
/Using Rule-Based Software to Debug
Factory Automation Systems /

by

James R. Watson

B.S., Colorado State University, 1982

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing & Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved

'Yp/htJwL
Major Professor

CtASC
\Qgc\

cz AllSDfl 317flbfl

CONTENTS

1 . INTRODUCTION 1

2 . LITERATURE SEARCH 8

3. SELECTING A SHELL 16

4 . BUILDING THE KNOWLEDGE BASE 23

5 . TESTING THE EXPERT SYSTEM 30

6 . CONCLUSIONS 41

7 . REFERENCES 44

8. BIBLIOGRAPHY 4 5

9 . APPENDIX A 46

10. APPENDIX B 49
10.1 Records Not Received From Tracking Point.. 49
10.2 Scan Gun Not Working 50
10.3 Terminal Not Working 51
10.4 Slow Scan Gun Response 52
10.5 Select Not Found 53
10 . 6 Cannot Access Output Reports 54
10.7 Output Reports Not Updated 55

11. APPENDIX C 56

LIST OF FIGURES

Figure 1-1 7

Figure 4-1 25

Figure 4-2 27

Figure 5-1 32

Figure 5-2 33

Figure 5-3 34

Figure 5-4 35

Figure 5-5 36

Figure 5-6 37

1. INTRODUCTION

The high cost of labor has forced American manufacturing

to turn to complex computer systems to handle many of the

operations previously handled by humans. These complex

computer systems require highly trained personnel to keep

them operating. A company becomes very dependent on

these personnel and is reluctant to move them to other

jobs for the fear that the computer system will not be

supported. An even greater fear is that the trained

person will leave the company and force the operations of

the computer system into the hands of an untrained

individual. What is needed is a way for the knowledge of

a system's workings to be integrated with the system and

not in the mind of the individual developer. A method is

needed for the system to tell humans what has to be done

to correct errors or modify execution. A system with

characteristics such as these was developed for AT&T's

Denver Works in Denver, Colorado.

The Integrated Pull Manufacturing (IPM) System consists

of four 3B15 computers running UNIX 5.3.1. There is one

3B15 for each circuit pack production line, the red,

orange, and merlin, plus one 3B15 that coordinates the

processing of the other three. On each of the circuit

pack production machines is the Manufacturing Process

Control System (MPCS) software. MPCS is responsible for

tracking circuit pack progress through the manufacturing

process. A barcode is affixed to each pack at the first

production operation. The barcode is scanned at key

operations and is stored in a database which is part of

MPCS. At any moment MPCS can tell a user how many packs

are in production, what type they are, where they are in

the process, and how long they've been in process. All

this information is critical in running an efficient

manufacturing operation.

The barcode readers are wired in series through a RS232C

connection to an AT&T PC6300. The PC has the capability

of holding 10,000 scans. If, for some reason, the data

is not able to be passed to the 3B15, the PC is able to

buffer this data to prevent loss of information. The

PCs are networked to the 3B15s through a System 85 PBX.

Because all the wiring was already in place, using the

PBX made adds and changes of PC concentrators very quick

and easy. The 3B15 polls each PC to see if any

information is to be sent for processing. Depending on

the number of PCs connected to the 3B15 the polling takes

- 3 -

place approximately every five seconds, supplying MPCS

with near real-time data.

The fourth 3B15 runs the Shop Floor Control (SFC)

software. SFC is responsible for scheduling the circuit

packs through manufacturing. A database in SFC contains

a list of operations for processing a pack and the amount

of time required for each operation. By knowing when the

pack is needed for an order, SFC can schedule all the

operations of a pack's production to meet its required

due date.

The SFC 3B15 is linked to an IBM 3081 via a Remote Job

Entry line. The IBM supplies order due dates, order

quantities and current storeroom inventory levels so that

SFC may determine what to schedule for production. There

is also a 3270 emulation link between the IBM and the SFC

3B15. This link is used when a pack's production is

completed. The SFC machine can update the inventory

levels contained on the IBM. The IBM views the SFC 3B15

as a terminal and gives it on-line access to the

database

.

All four 3B15s are linked together using a TCP/IP

network. The network allows the machines to pass

information back and forth. It also allows for the

remote mounting of file systems to allow common

software, located in one place, to be accessible to all

machines. This simplifies updating because it is done in

one place and all machines know about the change

immediately. Because of heavy processor demand placed on

the 3B15s by SFC and MPCS, it was decided that no users

would be allowed on the machines. Because of this

restriction a way was needed to get the information from

the processing machines to users machines for viewing.

There already existed a user network in the factory.

Consisting of PC6300s as delivery devices for the

information to the user, 3B2/400s as file servers, and a

3BNET ethernet-based network. By using another 3B2/400

as a file server, information could be passed from a

processing 3B15 to the 3B2/400 file server at regular

intervals. Every fifty transactions or fifteen minutes,

which ever is shorter, it was possible to deliver the

information to the user with a nominal effect on the

processing machine.

The IPM system is a complicated hardware system. When

all the software that was necessary to make it work is

included it becomes a highly complex system. Figure 1-1

5 -

is a diagram of the system. All the knowledge of the

design and workings of the system was contained in the

minds of three people, two, in reality, since one person

on the team was in charge of managing the project. As

the system was cut to production on successive circuit

pack lines, it became evident rather quickly that it

would be impossible for the implementation team to

continue to improve and expand IPM, and at the same time

be responsible for day-to-day problems and questions.

An operations team was added to handle the daily

production problems. This seemed like a good idea at the

start, soon it became apparent it took more time for the

implementation team to show the operations personnel the

method to fix a problem than to fix the problem

themselves. Another drawback of the operations team was

the fact that they were hourly workers and not highly

technical. Hourly workers tend to be reassigned quite

often due to layoffs and job bumping, so there was a high

percentage chance that the same personnel would not be

there for a long period of time. What was needed was a

way to transfer knowledge about the system from the

implementation team to the operations team. It had to be

easy to implement and maintain, usable in real-time

problem solving, able to do a step-by-step procedure for

- 6 -

problem corrections, and need minimal training to use.

With this need in mind, it was necessary to research the

feasibility of building such a system.

Figure 1-1

3

o

-

2
n
M
Vf

0)

o

z

a
Ul
on

m
Z
H

>
H

3
or

?

'=

; z
m

<7

*
>

3

vyi

> >

3

3 «

2 . LITERATURE SEARCH

"An expert system is a body of knowledge, embodied in a

set of rules, that can be accessed and interrogated by a

non-expert" [1]. This definition points out a key part

of expert systems, that they be accessible and usable by

non-experts. It also seems to be limiting in other areas.

The definition doesn't explain why a non-expert would

want to interrogate the system or what the purpose of the

expert system is. By combining a second definition: "An

expert system is a computer program that embodies the

knowledge an expert uses when doing a task that requires

reasoning and, using that knowledge, performs the task as

well or nearly as well as the expert" [2]. We come up

with a suitable description of an expert system: a system

that is usable by non-experts and allows the non-expert

to perform the task nearly as well as the expert. With

this description of an expert system in mind, let's

examine how they operate. Expert systems consist of

three parts: the knowledge base, the inference mechanism,

and the user interface.

The knowledge base is the most important part of an

- 9 -

expert system. "The power of an expert system derives

from the knowledge it possesses, not from the particular

formalisms and inference schemes it employs" [3]. Along

with the importance comes a degree of difficulty that

makes the knowledge base time consuming and challenging

to complete. The steps needed to construct a knowledge

base are information gathering, encoding, and confidence

assigning.

The goal of the information gathering phase is to

discover the heuristic or rule-of-thurab that the expert

uses to solve a problem. Most experts don't use a step-

by-step procedure to solve problems . Because of

experience they use a "gut-feeling" type of logic when

confronted with a situation. The knowledge engineer, the

person building the expert system, has the responsibility

of capturing that "gut-feeling" process from the expert

and explaining what is happening.

One way to unearth the expert's process is to ask the

expert to explain. This seems logical but past studies

have shown, "The more competent domain experts become,

the less able they are to describe the knowledge they use

to solve problems" [4]. A better way to gather the

information is to observe the expert at work and have

- 10 -

him/her talk through the process as it is being done.

After several repetitions of the problem, the knowledge

engineer should be able to explain what has to be done to

correct the situation. It is not necessary, or even

likely, for the knowledge engineer to know why something

is done a particular way. Just knowing that this is what

is done is sufficient. Once the knowledge is gathered,

it is necessary to encode it in a form the system will

understand.

The knowledge is encoded in what is generally called

rules. A rule is a condition-action pair that is used to

represent past, present, or future events in the process

of solving a problem. A rule would be analogous to the

if-then statement in classical programming. By coding

the expert's knowledge into condition-action pairs, it is

possible to "see" all the variables and logic that goes

into the solving of a problem. When encoding the

knowledge, it will become evident that all options are

not yes or no, black or white, true of false. It is

necessary to have a way to deal with uncertain logic.

Confidence assigning is an attempt to handle this

uncertain logic.

11

When an expert is deciding what steps to do next, there

is a good likely-hood that several possible choices

exist. The expert has a confidence, because of

experience, of which choice is the best for the current

situation. Expert systems can simulate the best choice

by using certainty factors which indicate the degree of

certainty with which the answer is believed [5]. The

certainty factors may be assigned by calculating the

frequency with which a fix actually solved a problem in

relation to the attempts. As more experience with the

system is gained the certainty factors can be modified

manually. If you have a system that is capable of

learning, "Machine learning is any automatic improvement

in the performance of a computer system over time, as a

result of experience" [6], this modification can be done

automatically. After the information gathering, encoding,

and confidence assigning, the knowledge base has reached

an acceptable state for testing and use.

The second part of an expert system is the inference

mechanism. The inference mechanism or engine is the part

of the system that determines which rule to execute and

when to execute it. Inference engines may be written in

any language. It could be a structured, predicate logic

type of language like PROLOG, a non-structured symbol

12

manipulating language like LISP, or a classical language

like COBOL or PL1. The concerns about an inference

engine are not what language is used but what it does and

how it does it

.

The what it does can be broken down into three

components: match, select, and act [7]. When matching,

the inference engine uses the current environment and

collects all rules whose condition part of the

condition-action pairs match the current state. The

inference engine will then select one rule to execute.

If there were several rules that matched the current

state, then some type of scheduler would determine which

rule to execute. Once a rule is selected, it is then

acted upon. When a rule is acted upon or "fired", it

causes the modification of the current state to a new

state. After execution there is a new current state and

the match-select-act process starts again. This loop

continues until an end condition is reached or no

condition of a condition-action pair matches the current

state. This match-select-act process can either be done

by a forward-chaining process, a backward-chaining

process, or a combination process.

13 -

Forward-chaining is the process of starting with some

data and chaining forward to come to a hypotheses or

answer. In backward-chaining the answer or hypotheses is

known and by chaining backward, data is found to support

that answer. In combination-chaining, both backward-

chaining and forward-chaining are used to try to arrive

at the stopping point more efficiently than either method

could on its own.

The knowledge base and the inference mechanism are in the

background of the system. What people are interested in

is "What am I going to see?" What the user sees is known

as the user interface.

The amount of effort spent on the knowledge base or

inference engine will be obscured by a poor user

interface. A few key items can be the difference between

a good user interface and a poor user interface. Three

of the most important are usability, helpfulness and

understandability

.

Usability is the characteristic of a system with screens

that are easy to read and to master. No one likes to

spend the time to read manuals or instructions on how to

make something work. If a novice can, after a few

14

repetitions, feel comfortable with the system and the

screens are well designed and pleasant looking, then the

system is usable.

For a system to be helpful, it has to have the capability

of instructing the user when he/she gets stuck and can't

figure out what to do next. This can be accomplished

through help screens, menus, or anything else that will

prompt the user on what to do next

.

Understandability is a trait in which a system explains

why a user is required to do something. If a user wants

to know why a system needs a piece of information, the

system explains its need for that data. The user will

understand the "logic" of the system and be able to

improve the system as the user becomes the new expert.

Usability, helpfulness and understandability are just

three possible traits of a user interface. A system with

these three interface items is in a good position to

demonstrate its value.

With the description of expert systems that has been

defined, "We would perhaps be better off using the term

'Computational Reasoning' to represent what we do" [8].

15

One other area of expert systems that should be mentioned

is the testing or diagnosis of a system. "Diagnosis is

the process of fault-finding in a system, . . . , based

on interpretation of potentially noisy data" [9]. Unlike

a typical program which can be debugged until it runs

correctly, an expert system, just like the expert, will

occasionally make mistakes. The important thing to

remember is that if the system is correct in the same

ratio as that of the human expert then the system is

accurate

.

16

SELECTING A SHELL

The first thing was to select the environment for the

expert system. With little deliberation it was decided

to use an expert system shell to develop the system. The

reasons for using a shell were time, cost, and expertise.

The driving force behind the project was to demonstrate

the usefulness of expert systems in the factory

environment. It was also to show how quickly a system

could be built for a particular situation. It was

thought that it would take several person-years to

develop an inference engine, not leaving a good

impression on management. By using a shell the time was

reduced to how long it would take to learn to use the

shell.

The second reason, cost, was important because of the

budget of the project, zero. The cost of developing an

inference engine can grow rapidly when considering the

people, the hardware, and the software that may be

necessary to accomplish the goal.

- 17

The final item, expertise, was important because the

inference engine would play a pivotal role in the success

or failure of the project. Since no one on the team had

ever developed an inference engine before or a knowledge

base, it was thought that it would be too much unproven

ground to attempt them both in the same project. By

using a shell, it would allow the team to concentrate on

the knowledge base, the ultimate power of any expert

system. Because of time, cost, and expertise the shell

was the only alternative. Before selecting a shell it

was necessary to determine what the requirements of the

shell would be.

Although it was decided to use a shell, it was important

that the shell have certain characteristics. We needed a

backward-chaining, PC based, commercially supported, and

locally available package.

A backward-chaining inference engine was used because the

system being developed seemed to be best suited for

backward-chaining. The system could be implemented with

any type of inference engine. From a user viewpoint

there would be no differences in operation, but from a

design standpoint it was thought that it would be more

logical and easier to implement if backward-chaining was

- 18 -

selected.

Because of the set-up of the factory it would be ideal

for the system to be PC based. Just about everyone in

the factory, including the hourly workers, use PCs in

their daily jobs. The people felt comfortable using

their machines, making it easy for them to master the use

of the expert system with little training or

documentation. By putting the expert system on something

that the ultimate user was already familiar with, the

system could be sold as a new feature to an existing

product as opposed to a new system that the user would

have to learn.

A commercially supported product was overwhelmingly

endorsed by the team. With AT&T Bell Laboratories

access, consideration was given to using a home-grown

shell. It was thought that a home-grown product would

allow the possibility of customization to the shell for

the particular project along with direct communication

with the developer, in case of problems. After further

thought, and remembering that the emphasis was to be

placed on the knowledge base, a commercially sold system

was determined to be the best. It was felt that the

commercial system would be well tested, well documented,

- 19

and demonstrate that expert systems could be produced

with off-the-shelf products as opposed to expensive local

development. The requirements of backward-chaining, PC

based, and commercially supported narrowed the shell

selection down to tens of systems. The final addition to

the equation was local availability (remember the

budget). This drastically reduced the possible

selections to a point where a decision on which shell to

use could be made.

The final decision was that Teknowledge Inc.'s M.l would

be the expert system shell that was used for the project.

The reasons for selecting M.l were these; it met the

requirements, additional features existed that would be

very useful in designing and using the system, it was

easy to understand the shell, and the shell was

available

.

M.l had all the requirements that were necessary in an

expert system shell. Produced by Teknowledge Inc. of

Palo Alto, California, M.l is a backward-chaining, PC

based product that has been commercially available since

1984. The software package had been purchased locally

when interest in expert systems was just beginning, but

nothing had ever been done with the software. The

20

documentation was well written with an entire book of

sample expert systems built with M.l. Along with the

fact that M.l met all the requirements that had been laid

out, the additional features that came with the package

were very attractive.

M.l had many useful features built into the system that

would enhance the system's use. Three of the key

features were a trace option, design versus user

environments, and the user interface.

The trace option is helpful in the design phase of

building the system. It allows the designer to execute

the expert system one step at a time. This allows the

designer to watch the rules as they are firing, the order

in which things are done, and the conclusions that are

reached as the system tries to process its way to the

goal. This is of extreme importance as the designer is

trying to correct something that isn't working the way

he/she thought it should.

The two environments, design and user, are important

because both classes of people do not want to see the

same thing when they work with the system. The designer

is more interested in what is going on and why. The user

21 -

wants to see just questions and answers. On M.l a

function key allows the flip between the two

environments. When in the design phase the designer is

allowed to see what is presented to the user, along with

what is running in the background processing of the

system.

The feature that impresses a user is the user interface

and M.l has an excellent one. The screen is broken up

into regions with questions appearing in one area,

possible answers in another, and system messages in a

third. The interface supports multiple colors which

allows the high-lighting of important items by using a

contrasting color for those items. Pop-up windows

relieve the user of having to remember combination key

strokes for commands. The trace option, design versus

user environments, and the user interface made the choice

of M.l seem like a wise decision. The only thing

remaining was how long would it take to figure out how to

use the package.

The ease of learning M.l is probably the most impressive

feature about the software. In one afternoon a semi-

literate computer user can be designing expert systems

using M.l. In a week it is possible to learn enough

- 22 -

tricks and time saving short-cuts to feel very

comfortable with M.l's capabilities. At the beginning of

the search for an inference engine it was felt that it

was an impossible mission. By the end a system was found

that met the requirements, had additional useful

features, and was easy to learn. The goal had been

reached and M.l was it.

- 23

BUILDING THE KNOWLEDGE BASE

When building a knowledge base it is important to

determine that the knowledge to be encoded into the

system is that which is needed to do the job. In the

case of a diagnosis system, is the fix that the system

selects a fix to a problem that the user is having? The

way to determine this is to collect data on the problems,

analyze the data, and pick problems from the data that

could be solved by the expert system.

To gather data on the problems for this project, a

trouble form was designed to capture information. When a

problem was discovered, an operator would write a trouble

ticket with a brief description of the problem. The

ticket would then be given to a design team member. The

team member would classify the type of problem and write

a brief description on what was done to correct the

problem. Although this was a time consuming process

which slowed down the correction, it was necessary to get

a handle on what was happening in daily operations.

Appendix A contains examples of the trouble forms that

were used.

24

Once the data was collected it was necessary to analyze

the information. By analyzing the data it was possible

to determine the frequency of problems, the relation

between problems, which circuit pack line had more

problems than the other circuit pack lines, and other

information that would be useful in understanding the

current operational situation. Figure 4-1 is a graph

with the problems broken down into three categories:

critical, trivial, and user affecting.

25 -

Figure 4-1

'/

%
1

1 s

1

2

V

4-2 4-3 4-4 5-1 5-2 5-3 5-4 6-1 6-2 6-3

user affecting

critical

trivial

- 26

A critical problem is one in which the entire system is

brought down. Examples of critical problems are a system

fault, an electrical power hit to the processor, or a

disk crash. It was decided that the critical problems

would continue to be the responsibility of the design

team. It was felt that the frequency of these problems

was low and the technical knowledge to fix them was high.

This combination made it desirable for the design team to

handle them.

The second class, trivial, consists of problems such that

something on the system wasn't exactly what the user

wanted, but the system is operational. Examples of

trivial problems are: need a longer cord for the scan

gun, don't like the color of the print on the terminal,

and want the barcode in a different place on the circuit

pack. To handle these problems one day bimonthly was

picked as "trivial day". The operations team and the

design team would get together and go over the list of

trivial problems to solve as many as possible.

The third category of problems, user affecting, is the

category where the design team was spending the majority

of their time. This is the area at which the expert

system would be targeted. It was felt that if the

- 27 -

operations team could handle this class of problems, it

would free the maximum amount of time for the designers.

User affecting problems are ones in which one or more

users are unable to use the system. Examples of user

affecting problems are a broken scan gun, terminal not

responding, and inability to login to the system. Figure

4-2 is a table showing the occurrences of different types

of user affecting problems. By using the expert system

to help with the majority of the problems that happen

most frequently it was assumed that the system would

achieve maximum benefit early in the process. Once the

data was gathered, the problems analyzed, and the

possible implementation problems selected, it was

necessary to examine how the solutions to these problems

were effected.

Figure 4-2

Slow Scan Gun 0011010000
Can't Access Reports 0122231145
Buffering Scans 2512233010
Select Not Found 3641004212
Faulty Scan Gun 3234345562
Faulty Terminal 99435811733
No Remote Records 0100010000
Reports Not Updated 1133051425

6-3 6-2 6-1 5-4 5-3 5-2 5-1 4-4 4-3 4-2

28 -

The solutions were written on each trouble report along

with the problem. In some cases solutions were two or

three word phrases so it was necessary to go back to the

designer and get more complete responses. Once each

problem was solved, a correlation was done to see if the

same problem consistently had the same fix. It didn't

have to be 100% of the time, but it had to be often

enough that the fix would solve the problem in most

cases. After determining a set of problems and a set of

consistent fixes, it was necessary to determine if the

operations team would be able to effect the fix. In some

cases "super-user" privileges or special tools were

needed to correct the problem. Since these things were

not available to the operations team, it would be

impossible for them to fix the problem. These types of

problems were removed from consideration for

implementation. When the final set of problems was

picked, a written step-by-step diagnosis was produced for

each problem. The written descriptions appear in

Appendix B. From these descriptions the knowledge base

would be encoded.

The encoding of the knowledge base was a smooth

operation, thanks, in-part, to all the up-front work that

was done before encoding ever started. The M.l syntax is

29 -

simple and the error messages are fairly helpful in

finding problems. Clarifying the solutions, determining

if the solutions are possible, and encoding the knowledge

base brought the system to a point where it was now

possible to begin testing.

30

TESTING THE EXPERT SYSTEM

The testing of the expert system was cause for

deliberation and thought. Knowing that an expert system

would make mistakes in its diagnosis, it seemed

unproductive to just test the system. What was decided

was to list criteria that the expert system had to meet

to be considered complete. If the system was

syntactically correct running a thorough set of test

scenarios, agreed in most cases with the expert's

diagnosis, and was usable by novices, it would be

considered to have passed test.

The M.l system was "helpful" in locating syntax errors in

the knowledge base. After several iterations of the

load-correct-reload cycle it was possible to get the

knowledge base to load. Once loaded the knowledge base

was ready for execution. By stepping through trial

diagnosis it was possible to watch the execution to see

if the rules were processed in the expected order. While

running the trial diagnosis, it became evident that it

would be difficult to test all possible combinations of

answers to verify that every branch of the knowledge base

31

was tested. Trees were constructed to determine if all

possible branches of the knowledge base were represented.

Figure 5-1 thru figure 5-6 are the tree structures

representing the knowledge base. From looking at the

trees it was seen that several possible branches were not

included. Most of this was caused by the built-in

unknown answer that M.l automatically assigns as a

possible answer to every question. Modifications were

made to the knowledge base to allow the unknown branches

to behave like the no branches in a yes-no-unknown tree

fork. Since the missing branches weren't designed into

the system at the beginning, the way they are handled is

not as smooth as it could be. The knowledge base had now

completed the syntactically correct and running criteria.

- 32 -

Figure 5-1

affected/

red/orange/merlin/unknown

unknown

- 33

Figure 5-2

o

f receive \

\ runningJ

no update unkn

34 -

Fiqure 5-3

no unknown
yes |~

solutionprocessed^

by

f solution 1

PARS /

unknown

"©

3 5

Figure 5-4

solution

unknown

unknown

- 36 -

Figure 5-5

o

37 -

Figure 5-6

38 -

The next test was to determine the accuracy of the expert

system. By having the system and the expert solve the

same problem, it was possible to tell in many of the

situations, that the final answer was the same for both

parties. It was discovered in most cases, that the

expert tended to use other information to vary the order

of search for the problem. The expert would, for

example, know there was a modification to the PC

concentrator software earlier that week so he/she would

start looking for problems from that piece of equipment.

The expert system did not have this information and would

use the same search sequence repeatedly. This allowed

the expert to find the problem in less time in most

cases. Another instance of the expert being "better", is

in the case of a repeated problem. The expert would

"learn" over a period of time to go directly to the

source of the problem. The expert system did not have

this learning capability and would have to traverse

through each piece of equipment in series to find the

fault. Even with its shortcomings, the expert system was

felt to be very good at a step-by-step methodology for

solving problems. The expert system wasn't as fast as

the expert, but it would eventually get to the source of

the problem.

- 39

The final criteria for testing the expert system was for

it be usable by novices. The initial idea was for the

operations team to use the expert system and see if: A)

They could use it and B) They could solve problems with

it. Unfortunately, due to some unforeseen circumstances

this was not possible. Instead random computer people

were chosen to use the system, given a problem scenario,

and expected to come up with the recommended answer to

the problem. Almost immediately it became evident that

some of the questions were ambiguous and confusing. These

questions were rewritten to make them understandable.

During the testing the subjects were able to get the

system to perform some unexpected actions . Careful

observation led to the discovery of several side-effect

problems which were corrected. The test subjects were

able to shed light on the fact that it would not be

possible to just take untrained personnel, and with the

help of the expert system, expect them to be able to

solve problems. The questions as well as the solutions

required a certain amount of UNIX administration

knowledge of the user. In places slang, acronyms, and

abbreviations were used to explain fixes. The target of

the expert system was changed from a novice to an

operations type personnel, familiar with UNIX and

computer workings in general. The expert system does not

- 40 -

require much knowledge about the IPM system but it does

require quite a bit of computer skills.

The expert system runs and is syntactically correct,

agrees with the experts in most cases, and is helpful in

allowing a computer literate person to solve problems.

The final version of the knowledge base is contained in

Appendix C.

- 41 -

CONCLUSIONS

With the completion of the project it was possible to

take a step back and see the accomplishments of the

project. The areas to examine were what was learned,

what should have been done differently, and what could be

done in the future?

Several things were learned from this project. It is

possible to take an off-the-shelf expert system

environment package, and develop a usable expert system

in a short amount of time. It was learned that

manufacturing can use expert systems to help with

operational problems. The knowledge base is the source

of power in an expert system, not the inference

mechanism. The final and most important thing that was

learned is that expert systems are not software of the

future, but that expert systems are here and usable now.

Having gone through the experience of building an expert

system, there were items in the building of the system

that could have, and maybe should have, been done

differently. In M.l when the user asks "why?", the

4 2

system responds with the rule it is trying to prove. If

the user isn't familiar with the rule structure and

variable names, the information will not be of much

value. A better way to handle this situation is to use

the explain feature of M.l. The explain feature allows

text to be associated with a rule. When the user asks

"why?", the text is displayed instead of the rule being

worked on. This may have been a way to provide the user

with more information about problem solving procedure

without getting into the details of the system. Another

area that may have been done a little differently, is the

handling of the unknown answer from the user. The system

is dependent on answers from the user to accomplish the

task. It would have been helpful if, when the user

selected the unknown answer, a message was displayed

stating that this was unacceptable. The system would

then loop around to the same question again.

The future of this system holds many possibilities. The

first possibility is to use this system in a production

environment and measure the amount of time saved for the

designers by the use of the system. Another possibility

includes the creation of an operations document that

would explain to the user how to find the answers to

questions that the system is asking. This manual would

- 43

hopefully alleviate the UNIX knowledge requirement that a

user must have and allow almost anyone to solve problems

with the expert system. Since the recovery from problems

is usually accomplished by executing UNIX commands, it

would be useful to let the system automatically execute

UNIX shells that would effect the solution as opposed to

telling an operator to do it.

The lessons that were learned, the mistakes that were

made, and the things that could be done in the future all

point to the success of the project. The project team

and those around the project team have learned valuable

information and insight about expert systems. Expert

systems are beginning to appear in data centers,

production control, and factory floor operations. It is

possible that expert systems will become standard

operating procedure in the future.

44

7 . REFERENCES

[1] Bryant, N., Managing Expert Systems , Wiley and Sons,
New York, 1988, p. 31

[2] Vesonder, G. T., "Rule-Based Programming in the
UNIX (R) System", AT&T Technical Journal,
January/February 1988, Volume 67 . Issue 1, p. 69

[3] Hayes-Roth, F., Waterman, D. A., and Lenat, D. B.,
Building Expert Systems , Addison-Wesley , Reading,
1983, p? 6^

[4] Waterman, D. A., A Guide to Expert Systems , Addison-
Wesley, Reading, 1986, p. 154

[5] Teknowledge, Inc., M.^ Reference Manual , Palo Alto,
1986, p. 3-6

[6] Forsyth, R., Expert Systems , Principles and Case
Studies , Chapman and Hill Computing, London, 1984,
p. 153

[7] Vesonder, G. T., "Rule-Based Programming in the
UNIX (R) System", AT&T Technical Journal,
January/February 1988, Volume 67 . Issue 1,

pp. 71 - 73

[8] Brachman, R. J., and Henig, F. H., "The Emergence of
Artificial Intelligence Technology", AT&T Technical
Journal, January/February 1988, Volume 67 . Issue 1,

p. 4

[9] Hayes-Roth, F., Waterman, D. A., and Lenat, D. B.,
Building Expert Systems , Addison-Wesley, Reading,
1983, p. ST^

45 -

BIBLIOGRAPHY

Waterman, D. A., A Guide to Expert Systems , Addison-
Wesley, Reading, 19TT5

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B.,

Building Expert Systems , Addison-Wesley , Reading,
T9~Sl

Guide' to Designing Expert Systems , Rowman and
i, Totwa, lWi

Weiss, S. M. , and Kulikowski, C. A., A Practical
Guide to C

AllanheTd,

Forsyth, R., Expert Systems , Principles and Case
Studies , Chapman and Hill Computing, London, 19 84

Brachman, R. J., and Henig, F. H., "The Emergence of
Artificial Intelligence Technology", AT&T Technical
Journal, January/February 1988, Volume 67 . Issue 1

Vesonder, G. T., "Rule-Based Programming in the
UNIX (R) System", AT&T Technical Journal,
January/February 1988, Volume 67 . Issue 1

Bryant, N., Managing Expert Systems , Wiley and Sons,
New York, 19F8

Teknowledge, Inc., M..1 Reference Manual , Palo Alto,
1986

A4 6 -

9 . APPENDIX A

MPCS/IPM TROUBLE REPORT

Date 05/13/88 i
Trouble Number 3 ', Time 8:00 A.M.

Priority A = Trivial
Priority B = User Affecting

Priority C Critical

PRIORITY:

Problem Initiated by: VICKIE BROWN, X82220, MULTI-LINE

Problem Assigned to: MARY GONZALES

Description of Problem:

AT TERMPREP 5 AND TERMPREP 8 THE CRT'S WERE "HUNG UP" DUE TO THE

MODEMS BEING "OFF-LINE".

Date/Time of "Fix": 05/13, 8:20 A.M.

Duration of Problem: 20 MIN.

Description of Solution:

REPEATED MPCS START COMMANDS AT TERM PREP 5 AND 8 REINITIALIZED

THE CRT.

Description of Permanent Corrective Efforts Required:

Basically, this problem was:

Hardware I I
Software (Local) : I IPM Admin.

Shop : :
Software (PRISM) I

I UNIX Admin.

Network I I
System Engineering : I Human Factors

- A4 7 -

MPCS/IPM TROUBLE REPORT

Date 05/13/88
i Trouble Number 4 ! Time 10:51

Priority A Trivial
Priority B = User Affecting
Priority C - Critical

PRIORITY:

Problem Initiated by: CHUCK WHEATLY - RED LINE, X3192 (END (S. OF L28)

Problem Assigned to:

Description of Problem:
FIXED HEAD GUN GREEN LIGHT KEEPS FLASHING. CANNOT GET RED SCAN
LIGHT. GUNS 1 & 3 OF THE DAISY CHAIN WORK.

Date/Time of "Fix": 05/13/88, 1:00 P.M.

Duration of Problem: 2 HRS.

Description of Solution:
REPLACED LS6000 FIXED HEAD GUN.

Description of Permanent Corrective Efforts Required:

Basically, this problem was:

Hardware
1 X ! Software (Local) ! ! IPM Admin.

Shop
: : Software (PRISM) ! i UNIX Admin.

System Engineering ! 1 Human Factors

A48 -

HPCS/IPM TROUBLE REPORT

Date 05/13/8 Trouble Number 6 : Time 1:20 P.M.

Priority A = Trivial
Priority B = User Affecting
Priority C = Critical

PRIORITY:

Problem Initiated by: LOIS & GARY

Problem Assigned to: MARY GONZALES

Description of Problem:

MODEM AT RED ENDLINE WOULD NOT COME UP.

Date/Time of "Fix": 05/13, 1:35

Duration of Problem: 15 MINUTES

Description of Solution:

CALLED MARY GONZALES AND SHE RESTARTED THE PROCESS

Description of Permanent Corrective Efforts Required:

Basically, this problem was:

Hardware i i
Software (Local) IPM Admin.

Shop Software (PRISM) ! X UNIX Admin.

Network System Engineering Human Factors

B4 9

10. APPENDIX B

10.1 Records Not Received From Tracking Point

If the tracking point is hooked to a PC concentrator,

check and see if the buffer is filling up on the PC. If

the buffer is not filling up, reboot the PC because the

concentrator program has stopped. If the buffer is

filling up on the PC, check and see if there are three

green lights on the front of the modem connected to the

PC If there are not three green lights on the modem,

depress the line-status button on the front of the modem

until three green lights appear. If there are three

green lights on the front of the modem, go to the 3B15

that the PC concentrator is wired to and stop and start

the tracking process for that PC concentrator. If the

tracking point is not hooked to a PC concentrator, check

and see if the remote system that should be sending the

records is running. If the remote system is not running,

notify the remote system's system administrator of the

problem. If the remote system is running, check and see

if the communications line that the information should

come across is busy. If the line is busy, kill any

process that is running on that line to free it up. If

it is not busy, make sure that the passwords and phone
numbers match in the required files between the remote
system and the 3B15 tracking machine.

B50

10.2 Scan Gun Not Working

Pull the trigger of the scan gun and make sure the gun is

producing a red beam. If the gun is not producing a red
beam, make sure the Scanstar is plugged in and turned on.

If the Scanstar is not plugged in and turned on, plug it

in and turn it on. If the Scanstar is plugged in and
turned on and the gun still produces no red beam, replace
the scan gun with a known working gun from inventory. If

the scan gun does produce a red beam but will not read
the label, check and see if a red or yellow light is

present on the front of the Scanstar. If the light on
the front of the Scanstar is not yellow or red, replace
the label on the board with a duplicate label. If the
light on the font of the Scanstar is yellow or red, turn
off the Scanstar and turn it back on. Scan another label
and see if the yellow or red light reappear. If the
yellow or red light does not reappears, problem is

corrected. If the yellow or red light does reappear,
turn the Scanstar off and on again, then make sure that
all Scanstars that are wired in series with the problem
Scanstar show green lights on the front panel. If all
Scanstars show green lights and after scanning a label
the problem Scanstar shows red or yellow, turn off and
back on all the Scanstars that are wired in series.
Reboot the PC concentrator causing the concentrator
program to restart.

- B51

10.3 Terminal Not Working

Check the modem attached to the terminal and see if there
are three green lights on the front. If there are not
three green lights on the front of the modem, depress the
line-status button until three green lights appear. If
there are three green lights on the front of the modem,
turn terminal off and back on. Go to the 3B15 that the
terminal is wired to and stop and start the process for
that terminal. If the problem exists on ALL terminals on
ALL lines, stop and start ALL processes on ALL machines.

B52 -

10.4 Slow Scan Gun Response

If the scan gun is working but the time between the
reading of the label and the confirmation tone is long,
turn off the monitor on the PC concentrator.

- B53

10.5 Select Not Found

If the terminal is working but the select is not found
for processing, check and see if the select has been
released from IMPAC. If the select has not been released
from IMPAC, call the storeroom and get them to release
it. If the select has been released from IMPAC, check
and see if the select is present in the receive directory
on the SFC machine. If the select is not present on the

SFC machine, stop and start the RJE process between the

SFC machine and the IBM. If the select is present on the

SFC machine, check and see if the select has been
processed by the PARS machine. If the select has not

been processed by PARS, see if there are any error
messages about that select on PARS. If there are no
error messages on PARS about the select, stop and start
the communications link between SFC and PARS. If there
are error messages on PARS about the select, add the
code/series combination of the select to the PARS
database and manually release the select. If the select
has been processed by PARS, check and see if the select
is in the receive directory of MPCS . If it is not in the
receive directory of MPCS, stop and start the
communications link between PARS and the MPCS machine.
If it is in the receive directory of MPCS, check and see
if there are any error messages about the select on MPCS.
If there are not any error messages about the select on
MPCS, stop and start the auto-orig process. If there are
error messages about the select on MPCS, add the
code/series combination to the MPCS database and manually
input the select.

B54

10.6 Cannot Access Output Reports

Check and see if all lines are affected by the problem.

If all lines have the problem, reboot the LAN bridge that

connects the IPM network to the user network. If the

problem is not on all lines find out how many users on a

particular line are affected. If more than one user on a

particular line is having the problem, reboot the 3B2/400

server machine for that line. If it is only one user

that is having the problem, reboot the PC that the user

is trying to access the reports on.

- B55

10.7 Output Reports Not Updated

If the user can access the reports but the user's screen
has not updated in twenty minutes, check and see if the
user's PC is still connected to the file server. If the
PC is not connected to the file server, reboot the PC and
login to the file server again. If the PC is still
connected to the file server, check and see if the file
server is running the receive transaction process. If

the receive transaction process is not running on the
server, start the process. If the receive transaction
process is running on the server, check and see if the
send transaction process is running on the MPCS tracking
machine. If the send transaction process is not running,
start the process. If the send transaction process is
running, kill any process on the communications link
between the tracking machine and the server.

C56

11. APPENDIX C

/*
This knowledge base is used to try and solve IPM
operational problems at the Denver Works. The
system will not solve all problems but it is hoped
that it will be able to handle the
daily recurring problems. The system uses M.l by
Teknowledge, Inc. as the inference engine and was
designed by James R. Watson
*/

/*
Try to find out as much information as possible before
starting the actual consultation.
*/

initialdata = [start-text-displayed, line-affected,
problem-type ,

problem-answered , next-step J

.

/*
Determine what circuit pack lines operations are being
affected by the problem.
*/

multivalued) line-affected)

.

question(line-affected) =

"What circuit pack lines are affected by the
problem?"

.

legalvals(line-affected) = [red, orange, merlin, all].
automaticmenu(line-affected)

.

enumeratedanswers (line-affected)

.

Determine type of problem.
*/

multivalued(problem-type)

.

question(problem-type) =

"What type of problem is it? "

.

legalvals(problem-type) = [input, output]

C57 -

/*
Determine if the user can see the problem.
'/

multivalued(user-af fecting) .

question(user-af fecting) =

"Has the user noticed the problem? "

.

legalvals (user-affecting) = [yes, no].

/*
This is the question to find out if three green lights
are visible on the front of the modem.
*/

multivalued) three-lights-on)

.

question; three-lights-on) =

"Are there three green lights lit on the front
of the modem?"

.

legalvals (three-lights-on) = [yes, no].

/*
Find out if red beam comes on when trigger is pulled.
*/

question) red-beam) =

"When you pull the trigger on the gun do you get
a red beam? "

.

legalvals (red-beam) = [yes, no].

/*
Find out what lights are glowing on the scanstar.
*/

multivalued) light-color)

.

question) light-color) =

"What color is the light on front of the scanstar?'
legalvals(light-color) = [green, yellow, red, no-light-on]

.

automaticmenu) light-color) .

enumeratedanswers) light-color)

.

- C58

/*
Find out what particular piece of hardware is having
a problem.
*/

multivalued! input-part)

.

question) input-part) =

"What piece of equipment on the input stream
is not working?".

legalvals(input-part) = [gun, terminal, tracking-point]
automaticmenu(input-part)

.

enumeratedanswers (input-part)

.

/*
This question determines if a concentrator is used for
this tracking point.
*/

question) through-pc)
=

"Does this tracking point go through a PC
concentrator?"

legalvals (through-pc) = [yes, no].

/*
Determine if the remote processor that sends transactions
to the traking 3B15 is up and running.
*/

question) remote-down) =

"Is the processor that the input records come
from running?"

.

legalvals (remote-down) = [yes, no].

/*
Find out if scanning transactions are being buffered up
at the PC and not sent to the tracking 3B15.
*/

question(buf fer-f illing) =

"Is the PC concentrator buffering scan
transactions?"

.

legalvals (buffer-filling) = [yes, no].

- C59

/*
Determine if the line used to pass information between
the remote processor and the tracking 3B15 is busy.
*/

question(line-busy) =

"When you dial the phone number of the line used
for remote transactions, do you get a tone or a
busy signal?".
legalvals (line-busy) = [tone, busy-signal].
automaticmenu(line-busy)

.

enuraeratedanswers (line-busy)

.

/*
This question determines if the scan gun is still able
to read barcode labels

.

*/

question(gun-working) =

"Is the scan gun reading labels?",
legalvals

(
gun-working) = [yes, no].

/*
This question determines if there is an abnormally long
pause between label scan and confirmation.
*/

question) slow-gun-response) =

"Is there a long pause between reading a label
and the confirmation tone?",

legalvals (slow-gun-response) = [yes, no].

/*
This question determines if the terminal is currently
operational

.

*/

question) terminal-working) =

"Does the terminal responsed when the return
key is depressed?",

legalvals (terminal-working) = [yes, no].

- C60

/*
This question determines if the usert is trying to input
a select for preparation of scanning.
*/

question(select-not-found) =

"Is the user trying to input a select and getting
a "Select not Found" error message?",

legalvals (select-not-found) = [yes, no].

/*
This question determines if the select has been released
from IMPAC yet.
*/

question(impac-release) =

"Has the select been released from IMPAC yet?",
legalvals (impac-release) = [yes, no].

/*
This question determines if the select made it to the SFC
machine

.

*/

question) in-sfc)
=

"Is a copy of the select file present on the SFC
machine?"

.

legalvals (in-sfc) = [yes, no].

/*
This question determines if the select made it to the
MPCS machine.
*/

question(in-mpcs)
=

"Is a copy of the select file present on the
MPCS machine?"

.

legalvals (in-mpcs) = [yes, no].

/"
This question determines if the select has been processed

C61

by the PARS machine yet.
*/

question(processed-by-pars)
=

"Has the select been processed by the PARS machine?'
legalvals (processed-by-pars) = [yes, no].

/*
This question determines if PARS produced any error
messages on why the select was not processed.
*/

question (error-pars)
=

"Is there an error message on PARS stating why
the select was not processed?",

legalvals (error-pars) = [yes, no].

/*
This question determines if PARS produced any error
messages on why the select was not processed.
*/

question(error-mpcs) =

"Is there an error message on MPCS stating why
the select was not loaded onto the database?",

legalvals (error-mpcs) = [yes, no].

/*
This question determines the exact nature of the ouput
problem.
*/

question(output-source) =

"Is the problem with the ouput that the user cannot
access reports or that the reports are not updating?'

legalvals (output-source) = [no-access, no-update].
automaticmenu(output-source)

.

enumeratedanswers (output-source)

.

/*
This question determines the number of users that are

C62

affected by the output problem.
*/

question (more-than-one) =

"Is there MORE THAN ONE user affected by the output
problem?"

.

legalvals(more-than-one) = [yes, no].

/*
This question determines if the transaction receive
process is still running on the server machine.

V
question; trans-rec-running) =

"Is the transaction receiving process running on
the 3B2 server?",

legalvals (trans-rec-running) = [yes, no].

/*
This question determines if the transaction send process
is still running on the processing 3B15.
*/

question (trans-send-running) =

"Is the transaction send process running on the
3B15 machine?"

.

legalvals (trans-send-running) = [yes, no].

**
*/

/*
Display the openning banner.
*/

nocache(start-text)

.

rule-0 : if start-text = TEXT and

C63

display(TEXT)
then start-text-displayed.

/*
Set up condition for end of consultation.
*/

rule-1 : if problem-answered
then do (abort)

.

/*
If fix to problem was displayed set exiting condition.
*/

rule-2 : if input-problem and
input-part-known and
specific-problem-known and
message) input-part, specific-problem,

line-affected)
then problem-answered.

/*
Set type of trouble indicator.
*/

rule-3 : if problem-type = input
then input-problem.

rule-4 : if problem-type = output
then output-problem.

rule-5 : if problem-type is unknown
then unknown-problem.

/*
If it is a gun problem check and see if red beam works.
*/

- C64

rule-6 : if input-problem and
input-part = gun and
not (gun-working) and
not (red-beam) and
not (power-on)
then specific-problem = power.

rule-7 : if input-problem and
input-part = gun and
not

(
gun-working) and

not (red-beam) and
power-on
then specific-problem = badgun.

rule-8 : if input-problem and
input-part = gun and
not (gun-working) and
red-beam
then check-lights.

Determine if power is on.
*/

rule-9 : if light-color = green or
light-color = yellow or
light-color = red
then power-on.

rule-10 : if light-color = no-light-on or
light-color = unknown
then power-on = no.

/*
If red beam is working look for other cause of gun
problem.
*/

rule-11 : if check-lights and
light-color = green
then specific-problem = label.

rule-12 : if check-lights and

C65

not (light-color = green)
then specific-problem = busy.

/*
This is a general message routine for display
different answers to problems.
*/

nocache(message(input-part, specific-problem,
line-affected))

.

rule-13 : if input-problem and
input-part = I and
specific-problem = S and
line-affected = A and
displayj") and
message-text(I, S, A) = LIST and
display(LIST)
then message) input-part, specific-problem,

line-affected)

.

/*
Determine if the piece of equipment with a
problem has been found.
*/

rule-14 : if input-part = ANYPART
then input-part-known.

/*
Determine if the exact problem is known.
'/

rule-15 : if specific-problem = ANYPROBLEM
then specific-problem-known.

/*
The following rules determine what the specific problem
for a terminal is.

C66

*/

rule-16 : if input-problem and
input-part = terminal and
not (terminal-working) and
not(line-affected = all) and
not(three-lights-on)
then specific-problem = dropped-line

.

rule-17 : if input-problem and
input-part = terminal and
not (terminal-working) and
line-affected = all and
not (three- lights -on)
then specific-problem = switch-hit.

rule-18 : if input-problem and
input-part = terminal and
not (terminal-working) and
not(line-affected = all) and
three- lights-on
then specific-problem = hung-process

.

rule-19 : if input-problem and
input-part = terminal and
not(terminal-working) and
line-affected = all and
three- lights-on
then specific-problem = switch-hit.

/*
These rules handle determining the problem if it is with

a tracking station.
*/

rule-20 : if input-problem and
input-part = tracking-point and
not(line-affected = all) and
through-pc and
buffer-filling and
not (three-lights-on)
then specific-problem = pc-line-drop.

rule-21 : if input-problem and
input-part = tracking-point and
not(line-af fected = all) and
through-pc and

C67

buffer-filling and
three- lights -on
then specific-problem =

hung-tracking-process

.

rule-22 : if input-problem and
input-part = tracking-point and
not(line-affected = all) and
through-pc and
not (buffer- filling)
then specific-problem = concentrator-stop.

rule-23 : if input-problem and
input-part = tracking-point and
line-affected = all
then specific-problem = switch-hit.

rule-24 : if input-problem and
input-part = tracking-point and
not (line-affected = all) and
not (through-pc) and
not (remote-down

)

then specific-problem = remote-failure.

rule-25 : if input-problem and
input-part = tracking-point and
not(line-affected = all) and
not(through-pc) and
remote-down and
line-busy = tone
then specific-problem = bad-password.

rule-26 : if input-problem and
input-part = tracking-point and
not(line-affected = all) and
not (through-pc) and
remote-down and
not(line-busy = tone)
then specific-problem = busy-line.

/*
These rules determine if the problem is a slow scan
gun.
*/

rule-27 : if input-problem and
input-part = gun and

- C68

gun-working and
slow-gun-response
then specific-problem = slow-gun.

rule-28 : if input-problem and
input-part = gun and
gun-working and
not (slow-gun-response

)

then specific-problem = trivial-gun.

/*
These rules determine where the problem has occurred
causing a select not to be down-loading into the
MPCS system.
*/

rule-29 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
not (impac-release

)

then specific-problem = no-release.

rule-30 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
impac-release and
not) in-sfc)
then specific-problem = rje-link.

rule-31 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
impac-release and
in-sfc and
not (processed-by-pars) and
not (error-pars

)

then specific-problem = sfc-pars-link.

rule-32 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and

C69

impac-release and
in-sfc and
not (processed-by-pars) and
error-pars
then specific-problem = pars-stop.

rule-33 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
impac-release and
in-sfc and
processed-by-pars and
not(in-mpcs

)

then specific-problem = pars-mpcs-link.

rule-34 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
impac-release and
in-sfc and
processed-by-pars and
in-mpcs and
not (error-mpcs

)

then specific-problem = auto-orig-hung

.

rule-35 : if input-problem and
input-part = terminal and
terminal-working and
select-not-found and
impac-release and
in-sfc and
processed-by-pars and
in-mpcs and
error-mpcs
then specific-problem = mpcs-stop.

rule-36 : if input-problem and
input-part = terminal and
terminal-working and
not (select-not-found)
then specific-problem = terminal-trivial.

C70

This rule handles finding a solution for output type
of problems.
*/

rule-37 : if output-problem and
output-source-known and
specif ic-problera-known and
message (output- source, specif ic -problem,

line-affected)
then problem-answered.

/*
This rule sets the problem known indicator when the
source of the problem is discovered.
*/

rule-38 : if output-source = ANYSOURCE
then output-source-known.

/*
These rules handle the situation when the output problem
is that the user cannot access the reports.
*/

rule-39 : if output-problem and
output-source = no-access and
line-affected = all
then specific-problem = bridge-down.

rule-40 : if output-problem and
output-source = no-access and
not (line-affected = all) and
one-user-affected
then specific-problem = pc-hung.

rule-41 : if output-problem and
output-source = no-access and
not(line-affected = all) and
multiple-users -affected
then specific-problem = server-hung.

/*
These rules determine how many users are affected by the

C71

output problem.
*/

rule-42 : if not (more-than-one)
then one-user-affected.

rule-4 3 : if more-than-one
then multiple-users-affected.

/*
This rule handles the outputting of the solution for
output type of problems.
*/

nocac he (mess age (output- source, specif ic -problem,
line-affected))

.

rule-44 : if output-problem and
output-source = I and
specific-problem = S and
line-affected = A and
display(") and
message-text) I , S, A) = LIST and
display(LIST)
then message} output-source,

specif ic -problem, line-affected)

.

/*
These rules handle the situation when the output
problem is that the reports are not being update.
*/

rule-45 : if output-problem and
output-source = no-update and
line-affected = all
then specific-problem = bridge-down.

rule-46 : if output-problem and
output-source = no-update and

not (line-affected = all) and
not (trans -rec -running)
then specific-problem = server-stop.

rule-47 : if output-problem and
output-source = no-update and

- C72

not(line-affected = all) and
trans-rec-running and
not (trans-send-running)
then specific-problem = send-process-stop.

rule-48 : if output-problem and
output-source = no-update and
not(line-affected = all) and
trans-rec-running and
trans-send-running
then specific-problem = process-output-link.

/*
These rules handle the situation when the operator
does not have enough information for the system.
*/

rule-95 : if output-problem and
output-source is unknown and

no-output = TEXT and
display)") and
display(TEXT)
then problem-answered.

rule-96 : if unknown-problem and
no-problem = TEXT and
display)") and
display(TEXT)
then problem-answered.

rule-97 : if input-problem and
input-part is unknown and
no-input-part = TEXT and
display(") and
display(TEXT)
then problem-answered.

rule-98 : if line-affected is unknown and
no-line-affected = TEXT and
display(") and
display(TEXT)
then problem-answered.

- C73

/*
Decide if there is another problem to solve.
*/

rule-99 : if next-objective = quit-now or
next-objective is unknown and
display(") and
display("Thank you for using the IPM

SOLUTION HELPER.") and
do(abort)
then next-step.

rule-100 : if next-objective = start-again and
display) ") and
do (reset) and do (restart)
then next-step.

question(next-objective) =

"Do you have another problem to fix?

quit-now, I am finished.
start-again, I have another problem.".

legalvals(next-objective) = [quit-now, start-again]
enumeratedanswers (next-objective)

.

**
*/

/*
The following are the messages that are displayed
for the fix to a problem.
*/

noautomaticquestion(message-text(I, S, A)).

nocache(mesage-text(I, S, A)).

message-text (gun, power, ANY) = [nl,
The gun appears to not be getting power from the",
scanstar. Check and make sure the scanstar is",
plugged in and turned on. If it is plugged in",
and turned on and there are still no ",

lights visible on the front of the scanstar there is",
a chance that it is a faulty scanstar. Replace the",

- C74

" scanstar with a known working unit and see if the",
" problem clears ." ,nl ,nl,
"If the problem still exists after these actions ",

"contact a design team member ." ,nl]

.

message-text(gun, badgun, ANY) = [nl,
"If there is no red beam being produced by the gun",
" chances are that this is a faulty gun. Replace gun",
" with a known working gun and see if problem clears.",
nl| nl,
"If the problem still exists after these actions ",

"contact a design team member .", nl]

.

message-text(gun, label, ANY) = [nl,
"It seems that the equipment is in working condition ",

"the problem could be with the label on the board.",
"Generate a duplicate label and replace the current",
"label on the board with the new label and see if the",
"problem clears ." ,nl , "If the problem exists after",
"these actions contact ",

"a design team member ." ,nl]

.

message-textfgun, busy, ANY) = [nl,
"The gun has been set to an inactive state. There is a",
"three step process to correcting this problem. " ,nl

,

"1. Turn off and back on the scanstar with the problem",
"gun. 2. Turn off and back on all the scanstars that ",

"are wired in series with the problem gun.",nl,
"3. Reboot the PC that the gun is wired into causing ",

"the concentrator program to restart ." ,nl , nl

,

"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-textfgun, slow-gun, ANY) = [nl,
"It appears the monitor on the PC concentrator is on. Go",
"to the PC concentrator that this gun is wired into and",
"turn it off. This should speed up the response time of",
"the gun.", nl,nl,
"If the problem still exists after these actions contact",
"a design team member .", nl]

.

message-text (gun, trivial-gun, ANY) = [nl,
"Everything seems to be working correctly, so this",
"problem may be considered a trivial problem. ",

"Inform the user that the problem will be added to",
"the trivial problem list and",
"looked at at a later date .

" ,nl, nl

,

"If the user is unhappy with this action contact ",

"a design team member .", nl]

.

C75 -

message-text (terminal, dropped-line, A) = [nl,

"It seems the connection between the terminal and"
"the", A," line has been dropped. Depress and release",
"the line-status button on the front of the modem",
" until three green lights",
"appear. The terminal should begin within 60",
" seconds ." ,nl ,nl

,

"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (terminal, hung-process , A) = [nl,

"It seems that the process on this terminal has stopped",
"running. Turn the terminal off and on. Go to the",
"3B15 running the", A, "line and stop and start the",
" terminal process ." ,nl,nl

,

"If the problem exists after these actions contact ",

"a design team member .", nl]

.

message-text (terminal, switch-hit, ANY) = [nl,

"It seems that the System 85 has gone down. Go to all",
"3B15s and stop and restart ALL processes.",
nl,nl,
"If the problem exists after these actions contact ",

"a design team member .", nl]

.

message-text (terminal, no-release, ANY) = [nl,

"It seems that the select has not been released from",
"IMPAC yet. Call the storeroom and ask them to release",
"the select because the material has been delivered.",
nl,nl, "If the problem still exists after these actions",
" contact a design team member .", nl]

.

message-text (terminal, rje-link, ANY) = [nl,

"It seems that the rje link between the SFC machine and",
" the IBM is not functioning. Stop and start the rje",
" process on the SFC machine, then call the data center",
" and have them stop and start the rje process on the",
" IBM.",nl,nl,
"If the problem exists after these actions contact ",

"a design team member .", nl]

.

message-text (terminal, sfc-pars-link, ANY) = [nl,
"It seems that the link between the SFC machine and",
"the PARS machine is not working. Kill any process that",
" is running on that link to clear the problem.",
nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

C76 -

message-text (terminal, pars-stop, ANY) = [nl,
"It seems that the PARS machine has flagged and error",
"on this select. Add the code/series combination",
"from this select to the PARS database and manually",
"release the select.", nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (terminal, mpcs-stop, A) = [nl,
"It seems that the ", A," MPCS machine has flagged and",
" error on this select. Add the code/series/vintage",
"combination from this select to the", A, "MPCS database.",
" The select should process within the next",
" 5 minutes.", nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (terminal, pars-mpcs-link, A) = [nl,
"It seems that the link between the PARS machine and",
" the ", A," MPCS machine is not working. Kill any",
" process that is running on that link to clear the",
" problem.", nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (terminal, auto-orig-hung, A) = [nl,
"It seems that the auto orig process on the ", A ,

" MPCS machine is not running. Stop and start the",
" auto orig process on ", A, " machine to clear the",
" problem.", nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (terminal, terminal-trivial, ANY) = [nl,
"Everything seems to be working correctly, so this",
" problem may be considered a trivial problem. Inform",
" the user that the problem will be added to the trivial",
" problem list and looked at at a later date. " , nl ,nl

,

"If the user is unhappy with this action contact ",

"a design team member ." ,nl]

.

message-text (tracking-point, switch-hit, ANY) = [nl,
"It seems that the System 85 has gone down. Go to all",
"3B15s running MPCS and stop and restart ALL processes.",
nl,nl,
"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (tracking-point, bad-password, A) = [nl,

- C77

"It seems that the password file between the" , A, "3B15"

,

"and the remote processor do not match. Make sure ",
" the remote processor has the current passwords and ",
" phone numbers for the ", A, " MPCS tracking machine.",
nl , nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (tracking-point, busy-line. A) = [nl,
"It appears the remote transaction line between the",
" remote processor and the", A," machine is busy.",
"Issue a kill command on any process running on the",
" TTY of the remote processor transaction line. ",

nl , nl,
"If the problem exists after these actions contact",
"a design team member .", nl] .

message-text (tracking-point , pc-line-drop, A) = [nl

,

"It seems that the connection between the concentrator",
" and the ", A, " line has been dropped. Depress and",
" release the line-status button on the front of the ",
" modem until three green lights appear. The ",

"concentrator should begin operating in 60 seconds."
,nl,nl, "If the problem exists after these actions",
" contact a design team member ." ,nl]

.

message-text (tracking-point , hung-tracking-process , A)
= [nl, "It seems that the process between the",
" concentrator and the", A," 3B15 has stopped running.",
" Go to the ",A,"3B15 tracking machine and stop and",
" start the tracking process connected to the problem",
" concentrator .", nl , nl

,

"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (tracking-point , concentrator-stop, ANY)=[nl,
"It appears that the concentrator program has stopped",
" running on the PC. Reboot the PC causing the",
" concentrator to restart. ",nl,nl,
"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (tracking-point , remote-failure , A) = [nl,
"It appears that the remote processor that is sending",
" transactions to the ", A, " tracking machine has gone",
" down. Notify the remote system administrator",
" of the possible problem. " ,nl , nl

,

"If the problem exists after these actions contact",
"a design team member .", nl]

.

C78 -

message-text (no-access, bridge-down, ANY) = [nl,
"It appears that the bridge that connects IPM to the",
" user network has gone down. Reboot the bridge device",
" by turning it off and back on. ",

nl,nl,
"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (no-access, pc-hung , ANY) = [nl,
"It appears that the particular PC that the user is",
" working on has been disconnected from the network.",

Reboot the PC by turning it off and back on or by",
" depressing the reset button. " ,nl , nl

,

"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (no-access, server-hung , A) = [nl,
"It appears that the",A,"3B2 server has malfunctioned.",
" Notify all users on the" , A, "machine that the server",
"will be out of operation for approximately 30 minutes.",
"Perform a "shutdown -y -gO -i6" on the" , A, "server ."

,

nl,nl,
"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (no-update, bridge-down, ANY) = [nl,
"It appears that the bridge that connects IPM to the",
"user network has gone down. Reboot the bridge device",
" by turning it off and back on. ",

nl , nl

,

"If the problem exists after these actions contact",
"a design team member ." ,nl]

.

message-text (no-update, server-stop, A) = [nl,
"It appears that the transaction receive process has",
" stopped running on the ", A, " server causing the",
" reports not to be updated. Start the transaction",
" receive process on the ", A, " 3B2 server ." ,nl ,nl,
"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text (no-update, send-process-stop. A) = [nl,
"It appears that the transaction send process has",
"stopped running on the",A,"3B15 processing machine",
" causing the reports not to be updated. Start the",
" transaction send process on the",A,"3B15 machine.",
nl ,nl

,

"If the problem exists after these actions contact",
"a design team member .", nl]

.

C79 -

message-text (no-update, process-output-link, A) = [nl,
"It appears that the link between the",A,"3B2 server"
" and the", A," 3B15 processing machine has gotten",
" hung up. Kill any processes running on that link",
" freeing the hang.", nl,nl,
"If the problem exists after these actions contact",
"a design team member .", nl]

.

message-text(I, S, ANY) = [nl,
"You are missing an output message for ",I,
" and ",S,nl]

.

no-input-part = [nl,
"You have not given the sytem an input part, it needs",
"this information to figure out what the problem is.",
"Please find the answer to the asked question and try",
"again. " ,nl,nl, "If you are unable to find the answer",
"to the question please contact a design team member."
,nl].

no-output = [nl,
"You have not given the sytem the type of output",
"problem. The system needs this information to figure",
"out what the problem is. Please find the answer to ",

"the asked question and try again. ", nl ,nl

,

"If you are unable to find the answer to the question ",

"please contact a design team member .", nl]

.

no-line-affected = [nl,
"You have not given the sytem a line that was affected",
"by the problem. This information is needed to figure",
"out what the problem is. Please find the",
"answer to the asked question and try again .", nl,nl

,

"If you are unable to answer the question ",

"please contact a design team member .", nl]

.

no-problem = [nl,
"You have not given the sytem type of problem, it ",

"needs this information to figure what to do next.",
"Please find the answer to the asked question and try",
" again .", nl ,nl

,

"If you are unable to find the answer to the question ",

"please contact a design team member .", nl]

.

start-text = [nl,
"•Welcome to the IPM SOLUTION HELPER***",

nl,nl,"This system is designed to aid in the process",
"of solving IPM operational problems. By supplying the",

C80

"system with answers to questions the system will",
"give you recommended courses of action to solve the",
"problem. Please pick your answer to the question from"
"the menu options provided with each question.",
nl,"Good Luck and Happy Problem Fixing!"].

Using Rule-Based Software to Debug
Factory Automation Systems

by

James R. Watson

B.S., Colorado State University, 1982

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing & Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

The Integrated Pull Manufacturing (IPM) System is made up

of over twenty processors, hundreds of programs, fifty

bar-code readers, several networks and many users. The

system was designed by a three member team over a two

year span. The short time frame left no time to develop

documentation for operational procedures on how the

system works or how to recover from a problem. What was

needed was a way to transfer knowledge from the designers

to a less technical operations team.

A rule-based software package was used to develop a

repository for the designers knowledge that would give

the operations personnel a step-by-step process for

correcting problems in IPM. As a problem became a

recurring operations issue it would be entered into the

system along with a detailed description of how to

correct it. This would allow the operations personnel to

handle the majority of problems and the designers would

only be involved if it was a unique situation that

occurred. The rule-based software would become part of

the IPM system which would allow the knowledge of the

system to remain with the system and not with the people

who designed it.

- 2

Although it is on a small scale and what may be

considered a prototype, the rule based software

demonstrated that manufacturing can begin to use expert

systems now to solve operational problems. As

manufacturing becomes more and more dependent on computer

systems and expert systems advance in ease of use and

implementation there is a window of possibility for the

use of knowledge based systems to become the norm as

opposed to the leading edge.

