RIL < 1.2 for 5FF40,

or when $R_{16}c / R_{1L} < 1.4$ for 6FF40.

 b) along a horizontal line until the correct porosity (Archie Method) is met (case of R; wrong). i.e. FR_z > R₁₆"

This final point indicates a more correct Sw.

 $\frac{\text{Beware of high SP}}{\text{when the final S_w} \ge \frac{R_z}{R_{mf}}}.$

The zone may be wet.

By Archie's Law:

$$S_W = \sqrt{\frac{Ro}{Rt}}$$

substituting Rt by its value in the above,

$$Sw = \sqrt{\frac{Ro}{Ro + h \frac{\Delta Rt}{\Delta h}}}$$
$$= \sqrt{\frac{1}{1 + h \frac{1}{Ro} \cdot \frac{\Delta Rt}{\Delta h}}} = \sqrt{\frac{1}{1 + ha}}$$

where

$$a = \frac{1}{Ro} \cdot \frac{\Delta Rt}{\Delta h}$$
 Resistivity gradient

At the level h there is a capillary-pressure relationship:

$$h = 2.3 \frac{Pc}{\Delta sp \cdot gr.}$$

 $\Delta sp \cdot gr \cdot = Difference$ in specific gravity of water and oil.

From empirical data:

.

$$S_w = \sqrt{\frac{1}{1 + F_k Pc}}$$

$$F_k = lithologic factor$$

equating the above equations:

$$\sqrt{\frac{1}{1 + F_k Pc}} = \sqrt{\frac{1}{1 + a(2.3 Pc/\Delta sp \cdot gr.)}}$$

F_k = 2.3
$$\frac{a}{\Delta sp \cdot gr} = \frac{2.3}{\Delta sp \cdot gr}$$
 $\frac{1}{Ro}$ $\frac{\Delta Rt}{\Delta h}$

The capillary data shown by Tixier:

 $F_k = \sqrt{\frac{K}{C}}$

Average value of C = 20

$$\frac{K}{C} = 2.3 \frac{a}{\Delta sp \cdot gr}$$
$$= \frac{2.3}{\Delta sp \cdot gr} \cdot \frac{\Delta Rt}{\Delta h} \cdot \frac{1}{Ro}$$

Asp.gr.: water gravity = 1.025 (for normal salinity)

oil gr. = 0.787

$$\Delta sp \cdot gr. = (1.025 - .789)$$

= 0.23

 $\sqrt{\frac{K}{C}} = \frac{2.3}{.23} \cdot \frac{\Delta Rt}{\Delta h} \cdot \frac{1}{Ro} = \frac{2.3}{.23} \times \frac{37.5}{270} \times \frac{1}{4}$

= .35

 $\frac{K}{C} = (.35)^{2}$ $K = (.35)^{2} \times C = (.35)^{2} \times 20$ = 3.5 millidarcies

Permeability = 3.4 millidarcies (By Chart E-2)

PERMEABILITY FROM RESISTIVITY GRADIENT

Salinity:

Rw = 0.40 ohm - m Temp. = 84[°] F. ... Salinity = 13,000 PPM = 1.3%

Fort Hays Limestone

TOP - 564', Bottom 624' Temp. = 85° F. (By Chart A-2) $Rm = \frac{108}{85} \times .90 = 1.15$ ohm - m. Rmf = 0.75 Rm = 0.85 ohm - m (Chart A-4) Sp. = -27 Mv. Ri = 15 ohm - m Rt = 22 ohm - m SP = -K loglo $\frac{Rmf}{(Rw)e}$

$$\frac{\text{Rmf}}{(\text{Rw})e} = 2.64 \quad (\text{Chart A-10})$$

and

$$(Rw)e = \frac{Rmf}{Rmf/(Rw)e} = \frac{.85}{2.64} = 0.323 \text{ ohm} - m$$

. Rw = 0.38 ohm - m (Chart A-12)

$$\frac{\text{Ri}}{\text{Rm}} = \frac{15}{1.15} = 13 \quad \text{corr. for bore Hole} \quad \frac{\text{Ri}}{\text{Rm}} = 13 \quad \text{} \\ \text{Br} = \frac{22}{1.15} = 19 \quad \text{corr. for bore hole} \quad \frac{\text{Rt}}{\text{Rm}} = 16 \quad \text{} \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{} \\ \\ \text{Br} = \frac{10}{1.15} = 16 \quad \text{}$$

corrected Ri = $(13 \times 1.15) = 15$ ohm - m corrected Rt = $(16 \times 1.15) = 18.5$ ohm - m.

Sw and \not{p} By Tixier Rocky Mountain Method:

$$\frac{\text{Ri}}{\text{Rt}} = \frac{15}{18.5} = 0.80$$

$$\frac{\text{Rmf}}{\text{Rw}} = \frac{0.85}{0.38} = 2.22$$

$$\text{Sw} = 42\% \quad (\text{Chart D-8})$$

Porosity:

٠.

 $\frac{\text{Rt}}{\text{Rm}} \cdot \frac{\text{Rm}}{\text{Rw}} = \frac{\text{Rt}}{\text{Rw}} = \frac{18.5}{0.38} = 49$ $\therefore \quad \emptyset = 27\% \quad (D-12)$

Porosity By Tixier "Porosity Index" Method:

$$\frac{Ri}{Rm} = 13$$

Permeability: By Resistivity Gradient Method

$$\sqrt{\frac{K}{20}} = \frac{2.3}{\Delta sp \cdot gr} \cdot \frac{\Delta Rt}{\Delta h} \cdot \frac{1}{Ro}$$

$$= \frac{2.3}{.23} \times \frac{8}{56} \times \frac{1}{6.4}$$

$$= .22$$

$$\frac{K}{20} = (.22)^{2}$$

$$K = (.22)^{2} \times 20 - 0.968 \text{ nd.}$$

$$= .97 \text{ md.}$$

Salinity:

Codell Sandstone:

624' - Top 672 - Bottom Temperature = 85° F. (A-2) Rm = $\frac{108}{85}$ x $\cdot 90$ = 1.15 ohm - m Rmf = .75 Rm = 0.85 ohm - m (Chart A-4)
$$SP = -30 \text{ Mv.}$$

$$Ri = 7 \text{ ohm } - \text{m}$$

$$Rt = 15 \text{ ohm } - \text{m}$$

$$Sp = -K \log 10 \frac{Rmf}{(Rw)e}$$

$$\frac{\text{Rmf}}{(\text{Rw})e} = 2.7 \quad (\text{Chart A-10})$$

... $(\text{Rw})e = \frac{\text{Rmf}}{\text{Rmf}/(\text{Rw})e} = \frac{.85}{2.7} = .315$

Rw = 0.36 ohm - m (Chart A-12)

Wittie's Method for Porosity:

$$F = \frac{Ri}{Rmf}$$

$$=\frac{7}{.85}=8.25$$

By Humble equation:

$$F = \frac{0.62}{0.15}$$

and

$$= \frac{0.62}{2.15 \sqrt{F}}$$

$$= \frac{0.62}{2.15 \sqrt{8.25}} = 29\%$$

Water Saturation:

$$Sw^2 = \frac{Rw}{\oint} \frac{0.62}{2.15}$$
Rt

$$Sw = \frac{Rw}{\frac{0.62}{\frac{0}{2.15}}}$$

$$= \sqrt{\frac{.36 \times 8.25}{15}} = .44$$

$$Sw = 44\%$$

Permeability:

$$\sqrt{\frac{K}{20}} = \frac{2.3}{.23} \times \frac{Rt}{h} \cdot \frac{1}{Ro}$$
$$= \frac{2.3}{.23} \times \frac{16}{54} \times \frac{1}{3} = .95$$
$$\frac{K}{20} = (.95)^2$$
$$K = (.95)^2 \times 20 = 18 \text{ md.}$$

Salinity:

Blue Hill Shale

672' - Top 790' - Bottom Temp. = 86[°] F. (A-2)

$$Rm = \frac{108}{86} \times .90 = 1.13 \text{ ohm} - m$$

$$Rmf = 0.75 \text{ Rm}$$

$$= 0.85 \text{ ohm} - m \quad (A-4)$$

$$SP = -26 \text{ Mv.}$$

$$Ri = 4 \text{ ohm} - m$$

$$Rt = 3.5 \text{ ohm} - m$$

$$Rt = 3.5 \text{ ohm} - m$$

$$SP = -K \log 10 \frac{Rmf}{(Rw)e}$$

$$\frac{Rmf}{(Rw)e} = 2.3 \quad (Chart A-10)$$

$$(Rw)e = \frac{Rmf}{Rmf/(Rw)e} = \frac{.85}{2.3} = 0.37 \text{ ohm} - m$$

$$Rw = .40 \text{ ohm} - m \quad (Chart A-12)$$

Sw and otin By Rocky Mountain Method:

٠

$$\frac{\text{Ri}}{\text{Rt}} = \frac{4}{3.5} = 1.14$$

$$\frac{\text{Rmf}}{\text{Rw}} = \frac{.85}{.40} = 2.125$$

$$\therefore \text{ Sw} = 60\% \text{ (Chart D-8)}$$

$$\frac{\text{Rt}}{\text{Rm}} \cdot \frac{\text{Rm}}{\text{Rw}} = \frac{\text{Rt}}{\text{Rw}} = \frac{3.5}{.4} = 8.8$$

$$\therefore \phi = 40\% \text{ (Chart D-10)}$$

Wittie's Method:

$$F = \frac{Ri}{Rmf} = \frac{4}{.85} = 4.7$$

By Humble equation:

$$F = \frac{0.62}{0^{2.15}}$$

$$\phi = \frac{0.62}{2.15} = \frac{0.62}{2.15} = .39$$

Permeability:

$$a = \frac{\Delta Rt}{\Delta h} \cdot \frac{1}{Ro} = \frac{1}{120} \cdot \frac{1}{1.88} = .0044$$

$$\sqrt{\frac{K}{20}} = \frac{a \times 2.3}{.23}$$

$$= \frac{.0044 \times 2.3}{.23} = .044$$

$$\frac{K}{20} = (.044)^{2}$$

$$K = (.044)^{2} \times 20$$

$$= .04 \text{ Md.}$$

Salinity:

Rw = .40 ohm - m Temp. = 86^o F. ... Salinity = 13,000 PPm = 1.3% (A-6)

Fairport Chalky Shale

$$Rm = \frac{108}{86} \times .9 = 1.13 \text{ ohm} - m$$

$$Rmf = .75 Rm$$

$$= .85 \text{ ohm} - m \quad (A-4)$$

$$SP = -28 Mv.$$

$$Ri = 12 \text{ ohm} - m$$

$$Rt = 8 \text{ ohm} - m$$

$$SP = -k \log 10 \frac{Rmf}{(Rw)e}$$

$$\frac{Rmf}{(Rw)e} = 2.5 \quad (A-10)$$

. (Rw)
$$e = \frac{Rmf}{Rmf/(Rw)e} = \frac{.85}{2.5} = .33 \text{ ohm - m}$$

Rw = 0.35 ohm - m (Chart A-12)

Sw and otin by Rocky Mountain Method:

$$\frac{\text{Ri}}{\text{Rt}} = \frac{12}{8} = 1.5$$

$$\frac{\text{Rmf}}{\text{Rw}} = \frac{.85}{.35} = 2.4$$

$$\cdot \text{. Sw} = 70\% \text{ (Chart D-8)}$$

$$\frac{\text{Rt}}{\text{Rm}} \cdot \frac{\text{Rm}}{\text{Rw}} = \frac{\text{Rt}}{\text{Rw}} = \frac{8}{.35} = 22$$

Witte's Method

.

...
$$\phi = 26\%$$
 (D-10)
 $F = \frac{Ri}{Rmf} = \frac{12}{.85} = 14$
 $\phi = \frac{.62}{2.15\sqrt{14}} = 23\%$

Permeability:

$$a = \frac{1}{5.11} \times \frac{7}{90} = .015$$

$$\sqrt{\frac{K}{20}} = \frac{a \times 2.3}{.23}$$

$$= \frac{.015 \times 2.3}{.23} = .15$$

$$\frac{K}{20} = (.15)^{2}$$

$$K = (.15)^{2} \times 20$$

$$= .45 \text{ nd.}$$

Salinity:

$$Rw = .35 \text{ ohm } - \text{ m}$$

$$Temp. = 86^{\circ} \text{ F.}$$

$$\therefore \text{ Salinity } = 15,000 \text{ PPm}$$

$$= 1.5\% \quad (A-6)$$

$$Rw = \frac{5000}{C}$$

$$C = \text{ Salinity}$$

$$C = \frac{5000}{Rw} = \frac{5000}{.35}$$

$$= 14500 \text{ PPM}$$

continued (Appendix, Table 1)

STATIGRAPHY AND ELECTRIC INTERPRETATION

Precambrian

The Precambrian is reported as granite, schist, gneiss and quartzite. These are mostly composed of quartz, feldspar and biotite. Electric logs of the Precambrian rocks were not studied in this county.

Cambrian System

Croixian Series:

The Reagan sandstone uncomfortably overlies the Precambrian rocks. This sandstone is composed of white to gray medium- to coarse-grained, frosted quartz-grains.

Ordovician System

Lower Ordovician: Arbuckle Group:

The Arbuckle is composed of finely crystalline limestone and gray to brown dolomitic limestone with some streaks of dense and impervious dolomitic limestone.

Electric Interpretation:

The negative potential in the center indicates electrolyte containing saline water.

In nonproducing regions resistivity values are comparatively low. This may be due to large number of sodium chloride ions present in the solution. In producing wells this formation has greater resistivities. Oil and gas are almost perfect nonconductors of electricity.

Middle Ordovician: Simpson Group:

This group consists of green shales and white to gray, angular to subrounded sandstone. In most of the wells this group is absent.

Viola Group:

The Viola group is composed of a very coarsely crystalline, white, pink, light gray limestone and finely crystalline, gray cherty to non-cherty limestone.

This group is absent in almost all wells.

Mississippian System

Osage Series:

The Kinderhook shale consists of green to brown shale and ranges in thickness from 0 to 150 feet. It is often absent on the logs.

Pennsylvanian System

Desmoinesian Series: Cherokee Group:

The lowermost unit of this group is basal Pennsylvanian conglomerate, composed of detrital chert and quartz grains imbedded in micaceous shale. Above this formation, the Cherokee group consists of shales and crystalline limestones.

Electric Interpretation:

Resistivity is low possibly due to connate water and the SP curve is also not so negative due to lack of porous permeable beds.

Marmaton Group:

This group consists of shales and thin gray limestones containing

gray to tan chert.

Missourian Series: Pleasanton Group:

This group consists of sandstone and shale.

Lansing-Kansas City Group:

The Lansing-Kansas City group consists of white, tan to buff, fine to microcrystalline limestone with interbedded gray to dark shale. Beds of oolitic limestone varying in thickness, are found in this zone. Total thickness of this group is about 200 to 230 feet in this county.

Electric Interpretation:

Minimum SP curve values are for thin interbedded shales. Resistivity curves are extremely high due to the presence of hydrocarbons and high permeability. Due to this higher permeability SP is having much negative deflection. In their less porous parts, these formations are also extremely resistive.

Virgilian Series: Pedee Group:

This group consists of Weston shale and Iatan limestone. Total thickness of this group is about 20 feet.

Douglas Group:

The Douglas group consists of undifferentiated coarser clastics and shale in this county.

Shawnee Group:

The Shawnee group is composed of cherty dolomitic limestones and shales. Topeka limestone is at the top and Heebner shale is near the base of this group.

Electric Interpretation:

SP deflection is mainly negative which indicates higher permeability of the bed. Resistivity curves also have higher deflections. Possibly, this may be due to higher percentage of fluid saturation and comparatively higher permeability.

Wabaunsee Group:

Tarkio limestone is the predominating formation in this group. This group mostly consists of crystalline limestone with shales and sandstones.

Electric Interpretation:

SP has maximum negative values at the top due to porous crystalline limestone. In the middle part lower values of SP indicate the presence of interbedded shales.

Permian System

Wolfcampian Series: Admire Group:

This lower group consists of limestone, dolomite with shale and sandstones.

Council Grove Group:

Neva limestone in the middle of the group is a marker bed on an electric log. Spieser shale is at the top of the group. Foraker at the bottom consists of cherty limestone.

Electric Interpretation:

Both the SP and resistivity curves at the top of this group are least deflective on tight shale. At the lowermost region of this group, low values of resistivities and SP indicate the presence of interbedded shales.

Chase Group:

This group consists of gray to tan flinty limestones separated by varicolored shales. The Wreford limestone is the lowermost unit and contrasts rather sharply to the underlying Speiser shale on electric logs.

Electric Interpretation:

These impervious and compact limestone and dolomitic beds are highly resistive in the lowermost unit, because of their very small interstitial water content. Farther south these beds are reservoirs for gas. Low permeability indicates absence of hydrocarbons in this area.

Leonardian Series: Summer Group:

Wellington shale with some limestone is at the base of this group. Hutchinson salt is at the middle of this formation, only in the southern and eastern part in this county. Ninnescah shale consists of red and gray shales. Stone Corral is at the top of this group.

Electric Interpretation:

Resistivity curves show maximum value on anhydrite at the top of this group. Hutchinson salt is also marked on some of the logs due to its higher resistivity values. These compact and impervious rocks have very small interstitial water content.

Nippewalla Group:

This group consists of shales with thin anhydrite beds at the top.

Electric Interpretation:

Minimum values of resistivity indicate the presence of connate water.

Jurassic System

Morrison formation of Jurassic system is present everywhere except in the eastern and extreme southeastern part of the county. This formation consists of green to gray sandy shale, limestone, anhydrite and chert. Anhydrite is present only in the western part of the county.

Cretaceous System

Commanchean Series:

This series is represented by the Cheyenne sandstone and the Kiowa shale in Graham County. These formations were not differentiated from the Dakota formation.

Gulfian Series: Colorado Group:

The Colorado group consists of Dakota formation, Graneros shale, Greenhorn limestone, Carlile shale, Niobrara formation and Pierre shale in ascending order.

The Dakota formation consists of clays with small amount of silt and sandstone, containing pyrite, siderite, limonite and other iron minerals.

The Graneros formation is a uniformly thick, gray, fissile, silty and pyritic shale.

The Greenhorn formation is a chalky limestone and shale with the fencepost limestone bed at the top of the formation.

The Carlile formation includes the Fairport chalky shale and Blue Hill gray and micaceous shale. The top of this formation is called Codell sandstone.

The Niobrara formation is divided into the Fort Hays limestone and the Smoky Hill chalk members.

The Pierre shale is light to medium-gray, soft, micaceous and calcareous.

Electric Interpretation:

The Dakota formation is highly conductive due to the presence of pyrite, siderite, limonite and other iron minerals, and so its reciprocal resistivity is minimum.

Resistivity is minimum in the Graneros soft shaly and water bearing formation.

The Greenhorn limestone shows comparatively higher resistivities.

In some of the electric logs Carlile shales are most negative on spontaneous potential curve; this is because the mud may be very saline, or has a very high activity due to silicate muds, or because the interstitial waters are fresh. Resistivity is low due to high porosity of shale.

In the Niobrara formation maximum resistivity on the lateral log indicates the presence of fresh water. Here charged ionic movement is not sufficient to conduct a larger current so resistivity is higher.

Tertiary System

Pliocene Series:

The Ogallala formation is the only representative of the Tertiary system in this county. This is composed of unconsolidated sand, gravel and silt. It is divided into the Valentine, Ash Hollow, and Kimball members

in ascending order.

In most of the wells this formation is not recorded on the electric logs.

Quaternary System

Pleistocene Series:

The Quaternary system consists of unconsolidated sand, gravel and silt. Electric logs are not recorded in this formation.

STRUCTURE

Cambridge Arch and Central Kansas Uplift are the two major structural features of the broad arcuate anticlinal axis across the mid-continent in western Kansas.

The southern end of the Cambridge Arch is separated from the Central Kansas Uplift by a structural saddle in northwestern Graham County. The structures form an arc of uparched features convex to southwest. The arch is flanked by several smaller paralleling anticlinal and synclinal features. Jennings Anticline which plunges southward, is on the west side of the arch.

The Cambridge Arch and the Central Kansas Uplift separate the Hugoton Embayment on the west from the Salina and Sedgwick Basins on the east.

Central Kansas Arch is a name sometimes used for the combined Ellis and Chautauqua Arches. The Ellis Arch was the ancestral Central Kansas Uplift (Merriam and Jewell, 1959). The Precambrian complex on the Central Kansas Uplift consists of a variety of igneous and metamorphic rocks.

The Salina Basin lies between the Nemaha Anticline and the Central Kansas Uplift. Small structures of importance in the basin include the Abilene Anticline, northern part of the VoShell Anticline and others-parallel to the Nemaha Anticline.

The Kansas part of the Anadarko Basin is known as the Hugoton Embayment (Maher and Collins, 1958). The Hugoton Embayment covers about one-third of the area of Kansas.

CONCLUSIONS

In Graham County, Kansas, quantitative interpretation of electric logs entails determining fluid saturation, porosity, permeability, salinity and the lithology of the formation, particularly of porous zones. Porous formations may be of two types: permeable and nonpermeable. Permeable porous formations exhibit higher resistivity when they are fully or nearly saturated with a nonconducting fluid: oil, gas, or fresh water.

A producing well in the Holly Pool area in this county shows a permeability of 274 millidarcies for the Lansing-Kansas City group, which in dry hole areas has a calculated permeability of only 58 millidarcies in Griffin, 3.2 millidarcies in Alexander and 6.8 millidarcies in "Krug" B for the same Lansing-Kansas City zone. From this result, it can be concluded that the beds have relatively higher permeability in the oil producing zone than in the nonproducing localities. For beds which have a rather large oil saturation, the relative permeability to oil will be appreciably greater than that to water. Porosity may be considered a secondary factor in this case. Calculated porosity for the Lansing-Kansas City group is approximately the same in producing wells as in the dry well areas. Carbonate rocks which contain fractures and vugs, on the other hand, seldom have a high porosity, but the permeabilities might be tremendous. Fine grained rock may have a lower permeability than a coarse grained rock of the same porosity.

ACKNOWLEDGMENTS

The writer wishes to express his sincere appreciation to Dr. Charles P. Walters, under whose auspices this thesis was written, also to Dr. Joseph R. Chelikowsky, Head of the Department of Geology and Geography; and to Dr. Francis W. Crawford, Associate Professor of Physics, for their helpful suggestions while this thesis was being prepared. The writer also wishes to express his sincere thanks to the faculty of the Department of Geology for their help and consideration.

The writer is grateful to the Schlumberger Well Surveying Corporation for permission to use their Log Interpretation Charts and other helpful materials.

BIBLIOGRAPHY

Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Technology, Tech. Pub. 1422, Vol. 5, No. 1, 1942, pp. 54-62. Electrical resistivity an aid in core analysis interpretation. American Association of Petroleum Geologists Bull. Vol. 31, No. 2, 1947, pp. 350-366. Bernstein, F. and C. Scala. Some aspects of the streaming potential and the electrochemical SP in shales. Petroleum Transactions, Vol. 216, 1959, pp. 465-468. Gatlin, C. Petroleum Engineering. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1960, pp. 195-217. Gondouin, M., M. P. Tixier and G. L. Simard. An experimental study on the influence of the chemical composition of electrolytes on SP curve. Journal of Petroleum Technology, Vol. 9, No. 2, 1957, 15 pp. Guyod, H. Electric well logging. Duncan, Oklahoma: Halliburton Oil Well Cementing Company, 103 pp. Temperature well logging. Oil Weekly, Oct. 21, 1946, Vol. 123, pp. 35-39. Haun, J. D. and L. W. LeRoy. Subsurface Geology In Petroleum Exploration. Golden, Colorado: Colorado School of Mines, 1958, 887 pp. Howell, B. F. Introduction to Geophysics. New York: McGraw Hill Book Company, 1959. pp. 361-374. Jakosky, J. J. Exploration Geophysics. Los Angeles: Trija Publishing Company, 1949. pp. 437-579, 967-983. Lynch, E. J. Formation Evaluation. New York: Harper and Row, 1962, pp. 83-224. Merriam, D. F. and W. R. Atkinson. Tectonic history of the Cambridge arch in Kansas. State Geol. Survey of Kansas, oil and gas investigation, No. 13, Maps and Cross Sections, 1955, 28 pp.

Mooney, H. M. and W. W. Wetzel. The Potentials About A Point Electrode And Apparent Resistivity Curves For A Two, Three And Four Layer Earth. Minneapolis: The University of Minnesota Press, 1956, pp. 3-34. Moore, C. A. A Symposium On Subsurface Logging Techniques. Norman, Oklahoma: University Book Exchange, 1949, 113 pp. Moore, R. C. et al. The Kansas rock column. State Geol. Survey of Kansas, Bull. 89, 1951, 128 pp. Pekeris, C. L. Direct method of interpretation in resistivity prospecting. Geophysics, Vol. 5, 1940, pp. 31-42. Peters, L. J. and J. Bardeen. Some aspects of electric prospecting applied in locating oil structures. Early Geophysical papers, Geophysics, 1931, pp. 145-164. Poupon, A., M. E. Loy and M. P. Tixier. A contribution to electrical log interpretation in shaly sands. Journal of Petroleum Technology, Vol. 6, 1954, pp. 27-34. Prescott, G. R. The geology and ground water resources of Graham County. State Geol. Survey of Kansas, Bull. 110, 1955, 98 pp. Sandlin, G. S. Subsurface geology of Graham County, Kansas. Unpublished Master's Thesis, Kansas State College, 1957, 28 pp. Schlumberger, C. and M. and E. G. Leonardon. A new contribution to subsurface studies by means of electrical measurements in drill holes. Transactions, American Institute of Mining and Metallurgical Engineers, Vol. 110, 273 pp. Schlumberger Well Logging. Schlumberger documents No. 2, 4 and 8, and Log Interpretation charts 1962. Houston: Schlumberger Well Surveying Corporation. Tixier, M. P. Electric log analysis in Rocky Mountains. Oil and Gas Journal, Vol. 48, 1949, pp. 143-153.

Evaluation of permeability from electric-log resistivity gradients. Oil and Gas Journal, 1949, Vol. 48, pp. 113-122. Tixier, M. P.

Porosity index in limestone from electric logs. Oil and Gas Journal, Vol. 50, 1951.

Winchell, R. L.

Low Southeast Pool--a successful seismic discovery in Graham County, Kansas. State Geol. Survey of Kansas, Bull. 137, 1959, pp. 335-349.

Wyllie, M. R. J.

Fundamentals of Well Log Interpretation. New York: Academic Press, 1963, pp. 1-82.

Log interpretation in sandstone reservoirs. Geophysics, Vol. 25, No. 4, 1960, pp. 748-777.

APPENDIX

BASIC THEORY OF ELECTRIC LOGGING

To compute the potential distribution, a cartesian coordinate system will be used (Fig. 2).

x, y and z are the three coordinates and:

$$F(x, y, z) = C$$

and

$$V = F(x, y, z)$$

By Laplace's equation:

$$\frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0$$

and

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

V will be a function of r distance from the current source.

$$\frac{\partial x}{\partial \Lambda} = \frac{\partial x}{\partial L} \cdot \frac{\partial x}{\partial \Lambda}$$

where:

٠.

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\frac{\partial r}{\partial x} = \sqrt{x^2 + y^2 + z^2} = \frac{x}{r}$$

50

$$2r \frac{\partial r}{\partial x} = 2x \quad \text{or} \quad \frac{\partial r}{\partial x} = \frac{x}{r}$$

Fig. 2. Coordinate Systems

also

thus

or

and

$$\frac{\partial v}{\partial x} = \frac{x}{r} \cdot \frac{\partial v}{\partial r}$$

$$\frac{\partial v}{\partial x} = \frac{\partial r}{\partial x} \cdot \frac{\partial v}{\partial r}$$

$$\frac{\partial v}{\partial x} = \frac{\partial r}{\partial x} \cdot \frac{\partial v}{\partial r}$$

$$\frac{\partial^2 r}{\partial x^2} = \frac{r \cdot x \left(\frac{x}{r}\right)}{r^2} = \frac{1}{r} - \frac{x^2}{r^3}$$

$$\frac{\partial^2 v}{\partial x^2} = \left(\frac{1}{r} - \frac{x}{r^2} \cdot \frac{\partial r}{\partial x}\right) \cdot \frac{\partial v}{\partial r} + \frac{x}{r} \cdot \frac{\partial r}{\partial x} \cdot \frac{\partial^2 v}{\partial r^2}$$

$$= \left(\frac{1}{r} - \frac{x^2}{r^3}\right) \cdot \frac{\partial v}{\partial r} + \frac{x^2}{r^2} \cdot \frac{\partial^2 v}{\partial r^2}$$

similarly

$$\frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} = \left(\frac{1}{\mathbf{r}} - \frac{\mathbf{v}}{\mathbf{r}^2} \cdot \frac{\partial \mathbf{r}}{\partial \mathbf{y}}\right) \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{r}} + \frac{\mathbf{v}}{\mathbf{r}} \cdot \frac{\partial \mathbf{r}}{\partial \mathbf{y}} \cdot \frac{\partial^2 \mathbf{v}}{\partial \mathbf{r}^2}$$
$$= \left(\frac{1}{\mathbf{r}} - \frac{\mathbf{y}^2}{\mathbf{r}^3}\right) \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{r}} + \frac{\mathbf{y}^2}{\mathbf{r}^2} \cdot \frac{\partial^2 \mathbf{v}}{\partial \mathbf{r}^2}$$

and

$$\frac{\partial^2 v}{\partial z^2} = \left(\frac{1}{r} - \frac{z}{r^2} \cdot \frac{\partial r}{\partial z}\right) \cdot \frac{\partial v}{\partial r} + \frac{z}{r} \cdot \frac{\partial r}{\partial z} \cdot \frac{\partial^2 v}{\partial r^2}$$
$$= \left(\frac{1}{r} - \frac{z^2}{r^3}\right) \cdot \frac{\partial v}{\partial r} + \frac{z^2}{r^2} \cdot \frac{\partial^2 v}{\partial r^2}$$

Substitution of these values of $\frac{\partial^2 v}{\partial x^2}$, $\frac{\partial^2 v}{\partial y^2}$ and $\frac{\partial^2 v}{\partial z^2}$ into

Laplace's equation $\sqrt{2}V = 0$,

- 2

yields

$$\frac{\partial^2 \mathbf{v}}{\partial \mathbf{r}^2} \begin{bmatrix} \frac{\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2}{\mathbf{r}^2} \end{bmatrix} + \frac{\partial \mathbf{v}}{\partial \mathbf{r}} \begin{bmatrix} \frac{3}{\mathbf{r}} - \frac{\mathbf{x}^2 + \mathbf{v}^2 + \mathbf{z}^2}{\mathbf{r}^3} \end{bmatrix} = 0$$

or

$$\frac{\partial^2 V}{\partial r^2} + \frac{\partial V}{\partial r} \cdot \frac{2}{r} = 0$$

Since r is the only independent variable, the partial derivatives may be replaced by total derivatives, and the equation becomes:

$$\frac{d^2 v}{dr^2} + \frac{2}{r} \cdot \frac{dv}{dr} = 0$$

This equation can be integrated by multiplying by r^2 , thereby forming an exact differential. That is

$$\frac{d^2V}{dr^2} + \frac{2}{r} \cdot \frac{dV}{dr} = 0 = r^2 \frac{d^2V}{dr^2} + 2r \frac{dV}{dr}$$

and

$$\int \left(r^2 \frac{d^2 V}{dr^2} + 2r \frac{d V}{dr} \right) dr$$

$$= \int d \left(\mathbf{r}^2 \ \frac{d\mathbf{V}}{d\mathbf{r}} \right) = \mathbf{r}^2 \ \frac{d\mathbf{V}}{d\mathbf{r}} = \text{constant} = S$$

Hence

$$\frac{dV}{dr} = \frac{s}{r^2}$$

and

$$V = -\frac{S}{r} + C$$

S and C are determined by boundary conditions of the problem.

If the value of V at infinity is zero, C vanishes.

The constant S may be expressed in terms of the total current I which flows out of the source.

So

$$-\frac{1}{\rho} \cdot \frac{dV}{dr} = -\frac{1}{\rho} \cdot \frac{s}{r^2}$$

The total current is

$$I = -4\pi^{2}\left(\frac{1}{\rho}\cdot\frac{s}{r^{2}}\right) = -\frac{4\pi s}{\rho}$$
$$s = -\frac{I\rho}{4\pi r}$$

Hence

$$V = \frac{IP}{4\pi_r}$$

We shall derive the potential distribution for the case where the insulating sonde on which the electrode is mounted is located in an infinite cylindrical borehole of radius b, surrounded by a homogeneous medium of the Resistivity R_{\pm} (Fig. 3).

The borehole is filled with a drilling fluid of resistivity Rm; let Vi denote the potential in the invaded zone and V_t is the potential outside the invaded zone, that is, the uncontaminated part of the formation.

Fig. 3. Distribution of resistivities around the borehole in an oil bearing formation.

$$V_{\rm m} = V_{\rm i} \quad \frac{1}{{\rm Rm}} \cdot \frac{\partial V_{\rm m}}{\partial r} = \frac{1}{{\rm Ri}} \cdot \frac{\partial V_{\rm i}}{\partial r} \quad (\text{at invaded boundary})$$
$$V_{\rm i} = V_{\rm t} \quad \frac{1}{{\rm Ri}} \cdot \frac{\partial V_{\rm i}}{\partial r} = \frac{1}{{\rm Rt}} \cdot \frac{\partial V_{\rm t}}{\partial r} \quad (\text{at uncontaminated boundary})$$

At infinite distance from electrode, the potential tends toward zero, as:

$$\frac{1}{\sqrt{r^2 + z^2}}$$

 V_i and V_t will be of the general form of the equation by Stefanesco:

$$V = \int_{0}^{\infty} A(\lambda) Io(\lambda r) + B(\lambda) Ko(\lambda r) \cos \lambda Zd\lambda$$

r = radius from the electrode

Ko = Bessel function of the second kind and zero order

 λ = Parameter of integration from λ = 0 to λ = ∞

Io = modified Bessel function of first kind

A = a function of layer depths resistivities r and

Since V_t must go to zero for infinite r the coefficient of the Io must be zero and so:

$$V_t = \int_0^\infty B_t(\lambda) \operatorname{Ko}(\lambda r) \cos \lambda Z d\lambda$$

since V, is present only in the region where $a \leq r \leq b$, therefore:

$$V_{i} = \int_{0}^{\infty} A_{i}(\lambda) \text{ Io } (\lambda r) + \text{ Bi } (\lambda) \text{ Ko } (\lambda r) \cos \lambda Z d\lambda$$

we now apply the following boundary conditions at r = a

Since area under the curve of δ function is unity:

$$\int_{-\infty}^{\infty} \delta(z) dz = 1$$

and function S(Z) as defined by Dirac:

$$S(z) = \lim_{\alpha \to 0} \left(\frac{1}{\pi} \cdot \frac{\alpha}{z^2 + \alpha^2} \right)$$

S0

$$I S(Z) = -\frac{1}{Rm} \left(\frac{\partial Vi}{\partial r}\right) \frac{2}{r=a}$$

At the first boundary condition of borehole, potential is continuous at the boreface:

$$(v_i)_{r=b} = (v_t)_{r=b}$$

The second boundary condition at the boreface is that the normal component of current density must be continuous. This expressed by:

$$\frac{1}{Rm} \left(\frac{\partial V_{i}}{\partial r} \right)_{r=b} = \frac{1}{R_{t}} \left(\frac{\partial V_{i}}{\partial r} \right)_{r=b}$$

able 1. Electric	og Analysis:	WellIda	Keith No.	3.
------------------	--------------	---------	-----------	----

:	Der (Fe	oth eet)	: Temp. : (°F.)	: SP	: Rm	: Rmf	: Rw :	Ri	: Rt :		Sw (%)	!	ø (%)		: K (milli-: darcys) :	Salinity
Formation :			- T ⁰ = A+	:(Milli-	: (ohm-m)	: (ohm-m)	: (ohm-m) :	(Corr.)	:(Corr.) :	Sw =	; - w -		:	1	K_ARt . :	(%)
or :		:		: volts)	:	•	1 (1.10)	(1	Ri/Rt	Rw 0.62	: Rocky	:Porosity	:	NC Ah :	·· · ·
Member :	Top	Bottom	(Gx100)	•	:	: (A-4)	: (A-12) :	(onm-m)	:(onm-m) :	Rz/Rw	ø2.15	: Mt.	: Index	Wittie's	1. Pc	(A-6)
:			: (A-2)	:	:						N Rt	i method	: Method	method	Ro Asp.gr	
		·	• (A-2)	•		-								-		
Smoky Hill Chalk		564	84	-30	1.17	0.90	0.40	20	25	42		27			3.40	1.30
Fort Hays Ls.	564	624	85	-27	1.15	0.85	0.38	15	18.50	42		27	26		0.97	1.38
Codell Sandstone	624	672	85	-30	1.15	0.85	0.36	7	15		44			29	18	1.42
Blue Hill Shale	672	790	86	-26	1.13	0.85	0.40	4	3.5	60		40		39	0.04	1.30
Fairport Chalky																
Shale	790	880	86	-28	1.13	0.85	0.35	12	8	70		26		23	0.45	1.50
Greenhorn LS	880	970	86.5	-22	1.12	0.82	0.50	19.50	18.50	72		19			0.40	0.98
Graneros Shale	970	1007	87	-23	1.10	0.80	0.37	4	6		55			37	1.80	1.32
Dakota Group	1007	1306	90	-23	1.08	0.80	0.40	10	15		57	34		24.50	2	1.22
Commanchean																
Series	1306	1434	92	-48	1.05	0.80	0.17	5	4		50			34	0.70	3.20
Morrison	1434	1500	93	-60	1.03	0.78	0.12	4.50	4		78	19		19	0.40	4.50
Nippewalla									/							
Group	1500	2150	94.50	-65	1.025	0.77	0.11	4	2.20		82.50	23		23	0.13	5.0
Stone Corral	2150	2190	96	-42	1	0.75	0.20	330	430	25			2.30		0.03	2.70
Ninnescah Shale	2190	2490	98	-32	0.99	0.74	0.28	5	7	30				32.50	2	1.60
Wellington	2490	2650	101	-45	0.96	0.71	0.17	8	6	40		35			0.50	2.60
Herrington LS	2820	2912	102	-60	0.95	0.70	0.11	17	3.50		88		20.50		1.20	4.80
Wreford LS	3044	3064	103	-75	0.94	0.70	0.076	17	3.30		80		19.40		1.50	6.40
Spieser Shale	3064	3090	103	-15	0.94	0.70	0.61	5	2.30	90		32		32	0.58	0.68
Foraker LS	3300	3354	104	-35	0.93	0.70	0.23	15	10	90		15			0.80	2
Indian Cave SS	3354	3404	104	-50	0.93	0.70	0.14	8	4	55		28			8	3.50
Brownville LS	3404	3424	104	-28	0.93	0.69	0.2/5	18	1		76.50		21		1	1.60
Tarkio LS	3540	3575	105	-73	0.925	0.69	0.075	18.50	3	45	70	18	18		2.60	7
Topeka LS	3575	3660	106	-72	0.915	0.6/	0.08	50	11.50		72		10.70		0.73	6.30
Deer Creek LS	3660	3695	106.50	-63	0.914	0.66	0.10	32	14	60	60		14.50		20	4.80
Plattsmouth LS	3695	3760	106.80	-75	0.914	0.66	0.071	55	12	100	10		10.50		1.35	7.20
Heebner Shale	3760	3780	107	+ 5	0.91	0.000	1.00	25	13	100	100		17 50	19	0.50	0.55
Toronto LS	3795	3820	107.25	-32	0.91	0.65	0.20	20	12		12		17.50		21	1.66
Pedee	3820	3840	107.30	-71	0.905	0.65	0.81	34.50	12		53		13.50		37	7.50
Lansing-Kansas City LS	3840		108	-70	0.90	0.65	0.80	51.40	112.50	10	23		11		274	6.30

Electric Log Analysis

Table 2.		Well: Alexander #1 $Rm = 1$ ohm-meters at BHTLocation: 24-75-21W $BHT = 104^{\circ}$ F.Bit Size = 7 7/8"										
Formations or Members	: Depth : : (feet) :	:Temp.: : :(°F.): :	SP (milli volts	:Resi -: (oh): Ri	stivity: m <u>m</u>): R _t	Rm (ohm-m)	: Rmf : :(ohm-m) :	: Rw : :(ohm-m): :	Sw %	:Poros- : ity : % :	<pre>:Perme- : :ability: :(milli-: : darcy):</pre>	Salin- ity (PPM)
Ft. Hays		00		~	40	00	(0)	0.5	100	10	10	4 500
Codell	270	82	+ 5	21	40	.92	.09	2.5	100	18	.10	4,500
Sandstone Blue Hill	270-300	82	-10	20	26	.92	.69	.53	76	17	5	10,000
Shale	300-440	83	-20	5	5.5	.90	.67	.40	60	38	.45	13.000
Fair port Chal	ky											,
Shale	440-548	84	-20	25	26	.89	.67	.40	60	18	1.70	13,000
Greenhorn Limestone	548-640	85	-19	40	28	.88	-66	.40	80	14	1.25	13.000
Graneros												10,000
Shale	640-690	85	-20	7	6	.88	.66	.38	70	30	1.80	14,000
Dakota and Commanchean	690-1200	87	-40	17	18	.87	.65	.20	36	25	.23	27,500
Nippewalla Stone	1200-1690	90	-45	13	6	.83	.62	.15	65	22	.10	38,000
Corral	1690-1740	90	-28	125	265	.83	.62	.24	20	7.50	008	22.000
Ninnescah				210	200				20			22,000
Shale	1740-1954	93	-30	12	28	.80	.60	.22	20	22	3.3	23.000
Wellington												,
Shale	1954-2310	95	-52	27	36	.79	.59	.12	20	26	2.3	40,000
Herrington												
LS	2310-2350	95.5	-65	63	10	.785	.59	.095	81.5	0 9.50	1.3	55,000
wretord	0525 0500	07	74	24		77		075	10	10		70 000
10	2000-2090	91	-10	34	11	.//	• 28	.075	63	12	4.2	10,000

6

Table 2 (concl.).

Formations or Members	: Depth : : (feet) :	:Temp.: : :(:(^o F.): : :	SP milli volts	:Resis -: (ohm): R _i	tivity: - m) : Rt :	Rm (ohm-m)	: Rm f : : : :(ohm -m): : :	Rw : (ohm-m):	Sw %	:Pores- : ity : % :	:Perme- : :ability: :(milli-: : darcy):	Salin- ity (PPM)
Spieser											~~~	
Shale	2590-2610	98	-28	3	3	.76	.57	.22	95	24	.90	23,000
Neva LS	2700-2713	99	-54	33	5	.755	.565	.11	87	13	1.4	48,000
Foraker LS	-2780	99	-73	60	16	.755	.565	.072	67	9.20	3.20	75,000
Admire	2880-2935	100	-56	12	4.50	.75	.56	.105	70	19	1.6	50,000
LS	2935-29 80	100	-32	21	8	.75	.56	.23	83	18	.50	20,000
Topeka LS	3110-3190	101.5	-76	41	13	.74	.55	.065	55	11	5	85,000
Heebner Shale	3190-3210	101.5	-28	12	13	.74	.55	.22	40	28	1.2	23,000
Toronto LS	3210-3300	102	-81	73	26	.73	.54	.059	50	9	6	10,000
Pedee Group	3300-3330	102	-38	38	15	.73	.54	.15	69	13	6	32,500
Lansing- Kansas City	3330-3540	103.5	-42	360	290	.725	.535	.15	42	5.20	3.2	33,000
Cherokee	3540-3590	103.75	-24	33	18	.725	.53	.25	74	14	4.8	18,000
Pennsylvanian Basal Conglo.	3590-2623	104	-35	5	6	.72	.53	.20	38	28	1.6	23,000
Arbuckle	2623-	104	-73	25	14	.72	.53	.067	44	14	49	78,000

Table 3.		N I	iell: .ocati	Griffit on: 2-8	th #2 3S-23W	Rn Bi Bi	n = .93 o HT = 104° it Size =	hm-m BHT F. 77/8"				
Formation or	Depth	:Temp.:	SP	:Resist : (ohm	tivity: - m):	Rm	Rmf :	Rw :	Sw :	Ø	K (md)	: Salin- : ity : (PPM)
wember	(reet)	s(F./:	(mv)	: K1 .	nt :	(Orm-m/	.(0.111-11).	(01111-111/ •	70 .	70 .	(mc)	. (
Fort Hays												
LS	295-360	81	-15	19.5	40	1.15	.90	.80	48	9	.125	6,500
Code11	a second							-				7 500
SS	360-390	81.5	-20	23	50	1.15	.90	.70	38	26	5.4	7,500
Blue Hill	000 500	00	05		4	1 165	905	40	45	20 5	40	13 000
Shale Establish	390-530	83	-25	4.5	4	1.100	.895	.40	45	39.5	.40	13,000
Shale	530-625	84	-23	20	13	1.15	.89	.62	95	19	.16	8.000
Greenhorn	550-025	04	-25	20	10	1.10	•••	.02		*/		.,
LS	625-720	84.5	-28	23	25.3	1.15	.89	.375	45	20.50	4.4	13,000
Graneros												
Shale	720-760	85	-32	5	4.5	1.14	.883	.30	60	32	.45	17,200
Dakota	760-1050	86	-35	17	23	1.125	.875	.30	30	30	1.25	17,000
				-			~~		70 50	00 F	EQ	20.000
Morrison	1183-1250	90	-50	5	2	1.08	.80	.17	12.50	33.5	.50	30,000
Ni manual 1a	1050 1998		70	7	5	1 05	80	005	28	37	.03	60.000
Stope	1250-1005	92	-70	'	5	1.05	.00	.095	20	51		00,000
Corral	1885-1930	03	-45	624	208	1.04	-80	.22	78	4	.008	21,000
Ninnescah	1000-1900	, ,,,		02.1	200							, , , , , , , , , , , , , , , , , , , ,
Shale	1930-2146	5 96	-50	7	9.50	1.00	.75	.15	22	40	1.7	35,000
Wellington												
Shale	2146-2440	97	-45	12	5	1.00	.75	.20	75	22	1.2	24,000
Herrington												
LS	2440-2520	98	-90	28	4	.9 8	.74	.06	76	14	5	95,000
Wreford									-			
LS	2685-2760	98.5	-90	22	5	.9 8	.74	.062	70	14	1	90,000

Table 3 (concl.).

Formation or Member	: Depth : : (feet)	:Temp.: :(^o F.):	SP (mv)	:Resi : (ohi : R _i	stivity: m - m) : R _t :	Rm (ohm-m)	: Rmf : :(ohm-m)	: Rw : : : :(ohm-m):	Sw : 2 % :	ø %	: K : : (md)	: Salin- : ity : (PPM)
Spieser Shale Neva	2760-2790	99	-3 5	5	4.5	.97	.7 3	.24	45	40	1.6	19,000
LS Foraker LS	2865-2885 2885-3020	100	-82 -59	18 19	5 13	•965	.72 .72	.07 .11	57.50 41	18 19.50	7.2 2.9	75,000 48,000
Admire	3020-3105	100	-45	4	5	.96	.72	.20	86	2 2	5	24,000
Tarkio Topeka	3105-3300	100.5	-81	27	14	.96	.72	.07	42	15	1.5	78,000
Heebner Shale	3470-3490	101	-10	13	15	•958	.720	.80	90	23	.30	54,000
Group Lansing-	3490-3510	102	-44	30	19	.450	.715	.19	54.50	16.5	50	25,000
Kansas City Cherokee	3510 - 3715 3715 - 3920	103 104	-75 -42	164 34	188 3 7	.94 .93	.70	.07 .183	15 60	12 11	58 .40	77,000 24,500

Well:	Kru	ıg	"B"	#1	
Locati	on:	20	-10	5-25M	1

Table 4.

ø :Resistivity: Rm Rmf Rw Sw : K : Salin-SP Formation : Depth :Temp.: : : : : ity : (ohm - m) : : : or : : : : : : :(^OF.): (mv) : R_i : R_t :(ohm-m):(ohm-m):(ohm-m): % : (md) % : (PPM) Member 2 : (feet) Smoky Hill 82 .12 33 12 .26 51,000 26 63 .452 .34 Chalk -530 -35 Fort Hays 75 14.50 12,200 .425 .80 Limestone 530-590 82 + 5 16 36 .452 .34 Codell .20 50 19 5.5 27,000 82.50 -13 14.50 18.50 .45 .338 590-620 Sandstone Blue Hill 38 32 .27 78,000 .332 .08 Shale 620-780 83 -50 7.5 5 .44 Fairport Chalky .40 65,000 84.50 -40 .32 .095 65 15 Shale 780-875 17.20 10.30 .43 Greenhorn 70,000 .32 .09 55 14 1.80 Limestone 875-980 86 -46 17 12 .427 Graneros 2.20 100,000 6 8 .427 .32 .065 23 33 980-1010 -58 Shale 86 Dakota 5 35,000 25 1010-1500 87 -20 12 33 .42 .315 .16 27 Group 3 25.000 .20 50 22.50 -10 9 13 .418 .314 Morrision 1500-1590 88 47.000 .40 53 30 6 1590-2195 92 -31 5 4 .30 .12 Nippewalla Stone 37,000 .15 42 4 .03 320 .40 .30 Corral 2195-2240 92 -23 440 Ninnescah 50,000 35 1.2 2240-2445 -33 8 24 .40 .30 .11 17 Shale 93 .29 22 33 1 43,000 .13 2445-2720 -25 8 30 .38 Wellington 94 Hutchinson -25 .38 .29 .13 15 10.50 .05 Salt 2515-2557 94 18 56 ----

Rm BHT = .35 ohm - m

 $BHT = 106^{\circ} F$.

Bit Size = 7 7/8"

66

Table 4 (concl.).

Formation or Member	: Depth : : (feet)	:Temp.: : :(^o F.):	SP (mv)	:Resis : <u>(ohn</u> : R _i	stivity: <u>n - m)</u> : : R _t :(Rm (ohm-m)	Rmf : :(ohm-m):	Rw : (ohm-m):	Sw %	* * *	ø %	: K : : (md)	:	Salin- ity (PPM)
Wreford														
LS	-3140	97	-34	9	8	.389	.285	.088	70		16	6		65,000
Spieser														
Shale	3136-3166	99	-15	4	3.50	.3 8	.28	.18	70		28	2		27,000
Foraker														
LS	3250-3310	1.00	-26	10	8	.37	.27	.11	57		18	5		48,000
Admire	3310-3360	100	-18	8	10	.37	.27	.14	50		24	12.80		32,000
Tarkio														
LS	3360-3600	101	-33	12	8	.365	.27	.098	70		13.50	11		53,000
Topeka														
LS	3600-3660	101	-30	10	7	.365	.27	.10	60		20	8		51,000
Heebner														
Shale	3825-3845	103	- 8	4	7	.36	.267	.22	50		30	2.90		22,000
Toronto														
LS	3845-3885	104	-30	19	10	.355	.26	.11	70		12.70	6.80		45,000
Pedee														
Group	3885-3900	104.5	-14	21	11	.353	.26	.16	86		12.50	12.50		29,000
Lansing-														
Kansas City LS	3900-4100	106	-28	75	195	.35	.26	.12	20		11	8,50		40,000

Points	:	Location	: Section	: Township :	Range
1		SE - SE - NW	20	105	25W
2		NW - SW - NW	10	95	24W
3		SE - SE - SW	2	85	23W
4		NW - NW - SE	24	75	21W

Table 5. Exact Locations of points used in Fig. 8.

Fig. 8. Map of Graham County showing the location of wells used in Fig. 13.

Area covered by this thesis

Fig. 9

71

Fig. 10

Fig. 11

Example 3

Fig. 12

_ 2000

CORRELATION AND PHYSICAL CHARACTERISTICS OF WELLS IN GRAHAM COUNTY, KANSAS

INVESTIGATION OF THE PHYSICAL PROPERTIES OF RESERVOIR ROCKS BY ELECTRIC WELL LOGGING, IN GRAHAM COUNTY, KANSAS

by

GAMBHIR SINGH

B. A., Agra University, India, 1959 M. A., Agra University, India, 1961

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Geology

KANSAS STATE UNIVERSITY Manhattan, Kansas

1965

Graham county covers 25 townships in northwestern Kansas. The purpose of this investigation was the quantitative interpretation of the physical properties of reservoir rocks in searching for potential petroleum reservoirs by use of electric logs. A stratigraphic correlation chart was constructed to show relative thickness and physical properties of the formations in different sections of the county.

Schlumberger's Log Interpretation Charts were used to calculate porosity, permeability, fluid saturation, salinity and temperature. Tixier's Resistivity Gradient method was widely used to calculate the permeability. Porosity and fluid saturation in limestone and other tight formations were calculated by Tixier's Rocky Mountain and Porosity Index methods. Archie's and Humble equations were used in sandstone and shaly formations.

Here porous beds are considered of two types: permeable and nonpermeable. Permeable porous formations exhibit comparatively higher resistivity when they are saturated with a nonconducting fluid or gas. It is also concluded qualitatively that the greater the fraction of the available pore space which is occupied by oil, the higher the rock resistivity will be. For beds which have a rather large oil saturation, the relative permeability to oil will be appreciably greater than that to water.

Petroleum reservoirs are concentrated more highly in permeable beds. This is predicted by evaluating the calculated permeability of the Lansing-Kansas City productive group in different producing fields as well as in the nonproducing fields in Graham county. It seems that structure plays a secondary role for the accumulation of oil in the producing zones of this county. Electric logging is still imperfect and so quite a few potentially productive formations are probably still unnoticed on the electric log. Therefore with the development and improvement of other new logging tools provided by more sophisticated electronics and instrumentation, and the use of parameters which are a function of intrinsic rock properties, more accurate porosity and permeability determinations may be obtained with the combination of electric logs.