TRANSFORMATION OF HIERARCHICAL STRUCTURE IW
WARNIER-ORR DIAGRAMS: EXAMPLES AND RULES

by

SHU-MEI LIN

BACHELOR OF LAW, NATIONAL TAIWAN UNIVERSITY, 1969

A MASTER'S REPORT

Submitted in partial fulfillmemnt of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
FEANSAS STATE UNIVEESITY
Manhattan, Kamnsas

1982

Approved by =

Professor

AT
LD
Ll &
.}?q
1962
L 56
G

;klALLEDE c4baks 3

ACKNOWLEDGENMENIS

I would like to express my sincere thanks to my advisor, Dr.
David A. Gustafson, for his help, guidance and patiemnce to
make this report possible to complete. Thanks are also given

to my patient family.

1. Introduction . .

1.1 Introdaction

TABLE OF CONTENIS

-

- - - - - L] - -

1.2 The Warnier-0Orr Diagram forms . .

2. Transformations .

2.1 The important of transformations

2.2 Example . . .

2.3 Semantics of brace, "{"

3. Specific tramsformations

3.1 motivation .
3.2 Example . . .

3.2.1 Transform three-level diagram

one-level diagram « « . « «

3.2.2 Decompose one-level diagram

more levels diagram
3.3 Transformation rules . - . . - .

3.3.1 Rules for combining the two

levels

- - - - - - - =

into

- - - - -

into

- - - - -

right most

- - - - -

3.3.2 Rules for decomposing one level diagram
into diagram with several levels . . .

4., Informal proof of the specific transformations .

5. Conclusion . « .

Selected bibliografphy

Appendix A

11
11
12
16
20

20
20

20

27
31

31
34

37

46

48

49

Three- level example diagram of Warnier-oOrr

Transformed diagram of figure 1
Transformed diagram of figure 2
Transformed diagram of figure 3
Transformed diagram of fiqure 4
simplified diaqram of figure 1
Simplified diagram of figure

2
Simplified diagram of figure 3
simplified diagram of figure 4§

5

Simplified diagram of figure

Diagram

22
24
26
28
30
37
38
40
42
44

CHAPTER 1

INTRODUCTION

1.1 Introduction

Most of the software errors are made during the design
phase [1]. If the program design is bad, it will take more
time to find the errors, to debug and to test the program

completely. Much of the cost overrun is the result of bad

design, A well-designed program will have fewer errors
during its implementation. Since it is well-designed, it
will be easier to find and repair the errors. Getting a

program to work is not sufficient, but getting it designed
right is the most important thing. A well-designed program
is more likely to operate correctly in all circumstances and

to be understandable and modifiable [2].

The major motivation for looking at design
methodologies is the desire to reduce the cost of producing
and maintaining software, Hence a successful design
methodology must be able to produce a consistent, useful,
low cost, reliable result; to allow for easy maintenance;

and to be simple enough to let anyone to use it [3].

The ability to transform the design diagram to produce

5
alternative designs allows the designers to compare the
alternative designs. Among the alternative designs, the
designers could chocose the one which is the lowest cost, the

most reliable or the easiest to maintain.

One of the newer design tools is Warnier-Orr design
diagrams [4]. This methodology was developed by Jean-
Dominque Warnier and his group of researchers at Honeywell-
Bull in Paris, France and Kenneth Orr at Langston,Kitch &
Associates in Kamnsas. The Warnier-Orr diagrams began as a
design method but was quickly noticed for its value as a
documentation tool as well. This design tool aids in the
understanding, design, verification, modification and
optimization of programs and systeas. The various forms of
this diagrams are useful in many stages of a software
development prcject, from requirements definition to the

operation and use of the delivered project [4].

The Warnier-orr diagranm inherently incorporates
hierarchy and tree structure into the design notationmn. An
simple example is demonstrated below. The example computes
the total sum of n vectors. It is necessary toc initialize
the value of sum as zero, then do the summation and finally
print the sunm. The unique features of this design tool are

displayed below:

begin progran {:sun=0
(1)

Progranm 4 vVectors { sum=sum + element
(1) (1,n)
end program { print sum
(1)
The design diagram is composed of three parts; " begin

program " followed by "vectors" followed by "end program".
In "begin program" section the sum is imnitiated. In
"yectors" section the calculation is performed from 1 to n

times, and in "end program" section the sum is printed.

In Warnier-Orr Diagram every brace has a hierarchical
name placed to the left, (e.g., "program" and "vectors" are
hierarchical names). A sequence of processes as other Lkraces
are placed to the right. Every brace can have "Begin" and
"End" placed at the top and bottom respectively. Sometimes
these are omitted from the diagrams for the sake of clarity.
Repetition is in parentheses under the hierarchical nanme
with letters, numbers or conditional statements using the

"while" or "until" phrases [3].

1.2 The Warnier-Orr Diagram Forams

There are six constructs that are used to represent

various data and process structures:

HIERARCHY: Hierarchy 1is the most fundamental and most
valuable of the diagram structures. The brace here denotes
decomposition and is read as "consists of" or "is composed

of". A simple examrle is as following:

AA {BB {CC{
It read as AR is composed of BB, BB is composed of CC.

SEQUENCE: To represent sequence on a Warnier-Orr diagram, it
is only necessary to list elements serially within a level
of hierarchy, and this implies a serial order of execution.

The example is:

r
B1

B2
AR W
B3

kBlI-

It read as AA is composed of B1 followed by B2 followed by

B3 fcollowed by BA4.

REPETITION: The primary ways that repetition <can be

expressed are shown below:

A BB AR BB
(1,b) (10)

Each of these expressions indicates AA is broken down into
many BBs. The numbers in parentheses under BB indicate that
BB is a repeating subgroup within AA. These numbers also
indicate the fewest and greatest number of times, or the
exact number if known, that the subset BB can occur on the
calculation, for example, (1,b) means the process of the
subset of BB will occur from 1 to b times. " (10)" shows the

process of the subset of BB will occur exactly 10 times.

ALTERNATION: The alternation structure (or selection
structure) is presented as following:

BB

(0,1)

aA ®

ccC
(0,1)

It means AA is composed of either BB or CC but not both. The

(1,0) number of times under BB and CC indicates that AA may

9
or may not be a particular one of these two (BB or CC); the
exclusive OR symble , (3, indicates that AR must be either

BB or CC.

CORCUBRENCY: Concurrency is used to express the situation
that occurs when two or more things are im operation
sipultaneously. The plus sign, m4n, is the concurrency
operator in Warnier-Orr diagram. It indicates that the

situations are not mutually exclusive.

AR +

The structure shows above means AR is composed of both BB
and cc, and AA can have both cycles operating

simultaneously.

RECURSION: The structure of recursion, which shows
hierarchical replication (horizontal repetiomn on a Warnier-
Orr Diagram), also appears with some freguency in systenms
work. A broken brace is used to show recursion on a Warnier-

orr Diagranm.

10

(
BB
AR ¢
n
\ (0,1):

v
.
-

The structure shows above means AA is composed of both BB
and optionally itself. The broken brace indicates that each
sub-AA is composed of BB and sub-sub-AAs and sub-sub-ARA is

composed of BB and sub-sub-sub-AAs, and so on.

Although the transformations presented in this report
may be applicable to all of the structures mentioned above,
the hierarchical structure will be the only one considered
in this report. The hierarchical structure offers the most
possibilities for alternate designs. It also is the most

fundamental of the control structures.

11

CHAPTER 2

TRANSFORMATIONS
2.1 The Importance of Transformations

There have been many efforts in the area of
transformaticns [5,6]. Transforming programs will allow the
comparisons of different but eguivalent programs. The
transforms of a design diagram will allow the comparisons of

the alternative designs.

The Warnier-Orr Diagrams possess the mathematical
properties of associativity and commutativity [5]. The
associative property is that two adjacent braces can always
be associated as one brace and two hierarchic names can be
combined into one name. A notation can be used to represent

this concept:

h{B{C{ = (A,B){C{ = A{(B,C){ = (A,B,C]{

The comnutative property 4is the members of the
hierarchy are commuted among thenmselves, the following

notation defines this property:

12

Using the associative and commutative properties, the
design structures can be transformed and the alternative
designs can be compared. For example, in building systeas,
these properties can be used in combining multiple and

incompatible hierarchic structures.

2.2 Example

To illustrate the commutative notion, Warnier-Orr
Diagrams of two programs which consist of four 1levels of

nested Do-loop structures are shown below [5].

K v I S T
Routine I {(k=1,7) {(v=1,7) (s=1,30) (t=1,30)
L
Routine IIJ_ S v I- K T
(s=1,29) (v=1,7) (k=v,7) (t=3,29)
- .

Routine I has 44,100 loops to be performed, Routine II
has 21,924 loops to be performed; the total will be 66,024

loops. It is desired to combine these +two loop structures

13
into one routine while maintaining a sequential continuity

of flow from beqiring to end.

At first glance, these hierarchies are incompatible;
the hierarchical names are identical but not in the same
order, the indices of the repetition of identical
hierarchical names have different ranges, and the indices of

the repetition of K in Routine II are dependent on V.

By using the commutative property of Warnier-oOrr
diagrams, the hierarchies can be rearranged to a suitable

and corresponding pattern, which are shown below:

Routine I v S T K
{v=1,7) {s=1,30) (t=1,30) (k=1,7)

Routine IIX v S T E
(v=1,7) (s=1,29) (t=3,29) (k=v,7)

These two routines now can be combined into one routine by
realizing that like hierarchical names can be combined. The

new diagram is shown below:

14
S f T
(s=1,30) 1(t=1,30) (k=1,7)

New Routine (V
{(v=1,7)

S T K
(s=1,29) (t=3,29) (k=v,7)

It remains to combine the last three levels of braces to
produce a modified and optimized loop structure. By
associating the BEGIN braces or END braces, the following

diagram demonstrates the new combined hierarchy.

(" - ~ -
T K
(t=1,30) k=1,7)
s
(s=1,29) A«
v T K
New Routine £ (v=1,7) (t=3,29) (k=v,7)
_
s=30
V End <« T K
() (t=1,30) (k=1,7)
\ \ ~

Continuing this process throughcut the remaining levels of
hierarchies and combining two separate loop structures

produces a modified loop structured as illustrated below:

r
2 r =1
K
- {k=1,7)
S Begin ¢
(1) t=2
K
(k=1,7)
L]
K
v s) (k=1,v-1
Final Routine {{v=1,7) (s=1,29) T £
(t=3,29) K
(k=v,7)
t=30
S End
(1) K
(k=1,7)
s=30
V End
(n T K
L t=1,30) (k=1,7)
S
The final routine has more codes and more calls +to
process, but the total number of loops in the final routine
is 44,100. There are 21,924 loops that would not be
performed .
This demonstrates the usefulness of the commutative
property of the Warnier-oOrr Diagrams in combining

hierarchies.

15

It applies to a large class of loop structures,

16

logic structures, and data structures.
2.3 Semantics of the brace, “{"

Braces [4] in Warnier-oOrr Diagrams are called
"universals"®, a terr borrowed from mathematical set theory.
One level of the structure corresponds to one brace and the

levels are counted left to right.

Each brace may represent a segment of processing, a

subroutine, a procedure, or a do-loog.

r {
DEBIT
(0,1)

e
Check File { YEAR ¢ MONTH / DAY (TRANSACTION (@

(1.y) (1,m) (1,4) (1,t) CREDIT
(0,1)

The diagram shown above is for the checktiook balance
report. In this diagram, it shois the conceptual
relationships of one part of +the structure to amother. The
report is organized by year; within year by months; within
each month by days; and within each day by transactions,

which are either debits (checks) or c¢redits (deposits).

17
Year, month,day and tramsactions all appear in the report at
least once and possible many times. The YEAR, MONTH, DAY,
TRANSACTIONS, DEBIT and CREDIT canmn be treated as
subroutines, procedures, or inner loops, depending on what
language is used or how the programmers code the program.
For iastance, people using BASIC may treat them as
subroutines. Programmers using another language may make
MONTHE an dinner loop within YEAR, DAY an inner loop of
MCNTH, TRANSACTION an inner loop of DAY and may use IF-THEN-

ELSE to take care of DEBIT and CEEDIT within TRANSACTION.

Although the idea of the universal Lrace is fairly
clear, there may be a variety of interpretations in any
particular case. Before we can define transformations on
these diagranms, ve must specify what wWe mean by the
universal brace. We will call this specification the

semantics of the brace.

The brace,.[, accompanies its hierarchical name and its

right side process, for example:

18

=2
®
Ts]
-l
=]
b
L]
e

o
=]
(= 7]
]
L1}
los]

Which we will interpret as:

begin X : A

vhile in-Y do
Y

end-while

end X : B

"A®" has to initiate boolean value of in-Y¥. "Y" has the
responsibility to set boolean value of in-Y to false. npw

is responsible for setting boolean value of in-X to false.

This is one possibility for the semantics of the brace.
For example, we could have used a do-loop structure for the
semantics of +the brace. The reason of choosing this

semantics is that it is more general. For instance, we don't

19
have to execute the brace for a fixed times. We set a flag
and when the flag changes to false by the program, the

execution is terminated.

This example shows the most general form of the brace.
It includes a "begin" and an "end" segment. Although in some
cases these segments may be null, it is important to
consider the most general case with both a begin segment and
an end segment. When a segment is null, it can be omitted.

This will simplify the transformations.

20
CHAPTER 3

SPECIFIC TRANSFORMATIONS

3.1 Motivation

The Warnier-oOrr Diagrams posses the @mathematical
properties of associativity and commutativity. Osing these
two properties, the designer can modify the design
structures and compare the different versions of the

structures for the same problen.

The purpose of giving this specific +transformation
example is to give another view of using associative
property and commutative property in Warnier-Orr Diagraams
and comparing the different design structures that can give

the same result.

3.2 Exanmple
3.2.1. Transform Three-lLevel Diagram into QOne-level Diagram

The Warnier—-Orr Diagram of fiqure 1 is a diagram for
the problem tc sum each row ard each column of a two
dimensional array, which consists of three levels of nested
do-loo0ps. It is desired to tramnsform +this +three-level
diagram into a two-level diagranm, then from +tuwo-level

diagram into ocne-level diagraasm.

21

A necessary condition for these transformation to be
correct is that the lowest level process is order-
independent. In the example below the activities of the
brace ELEMENRT do not depend on which values of the array

have already been frocessed.

22

~

BEGIN ts=0

ARRAY 5 = q
in-column=true

~ cs(j) =0
BEGIN COLUMN i=1
in-row=true

[BEGIN BOW | if j=1 then rs (i) =0
in-element=true

read a(i,)
ts=ts+a (i,])
ARRAY { COLUMN { ROW 4 ELEMENT rs(i)=rs (i) +a (i, 7)
cs (j)=cs(j)+a(i,d)
in-element=false

i=i+t
\EHD ROW if i>r
then in-row=false
print cs(3j)
j=3+1
END COLUOMN if j>c then in-column=false
~ print rs(i)
ENRD print ts
\ARRAY

FIGURE-|: Three-level example diagram of Warnier-0Orr diagram

23

By applying the associative property, the RCW level and

the ELEMERT level could be associated as one level called
ROW-ELEMENT level. Before making this transformation, two
procedures must be done: First step, after the last
statement of the processes of ELEMENT (i.e., in-element=true)
the condition of Y"if not in-element" is added, then followed
by the processes of "END ROR". Second step: the process of
"BEGIN ROW" will be added under the last statement (i.e.,
in-row=true) of "BEGIN COLUMN" section. The segment which
is the condition of " if in-row & not in-element" followed
by the processes of MWBEGIN ROW"is attached +to the last
statement of +the first step has been done. This is

accomplished in the diagram of figure 2.

ARRAY «

\.

ts=0
3 =1

-~

BEGIN ARRAY

24

in-column=true

-~

COL UMN <

END COLUMN
\ L

END ARRAY {Erint ts

BEGIN COLUMN

ROW,ELEMENT

A

cs (]) =0

i=1

in-row=true

if j=1 then rs(i)=0

in-element=true
.

(read a(i,d)
ts=ts+a (i, j)
rs(i)=rs(i)+a (i,)
cs(Jj) =cs(J) +a(i,])
in-element=false

if not in-element
i=i+1
if i>r
then in-row=false

print cs(3j)

if in-row &

not in-element

if j=1 then rs(i)=0

k_in-element=true

r5=j+1

if Pe
then in-column=false
print rs (i)

FIGURE-2: Transformed diagram of figure 1

25

The reason of adding those "if conditioms" is for
increasing the index of the loops and reipitializing the
value of each column and each roWw. The number of the index
will determine the termination of the 1loop. The
reinitialization will make sure the sum of each column and

each row is computed.

Figure 2 shows a two-level structure which is derived
from fiqure 1 by applying the associative [property of
Warnier-Orr Diagraa. Continuing the process by associating
COLUME level and ROW-ELEMENT level in figqure 2 produces a
new level named COLUMK-ROW-ELEMENT level. Following tkhe
last statement (i.e., in-element=true) in section of ROW-
ELEMENT, add the condition of "if not in-row". After %“if not
in-row" append all statements in the sectionm of END COLUMN.
Then following the comrdition of "if in-column & not in-row",
add all statements in the section of BEGIN COLUMN. Thus
forms a new segment of processing in the new level of
COLUMN-ROW-ELEMENT. Also append the part of BEGIN COLUMN to
BEGIN ARRAY, form a new section, but still named BEGIN

ARRAY. The new diagram is shown in figure 3.

ARRAY

r"

COL UMN,
ROW,
ELEMENT

END ARRAY
-

-~

ts=0

j =1
in-column=true

BeGIN ARRAY { cs({j)=0

i=1

in-rowv=true

if j=1 then rs (i) =0
\?n—element=true

(tead a(i,)

ts=ts + a (i,)
rs{i)=rs(i)+a (i, j)
cs (J) =cb(J) +a (i, J)
in-element=false

if not in-element
i=i+1
if i>r then in-row=false
print cs(j)

if in-row & not in-element
if j§=1 then rs {i)=0
in-element=true

if not in-row

J=3+1
print rs(i)

if in-column & not in-row
cs () =0
i=1
in-rcw=true
if j=1 thenm rs{i)=0
in-element=true

.

{%rint ts

FIGURE-3: Transformed diagram of figure 2

if j>c then in-column=false

26

27

3.2.2. Decompose one-level diagram into more levels diagranm

Figure 3 1is a one-level diagranm. It is possible to
decompose this flat structure diagram into a diagram with

more levels.

For decomposing the design diagram showing in figure
3, it is necessary to decompose the hierarchical name into
two names. That is changing "COLUMN-ROW-ELEMENTY" to "ROWY™
and "COLUMN-ELEMENT". The new structure will be a two-level
diagram: ROW level and COLUMN-ELEMENT level. A1l the
statements in section BEGIN ARRAY will stay the same. Move
the statement of "if not in-row" and all statements after it
from COLUMN~-ROW-ELEMENT 1level to the new section END ROW.
The rest of the statements in COLUMN-ROW-ELEMENT will not be
changed. The new two-level design diagram is showing in

figure 4.

ARRAY «

ROW

28

~

ts=0

j =1
in-column=true
cs (J) =0

(BEGIN ARRAY{ i =1

in-row=true
if j=1 then rs (i) =0
k}n-element=true

- r‘«.J:ead afi,d)

ts=ts+a (il j)
rs(i)=rs(i) +a (i,])
cs (J)=cs (J) +a (4,])
in-element=false

if not in-element
COLUMN, ELEMENT §{ di=i+1
if i>r
then in-row=false
print cs(3J)

if in-row &

not in-element

if §=1 then rs(i)=0
in-element=true

f"’
if not in-row
J=j+1
if d>c
then in-column=false
print rs (i)

END ROW { if in-column &

N not in-row

cs (j) =0

i=1

in-row=true

if j=1 then rs{i)=0
in-element=true

END AEBRRAY /) print ts

FIGURE-4: Transformed diagram of figure 3

29

The level of COLUMN-ELEMENT still can Le decomposed.
First, break down COLUMN-ELEMENT into COLUMN and ELEMENT.
Place COLUMN on the left side of ELEMENT, or place ELEMENT
on the 1left side cf COLUMN, either way will work out the
same result. Then remove the statement of "if not in-
element® and all the statements after this statement from
section COLUNN-ELEMENT to the new section END ELEMENT or END
COLUMN, (if ELEMENT level 1is on the left side of COLUMH
level, then the new section is END ELFMENT, otherwise, END
COLUMN). The rest of the statements in COLUMN-ELEMENT will

not be changed. Figure 5 shows the new diagram.

AREAY

£

~
BEGIN

AERAY

ROW

END
AERRAY

30

f’
ts=0
j =1
in-column=true
) cs(3) =0
i=1
ip-row=true
if j=1 then rs({(i)=0
\in—element=true
é ~
~
read a(i,])
ts=ts+a (i,3)
< COLUMN £ ELEMENT £ rs(i) =rs (i) +a (i, J)
cs (j) =cs (j) +a (i, J)
\in-element=false
if not in-element
i=i+1
if i>r
then in-row=false
\FND COLUMN print cs(j
if in-row &
not in-element
if j=1 then rs(i)=0
L_in-element=true
-~
if not in-row
j=3+1
if Jag
then in-column=false
print rs(i)
(EFD ROW ¢
if in-column & not in-row
cs{j) =0
i=1
in-row=true
if §=1 then rs(i)=0
g in-element=true
print ts

FIGORE-S5: Transformed diagran of'figure]

31

3.3 Transformation Rules : Representation and Correctness

Basically, a transformation of a diagram is the
generation of a new diagrar from a giver one. It is said to
be correct if both diagrams are semantically equivalent. A
transformation thus is a mapping between set of diagrams. In
general, such a mapping is a partial one, as it is only

defined for particular kinds of diagrams [€].

3.3.1. Rules for Combining the two right most levels.

Each time, when combine two levels into omne level, tvwo
conditions are always added. And the BEGIN part and END part
are rearranged. Three sSteps are needed to achieve +the

combination.

(1) END TIransform

The END section of the outer level will be transfered
and placed under the added "if condition" of the 4inner

level. The form is denoted below:

32

A

=
begin X {%

~
begin P

3

Progran / X i ¥ <

if not in-Y

L ’///ﬂ
end X {;C

\.
end P<D
\ {

Where "if not in-Y" is the "if condition®. "C" is the END

section of wxw.,

When the ¢[frocess Y is finished there are sone
activities that need to be done. For example, after the
status of Y level turns to false then the index-X is needed
to be increased, the status of X level is also needed to be
checked. Part C (i.e.,ERD X) does these jobs. These
activities could be moved into the inner bracket if they are
preceeded by a condition (if not in-Y¥). In this position the
condition will be checked on each iteration but ®CY will

only be done when the "Y" is completed.

{2) BEGIN Transform

The BEGIN section of the inner level will be removed

33
and added to the BEGIN section of the outer level and to the
processing segment of the lower level next to inner level.

The form is denoted below:

(begin P{}__
Y
g
(~begin x{%
f‘
Program { X { X { if not in-y
C
if in-X & not in-¥
—>
\
end P{D \end X{C
o

There are scme initiations are dome in "begin" section.
If two adjacent levels are combined into one level then the
initiations have to be done before the new level has been
executed. Hence, "begin X" (i.e., part B) is moved into the
begin section of outer bracket (i.e.,part a). Also if the
status of outer 1level is still +true but inner level is
false, it is necessary to reinitialize the inner level. In
this situation the condition of "if in-X & not in-¥Y"
followed by B (begin X) is appended to the process of inner

level Y. On each iteration the condition will be checked:

34
but only when the inner level is finished but the outer

level is not finished, will the proper processes be done.

(3) COMPRESSIGHN

The last step 1is compression. Comgress the two
adjacent levels into one level. Combine two level names

into one name. The new transform is shown below:

rﬂbegin P{A
B
-
Program { X,Y £ if not in-Y¥

C

if in-X & not in-Y¥

B

\
end P{b
.

The processes of "X,Y" will not be finished until both in-X

and in-Y are false.

3.3.2. Rules for Decomposing one level diagram into diagram

with several levels.

35

(1) Decomposition

Decompose the level (using the previous diagram) into

tvo levels.

begip P JA
B
r‘ e
Program ¢ Y 4 X <

if not in-Y
C
if in-X & not in-Y¥

\. P

end P{?
\

In this diagram the hkierarchical name w{,¥" is
decomposed into two: X and Y. For demomnstrating the
commutative property of Warnier-Orr design diagranm, Y is

going to be outer level, X is going to be inner level.

(2) END reverse Transform

Move the last two additions (i.e., the if conditions)

to the END part of the ocuter level.

3¢

r -
begin P J A
B
@ ~
Erogram 2 X j X {
if not in-y
C
if in-X & pot in-Y
B

~ e N

end P (D
L

{(3) BEGIN part is not changed. Formr a ne

|=

[=1]
I

[*1]

H

[+1]

=]

[

el
begin P/ A
B
Program JI ¢ X
if not in-¥
C
end Y if in-x & not in-y
~ B
end P<{ D
oo 2 {

Since +the sequence of the hierarchical 1levels is
changed, the begin section which does the initiations for
all the 1levels will stay the same. This will make the

transformation rules easier to follow.

The processes of I 1level and Y level will not be

finished untill in-X and in-y both are false.

37

CHAPTER 4

INFORMAL FROOF OF THE SPECIFIC TRANSFORMATIONS

In the previous chapter, five different diagrams of the
specific exaaple were presented. The rules of the
transformation were also illustrated. The transformation is
said to be correct if these diagrams can solve the problem

and compute the same result.

Figure 6 shows the simplified diagram of figure 1.

i begin array {A

(.
begin column {F
r— -
beqgin row {C

ARRAY COLUMN $ ROW {4 ELEMENT {P

\Hend ITOoW {?

end colurmrn {E
.

end array < F
-

FIGUEE-6:Simplified Diagram of Figqure 1

38

The execution order in figqure 6 is: ABCP DCPD CP
p--———CPDCPDEBCPDCPDPD--—————--CPDEBCPDCTP

pD---—-C P D E F.

In chapter 3, figure 1 was transformed to figure 2 by
using associative property of Warnier-Orr diagranm. The

following figure is the simplified diagram of figure 2.

"'
begin array {A

~ begin column {B
C

~
ARRAY ; COLUMN { ROW,ELEMENT £ P
if not in-element}n'

end row (D)

not in-element
LPegin row (C)

if in-row &
cl

_ €end colunmn {F

end array F
N

FIGURE-7: Simplified diagram of Figure 2

The primes are used to denote the conditional statement

and the operatiomn. "D'" js the segment of if condition (if

39
not in-element) followed by end row(D). ®C'" is the segnment
of if condition (if in-row & not in-element) followed by

begin row(C).

The execution sequence of this diagram is: ABCPDY Cr P
D' C'=——=—— P D' C* P D' C' EB C E D' C' P D' Cl-——=- P D!

cC'*'PD*CtEBCPD*C*P D" C'=———P D'" C* P D" C'" EF.

But when the if conditiomn isn't met, then the following
process will not be executed. For example, when in-row turmns
to false, then the condition of "if in-row & not in-element"”
can't be met, and Ybegin column(c)® will be skipped. Hence,
the actual execution sequence is : AB CPF D' C* P D
o R B e PDY C' PD" EBCP DT C* P D" CY -——=—— P D' C!
PD"Y EBC PD'"C'"PD'" (C!"! ~—=———=--P D' C* P D' E F. This

shows the same segquence as in figure 6.

In chapter 3, figure 2 was transformed to figure 3 by
using associative property of Warnier-Orr diagram. The

following figure is the simplified diagram of figure 3.

40

rbegin array | A
B

if pnot in-element D!
end row (D)

if in-row & not in-element} c

COLUNMN, begin row (C) ;
ARRAY J RCW, J if not in-row E'
ELEMENRT end column (E)
if in-column & not in row
begin column (B) {(BC)
_ begin rowv <)

end array F
k {

FIGURE-8: simplified Diagram of Figure 3

The primes are used to denote the conditional statement
and the operation. wp'm jis the seqment of if condition (if
not in-element) followed by end row(D). "C'" is the segment
of if condition (if in-row & not in-element) followed by
begin row(cC). nEtn js the segment of if condition (if not
in-row) followed ky end column(E). W(BC) '" is the segment
of if condition (if 4in-column & not in-row) followed by

begin colunmn (B), begin row (C).

The execution sequence of the diagram is: A B C P D' C!

E' (BC)' P D' C'" E' (BC)"' —-—=———=— P D' C* E' (BC)® F. But

41
when the if conditiom isn't met, then the process following
that if condition is skipped. The actual execution order in
figure 8 is : ABCZPD'" C'P D' C* =———-——- P D' C*' P D' E'
{BC)} ! P DV C¥—~—==—=P D! C¥ P D' E' (BC}' P D' Clo=—=— P D
C' P D' E' F. This shows the same order as the order in

figure 6.

In chapter 3, figure 3 was transformed to fiqure 4 by
using associative ©property of Warnier-Orr diagranm. The

following diagram is the simplified diagram of figure 4.

42

l’- -

begin array (A
B
C

r~ —~

P

if not in—element} D!
ARRAY < ROW { COLUMN, , end row (D)
ELEMENT
if in-row &

not im-element c’
begin row (C)

-

-~

if not in-row E?
e€end column (E)

end row {
~ if in-column & l

not in-row
end array F
\

begin column(B)f(BC)'
FIGURE-9: simplified Diagram of Figqure 4

begin row (C)

The D', C', E' and (BC)' represent the same segment showing
in figqure 8. The execution order of fiqure 9 is A B C P D!
cCt P D" CY —-——————n P D' C! P DY CY E' (BC)' P D' (!
-———===-- P D' C* P D' C' E (BC)' P D' C'-——————- P D' C!
PDY C* P D' C' E'" (BC)' F. In the last cycle, the if
condition in C' and another if condition in (BC)' are not
met, in this case the processes following these two "if

condition®™ are skipped. The actual sequence of this diagram

43
is: A B C P D' C' P D' Cl=——=—- P D' C' P D' C* E' (BC)' P D!
C'-==--———-P D' C' P D' C" E' (BC)' P D' C'-————-—- P D' C' P
D* Ct P D' E' F. This shows the same order as the order in

figure 6.

In chapter 3, figure 4 was transformed to fiqure S by
using associative property of Warnier-Orr diagram. The

following figure is the simplified diagram of figure 5.

44

rl;eg:in array | A
B
C
~ r
ARRAY ﬁROI j COLUHN{ ELEMENT P
if not in-element|D!
end row (D)
end column <
- if in-row & 1
not in-element ct
begin rov (C
- _ g (C)
if not in-row |E!
end column (E)J
Kend Tow ¢ _
if in-column § not in-roﬂ
begin column (B) (BC)
L_ begin row (C)
end array F
N

FIGURE-10: Simplified Diagram of Figure 5

In figure 10, the execution sequence is exactly the same as
in fiqure 9. The actual execution sequence of this diagranm
is: ABCP D' C* P D' C'-——— P D' C' P D' C' P D' E' (BC)'
P D' C'-—~==—=P DY C' P D' E'" (BC)' P D" C'-——-F D' C' P D!

E' F.

45

Comparing the sequence of the execution of these five
Farnier-Orr design diagrams, we <can reach a conclusion:
Although there are some dJifferent conditions added in
different sections in each of five diagrams, these sequence
of executions is the same in each of the cases. That is,
BEGIN ARRAY is alwvays executed before BEGIR COLUMN, BEGIN
BOW is executed after BEGIN COLUMN, then section ELEMENT is
following BEGIN ROW, then followed by END ROW, END COLUMN

and END ARRAY sequentially.

The following picture may represent more clearly:

BEGIN ARRAY i BEGIN COLUMN --> BEGIN ROW -->

ELEMENRT --> END ROW --> END COLUME --> END ARRAY

Each time when an "BEGIN " is encountered, EROW or
COLUMN is reinitiated, this will guarantee that the sum of

each row and each column will be computed.

46

CHAPTER 5

CORCLUSION

The major advantages of the Warnier-orr design
methodology are its diagrams and the transformations. The
diagrams make Warnier-orr designs easy to read and
understand. The transformation properties allow the
designers to wmodify loop structures, logic structures and

data structures.

The transformation design diagrams allow designers to
do the comparisons of alternative desigmns. From the
alternative designs, the designers may choose one of the
designs which can achieve the requirement of a good design:

low cost, reliable, easy to understand and easy to maintain.

In this report the transformation rules of hierarchical
structures in Warnier-Orr diagrams have been developed. The
rules are for combining two levels into one level, and for

decomposing one level into two levels.

Based on this study, two areas for further research are

proposed as follows:

47

(1) . 2pplying those rules to the other programs. In
this report, the rules were applied to a small
program that computed the sum of each row and

each column of an two dimensional array. Since
these rules are for +transforming the iterative
structures, it will be nice to see these rules

applied to some other programs.

{2) . Actual execution of alternative designs. The
alternmative designs should be converted into
computer programs.These prograus should be
executed on a variety of data. This will verify

that the alternatives are actually equivalent.

After expanding these areas, the transformation rules should

be more applicable.

[1].

[21].

[31.

[4]1.

{5].

[e].

48

SELECTED BIBLIOGEAPHY

Barry W. EBoehn, "Software Engineering". IEEE
Transactions on Computers, December 1976.

M. A. Jackson, "Principles of Program Design"' New
York: Academic, 1975.

David A. Higgins, "Structured Programming with Warnier-
orr Diagrams", Byte Publications, Inc., Peterborough,
New Hampshare, 1978.

David A. Higgins, "Warnier-Orr Diagrams"™ in "
ter Programmin apnagement", Auerbach Publishers
Inc.

Peter A, VYerdegrall, "The Warnier-orr Diagrams".
Proceedings of Comp Con. IEEE Computer Society, Spring
1979.

F. L. Bauer, M. Broy, H. Partsch, P. Pepper, H.
Wossner, "systematics of Transformation Rules", in
"Preogram Construction ", edited by F.L.Bauer, Springer-
Verlag, New York Inc.

APPENDIX A

pseudo-code for figure

procedure array ;
ts = 0
=1

in-column = true

while in-column do
call column
end-dowhile

print ts

procedure colunmnn;
cs(j) =0
i=1
in-row = true

while in-row do

call row
end-dowhile
j = j+1

if j>c then do
in-column = false
print rs(i)
od

procedure row;
if j=1 then rs(i)=0
in-element = true

while in-element do
call element
end-dowhile

i= i+1

if i>r then do
in-row = false
print cs(j)
od

[

procedure element;

read a (i,3)

ts = ts+a(i,j)

rs{i) = rs(i) + a(i,])
cs(j) = cs(J) + a(i,])
in-element = false

50

pseudo-code for fiqure 2

Frocedure array;
ts = 0
j=1

in-column = true

while in-column do
call column
end-dowhile

print ts

procedure coluan;
cs(j) = 0
i=1
in-rowv = true

if j=1 then rs ({i)=0
in-element = true

while in-row & in-element do
call row-element
end-dowhile

4 = 31
if 4>c then do in-column=false
print rs (i)
od

procedure row-element;
read a (i,])
ts = ts + a(i,])
rs{i) = rs(i) + a(i,])
cs(j) = cs(3) + a(i,])
in-element = false

if ip-element = false
then i = i+1
if i>r then do in-row = false
print cs(j)
od

if ip-row & not in-element
then if j=1 then do rs(i)=0
in-element=true
od

pseudo-code for fiqure 3

procedure array;

ts = 0

=1
in-column = true
cs{(j) =0

i=1

in-row = true

if §j = 1 then rs(i) = 0
in-element = true

while in-column & in-row & in-element do
call column-rovw-element
end-dovhile

print ts

procedure column-row-element;
read a (i, Jj)
ts = ts + a(i,])
rs(i) = rs(i) + a(i,d)
cs(j) = cs(j) + a(i,d)
in-element = false

if nct in-element
then i = i+1
if i>r them in-row = false
print cs(j)

if in-rov & not in-element
then if j=1 then rs(i)=0
in-element = true

if not in-row
then j = j+1
if j>c then in-column=false
print rs(i)

if in-column & not in-row
then cs(j) = 0
i=1
in-row = true

if j=1 then rs(i) =0
in-element = true

52

pseudo-code for fiqure 4

procedure array;

ts = 0

j=1
in-columpn = true
cs(j) =0

i=1

in-rcw = true

if j=1 them rs(i)=0
in-element = true

while in-column & in-row & ip—element do
call row
end-while

print ts

procedure row;
call column-element

if not in-row
then do
J =3+
if 4>c then in-column=false
priant rs (i)

od
if in-column & not in-row
then do
cs(j) =0
i=1

in-row = true

if j=1 then rs (i) =0
in-element = true
od

53

54

procedure column-element;

read a(i,j)

ts = ts+a{i,)

rs{i) = rs(i)+a(i,d)
cs(j) = cs(Jj)+a(i,])
in-element = false

if not in-element
then do
i=i+1
if i>r then in-row=false
print cs(j)
od

if in-row & not in-element
then do
if j=1 then rs(i)=0
in-element = true
od

55

pseudo-code for fiqure 5

procedure array;

ts = 0

j=1
in-column = true
cs(j) =0
i=1

in-row = true

if j = 1 then rs(i) = 0
in-element = true

while in-column & in-row & in—-element do
call row
end-while

print ts

Procedure row;
call column

if not in-row then do
j o= 31
if j>c then in-column = false
print rs (i)

od
if ip-column & not in-row
then do
cs(j) =0
i=1

in-row = true

if =1 then rs(i)=0
in-element=true

od

procedure colunmn;
call element

if not in-element
then do
i=i+1
if i>r then in-row=false
print cs(j)
od

if ip-row & not in-element
then do
if j=1 thenm rs(i)=0
in-element=true
od

procedure element;
read a (i, J)
ts = ts+a(i,d)
rs{i) = rs({i)+a(i,)
cs(j) = cs(jyta{i,])
in-element=false

56

TRANSFORMATION OF ITERATION STRUCTURE 1IN
WARNIER-ORR DIAGRAMS: EXAMPLES AND RULES

by

SHU-MEI 1IN

BACHELOE OF LAW, NATIONAL TAIWAN UNIVERSITY, 1969

———— - e - —— ————————

AN ABSTRACT OF A MASTER'S REFORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UWIVERSITY
Manhattan, Kansas

1982

ABSTRACT

Most software errors are made during the design
phase. A vwell-designed system not only is more likely
to be correct but also is usually more understandable,
modifiable, and easier to maintain. The Warnier-orr
diagrams are design tools that can help to achieve

these purposes.

The Warnier-orr diagrams possesses tvo
mathematical properties, associativity and
commutativity. Using these two properties, the designer
can modify his design. This report formalizes the
transformation of the Warnier-Oorr desigm diagraams.
Specific transformations of Warnier-Orr diagrams are
introduced and informally proved. A sample program for
summing each row and column of an array is presented to
illustrated the notions of associativity and

commutativity.

