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1.0 INTRODUCTION

The transportation of nuclear materials involved in the nuclear power
industry can be understood by examining the nuclear fuel cycle which is
illustrated in Fig. 1. The cycle begins with mining and preparation
of fuels and ends with recovery from "spent" fuel elements of unused and
newly-generated fuel materials. The central steps of the cycle concerns
the fission process employed by the reactor plant to generate electricity.
These plants are fueled by one or more of the fissionable materials
uranium-235, uranium-233, or plutonium-239.

After sustained operation of the reactor, the fuel elements must be
reprocessed since the fissionable material has been used to the extent that
a chain reactiom can no longer be maintained. During the fission process, the
fisgionable atoms are split releasing energy, and many fission fragments
are often of unstable configuration and decay radiocactively by emission of
beta, gamma, or alpha rays. Since they are highly radicactive, the fuel
elements are left to "cool" as the radiocactivity decays exponentially with
time.

After a sufficient cooling period, the spent fuel elements are packed
in a shipping cask. The cask shielding generally is made of a demnse material
such as lead to attenuate the radiation. Shielding, heat tramsfer, impact
fire damage and other design criteria demand a heavy and expensive shipping
cask, Generally these casks are leased for costly rates.

Fissionable material is recovered from the depleted fuel elements at

fuel-reprocessing plants. In this process, highly radicactive liquid and
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solid wastes are produced. Currently, these wastes are stored in large
underground tanks. Much consideration has been directed towards shipment
of these wastes to nuclear waste burial grounds in salt or other geologic
formation repositories.

In general, shipping casks are of standardized sizes at a weight
allowing conventional modes of transportation shipment. A truck container
may weigh between 12 to 15 tons, while a railroad container may range up
to 120 tons or more. The heaviness of the casks is due almost completely
to the shielding requirements. Considerable effort has been made to
optimize shielding while minimizing handling costs.

It is speculatéd by T¥emmel (1) that spent fuel transportation from
the reactor to the reprocessing plant for the recovery of valuable uranium
and plutonium fuels may reach such a magnitude as to hinder nuclear power
industry progress. To understand this growing need for transportation,
it is enlightening to examine the nuclear power industry growth. Figure 2
has become a familiar and accepted curve depicting the projected growth of
the nuclear power industry (1). Not so familiar is the associated spent
fuel discharge which clearly indicates an increasing need for spent fuel
transportation within this decade. Figure 2 has been combined with the
carrying capacity of different transportation modes tﬁ arrive at required
cask movements in order to handle the anticipated transportation load, as
shown in Figure 3.

Many different sizes of shipping casks may be used for different trans-
portation modes. Presently, four transport modes seem a possiblity (truck,

rail, air, barge) to handle this projected load. -
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2.0 SHIPPING CONSTRAINTS

Associated with each mode of transportation and each reactor site are
obvious factors such as accessibility of transportation, cost, weight re-
strictions and legal restrictions. Other not so aobvious factors include
safety considerations, transportation safeguards, insurance and indemnity.
All these factors represent constraints on the shipment of the spent fuel.
In order to understand more completely the effect that each of these con-

straints may have, they are examined in the following sections.

2,1 Accessibility

Accessibility may be limited at a reactor site due to geographical
location of shipping and receiving facilities or mechanical capabilities
of the particular reactor. For instance, some reactors do not have rail
sidings necessary to ship the casks by rail. Although sidings could be con—
structed, often the cost of building a bridge or tunmnel is prohibitive when
compared with truck shipment, In addition, the cooling pond cranes are some-
times not capable of handling the heavier rail shipping casks (10).

Obviously the expense of building a canal would sometimes prohibit im-
mediate access of barge transportation. Air runways can be built at a
reasonable cost if VSTOL (Vertical and Short Take-Off and Landing) air craft
ever become feasible; however, geographical terrain may eliminate the
possibility of a landing strip. Also, closeness to populated districts may

cause adverse public and government reaction.



2.2 Cost of Shipment

Of prime importance to the transportation considerations is cost. The
cost of transportation depends not only on the mode used, but also on legal
restrictions which apply along the transportation route. This problem is
described by Dufrane and North (2). Téken from that paper are Figs. 4, 5,
and 6 which develop a relative cost comparison for two overweight cask
configurations under various highway restrictions. Freight costs have been
excluded since the relative results are not affected.

Figure 4 represents the number of trips per week that could be
anticipated for a cask traveling a 1000 mile trip between a power utility's
reactor and the fuel reprocessor. A cask turnaround of 24 hours was
assumed at both the reactor and reprocessor sites along with a 24 hour day,
7 day week operation at each end of the transportation link. Three sets of
driving restrictions were considered -- 1) none 2) weekend restrictions,
i.e., no travel for 48 hours over the weekend but loading and unloading
operations scheduled for any time 3) night and weekend restrictions, i.e.,
travel 5 days at an average of 12 hours per day, but loading and unloading
at any time. It can be seen from the results that at a speed of 25 miles
per hour the number of trips completed per week varies between 1 and 1.9;
at 36 miles per hour, the number of trips varies between 1.25 and 2.2.

In both cases, the number of trips (equivalent to the amount of fuel trans-
ported) could vary by almost a factor of two.

To evaluate this effect on transportation, the anticipated cask use
charges must be determined first. Figure 5 presents typical data on two

casks of interest. A three PWR (pressurized water reactor) fuel assembly
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cask could carry about 1,35 tons of uranium in a 75,000 1b. cask at a gross
vehicle weight of 105,000 1bs. The cask, constructed with depleted uranium
to save weight, would cost approximately one-half million dollars. A smaller
cask, carrying 2 PWR fuel assemblies, would weigh about 65,000 lbs providing
a gross vehicle weight of 90,000 lbs. Factors such as cask capital cost,
desired return on investment, estimated cask life, cask utilization factor,
insurance cost, cask maintenance cost, and fleet management costs make it
difficult to estimate the cask use cost. A crude estimate has been made

by Dufrane and North of $3,000 per week to $5,000 per week for the 2 PWR
fuel assembly cask. By using an average cask usage cost of $4,000 per

week and $3,500 per week with the number of trips per week from Fig. 4,

the cost per ton of spent fuel shipped can be calculated. As detailed in
Fig. 6, for an average transport speed of 25 MPH, driving restrictions
placed upon the 3 or 2 PWR assembly cask would cause a variation on cask
transportation costs of $1,410 and $1,860 per ton respectively. A
combination of both weight and driving restrictions would provide a total
differential cost of approximately $2,350 per ton. It is therefore, evident
that, in general, shipping cost is far from fixed for a particular trans-

portation mode.

2.3 Safety
The cost of transportation is related directly to safety. In general,
the effect on cost, which would result from a transportation accident
involving spent fuel, is recognized by personnel of the nuclear power
industry, Aside from direct costs, Indirect costs due to unfavorable public
reactioﬁ are almost certain. Clearly, safety consilderations have a major

role in the selection of routes and modes of spent fuel transportation.
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The risk involved in the shipment of radicactive materials is of
growing concern. As yet this risk has not been quantified. To do so,
one must recognize the many factors involved. This can be illustrated
best by a simplified picture as shown in Fig. 7.

From Fig. 7 it can be seen that the risk is a function of several
variables. Data for analysis of many of these variables is difficult to
obtain, e.g., accident probability. Certainly one of the major parameters
in risk quantificatiom, the probability of a transportation accident may be
estimated on an average basis. A detailed study of accident analysis on
a cost basis was performed by Limekohler (3). Limekohler's analysis gives
evidences that the probability of accident is indeed a function of the
parameters indicated in Fig. 7. Table I is from the Atomic Energy Commission
accident analysis report showing the number of accidents occurring by mode
over a 15 year period (5). The probability of accident may be approximated
by the number of accidents per mile if the number of miles traveled in
those 15 years can be estimated. A rough estimate of these milages has
been obtained from Dufrane and North (2). The mileages and the calculated
average probability per mile appear in Table IL.

The seriousness of the accident depends on the fuel material, amount
of fuel, and the mode of transport. For instance, plutonium, a highly
toxic and dispersable low level alpha emmiter, would present a much greater
potential hazard than liquid U-235 during transpoft. A barge accident, for
example, could cause a very difficult cleanup operation, but the probability
of a barge accident is quite low as shown in Table II. A table of relative

seriousness of different accidents is also shown in Table II.
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INCIDENT EXPERIENCE INVOLVING NUCLEAR MATERIALS BY MODE OR LOCATION (5)

TABLE I

Mode

Truck Incidents
Rail Incidents

Air Incidents
Terminal Incidents

Total

No. of Incidents

1963-1964 1962  1957-1961  1949-1956
17 8 21 9
5 5 11 2
0 0 0 1
2 A 15 i
24 14 47 13

14
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TABLE TI

MODE, MILES TRAVELED AND ACCIDENT CHARACTERISTICS

TOTAL MILES#* PROBABILITY OEE* RELATIVE SERIOUSHESS
TRAVELED ACCIDENT, MILE QF ACCIDENT, TON_l
1949-1964

TRUCK 1,400,000 4.6 x 10°° 1000 (LWT) 2000 (OWT)
RAIL 880,000 7.2 x 1070 1000
AIR 64,000 5.1 x 1077 3000 (VSTOL) 2000 (L.A.)

g

BARGE 11,000 1.0 x 10 4000

*Dufrane and North (2).

**TID-16764 (5).



For the purpose of this study the relative seriousness of an accident
is estimated on the basis of mode only. A more sophisticated analysis
would demand data concerning the seriousness of accidents as a function of

the several parameters indicated in Fig. 7.

16
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3.0 MODEL DESCRIPTION

The model developed in this work considers 4 different reactor locations
and one spent fuel reprocessor. These plants and the reprocessor are shown
along with the major highways and railroads in Figs. 8 and 9, respectively.
Four modes are considered -- truck, rail, air, and barge. The possibility
of mixed mode is also considered in the route candidates. The objective of
the problem was to minimize the cost of transporting a representative amount
of spent fuel from hypothetical reactor plants, Reactor 1, Reactor 2, Reactor
3, and Reactor 4 to the fuel reprocessor at a risk below a specified hazard
level, The amount of spent fuel shipment for Point Beach 2, Dresden 2, Zion

and Palisades reactors, for 1973, was estimated by Tremmel and Berte (1):

Point Beach 2 16 Tons of spent fuel
Dresden 2 42 Tons
Zion 28 Tons
Palisades 28 Tons

These amounts are used as representative for hypothetical reactors 1, 2, 3,
and 4 respectively since their geographical locations are similar. The
optimization of this model can be handled by linear programming methods as

shown in the following sections.

3.1 Linear Programming
In general, a linear programming (LP) problem can be defined as a system
of linear equations which represents constraints on an objective function.
This objective function is to be maximized or minimized (7). In mathematical

terms the LP problem may be stated as follows:
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Find values of the variables xl,xz,...,xn which satisfy the inequalities

ap %y Foag X, f oo+ oaxy [> or <] b,

.
-
.

1% + a,9%) * e F a NN [> or <] by

m-a-

where xl,xz,...,xN all are greater than or equal to zero, such that
zZ = clxl + czx2 + ...+ chN

is a maximum or minimum. The a; 's, b's, and c¢'s are known.

J
An example of a simple linear programming problem will help to clarify
the technique. Consider a nuclear reactor which must ship its spent fuel to
a reprocessor. There are two modes of transportation available for the
shipment under consideration ... truck and rail. Necessary information is:
1. 12 tons of spent fuel to be shipped
2. Costs of shipment are $38 and $45 per ton for truck and rail
respectively
3. Relative risk indices are 0.2 and 0.4 per ton for truck and
rail respectively
4. An upper limit of relative risk index is set at 0.3 per ton
The problem is to minimize the cost of shipment of 12 tons of spent fuel
while keeping the relative risk index below 0.3 per ton,

This model may be formulated as follows.

Let x, denote the number of tons of spent fuel shipped by truck

X, denote the number of tons of spent fuel shipped by rail

Then the objective is to minimize the cost

z = 38xl + &5x2

subject to

X, +x, > 12 Demand shipment constraint (1)
0.2x, + 0.4x,
- T < 0.3 Risk index constralnt (2)
x -
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It was assumed that a "mixed" risk index may be represented as a weighted
average of risk indices for X, and Xy If Eq. (2) is multiplied by (x1+x2)
and the x's are collected on the left hand side, Eq. (2) can be rewritten as

<0 (2.1
Graphical representation of the problem leads to a simple solution as

illustrated in Fig. 10. The shaded regions represent the feasible regions

allowed by constraints (1) and (2.1). Line 2.1 and Line 1 correspond to

Eq. (2.1) and Eq. (1). Thus the doubly shaded region is the feasibility

region for the solution. Suppose z=17, then a line may be constructed which

contains all points Xy and X, which yield this cost value. Notice that

all cost lines are parallel to this line since only z will change, not

the variable coefficients. Then by moving this "equi-cost" line outward

toward the feasibility region, the minimum value of z which will satisfy both

constraints exists at the intersection of lines (1) and the xl—axis. This

point is

and the total cost is
z = 38(12) + 45(0) or $456

More complex LP problems can be solved by using computer programs such as
IBM's Mathematical Programming System (MPS)/360 (8).

MPS/360 is composed of a set of procedures, a subset of which deals
with LP. These LP procedures use the bounded variable/product form of
the inverse revised simplex method (8). The simplex method is based on
the fact that if there are m constraints (or rows) in the constraint matrix

which are linearly dependent, then there is a set of m columns (variables or
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Figure 10 Linear Programming Solution to Example Problem
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vectors) which are linearly.independent and form a so called basic solution.
That is, the right hand side (RHS) of the problem formation can be expressed’
as a linear combination of the m columns in the basis. The MPS/360 program
systematically exchanges the column vectors according to the revised simplex
method until an optimal solution is reached (8). Short notes which explain

the control cards needed follow (9).
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SHORT NOTES ON MPS COMPUTER PROGRAM

PROGRAM. PROGRAM is a mandatory statement at the beginning of each
program.

INITIALIZE. INITIALIZE is used to establish initial settings for toler-
ance, frequencies and demands. This is a system macro instruction.

TITLE ('EXAMPLE'). This statement is used to suitably name the problem.

MOVE (XDATA, 'EXAMPLE') and MOVE (XPBNAME, 'PBFILE'). The first

statement moves input data set name EXAMPLE into the cell XDATA. The second
moves the problem file name, PBFILE, into the cell XPBNAME.

CONVERT. This routine is the master control card of the convert pro-
cedure, which is used to convert external input data into a binary form and

transfers these data to PBFILE.

SETUP ('MAX'). This routine is the master control card of the setup

procedure, which is used to set up the problem name in XPBNAME by
1. searching for the problem,
2. opening the matrix, eta, and scratch files,
3. making the storage allocationm,
4, building the work matrix,
5. setting the logical basis and structural bounded variables at
the upper bound, and
6. building the inverse of the logical basis.

For minimization 'MAX' should be changed to 'MIN'.
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BCDOUT. This converts the specified binary problem into the external
input data format. The output may be listed and/or punched out and is in
the order of the input data sections, ROWS, COLUMNS, RHS, RANGES, and
BOUNDS. The NAME and ENDATA cards may also be produced.

MOVE (X0BJ, 'PROFIT') and MOVE (XRHS, 'LIMITS'). These statements

are for identifying the objective function and the right hand side limits.
For minimizing, 'PROFIT' becomes 'COST'. Objective function and right hand
side have to be named because a program can work with many objective
functions and limits.

PICTURE. The PICTURE procedure produces a "picture" of the current
work matrix in condensed format. Up to 45 rows and 55 columns for an output
page are given. The pages are numbered using matrix notation for ease of
identification. The output of PICTURE gives a quick visual check to see if
the structure of the matrix 1s correct and if any coefficients are missing.

The range on the problem right hand side, and bounds on the variables
are indicated if they exist.

PRIMAL. Primal optimizes the current problem using a composite primal
algorithm, It can work with a composite objective function and/or a
composite right hand side. It can work with a composite restraint row if
neither the objective function nor the right hand side is composite.

SOLUTION. Solution is the output of a summary of the solution
corresponding to the current basis. This output may be either printed or
filed depending on a parameter in the procedure card.

EXIT. Exit is a procedure linked by the executor before return to the
operating system. It is mainly used to close data sets and print the time

of the executor job step.

PEND. This is equivalent to the END statement in FORTRAN.
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3.2 Mathematical Formulation
To formulate the model in mathematical terms, it is necessary to define

the following quantities:

xij the number of ton-miles of spent fuel sent by mode i on route j

4 the relative cost per ton~mile of shipment by mode i

dk the demand of tons of spent fuel needed to be shipped from
reactor k

P the associated hazard of transportation of spent fuel by mode

1] i along route j per ton-mile

The objective is to minimize the cost of tramnsport which may be written

as
z= ) c4%, 5 i=1, ..., 6 J =1, «ony 32
i3
where <y is speculated to correspond to the following values for i =1
through 6:
¢y Legal Weight Truck 1.0 unit cost per ton-mile
<, Over Weight Truck 1.9 unit cost per ton-mile
cq Barge 2.7 unit cost per ton-mile
< VSTOL Aircraft 2.5 unit cost per ton-mile
Cy Large Aircraft 2.2 unit cost per ton-mile
s Railroad 1.2 unit cost per ton-mile

Table III lists the routes and modes.



TABLE III. VARIABLE DESCRIPTION
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xij Plant Mode Route Total Miles
xl,l Reactor 1 LWT 41-141-94-80-75-70 620
X1 OWT 41-141-94-80-75-70 620
Xlr, 2 VSTOL ——— 410
x5’2 L.A. ————— 410
x3,3 BARGE To Grand Rapids - Truck 250
xl’3 LWT Grand Rapids -96-75-70 390
x2,3 OWT Grand Rapids -96-75-70 390
x3,4 BARGE Grand Rapids - Truck 250
xl’4 LuT Grand Rapids -196~94-23-75~70 420
X) 4 OwWT Grand Rapids -196-~94~23-75-70 420
x3,5 BARGE Grand Rapids - Truck 250
xl,5 LwT Grand Rapids =-96-33-75-70 350
x2,5 OWT Grand Rapids -96~33-75-70 350
:»:1’6 LWT Grand Rapids =196-94-23-70 330
x2,6 OWT Grand Rapids -196-94-23-70 330
:{3,6 BARGE Grand Rapids - Truck 250
X 99 RAIL 1-2-6-13-20-21-24 500
X623 RAIL 1-2-6-7-8-20-21-24 520
){6,2[+ RAIL Barge -11-14-24 480
x3,24 BARGE Rail 120
x6,25 RAIL 1-2-3-7-8-20-21-24 500
xl,7 Reactor 2 LWE 36-94-70 400
x2,7 OWT 36-94~70 400
xl,S LWT 36-Barge~75-70 400
x2,8 OWT 36-Barge~75-70 400
X3,8 BARGE Truck-Barge-Truck 440
xé’g VSTOL ————— 300
x5,9 L.A. —— 300
X626 RAIL 5-9-10-17-24 400
X627 RAIL 5-4-8-20-21-24 400
xb,28 RAIL 5-24-Barge~26-34 230
BARGE Rail-Barpe-Rail . 300

By 28
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xij Plant Mode Route Total Miles
xl,lO Reactor 3 LWT 80-75-70 420
X510 OWT 80-75-70 420
X111 LWT 8-57-74-70 400
Xy 11 OWT 8-57-74=-70 400
X112 LWT 80-69-70 450
x2,12 LWT B0O-69-70 450
xl,l3 LWT 80-24-74-70 360
%) 13 OWT B0-24~74-70 360
xl,l& LWT 24-70~57~Barge-75-70 350
x2,14 OWT Truck-Barge-Truck 350
x3’l4 BARGE Truck-Barge-Truck 250
x1’15 LWT 80-57-Barge-75-70 /300
x2,15 OWT B0-57-Barge~75-70 300
x3’15 BARGE Truck-Barge-Truck 250
x4’40 vszoL. 000000 ==——- 210
X5 40 L. . 0 e 210
Xg.29 RAIL 3-7-8-20-21-24 410
X6, 30 RAIL 3-5-9-10-17-24 450
X1.16 Reactor 4 LWT 96-23-75-70 390
x2,l6 OWT 96-23-75-70 390
%) 17 LWT 196-23-15-70 - 420
X).17 OWT 196-23-75-70 420
) 18 LWT 96~23-75~-70 350
%) 18 OWT 96-23-75-70 350
xl,lg LWT 196-94~23-70 330
X919 OWT 196~94~23-70 330
xl,20 LWT Barge-80-75~70 290
x2,20 OwWT Barge-80-75-70 290
x3’20 BARGE Barge~-Truck 150
Xe,31 RAIL 12-14-15-24 250
RAIL 12~13-20-21-24 380

*6,32
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The amount of spent fuel transported from each reactor must be at least
as large as the previously mentioned representative demand. This may be

formulated as follows:

j(k)
) xij/(total miles)j > dy
where corresponds to
k = 1 Reactor 1 j= 1 to l0
2 Reactor 2 11 to 16
3 Reactor 3 17 to 25
4 Reactor 4 26 to 32

When a mixed transport mode situation exists for a given route j, the
quantity of spent fuel which is shipped on both modes is constant. For
instance, route 4 involves shipment by barge for 250 miles and then truck
for 420 miles, Therefore, in this case, the amount shipped by OWT and
LWT must equal the amount shipped by barge, or

x1,4/420 + x2’4/420 = x3’4/250

Similar cases exist for other bi-modal routes.

In order to formulate restrictions on transportation due to risk con-
sideration, it is necessary to discuss the parameters involved in qﬁanti—
fication of risk. As shown in Fig. 7 risk depends on many factors. Of
major importance among all these factors are probability of accident, severity
of accident, and the population density near an accident. The major risk
involved i1s that of overexposing a person to radicactive material., Although
such variables as type of radioactive material, climate, time of day, etc.
are important, for the purposes of this work the risk evaluation was limited
to consideration only of the three factors: probability of accident, severity
of accident, and potential population near an accident, For the purposes of

this work, risk was assumed to be modeled by the following equation:
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) (Population of City)
(Total Distance) (Distance from
Route to City)

P.. = (Risk),, =
iy T RISy All
Cities

(sa) (PA) + (0.00IJ(SA)} for each route and mode

where

SA is the severity of accident per ton of fuel, and

PA is probability of accident per mile for mode i.

Again, the probability of accident shown in Table II has been calculated from
accident reports taken from (5) and are obtained by averaging the number of
accidents per mile calculated from Table I. The relative severity of accident
is an estimate of the characteristics of each mode arrived at using general
considerations such as average speed traveled, damage upon typical accident,
and amount of cargo transported. Clearly, a more detailed analysis of
seriousness of accident would be required for a more sophisticated model.

An example of the calculation of risk of route 1, legal weight truck
from Reactor 1 to the fuel reprocessor along route 41-141-94-80-75-70, appears
below. A list of the cities exposed to this route, their population, and
the closest distance of that city to route 1 is tabulated in Table IV. This
information was used as input to the risk formula along with the seriousness
of accident and probability of accident by truck from Table II. The result
is a risk index of 0,736 per ton mile. Similarly, the risks of all routes
concerned with Reactor 1 were calculated. Thus the risk associated with
each route was multiplied by the number of ton-miles (xij) attributed to
this route and the weighted average was restricted to be less than some
predetermined upper limit of risk. The upper limit criterion can be set
arbitrarily or by the best available information. For the purposes of this

work, it was arrived at by assuming the following allowable values of the

parameters:



Table IV

Route 1 HAZARD QUANTIFICATION DATA

(CLOSEST DISTAHCE)2

CITY POPULATION
MENOMINEE, WISC. 8,600 1
GREENBAY, WISC. 82,500 1.25
MANITOWOC, WISC. 32,200 4
MILWAUKEE, WISC. 765, 000 1
CHICAGO, ILL. 3,520,000 2.25
KENTLAND, IND. 1,780 625
SOUTH BEND, INC. 135,000 25
PLYMOUTH, IND. 7,300 900
BRYAN, OHIO 7,800 4
TOLEDO, OHIO 354,000 625
MANSFIELD, OHIO 49, 000 400
SPRINGFIELD, OHIO 82, 500 2
DAYTON, OHIO 260, 000 400

31
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1 city exposed to the route

population 1,000,000

closest distance 1 mile

total distance 400 miles

seriousness of accident 2000

probability of accident 0.0000001
Therefore;

UL

upper limit

329%%3999 (2000 (10~ ")+2(10™°))

0.5 t:on"I mil..czml

Then the risk constraint for a particular reactor can be written as:

6 X2
P..
izl jzk 13713
kl 5 W
11
X,
fs 42 ij
1=1 j=k,
where kl is the first numbered route servicing reactor k
k2 is the last numbered route servicing reactor k

The four risk constraints, the four demand constraints, and the mixed
mode constraints are summarized in Fig. 11. This matrix serves as the input
matrix to be optimized by the revised simplex LP method. The MPS/360 was

used to find the optimal solution and the printout is displayed in appendix A.

3.3 Results and Conclusions
The optimal solution is displayed on page 11 of the computer output,
Appendix A. As indicated, the lowest cost possible incurred in shipping the
demanded fuel and satisfying the risk criterion is 48152.00720 cost units.
The unit cost corresponds to that of a legal weight truck. It is estimated

that the cost per ton-mile for a legal weight truck is $0.38.
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The cost in dollars is calculated as (48152,00720)(.38) and is approximately
equal to $18,297.00, This cost does not include the cost of shipping cask
indemnity or insurance. It was assumed that consideration of these additional
costs would simply add on additional cost in the final analysis and would
not affect the choice of optimal routes. For a more detailed examination of
the problem, these additional costs could be included.

The amount that should be shipped on a particular route is obtained
from pages 13 and 14 of the computer output, appendix A. The values listed
are the number of ton-miles attributed to shipment on a given route by a
given mode., The amount of spent fuel shipped along a route is calculated
by dividing the ton-miles by the distance that the spent fuel is shipped
on the route by a given mode. For instance, Column 20 corresponds to
x6’25. The computer output indicates 1983,.87 ton-miles associated with
shipment on route 25 by train. The total distance traveled by the train on
route 25 is 500 miles; therefore, the amount of spent fuel shipped is
©7893.187/500 = 16 tons. A summary of all the amounts shipped by various
routes and modes appears in Table V.

As mentioned previously, many of the quantities used in the calculations
of risk, seriousness of accident, and cost require more detailed study. 1In
addition, some of these quantities are not fixed. For instance, cost of
transport is regionally and seasonally dependent. Cost is also subject
to negotiation and is by no means fixed. It was, however, hypothesized that
a given reactor facility will be able to arrive at many of these quantities
accurately and then may apply this procedure realistically. In addition

to economic aspects of nuclear transport, the personnel of the nuclear



Table V

Shipping Routes and Quantities for the Model
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REACTOR VARIABLE  AMOUNT ROUTE AMOUNT  MODE ROUTE
TON-MILES TOTAL MILES  TONS
Reactor 1 X 7,983 500 16 RAIL 1-2-3~7-8-20-
6,25
21-24
Reactor 2 X, , 16, 800 400 42 LWT  36-94-70
Reactor 3 % 4 3,425 360 9.5 LWT  80-24-74-70
)
Reackor 3 X g 7,590 410 18.5  RAIL  3-7-8-20-21-24
»
Reactor 4 Xl 18 4,681 350 13.5 LWT 96-23-75-70
Reactor & X 4,793 330 14.5 LWT  196-94-23-70

1,19
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industry are beginning to feel the ever-growing pressure of the Environmental
Protection Agency to choose a safe method of transportation of nuclear
material., From consideration of the magnitude of the predicted spent fuel
shipments, it seems imperative that some criterion of hazard limitation be
implemented at a realistic expense.

Comparison of the LP method to a common current method of route and
mode selection suggests the potential value of the LP method. As an example,
the shipment of spent fuel from Reactor 3 was examined employing a selection

process as follows:

SINGLE MODE CHOICE

LEAS; EXPENSIVE?

SATI;FY HAZARD LIMITATION?
CHOIéE OF ROUTE AND MODE

Following the above outlined logic, Xg 99 is the resulting choice (see
¥
Fig. 11); that is, shipment by rail over route 3-7-8~20-21-24, To satisfy

the demand for spent fuel shipped,

x6,29 ton-miles
410 miles

= 28 tons or x6’29 = 10,490 ton-miles

which corresponds to a cost of

(10,490 ton-miles) (1.2 unit cost/ton-miles) = 12,600 unit cost
As shown in Table V, the LP solution is

xl’13 = 3,425 ton-miles

x6,29 = 7,590 ton-miles
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which corresponds to a cost of

(3,425 ton-miles) (1.0 unit cost/ton-mile)

+ (7,590 ton-miles) (1.2 unit cost/ton-mile) = 12,525 unit cost

A saving of 75 cost units is realized by the LP method even in this
simplified model. The full value of the LP method clearly becomes more
obvious as the model becomes more complicated. One could imagine the use
of this method by a shipping agency which ié constrained by such factors
as the following:

1. Limited number of each type of vehicle and cask,

2, Limited maintenance available depending on the vehicle,

3. Legal restrictions imposed by state or government agencies, and

4. Others,
while having maﬁy options available such as

1. Several existing modes,

2. Possible new modes, and

3. Mixed modes.

LP also offers the capacity for ready updating of information. This
seems imperative considering the variable nature of route characteristics,

cost, etc. This aspect is discussed in detail in Sections 4.0 - 4.4,
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4.0 POSTOPTIMAL ANALYSIS

After an optimal solution has been attained, there is information to
be gained from the MPS/360 output concerning the optimal solution., As
mentioned previously, the cost of transportation by various modes is by no
means fixed. MPS/360 allows the user to examine the rangerfor which a cost
coefficient may be varied while maintaining the same basic solution (although
the total cost may change). Similarly, the range of the RHS (demands) and
risk coefficients may be examined without changing the basis.

An extension of this analysis would allow the cost coefficients, RHS,
row coefficients, or column coefficients to be varied to determine their
effect on the solution. For instance, the cost coefficient of over weight
truck shipment may be varied over any range, say 1.9 through 0.5, thus
generating a series of related LP problems. Clearly, the basis most likely
would change in this instance introducing a new solution. This procedure

is referred to as parameteric programming.

4.1 Range Analysis
Range analysis is used postoptimally to generate an output analysis
of the current basis. This analysis includes:
1. The effects of cost changes on optimum activities,
2. The cost of changing an activity from the optimum level and the
activity range for which this cost is valid,
3. The value of changing the row activity (RHS) and the interval for
which this change is wvalid.
Although the parameters may be changed from their optimum value, a better
total optimum is possible. 1In general, a cost increase forces an activity

decrease, and conversely a cost decrease promotes an activity increase.
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The computer output of the RANGE analysis for the model problem is
displayed in Appendix A. Sections 1 and 3 are row sections in which section
1 contains economic information for rows at their lower or upper limit;
section 3 contains such information at an intermediate level. Parameters

which may appear are defined as follows:

Number The internal serial number of this row
Row User's name for row
AT A two-character cade denoting the status that the

row activity has in the solution. Codes and their
meanings are:

BS Row activity at intermediate level

EQ Row activity at fixed level

UL Row activity at upper limit

LL Row activity at lower limit

Activity The value of the row activity in the solution
Slack Activity The value of the associated slack variable
The upper line for each row shows the activity-cost relationship for activ-
ity decrease/cost increase and employs the following parameters:
Lower Limit The input lower limit for this row

Lower Activity The level to which the row activity may be decreased
at a cost per unit of decrease given by Unit Cost

Unit Cost The change of the objective function per unit of de-
crease of activity. The problem can be modified to
decrease the row activity as far as Lower Activity.

Limiting Process The name of the row or column that would change its
status if the activity level of the row were decreased
below Lower Activity. In section 1, Limiting Process
will leave the basis; in section 3, Limiting will
enter the basis.

AT The status associated with Limiting Process
LL leaves or enters basis at lower limit
UL leaves or enters basis at upper limit

The lower line for each row shows the activity-cost relatiomship for activ-

ity increase/cost decrease.



Upper Limit

Upper Activity

Unit Cost

Limiting Process

AT
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The upper limit for the row

The level to which the row activity may be increased
at a cost per unit increase of Unit Cost

The change in the objective function per unit in-
crease in row activity. The problem can be modified
to increase the row activity level as far as Upper
Activity, at this cost per unit increase.

The name of the row or column which would change

its status if the activity level of the row were in-
creased above Upper Activity. In section 1, Limit~
ing Process will leave the basis; in section 2,
Limiting Process will enter the basis

The status associated with Limiting Process
LL Leaves or enters the basis at lower limit
UL Leaves or enters the basis at upper limit

Sections 2 and 4 are column sections. Section 2 contains the economic

information for the variables at their lower limit; section 4, for those at

intermediate level.
Number
Column

AT

Activity

The following parameters may appear:

The internal serial number of the column
User's name for the column

Column activity status
BS 1In the basis
FR Non basic or free
EQ Non basic, artificial
UL Non basic at upper level
LL Non basic at lower level

The value of column activity in the solution

Similar to sections 1 and 3, the upper line displays the activity-cost

relationship for activity decrease/cost increase and the lower line displays

the activity-cost relationships for activity increase/cost decrease.

Input Cost refers to the unit cost of the variable as specified by the

user. In sections 2 and 4 Input Cost is varied to Upper Cost and Lower Cost,

respectively. The other parameters are Lower Limit, Lower Activity, Unit

Cost, Limiting Process, AT, Upper Activity, Upper Limit, and Lower Cost.

Their meanings are analogous to those in sections 1 and 3.
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An example will more clearly illustrate the use of Range. Referring to
page 19 of the Range output in the Appendix A, consider Number 64. The output
indicates this is Column 45 at its lower limit (LL) with a solution wvalue
(activity) of O. The Input cost is listed as 1.9, and the lower limit is O.
The upper limit is listed as infinity; that is, no upper limit exists. Read-
ing the top line, Lower Activity reveals the activity level of -4117.51953
would result if Input Cost were increased to an Upper Cost of infinity. The
change in the objective function per unit decrease in Column 45 down to
-4117.51953 is shown as 1.50506. Limiting Process indicates that Column 49
would leave the basis if the activity level of this column (Column 45) were
decreased below Lower Activity. AT demonstrates that Column 49 will leave
the basis at its Lower Limit (LL). For more detailed information on Range

see Mathematical Programming Systems Handbook (8). -

4.2 Cost Coefficient Analysis

Due to the variable nature of transportation mode cost coefficients, it
may be informative to examine the effect of varying certain cost coefficients.
This procedure can be performed by a MPS/360 subroutine PARAOBJ.

PARAOBJ is used postoptimally to perform parametric programming on
the objective function. The original LP problem is modified by replacing
the original objective function by the sum of the original objective func-
tion and a multiple of a '"change row'". This multiple is called Param. 1In
other words the cost coefficients may be altered to examine their effect

on the solution.



45

PARAOBJ was used to examine the effect of changing the cost coefficient
of 1) over weight truck and 2) Large and VSTOL aircraft. These are real-
istic goals since the cost of OWI may be considerably decreased once the
Interstate system is completed and appropriate legal legislation is enacted.
Much fesearch is being done concerning VSTOL aircraft. Their tremendous
lift coefficients and short runway requirements are making these aircraft
potentially exciting. The computer results of analysis of situation 1)
appears in Appendix B and are summarized below,

As Param is gradually varied, the OWT cost is decreased by an amount
equal to (0.1)(Param). The table on page 1 of the computer output in Appendix
B displays an iteration table showing the vector leaving the basis and the
vector entering the basis for the corresponding value of Param as it is
gradually changed. The associated objective function value is indicated as
Function Value. These results are summarized in Table VI as the cost
coefficient of OWT is varied from 1.9 to 0.4. It is seen that no change in
the basic solution occurs until the cost of OWT shipment is decreased to
1.1 unit cost per ton-mile. At this point shipment by x left the basis

1,13
and was replaced by X5 13 at 7293.23939 ton-miles, while x decreased from
]

6,29
7590.79808 to 3153.83325 ton-miles, i.e., OWI shipment along route 13
(36-94-70) has replaced LWT shipment and a part of the rail shipment along
route 29, This appears on pages 36-~39 of the PARAOBJ computer output,
Appendix B,
Similarly, Table VII represents the effect of varying the cost coefficient
of VSTOL and Large Aircraft (LA). Notice that air transport enters into

use in all reactors except Reactor 4 where it has been hypothesized to be

geopgraphically prohibitive to construct an airstrip.



Table VI

EFFECT OF VARYING OVER WEIGHT TRUCK COST

PARAM OWT COST VARIABLE TON-MILES OBJECTIVE FUNCTION
0 1.9 g, 25 7983.87097 48152,00720
xl‘? 16800.0
x],l3 3425.11621
%629 7590.79808
xl.l9 9237.28814
o 1.8 no changv _
2 1.7 no_change _
3 1.6 no_change _—
4 1.5 no_change
5 1.4 no_change
8 1:2 po_change
7 1.2 no_change
8 1.1 x6,25 7983.87097 47425.09652
xl,? 16800.0
x2I1] 71293.23939
X 29 3153.83325
xl,l? 9237.28814
9 1.0 g, 25 7983. 87097 46695.77259
xl.? 16800.0
X3,13 7293.23919
g, 29 3153.83325
xl,lg 9237.28814
10 0.9 Xg, 25 7983.87097 %3576.97806
X7 16800.0
1{2'13 7293,23939
®g.29 3153.8332%
%5 18 4681.93405
x2,19 4793.41379
11 0.8 no_change 40220.11884
12 0.7 no_change 36863.25962
13 0.6 no_change = 33506.40039
14 0.5 no_change 30149,.54117
15 0.4 no change 26792.68195
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Table VII
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EFFECT OF VARYING VSTOL AND LARGE AIRCRAFT COST

PARAM VSTOL COST LA COST VARIABLE TON-MILES TOTAL COST

0 2.5 2.2 Xe 95 7983.87097  48152.0072
x1,7 16800.0
x1,13 3425.1162
x6,29 7590.79808
x1,19 9237,28814

2 2.1 1.8 -- NO CHANGE --

4 1.7 1.4 X5 o 6556.29139 46445,88229
x1’7 16800.0
x1’13 3060.08116
x5,40 5835.5036
x1,19 9237.28814

6 1.3 1.0 X5 5 6556.29139 36818.01562
x5,9 12631.57895
x5,40 8392.85714
x1’19 9237,28814

8 0.9 0.6 -— NO CHANGE -- 25785.72462

10 0.5 0.2 —-— NO CHANGE -- 14753.43363
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4.3 Risk Coefficient Analysis

The risk coefficient derived in section 2.3 is based on parameters which
may be subject to change. For example, the seriousness of accident index
(SA) may be greatly affected by improved construction of vehicle, careful
route choices or better maintenance. It is then of interest to examine the
effect that a change in the risk coefficient of a particular mode has on
the model. This objective is attained by the use of the MPS/360 subroutine
PARAROW.

PARAROW is used postoptimally to perform parametric programming on a
constraint row. For any LP problem, a series of related problems may be
generated by replacing the coefficients of a chosen row by new coefficients
that are obtained by adding the original coefficients to Param times cor-
responding coefficients of a change row. Param is gradually changed thus
changing the coefficients 6f the original constraint row.

PARAROW was applied to the risk coefficients of LWT for Reactor 2.

As the Param value gradually changed the solution remained at the optimal
activity until Param equalled 2.82. At this point the solution changed.
Originally all the spent fuel from Reactor 2 was shipped by LWT over

route 36-94-70. The current risk coefficient equals 0.218+(0.1)(2.82) or
0.5. This forces some of the spent fuel to be shipped by rail to satisfy
the risk constraint. A further increase in risk coefficient does not
change the basis, but it does affect the amount shipped by truck or rail.
It is noted that the higher the LWT risk coefficient becomes, the more ton-
miles are attributed to rail shipment by route 5-48-20-21-24. For insgtance
when Param equals 10, the risk coefficlent LWT by route 36-94-70 equals
0.218+10(0.10) or 1.218. At this point, 5713.23529 ton-miles are attributed

to LWT and 11086.76471 are attributed to rail.
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A further example of the effect of changing the risk was performed by
decreasing the risk coefficient of OWT for all reactors. This had no effect
on the solution which is to be expected since there is no shipment by OWT

in the original solution.

4.4 Conclusions

The shipping model formulated for thig work determines the most
economical mode and route of transportation of spent fuel. Even in the
simplified model used here it is evident that the complexity of the problem
makes an optimal solution far from intuitively obvious. MPS/360 appears
to be an inexpensive and speedy method of determining an optimal shipping
campaign, The computer solution (Primal) for this model costs $1,55 and
had an execution time of 0.24 minutes.

It has been noted that much of the data used is subject to change, but
this is readily accomplished with the computer procedures described. The
shipping model described is quite flexible with regard to sensitivity of
the optimal results to changes in input data. The model can easily be
modified to accept any corrections of updating. It is easy to imagine an
agency responsible for shipping spent fuel utilizing a model of this nature
and continually updating the matrix to accompany changes such as:

1) Cost rise or fall due to economic trends or negotiations

2) Route characteristic variance, e.g., by season

3) Changes in existing transportation modes

4) Introduction of new modes

5) Risk Limits become more or less restrictive

6) Any other model fluctuations
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Reviewing the results of the present model, it is predicted that the
four reactors in question will ship approximately two thirds of their spent
fuel by LWT and the rest by rail. Presently, it is expected that in the
near future about one half of the spent fuel will be shipped by truck and
slightly less than that will be shipped by rail (10}. However, the future
result may be quite different depending upon the updating of existing cost
or risk coefficients. For instance, air shipment could become economically
competitive if its cost could be decreased to 1.4 as shown in Table VII.
Further, air transport would completely dominate Reactors 1, 2, and 3,if
the cost could be decreased to 1.0. Reactor 4 is hypothesized to be
geographically prohibited from building an air strip, but certainly a mixed
mode transportation campaign could be considered. It is evident that this
type of model may find use as a predictive aid in anticipating future
transport mode posibilities or routes of shipment as well as analyzing

existing modes and routes.
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5.0 SUGGESTIONS FOR FURTHER STUDY

It is suggested that to make the model more accurate a more detailed
analysis of quantification of hazard be performed. This analysis would
involve a detailed stﬁdy of accident probability, seriousness of accident,
and the relative importance of these factors to hazard quantification. In
addition, a realistic evaluation of the risk upper limit and the risk
coefficient demands that an absolute rather than relative evaluation of
risk be performed. That is, an actual population dose for a given set of
circumstances should be calculated. The maximum permissible dose would
then determine the upper limit of risk. This would require a study of the
radionuclides released upon accident and their dispersal characteristics.
This implies a study of the relation between severity of accident and the
consequential release of radionuclides.

Further parametric programming seems warranted. In particular,
postoptimal analysis is possible on the RHS of the matrix (the risk upper
limit) through a MPS/360 subroutine called PARARHS. It may also be of
interest to change values in the objective function and RHS simultaneously.
This can be done through a MPS/360 subroutine called PARARIM. These pro-
cedures enable the existing model to be readily analyzed concerning the
effect of changing the risk upper limit or the effect of simultaneously

varying the cost coefficients and the risk upper limit.
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APPENDICES

APPENDIX A

MPS/360 Computer Listing and Output for Optimization

and Range Analysis

This computer program arrives at.an optimal primal solution and performs
RANGE analysis on the solution, MPS programming is explained in Section 3.1;
Range analysis is explained in Section 4.1. Execution times for PRIMAL and

RANGE were 0.45 minutes and 0.17 minutes, respectively.
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.
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-
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[1]
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. L.00000
. 1:.90004
. 1.9000v
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.
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L
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"):l..!l

BA) 94, BTS00
9081, 32813

PABE

veslMIT COST..

««UPPER COSTas’

sesUM]T COSToa '-.IFI CO3Tas
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1.00000

INFINITY
+ 30408

INFENLTY
L=33000

INPLMLTY
1. 33000

INFINITY
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L
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L

L
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SECTION

NUHBER

1%

1?

2]

EECUIDR,
3 = rowS AT INTERMEDIATE LEVEL

He5/340 V2-MLO

SLACK ACPIVIFY

A757.59T0é

449,132

wns AN, AT 4 ACTIVITY..,

ROWA3 [ 11 .

ROMLS [ 11 ATIT. 99768~
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EXECUION. RPS/ 3y V2-MLO
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NUMBER
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b
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1.000€2
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gad.ilell-
4845, Ta0%

4215. 99707~
S123. 99629
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L9714
71811~

1.50000
«22621-

INFINITY
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.

1.90000
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INFINETY
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toLzs
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CuL4Z
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L
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APPENDIX B

MPS/360 PARAOBJ Computer Listing and Output for

Analysis of Overweight Truck Cost

As detailed in Section 4.2, the cost of over weight truck shipment was
varied in order to examine the effect this cost variation would have on the
solution. The computer results are summarized in Table VI. Only the
PARAOBJ output corresponding to basis changes is contained in the following
output. Pages 1 through 9 are also deleted as they are identical to pages

1 through 9 of Appendix A.
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INVERT CALLED Tive 0.8

CONTRCL PROGRAR CORPILEA - PPR/SGD wi-FLE

BASIS —=== NOLOF RLRS .0

LAVERSE — NUCLEUS oo.as
PRIPAL 0BJ = LCST
TIME & 0.83  mINS.
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JTT I ¥]
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A PAGE 4= TRAW
SECTION 2 ~ COLULMNS ’

NUMBER  LCOLUMM. AT oo BLTIVITY.aa  «o MPUT COSY.. ..LOBEA LINIT. . .UPPER LIPIT.  JREDUCED COST.

21 ol i . 1.c0cco » .

22 oL 1 . 1.80C¢0 . 3‘5 i .:;;::

3 coLd i . 2.5CLC0 P NCNE 1.038T1

24 LOL% Lt - da200C0 . NUNE ’ « 73811

29 CoL% ¢ . 2.7¢000 . NONE L. #9978

26 COLS a3 . L.cecee . NCNE pe

T cur Lt . 1.80cC0 i HONE . 8C0C0

28 coie 1L . 2.mcce N NLNE Le97500

29 coLw 133 . 1.tccca . MLNE .

3a coulo (X8 . b.BLCCO . NONE + 80000

3L o i . 2.100t0 . NOWE 170110

32 coun? L . 1.BcCCn . NCNE 88774

33 CCLlY 5 . 1.000C0 . NONE -

14 COLL4 By . 1.0400 . MONE .

3% LOL1Y 1L . 1.000€C . NCNE - BO000

36 CCLIG LL . 2.0cC0LC . MCNE 1. 82620
L 311 Cout L . L.26CCa a NONE .

38 COLIS L . 1.2¢cCC0 . NONE .04839

% coule 8% . b.20ece . nCNE “

40 COLZD L 1983, A1 1.2¢000 i NCHE i

&) LaL2i L B 2.70C10C . NOWE 2.59872

42 Ccr22 es LaRDG, 0CEED b.CCCLT . NONWE .

4y CoLdy LL . 1.rcCC0 . NONE .80000

S4 COLLA BY - 1.4Ccco . NONE -

o5 COL2S w . 1.8cccn . NOWE -B0000

46 CCL2e (8% - 2.70¢Cce . NONE 2. 19538

41 Coua? i . Z.200C0 B NONE «8TCEQ

48 COLZD LL . 2.%CCC0 - MONE 1.17000

49 CCL29 s . ta2grce . NONE «200G0
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54 COLY4 L . 1.90¢C0 . HONE 1.39803

55 COLIS 1Y . L.cauce . NCHE 27784
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PAGE 3 = TI%

NUNBEA  COLUMM. BT o ACTIVITY..o oo INPUY COST.. . LOWER LIMIT. +.UPPER LIPIT. REDUCED COST.
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79 COLSY a5 . 1.€00C0 - NCNE .
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8y COLé&d 198 - i.20cC0 - HOWE « 29932
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ABSTRACT

The amount of spent fuel from reactors which is to be shipped in the
near future may grow to a level sufficient enough to limit the development
of the nuclear power industry. Specifically, the complexity of determining
the most economic route and mode while satisfying safety restrictions will
most likely lead to increasingly non-optimal or unsafe shipments as the
amount of spent fuel to be shipped increases.

The purpose of this work was to develop and analyze a model which
characterizes the choice of route and mode for spent fuel shipment from one
of several reactors constrained by safety considerations. A model was
established which represents the choice of route and mode constrained by a
safety factor. The safety factor employed is a function of probability of
accident and severity of accident.

The complexity of analyzing such a model implies a computer approach.
This model is analyzed with linear programming through a computer package,
Mathematical Programming System (MPS). MPS efficiently handles the model
formulated in this work and can evidently handle more complex situations.
That is the least expensive route and mode was found for the model, while
satisfying the safety requirements. In addition, the flexibility of MPS
is demonstrated through the use of parametric programming which modifies

specified parameters of the model.



