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INTRODUCTION

The temperature of above ground parts of a plant are influenced by

several environmental factors. Leaf temperatures govern the rates of

numerous chemical and physical processes within the leaf, and these

processes have optimum temperature requirements that control vital bio-

logical activities.

In direct sunlight, leaf temperatures are higher than the surrounding

air temperatures. Leaves exposed to direct solar radiation usually have

temperatures 2 to 10 degrees C higher than the surrounding air. The

important factors influencing leaf temperatures arei

1* The supply of available moisture in the soil.

2. The evaporating power of the air.

3. Currents of air.

U, The intensity of light.

5. Solar and thermal radiation, air temperature, air movement

and water loss or transpiration.

Light from the sun provides energy for green plants. If plants didn't

perform the function of photosynthesis in changing radiant energy into

chemical energy, this quantity of radiant energy from the sun would be

converted directly into heat. The heat energy absorbed by the leaf is lost

by conduction, transpiration and reradiation. In general, the greater the

difference between the leaf temperature and the temperature of the sur-

rounding air, the larger the heat loss by thermal emission.

Transpiration is important for keeping the temperature of the fully

sunlit leaves below the lethal limit. A small quantity of water transpired



by leaves ean seas a difference of a few degrees In plant temperatures.

This ean near., under conditions of high temperature , the difference between

survival and thermal death point (Gates, 15). The largest cooling from

leaf transpiration takes plaoe in still air or at very low vind speeds.

Transpiration rates change with vind speed because of changes in the

diffusion resistance of stomatas.

Within photosyntheslsing cells the rate of carbon assimilation in-

creases in a linear fashion with light intensity but at higher intensities

the curve levels off. This indicates that at high light intensities light

is wasted, the cells having become light saturated. At very high intensities

assimilation diminishes, and leaves suffer from insolation. Insolation

produces heat, causing increased leaf temperatures. High temperatures cause

any different types of damage to plants, most evident is bleaching of

chlorophyll from leaves, inhibition of growth, development of burns and

lesions, or death of the plant or plant part.

Plants differ widely in the intensity of light that they require or

tolerate. The compensation point is where rate of photosynthesis is equal

to respiration rate. Similarly the light saturation point i.e. the point

above which photosynthesis rate levels off or decreases. It is much lower

for shade plants as compared to sun species. Under conditions of high

light intensities all phases of growth are retarded and in extreme oases

ultimate death of plants may occur. This all happens, partly due to high

leaf temperatures, which disrupts the physiological processes.

Air cooling moderates high leaf temperatures by increasing their

thermal emissivity. Cooling by heat transfer to the surrounding air is

proportional to the difference between the leaf and air temperatures and



is a major factor in moderating the leaf temperature under high light

Intensities.

The purpose of this Investigation was to study the effect of different

rates of air movement on leaf temperature, stomatal opening and chloro-

phyll contents on the leaves of shade requiring plants under high light

intensities. Further to explore the possibility of greater light in-

tensity tolerance of these plants for commercial greenhouse production by

modifying plant leaf temperatures through Increased air flow.

REVIEW OF LITERATURE

Despite the faot that transpiration has been the subject of a great

deal of study, there remains some uncertainty about the magnitude of its

role in determining the temperature of the plant leaf. Clum (5) studied

the effect of transpiration on leaf temperature and noticed that in general

plant8 in dry soil with vasollned leaves were 2 to U degrees C warmer than

the controls. In no case has a definite correlation been found between the

transpiration rate and the difference between the leaf and air temperatures,

nor between the difference of the transpiration rate of two leaves or plants

and the difference of their temperature.

Clum (6) reported further that transpiration plays a small part in

cooling the leaf, and suggested that radiation and convection from the leaf

are more Important than transpiration in keeping the leaf from becoming

hotter than It does in bright sunlight. Re observed that the thermal death

point of plants lies between 4.5 and 55 degrees C, depending upon the nature

of plant, condition within the plant, and the duration of the exposure.

Convection is augmented by air currents and hence when air is moving those



leaves exposed are kept cooler more by convection and radiation than by

transpiration. Intensity of light is the most important factor affecting

the temperature.

Wolpert (41) shoved, through a theoretical analysis, that under normal

conditions transpiration could account for approximately 1/4 of the heat

removal from a leaf, indicating that transpiration was at least a signifi-

cant factor in the heat exchange phenomena of leaves.

Cook et al (7), while working on transpiration, observed that transpi-

ration appeared to establish a temperature variation over the area of the

leaflet. Since the lowest temperatures are maintained near the leaf veins,

they presumed this to be due to the greater transpiration. The transpi-

ration component of heat exchange increased with Increasing wind velocity

up to 6 km/h, and as velocities rose beyond this value, transpiration

became a decreasingly important factor in heat transfer. Light amplifies

the part played by transpiration in heat transfer by oausing stomatal

opening, and in these tests accounted for leaf temperatures 5 degrees C

lower than when transpiration was suppressed.

Gates (15) was of the opinion that transpiration is desperately

important to a plant for keeping the temperature of the fully sunlit leaves

below the lethal point. 4 small amount of transpiration can mean the dif-

ference of a few degrees in plant temperature which can tinder hot conditions

mean the difference between the survival and thermal death. Transpiration

cools the leaves and reduces the effective radiation load. The largest

influence of transpiration on the leaf temperature takes place in still air

and at very low wind speeds. This difference in transpiration is caused by

wind speed because of changes in the diffusion resistance due to stomatal

action.



Increase In wind velocity within limits results in an increase in the

rate of transpiration. Winds of very high velocity have been observed to

have a retarding effect upon transpiration due to closure of stomates.

Wind nay have a cooling effect upon the leaves, due to their thermal

emissivity under intense insolation. Similarly large increases in photo-

synthesis can be obtained with air movement, probably reflecting the

limitation of photosynthesis by air layering and the localised depletion

of C0
2 at the actual surface of the leaf in still air. (Meyer and Anderson

(28) and Leopold (22).)

Finell (13) summarised the effect of wind on plant growth as follows:

1. A portion of the tender foliage was actually destroyed by

wind whipping.

2. Deformation of stem in early stages of growth.

3. Time of maturity was increased by wind, and yield of dry

matter was reduced by 48 percent, but the number of secondary

branches was apparently increased.

Martin and Clement (26) reported the transpiration of Bclianthus annu s,

depended on the wind velocity. At velocities up to 2 mph the transpiration

rate increases from the onset of wind and maintains this increase as long

as wind continues. When the velocities are increased above this point,

there is usually a high relative increase for the first few minutes, which

in turn is followed by a decline. This causes slight wilting of leaves and

closure of the stomata with a reduction in transpiration rates. The average

increase of transpiration rate over a period of 2 to 4 hours rises very

rapidly with velocities up to 2 to 3 mph, but the curves flatten out at

this range and mount only gradually thereafter. He presented some evidence



which indicated that the closure of atomata by wind is partly mechanical

and partly due to lowering the sap content of the leaves. Vind above

5 mph practically always induces closure of stomata and below 2 mph almost

never. He found no difference in the mesophyll tissue, but found con-

siderable drop in the xyleif. element area with increasing wind velocities.

Rao (29) investigated the effect of artificial wind on growth and

transpiration in Italian millet and revealed that tips of plants subjected

to wind were shorter, lighter in weight, thinner stalked and bad narrower

leaves and fewer tillers. These plants had lighter and less bulky root

systems. The treated plants required double the amount of water as com-

pared to non-treated plants.

Gessner (13) observed that the photosyntbetio rate of plants with

broad leaves was greatly enhanced by air turbulence, while in plants with

finely divided leaves it was not appreciably increased.

Decker (11) found that the apparent photosynthetio rate of the entire

shoot of tree seedling (loblolly pine) varies hyperbolioally with the rate

of air supply and linearly with mean C02 concentration over the range of

0.52 to 0.45 mg.

Msnt (35) has illustrated this by comparing photosynthetio rate of

plants in still air and in an artificial wind. He obtained 20 percent

increase in COg fixation upon introducing turbulence and a prompt drop

when the turbulence was withdrawn. Air layering around large flat leaves

may be considerably more acute than around thinly divided leaves.

Wadsworth (32) devised some experiments to find the optimum wind

speed for plant growth. He observed that the relative growth rate of

Brassioa napus in a wind tunnel rose with low wind speeds but fell again



when wind speed was further increased. A wind speed of 0.3 m/seo. caused

optimal growth.

Vadsworth (33) conducted some experiments on the effect of artificial

wind on the growth rate of plants In water culture. His experimental

results showed no significant increase in relative growth rate or net

assimilation rate with wind speed.

Wooley (41) explored the following three mechanisms by which wind

might possibly increase transpiration. Inorease in transpiration oaused

by decrease in air pressure on the side of leaf; ventilation of ampliato-

matous leaf by air passing through the leaf by way of stomatas and inter-

cellular space and pumping action of changes in volume of intercellular

spaoe as leaves bend in air.

Hasohka (30) remarked that a plant is never in thermodynamic equi-

librium with its environment because the temperature of the sun is thousands

of degrees higher than the temperature of the plant and energy is radiated

to the plant and there transformed Into heat. This process causes new

gradients. Generally the temperature of part of the environment differs

from that of the plant, causing a long wave radiation exchange. Also vapor

pressure difference between them causes a long wave radiation exchange.

Also vapor pressure difference between the plant and the environment creates

a new gradient.

Whitehead (37) observed that the entire plant becomes smaller with

increasing wind speed due to a smaller leaf area and not photosynthetie

rates per unit area. Furthermore this reduction in leaf area is

accomplished by a corresponding reduction of internode length. In general,

the phenotypes become more xeromorphlo as the wind speed is increased.



It has teen demonstrated that these changes can be expeoted to be advan-

tageous in respect to water relation.

Whitehead (33) studied the effect of wind on plant growth. He con-

eluded that adaptative morphological and anatomical changes occur in both

wind treated plants and those growing under soil moisture stress. These

changes appear to be related to the conditions of water balance in the

leaves. There is some evidence that photosynthetio apparatus itself is

affected at the most extreme conditions.

Gates and Benedict (16) reported that all objects, including plants,

when subjected to a heat load redistribute the absorbed heat in the form

of reradlatlon, convection, conduction and transpiration. By these means

the temperature of the plant remains within the lethal limits, unless the

heat load becomes unusually heavy. The net energy retained by the leaf is

utilised directly in photosynthesis, if the proper wave lengths are present.

It also may be a means of increasing the chemical rate of processes within

this food producing organ above that which could occur if the leaves were

strictly at the ambient air temperature.

Gates et al (17) conducted some experiments on ponderosa pine. They

determined the actual surface area of the branch, the effective area for

absorbing long wave thermal radiation and for emission and the free and

forced convection coefficient by suspending a solid silver casting of a

ponderosa pine branch in an evacuated radiation chamber and in a wind

tunnel. They concluded that the transfer of heat energy to and from

ponderosa pine branch involves solar radiation, thermal radiation from

the ground, atmosphere and surroundings, thermal emission by the branch

and free convection in still air and forced convection in wind.

Miller and Saunder (27) conducted some experiments on the tempera-



ture of crop plants under field conditions during the summer. They

observed that the transpiration rate of turgid leaves was much higher

than that of wilted leaves. The temperature of turgid leaves was

slightly below the temperature of surrounding air during early morning

and evening. During night the temperature of leaves is approximately

that of surrounding air and during day different plant leaves show differ-

ent behavior. In direct sunlight the temperature of the base of the

leaves is always lower than the tip. In diffused sunlight the tempera-

ture of attached, turgid leaves was always lower than that of surrounding

air.

Curtis (8) found leaf temperatures to be considerably influenced by

exchange of infrared radiation between the leaf and other materials near

or at a distance from it. There is also loss of heat by radiation to

space. He further concluded that rapid and great changes in temperature

of leaves in direct sunlight are also brought about by natural or artifi-

cial changes in the rate of air flow or light intensity. The presence of

water in the atmosphere either as vapor or clouds may influence plant

temperatures through its effects on infrared radiation.

lorens (23) reported that according to Heilbrun and Miller the

thermal death point for most plant cells has been found to vary between

45 to 55 degrees C. Re reported that the following five theories

explaining the mechanism of heat injury to protoplasm were found in the

literature.

1. Coagulation-theory of protoplasmic proteins is probably the

oldest and most widely accepted theory of heat injury. It

was quoted by Saoh as early as 1864.
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2. Heat destruction of ensymes.

3. Asphyxiation theory.

4. Intoxication theory.

5. Lipoid liberation theory.

Waggoner and Shaw (3-4) observed that a leaf perpendicular to insola-

tion was 3.2 degrees C warmer than a parallel leaf. Shaded leaves on all

parts of the plant had nearly equal temperatures, while those exposed to

insolation at the top of the plant and near the soil were 7.8 to 12

degrees C, respectively, warmer than shaded leaves. Upper exposed leaves

were 3*3 to 8 degrees C warmer on clear days and 0.8 degrees C cooler on

cloudy days than the air temperature.

Ansari et al (1) took the temperature readings of leaves of differing

thicknesses under varying environmental and plant conditions during alter-

nate heating and cooling cycles in sun and shade. They found that leaves

tended to assume air temperature. Sunshine-heated thin leaves reached

6 to 10 degrees C above air temperature in one minute, and very thick

leaves were heated 20 degrees C above air temperature in 20 to 30 minutes.

Cooling in still air in shade was at the same rate as heating in sunshine.

They further noticed that wind at 5 mph lowered leaf temperatures in the

sun about half way to air temperature. This cooling effect can result in

a reduction of transpiration by wind. Wilted leaves showed nearly the

same temperature response as turgid ones. Dried leaves heated lees and

cooled faster in shade than transpiring leaves but showed similar heating

and cooling curves.

The principle variable in the environment affecting photosynthesis

is light intensity. The linear range of photosynthesis will proceed as
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long aa variables other than light are not critical. The saturation

intensity is strongly influenced by the adaptation of the leaf, being

lover for shade leaves than for sun leaves. Some investigators assert

that intensities above 1000 ft-c are of no increased value to the plant

since photosynthesis of individual leaves is saturated at that amount

(Leopold, 22).

Boysen-Johnsen (4.) demonstrated how adaptation of leaf to shade

lovers the saturation intensity and usually shortens the linear range of

photosynthesis.

Konis (20) was of the opinion that direct heat damage may be oaused

by high temperatures and thus there may also be indirect damage of high

temperatures resulting from an undesirable effect on physiological processes

as photosynthesis and transpiration. Damage may also be due to a lov photo-

synthesis-respiration ratio. He also pointed out that plasma hydration is

most likely the cause of resistance in plants.

Banning (2) described the decline in photosynthesis vhen continuous

light vas applied to apple leaves and shoved that leaves which have been

adapted to full sunlight are much more resistant to continuous light than

shade leaves.

Withrow and Vithrov (36) shoved that in some speoles continuous light

results in extreme chlorosis of the leaves, a situation that can be avoided

either by a daily dark period or by daily temperature fluctuations.

Bfihning and Burnside (3) measured rate of apparent photosynthesis in

relation to light intensity in leaves of several species of plants exposed

to similar conditions of light, temperature, moisture and COj supply.

Light saturation curves for apparent photosynthesis of 8 sun speoies and
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5 shade species were drawn and it was noticed that the light saturation

and compensation point for sun species were 2000 to 2500 ft-c. and 100 to

150 ft-c. , respectively. They found that for shade species light satu-

ration was reached at a maximim of 1000 ft-c. and in some shade speoies

light saturation Intensities were as low as 4-00 to 500 ft-o. The compen-

sation points of the shade species were approximately 50 ft-o.

Georg (19) found that the relation between stoaatal transpiration in

wind and still air (10 different species) varies between 1:3 and li9.

Kuiper (21) while working on the effect of environmental factors on

the transpiration of leaves, with special reference to stomatal light

response, reported that the transpiration rate showed a linear Increase

with light intensity, which was mainly due to Increase in leaf temperature

by irridlation with incandescent light. With other light sources, con-

taining a low amount of infrared irradiation, the increase in transpiration

was mainly due to an increase in stomatal openings. The stomates were

found to be insensitive to Infrared radiation.

Baerson (12) showed that the maximum rate of photosynthesis is a

smooth function of the chlorophyll content.

Lubimenko and Hubbenet (24) worked on the influence of temperature on

the rate of accumulation of chlorophyll in etiolated seedlings and reached

the following conclusions:

1. The greening process of etiolated wheat seedlings takes place

within definite limits of temperature, beginning between 2 and

U degrees C; attaining its maximum rate between 26 and 30

degrees C, and ceasing at a temperature near 43 degrees C.

2. The position of these cardinal points does not depend upon
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the duration of the seedlings' exposure to light.

3. The optical temperature point is characterised by the accumu-

lation of a maximal quantity of chlorophyll in the shortest

time.

4. This relation of greening process to temperature rests on the

influence of this factor on the synthesis of leucophyll and on

its transformation into cblorophyllogen, since the transfor-

mation of ehlorophyllogen into chlorophyll is a pur«l7 photo-

chemioal reaction not depending upon temperature.

5. In the temperature interval from 2 to 30 degrees C the increase

in the quantity of chlorophyll in a unit of time, first grows

and then falls with the length of time the seedlings are

exposed to light at the same temperature.

6. The increase in the production of chlorophyll during the first

period of exposure to light is conditioned by the secondary in-

fluence of light on the reactions of cblorophyllogen formation,

as these reactions are endothermio. The absorption of light

by the greening plastids augments the quantity of energy and

in this way helps the acceleration of the reaction.

7. The fall in production of chlorophyll in a unit of time begins

from the moment when the quantity of an accumulated pigment

attains approximately 40 peroent of its limit quantity, inde-

pendent of temperature. That is why the more rapid the

accumulation, the earlier the fall in the rate of production

will appear.

8. At temperatures higher than 30 degrees C, a general fall can
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be observed in the production of ohlorophyll, the quantity

being smaller than that produced at the optimal temperature.

9* The diminution of total ohlorophyll production at temperatures

higher than 30 degrees C, is probably conditioned by the

appearance of a new reaction under its influence obtained from

leuoopbyll, instead of chlorophyllogen already formed and

decomposed.

10. The new reaction which diminishes the production of chlorophyll

begins at temperatures near 26 degrees C, as the temperature

rises its rate increases and at maximal temperature becomes

equal to the rate of the chlorophyllogen synthesis. The

production of this pigment and with it that of chlorophyll,

then falls gradually to sero.

Fleischer (14) t while working on the relation between ohlorophyll

content and the rate of photosynthesis, concluded that the rate of photo-

synthesis is proportional to the ohlorophyll content when the latter is

varied by varying the iron supply. These data give a straight line

passing through the origin, which is not true of Emerson's result.

Sironval and Kandler (31) reported that the process of pigment bleach-

ing in chlorella cells exposed to very intense light (10,000 lux) consisted

of two phases—an induction phase preceding bleaching and a bleaching

phase. Both phases required oxygen. During the bleaohing phase carotene

disappeared, then chlorophyll a, chlorophyll b and finally carotenoids.

The induction of bleaohing in dark was reversible and seemed to reflect

important ohanges in oell metabolism.
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Valker and Mellon (39) conducted some experiments on bleaching of

ohloroplastin and were of the opinion that chloroplaat could be bleached

by heat, light or a combination of both* They further reported that the

rate of bleaching of chloroplaetln was independent of temperature in

light. The rate of bleaching in darkness became temperature dependent

above 30 degrees C.

MATERIALS AND METHODS

Fire species of commonly grown shade plants were selected for this

investigation. These species were:

1. Sajntpaulla, ionantha.

2. telodendron oordatum .

3. Begonia, gemperflor?ns

»

U. Codlaeue aucullfollum. and

5. Saqsevicria trifa3ciata .

Pot grown plants of each species were grown in a greenhouse at light

intensities of 1500 to 200C ft-c. for two months prior to initiating the

study.

Five plants of eaoh species were selected and double potted into

eight-inch clay pots. The space between the two pots was filled with

peat moss to avoid rapid evaporation of moisture from the clay pot surface.

A horizontal funnel-shaped wind tunnel twenty feet long facing east-

west was set up in a greenhouse to create controlled wind velocities

(Plate I). The tunnel consisted of a plastic sheet supported on a wooden

frame. The narrower end of this funnel-shaped tunnel was two feet square

and the broader end eight feet square. An exhaust fan was installed at
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the narrower end and aspen-vood-excelsior padding with facilities for

wetting was mounted at the wider end. The wet padding was used for

hufflldlfioation and cooling of the air entering the chamber. A hori-

zontal wooden board was placed along the length of the tunnel to support

plants in the center of the chamber (Plates I and II). Wind velocities

in the tunnel were measured by means of an omnidirectional air meter and

they varied from 0.45 mph at the wider end to 5 mph at the narrower end.

Four spots for placing plants were marked on the horizontal wooden board

in the tunnel to receive wind velocities of 4.4* 3.2, 0.6 and 0.45 mph,

respectively.

This study was conducted in a plastic greenhouse at Kansas State

University during the months of July and august, 1965. Phllodendron

cordatum plants were put under experimentation on 1st July, Sansevieria

trlffiscjata on 10th July, Codjacum auouUfflUua and Begonia semperflorens

on 15th July and Sajntpaulj.a lonantha on 20th July, 1965.

One plant of each species was placed on the wooden board at a distance

of five feet from one another where the wind speeds were 4.4, 3.2, 0.6 and

0.45 mph, respectively, and one plant was placed outside the wind tunnel

to serve as a control. The fan operated daily from 7:30 a.m. to 5x00 p.m.

The temperatures of two leaves selected at random from each plant

were taken by inserting standardised 36 gauge copper-oonstantan thermo-

couples into their midribs. The junctions of the thermocouple were made

by twisting the copper and constantan wire and then fusing the joint.

This joint was raked with a file so as to make it pointed in order to

facilitate insertion in the leaves.
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The temperature readings of the leaves and air were taken with a

portable potentiometer (Rubicon Co. ) calibrated In Fahrenheit scale

(Plate III). Air temperatures were measured by holding the thermocouple

In the shade. Air and leaf temperatures were taken weekly on clear days

at 9t00 a.m. , noon and 4*00 p.m.

Light intensities were measured weekly in conjunction with tempera**

ture readings using a Hasten illumination meter (Model 756). Plant heights

were also measured weekly to determine the linear growth rate. Observation

notes on general appearance and growth of the plants were taken. Opening

and closing of stomates in different wind velocities and in still air were

also observed from time to time under a binocular microscope.

Leaf samples from Salntpaulla ionantha were analyzed for chlorophyll

content after 30 days of treatment and similarly leaves fron; other soeeles

were analysed after 45 days. All the leaves of the plants at the differ-

ent wind velocities and control were chopped after removing their midribs.

Random samples from chopped leaves of the plants were taken for chloro-

phyll analysis (Maokinney, 25). Each sample consisted of 0.5 g of out-up

leaf tissue, a pinch of sand and a few ml of 80 percent acetone. These

were placed In a mortar and ground with a pestle. The supernatant liquid

was decanted and filtered. Eighty percent acetone was added to the

residue and ground again before filtering. This was repeated until the

filtrate was colorless and then diluted to 50 cc with 80 percent acetone.

Using 80 peroent acetone as the blank, the optical density (absorb-

ance) of the sample was measured on the Beckman DU Spectrophotometer at

663 mu and 645 mu and compared with 80 percent acetone as a blank. The

concentrations of chlorophyll a and chlorophyll b were found by solving
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the following linear equation!

optical density 663 mx 82.04. C
a 9.27 C^

optioal density 645 «u 16.75 Ca 45.6 C^,

if C the concentration in grams per liter and

10 C - the grams of chlorophyll a or b per 100 g of leaves,

then the total chlorophyll content in grams per 100 g of leaves

- 10 Ca 10 Cb .
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EXPERIMENTAL RESULTS

Visual Symptoms

PftUpfondron cordatum

The first sign of injury occurred on control plants outside the

chamber. Yellow spots were observed on three leaves of philodendron

after a period of seven days. The yellow spots grew in dimension and the

number of leaves showing this chlorosis increased during the 45 days of

the study. After fifteen days, burning of the margin of young leaves was

noticed. At the end of the study enlarged burned spots were noticed on

nine leaves and bleaching effects were seen on most of the leaves. The

plant had 29 leaves.

Plants at the wind velocity of 4.4 mph appeared normal with burned

spots on one leaf with slight yellow discoloration. The plant at 3.2 mph

wind velocity differed from that at 4.4 »ph in having more yellowish dis-

coloration. At 0.6 mph wind velocity yellowish discoloration on plants

was noticed after fifteen days and at the end of the experiment more leaves

had a yellowish appearance when compared to plants at 4.4 and 3.2 mph

velocities. At 0.45 mph velocity plants were like that of 0.6 mph with

exception of burned spots. The relative degree of discoloration and burn-

ing acquired by plants at different wind velocities is shown in Plate IV.

No appreciable difference in rate of growth was found between plants

at 4*4 and 3.2 mph velocities. The rate of growth of plants at control

conditions was less than that at 4.4 and 3.2 mph wind velocities (Table 1).

The size of leaf at 4.4 and 3.2 mph air flow was larger than that of

control (Plate IV).



EXPLANATIOH OF PLATE IV

Difference in Fhilodendron oordatum leaf else and Injury as

related to Telocity of air movement

.

Top Row (L to R) - Leaves at control, 0.45 mph and at 0.6 mph wind

velocities.

Bottom Row (L to R) • Leaves from plants at 3.2 mph and 4.4 mph wind

velocities.
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PLATE IV
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filBfyrlerla trfrffttglftj

All sansevieria plants were normal for the first fifteen days and

thereafter the plant at 0.45 mph wind velocity and the control started

shoving signs of faded green chlorosis. After 45 days of study the

control shoved much more green discoloration compared to plants at 0.6

and 0.45 mph velocities. The plant at 0.45 mph velocity also shoved a

large sunburned spot on one leaf (Plate V). Plants at 4.4 mph vind

velocity had more oblorotio appearances than those of plants at 3.2 and

0.6 mph vind velocities.

Grovth of plants at 4.4, 3.2 and 0.6 mph vind velocities did not show

any difference in plant height. But the plant at 0.45 mph vind velocity

did show the best grovth in spite of one burned spot. The plant at control

lagged behind and was poorest among all plants (Table 2).

Codlaeup aucuUfoJUum

Leaves of the codiaeum plant outside the chamber became orange-yellow

in color with slight burning of the three young leaves fifteen days after

exposure to full sunlight. The plants at 4.4 and 3.2 mph vind velocities

in the chamber at the same light intensities vere green but looked stunted

in grovth, whereas the plants at 0.6 looked normal and healthy with slight

burning of two leaf margins. The plant at 0.45 mph vind velocity looked

healthiest vith three more secondary branches. The control plant outside

the chamber shoved signs of burning injury on the margin of six young

leaves. At the end of 45 days the plants at 4*4 and 3.2 mph vind veloci-

ties vere normal green but stunted in grovth, whereas the plant at 0.45

mph vind velocity was very healthy vith secondary branches. The plant
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Table 1. Philodendron cordatiari, plant growth in relation to plant height.

i .I
Days after treatment Klad velocity in aph

'

0.0 0.45 0.6 3.2 4.4

Plant height in cot

7 6.3 5.0 5.3 6.2 6.1

U 13.0 11.3 12.5 13.3 13.2

21 19.7 17.3 18.7 20.7 21.0

28 27.7 23.0 24.0 28.7 29.0

35 29.7 25.3 25.5 30.5 31.2

42 32.5 27.4 27.1 34.2 34.0

45 35.2 29.3 28.7 38.3 38.0

^a, plant growth in relation to plant height.

Days after treatment Wind velocity in mph

O.C 0.45 0.6 3.2 4.4

Plant height in Cffi

7 3.1 2.8 2.7 3.0 2.9

14 6.7 5.11 5.4 6.2 5.8

21 9.2 9.0 8.6 8.11 8.4

28 11.1 12.9 12.1 12.5 11.1

35 13.6 15.7 14.7 15.4 13.3

42 U.1 18.4 16.2 17.1 15.7

45 15.0 20.1 17.1 18.5 17.3
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outside the chamber showed better growth and had more secondary branches

than the plants at 4.4 and 3.2 mph wind velocities (Table 3). The plant

growth in relation to height decreased with increase in wind velocity.

The plant outside the chamber was tanned with yellow pigmentation with

nine leaf margins which were observed burned whereas the plants at 4.4

and 3.2 mph wind velocities showed only slight yellow discoloration

(Plate VI).

Eegonla semperflorens

No visible signs of leaf injury were noticed during the first seven

days, but after fifteen days signs of minor burns were noticed on two

leaves of the control plant. After three weeks the plant at 4.4 mph

velocity showed a sunburned spot on one of its leaves and the plant was

stunted in growth; with the exception of two sunburned injured leaves,

the plant at 3*2 mph velocity was similar in appearance to the plant at

4.4 mph wind velocity. These plants had 27 and 29 leaves, respectively.

Plants at 0.6 and 0.45 mph velocities each showed sunburn spots on four

leaves out of 38 and 47 leaves, respectively, but otherwise they were

healthy with more secondary branches. The plant under control showed

bronse colored pigmentation with signs of burn injury on six out of 50

leaves (Plate VII).

In regard to growth in relation to height, the plant at 0.45 mph

wind velocity was healthiest and had the most secondary branches. Plants

at 4.4 and 3.2 mph velocities were stunted in growth (Table 4). The

plant growth, in relation to height, decreased with increase in wind

velocity.
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Days after treatment ind velocity in «ph

0.0 0.45 0.6 3.2 4.4

Plant height in ob

7 2.0 3.7 3.7 2.8 3.3

U 3.0 5.5 5.7 4.3 5.5

21 5.3 8.7 7.7 8.3 9.3

28 6.7 11.3 8.4 U.0 12.0

35 11.6 15.0 9.8 12.8 12.6

42 16.5 19.7 13.2 13.7 13.3

45 17.6 21.2 15.1 14.3 13.5

Days after treatstent Wind velocity in mph

0.0 0.45 C.6 3.2 4.4

Plant height in on

7 1.0 0.7 1.3 1.2 1.8

14 3.2 2.7 2.8 3.2 4.0

21 4.3 4.0 3.7 4.0 4.5

26 4.9 5.8 4.7 4.5 4.9

35 5.2 7.8 5.2 4.9 6.0

42 7.5 9.7 7.6 6.2 6.6

45 10.2 12.0 10.4 7.6 7.4



EXPLANATION OF PLATE VI

Differences in leaf else, yellow pigment formation and leaf

injury resulting from different velocities of air movement to

Codjeeum auou^foUum.

Top Row - (L to R) - Leaves from plants at control, 0.45 mph and

0.6 mph wind velocities.

Bottom Row - (L to R) - Leaves from plants at U»U and 3.2 mph

wind velocities.
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Ml lOPflPthg,

Compared with other species the saintpaulia plants shoved maximum

amount of heat injury. After seven days from the initiation of the study,

plants at 3.2, 0.6, and 0.45 mph wind velocities and the control started

to show yellowish leaf discoloration. These signs of bleaching became

quite prominent after fifteen days. The control plant showed maximum

number of leaves sunburned along with the yellowish discoloration. After

a 30 day period it was observed that the plant least affected by heat injury

was at 4.4 mph wind velocity as only three leaves had slight burning of

leaf margins and bleaching effect on seven leaves out of a total of 25

leaves. At 3.2 mph wind velocity burning of leaf margins was noticed on

four leaves and bleaching on 10 leaves out of a total of 28 leaves. The

most affected was the control as enlarged burned spots were observed on

11 leaves and bleaching on almost all leaves. Heat injury increased with

decrease in wind velocity (Plate VIII).

The rate of growth as judged by general appearance was directly pro-

portional to wind velocity. Plants at 4.4 and 3.2 mph velocity made new

growth, whereas the control plant first made some growth but later was

slightly damaged by high light intensity and thereafter the plant did not

make any growth. Leaf size at 4.4 and 3.2 mph wind velocities was larger

than that of the control plant (Plate VIII).

Leaf Temperatures

Leaf temperatures as measured with thermocouples at 9 a.m., noon and

4 p.m. , showed the following trends at various wind velocities and control

(Table 5). Leaf temperatures increased with decreasing wind velocities.
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Among control plants maximum temperature at noon was attained by Sansevieria

trlfaseiata leaves that were 10.2 degrees F above air temperature; Phllo-

dendron oordatum 7.2 degrees F above air temperature; Codlaeuro auoulifolj.i
fl
m,

6.4 degrees F above air temperature, Salntpau^la ionantba 9.4 degrees F and

Begonia aemperflorens 7 degrees F above air temperature at 6685 ft-c. light

Intensity. Lowest leaf temperatures were observed at noon in all plants

kept at 4. 4 mph wind velocity. Compared to other treatments leaf tempera-

ture of Sansevieria trlfaseiata was 2 degrees F above air temperature,

Phllodendron cordatum was 1.5 degrees F, Saintoaulla lonantha 1.9 degrees F,

and Begonia scmpcrflorcns 1.1 degrees F above air temperature (Table 5).

In general leaf temperatures increased with increase in light intensity.

Differences between leaf and air temperatures were 3 to 5 degrees F

occurring in morning and evening (Tables 5 and 6).

The average light intensity during the experimental duration was 2270

ft-c. , 6685 ft-o. and 3045 ft-c. for the morning, noon and evening,

respectively (Table 7).

Stomatal Observation

It was observed that the stomates remained open in still air and at

0.6 and 0.45 mph wind velocities. At 4.4 and 3.2 mph wind velocities

stomates tended to close after 15 minutes on the onset of wind and remained

in that position throughout the period of air flow. The stomates of all

plants under control during this comparison remained wide open.
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Table 7. Light intensities in foot candles (ft-c. ) at 9 a.m. , noon and
4 P*Bt*

Date (1965) Light intensity in ft-o.

9 a.m. Noon 4 P«»«

3rd July 2010 6768 1140*

10th July 1998 6678 2892

17th July 2074 6774 3008

24th July 2440 6560 3028

31st July 2450 6772 2940

7th August 2210 6660 3090

14tb August 2236 6404 3100

21st August 2382 6774 3060

28th August 2342 6844 3238

Arerage 2270 6685 3045

This light intensity was recorded at 5 p.m. , otherwise all
intensities were taken at 4 p.m.
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Chlorophyll Content

The quantitative estimation of chlorophyll contents of Philodendron

cordatuE and Salntpaulia ionantha leaves showed a decrease at slower wind

velocities. Maximum chlorophyll destruction and reduced synthesis were

found in control plants. On the other hand, chlorophyll content was found

to be less with increased wind velocities for Codiaeum auculifollum and

Begonia semperflorens . In Sansevieria trlfasclata maximum loss of chloro-

phyll was found in control plants and was highest at 0.45 mph and decreased

with increases in wind velocity (Table 8).

Table 8. Chlorophyll content in grams per 100 grams fresh weight.

Treatment

Plant species Wind velocity mph

4.4 3.2 o.< 0.45 0.0

Sftintpa,ulia ionantha, .016 .014 .011 .010 .007

PhJlpdendrop oordafti .058 .049 .030 .035 .028

Codiaeum auculJfoUum .038 .046 .040 .057 .049

Begonia, semperflpren.1 .006 .010 .009 .011 .015

Sansevieria trifasciata .027 .034 .032 .038 .017
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DISCUSSION

Light intensity la the major environmental factor affooting plant

temperature and photosynthesis. The saturation intensity is strongly

influenced by the adaptation of the species, being much lover for plants

which are adapted to shade conditions. According to Leopold (22), and

Banning and Burnside (3), all phases of growth of typical shade species

are usually retarded by light intensity in excess of about 1000 ft-c.

When light intensity exceeds this limit many injuries result from

solarisatlon due to excessive heat load.

The results obtained in this study showed that leaf temperatures tend

to rise with an increase in light intensity. The maximum leaf temperatures

were observed at noon when light intensity averaged 6685 ft-o. (Table 7).

The higher leaf temperatures were observed in all species and under all

treatments (Table 6). Leaves of control plants (normal greenhouse air

movement) reached the maximum rise in temperature, in this study, 6.5 to

10.2 degrees F above air temperature. Similar results have been reported

by Ansari et al (1), Cook et al (7), Clum (6) and Waggoner and Shaw (35)

who found that leaf temperature of sunlit leaves were always higher than

the air temperature. Furthermore, under no condition was the temperature

of sunlit leaves found to be lower than the air temperature, as reported

by Miller and Saunder (27). The leaf temperatures of all plants in the

morning, noon and evening either under forced air movement or control,

were always higher than the air temperature, although the differences

varied with light intensity (Tables 5 and 6).

Wind modifies elevated leaf temperatures. Plants at 4.4 and 3.2 mph

wind velocities were found to have leaf temperatures of 1 to 3.5 degrees F
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above air temperature and these differences tended to increase with

decrease in air flow (Table 6). The effect of wind vas found to be more

pronounced in the morning and evening when the temperature of leaves at

4.4 and 3.2 mph wind velocities tended to approach the air temperatures

(Table 5 and 6). Perhaps, wind modifies leaf temperatures by lowering

the air temperature surrounding the plants and thus reducing the tempera-

ture gradient of leaves by reradiating the absorbed heat to the surrounding

atmosphere. Air flow also dissipates the moist vapor blanket surrounding

the leaves increasing the rate of transpiration. All these factors give

the cumulative effect of forced convection. At 4.4 and 3.2 mph air

velocities, the reduction in leaf temperatures was perhaps mainly due to

the cooling effect of air, since transpiration was Inadequate to account

for this and the cooling based upon differences of air and leaf tempera-

ture must become dominant. These findings are supported by Ansarl et al

(1), Curtis (8), Gates (17), Martin and Clements (26) who have found that

convection augmented by air currents and reradiation are more important

factors in cooling leaves than transpiration.

The temperature of plant leaves under normal greenhouse air movement,

where transpiration due to stomatal opening was the major factor in lower-

ing the leaf temperature, rises from 6.5 to 10.2 degrees F above air

temperature (Table 6). Hence, the cooling effect by transpiration was not

so effective as by forced eonveotion at U»U and 3.2 mph air velocities.

This fully agrees with the findings of Clum (5 and 6), Wolpert (41),

Cook et al (7) who are of the opinion that transpiration can only reduce

elevated leaf temperatures from 3 to 5 degrees C.
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The stomates of leaves in all plants at 4.4 and 3.2 mph air velocities

were observed to be closed and this further strengthens the view that under

these conditions forced convection is the major factor in reducing the leaf

temperatures, since transpiration mainly occurs through stomates. The

closing of stomates here by wind is partly mechanical and also due to

lowering the fluid contents of cells. This condition may be benefioial to

plants in relation to water conservation. Martin and Clements (26) also

noticed this kind of behavior by stomates.

The stomates of leaves at 0.6 and 0.45 mph wind velocities remained

open and hence here the reduction in leaf temperature was by both transpi-

ration and air flow. The temperature of these leaves were found to be 4 to

5 degrees F above air temperature, which is less than the temperature of

control leaves, but more than the temperature of leaves at 4.4 and 3.2 mph

wind velocities (Table 6). Gates (14 and 15), Wolpert (40) are also of the

opinion that the greatest effect of transpiration on leaf temperature is

when air is still or at low wind speeds. According to Oeorg (19), and

Kluper (20), transpiration is more efficient in still air than in wind.

Leaves of different species showed different trends in temperature

under similar treatments. Thick leaves of Saintpaulia lonantha and

Sansevleria trifasciata had a higher temperature than thin leaves of ?bllo-

dendron oordatum . podlaeum aucullfo~l.ium and Begonia
,

semperflorens (Table 6).

Similar results were reported by Ansari et al (1) and Leopold (22).

Perhaps leaves with rough surfaces acted as beat traps when compared

to leaves with shiny surfaces which have reflectance properties. The

pubescent leaves of Salntpaulja ionantha
,
were 3 degrees F higher than the

glossy Codlaeum auoullfollua leaves under the control conditions in this

study (Table 6).
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Shade plants nay cease growth when temperatures rise to 40 degrees C

(104 degrees F), but death occurs only if plant temperatures rise higher.

This is time dependent. The temperature of leaves of all plants of dif-

ferent species under the control conditions ranged from 101.2 degrees F

to 104.5 degrees ? during the period of high light intensity (Table 6)

and hence this prolonged exposure to high temperature was associated with

the maximum amount of chlorosis and burning lesions. The degree of damage

depended upon the leaf temperature, as Salntoaulla lonantha had much more

leaf damage (Plate VIII) than those of Phllodendron oordatum (Plate IV) or

Codiaeuir. aucullfollMS (Plate VI). Plants exposed to air flows of 4.4 and

3.2 mph showed a minimum amount of injury symptoms because here the leaf

temperatures ranged from 90 to 93 degrees F. Similarly at 0.6 and 0.45 mph

wind velocities these symptoms of injury were more extreme than at higher

wind velocities, but less than the control (Plates IV to VIII ). These signs

of bleaching are probably due to denaturation of proteins. Photo-oxidation

of chlorophyll and death of tissue can occur due to coagulation of proto-

plasm. The degree of damage varied with species and temperature of the

leaves. Similar results have been reported by Konis (21), Lorenz (23) and

Withrow and Withrow (37).

Chlorosis or bleaching of leaves is mainly due to the destruction of

the photosyntbetio apparatus in chlorophyll. The amount of such damage

varied with rate of air flow and species (Plates IV to VIII). This de-

struction of chlorophyll is due to photo-oxidation which is the result of

high light intensity and high temperature. Sironval and Kandler (32) and

Walker and Mellon (40) also found this kind of effect with high light

intensity and temperature.
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Lubimenko and Hubbenet (24) found that at temperatures above 30

degrees C a general reduction in rate of chlorophyll synthesis occurs and

this continues with increase in temperature. At considerably higher tem-

peratures synthesis stops. The quantitative analysis of chlorophyll in

leaves of ffajntpapljLa ionantha and Fhilodendron cordatum showed that it

increased with increased wind velocity (Table 8). This was probably due

to the lower temperatures of leaves at wind velocities of 4*4 and 3.2 mph

as compared to that of control where maximum destruction to chlorophyll

occurred. On the other hand leaves of Codiaeum auoulifolium . Begonia

fmnerflorens and Sansevleria trlfasclata showed a different trend in

chlorophyll content (Table 8). Loss was greater in plants exposed to 4.4

mph air velocity as compared to those at 0.45 »ph wind velocity where the

temperature ranged from 92.5 to 94.5 degrees F. This unusual trend of these

species might be due to a combination of factors of high humidity at 0.45

mph and high light intensity tolerance adaptation by the species. These

species have pigmented leaves and the pigmentation increased with decreased

air now, especially with Codiaeum aucullfollum (Plate VI) and Begonia

semperflorens (Plate VII). It is also possible that the pigmentation

reduced or filtered the high light intensity thus preventing chlorophyll

destruction or increasing its synthesis.

The rate of growth in respect to plant height showed a decrease with

increase in wind velocity especially with Sansevleria trlfasciata (Table 2),

Begonia semperflorens (Table 4) and Codiaeum aucullfollum (Table 3).

Similar results have been reported by Rao (29) and Whitehead (33).

It has been found that the growth and general appearance were directly

related to the amount of chlorophyll present In Begonia sempcrflorcn«
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(Table 4), Sansevlerjft trjfasciata (Table 2) and Codiaeum aucullfolium

(Table 3). Best growth was observed In plants at 0.45 mph wind velocity

where ohlorophyll content was also highest (Table 8). Similarly in

Saintpaulla ionantha (Plate VIII) and Phllodendron cordatuB (Plate IV and

Table 1) growth was best, as measured by plant height and leaf size, at

4. 4 and 3.2 mph air velocities where the chlorophyll contents were also

highest (Table 8). At normal greenhouse air movement the growth rate

declined proportionally to the reduction of chlorophyll. These results

support the view of Emerson (12) who found that the rate of photosynthesis

is a smooth function of ohlorophyll content.

Gessner (18), Decker (17) and Went (35) are of the opinion that air

flow causes an increase in photosynthesis. No attempt has been made to

measure the rate of photosynthesis in this study. The increased air flow

should increase photosynthesis if the plants are exposed to air flow for

short duration. When the air flow continues for a long period the stomates

tend to remain dosed, thus preventing the entrance of CC'2 through stomata.

This phase of the study with shade plants needs further investigation.

Results obtained in this study show that different species of plants

behave differently under similar conditions of air flow. Saintpaulia

ionantha and fhilodendron cordatum made good growth and showed minimum

signs of bleaching and burning lesions under 4.4 and 3.2 mph wind veloci-

ties, whereas other species gave good results at 0.45 mph wind velocity.
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SUMMARY AND CONCLUSION

The leaf temperatures of all plant species in the morning (9:C0 a.m.),

noon and evening (4:00 p.m. ) either under forced air movement or control

were always higher than the corresponding air temperature. Although these

differences varied with light intensity, rate of air flow and species.

Rate of air movement modifies the degree of increase in leaf tempera-

tures. At wind velocities of 4*4 and 3.2 mph convection augmented by air

currents and reradlation were perhaps major factors in cooling the leaves,

whereas for the control treatment transpiration possibly was the major

factor in reducing leaf temperatures. Cooling effects by forced air con-

vection at 4*4 and 3.2 mph wind velocities were more efficient than by

transpiration at oontrol treatment.

Stomates of plants at 4*4 and 3.2 mph wind velocities remained closed,

whereas at lower rates of air flow these remained open, thus facilitating

transpiration.

Thick leaves of Saintpaulla ionantha and 3ansevierla trifasclata

acquired higher leaf temperatures compared to species having thinner leaves.

Pubescent leaves and those with rough surfaces had higher leaf temperatures

than the leaves having glossy or shiny surfaces.

Amount of chlorosis and burning lesions due to aolarization was

related to the rate of air flow, maximum being in oontrol and minimum at

4.4 mph wind velocity. The degree of damage varied with species and tem-

perature acquired.

Chlorophyll content was related to the rate of air flow. In Saint-

paulla Ionantha and Phllodendron cordatum it increased with increase in
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rate of air flow, whereas in other species it decreased with increase

in wind velocity.

Pigmentation in leaves of Codlaeuc auculifolium and Begonia semper-

fjorens increased with increase in temperature which was related to the

decrease in rate of air flow.

The amount of chlorophyll present was directly related to the rate

of growth as measured in terms of plant height and general appearance.

SajPtpqulU Ipnaflfoa and Phjlodendrop cordatum had larger leaves at

higher wind velocities.

The overall growth pattern showed that species of shade plants behaved

differently under similar conditions, especially with the rate of air flow.

Salntpaulla lonantha and Phllodendrop cordatum made good growth at 4.4 and

3.2 mph wind velocities, whereas other species adapted well at 0,45 mph

wind velocity. These differences might be due to different light intensity

requirements and growth habits.

These observations show that there exists a relationship between light

intensity and rate of air flow upon plant leaf temperature. Air flow modi-

fies plant leaf temperature under high light intensities and thus prevents

the shade plants from injury by solarization. This information can be

useful in the commercial greenhouse production of shade plants.
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Plants differ widely In the intensity of light required or tolerated.

Shade plants survive at lover light intensities because their light satu-

ration point is much lover than those of sun speoies. Under conditions

of high light intensities all phases of growth are retarded and plants

suffer from insolation. High light intensity increases plant leaf tem-

peratures which disrupts the physiological processes within the plant.

Air movement moderates high leaf temperature by Increasing leaf thermal

emisslvlty.

The purpose of this investigation was to study the effect of differ-

ent rates of air flow on leaf temperatures and growth of shade plants under

high light intensity and further to explore the possibility of greater

light Intensity tolerance of these plants during greenhouse production by

modifying plant leaf temperatures by means of increased air flow.

The experiment was conducted during the months of July and August, 1965.

Five plants each of Saintpaulla ipnanthji, Phllodendron cordatum . Begonia

—sjperflorens. Codiaeum auouUfoUuc and Sanseylerla, trlfaseiata were

selected and double potted, the space between two pots was filled with

peat moss to avoid rapid evaporation of water from the clay pot surface.

A horizontal funnel-shaped plastic wind tunnel whose narrower end was two

feet square and wider end eight feet square was constructed. An exhaust

fan was installed at the narrower end and aspen-wood excelsior padding

with facilities of wetting for humldifloation and cooling of air entering

the tunnel. One plant of eaoh species was plaoed on the horizontal wooden

board in the tunnel at wind velocities of 4.4, 3.2, 0.6, 0.45 mph, and one

plant was plaoed outside the tunnel to serve as control. Leaf tempera-

tures at different wind speeds were measured weekly at 9:00 a.m. noon and



4. J00 n.m, by means of 36 gauge eopper-oonstantan thermocouple on a portable

potentiometer. Light Intensities were also measured by a Vfeston illumi-

nation meter, in conjunction with leaf temperatures. Observation notes on

appearance and growth in relation to plant height and condition of stomates

were also taken regularly. Leaves were analysed for chlorophyll contents

after a 45 day period using a Beckman DU Spectrophotometer.

The results of this study revealed that leaf temperatures of all

species and under all treatments in morning, noon, and 4:00 p.m. were

higher than the corresponding air temperatures. Rates of air movement

modified the degree of increase in leaf temperatures. Cooling effect by

forced air convection at 4.4 and 3.2 mph velocities were more efficient

than by transpiration for the control treatment. Stomates of plants at

4.4 and 3.2 mph wind velocities remained closed, whereas at lower rate of

air flow these remained opened, thus facilitating transpiration. Thick

leaves of Saintpaulla lonantha and Sansevlerla
,

trifasclata acquired higher

leaf temperatures as compared to species having thinner leaves. Pubescent

leaves and those with rough surface had higher leaf temperatures than the

leaves having glossy or shiny surfaces. Amount of chlorosis and burning

lesions due to solarisation was related to the rate of air flow and tem-

perature of leaves. Maximum injury developed at the control treatment and

minimum at 4.4 mph wind velocity.

Chlorophyll contents present were related to the rates of air flow.

In Saintpaulla lonantha and Phllodendron cordatum it increased with in-

crease in air flow, whereas in other species it decreased with increase

in wind velocity. The amount of chlorophyll was directly related to the

rate of growth in terms of plant height and general appearance.



Saiptpaylja, Ipnapth^ and Phllodendrpp qordatum had larger leaves at higher

wind velocities, whereas the plant heights of other species decreased

with Increased air flow. Pigmentation, other than chlorophyll, in leaves

of Codlaeum auculifolium and Begonia aemperflorens increased with increase

in leaf temperatures which was related to the decrease in the rate of air

flow.

The difference in growth pattern exhibited by different species under

similar conditions of air flow indicated that these plants differ in their

light intensity and temperature requirements for growth. SaintPaulla

lonantha and Philodendron cordatum made good growth at 4*4 mph wind veloci-

ty, whereas other species adapted well at 0.45 mph wind velocity.


