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CHAPTER 1

INTRODUCTION

An important problem facing software developers is how to produce reliable computer

software in a cost effective and timely manner. The cost of hardware continues to decrease while

software costs rise. As systems become more software-oriented rather than hardware-oriented,

the complexity of the software requires that more effort be placed in the areas of software design,

development and testing. Software developers must find ways of reducing the costs of software,

without affecting its quality, in order to produce a product which is capable of competing in

today's marketplace.

Several studies [ALB81, WOL84] have been made concerning the economic costs associated

with software development The results of these studies indicate that the earlier a software error is

found, the less expensive the error will be in terms of the overall cost of the product

Software validation' plays an important role in reducing the cost of the product while at the

same time assuring the product's quality and reliability. It is used to assure the producer that

what the consumer will get meets the intended specifications. The earlier an error is detected in

the life cycle of a product, the less expensive it will be for the producer to correct the error.

Compilers play a critical and sometimes overlooked role in determining the success or failure

of a project. A faulty compiler may create software errors which can sometimes be hard to find.

For this reason, compilers should be thouroughly tested and validated prior to release.

1. The term "software validation" rcferi to the act of determining the correctness of software with respect to the

user's needs and rcquircmenu. Software testing, which is one aspect of validation, is the examination of the

behavior of the software using sample lest cases.



The validation of a compiler for a given language can sometimes be an arduous task. A

compiler tends to be a very complex program or set of programs which is capable of accepting a

multitude of inputs and producing an object file which may or may not do what was intended. In

fact, there are an infinite number of possible programs which can be compiled by any one

compiler. Test cases have to be written which will exercise all aspects of a compiler's operation,

including the resulting object file.

If the code produced by a compiler contains errors, software programs which make use of the

compiler will also contain errors. Testing and maintenance of these programs becomes very

difficult because, to the programmer, the source code may appear to be correct. A compiler which

is free of critical errors is a necessity for its use as a development tool in the production of

software systems.

This paper gives an overview of tools and techniques used for the dynamic validation of

software. References are given for tools which are being used or have been used for compiler

validation. Methods used in test case selection and coverage are presented along with the phases

of software testing which make use of the selected test cases. A tool is presented which can be

used for the testing of both compilers and interpreters for various software languages.

1.1 An Overview of Dynamic Validation Techniques

There are many software validation techniques which may be used to demonstrate the

correctness of the software which is being tested. Each of these techniques, depending on

applicability, may or may not be used during each phase of the software development life cycle.

The common goal of these techniques is to demonstrate that the software which is being tested is

free from errors.

Boehm [BOE84] describes the software development process in terms of a waterfall model.

At the end of each phase in the model, validation is used as a means of assurance that the
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software (or requirements) is functionally correct and as error tree as possible. If enough errors

are detected, the software is returned to the beginning of that phase for further work.

Software validation techniques can be broken down into two primary categories [FAI78,

MTL81]: static and dynamic. In static analysis, a program is analyzed without regard to its

behavior during execution, while in dynamic analysis, a program is analyzed during controlled

execution.

Dynamic program testing methodologies include code-based testing (or white box testing) and

requirements-based testing (or black box testing). Figure 1 gives a hierarchical diagram of

dynamic testing methodologies.

1.1.1 Code-based Testing

Code-based testing involves examining the code within a software module and developing test

data and test cases which can be used to exercise that software.

This form of testing can be further subdivided into mutation analysis, symbolic execution,

executable assertions, and structural analysis.

Mutation Analysis

Mutation analysis [OST83, POW82, VOG85] seeds a program with a number of changes (i.e.,

errors). A number of mutant programs are created with different sets of errors. A set of test

cases is then fed as input data to each of the mutant programs. The outputs from each program

execution are then compared to the outputs of the original (presumably correct) program. If any

differences are observed between the outputs, the mutant is then discarded. If some mutants

remain after all programs have been executed, functional analysis is then performed on the

remaining programs. If a large number of mutant programs remain, more test data should be

added to the original set, with the goal of causing some of the mutant programs to have different



Mutation Executable

Analysis Asseitions

Structural

Analysis

I

Path

Testing

Statement

Coverage

Decision

Coverage

• 4-

Dynamic Testing

Condition

Coverage

Decision/Condition

Coverage

Multiple-Condition

Coverage

Symbolic

Execution

Loop
Testing

Requirements-based

I

Functional Analysis

Equivalence

Panioning

Cause-Effect

Graphing

Error

Guessing

Boundary-Value

Analysis

Figure 1. Dynamic Testing Hierarchy

output results from the original program.

Symbolic Execution

Symbolic execution [OST83, SAI84; VOG85] computes the values of a program's variables

as symbolic expressions. These expressions represent a sequence of operations performed as the

program execution moves along a specific path. For example, if the path leads to an output

statement, symbolic execution will show how each of the values in the output statement are

computed. An example of symbolic execution is shown in Figure 2.
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Program: Symbolic execution:

READ A,B A = a, B = b

C-A+B C = a + b

IF C < A THEN D - C if (a+b) < a then D - (a+b)

ELSE D = A + C + 1 else D = a+(a+b)+l

C - D + B + A if (a+b) < a then C - (a+b)+b+a

else C = a+(a+b)+l+b+a

write C if (a+b) < a then write a+b+b+a

else write a+a+b+1+b+a

Figure 2. Symbolic Execution Example

Executable Assertions

Executable assertions [STU81, POW82] includes code (i.e., assertions) for checking the

validity of the values which it computes. The output from a program containing assertion

statements is normally a list of the assertion checks and a list of the exception conditions with

trace information. Assertion statements are in the form:

/* ASSERT condition */

This translates to:

IF NOT (condition) THEN

process assertion violation;

S. H. Saib [SAI84] describes a method for using assertions in the formal verification of a

program. Formal verification attempts to demonstrate that a program operates correctly for all

possible combinations of input values. For example, the assertion assert min < states that a

variable named min should always be less than zero. Assume that a programmer writes the

statement min = min + 1, when the correct statement should have been min = min - 1. A section

of a program containing the assertion and the invalid statement might be:
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assert min < 0;

min - min +1;
assert min < 0;

A theorem is then formed that stales tfmin<0 then min + 1 < 0. The theorem must be true for

all values of min in order for the program to be consistent with its assertions. In this example, it

is not true for all values of min; therefore, the program is said to be inconsistent with its

assertion. If the correct statement had been used, the theorem would have read if min < then

min- 1 < 0. This theorem is true for all values of min and the program is said to be consistent

with its assertions.

Structural Analysis

This form of code-based testing makes use of a program's structure for test-case design and

coverage.

Path Testing - Path testing rVOG85, BEI84, MYE79] is a test technique which is used to test

a set of paths through a program's structure. A path through a program is any executable

sequence of instructions through that program. If all possible paths through a program are tested,

and no errors are detected, the program can then be said to be "path tested". The problem with

doing this form of "exhaustive" path testing is that the number of individual paths through a

program tends to be astronomically large. Other forms of structural analysis have been developed

which provide varying levels of coverage.

Statement Coverage - Statement coverage testing [BEI84, MTL84, MYE79] requires every

statement in the program being tested to be executed at least once. Statement coverage is often

designated by the term CO. It can be quantified by the total number of statements in a module

that are executed, divided by the total number of statements present in the module.
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Decision Coverage Decision coverage testing [HOW81, MIL84, MYE79] requires each

branch from a decision statement to be executed at least once. As an example, the following line

of code contains a single decision statement with two conditions, A & B:

if (A ss B)

Valid sets of test cases for decision coverage would be:

(1) {(A: true, B: true) and (A: false, B: false))
or,

(2) ((A: true, B: false) and (A: true, B: true))
or,

(3) 1 (A: false, B: true) and (A: true, B: true))

Any one of the three sets of test cases would give decision coverage.

The designation for decision coverage is CI. It can be quantified as the number of branches

executed in a lest relative to the total number of branches in the module. If there are there are no

decision statements in the module, then the module is considered to have a single branch.

Condition Coverage - Condition coverage testing [MYE79J requires each condition in a

decision to take on all possible outcomes at least once. Using the previous example, allowable

sets of test cases, would be:

(1) I (A: true, B: false) and (A: false, B: true)

)

or,

(2) { (A: true, B: true) and (A: false, B: false))

Decision/Condition Coverage - Decision/condition coverage testing [MYE79] requires each

condition in a decision to take on all possible outcomes at least once and each decision must take

on all possible outcomes at least once. The example given for decision coverage might then have

one of the following sets of test cases:



(1) ( (A: true, B: false) and (A: false, B: true) and

(A: true, B: true)

)

or,

(2) ((A: true, B: true) and (A: false, B: false))

Multiple-Condition Coverage - Multiple-condition coverage testing [MYE79] requires all

possible combinations of condition outcomes in each decision to be invoked at least once. Again

using the example from decision coverage, the following set of test cases would be used for

multiple-condition coverage:

(A: true, B: false) and (A: false, B: true) and

(A: true, B: true) and (A: false, B: false)

Loop Testing - Loop testing [BEI84] is a form of path testing aimed at exposing errors that

typically appear within loops. The testing of loops presents special problems in that the

maximum number of loop iterations can sometimes be quite large. Often, the maximum number

of loop iterations is not known.

Test cases for the testing of loops are written which provide:

1. Bypassing the loop altogether

2. One pass through the loop

3. Two passes through the loop before exiting

4. A typical number of passes through the loop before exiling.

And if the maximum number of loop iterations is known, the following additional types of

test cases are used:

1. One less than the maximum number of passes



2. The maximum allowable number of passes

3. Attempt one or two more than the maximum number.

1.1.2 Requirements Based Testing

Requirements based testing (or functional testing) involves the examination of system

requirements and generation of test cases which will test those requirements. Some of the better

known forms of requirements based testing are "equivalence partitioning", "boundary-value

analysis", "cause-effect graphing", and "error guessing".

Equivalence Partitioning

Equivalence partitioning relies on the following two considerations [MYE79]:

1. Each test case should invoke as many different input conditions as

possible in order to minimize the total number of test cases necessary.

2. The input domain of a program should be partitioned into a finite number

of equivalences classes such that a test of a representative value of each

class is equivalent to a test of any other value.

The equivalence classes are identified by taking each input condition and partioning it into

two or more groups. For example, if an input condition specifies the number of values (eg, 20

through 400 dollars may be withdrawn from an account), one valid equivalence class

(20 <= dollars <= 400) and two invalid equivalence classes (20 > dollars and dollars > 400) may

be identified. Once the equivalence classes have been identified, test cases should be defined.

The lest cases should be written which cover as many equivalence classes as possible. Some

overlapping of equivalence classes may be necessary in order to provide full coverage.
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Itoundiin -Value Analysis

Boundary conditions [MYE79) are conditions directly on, above, and beneath the "edges" of

input and output equivalence classes. Boundary-value analysis is similar to equivalence

pardoning, with the following two exceptions:

1

.

One or more elements should be selected from an equivalence class which

can be used to test the "edge" of the equivalence class.

2. Both input and output equivalence classes are used in the selection of test

cases.

Using the previous example, test cases would be written for dollars = 19, dollars = 20,

dollars = 400, and dollars = 401.

Cause-Effect Graphing

Cause-effect graphing aids in selecting a high-yield set of test cases which can be used to test

combinations of input [MYE79].

Using this technique, the specification describing the program is transformed into a cause-

effect graph which resembles a combinatorial logic network. The "cause" is a distinct input

condition or equivalence class of input conditions. The "effect" is an output condition or a system

transformation. The semantics of the specification are used to link the "causes" with the "effects"

into a Boolean graph format. The graph is then modified to show combinations of causes and/or

effects which are impossible due to syntactic or environmental constraints. The graph is then

converted to a limned entry decision table in which each column in the table represents a test

case.

The basic cause effect graph symbols are shown in Figure 3.
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Figure 3. Basic Cause-Effect Graph Symbols

Error Guessing

Error guessing [MYE79] is largely an intuitive and ad hoc process whereby someone can

think of certain probable errors and write test cases designed to test the program for those errors.

For example, the value is typically an error prone situation in either the input or output of a

program. Test cases are written which use as an input and force as an output. Other examples

of possible error prone situations are in non specified inputs to a program, empty or non-existent

files, and interactions between two or more programs.

1.2 Regression Testing

Regression testing [MYE79, OST83, PER83, POW82] is the process of testing for possible

errors which may have been inadvertently introduced into the software between versions or

releases. These errors may or may not be detected by other testing methods. It is used as a

means of assurance that the functions and capabilities which are in the previous, correct version

of the software have not changed between versions.



-12-

"It is widely agreed that the majority of errors appearing in production software

do not come from the original implementation, but rather are unintended side

effects of post release program modifications." [PAN78]

Regression testing typically makes use of a subset of test cases which were used to test a

previous version of software. It is generally considered uneconomical to regression test the

system using the full gamut of test cases which may be available. Test cases used for regression

testing should be chosen so that the most important and critical functions are exercised.

In addition to the lest cases, output or detailed analysis from execution of the test cases

should be maintained. This is required so that the same test cases which were run against an

earlier version can be run against the current version and a comparison can be made between the

two sets of outputs. Any differences which are detected between the two sets of output may

require a more detailed analysis of the new version of the software.

1 .3 The Cost of Software Validation

Figure 4 gives a breakdown of the costs associated with each phase in the development of

five large projects [ALB81].

Analysis and Coding and

Design Debugging Validation

SAGE 39% 14% 47%
NTDS 30% 20% 50%
GEMINI 36% 17% 47%
SATURN V 32% 24% 44%
OS/360 33% 17% 50%

Figure 4. Comparison of Development Costs

These percentages show that more money and effort is being spent on coding and validation

than analysis and design. R. W. Wolverton claims that at least 40% of software development

costs are traceable to software testing costs rWOL84]. This becomes even more or a problem

when the software being tested is a first release of a product. Beizer estimates this cost to be any

where from 50% to 80% [BEI84].
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What can be done to reduce the costs associated with software validation? An argument can

be made for spending more effort in the initial design phase of a project rather than waiting to try

and catch errors during the testing phases. In theory, this idea deserves much attention, but in

reality, tight development schedules often force development to begin before the design has been

completed. Another possible way to reduce validation costs is to simply reduce the amount of

testing being performed. If software quality is to be maintained, this concept will not work. A

third possible method of reducing software validation costs is to let software validate software

(i.e., automate) as much as possible. Provide software tools which can be used to reduce the

overhead of software validation. Let the computer perform the often tedious testing required and

let the tester become a developer of test cases which can be used repeatedly to validate the

software.

1.4 The Problem of Compiler Validation

Compilers are computer programs which should be validated prior to release. A program can

be 100% correct, but if the compiler needed to compile the program contains errors, serious and

often hard to locate bugs might occur. Because we depend so heavily on compilers to do a great

amount of work for us, it is critical that they be thoroughly tested during development.

Software bugs or errors in a compiler can be placed into one of the following broad

categories [BER83]:

1. An incorrect handling of a correct program either at compile time or at

run time, or

2. A failure to detect an illegal program as illegal either at compile time or

at run time.

During testing of any software program, the program should be tested for proper operation for

both correct and incorrect input. In addition, the testing of compilers requires that the resulting
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object code be executed and tested for errors. This doubles the testing effort required for compiler

validation. Thankfully, standardized compiler test cases, or test suites, have been developed to

speed up the validation process.

Another problem associated with compiler validation concerns the programming language, or

input, used by the compiler. Programming languages are defined in terms of their syntax and

semantics. These definitions are used as specifications for the validation of the compiler

associated with the language. The syntax can be formally specified by context-free grammars (eg,

BNF definitions). The semantics of the language are much harder to specify than the syntax.

"No completely satisfactory means for specifying semantics rn a way that helps

construct a correct compiler for the language has been found." [AH079]

1.5 Automated Tools for Software Validation

There are two broad categories of automated tools for software validation [MTL84]. These

categories are: static and dynamic analysis tools. Static analysis tools consist of static analyzers,

code inspectors and standards enforcers. Dynamic analysis tools consist of coverage analyzers,

test archiving systems, output comparators and test data generators. Many tools used for the

purpose of software validation are combinations of both static and dynamic analysis tools.

The Software lEsting Environment Support (SEES) System [ROU85] is an example of a

software validation tool which supports both static and dynamic analysis of software. It makes

uses of a relational database system (ADMS) for the storage and retrieval of information critical

to a large number of testing techniques.

Static analysis of programs is performed using a compiler built with the UNIX® YACC

compiler-compiler [DOL80] where the grammar's rules have been augmented with write

statements. As a source program is being compiled, these write statements output appropriate

information into the database whenever the rule is found applicable.



15-

Dynamic information is generated during the program's execution. This information can be

generated by an interpreter or by write statements inserted in the program which enter the

necessary data into the database.

The major advantage of the SEES System is that it allows someone to create his or her own

tools according to the type of testing which must be performed. These tools are in the form of

command files which can be used by the tester to perform database transactions and report

generation after a source program has been compiled, executed and the data collected. Command

files consist of utility operators, query language (SQL) commands, and UNIX system commands.

Utility operators, which are written in the host language of the database management system,

along with SQL commands are used to perform database transactions.

1.5.1 Coverage Analyzers

A coverage analyzer (or execution verifier) system [MTL81] includes a command interpreter, a

run-time package, a post-execution processor, and a report generator. This type of system makes

use of user specified instructions in analyzing and instrumenting the programs to be tested. As

the program is executing, the instrumented software (also commonly referred to as "software

probes") produces output which is collected and stored by the run-time package. The post-

execution processor is responsible for producing an evaluation report of the results of the testing.

The command interpreter controls the overall operation of the system. The run-time package

collects and stores the results of execution. After execution, the post-execution processor

analyzes data which the run time package has collected. The report generator identifies the level

of testing achieved and signals when a program component was not tested.

An example of an execution verifier is the Pascal Test System (PTS) [HEL86], This system is

used for the validation of airborne safety-critical software. PTS uses a tabular module test

specification, translates it into a compiled test program, and executes the test program, along with

the modules to be tested, on a software emulator. The results of the test execution are collected
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and compared with predicted results and a report is generated. Structural coverage of the test is

also reported.

The tabular module test specification which is used by PTS contains test inputs, the module

being tested, the test module environment and expected lest outputs. A translator is used to

transform the specification into a test program. A database provides storage for the test

specification so that regression testing can be performed between test specifications.

1.5.2 Test Archivers

A test archiving system acts as a storage and retrieval system for both test cases and results of

the tests. These systems are well suited for the support of regression testing because access to lest

cases, output data and analysis information are important. The SEES system is an example of a

test archiving system.

1 .5.3 Output Comparators

Output comparators [MIL84] are used lo compare two versions of a program's execution

output to identify any differences which may have resulted during execution. These tools are used

for both mutation analysis and regression testing. An example of an output comparator is the

UNIX "diff" command [DOL80].

1.5.4 Test Data Generators

Test data generators [MTL84] are used to generate test data for the testing of specific parts of

a program. This type of tool is used in structural analysis testing. Test case generators are a

special form of a test data generator. These tools are used to generate test cases for ihe

validation of compilers. Test cases are automatically generated which will randomly exercise the

compiler being tested. The generation of these test cases is based on BNF extended grammars

which define the language being tested.
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1.6 Automated Tools for Compiler Validation

Any of the tools described in the previous section may be used to test compilers, however,

there are tools which have been developed for the specific purpose of compiler validation.

Automated tools for compiler validation consist of test case generators (i.e., test data

generators) and test drivers. Test case generators are capable of generating test cases which can

be used to test specific parts of a compiler. Test drivers are tools which manage the execution of

test cases, the archiving of test cases and results, and the reporting of testing results. The test

cases which are used by test drivers can be either automatically generated or manually generated.

Some test case generators [BAZ82, CEL80, HAN70] use a formal description of the language

as input to the generator. The description is capable of handling both the context-free and

context-sensitive aspects of the language. The output from the generator is a set of compileable

(or intentionally wrong) programs which can be used to test the lexical analyzer, die syntax

analyzer, the semantic analyzer, and the error handler. These generators do not produce

executable programs which can be used to test code generators and run-time systems.

Bird [BIR83] describes a PL/1 test case generator which produces random, executable, self-

checking test cases. The lest cases which it produces are syntactically correct and guaranteed to

execute without any errors (assuming that the compiler is error free).

The test case generator described by Bird has several limitations for which test cases must be

manually written. Because the generated test cases are syntactically correct, they cannot be used

to test the compiler's error handler. Run-time diagnostics also cannot be tested because they

cannot be made self-checking. There are still other situations which require the manual writing of

test cases.

An example of a test driver which was developed specifically for the validation of UNIX and

the C applications is the PERENNIAL Driver/Monitor (PDM) [PER86], PERENNIAL also offers
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a validation suite for UNIX and C compiler testing which has been designed to run under control

of the PDM.

The PDM is responsible for compiling each test case, linking in a support library, executing

the resulting object program, and reporting the results of each test case. All output from the

compilation, Unking and execution phases is redirected to a file for further analysis. A nice

feature of the PDM is its ability to test itself using test case files.

H. K. Seyfer [SEY82] describes the testing of the Univac UCS-Pascal compiler. A test driver,

the Univac Series 1 100 Test Controller System (TCS), was used to automate the testing routine.

The TCS allowed the tester to select the set of test cases and the compilers, along with options

and libraries to be tested. The test cases were compiled and executed. Output from the execution

of the test cases was stored and compared with a predetermined test result. The TCS Status

routine was used to examine the test comparison results to determine any differences in

compilation, linkage or execution.

A collection of papers edited by Brian A. Wichmann and Z. J. Ciechanowicz rW!C83]

discusses Pascal compiler validation and an automatic testing facility for the testing of Pascal

compilers. It is a fairly simple test driver which is used primarily for producing reports of test

runs. The testing facility uses comments in the test cases for reporting the nature of errors which

may be detected. The major drawback to this testing facility is that there is no archival

mechanism for storage of test cases and testing results.

The FORTRAN Compiler Validation System (FCVS) [HOY77] was developed by the

Department of the Navy to test the conformance of elements of the FORTRAN language. The

compiler is tested by compiling and executing a set of test cases. If the compiler fails to compile

the set of test cases, the test case causing the failure is eliminated. The set of test cases is then

recompiled and executed. Test results produced by the execution of each lest case indicate

whether the execution passed or failed.
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These and oiher automated tools for software testing lend to be very specialized items. They

are designed to test a single language, or in some cases, a specific system in which the language

is used. They often lack the flexibility required by the testing organization to be modified in

order to suit changing needs.

The Automated Regression Test System (ARTS), which is presented in the following sections,

is a test driver which may be used for the regression testing of compilers and interpreters. Unlike

other lest drivers, it is not limited to a single compiler or interpreter. This flexibility allows the

ARTS to be tailored to a particular project and the project's own requirements.
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CHAPTER 2

REQUIREMENTS AND CAPABILITIES FOR

THE AUTOMATED REGRESSION TEST SYSTEM (ARTS)

The previous section presented various software validation techniques and tools which may be

used in support of software testing. This section describes the requirements and capabilities

necessary for the Automated Regression Test System (ARTS), which can be used for regression

testing both compilers and interpreters.

Figure 5 presents an overview of a typical testing session using the ARTS. The figure

represents both compiler and interpreter validation sequences. The following example of a

typical testing session applies to the interpreter case shown in Figure 5.

As an example, assume that Product XYZ depends on a Prolog interpreter. If a new version

of the Prolog interpreter is required, due to performance considerations or general enhancements,

both functional tests of the modifications and regression tests of the parts of the interpreter which

were not changed must be made prior to installation into the product. In order to run the

regression tests, a person using any standard CRT terminal can enter "arts" from the UNIX shell

and immediately get a menu of items from which to select He or she would next select the item

which provides for the selection of test cases to be executed. The main menu is cleared and a

secondary window or form is created which prompts for the language to be used (in this case

"Prolog"), the name of the existing compiler or interpreter, the name of the compiler or

interpreter to be tested and the names of the classes of test cases to be executed. After making

these selections, the ARTS user would then select an option to return to the main menu.

Execution is begun by selecting the test run execution option. The ARTS would then instruct the

existing Prolog interpreter to execute the test cases selected and save the results in an output file.
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Figure 5. Testing Session Example

Next, the interpreter under test would be instructed to execute the same test cases and save the

results in another output file. Once all test cases have been executed by both interpreters, the

resulting outputs are compared by the ARTS for any differences. The testing results, both the

results of the comparison and an indication as to whether or not any differences were detected,

are stored in the ARTS file system for later examination. An analysis of the testing results is

sent to the user.
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Several requirements apply to software development tools in general. The tool must do what

it was designed to do, without errors, in an efficient and cost effective way. The user interface

needs to be well planned so that someone using the tool needs little training in its operation. The

tool should also be flexible so that it can be used by a wide population of users.

"Regression tests should be easy to run, should not involve extensive manpower
or set-up time, and results should be easy to analyze. If these tests violate any
of these criteria, they probably won't be run with enough frequency to be of
any value." [BOW83]

The following paragraphs in this section present requirements and capabilities which are

necessary for the Automated Regression Test System (ARTS). Its general requirements include:

1. Storage and retrieval of test cases

2. Compilation and/or execution of test cases

3. Storage of the results of execution

4. Analysis of the results.

The ARTS must be a flexible, easy to use automated lest driver which allows the user to

perform regression testing for compilers and interpreters. It needs to be a flexible system so that

any compiler or interpreter which runs on a UNIX operating system can be regression tested.

A hierarchical file system should be used for the archiving of test cases, input data files,

output data files, information for compiling and running the test cases, and results of the testing.

The file system must be designed to handle any number of languages, compilers, and test cases

(there is, however, an operating system limit on the number of files which can be created). The

file system should be well structured so that it is free to grow as new test cases are added to the

ARTS.
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The user should be allowed to retrieve information about the structure and contents of the file

system whenever he or she is in the process of installing test cases. The requested information

needs to be presented to the user as a listing of languages supported, compilers/interpreters

supported, and classes of test cases currently installed.

Test cases to be compiled and/or executed are selected on a per class basis. Each class

consists of a single file containing one or more test cases. The user should be allowed to select

any number of classes or all classes associated with the language to be used for the regression

test. For example, several classes may exist for the Prolog language. These classes include i/o

operations, looping operations, assignment operations, and other similar classes of test cases. A

person using the ARTS may wish to choose all classes of test cases or a set of the classes.

Because of the differences of compiling, linking, and executing programs between languages,

the user must specify completely how the tests are to be executed. These specifications need to be

collected and stored in a file which can be later used as a command or script file by the UNIX

shell. The concept of execution specification script files give the ARTS the flexibility needed to

support the regression testing of any compiler or interpreter running on the host UNIX system.

Examples of typical execution specifications are shown in Figure 6.

Several things should be noted in the sample execution specifications. There are two key

words which appear in each execution specification. These words are: SCOMPILER and

SINTERPRETER. One of the key words must always appear in the execution specification. The

key word is to be replaced by a path (e.g., /bin/cc) to the compiler or interpreter to be tested prior

to the beginning of the test run. The file "testcases" (with or without a suffix) will always be

used to store the test cases for each class. Compiler or interpreter options may be included on the

command fines.

The execution specification script file should be built whenever the ARTS user installs a new

test case file and there is no associated execution specification. There should also be an option



-24-

Example 1

:

SCOMPILER test_cases.c
a. out

Example 2

:

SCOMPILER -I/tom/ include test_cases.c
a . out

Example 3:

SCOMPILER -Dtom -O -o cte3t test_cases.c /tom/llb/lib.a
cte3t

Example 4

:

$ INTERPRETER «!
['test_cases.pl' ]

.

i

Example 5

:

$INTERPRETER test_cases

Figure 6. Typical Execution Specifications

which will allow someone to build a new execution specification file on demand. The interface

to this function should be a simple line oriented editor which will allow up to 20 lines to be

entered.

Once the execution specification has been built, it should be tested to verify that it is

syntactically correct. Verification that the user has entered either the SCOMPILER or

SINTERPRETER variables and the word "test__cases" should be made. If an error is detected, an

error message should be displayed informing the user of the error. Prior to installing the

execution specification into the ARTS file system the SCOMPILER or SINTERPRETER variable

should be replaced with the path to the appropriate compiler or interpreter and the appropriate

suffix added to the word "testcases".

If a compiler is being tested, the selected set of test cases must be compiled, on a per class

basis, by each compiler. If the compiler fails to compile the class of test cases, the compiler error

message should be saved for analysis purposes and no execution should be performed for that

class. Execution should continue with the next class in the sequence of classes selected.
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The same situation holds true for the link editor. If the link editing phase fails, the error

message should be saved for analysis purposes and no execution should be performed for that

class.

Analysis of testing results consists of comparing the output from a test run of each class with

that of another. If any differences are detected between the collected data, then the compiler or

interpreter is said to have failed the testing for that class. Analysis of these results (either "pass"

or "fail") and the resulting output from the comparison must be stored in a file associated with

the class being tested.

A log file should be kept for each class of test case. Information to be stored in this log file

consists of the name of the person installing a test case file, the date and time of installation, the

name of the person performing a test run, the date and time of the test run, the compilers being

used for the test and the pass/fail status.

After a test run, an ARTS user should receive a file containing the date and time of the test

run, the language used, the compilers tested, the class or classes selected, the pass/fail status of

the test run, and a listing of the differences detected. This file can be placed in the user's rje

directory.

A simple report generation function must be provided. The report should be allowed to be

generated after each test run has been performed and an analysis of the results has been made.

Test cases may be deleted on a per class basis (i.e., all test cases for a given class are

deleted). All data files for the associated class must also be deleted from the file system.

On-line help should be available to the user. A user definable help file will be used to store

any help information which an ARTS administrator may feel to be important to the ARTS user.

Typical information to be stored in this file might include information on how to build an

execution specification or information on how to structure test cases.
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Limitations associated with the ARTS include the following:

1. The ARTS should be implemented as a single user system. No file

locking mechanisms or other protection schemes are required.

2. It does not validate compilers and/or interpreters between two machines

or operating systems.

3. There are no requirements for batch operation (i.e., test execution cannot

be scheduled).

4. Test cases must be written in the proper format so that analysis of testing

results can be produced.

5. Test runs cannot be restarted if a system failure occurs (e.g., a power

failure). The user must make a new execution request.

6. There are certain features which cannot be automatically tested. For

example, input from a terminal.
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CHAPTER 3

DESIGN DESCRIPTION FOR

THE AUTOMATED REGRESSION TEST SYSTEM

Chapter 2 presented the overall requirements for the ARTS and gave a typical testing session

example which involved regression testing a Prolog interpreter. This chapter presents the detailed

design derived from those requirements and expands on the previous testing session example to

describe the actual data flow (refer to Figure 7) and control flow. The functional specification for

the system is shown in Appendix A. The source code for the ARTS is presented in Appendix B.

Using the example from the previous chapter, the person using the ARTS was presented a

menu of functions from which lo make a selection. Once the option to select test cases for a test

run was chosen, the main menu was erased and a form was drawn on the screen. All screen i/o

associated with menu selection, form entry and display, error messages and status messages is

handled by the User Interface subsystem. The language "Prolog" was entered as the language to

be used for testing. The ARTS file system is checked for the Prolog language. If the Prolog

language is not installed, the User Interface displays the appropriate error message. All ARTS file

system operations are handled by the File System Manager subsystem. File system operations

include the installation, deletion, selection and retrieval of system data.

After all the selection data has been entered by the ARTS user, the File System Manager

builds a file which contains paths to all test case files to be executed. If a compiler is being

tested, the file would contain paths to all test case files to be compiled. Next, two script files are

built for each class of test case selected. These script files (shown as Exec_specl and Exec_spec2

in Figure 7) contain the contents of the exec_spec file (built when the test cases were installed)

with SFNTERPRETER variable replaced by the path to the appropriate Prolog interpreter. All
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Figure 7. ARTS Hierarchical Data Flow Diagram

Exec_specl and Exec_spec2 files are built in the same directory as the one which contains the

test_cases file. Control is passed back to the User Interface after all Exec_spec files have been

built The ARTS user now selects the option to begin the test run. Control is passed to the System
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Executive subsystem. The System Executive builds shell command lines which will execute the

Exec_specl and Exec_spec2 files and save the output in separate Output_data files. After all test

cases have been executed, control is passed to the Post Execution Processor subsystem. The Post

Execution Processor uses the Execjjaths file to build shell command lines to make a comparison

(via the UNIX "diff command) of each Output_data file. The results are placed in the Analysis

file. Overall testing results for all classes of test cases executed are sent to the ARTS user.

Control is passed back to the User Interface where the person using the ARTS can select to

generate a report using the Report Generator subsystem or select another option from the main

menu.

2.1 The User Interface

The User Interface relies on the CURSES [ARNOLD] package for the handling of the

terminal screen i/o functions. CURSES is a collection of functions which present a high level

screen model to the programmer, while dealing with issues such as terminal differences and

optimization of output.

The terminal screen is divided into three regions or sections. The first section (normally,

lines 1-22) is for displaying the system menus, entry forms, and file system data. The second

section (normally, fine 23) is the status message line. The third section, which will always be the

last line on the screen, is the error message line. If the terminal is capable of handling inverse

video, all error and status messages will be displayed in this mode.

The main menu provides a selection to a series of forms (i.e., installation, deletion, retrieval,

and selection), or to either a "execute", "report", "display", "help" or "exit" function. The

"execute" function provides entry into the System Executive for startup of the test run. The

"report" function provides a hardcopy printout of the results of a test run. The "display" function

displays the results of a test run on the user's terminal. The "help" function is used for

displaying on-line help information the testing results. All help information is stored in a file
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which can be easily edited to suit the needs of the user. The testing results are stored in a file in

the user's rje directory. "Exit" returns the terminal to its "pre-curses" state and exits the ARTS.

Selection of a menu option is achieved by moving the cursor (via the TAB key) to the desired

option and typing an "x". Only the TAB and "x" keys are recognized by the menu. Any other key

(with the exception of BREAK and DEL) which may be typed is ignored. The cursor will

always be positioned at the first option upon entry into the menu.

Data entry into a field on a form can be made by entering the data and pressing the RETURN

key. A 'q' may be entered to cause a return to the main menu. A '?' can be entered into many

of the fields to get a display of the contents of the file system for the named object This display

appears on a new window which is overlaid on top of the existing form. All data is verifyed

immediately after it has been entered in a field. If an error is detected, an error message will be

written, the field will be cleared and the cursor will be positioned at the beginning of the field.

Typing a BREAK or DEL while in either a menu or a form will cause the terminal to be

returned to the "pre-CURSES" state and an exit will be taken from the ARTS.

The installation form allows the user to install languages, compilers, lest case classes,

execution specifications, and test cases in the file system. When installing test cases, the user is

required to enter the language, the compiler, the class, the file containing the source test cases,

the execution specification, the input data file (if any), and the suffix which the test case file must

have (if any). The execution specification is entered on a separate window from the installation

form. All fields will be cleared, and a status message written, after all the information has been

successfully stored by the File System Manager.

The deletion form allows the user to delete a class of test cases. The user will be required to

enter the language and the class. All data files, including the test case file and the execution

specification, and directories will be deleted from the file system for that class. All fields will be
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cleared, and a status message written, after the class has been deleted by the File System

Manager.

The retrieval form allows the user to retrieve a class of test cases. The user will be required

to enter the language, compiler, and the class. All data files, including the test case file, will be

retrieved from the file system for that class. The retrieval process constructs a copy of the files;

therefore, the contents of the file system are left undisturbed. All fields will be cleared, and a

status message written, after all the information has been retrieved by the File System Manager.

The selection form provides for the selection of compilers and classes of test cases which will

be used for a test run. The user will be required to enter the name of the language, the names of

the two compilers, the UNIX paths to the two compilers (if they have not been previously

installed into the ARTS file system), and the names of the classes of test cases to be used. The

word "all" can be entered as a keyword to specify all classes are to be used for the language

selected. Note that two compilers are required, one is the standard and the other is the compiler

being tested. The selection form contains a scrolling region which allows the user to select any

number of classes of test cases. A "." on a line by itself is used to signal the end of the selection

of classes. Any number of classes of test cases can be selected. Control is then passed to the File

System Manager.

22 The File System Manager

The File System Manager is responsible for all file system activity. File system activities

include installation, deletion, and retrieval of test cases and data files. It also maintains the

structural integrity of the file system.

2.2.1 File System Structure

The file system is a hierarchical structured file system which uses the UNIX directory

sliucture for file storage. The root of the file system is the directory "arts". The ARTS variable
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should be set to the path of the root directory. For example:

ARTS=/usr/arts ; export ARTS

A diagram of the file system structure is shown in Figure 8 (directories are in bold and

temporary files are shown in italics).

ARTS root

COMPILERJNFO LANGUAGES langl Iang2 ... langn HELPFILE

COMPILERS cmpl cmp2 _. cmpn CLASSES clsl cls2 ... clsn

testcases classjog exec_spec
input_data

Exec_specl Exec_spec2

clsl cls2 _ clsn

analysis output_data

Figure 8. File System Structure

Three ASCII files are used by the File System Manager for tracking the structural makeup of

the file system. These are the "LANGUAGES" file, the "COMPILERS" file, and the "CLASSES"

file. The LANGUAGES file contains the languages installed in the file system. The

COMPILERS file contains the compilers installed in the file system for a given language. The
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CLASSES file contains the classes of test cases in the file system for a given compiler.

Directory names, which are derived from the name of the language, compiler and class, are

limited to 14 characters. The algorithm for doing this is presented later in this section.

Directories for each class appear as subdirectories to a language and to each compiler for that

language. The class directories, which are subdirectories to a language, contain the following

files: test_cases, input_data, classjog, exec_spec, Execspecl and Exec_spec2. The class

directories which are subdirectories to a compiler contain the analysis file and the output_data

file.

On-line help information is placed into the HELPFTLE. This information gives a brief

description of the main menu and each of the forms.

Each line in the COMPILERJNFO file is divided into three fields. These are: the compiler

name, the system path to the compiler, and any suffix (eg, .c) which may be required by the

compiler. Each field is separated by a colon.

The test_cases file contains all test pases associated with the class of testing. The suffix (if

any) which this file must have is derived from the COMPILERJNFO file.

The inputdata file contains all input data which may be used by the lest cases. This is

typically input data which may be needed to test I/O operations.

The exec_spec file is the primary execution specification file. This is a script file which

contains the commands necessary for the system to compile, link, and/or execute the testcases

file. One and only one of the keywords SCOMP1LER or S/NTERPRETER must appear in the

exec_spec file. Also the word "test_cases" with the appropriate suffix must appear. Examples of

exec_spec files were shown in the previous section.
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The Execspecl and Exec_spec2 files are both temporary command script files which are

built by ARTS during the execution of a test run. They contain a copy of the exec_spec file with

the appropriate path to the compiler or interpreter under test substituted for the SCOMPILER or

SDNTERPRETER keyword.

The classlog file contains the name of the person who installed the testcase file and the date

of installation. These entries are appended to the file so that a record of installation activity is

maintained.

The output_data file contains the output results from the compilation, linkage, and/or

execution of the test cases.

The analysis file contains the analysis of the testing results for the associated class of testing.

This will be either a "PASS" or "FAIL". Also, the comparison results, the id of the person

requesting the test run, and the date are stored.

2.2.2 Installation

Installation procedures are provided for the installation of test cases and the installation of

executions specifications. Both of these options are provided on the main menu.

Installation of Test Cases

When installing test cases, parameters required by the File System Manager are: root

directory of the ARTS file system, language, compiler, class, name of test case file, name of input

data file (if any), and the execution specification.

If the compiler is not included in the COMPILER_INFO file, the user will be required to

enter the path to the compiler and also any suffix required by the test_cases file. This

information, along with the name of the compiler, is then appended to the COMPILERINFO

file. The File System Manager will check the path to the compiler for accuracy. If the compiler,
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or interpreter, is not found, an error message will be displayed.

If the root directory, language directory, compiler directory, or class directory does not exist,

the appropriate new directory is built. The class directory which is a subdirectory to a compiler

is not built until test cases have been compiled and executed for that compiler. Directory names,

other than the root directory, are built from object (language, compiler, or class) names. The first

fourteen characters in the object name are used. Any special character (eg, • or ?), characters

which may cause conflicts (eg, @ or I) and all blanks are transformed to an underscore. All upper

case alpha characters are converted to lower case. If a language, compiler, or class is entered

which may cause conflicts with an existing directory for another class, an error message is given

to the user that a conflict exists and another name should be used. This conflict occurs when the

first fourteen characters of the object are the same as the first fourteen characters of another

object.

If a LANGUAGES file, COMPILERS file or CLASSES file does not exist, the appropriate

file is created and the name of the object being installed is written to the file; otherwise, the name

of the object is appended to the associated file.

The testcases file is built by copying the contents of a user specified test case file into the

test_cases file. If a test_cases file currendy exists, its contents are overwritten. Test case files are

built using testcases as the file name with any suffix required appended to it For example, the

Prolog interpreter requires that file names in a ".pi"; therefore, the name of the file would be

test_cases.pl.

The inpuldata file is built by copying the contents of a user specified data file into the

input data file. If an inpul_data file currently exists, its contents are overwritten.

The exec_spec file is created from user supplied information. The user is prompted for the

information after all test data files have been built. The user input is checked for the keywords:
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SCOMPILER or $INTERPRETER. If neither of these keywords are delected An error message is

written, the screen is cleared and the user is again prompted for the execution specification. The

word "test_casesji#i" must also be entered by the user. The user may quit by entering a "q" on

the first line and pressing RETURN.

The name of the user performing the installation and the current date are retrieved from the

UNIX system and placed in the classJog file. If a classjog file currently exists, the new

information is appended to the classjog file.

If an analysis file or ourput_data file exists, they will be removed.

Installation of Execution Specification

This function allows a user to change any existing execspec file in the file system without

disturbing existing test cases.

Installation of an execution specification requires the root directory of the file system,

language, compiler, class and the execution specification. An error message is returned to the user

if the file system, language, compiler, or class does not exist.

The building of the execution specification is the same as thai described for the installation of

test cases. Any existing exec_spec file is overwritten by the new exec_spec file.

2.2..1 Selection

The Selection form is used for the selection of all parameters needed in the execution of the

test run. Required parameters for the selection of compilers and classes of test cases are: the

language, two compilers or interpreters, the system path to the compilers or interpreters, and one

or more classes. All parameters are checked for installation in the ARTS file system. If the

parameter has not been installed, an error message is displayed and the user is again prompted for

the parameter. The COMPILERJNFO file is checked for the name of the entered compiler or
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interpreter, and if found, the path is displayed.

The SCOMPILER or $INTERPRETER variables in the execspec must be translated into the

UNIX system path to the applicable compiler or interpreter. This is done by first copying the

execspec file into an Execspecl and Exec_spec2 file. The variable in the Execspecl file is

then replaced by the path parameter to the compiler or interpreter being tested. The Exec_spec2

file's variable is replaced by the path parameter to the compiler or interpreter standard. Both

Exec_specl and Exec_spec2 files are removed immediately after use. Note that for each class

which is selected for a test run, there is one Execspecl and one Exec_spec2 file.

The exec_paths file is used to store all UNIX paths needed by both the System Executive and

the Post-Execution processor. Each line of the file contains four fields, separated by a ":". Field

1 is the name of the class being tested. Field 2 is the path to the directory containing the

exec_spec file. Field 3 is the path to the compiler directory for the compiler under test. Field 4 is

the path to the compiler directory for the compiler standard. The exec_paths file is built by the

File System Manager from parameters passed to it from the User Interface.

After all Execspecl and Exec_spec2 files and the exec_paths file have been built, control is

passed back to the User Interface.

2.2.4 Deletion

Deletion parameters are passed from the User Interface to the File System Manager. Required

parameters are the language and the class to be deleted. All parameters are checked for

installation in the ARTS file system. If the parameter has not been installed, an error message is

displayed and the user is again prompted for the parameter.

All data files for the class to be deleted are removed from the file system. The subdirectories

for that class are also removed. The class entry is removed from the classes file. If an error

occurs, an error message is printed and control is passed to the deletion form. If there are no
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eirors, a status message is printed which states that the class has been deleted from the file

system.

2.2.5 Retrieval

Retrieval parameters are passed from the User Interface to the File System Manager. Required

parameters are the language, the compiler, and the class. All parameters are checked for

installation in the ARTS file system. If the parameter has not been installed, an error message is

displayed and the user is again prompted for the parameter.

All data files (i.e., test^case, input_data, class_log, analysis, exec_spec, and output_data) are

retrieved for the specified class. The files are copied into the user's rje directory.

23 The System Executive

The System Executive controls the compilation and execution of the test cases which have

been selected for testing. Control is passed to the System Executive from the User Interface. No

parameters are required from the User Interface.

Commands necessary for the execution of the Exec_specl and Exec_spec2 scripts and

redirection of "sldout" and "slderr" to the proper outputdata file are built using the exec_paths

file. An example of these commands is shown below.

sh Exec_specl 1> $ARTS/o/c5 .0/i_o/output_data 2>sl
sh Exec_spec2 1> $ARTS/c/c4 .0/i_o/output_data 2>sl

In this example, the C language is being tested using a "c4.0" compiler as the standard and a

"c5.0" compiler as the compiler under test. Both "sldout" and "stderr" are redirected to the

outputdata file for the associated compiler. Status messages are sent to the user at the beginning

of each execution of the Execspec file. The Execspec file is removed after its execution.
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A "chdir" is made to the directory in which the testcases file is located prior to the execution

of the Execspec file. This gives the user the ability to read input data from the inputdata file,

if one is present If the directory which is to contain the output file is not installed, a appropriate

directory is created.

Control is passed to the Post-Execution Processor from the System Executive after all

Exec_spec files have beed executed and removed.

2.4 The Post-Execution Processor

The Post-Execution Processor is responsible for performing a UNIX "diff ' operation on the

outputdata files and analyzing the results of the testing.

Commands necessary for executing the diff and redirecting the output to the associated

analysis file are built using the execjjaths file. An example of these commands is shown below.

diff $ARTS/c/c5.0/i_o/output_data $ARTS/c/c4 . 0/i_o/output_data >

SARTS/c/new/i_o/analysis

This example shows the output from the "c5.0" compiler (the compiler under test) being "diffed"

with the output from the "c4.0" compiler. The output from the resulting diff execution is always

placed in the analysis file of the compiler under test.

After each diff operation, the results are tested to see if any differences have been detected. If

there are no differences, the current date and the word "PASSED" are appended to the classlog

file for the compiler under test. If there are differences, the current date and the word "FAILED"

are appended to the classjog file.

The "test_analysis" file is built by the Post-Execution Processor for reporting purposes. This

file contains the id of the user performing the test run, the date, the language, the compilers and
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the classes of lest cases being tested. The words "PASSED" or "FAILED" are appended to the

file, along with the diff output, for each class being tested. This file is sent to the user's rje

directory after all output_data files have been analyzed. Control is then passed to the System

Executive.

2S The Report Generator

The Report Generator is responsible for producing a hardcopy printout of the testing results.

The "test_analysis" file is sent to the local printer. The command necessary for sending the

analysis file to the printer may need to be modified to suit the host environment
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CHAPTER 4

FORMAT OF A TEST SUITE

Several papers have been written specifically dealing with the design of test cases for

compiler testing [SEY82, WIC76, BER83, W1C83]. The authors present varying methodologies

on the subject, each with its own advantages and disadvantages. The purpose of this section is

not to present a design methodology, but rather to suggest some things to be aware of when

designing test cases to be used with the ARTS.

Several levels of correctness can be tested for in compiler validation using well designed test

cases. These are [GRA80]:

• Lexical correctness - are the program tokens well formed?

• Syntactical (or context-free) correctness - is the program structure derived

according to its formal context-free description?

• Compile-time correctness: can the program be compiled without diagnostic

messages?

• Run-time correctness - can the compiled program be executed without run-

time errors such as infinite loops or arithmetic faults?

• Logical correctness - can the program be executed and produce the expected

results?

In the case where an interpreter is being tested, all levels of correctness apply with the exception

of compile-time correctness.
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Through regression testing, the ARTS can test for each level of correctness.

Output data to be used in the analysis of the testing results comes directly from the compiler

(or interpreter), link editor, run-time system, and/or test cases. Statements which write data to

"stdout" or "stderr" should be embedded in the test cases.

Any number of test cases may be used in the testcase file; however, they should all test the

same class of feature.

There are several constraints to be aware of when designing test cases to run under the

control of the ARTS.

1. All input files are named "inputdata" and are located in the same

directory as the source file. Only one input file can be associated with

each "test_cases" file.

2. No input from a terminal is permitted.

3. Because the ARTS is running under the control of the UNIX operating

system, test cases should not be written which might affect its operation.

For example, if the UNIX shell is being test, the statement "rm J*" might

have disastrous results.

4. Infinite loops should be avoided.

5. Any temporary files which are created should be removed upon exit from

the program.

A sample portion of a suite of test cases used to test Prolog interpreters is shown in Appendix

C.
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CHAPTER 5

IMPLEMENTATION

The ARTS has been compiled and lesled on a DEC VAX 11/780 running 4.3 BSD UNIX, an

AT&T 3B15 running UNIX System V R2.1, and an Amdahl running UTS 5.2u370.

The Curses terminal handling package is used for all screen i/o operations. There are

different versions of the Curses package. The ARTS has been designed to compile and run with

any of the known versions of Curses.

A makefile is provided for building the ARTS object module. System administrators are free

to set up local system libraries to meet their specific needs. Certain libraries which may or may

not have to included in the makefile are "curses", "termcap" and "termlib". It may sometimes be

necessary to contact the local system administrator for help in setting up the compile line

parameters.

The reportc program module builds a UNIX shell command line for sending test run analysis

to a printer. This program may have to be modified slightly to agree with the local environment.

There are approximately 2300 non-commeniary lines of C source code. The object module

contains 220489 bytes.
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CHAPTER 6

CONCLUSIONS/EXTENSIONS

Validation of software is both a tedious and labor intensive undertaking. Every effort should

be made to improve this task in order to lower the overall cost of the software, while at the same

time raising its quality.

Many automated tools have been developed to aid the tester in the validation of software. The

majority of these tools, however, are "tied" to the software or system being tested. They do not

provide enough flexibility to be used with other systems or languages. The tools often become as

complex as the software being tested.

The ARTS was developed as a tool for the regression testing of compilers and interpreters. It

is flexible enough to be used with any compiler or interpreter which can run under the UNIX

operating system. A minimum amount of training is required to train a novice user in the

operation of the system.

Several possible extensions could be added. These include:

1. editing individual lest cases

2. stop/start of test run

3. testing compilers between languages,

4. batch processing of test runs

The only method for editing individual lest cases is for the user to retrieve the test case, edit

it, and install it back into the file system. An option could be added to allow the user to choose a
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test case file to be edited without having to remove it from the file system.

If a test ran is stopped by a BREAK or DEL, execution is halted, any cleanup operations are

performed and the ARTS is exited. Rather than exiting, control could be returned to the main

menu and an option for restarting the test run could be selected.

The ARTS is limited to testing compiler operation for a given language. The program could

be modified so that validating compiler operation between languages was possible. For example,

assume that the 1/0 operations associated with both a C compiler and a Pascal compiler needed to

be tested. Two suites of test cases, one in C and the other in Pascal, would be executed. Both

suites of test cases are functionally the same. The results of the execution could be compared for

any observable differences between languages.

The ARTS system is strictly an interactive system. The user selects the set of test cases to

run, starts the execution and waits for the results. This presents a problem if the system is heavily

loaded or a long test run is to be made. Batch processing would allow the user to select the test

cases, select a starting time for the tests to be run in the background and retrieve the test results

after execution. The user would then be free to do other work without having to wait for the

execution to complete.
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APPENDIX A

Functional Specification

Function INSTALL(testcases)

SUBACTION: prompt user for language.

INPUTS:

OBJECT: language

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: LANGUAGES
TYPE: ascii file

DESCRIPTION: contains name of languages installed

CONSTRAINTS: must be readable

language names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A language or 'q' must be entered"

STATUS MESSAGES: "There are no languages installed"

HELP MESSAGES: A list of installed languages

OBJECT: LANGUAGES
TYPE: ascii file

CONSTRAINTS: must be writeable

EFFECT:
If language = q, return.

If language = ?, list languages

in the LANGUAGES file, prompt for language.

If LANGUAGES file does not exist, print status message("There are

no languages installed"), prompt for language.

If language = ' ', print error message("A language or 'q' must

be entered"), prompt for language.

If language is not in LANGUAGES file, append language to

file.

If ARTS/Ianguage directory does not exist, make directory.

SUBACTION: prompt user for compiler.

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE
OBJECT: COMPILER INFO
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TYPE: ascii file

DESCRIPTION: contains name of compilers installed, path to

compiler and any suffix required

CONSTRAINTS: must be readable

each record is in the form:

"name: path:suffix"

records are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

OBJECT: COMPILERS
TYPE: ascii file

CONSTRAINTS: must be writeable

EFFECT:

If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.

If compiler = ' ', print error message("A compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file does not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, append compiler

file.

If ARTS/language/compiler directory does not exist, make
directory.

Check COMPILERJNFO for compiler.

SUBACTION: prompt user for compiler path

Note: this action only performed if compiler is not in the

COMPJLERINFO file.

INPUTS:

OBJECT: compiler_path

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
file must be readable

OUTPUTS:
ERROR MESSAGES: "A path or 'q' must be entered"

"Cannot access" compiler_path

STATUS MESSAGES: "Enter the full UNIX path to the compiler"

HELP MESSAGES: none
EFFECT:

If compiler = q, return.

If compiler = ?, print status message("Enter the full UNIX path to

the compiler"), prompt for compiler_path.
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If compiler = ' ', print error message("A path or 'q' must be entered"),

prompt for compiler_path.

If compiler_palh is not readable, print error message("Cannot access

compilerjxtth"), prompt for compiler_path.

SUBACTION: prompt user for suffix required by compiler

Note: this action only performed if compiler is not in the

COMPILERINFO file.

INPUTS: suffix

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

terminated by RETURN
'

suffix required by specified compiler

OUTPUTS:
ERROR MESSAGES: none

STATUS MESSAGES: "Enter any suffix which may be needed"

HELP MESSAGES: none

OBJECT: COMPILERINFO
TYPE: ascii file

CONSTRAINTS: must be writeable

EFFECT:

If suffix = q, return.

If suffix = ?, print status message("Enter any suffix which may be

needed"), prompt for suffix.

If suffix = ' ', no suffix will be required.

Append compiler: compiler_path:suffix to COMPILERINFO.

SUBACTION: prompt user for class.

INPUTS:

OBJECT: class

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

terminated by RETURN
OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be readable

class names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A class or 'q' must be entered"

STATUS MESSAGES: "There are no classes for this language installed"

HELP MESSAGES: A list of classes installed.

OBJECT: CLASSES
TYPE: ascii file

CONSTRAINTS: must be writeable

EFFECT:
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If class = q, return.

If class = ?, list classes in the CLASSES file,

prompt for class.

If CLASSES file does not exist, print status message("There are

no classes for this language installed"), prompt for class.

If class = ' ', print error message("A class or 'q' must be entered"),

prompt for class.

If class is not in CLASSES file, append to file.

If ARTS/language/class directory does not exist,

make directory.

SUBACTION: prompt user for test case file.

INPUTS:

OBJECT: tc_path

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

terminated by RETURN
OBJECT: tc_file

Note: tcfile = tc_path

TYPE: ascii file

CONSTRAINTS: file must be readable

OUTPUTS:
ERROR MESSAGES: "A test case file or 'q' must be entered"

"Cannot read" lestcases

STATUS MESSAGES: "Enter name of file which contains your test cases"

HELP MESSAGES: none

OBJECT: test_cases.ii#j:

TYPE: ascii file

DESCRIPTION: contains test cases

CONSTRAINTS: must be writeable

EFFECT:

If tc_path = q, return.

If tc_path ?, print status message("Enter name of file which

contains your test cases"), prompt for tc_path.

If tcjpath = ' ', print error message("A test case file or 'q'

must be entered"), prompt for tc_path.

If tc_file is not readable, print error message("Cannot read

tcjtalh), prompt for tc_path.

Copy tcfile into ARTS/language/class/test_cases.

If a suffix was specified move the test_cases file to

ARTS/language/class/test_cases.su/Ju:.

SUBACTION: prompt user for an input data file.

INPUTS:

OBJECT: df_path

TYPE: character string (keyboard)
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CONSTRAINTS: <= 78 ascii characters

terminated by RETURN
OBJECT: dfile

Note: dfile = df_path

TYPE: ascii file

DESCRIPTION: contains any test data which may be need by

the testcases file.

CONSTRAINTS: file must be readable

OUTPUTS:
ERROR MESSAGES: "Cannot read" df_path

STATUS MESSAGES: "Enter name of file which contains your input data"

HELP MESSAGES: none

OBJECT: input_data

TYPE: ascii file

CONSTRAINTS: file must be writeable

EFFECT:

If df_path = q, return.

If df_path = ?, print status message("Emer name of file which

contains your input data"), prompt for df_path.

If df_path = ' ', prompt for execspec, otherwise.

If dfile is not readable, print error message("Cannot read

dfile"), prompt for df_path.

Copy dfile into ARTS/language/cIass/input_data.

SUBACTION: prompt user for execution specification

Note: this is a line editor which will prompt for

each line of text.

INPUTS:

OBJECT: execspecline

TYPE: character siring (keyboard)

CONSTRAINTS: max of 10 lines

each line <= 256 ascii characters

each line terminated by a RETURN.
STRUCTURE: <exec_spec> ::= <c_or_i> <body>

<c_or_i> ::= "SCOMPILER" I "SINTERPRETER"
<body> ::= <text> "test_cases"<suffix> <text>

<suffix> ::= ".pi" I ".c" I nil I etc.

<lext> ::= any text string excluding "SCOMPILER",
"SINTERPRETER", "test_cases"<suffix>

comment: suffix is determined by compiler or

interpreter used.

OUTPUTS:
ERROR MESSAGES: "Too many lines"

"SCOMPILER or SINTERPRETER not entered"

"testcases.jujjii has not been entered"

"Only one SCOMPILER or SINTERPRETER may be entered"
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STATUS MESSAGES: "Enter a line which is needed by the execution

specification"

HELP MESSAGES: none

OBJECT: tmpfile

TYPE: ascii file

DESCRIPTION: Editor buffer area

Execspecune is appended to this file

CONSTRAINTS: File must be writeable

OBJECT: Execspec
TYPE: ascii file

DESCRIPTION: Command script file which is built from tmp_file

CONSTRAINTS: File must be writeable

EFFECT:

Open tmpfile for storage of each line of the execspec.

If text = 'q', return.

If text = '?', print status message("Enter a fine which is needed by

the execution specification").

If lines of text > 10, print error message("Too many lines"), remove

the tmp file, prompt for exec_spec.

If text = '.', check for "SCOMPILER" or "SINTERPRETER" and

"icsl_cases."suffix.

If "SCOMPILER" or "SINTERPRETER" was not entered, print error

message("$COMPILER or SINTERPRETER not entered"),

prompt for a new Exec_spec.

If "test_cases."5«j^jc was not entered, print error

message("test_cases.ijj^J: nas not ^^ entered"),

prompt for a new Exec_spec.

If more than one "SCOMPILER" or "SINTERPRETER" was entered, print

error message("Only one SCOMPILER or SINTERPRETER may be entered"),

prompt for a new Execspec.

Move exec_spec from tmp_file to ARTS/language/class/Exec_spec.

Append line of text to tmp file.
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Function INSTALL(exec_spec)

SUBACTION: prompt user for language.

INPUTS:

OBJECT: language

TYPE: character string (keyboard)

CONSTRAINTS: <-78 ascii characters

terminated by RETURN
OBJECT: LANGUAGES
TYPE: ascii file

DESCRIPTION: contains name of languages installed

CONSTRAINTS: must be readable

language names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A language or 'q' must be entered"

"The language is not installed"

STATUS MESSAGES: "There are no languages installed"

HELP MESSAGES: A list of installed languages

EFFECT:
If language = q, return.

If language = ?, list languages

in the LANGUAGES file, prompt for language.

If LANGUAGES file does not exist, print status message("There are

no languages installed"), prompt for language.

If language « ' ', print error message("A language or 'q' must

be entered"), prompt for language.

If language is not in LANGUAGES file, print error messagef'The language

is not installed"), prompt for language.

SUBACTION: prompt user for compiler.

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

"The compiler is not installed"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

EFFECT:
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If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.

If compiler = ' ', print error message("A compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file does not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, print error message("The compiler

is not installed"), prompt for compiler.

SUBACTION: prompt user for class.

INPUTS:

OBJECT: class

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

terminated by RETURN
OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be readable

class names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A class or 'q' must be entered"

"The class is not installed"

STATUS MESSAGES: "There are no classes for this language installed"

HELP MESSAGES: A list of classes installed.

EFFECT:

If class = q, return.

If class = ?, list classes in the CLASSES file,

prompt for class.

If CLASSES file does not exist, print status message("There are

no classes for this language installed"), prompt for class.

If class = ' ', print error message("A class or 'q' must be entered"),

prompt for class.

If class is not in CLASSES file, print error message("The class

is not installed"), prompt for class.

SUBACTION: prompt user for execution specification

Note: this is a line editor which will prompt for

each line of text.

INPUTS:

OBJECT: exec_spec_line

TYPE: character string (keyboard)

CONSTRAINTS: max of 10 lines

each line <= 256 ascii characters

each line terminated by a RETURN.
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STRUCTURE: <exec_spec> ::= <c_or_i> <body>

<c_or_i> :> "SCOMPILER" I "SINTERPRETER"
<body> ::= <text> "test_cases"<sufflx> <text>

<suffix> ::= ".pi" I ".c" I nil I etc.

<lext> ::= any text string excluding "SCOMPILER",
"SINTERPRETER", "test_cases"<suffix>

comment: suffix is determined by compiler or

interpreter used.

OUTPUTS:
ERROR MESSAGES: "Too many lines"

"SCOMPILER or SINTERPRETER not entered"

"test_cases.iuftr has not been entered"

"Only one SCOMPILER or SINTERPRETER may be entered"

STATUS MESSAGES: "Enter a line which is needed by the execution

specification"

HELP MESSAGES: none

OBJECT: imp file

TYPE: ascii file

DESCRIPTION: Editor buffer area

Exec_spec_line is appended to this file

CONSTRAINTS: File must be writeable

OBJECT: Execspec

TYPE: ascii file

DESCRIPTION: Command script file which is built from tmp_file

CONSTRAINTS: File must be writeable

EFFECT:
Open tmp_file for storage of each line of the exec_spec.

If text = q, return.

If text = ?, print status message("Enter a line which is needed by

the execution specification").

If fines of text > 10, print error message("Too many lines"), remove

the imp file, prompt for exec_spec.

If text = '.', check for "SCOMPILER" or "SINTERPRETER" and

"test_cases."juj^j:.

If "SCOMPILER" or "SINTERPRETER" was not entered, print error

message("SCOMPILER or SINTERPRETER not entered"),

prompt for a new Exec_spec.

If "test_cases."ju)^x was not entered, print error

message("test_cases..s!s5'u: has not been entered"),

prompt for a new Exec_spec.

If more than one "SCOMPILER" or "SINTERPRETER" was entered, print

error message("Only one SCOMPILER or SINTERPRETER may be entered"),

prompt for a new Exec_spec.

Move execspec from tmpfile to ARTS/language/class/Exec_spec.

Append line of text to tmp file.
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Function SELECT(testcases)

SUBACTION: prompt user for language.

INPUTS:

OBJECT: language

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: LANGUAGES
TYPE: ascii file

DESCRIPTION: contains name of languages installed

CONSTRAINTS: must be readable

language names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A language or 'q' must be entered"

"The language is not installed"

STATUS MESSAGES: "There are no languages installed"

HELP MESSAGES: A list of installed languages

EFFECT:

If language = q, return.

If language = ?, list languages

in the LANGUAGES file, prompt for language.

If LANGUAGES file does not exist, print status message("There are

no languages installed"), prompt for language.

If language = ' ', print error message("A language or 'q' must

be entered"), prompt for language.

If language is not in LANGUAGES file, print error message("The language

is not installed"), prompt for language.

SUBACTION: prompt user for compiler under test.

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE
OBJECT: COMPILERJNFO
TYPE: ascii file

DESCRIPTION: contains name of compilers installed, path to

compiler and any suffix required

CONSTRAINTS: must be readable

each record is in the form:
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"name: path:suffix"

records are separated by a NEW LINE

OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

"The compiler is not installed"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

EFFECT:

If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.

If compiler « ' ', print error message("A compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file does not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, print error message("The compiler

is not installed"), prompt for compiler.

SUBACTION: prompt user for compiler standard.

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE

OBJECT: COMPILERJNFO
TYPE: ascii file

DESCRIPTION: contains name of compilers installed, path to

compiler and any suffix required

CONSTRAINTS: must be readable

each record is in the form:

"name: path:suffix"

records are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

"The compiler is not iristalled"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

EFFECT:

If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.
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If compiler s= ' ', print error message("A compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file docs not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, print error message("The compiler

is not installed"), prompt for compiler.

SUBACTION: prompt user for classes.

INPUTS:

OBJECT: class

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

all classes for language selected by "all"

each class terminated by RETURN
set of classes terminated by "."

OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be readable

class names are separated by a NEW LINE

OUTPUTS:
ERROR MESSAGES: "A class, 'q', or '.' must be entered"

"The class is not installed"

STATUS MESSAGES: "There are no classes for this language installed"

HELP MESSAGES: A list of classes installed.

OBJECT: exec_paths

TYPE: ascii file

DESCRIPTION: Contains the class, the path to the class

directory (class_plh), the path to the compiler

under test (pthl) and the path to the compiler

standard (pth2).

This is a temporary file which will be removed

after execution.

CONSTRAINTS: must be writeable

each class to be tested is a record

each record is in the form:

"class: class_pth:pthl:pth2"

records are separated by a NEW LINE
OBJECT: exec_specl

TYPE: ascii file

DESCRffTION: Contains the contents of the Execspec for the

associated class. SCOMPJLER or SINTERPRETER
is replaced by the path to the compiler under

test.

File is built in the class directory.

This is a temporary file which will be removed
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after execution.

CONSTRAINTS: must be writeable

OBJECT: exec_spec2

TYPE: ascii file

DESCRIPTION: Contains the contents of the Exec_spec for the

associated class. SCOMPILER or SINTERPRETER
is replaced by the path to the compiler standard.

File is built in the class directory.

This is a temporary file which will be removed

after execution.

CONSTRAINTS: must be writeable

EFFECT:

If class = q, return.

If class = "all", build exec_paths for all installed classes and

build exec_specl and exec_spec2 files for each class.

If class = ?, list classes in the CLASSES file,

prompt for class.

If CLASSES file does not exist, print status message("There are

no classes for this language installed"), prompt for class.

If class = '
', print error message("A class or 'q' must be entered"),

prompt for class.

If class is not in CLASSES file, print error message("The class

is not installed"), prompt for class.

If class is a valid class, append record to exec_paths and

build execspecl and exec_spec2 files for the class.

If class = '.', return to main menu.
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Function BEGIN_TEST_RTJN(exec_paths)

SUBACnON: execute test scripts

INPUTS:

OBJECT: execjaths

TYPE: ascii file

DESCRIPTION: contains the class, the path to the class

directory (classjrth), the path to the compiler

under test (pthl) and the path to the compiler

standard (pth2).

this is a temporary file which will be removed

after execution.

CONSTRAINTS: must be readable.

each class to be tested is a record,

each record is in the form:

"class: class_pth:pthl:pth2".

records are separated by a NEW LINE.

OBJECT: execspecl

TYPE: ascii file

DESCRIPTION: Contains the contents of the Execspec for the

associated class. SCOMPILER or $rNTERPRETER

has been replaced by the path to the compiler

under test

File located is in the class directory.

This is a temporary file which will be removed

after execution.

CONSTRAINTS: must be readable

OBJECT: exec_spec2

TYPE: ascii file

DESCRIPTION: Contains the contents of the Execspec for the

associated class. SCOMPILER or SINTERPRETER
has been replaced by the path to the compiler

standard.

File located in the class directory.

This is a temporary file which will be removed

after execution.

CONSTRAINTS: must be readable

OUTPUTS:
ERROR MESSAGES: "Cannot read exec_paths"

"Improper exec_paths format"

"Cannot change directory to directory path"

"Cannot access exec_specl"

"Cannot access exec_spec2"

STATUS MESSAGES: "Running tests for class: dais"

OBJECT: oulputjlata

TYPE: ascii file
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DESCRIPTION: Contains the results of executing the the execspec

files.

CONSTRAINTS: Must be writeable.

File located in the class/compiler directory.

There will be two files per class, one for the

compiler under test, one for the compiler standard.

EFFECT:

If exec_paths cannot be read, then print error message("Cannot read

exec_paths"), return to main menu.

LOOP:

Get a record from exec_paths until no records remain.

If there is no ": " in the record, then print error message("Improper

exec_pafhs format"), return to main menu.

Get the class name.

Get the path to the class and change to that directory.

If cannot change directory, print error message("Cannot change

directory to directory path"), return to

main menu.

If exec_specl is not in the directory, print error message("Cannot access

exec_specl"), continue.

If exec_spec2 is not in the directory, print error message("Cannot access

exec_spec2"), continue.

PrintjnsgC'Running tests for class: class").

Build command line to execute execspecl and trap output in

output_data file (located in compiler under test directory).

Execute command line.

Build command line to execute exec_spec2 and trap output in

output_data file (located in compiler standard directory).

Execute command line.

Change directory to home directory.

SUBACTION: analyze results

INPUTS:

OBJECT: execjraths

TYPE: ascii file

DESCRIPTION: Contains the class, the path to the class

directory (class_pth), the path to the compiler

under test (pthl) and the path to the compiler

standard (pth2).

This is a temporary file which will be removed

after execution.

CONSTRAINTS: must be readable.

Each class to be tested is a record.

Each record is in the form:

"class: class_pth:pthl:pth2".

Records are separated by a NEW LINE.
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OBJECT: output_data

TYPE: ascii file

DESCRIPTION: Contains the results of executing the the exec_spec

files.

CONSTRAINTS: Must be writeable.

File located in the class/compiler directory.

There will be two files per class, one for the

compiler under test, one for the compiler standard

OUTPUTS:
ERROR MESSAGES: "Cannot read execjjaths"

"Improper execjjaths format"

STATUS MESSAGES: "Completed analysis of data"

OBJECT: testanalysis

TYPE: ascii file

DESCRIPTION: Contains the testing analysis.

First line is the user who performed the tests.

Second line is the date.

Third line is the language.

Successive lines are the class being tested, the

compilers used, and a "diff ' of the outputs.

CONSTRAINTS: Must be writeable.

File created in the user's rje directory.

OBJECT: analysis

TYPE: ascii file

DESCRIPTION: Contains the results of performing a "diff on

two output_data files.

CONSTRAINTS: Must be writeable.

File created in the compiler directory of the

compiler under test.

OBJECT: header

TYPE: ascii file

DESCRIPTION: Maintains a record of the following information:

- Person doing the testing

- date of testing

- compiler under test

- compiler standard

- pass/fail status of test run

CONSTRAINTS: Must be writeable

File located in the class directory

EFFECT:
If exec_palhs cannot be read, then print error message("Cannot read

execjjaths"), return to main menu.
Write person performing tests and date into test analysis.

LOOP:

Get a record from execjjaths until no records remain.

If there is no ":" in the record, then print error message("Improper
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exec_paths format"), return to main menu.

Get the class name.

Get the path to the class.

Get the path to both compilers.

Build command line to do a "diff of the two output data

files for the associated class and direct output to analysis

file.

Execute command line.

If analysis file was created, then a difference was detected. Write

"FAILED" into test_analysis.

If analysis file was not created, then no differences were

detected. Write "PASSED" into testanalysis.

Update the header file with applicable data

Write the language being used,, the compilers being tested, the

class, the status, and any differences in output into

test_analysis file.

Prim_sis("Completed analysis of data").

Return to main menu.
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Function REPORT(testanalysis)

ACTION: print analysis of testing results

INPUTS:

OBJECT: testanalysis

TYPE: ascii file

DESCRIPTION: Contains the testing analysis.

First line is the user who performed the tests.

Second line is the date.

Third line is the language.

Successive lines are the class being tested, the

compilers used, and a "diff" of the outputs.

CONSTRAINTS: Must be readable.

File located in the user's rje directory.

OUTPUTS:
STATUS MESSAGE: "The report has been sent to the line printer"

EFFECT: Create a command line to send the test_analysis file to

the printer.

Execute the command line.

Print_sts("The report has been sent to the line printer").

Return to main menu.
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Function RETRIEVE(class)

SUBACTION: prompt user for language.

INPUTS:

OBJECT: language

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: LANGUAGES
TYPE: ascii file

DESCRIPTION: contains name of languages installed

CONSTRAINTS: must be readable

language names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A language or 'q' must be entered"

"The language is not installed"

STATUS MESSAGES: "There are no languages installed"

HELP MESSAGES: A list of installed languages

EFFECT:

If language = q, return.

If language = ?, list languages

in the LANGUAGES file, prompt for language.

If LANGUAGES file does not exist, print status message("There are

no languages installed"), prompt for language.

If language = ' ', print error message("A language or 'q' must
be entered"), prompt for language.

If language is not in LANGUAGES file, print error message("The language

is not installed"), prompt for language.

SUBACTION: prompt user for compiler

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

"The compiler is not installed"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

EFFECT:
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If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.

If compiler = ' ', print error message("A compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file does not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, print error message("The compiler

is not installed"), prompt for compiler.

SUBACTION: prompt user for class.

INPUTS:

OBJECT: class

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

Terminated by a RETURN.
OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be readable

class names are separated by a NEW LINE
OBJECTS: All files in the language/class and compiler/class

directories for the specified language, compiler and class

TYPE: ascii files

DESCRIPTION: contains data associated with the class

CONSTRAINTS: must be readable

OUTPUTS:
ERROR MESSAGES: "A class, or 'q' must be entered"

"The class is not installed"

STATUS MESSAGES: "There are no classes for this language installed"

"All data files have been copied to your rje

directory"

HELP MESSAGES: A list of classes installed.

OBJECTS: All files in the language/class and compiler/class

directories for the specified language, compiler and class.

TYPE: ascii files

DESCRIPTION: contains data associated with the class

CONSTRAINTS: writeable into the user's rje directory.

EFFECT:
If class = q, return to main menu.

If class = ?, list classes in the CLASSES file,

prompt for class.

If CLASSES file does not exist, print status message("There are

no classes for this language installed"), prompt for class.

If class = ' ', print error message("A class or 'q' must be entered"),

prompt for class.
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If class is not in CLASSES file, print error message("The class

is not installed"), prompt for class.

Build command lines to copy all data files for the specified class

into user's rje directory.

Execute command line.

Print_sts("All data files have been copied to your rje directory")

Return to main menu.
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Function DELETE(class)

SUBACTION: prompt user for language.

INPUTS:

OBJECT: language

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: LANGUAGES
TYPE: ascii file

DESCRIPTION: contains name of languages installed

CONSTRAINTS: must be readable

language names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A language or 'q' must be entered"

"The language is not installed"

STATUS MESSAGES: "There are no languages installed"

HELP MESSAGES: A list of installed languages

EFFECT:
If language = q, return.

If language = ?, list languages

in the LANGUAGES file, prompt for language.

If LANGUAGES file does not exist, print status message("There are

no languages installed"), prompt for language.

If language = ' ', print error message("A language or 'q' must

be entered"), prompt for language.

If language is not in LANGUAGES file, print error message("The language

is not installed"), prompt for language.

SUBACTION: prompt user for compiler

INPUTS:

OBJECT: compiler

TYPE: character string (keyboard)

CONSTRAINTS: <=78 ascii characters

terminated by RETURN
OBJECT: COMPILERS
TYPE: ascii file

DESCRIPTION: contains name of compilers installed

CONSTRAINTS: must be readable

compiler names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A compiler or 'q' must be entered"

"The compiler is not installed"

STATUS MESSAGES: "There are no compilers installed"

HELP MESSAGES: A list of compilers installed.

EFFECT:
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If compiler = q, return.

If compiler = ?, list compilers in the COMPILERS file,

prompt for compiler.

If compiler = '

', print error messagefA compiler or 'q' must

be entered"), prompt for compiler.

If COMPILERS file does not exist, print status message("There are

no compilers installed"), prompt for compiler.

If compiler is not in COMPILERS file, print error message("The compiler

is not installed"), prompt for compiler.

SUBACnON: prompt user for class.

INPUTS:

OBJECT: class

TYPE: character string (keyboard)

CONSTRAINTS: <= 78 ascii characters

Terminated by a RETURN.
OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be readable

class names are separated by a NEW LINE
OUTPUTS:
ERROR MESSAGES: "A class, or 'q' must be entered"

"The class is not installed"

STATUS MESSAGES: "There are no classes for this language installed"

"All data files have been copied to your rje

directory"

HELP MESSAGES: A list of classes installed.

OBJECT: CLASSES
TYPE: ascii file

DESCRIPTION: contains name of classes installed

CONSTRAINTS: must be writeable

class names are separated by a NEW LINE
OBJECTS: All files in the language/class and compiler/class

directories for the specified language, compiler

and class.

TYPE: ascii files

DESCRIPTION: contains data associated with the class

CONSTRAINTS: Must be writeable.

EFFECT:
If class = q, return to main menu.

If class = ?, list classes in the CLASSES file,

prompt for class.

If CLASSES file does not exist, print status message("There are

no classes for this language installed"), prompt for class.

If class = ' ', print error message("A class or 'q' must be entered"),
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prompt for class.

If class is not in CLASSES file, print error message("The class

is not installed"), prompt for class.

Build command lines to remove all data files for the specified class

Execute command line.

Return to main menu.
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Function HELP(helpfile)

ACTION: display contents of helpfile

INPUTS:

OBJECT: helpfile

TYPE: ascii file

DESCRIPTION: Contains any helpful information for

the general operation of the system.

CONSTRAINTS: Must be readable.

File located in the root directory of ARTS
EFFECT:

LOOP:

Paginate the display by reading 20 lines of the

helpfile file into the display buffer.

A space reads in another 20 line buffer.

A RETURN reads in a single line.

A 'q' returns to the main menu.
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Function DISPLY(test analysis)

ACTION: display analysis of testing results

INPUTS:

OBJECT: testanalysis

TYPE: ascii file

DESCRIPTION: Contains the testing analysis.

First line is the user who performed the tests.

Second line is the date.

Third line is the language.

Successive lines are the class being tested, the

compilers used, and a "diff ' of the outputs.

CONSTRAINTS: Must be readable.

File located in the user's rje directory.

EFFECT:

LOOP:
Paginate the testing results by reading 20 lines of the

test_analysis file into the display buffer.

A space reads in another 20 line buffer.

A RETURN reads in a single line.

A 'q' returns to the main menu.



APPENDIX B

ARTS Source Code

#

# ARTS - Automated Regression Test System

#

# Execute "make" to build ARTS
# Note: LIB must be set to -ltermlib for BSD machines

#

OFTLES= main.o buildwin.o mainw.o installw.o deletew.o

retrievw.o selectw.o execute.o more.o function.o

reporto install.o retrieve.o delete.o select.o

post_exec.o

CFILES= main.c buildwin.c mainw.c installw.c deletew.c

retrievw.c selectw.c execute.c more.c function.c

reporLc install.c retrieve.c delete.c selectx

postexec.c

HF1LES= arts.h header.h

# Set LIB to -ltermlib for BSD machines

LIB=-lcurses

arts: $(OFILES)

cc -x -o arts $(OFILES) $(LIB)

main.o: main.c $(HFILES)

cc -s -c -w main.c

mainw.o: mainw.c $(HFILES)

cc -s -c -w mainw.c

buildwin.o: buildwin.c SfHFILES)

cc -s -c -w buildwin.c

installw.o: installw.c $(HFILES)

cc -s -c -w installw.c

retrievw.o: retrievw.c $(HFILES)

cc -s -c -w retrievw.c

selectw.o: selectw.c $(HFILES)

cc -s -c -w selectw.c
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deletew.o: deletewx $(HFILES)

cc -s -c -w deletew.c

more.o: more.c $(HFILES)

cc -s -c -w more.c

execute.o: execme.c $(HFTLES)

cc -s -c -w executex

function.o: functions $(HFTLES)

cc -s -c -w function.

c

report.o: reportx $(HFILES)

cc -s -c -w reportx

install.o: install.c S(HFILES)

cc -s -c -w install.c

delete.o: deletex $(HFILES)

cc -s -c -w deletex

retrieve.o: retrieve.c $(HFTLES)

cc -s -c -w retrievex

select.o: selectx $(HFILES)

cc -s -c -w selectx

post_exec.o: postexecx $(HFTLES)

cc -s -c -w postexec.c
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*

* arts.h

*

* This header file is common to all source files

•

* The PRINTCMD variable may be changed to suit the

* local environment.

#include <stdio.h>

#include <signal.h>

#include <ctype.h>

((include <sys/types.h>

#includc <sys/dir.h>

((include <sys/stat.h>

#include <curses.h>

#define tmpfile "Amp/artsXXXXXX"
#define LINESZ 80

#define PRINTCMD "opr"

int onintrptO;

/I******************************************************

*

* header.h

*

* This header file is common to all source files except

* main.c
*

extern WINDOW *mainwin; /* main menu window */

extern WINDOW "instalwin; /* installation form window */

extern WINDOW *deletewin; /* deletion form window */

extern WINDOW Tetrievewin; I* retrieval form window */

extern WINDOW 'selectwin; /* selection form window */

extern WINDOW *contentwin; /* contents form window */

extern WINDOW *errorwin; /* error message window */

extern WINDOW *statuswin; /* status message window */

extern WINDOW *scrolwin; /* scrolling window */
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extern char langpthQ;

extern char comp_pth[];

extern char comp_pth2Q;

extern char classpthlQ;

extern char classpth2Q;

extern char exec_paths[];

extern char "root;

extern char *home;
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* main.c - ARTS main module
*

* Sets various path variables and initializes the windows.
•

ft***************************************************/

#include "arts.h"

I* Funny characters which can be used in a path name */

char *allowc = "!$%"&-_+= :.";

char lang[LINESZ];

char langpth[LINESZ]; I* root/langdir */

char compiler[LINESZ];

char comp_pth[LINESZ]; /* root/langdir/compdir */

char comp_pth2[LINESZ]; /* compiler standard */

char classfLINESZ];

char classpthl [256]; I* root/langdir/clsdir */

char classpth2[256]; /* root/langdir/compdir/clsdir */

char exec_paths[LINESZ]; /* execution paths file •/

char *getenvO;

char "root; /* ARTS file system root */

char *home; I* user's home directory */

char 'strchrO;

int Row, Col;

WINDOW 'mainwin; I* main menu window */

WINDOW *instalwin; /* installation form window */

WINDOW *deletewin; /* deletion form window */

WINDOW *retrievewin; /* retrieval form window */

WINDOW *selectwin; /* selection form window */

WINDOW *errorwin; /* error message window */

WINDOW *statuswin; /* status message window */

WINDOW *scrolwin; /* scrolling (overlayed) window •/

mainO

{

FILE *fptr;

char resp;

if((root = getenv("ARTS")) = NULL)
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{

printf("ARTS path is not seta");

exit(l);

}

if((home = getenv("HOME")) » NULL)

{

printf("HOME path is not set\n");

exit(l);

}

sprinif(exec_paths,"%s/exec_paths'',root);

if((access(exec_paths,0)) = 0)

tinlink(exec_palhs);

signal(SIGINT,onintrpt);

signa](SIGHUP,onintrpt);

initscrO; /* Standard Curses initialization */

scrolwin = newwin(22,COLS,0,0); f create overlay window */

errorwin = newwin(l,COLS,LINES - 1,0); /* create error message window */

statuswin = newwin(l,COLSLINES - 2,0); /* create status message window */

mainwin = newwin(22,COLS,0,0); I* creat the main window •/

instalwin = newwin(20,COLS,0,0); I* create the installation window */

deletewin = newwin(l 1,COLS,5,0); /* create the deletion window */

retrievewin = newwin(ll,COLS,5,0); /* create the deletion window */

selectwin = newwin(21,COLS,l,0); I* create the deletion window */

mainwQ; I* call the main menu */

}
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* buildwinx - build windows used by ARTS
*

* This module contains the functions bldmainwin,

* bldinstalwin, blddeletewin, bldretrievewin and

* bldselectwin

#

******************************************************

i

#include "arts.h"

#include "header.h"

bldmainwinO /* build the main window */

{

wmove(mainwin,4,COLS - 50);

waddstr(mainwin,"ARTS MAIN MENU");
wmove(mainwin,7,COLS - 75);

waddstr(mainwin,"TAB the cursor to the desired option");

wmove(mainwin,8,COLS - 75);

waddstr(mainwin,"Enter V to select the option");

wmove(mainwin,10,COLS - 65);

waddstr(mainwin,"[ ] Install test cases");

wmove(mainwin,ll,COLS - 65);

waddstr(mainwin,"[ ] Select test cases for execution");

wmove(mainwin,12,COLS - 65);

waddstr(mainwin,"[ ] Begin test run");

wmove(mainwin,13,COLS - 65);

waddstr(mainwin,"[ ] Install execution specification");

wmove(mainwin,14,COLS - 65);

waddstr(mainwin,"[ ) Display testing results");

wmove(mainwin,15,COLS - 65);

waddstr(mainwin,"[ ] Generate report of testing results");

wmove(mainwin,16,COLS - 65);

waddstr(mainwin,"[ ] Retrieve test case data files");

wmove(mainwin,17,COLS - 65);

waddstr(mainwin,"[ ] Delete class of test cases");

wmove(mainwin,18,COLS - 65);

waddstr(mainwin,"[ ] Help");

wmove(mainwin,19,COLS - 65);

waddstr(mainwin,"[ ] Exit ARTS");

}

bldinstalwinO /* build the installation form */

{

box(instalwin,'*Y*');
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wmove(instalwin , 1 ,29)

;

waddstr(instalwin,"ARTS INSTALLATION FORM");
wmove(instalwin,4,5);

waddstr(instalwin,"Enter the data and press RETURN
Cq' to quit, '?' for help)");

}

blddeletewinO I* build the deletion form */

{

box(deletewin,'*','*');

wmove(deletewin,l,29);

waddstr(deletewin,"ARTS DELETION FORM");

wmove(deletewin,4,5);

waddstr(deIetewin,"Enter the data and press RETURN
('q' to quit, '?' for help)");

}

bldretrievewinO f build the retrieval form */

{

box(retrievewin, '*','*');

wmove(relrievewin, 1 ,29);

waddstr(retrievewin,"ARTS RETRIEVAL FORM");

wmove(retrievewin,4,5);

waddstr(retrievewin,"Enter the data and press RETURN
Cq' to quit, '?' for help)");

}

bldselectwinO I* build the selection form */

{

boxtselectwin,'"" ,'*');

wmove(selectwin, 1,29);

waddstr(selectwin,"ARTS SELECTION FORM");
wmove(selectwin,4,5);

waddstr(selectwin,"TAB the cursor to the desired 6eld");

wmove(selectwin,5,5);

waddstr(selectwin,"Enter the data and press RETURN
Cq' to quit, '?' for help)");

}
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********J¥**************************m***#*»****************

* delete.c - delete files and directories associated with

* a given class.

*

* This module contains the function dclas.

* All data files for

* the "class" argument are deleted.

* The class directories are also deleted.
*

* This function expects to have the langpth already set

* If an error is detected, a "1" is

* returned; otherwise a "0" is returned.

a************************************************************/

#include "ans.h"

#include "header.h"

dclas(class)

char *class;

{

FILE *rptr;

FILE *wptr;

char buf[256];

char dir[LINESZ];

char rpath[LINESZ]; /* read path */

char wpath[LINESZ]; /* write path */

char line[LINESZ];

inl gotclass;

lower(class); /* convert all classs to lower case */

strcpy(dir,class);

convert(dir); I* convert class name to directory name */

sprintf(rpath,"%s/CLASSES"Jangpth);

if((rptr = fopen(rpath,"r"))=NULL) /* no class file exists */

{

errormsg("No class file exists for Ihe language");

retum(l);

}

f classs file exists */

sprintf(wpath,"%s/newclass",langpth);

signa!(SIGINT,SIG_IGN);
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wptr = fopen(wpath,"w");

gotclass = 0;

while((fgets(lineJ.INESZfl)tr)) != NULL)

{

line[strlen(line) - 1] = N)'; I* get rid of NL */

if(strcmp(line,class) = 0) /* class is in do */

{

sprintf(buf,"rm -fr %s/%s",langpth,dir);

system(buf); /* remove the class directory */

got_class = 1;

}

else

fprintf(wptr,"%s\n",line);

}

fclose(rptr);

fclose(wptr);

if(!goi_class) f class was not found in class file */

{

sprintf(buf,"The class %s is not installed for the language" .class);

unlink(wpath);

signal(SIGINT,onintrpt);

errormsgfbuf);

retum(l);

}

I* create a new class file with the deleted class removed */

sprintf(buf,"mv %s %s",wpath,rpath);

system(buO;

I* We now need to get each compiler path and delete the */

/* directory for the associated class */

sprintffrpath,"%s/COMPILERS " Jangpth);

if((rptr = fopen(rpalh,"r"))=NULL) I* no compiler file exists */

{

errormsgO'No compilers file exists for the language");

signal(SIGINT,onintrpt);

return(l);

}

while((fgels(line,LINESZ,rptr)) != NULL)

{

line[strlen(line) - 1] = ^0'; /* get rid of NL */

sprintf(buf,"rm -fr %s/%s/%s",langpth,line,dir);

system (buf);

}

fclose(rptr);
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signal(SIGINT,onintrpt);

return(0);

)
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#include "arts.h"

#include "header.h"

***********************************************************

* deletew.c - ARTS deletion window

* Get the language, compiler and class to be

* deleted and call dclas to delete all files

* and directories associated with the class

*************************************************************/

deletewO

{

FILE *fptr;

char resp[LHMESZ];

char buf[LINESZ];

inl row;

blddeletewinO; I* build the deletion window */

cbreakO;

nlO;

noechoO;

wclear(mainwin);

wrefresh(mainwin);

for(;;) /* get the language */

{

wmove(deletewin,7,2);

waddstr(deletewin,"Enter language: ");

wclrtoeol(deletewin);

box(deletewin,'*','*');

wrefresh(deletewin);

mywgetstr(deletewinjesp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = \1') /* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = ^3') /* list languages */

{

sprintf(buf,"%s/LANGUAGES"joot);

if((fptr = fopen(buf,"r")) = NULL)

{

statusmsgC'There are no languages installed");

continue;

}
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overwrite(deletewin,mainwin);

wclear(delelewin);

wmove(deletewin,l,5);

waddstr(delelewin,"lnslalled languages:");

row = 3;

wnile((fgeis(bufJ-INESZJptr)) != NULL)

{

wmove(deletcwin,row++ , 1 )

;

waddstr(deletewin,buf);

}

fclose(fptr);

row++;

wmove(delelewinjow++,5);

waddstr(deleiewin,"Press any key 10 continue");

wrefresh(deletewin);

wgetch(deletewin);

overwrite(mainwin,deletewin);

wclear(mainwin);

wrefresh(deletfiwin);

continue;

}

else if(resp[0] = "\0') I* RETURN was entered */

{

errormsgO'A language or 'q' must be entered");

continue;

}

if((glang(resp)) != 0) /* retrieve the language */

continue; /* A failure occurred */

break;

}

for(;;) /* get the class */

{

wmove(deletewin,8,2);

waddstr(deletewin,"Enter class: ");

wclrtoeol(deletewin);

boxfdeletewin,'
*

'

, '*
');

wrefresh(deletewin);

mywgetstr(deletewin/esp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = X)') I* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = "\0') I* hst classes */

{

sprintf(buf,"%s/CLASSES"Oangpth);

if((fptr = fopen(buf,"r")) == NULL)
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{

statusmsgO'There are no classes for this language installed");

continue;

}

overwrite(deletewin,mainwin);

wclear(deletewin);

wmove(delelewin,l,5);

waddstr(deletewin,"Installed classes:");

row = 3;

while((fgets(bufJLINESZ,rptr)) != NULL)

{

wmove(deIetewin,row++,l);

waddstr(deletewin,buf);

}

fclose(fptr);

row++;

wmove(deletewin/ow++,5);

waddstr(deletewin,"Press any key to continue");

wrefresh(deletewin);

wgetch(deletewin);

overwrite(mainwin,deletewin);

wclear(mainwin);

wrefresh(deletewin);

continue;

}

else if(resp[0] = 'NO') f RETURN was entered */

{

errormsgC'A class or 'q' must be entered");

continue;

}

if((dclas(resp)) != 0) /* delete the class */

continue; I* A failure occurred */

break;

}

sprintf(buf,"The class %s has been deleted" /esp);

statusmsg(buf);
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* executex - start the execution of a test run
*

* This function requires an exec_paths file to have

* been previously built by the select function.
*

* The .exec_specl and .exec_spec2 files are used as

* execution scripts for the shell. The shell executes

* these scripts and redirects all output to the

* output_data file for both compilers. The .execspec
* files are removed after execution.
*

* The postexec routine is called after execution of

* the scripts.

*

* A "1" is relumed on a failure from this function;

* otherwise, a "0" is returned.

*

ft********************************************************/

flinclude "arts.h"

#include "header.!)"

#include <pwd.h>

executeO

{

struct stat stbuf;

FHJB*rptr;

char line[256];

char cur_dir[LINESZ];

char class[LEMESZ];

char execj>th[LrNESZ]; /* path to the .execspec dir */

char c_u_tst[LINESZ]; /* path to compundertst dir */

char c_std[LINESZ]; /* path to compstd dir */

I* Get the current directory. Ugh!!!!!!! •/

sBcpy(line,"pwd > /tmp/ARTS");

system(line);

rptr = fopen("/tmp/ARTS","r");

fgets(cur_dirLINESZ,rptr);

fclose(rptr);

unlink("/imp/ARTS");

if((rptr = fopen(exec_paths,"r")) == NULL)

{

sprintf(line,"Cannot read %s",exec_paths);

errormsg(line);
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return(l);

}

while((fgets(line,256,rptr)) != NULL)

{

/* line[strlen(line) -1] = "&; */

iftstrchrCline/:') == NULL)

{

eirormsgCImproper exec_paths format");

fclose(rptr);

return(l);

}

strcpy(class,smok(line,":"));

strcpy(exec_pth,smok(NULL,":"));

strcpy(c_u_lswtnok(NULL,":"));

strq>y(c_std,slrtok(NULL,"\n"));

if(chdir(exec_pih) != 0)

{

fclose(rptr);

sprintf(line,"Cannot chdir to %s",exec_pth);

errormsg(line);

return(l);

}

if(stat(c_u_tst, &slbuf) = -1) I* directory does not exist */

{

signal(SIGINT,SIG_IGN);

sprintf(line,"mkdir %s",c_u_tst);

system(line);

signal(SIGINT,onintrpt);

}

if(stat(c_sid, &stbuf) == -1) f directory does not exist */

{

signal(SIGINT,SIG_IGN);

spriritf(line,"mkdir %s",c_sld);

system(Iine);

signal(S!GINT,onintrpt);

}

if((access(".exec_specl",0)) != 0)

{

strcpy(line,"Cannot access .exec_specl, continuing");

errormsg(line);

continue;

}

sprintf(line,"Running tests for class: %s..." .class);

statusmsg(line);

sprintf(line,"sh .execspecl 1> %s/output_data 2>&l",c_u_tst);

system(line);
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unlink(" .exec_spec 1
");

if((access(".exec_spec2",0)) != 0)

{

strcpy(line,"Cannot access .exec_spec2, continuing");

errormsg(line);

continue;

}

sprintf(line,"sh .exec_spec2 1> %s/output_data 2>&r,c_sld);

system (line);

unlink(".exec_spec2");

}

fclose(rptr);

chdir(curdir);

post_exec0; I* Call the post execution routine */

return(O);

}
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*

* function. c - contains various miscellaneous functions

tit***************************************************/

#include "arts.h"

#include "header.h"

* Gel a string from the window. The wgetstr function

* provided with Curses did not do what I wanted it to

* do, so I had to write my own.
******************************************************

i

mywgetstr(win,buf)

WINDOW *win;

char *buf;

{

char *p;

inl c;

int y, x;

int old_y, old_x;

int i = 0;

int erasec, killc;

erasec = erasecharO;

killc = killcharO;

getyx(win,old_y,old_x);

getyx(win,y,x);

while((c = wgetch(win)) != \\')

{

if(c == erasec)

{

if(old_x < x)

{

wmove(win,y,--x);

wcirtoeol(win);

box(win, '*','*');

buf--;

wrefresh(win);

}

}

else if(c = killc)

{
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while(old_x < x)

{

wmove(win,y,~x);

buf-;

}

wclnoeol(win);

box(win,'*','*');

wrefresh(win);

}

else

{

waddch(win,c);

x++;

•buf = c;

buf++;

wrefresh(win);

}

}

*buf = \)';

}

errormsg(str) f* Display a message in the error message

window */

char *str,

{

wstandout(errorwin);

wmove(errorwin,0,0);

wclnoeol(errorwin);

wrefresh(errorwin);

waddstr(errorwin,str);

wrefresh(errorwin);

putchar(7);

}

statusmsg(str) f Display a message in the status window */

char *str;

{

wstandout(statuswin);

wmove(statuswin,0,0);

wclrtoeol(statuswin);

wrefresh(statuswin);

waddstr(statuswin,str);

wrefresh(siatuswin);

putchar(7);
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}

clearstatO /* Clear the status window */

{

wmove(statuswin,0,0);

wclrtoeol(statuswin);

wrefresh(stauiswin);

}

clearerrorO I* Clear the error message window */

{

wmove(errorwin,0,0);

wclrtoeol(errorwin);

wrefresh(errorwin);

}

r
Directory paths for each language will be built using the language

as a directory name. No wild-card or white-space characters or allowed.

These characters will be substituted for a dash.

The maximum length of a name is limited to 14 characters.

*/

convert(buf)

char *buf;

{

extern char "allowc;

char *pl, *p2;

int i;

pi = buf;

for(i=0:*pl != "W && i != 13;pl++,i++)

{

p2 = allowc;

/* Test for allowable characters */

if(isalnum(*pl))

continue;

while(*p2++ != ^O')

{

if(*p2 == *pl)

break;

}

if(*p2 = ^0') I* the character was not found */

•pi = •_';

}

•pi = "O*:

}
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lower(buf) /* Convert a string to lower case characters */

char *buf;

{

char *pl;

chare;

pi = buf;

whilefpl != "W)

{

if(isupper(*pl)) /* convert only upper case letters */

{

c = tolower(*pl);

*pl = c;

}

pl++;

}

}

* This functions checks strl to determine if the pattern str2

* is in it. It returns a if yes, a 1 if no.

match(strl,str2)

char *strl, *str2;

{

char "pi, *p2, *p3;

pi = strl;

while(*pl)

{

if(*pl == •str2)

{

p2 = pi;

p3 = su-2;

while(*p2++ == *p3++)

{

if(*p3 == -NO')

retum(O);

}

}

pl++;

}

retum(l);
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* This function is used to search a siring for a pattern

* and replace the pattern with a new pattern.

***********************4*********#*»***********************•*••*/

replace(Iine,pai,new_pat)

char "line, *pat, *new_pat;

{

char »pl, »p2, *p3;

char *save_pl;

charbuf[256];

int i, got_pal;

if(match(line,pat) != 0) /* pattern is not in the line */

return;

pi = line;

got_pat = 0;

i = 0;

whilefpl)

{

if(»pl == »pat && !got_pat)

{

p2 = pl;

p3 = pat;

while((*p2++ = *p3++) &.& !got_pat)

{

if(*p3 == ^0')

{

pi = p2;

while(*new__pat)

buf[i++] = *new_pat++;

got_pat = 1;

break;

>

}

buf[i++] = *pl++;

}

else

buf[i++] = *pl++;

}

bufli++] = 'NO';

strcpyOine.buf);

return;

}
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Reset the ny states to their original values and exit.

*************>(<***#********************•*************•********•*/

onintrptO

{

signal(SIGDNT,SIG_IGN);

if((access(exec_paths,0)) = 0)

unlink(execjaths);

mvcur(0,COLS-l,LINES-l,0);

endwinO;

exit(0);

}
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***********************************************************

* installx - Install test cases in the file system
*

* This file contains the functions ilang, icomp, and iclas.

* These functions handle the installation of the argument.

* The date and the user id of the person installing the

* test cases is placed in the "classjog" file associated

* with the installed class.

*

* The following global variables are set in these functions:

* langpth - current language directory

* comp_pth - current compiler directory

* classpthl - current class directory at the language level

*

* If an error is detected, a "1" is

* returned; otherwise a "0" is returned.

*

a**********************************************************/

((include "arts.h"

^include "header.h"

#include <pwd.h>

struct stat slbuf;

*

* This function handles installation of all languages

* The language pointer points to the language string

******************************************»******************/

ilang(language)

char *ianguage;

{

FILE *fptr;

char buf[LINESZ];

char fpath[LINESZ];

char line[LINESZ];

lower(language); /* convert all languages to lower case */

strcpy(buf.language);

convertfbuf); /* convert language name to directory name */

sprintf(langpth,"%s/%s",root,buf);
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if(stat(root, &stbul) == -1) /* directory does not exist */

{

signaI(SIGINT,SIG_IGN); /* Ignore interrupts */

sprintf(buf,"mkdir %s",root);

system(buf);

signaI(SIGINT,onintrpt);

}

sprintf(fpath,"%sA-ANGUAGES"^oot);

if((fptr = fopen(fpath,"r"))=NULL) f no language file exists */

{

signal(SIGINT,SIG_IGN); I* Ignore interrupts */

fptr = fopen(fpath,"w");

fprintf(fptr,"%s\n"Janguage);

sprintf(buf,"mkdir %s",langpth);

system (buf);

fclose(fptr);

signaI(SIGINT,onintrpt);

return(O);

}

else I* languages file exists */

{

while((fgets(line,LINESZ,fptr)) != NULL)

{

line[strlen(line) - 1] = "\0'; I* get rid of NL */

if(strcmp(line,language) = 0) /* language is in db */

{

fclose(fptr);

return(O);

}

}

}

fclose(fptr);

if(stat(langpth, &stbuf) == -1) f directory does not exist */

{

signal(SIGINT,SIG_IGN); I* Ignore interrupts */

sprintf(buf,"mkdir %s"Jangpth);

system(buf);

signal(SIGINT,onintrpt);

}

else

{

errormsgC'Language name conflict. Choose another name");

retum(O);

}

signal(SIGINT,SIG_IGN); /* Ignore interrupts */

fptr = fopen(fpath,"a");
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fprintf(fptr," %s\n" Janguage);

fclose(fptr);

signaI(SIGINT,onintrpt);

return(O);

}

*

• This function handles installation of all compilers

* The compiler pointer points to the compiler string

**********************************************«**************/

icomp(compiler)

char 'compiler;

{

FILE •fptr;

char buf[LINESZ];

char fpath[LINESZ];

char line[LDMESZ];

lower(compiler); /* convert all languages to lower case */

strcpy(buf.compiler);

convert(buf); /* convert compiler name to directory name */

sprintf(comp_pth,"%s/%s"Jangpth,buf);

sprintf(fpath,"%s/COMPILERS",langpth);

if((fptr = fopen(fpath,"r"))=NULL) /* no compiler file exists */

{

signal(SIGINT,SIG_IGN); /* Ignore interrupts */

fptr = fopen(fpath,"w");

fprintf(fptr," %s\n ".compiler);

sprintf(buf,"mkdir %s"^:omp_pth);

system(buf);

fclose(fptr);

signal(SlGINT,onintrpt);

retum(O);

}

else /* COMPILERS file exists */

{

while((fgets(line,LINESZ,fplT)) != NULL)
{

line[s(rlen(line) - 1] =
,

\0'; /* gel rid of NL */

if(strcmp(line,compiler) = 0) /* compiler is in db */

{

fclose(fptr);

retum(O);
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}

}

}

fclose(fptr);

if(stat(compjuii, &stbuf) == -1) /* directory does not exist */

{

signal(SIGINT,SIG_IGN); I* Ignore interrupts */

sprintf(buf,"mkdir %s",comp_pth);

system (buf);

signal(SIGINT,onintrpt);

}

else

{

errormsg("CompiIer name conflict. Choose another name");

retum(O);

}

signal(SIGINT,SIGJGN); I* Ignore interrupts */

fptr = fopen(fpath,"a");

fprintf(fpu,"%s\n",compiler);

fclose{fptr);

signal(SIGINT,onintrpt);

retum(O);

/•a******************************************************

*

* This function handles installation of all classes

* The class pointer points to the class string

*************************************************************

iclas(class)

char *class;

{

FILE *fptr;

char buf[LINESZ];

char fpath[LINESZ];

char linefLINESZ];

lower(class); /* convert all classs to lower case */

strcpy(buf.class);

convertfbuf); I* convert class name to directory name */

sprintf(classpthl,"%s/%s",langpth,buf);

sprintf(fpath,"%s/CLASSES"4angplh);

if((fptr = fopen(fpath,"r"))=NULL) /* no class file exists •/

{
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signal(SIGINT,SIG_IGN); /* Ignore interrupts */

fptr = fopen(fpath,"w");

fprintf(fptr,"%s\n",class);

fclose(fptr);

sprintf(buf,"mkdir %s",classpthl);

system(buf);

signal(SIGINT,onintrpt);

retum(O);

}
else /* classs file exists */

{

whue((fgets(lineLrNESZ,fptr)) != NULL)

{

line[slrlen(line) - 1] = "*'; I* get rid of NL */

if(strcmp(line,class) = 0) /* class is in db */

{

fclose(fptr);

return(O);

}

}

}

fclose(fptr);

if(stat(classpthl, Ssibuf) = -1) /* directory does not exist */

{

signal(SIGINT,SIG_IGN); I* Ignore interrupts */

sprintf(buf,"mkdir %s",classpthl);

system(buO;

signal(SIGINT,onintrpt);

}

else

{

errormsgC'Class name conflict. Choose another name");

retum(O);

}

signal(SIGINT,SIG_IGN); /* Ignore interrupts */

fptr = fopen(fpath,"a");

fprintf(fptr,"%s\n",class);

fclose(fptr);

signal(SIGINT,onintrpt);

retum(0);

}
I************ ****** ********** *****************************

* This function handles installation of the c!ass_log info.

* The classlog info is the person installing the test cases

* and the date.
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* The class pointer points to the class string

*************************************************************/

iheadO

{

long timeO;

char *ctimeO;

FILE*fptr;

char buf[LINESZ];

char 'getloginO;

char *name, *date;

long timeO;

long 'clock;

name = getloginO; f get the login id of the user */

sprintf(buf,"%s/class_log",classpthl);

signal(SIGINT,SIG_IGN); f Ignore interrupts */

fptr = fopen(buf,"a");

rbrintfffDtr "********************************************\n "y

fprintf(fptr,"lnstalled by: %s\n",name);

clock = time((long *) 0);

date = ctime(&clock);

fprintf(fptr,"%s\n",date);

fprintiYfptr "********************************************\n "y

fclose(fptr);

signal(SlGrNT,onintrpt);

return(O);

}
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tfinclude "arts.h"

#include "header.h"

***********************************************************

* installw.c - ARTS installation window.
*

* fig is passed as a parameter to this function.

* flg = then standard installation

* flg = 1 then install exec__spec only
*

*************************************************************/

installw(flg)

int flg;

{

FILE *fptr;

int row, r;

int got_compiler, got_test_cases;

char resp[LINESZ];

char buf[256];

char line[LINESZ];

char flle[LINESZ];

char path[LINESZ];

char compiler! 15];

char suffix[15];

char t_cases[15];

bldinstalwinO; I* build the installation window */

cbreakO;

nlO;

noechoO;

wclear(mainwin);

wrefresh(mainwin);

row = 7;

for(;;) /* get the language */

{

wmove(instalwin,row,2);

waddstr(instalwin,"Enter language; ");

wclrtoeol(instalwin);

DOx(instalwin,'*y*');

wrefresh(instalwin);
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mywgetstr(instalwin,resp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = "©') /* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = "V)') /* list languages */

{

sprintf(buf,"%s/LANGUAGES"joot);

if((fptr = fopen(buf,"r")) = NULL)

{

statusmsgCThere are no languages installed");

continue;

}

overwrite(instalwin,mainwin);

wclear(instalwin);

wmove(instalwin, 1 ,5);

waddstr(instalwin,"Installed languages:");

r = 3;

while((fgets(buf,LINESZ,fptr)) != NULL)

{

wmove(instalwin,r++,l);

waddstr(instalwin,buf);

}

fclose(fptr);

r++;

wmove(instalwin,r++,5);

waddstr(instalwin,"Press any key to continue");

wrefresh(instalwin);

wgelch(instalwin);

overwrite(mainwin,instalwin);

wclear(mainwin);

wrefresh(instalwin);

continue;

}

else if(resp[0] = "NO') /» RETURN was entered */

{

errormsgC'A language or 'q' must be entered");

continue;

}

if(flg && (glang(resp) != 0)) /• get the language */

continue; /* A failure occurred */

else if((ilang(resp)) 1= 0) /* install the language */

continue; /* A failure occurred •/

row++;

break;
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for(;;) /* install the compiler */

{

wmove(instalwin,row,2);

waddstr(instalwin,"Enter compiler: ");

wclrtoeol(instalwin);

box(instalwin, '*','*');

wrefresh(instalwin);

mywgetstr(instalwin,resp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = ^0') I* return to main menu */

return;

else if(resp[0] = T && resp[l] = "V)') /* list compilers */

{

sprintf(buf,"%s/COMPILERS
-

',langpth);

if((fptr = fopen(buf,"r")) == NULL)

{

statusmsgC'There are no compilers for this language installed");

continue;

}

overwrite(instalwin,mainwin);

wclear(instalwin);

wmove(insta!win,l,5);

waddstr(instalwin,"Installed compilers:");

r = 3;

while((fgets(buLLINESZ,fptr)) != NULL)

{

wmove(instalwin,r++,l);

waddstr(instalwin,buf);

}

fclose(fpti);

r++;

wmove(instalwinj++,5);

waddstr(instalwin,"Press any key to continue");

wrefresh(instalwin);

wgetch(instalwin);

overwrite(mainwin,instalwin);

wclear(mainwin);

wrefresh(instalwin);

continue;

}

else if(resp[0] = "^0') /* RETURN was entered */

{

errormsg("A compiler or 'q' must be entered");

continue;

}

if(flg && (gcomp(resp) != 0)) /* get the compiler */
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continue; /* A failure occurred */

else if(icomp(resp) != 0) /* install the compiler */

continue; /* A failure occurred */

strcpy(compiler,resp);

lower(compiler); /* convert the compiler to lower case */

row++;

break;

ye**********************************************************

* We must now check the compiler_info file for the compiler
* If it is not there, we must prompt for a path to the

* compiler and append the compiler and path in the file.

gotcompiler = 0;

sprintf(buf,"%s/COMPILER_INFO"/oot);

if((fptr = fopen(buf,"r")) != NULL)

{

while(fgets(lineLINESZ,fptr) != NULL)

{

if(strcmp(compiler,(stnokCJine,":"))) = 0)

{

strtok(NULL,":"); /* don't need the path */

strcpy(suffix,(strtok(NULL,'\r)));

gotcompiler = 1;

break;

}

}

fclose(fptr);

}

if(!got_compiler && !flg) f compiler was not found */

{

for(;;) /* get the path to the compiler */

{

wmove(instalwin,row,2);

waddstr(instalwin,"Enter path to compiler: ");

wclrtoeol(instalwin);

box(instalwin, '•','*');

wrefresh(instalwin);

mywgetstr(instalwinjesp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = •V)')

return;

else if(resp[0] = '?' &,& resp[l] = N)')

{
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stalusmsgC'Emer the full UNIX path to the compiler");

continue;

}

else if(resp[0] = r
\0')

{

errormsgO'A path or 'q' must be entered");

continue;

}

else if((access(resp,0)) != 0)

{

sprintf(buf,"Cannot access %s"jesp);

errormsg(buf);

continue;

}

strcpy(pathjesp);

row++;

break;

}

}

if(!got_compiler &.& !flg)

{

for(;;) /* gel the suffix required by the compiler */

{

wmove(instalwin,row,2);

waddstr(instalwin,"Test case file suffix (if any): ");

wclrtoeol(instalwin);

box(instalwin, '*','*');

wrefresh(instalwin);

mywgetstr(instalwin,resp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = -XT)

return;

else if(resp[0] = T && resp[l] = "VO')

{

statusmsgC'Enter any suffix Xeg. x\) which may be needed");

continue;

}

strcpy(suffix^esp);

break;

}

sprintf(buf,"%s/COMPILER_INFO"j-oot);

signal(SIGINT.S IGJGN);
fptr = fopen(buf,"a");

fprintf(fptr,"%s:%s:%s\n",compiIer,path,suffix);

fclose(fptr);

signal(SIGINT,onintrpt);
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row++;

}

sprtotf(t_cases,"test_cases%s",sufnx);

for(;;) I* get (he class */

{

wmove(instalwin,row,2);

waddstr(instalwin,"Enter class: ");

wclrtoeol(instalwin);

box(instalwin, '*',**');

wrefresh(instalwin);

mywgetstr(instalwin,resp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = "NO') I* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = "\0') /* list classes */

{

sprintf(buf,"%s/CLASSES"Jangpth);

if((fptr = fopen(buf,"r")) == NULL)

{

statusmsg(
M
There are no classes for this language installed");

continue;

}

overwrite(instalwin,mainwin);

wclear(instalwin);

wmove(instalwin.l,5);

waddstr(instalwin,"Installed classes:");

r = 3;

whUe((fgets(bufi.INESZ,fptr)) J= NULL)

{

wmove(instalwin/++,l);

waddstr(instalwin,buf);

}

fclose(fptr);

r++;

wmove(instalwin,r++,5);

waddstr(instalwin,"Press any key to continue");

wrefresh(instalwin);

wgetch(instalwin);

overwrite(mainwin,instalwin);

wclear(mainwin);

wrefresh(instalwin);

continue;

}

else if(resp[0] — W) /* RETURN was entered */
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{

errormsg("A class or 'q' must be entered");

continue;

}

if((iclas(resp)) 1= 0) I* install the class */

continue; /* A failure occurred */

row++;

break;

}

for(;;) /* get the test case file */

{

if(flg) I* exec_spec only is being installed */

break;

wmove(instalwin,row,2);

waddstr(instalwin,"Test case file: ");

wclnoeol(instalwin);

box(instalwin,'*','*');

wrefresh(instalwin);

mywgetstr(instalwinjesp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = "W) /* return to main menu */

return;

else if(resp[0] = T && resp[l] = "NO')

{

statusmsg("Enter name of file which contain your test cases");

continue;

}

else if(resp[0] = *&)

{

errormsg("A test case file or 'q' must be entered");

continue;

}

if((fptr = fopen(resp,"r")) = NULL)

{

sprintf(buf,"Cannot read %s"/esp);

errormsgfbuf);

continue;

}

fclose(fptr);

signal(SlGrNT,SIG_IGN);

I* copy the test case file into the ARTS file system */

sprintf(buf,"cp %s %s/%s",resp,classpthl,t_cases);

system(buf);

signal(SIGINT,onintrpt);
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strcpy(file/esp);

row++;

break;

}

for(;;) /* get any input data */

{

if(flg) I* execspec only is being installed */

break;

wmove(instalwin,row,2);

waddstr(instalwin,"Input data file (if any); ");

wclrtoeol(instalwin);

box(instalwin, '*','*');

wrefresh(instalwin);

mywgetstr(instalwinjesp);

clearenorO;

if(resp[0] == 'q' && resp[l] = "V)')

return;

else if(resp[0] = '?' && resp[l] = ,
\0')

{

statusmsg("Enter name of file which contain your input data");

continue;

}

else if(resp[0] = ~W)
break;

if((fptr = fopen(resp,"r")) = NULL)

{

sprintf(buf,"Cannot read %s",resp);

errormsg(buf);

continue;

}

fclose(fptr);

signal(SIGDNT,SIG_IGN);

I* copy the input data file into the ARTS file system */

sprintf(buf,"cp %s %s/input_data",resp,classpthl);

system(buf);

signal(SIGrNT,onintrpt);

row++;

break;

}

ifCflg)

{

if((iheadO) != 0) /* instaU the classjog */

return; /* A failure occurred */
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sprintf(buf,"The file %s has been installed",file);

statusmsg(buf);

}

I* Build the execution specification file */

mktemp(tmpfile);

fptr = fopen(tmpfile,"w");

wclear(instalwin);

mvwaddstr(instalwin,l^,"Enter the Execution Script");

mvwaddstr(instalwin.3,2,"Use SCOMPILER for the Compiler or");

mvwaddstr(instalwin,4,2,"Use SINTERPRETER for an Interpreter");

mvwaddstr(instalwin,5,2,"Enter a '.' as the first character on a line");

mvwaddstr(instalwin,6,2,"and press RETURN to enter the script");

mvwaddstr(instalwin,7,2,"Enter a 'q' as the first character on a line");

mvwaddstr(instalwin,8,2,"and press RETURN to quit and return to the

Main Menu");

r = 10; I* row counter */

got_compiler = 0; I* flag to show that a keyword was entered */

gottestcases = 0; I* flag to show that testcase file was entered */

for(;;)

{

box(instalwin,'* ','*
');

wmove(instalwin,r++,2);

waddstr(instalwin,"=> ");

wrefresh(instalwin);

mywgetstr(instalwin,buO;

clearerrorO;

clearstatO;

if(buf[0] = 'q' && buf[l] == N3") f return to main menu */

{

fclose(fptr);

unlink(tmpfile);

wclear(instalwin);

wrefresh(instalwin);

return;

}

if(buf[0] = '?' && buftl] = N)')

{

statusmsgC'Enter a line which is needed by the execution

specification");

continue;

}

if(buf[0] = V && buftl] == W)') /* end it */

{

I* both compiler and test cases file must be specified */

if(got_compiIer && gottestcases)
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{

fclose(fptr);

signal(SIGINT,SIG_IGN);

sprintf(buf,"mv %s %s/exec_spec",tmpfile,classpthl);

system(buO;

signal(SIGINT,oniiitipO;

statusmsg("The exec_spec file has been installed");

wclear(instalwin);

wrefresh(instalwin);

return;

}

I* let's try again */

else if(!got_compiler)

sprintf(buf,"$COMPILER or S1NTERPRETER not entered");

else

sprintf(buf,"'%s' has not been entered" .teases);

errormsg(buf);

rewind(fptr);

r= 10;

got_compiler = got_test_cases = 0;

wmove(instalwinj^);

wclrtobot(instalwin);

wrefresh(instalwin);

continue;

}

if(r = 20) I* allow only 10 lines */

{

got_compiler = got_test_cases = 0;

eirormsg("Too many Unes");

rewind(rptr);

r=10;

wmove(instalwinj,5);

wclrtobot(instalwin);

wrefresh(instalwin);

continue;

}

if(match(buf,t_cases) = ) /* check for test_cases */

got_lest_cases 1;

I* Check for SCOMPILER and SINTERPRETER */

if((match(buf,"$COMPILER") = 0) && (match(buf,"$INTERPRETER") == 0))

{

errormsgC'Only one SCOMPILER or SINTERPRETER may be entered");

if(match(buf,t_cases)= )

goitestcases = 0;

wmove(instalwin,r,5);
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wclrtoeol(inslalwin);

—r,

continue;

}

/» Check for SCOMPILER or SINTERPRETER »/

if((match(buf,"$COMPE-ER") — 0) II (match(buf,"$EMTERPRETER") = 0))

{

if(got_compi!er)

{

errormsg("Only one SCOMPILER or SINTERPRETER may be entered");

if(match(buf,t_cases) = )

got_test_cases = 0;

wmove(instalwin,r,5);

wclrtoeol(instalwin);

-r;

continue;

}

got_compiler = 1;

}

fprintf(fptr,"%s\n",buf);
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# include "arts.h"

^include "header.h"

* mainw.c - ARTS main window
*

* Controls the curser movement in the main window.
* When a selection is made by the user, the

* appropriate function is called. An exit is

* made from ARTS by selecting the EXIT function

* or by hitting the BREAK key.
*

mainwO

{

int resp;

int row, col;

char bufTLINESZ];

cbreakO;

nonlO;

noechoO;

row = 10;

col = COLS - 64;

bldmainwinO; /* build the main window */

for(;;)

{

wmove(mainwinjow,col);

wrefresh(mainwin);

resp = wgetch(mainwin);

if(resp == ' 'II resp == NT) I* move to the next row */

{

if(row = (19)) I* reset the row counter */

row = 10;

else

row = row + 1; I* increment the row counter */

continue;

}

else if(resp == V II resp == 'X') /* a selection was made */

{

waddch(mainwin^esp);

wrefresh(mainwin);

clearerrorO;
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clearstatO;

switch (row) {

case 10: f Install test cases */

installw(0);

wmove(instalwin,0,0);

wclrtobot(instalwin);

wrefresh(instalwin);

break;

case 11: f Select classes for execution */

selectwO;

wmove(selectwin,0,0);

wclrtobot(selectwin);

wrefresh(selectwin);

break;

case 12: /* Begin execution */

executeO;

break;

case 13: /* Install exec_spec */

installw(l);

wclear(instalwin);

wrefresh(instalwin);

break;

case 14: /* print testing analysis */

sprintf(buf,"%s/rje/tesl_analysis",home);

more(buf);

wclear(scrolwin);

wrefresh(scrolwin);

break;

case 15: /* generate a report of an execution */

reportO;

break;

case 16: /* retrieve class data files */

retrievwO;

wclear(retrievewin);

wrefiesh(retrievewin);

break;

case 17: /* delete class */

deletewO;

wclear(deletewin);

wrefresh(deletewin);

break;

case 18: /» print helpfile */

sprintf(buf,"%s/helpfile"joot);

more(buf);

wclear(scrolwin);

f* wrefresh(scrolwin); */
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break;

case 19: /* exit */

if((access(exec_paths,0)) = 0)

unlink(exec_paths);

mvcur(0,COLS-U3,0);

wclrtoeol(errorwin);

endwinO;

exit(0);

}

bldmainwinO;

cbreakO;

nonlO;

noechoO;

row =10; /* reset the row counter */
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***********************************************************

* more.c - a Curses version of a pagination routine

*

* A pointer to the file to be displayed is required

* as input to this function.

a"**********************************************************/

#include "afls.h"

/.'include "header.h"

more(ptr)

char *ptr; /* this is the file to be displayed */

{

char buf[LINESZ];

char line[256];

FILE'rptr;

int row;

if((rptr = fopen(ptr,"r")) = NULL)

{

sprintf(Une,"Cannot open %s",ptr);

errormsg(line);

return;

}

wclear(mainwin);

wrefresh(mainwin);

idlok(scrolwin,TRUE);

for(;;)

{

wmove(scrolwin,0,0);

for(row=0;row < 20;row++) I* scroll for 20 lines*/

{

if(fgets(line,256,rptr) == NULL)

{

fclose(rptr);

wmove(scrolwin,20,0);

waddstr(scrolwin,"RETURN: ");

wrefresh(scrolwin);

wgetch(scrolwin);

wclear(scrolwin);

wrefresh(scrolwin);

idlok(scrolwinJFALSE);

return;
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}

line[strlen(line) -1] = NO';

wmove(scrolwin,row,0);

waddstr(scrolwin,line);

}

wmove(scrolwin,20
10);

waddstr(scrolwin,"more (q to quit): ");

wrefresh(scrolwin);

if(wgetch(scrolwin) = 'q')

{

fclose(rptr);

wclear(scrolwin);

wrefresh(scrolwin);

idlok(scrolwin,FALSE);

return;

}

wclear(scrolwin);

WTefresh(scrolwin);
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/*********************************************************

*

* postexec.c - ARTS post execution processor
*

* Create a "test_analysis" file in the user's rje directory.

* Place the following information in this file:

* user's id

* date and time of test run

* language

* compiler under test

* compiler standard

* classes which were tested

* PASS or FAIL
* output from a "diff of the testing results for

* each class.

*

* Create an "analysis" file for each class of the compiler

* under test and place the output of the "diff operation in

* this file.

*

* Append the following information to the "classlog" file for

* each class being tested:

* user's id

* date and time of lest run

* compiler under test

* compiler standard

* PASS or FAIL
*

* Return a "0" if no errors were detected; otherwise, return

* a "1".

*

*********** ***************************** ******************y

#include "arts.h"

#include "header.h"

postexecO

{

FILE *rptr;

FTLE*fptr;

char line[256];

char buf[LINESZ];

char classfLINESZ];

char cutstfLINESZ]; /* path to compundertst dir */

char c_std[LINESZ]; /* path to comp_std dir */
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char class_log[LINESZ]; I* classlog file for the class being tested */

char status[8]; /» PASSED or FAILED */

long *timeO;

char "ctimeO;

char 'strrchrO;

char *getlogin();

char *name, 'date;

long "clock;

if((rptr = fopen(exec_paths,"r")) == NULL)

{

sprintf(line,"Cannot read %s",exec_paths);

errormsg(line);

return(l);

}

name = getloginO; I* get the login id of the user */

clock = dme((long *) 0);

date = ctime(&clock); /* get the current date and time */

sprintf(buf,"%s/rje/test_analysis",home);

fptr = fopen(buf,"w");

fprintfffptr
' , +******************* ************ ****»**********************Yi

M
)-

fprmtf(fptr,"\nWiARTS TESTING RESULTSNnNn");

fprintf(fptr,"Testing performed by: %s\n",name);

fprintf(fptr," %s\n\n" ,date);

fprintfffptr "*******************+***************************************\n\n"y

fclose(fptr);

whUe((fgets(line^56jptr)) != NULL)

{

if(strchr(line,':') == NULL)

{

errormsgC'lmproper exec_paths format");

fclose(rptr);

retum(l);

}

strcpy(class,strtok(line,":"));

strcpy(class_log,strtok(NULL,":"));

strcpy(c_u_t5t,strtok(NULL,":"));

strcpy(c_std,strtok(NULL,"^i"));

sprintf(buf,"%s/output_data",c_u_tsl);

if((access(buf,0)) != 0) /* compiler under test output */

{

sprintf(line,"Cannot access %s,.continuing",buf);

erTormsg(line);

continue;
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}

sprintf(buf,"%s/output_data",c_std);

if((access(buf,0)) 1= 0) I* compiler standard output */

{

sprintf(line,"Cannot access %s, continuing",buf);

errormsg(line);

continue;

}

/* do a "diff ' of the two output files */

sprintf(line,"diff %s/output_dala %s/output_data > %s/analysis",

c_u_tst,c_std,c_u_tst);

system(line);

sprintf(buf,"%s/analysis",c_u_tst);

if((fprr = fopen(buf,"r")) == NULL)

{

sprintf(line,"Cannot open %s",buf);

errormsg(buf);

continue;

}

if(fgets(line,256,fptr) == NULL)
strcpy(status,"PASSED");

else

strcpy(status,"FAILED");

fclose(fptr);

update_head(class_log,status,name,date,c_u_tst,c_std);

update_results(status,c_u_tst,c_std); I* update analysis */

}

statusmsgC'Completed analysis of data");

fclose(rptr);

return(O);

}

* This function places the id of the person performing the test run,

* the current date, the compilers being tested, and the results

* of the test run in the class_log file.

updaie_head(hpth,stalus,name,date,pthl,pth2)

char 'hplh, *status, *name, *date, *pthl, *pth2;

{

FILE *fptr;

char bufTLINESZ];

sprintf(buf,"%s/class_log"Jipth);
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signal(SIGINT,SIG_IGN);

fptr = fopen(buf,"a");

fprintfffntr "********************************************Vi"V

fprintf(fprr,''Test ran performed by: %s\n",name);

fprintf(fptr," %s",date);

fprintf(fplr,"Compiler under test: %s\n",pthl);

fprintf(fptr,"Compiler standard: %s\n",pth2);

fprintf(fptr,"Status - %sW,status);

fprintf(fptr"********************************************\n");

fclose(fptr);

signal(SIGINT,onintrpt);

return;

}

* This (unction places the compilers being tested, and the results

* of the test run in the analysis file in the user's rje directory.

* If the test failed, the diff output is appended to the file.

* pthl = compiler under test

* pth2 = compiler standard
********»*********************»**************************************/

update_results(status,pth 1 ,pth2)

char *status, *pthl, *pth2;

{

FILE *fptr;

char buf[256];

int i;

char *ptrl, *ptr2;

char cls[15], compl[15], comp2[15], lang[15];

char c_u_tst[LINESZ];

strcpy(c_u_tst,pth 1 );

sprintf(buf,"%s/rje/test_analysis",home);

fptr = fopen(buf,"a");

fDrintf(fDtr"********************************************^i")'

/* Get the lang, class, and comp_under_tst */

ptrl = strrchr(pthl,T);

strcpy(cls,ptrl+l);

•ptrl = "V;
ptr2 = strrchr(pthl,7');

strcpy(compl ,ptr2+ 1 );
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•ptr2 = V)
1

;

pirl = strrchr(pthl,'/');

strepy(lang,plil+l);

/* Get the compiler standard */

ptrl = strrchr(pth2,'/');

•ptrl = M';

ptr2 = strrchr(pth2,'/');

strcpy(comp2,ptr2+ 1 );

fprintf(fptr,"Language: %sWJang);
fprintf(fptr,"Compiler under test: %s\n",compl);

fprintf(fptr,"Compiler standard: %s\n",comp2);

fprintf(fptr,"Class: %s\n",cls);

fprintf(fptr,"Status of tests for this class: %s\n" status):

fclose(fptr);

if(strcmp(status,"FAILED") = 0)

{

sprintf(buf,"cat %s/analysis » %s/rje/test_analysis",c_u_tst,home);

system (buf);

}
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»

* reportx - Generate a report of the results of a test run.

* A "testanalysis" file must be in the user's rje directory.

************************************** ************ *-***** *********

#include "arts.h"

Sinclude "header.h"

reportO

{

char buf[LINESZ];

if((home = (char *) getenv("HOME")) = NULL)

{

en-ormsgC'The HOME variable is not set");

return;

}

sprintf(buf,"%s %sAje/test_analysis"J>RINT_CMD,home);

system(buf);

statusmsg("The report has been sent to the line printer");

}
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•••••••••a********************************

* retrieve.c - Build paths to various parts of the file system

*

* The following global variables are set in these functions:

* langpth - current language directory

* comp_pth - current compiler directory

* classpthl - current class directory at the language level

* classpth2 - current class directory at the compiler level

*

* This module contains the functions glang, gcomp, and gclas.

* If an error is detected, a "1" is

* returned; otherwise a "0" is returned.

*

m************************************************************/

#include "arts.h"

#include "header.h"

Mr**********************************************************

*

* This function sets the langpth to the language directory.

* The language pointer points to the language string

*************************************************************y

glang(language)

char 'language;

{

FILE *fptr;

char buf[LINESZ];

char fpath[LINESZ];

char line[LINESZ];

lower(language); /* convert all languages to lower case */

strcpy(buf,language);

convertfbuf); I* convert language name to directory name */

sprintf(fpath,"%syLANGUAGES"joot);

if((fptr = fopen(fpath,"r"))=NULL) /* no language file exists */

{

errormsg("No languages installed");

retum(l);

}

else /* languages file exists */

{
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while((fgets(line,LINESZ,rpti)) != NULL)

{

line[strlen(line) - 1] = "VO"; f get rid of NL */

if(strcmp(line,language) = 0) /* language is in db */

{

sprintf(langpth,"%s/%s",root,buf);

fclose(fptr);

retum(0);

}

}

}

fclose(fptr);

sprintf(buf,"The language %s is not installed",language);

em>nnsg(buO;

retum(l);

}

A***********************************************************

•

* This function handles retrieval of all compilers

* The compiler pointer points to the compiler string

******************************************************»******/

gcomp(compiler)

char 'compiler;

{

FILE *fptr;

char buflLINESZ];

char fpath[LINESZ];

char line[LINESZ];

lower(compiler); /* convert all languages to lower case */

strcpy(buf.compiler);

convertfbuf); /* convert compiler name to directory name */

sprintf(fpath,"%s/COMPILERS",langpth);

if((fptr = fopen(fpath,"r"))=NULL) /* no compiler file exists */

{

errormsgC'No compilers or interpreters installed for the language");

return(l);

}

else /* compilers file exists */

{

while((fgets(lineJLINESZ,fptr)) != NULL)

{

line[strlen(line) - 1] = "NO'; I* get rid of NL */
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if(strcmp(Iine,compiler) = 0) /* compiler is in db */

{

sprintf(comp_pth,''%s/%s''Jangpth,buf);

fclose(fptr);

return(O);

}

}

}

fclose<fptr);

sprintf(buf,"The compiler %s is not installed",compiler);

errormsgfbuf);

return(l);

}

*

* This function handles retrieval of all classes

* The class pointer points to the class string

gclas(class)

char 'class;

{

FILE *fptr;

char bufTLINESZ];

char fpath[LINESZ];

char line[LINESZ];

lower(class); /* convert all classs to lower case */

strcpy(buf.class);

convertfbuf); /* convert class name to directory name */

sprintf(fpath,"%s/CLASSES"4angpth);

if((fptr = fopen(fpath,"r"))=NULL) I* no class file exists */

{

errormsgC'No classes exist for the compiler");

retum(l);

}

else I* classs file exists */

{

while((fgets(linelINESZ,fpli)) != NULL)

{

line[strlen(line) - 1] = \D'; /• get rid of NL */

if(strcmp(line,class) = 0) /* class is in db */

{

fclose(fptr);
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sprintf(classpthl,"%s/%s",langpth,buf);

sprintf(classpth2,"%s/%s",comp_pth,buf);

return(O);

}

}

}

fclose(fptr);

sprintf(buf,"The class %s is not installed",class);

eirormsg(buf);

retum(l);
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#include "arts.h"

#include "header.h"

/*********************************************************

* rettievw.c - ARTS test case retrieval window

* All files located in the class directories

* are copied into the user's rje directory.

* These files include: test_cases, classlog,

* outputdata, execspec, analysis, and

* inputdata.
*

retrievwO

{

char "getenvO;

FILE*fptr;

char resp[LINESZ];

char buf[LINESZ];

char file[LINESZ];

int row;

bldretrievewinO; f build the retrieve window */

cbreakO;

nlO;

noechoO;

wclear(mainwin);

wrefresh(mainwin);

for(;;) /* get the language */

{

wmove(retrievewin,7,2);

waddstr(retrievewin,"Enter language: ");

wclrtoeolfretrievewin);

box(retrievewin,"'','*');

wrefresh(retrievewin);

mywgetstr(retrievewin^esp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = "NO') I* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = X)') /» hst languages */

{

sprintf(buf,"%s/languages",root);
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if((fptr = fopen(buf,"r")) == NULL)

{

statusmsg("There are no languages installed");

continue;

}

overwrite(retrievewin,deIetewin);

wclear(retrievewin);

wmove(retrievewin,l,5);

waddstr(retrievewin,"rnstalled languages:");

row = 3;

whUe((fgets(bufLINESZJptr)) != NULL)

{

wmove(retrievewin,row++,l);

waddstr(retrievewin,buf);

}

fclose(fptr);

row++;

wmove(retrievewinjow++,5);

waddstr(retrievewin,"Press any key to continue");

wrefresh(retrievewin);

wgetch(retrievewin);

wclear(retrievewin);

overwrite(deletewinjetrievewin);

wclear(deletewin);

wrefresh(retrievewin);

continue;

}

else if(resp[0] = rW) I* RETURN was entered */

{

errormsg("A language or 'q' must be entered");

continue;

}

else if((glang(resp)) != 0) /* get the language */

continue; /* A failure occurred */

break;

}

for(;;) /* get the compiler */

{

wmove(retrievewin,8,2);

waddstr(retrievewin,"Enter compiler: ");

wclrtoeol(retrievewin);

box(retrievewin, '*','*');

wrefresh(retrievewin);

mywgetstr(retrievewinjesp);

clearerrorO;
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if(resp[0] == 'q' && resp[l] W)') /* retutn to main menu */

return;

else if(resp[0] = '?' && resp[l] = "NO') f list compilers */

{

sprintf(buf,"%s/compilers",langpth);

if((fptr = fopen(buf,"r")) — NULL)

{

statusmsg("There are no compilers for the language installed");

continue;

}

overwrite(retrievewin,deletewin);

wclear(retrievewin);

wmove(retrievewin, 1 ,5);

waddstr(retrievewin,"Installed compilers:");

row = 3;

while((fgets(buf,LINESZ,fptr)) != NULL)

{

wmove(retrievewin,row++,l);

waddstr(retrievewin,buf);

}

fclose(fptr);

row++;

wmove(retrievewin,row++,5);

waddstr(retrievewin,"Press any key to continue");

wrefresh(retrievewin);

wgetch(retrievewin);

wclear(retrievewin);

overwrite(deletewin,retrievewin);

wclear(deletewin);

wrerresh(retrievewin);

continue;

}

else if(resp[0] = "\0') I* RETURN was entered */

{

errormsg("A compiler or 'q' must be entered");

continue;

}

else if((gcomp(resp)) != 0) /* gel the compiler */

continue; /* A failure occurred */

break;

}

for(;;) I* get the class */

{

wmove(retrievewin,9,2);

waddstr(retrievewin,"Enter class: ");
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wclrtoeol(retrievewin);

box(retrievewin,'* ','*');

wrefresh(retrievewin);

mywgetstr(retrievewinjesp);

clearerrorO;

if(resp[0] = 'q' && resp[l] = "\0') /* return to main menu */

return;

else if(resp[0] = T &&. resp[l) = 'NO') /* list classes */

{

sprintf(buf,"%s/CLASSES"Jangpth);

if((fptr = fopen(buf,"r")) == NULL)

{

siatusmsgC'There are no classes for the language installed");

continue;

}

overwrile(rctrievewin,deletewin);

wc lear(retrievewin);

wmove(retrievewin,l,5);

waddstr(retrievewin."Installed classes:");

row = 3;

whUe((fgets(buf^INESZ4ptr)) != NULL)

{

wmove(retrievewin,row++,l);

waddstr(retrievewin,buf);

}

fclose(fptr);

row++;

wmove(retrievewin,row++,5);

waddstr(retrievewin,"Press any key to continue");

wrefresh(retrievewin);

wgetch(retrievewin);

wclear(retrievewin);

overwrite(deIetewin,retrievewin);

wclear(deletewin);

wrefresh(retrievewin);

continue;

}

else if(resp[0] = "\0') /* a RETURN was entered */

{

errormsg("A class or 'q' must be entered");

continue;

}

else if((gclas(resp)) != 0) /* get the class */

continue; /* A failure occurred */

break;
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sprintf(buf,"cp %s/* %s/rje",classpthl,home);

system (buf);

sprintf(buf,"cp %s/* %s/rje",classplh2,home);

system (buf);

statusmsg("All data files have been copied to your rje directory");

}
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/at**********************************************************

* selccLc - Select the test cases for execution
*

* This module contains the functions slang, scomp, solas,

* and endselecL

* A character siring is expected as a parameter for all

* functions, except endselect. In addition, a 1 or 2 is

* expected as an additional parameter for the scomp
* function. 1 signals the compiler under test, 2 signals

* the compiler standard.

*

* The following global variables are set in these functions:

* langpth - current language directory

* comp_pth - current compiler directory for compiler under test

* comp_pth2 - current compiler directory for the compiler standard

* classplhl - current class directory at the language level

* classpth2 - current class directory at the compiler level

*

* If an error is detected, a "1" is

* returned; otherwise a "0" is returned.

••ft***************************************************

#include "arts.h"

#include "header.h"

* This function handles retrieval of two compilers.

* The compiler pointer points to the compiler string.

* The select integer is a flag to the type of compiler selected.

* A "1" is for the compiler under test.

* A "2" is for the compiler standard.

scomp(compiler,select)

char 'compiler;

int select;

{

FILE *fptr;

char buf[L!NESZ];

char fpath[LINESZ];

char line[LINESZ];

char dimame[LINESZ];
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lower(compiler); /* convert all languages to lower case */

strcpy(dimame,compiler);

convert(dimame); /* convert compiler name to directory name */

sprmtf(fpath/
,%s/COMPrLERS",langpth);

if((fptr = fopen(fpath,"r"))=NULL) /* no compiler file exists */

{

errormsg("No compilers or interpreters installed for the language");

return(l);

}

else I* COMPILERS file exists */

{

while((fgels(lineLrNESZ,fptr)) != NULL)

{

line[strlen(line) - 1] = ,
\0'; /* get rid of NL */

if(strcmp(line,compiler)= 0) /* compiler is in db */

{

if(select= 1) /* compiler under test */

sprintf(compj)th,''%s/%s",langpth,dirname);

else /* compiler standard */

sprintf(comp_pth2,"%s/%s",langpth,dimame);

fclose(fptr);

retum(O);

}

}

}

fclose(fptr);

sprintf(buf,"The compiler %s is not installed",compiler);

errormsg(buO;

return(l);

}

He**********************************************************

* This function handles retrieval of all classes.

* The class pointer points to the class string.

********************************************** ********** ******

sclas(class,c_undr_tst,c_std)

char "class; /* class being tested */

char *c_undr_lst; f* compiler under test */

char *c_std; /* compiler standard */

{

FILE *rptr;

FILE *wptrl;

FILE *wptr2;
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char buf[LINESZ];

char fpath[LINESZ];

char line[LINESZ];

charplhl[LINESZ];

char pth2[LINESZ];

char pth3[L!NESZ];

char dimame[LINESZ];

im got_class;

lower(dass); f convert all classes to lower case */

strcpy(dirname,class);

convert(dimame); f convert class name to directory name */

if((wptrl = fopen(exec_paths,"a"))= NULL)

{

sprintf(buf,"Cannot open %s",exec_paths);

errormsg(buO;

return(l);

}

sprintf(fpath,"%s/CLASSES"4angpth);

gotclass = 0;

if((rptr = fopen(fpath,"r"))=NULL) /* no class file exists */

{

errormsg("No classes exist for the compiler");

fclose(wptrl);

return(l);

}

else I* class file exists */

{

while((fgets(Iine,LINESZ,rptr)) != NULL)

{

line[strlen(line) - 1] = '\0'; f* get rid of NL */

if(strcmp(line,class) = 0) /* class is in db */

{

fclose(rptr);

got_c!ass = 1;

sprintf(pthl,"%s/%s"Jangpth,dirname);

sprintf(pth2,"%s/%s",comp_pth,dimame);

sprintf(pih3,"%s/%s",comp_pth2,dirname);

break;

}

}

}

if(!got_class)

{

fclose(rptr);
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fclose(wptrl);

sprintf(buf,"The class %s is not installed" .class);

errormsgfbuf);

retum(l);

}

/I*************************************************************

* pthl = dir path to the exec_spec files

* pth2 = dir path to the comp_under_test output files

* pth3 = dir path to the compiler standard output files

fprintf(wptr 1 ,"%s: %s: %s: %s\n" ,class,pth 1 ,pth2,pth3);

fclose(wptrl);

sprintf(fpath,"%s/exec_spec",pthl);

if((rptr = fopen(fpath,"r"))=NULL) /* no class file exists */

{

errormsgCThe execspec file has not been built for this class");

retum(l);

}

sprintf(buf,"%s/.exec_specr,pthl);

wptrl = fopen(buf,"w"); /* this is for the compiler under test */

sprintf(buf,"%s/.exec_spec2",pthl);

wptr2 = fopen(buf,"w"); /* this is for the compiler standard */

while((fgets(line,LINESZ,rptr)) != NULL)

{

strcpy(buf,line);

if(match(line,"$COMPILER") = 0)

{

replace(buf,"$COMPILER",c_undr_tst);

replace(Iine,"$COMPILER",c_std);

}

else if(match(line,"$INTERPRETER") == 0)

{

replace(buf,"$INTERPRETER",c_undr_tst);

replace(line,"$INTERPRETER",c_std);

}

fprintf(wptrl ,"%s",buf);

fprintf(wptr2,"%s"Jine);

}

fclose(rptr);

fclose(wptrl);

fclose(wptr2);

retum(O);

}
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#include "arls.h"

#include "header.h"

***********************************************************

* selectw.c - ARTS test case selection window
*

* The language, compiler under test, compiler standard and

* one or more classes for a test run are selected.

*

A********************************************************/

selectwO

{

HLE*fptr;

int row, r;

char buf[256];

char line[256];

char respDLINESZ];

char comp[LINESZ];

char c_undr_tst[LINESZ]; f path to compiler under lest */

char c_std[LINESZ]; f* path to compiler standard */

bldselectwinO; /* build the selection window */

cbreakO;

mo;
noechoO;

wclear(mainwin);

wrefresh(mainwin);

for(;;) /* select a language */

{

wmove(selectwin,7,2);

waddstr(selectwin,"Enter language: ");

wclrtoeol(selectwin);

box(selectwin, '*','*');

wrefresh(selectwin);

mywgetstr(selectwinjesp);

clearerrorO;

if(resp[0] == 'q' && resp[l] "V)') /• return to main menu */

return;

else if(resp[0] = '?' && resp[l] = •NO') /* Ust languages */

{

sprintf(buf,"%s/LANGUAGES",root);

if((fptr = fopen(buf,"r")) == NULL)
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{

slatusmsgCThere are no languages installed");

continue;

}

overwrite(selectwin^nainwin);

wclear(selectwin);

wmove(selectwin,l ,5);

waddstr(selectwin,"Installed languages:");

row = 3;

whUe((fgets(buf,LINESZ,fptr)) != NULL)

{

wmove(selectwin/ow++,l);

waddstr(selectwin,buf);

}

fclose(fptr);

row++;

wmove(selecrwin,row++,5);

waddstr(selectwin,"Press any key to continue");

wrefresh(selectwin);

wgetch(selectwin);

wclear(selectwin);

overwrite(mainwin,selectwin);

wclear(mainwin);

wrefresh(selectwin);

continue;

}

else if(resp[0] = "\0') f RETURN was entered */

{

errormsgC'A language or 'q' must be entered");

continue;

}

else if((glang(resp)) != 0) f select the language •/

continue; /* A failure occurred */

break;

}

for(;;) /* select the compiler under test */

{

wmove(selectwin,8,2);

waddstr(selectwin,"Enter compiler under lest: ");

wclrtoeol(selectwin);

box(selectwin,'* ','* *);

wrefresh(selectwin);

mywgetstr(selectwin,resp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = r
^)') /* return to main menu */
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return;

else if(resp[0] = '?' && resp[l] = "W) I* list compilers *l

{

sprintf(buf,"%s/COMPILERS " .langpth);

if((fprr = fopen(buf,"r"))= NULL)

{

statusmsgC'There are no compilers installed");

continue;

}

overwrite(seIectwin,mainwin);

wclear(selectwin);

wmove(selectwin, 1,5);

waddstr(selectwin,"Installed compilers:");

row = 3;

whue((fgets(buf,LINESZ,fptr)) != NULL)

{

wmove(selectwinjow++,l);

waddstr(selectwin,buf);

}

fclose(fptr);

row++;

wmove(selectwin^ow++,5);

waddstr(selectwin,"Press any key to continue");

wrefresh(selectwin);

wgetch(selectwin);

overwrite(mainwin,selectwin);

wclear(mainwin);

wrefresh(selectwin);

continue;

}

else if(resp[0] = 'NO')

{

errormsgC'A compiler or 'q' must be entered");

continue;

}

else if((scomp(resp,l)) != 0) /* select the compiler under test */

continue; /* A failure occurred */

strcpy(compjesp);

break;

}

I* Try to get the path out of the compiler info file */

sprintffbuf,"%s/COMPILER_INFO" .root);

if((fptr = fopen(buf,"r")) != NULL)

{
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while((fgets(line,256,fptr)) != NULL)

{

if(strcmp(comp,smok(line,":"))= 0)

{

strcpy(c_undr_tsUlitok(NULL,":"));

break;

}

}

fclose(fpti);

}

wmove(selecrwin,9,2);

sprintf(buf,"Path to compiler: %s",c_undr_tst);

waddstr(selectwin,buf);

for(;;) f* select the compiler standard */

{

wmove(selectwin, 1 0,2);

waddstr(seleciwin,"Enter standard compiler ");

wclrtoeol(selectwin);

box(selectwin, '*','*');

wrefresh(selectw in)

;

mywgetsfr(selectwin,resp);

lower(resp); /* Change to lower case */

clearerrorO;

if(resp[0] == 'q' && resp[l] = "V)') /* return to main menu */

return;

else if(resp[0] = '?' && resp[l] = "\0') /• list compilers */

{

sprintf(buf,"%s/COMPILERS",langpth);

if((rpir = fopen(buf,"r")) = NULL)

{

statusmsgC'There are no compilers installed");

continue;

)

overwrite(selectwin,mainwin);

wclear(selectwin);

wmove(selectwin,l ,5);

waddstr(selectwin,"Installed compilers:");

row = 3;

while((fgets(bufXINESZ,fptr)) != NULL)
{

wmove(selectwinjow++,l);

waddstr(selectwin,buf);

}

fclose(fptr);
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row++;

wmove(selectwin,row++,5);

waddstr(seIectwin,"Press any key to continue");

wrefresh(selectwin);

wgetch(selectwin);

overwrite(mainwin,selectwin);

wclear(mainwin);

wrefresh(selectwin);

continue;

}

else if(resp[0] = N)')

{

enormsgO'A compiler or 'q' must be entered");

continue;

}

else if((strcmp(resp,comp)) = 0)

{

errormsgC'Standard compiler cannot be the same as the

compiler under test");

continue;

}

else if((scomp(resp,2)) != 0) I* select the compiler standard */

continue; /* A failure occurred */

break;

}

I* Try to get the path out of the compiler info file */

sprintf(buf,"%s/COMPILER_INFO"joot);

if((fptr = fopen(buf,"r")) != NULL)

{

while((fgets(line,256,fplr)) != NULL)

{

if(strcmp(resp,strtok(Iine,":")) = 0)

{

strcpy(c_std,strtok(NULL,": "));

break;

}

}

fclose(fptr);

}

wmove(selectwin,l 1,2);

sprintf(buf,"Path to compiler: %s",c_std);

waddstr(selectwin,buf);

row =12; /* initialize the row counter */
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for(;;) /* select one or more classes */

{

if(row = 19) /* re-initialize the window for more classes */

{

row = 1;

wclear(selectwin);

box(selectwin,'*','*');

wrefresh(selectwin);

}

wmove(selectwinjow,2);

waddstr(selectwin,"Enter class ('all' or '.' to end): ");

wclrtoeol(selectwin);

box(selectwin, '*','*');

wrefresh(selectwin);

mywgetstr(selectwin
fresp);

clearerrorO;

if(resp[0] == 'q' && resp[l] = "vO') /* return to main menu */

return;

else if(strcmp(resp,"all") = 0) I* all classes was selected */

{

sprintf(buf,"%s/CLASSES"4angpth);

if((fptr = fopen(buf,"r"))= NULL)

{

errormsgO'There are no classes installed");

continue;

}

statusmsgC'Selecting all classes");

while((fgets(buf,LINESZ,fptr)) != NULL)

{

buf[strlen(buf) - 1] = "V)'; /* get rid of NL */

sclas(buf,c_undr_tst,c_std); /* select the class */

}

fclose(fptr);

break;

}

else if(resp[0] = '?' && resp[l] = ,

\0') /* list classes */

{

sprintf(buf,"%s/CLASSES"Jangpth);

if((fptr = fopen(buf,"r")) == NULL)

{

statusmsgO'There are no classes installed");

continue;

}

overwrite(selectwin^nainwin);

wclear(selectwin);

wmove(selectwin,l ,5);
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waddstr(selectwin,"Installed classes:");

r = 3;

whUe((fgets(buf,LrNESZ,fptr)) != NULL)
{

wmove(selectwin,r++,l);

waddslr(selectwin,buf);

}

fclose(fptr);

r++;

wmove(selectwin/++,5);

waddstr(selectwin,"Press any key to continue");

wrefresh(selectwin);

wgetch(selectwin);

overwrite(mainwin,selectwin);

wrefresh(selectwin);

wclear(mainwin);

continue;

}

else if(resp[0] = 'NO') /* RETURN was entered */

{

errormsg("A class, 'q', or '.' must be entered");

continue;

}

else if(resp[0] = '.' && resp[l] = ^0') /* end selections */

break;

else if((sclas(resp,c_undr_tst,c_std)) != 0) f select the class */

continue;

++row;



APPENDIX C

Sample Prolog Test Cases

* These test cases test the following Comparison of Terms
* built-in predicates:

* @<
* @>
* @=<

@>=

* This set of test cases can be run with the following

* command:
* Cprolog «!
* ['test_cases.pl'].

* test.

»
1

*

ft*****************************************,!,,!,**,*,!,,!,*********.

test :- test(l,94).

test(I,N) :- 1>N,!.

test(I,N) :- I=<N, (dotest(I);true),!J is 1+1, test(J,N).

w(X) :- write(X).

dotest(l) :- w('Testing "==" using equal integers: '),

(-17 = -17 ->

w('passed')

;

w('FAILED')),

nl.

dotest(2) :- wfTesung "==" for failure using unequal integers: '),

(0 == -17 ->

w('FAILED')
;

w('passed')),

nl.

dotest(3) :- w('Testing "==" using equal atoms: '),

(xyz= xyz ->

w('passed')

;

w('FAILED')),

nl.

dotest(4) :- w('Testing '•==" for failure using unequal atoms: '),

(xyy= xyz ->

w('FAILED')

;
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w('passed')),

nl.

dotest(5) :- w('Testing "==" using equal complex terms: ').

(compare<=,l,l) = compare(=,l,l) ->

w('passed')

;

w('FAILED')),

nl.

dolest(6) :- w('Testing "=" for failure using complex terms of different names: '),

(compare(=,l,l) = cmpare(=,l,l) ->

w('FAILED')

;

w('passed')),

nl.

dotest(7) :- w('Testing "==" for failure using unequal functor arguments: '),

(compare(=,l,2) = compare(=,l,l) ->

w('FAILED')

;

w('passed')),

nl.

dotest(8) :- w('Testing "=" for failure using complex terms of different arity: '),

(re(=,l,l) = re(l,l) ->

wCFATLED')

;

w('passed')),

nl.

dotest(9) :- w('Testing "==" using variables instantiated to equal values: ').

X=17,Y=17,

(X = Y->
w('passed')

;

w('FAILED')),

nl.

dotest(lO) :- w('Testing "=" for failure using variables

instantiated to unequal values: '),

X=17,Y= -17,

(X = Y->
wCFATLED') ;

wfpassed')),

nl.

dotest(ll) :- w('Testing "==" for failure using an atom and an integer: ').

(xyz= 17 ->

wCFAILED 1

)

;

w('passed')),

nl.

dotest(12) :- w('Testing "=" using unequal integers: ").

(17 == -17 ->

w('passed')

;

w('FATLED')),

nl.
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dotest(13) :- w('Tesring "==" for failure using equal integers: '),

(-17 = -17 ->

w('FAILED')

;

w('passed')),

nl.

dotest(14) :- w('Tesring "=" using unequal atoms: '),

(xyz = xyy ->

w('passed')

;

wCFATLED')),

nl.

dotest(15) :- w('Testing "=" for failure using equal atoms: '),

(xyz = xyz ->

wCFATLED')

;

w('passed')).

nl.

dotest(16) :- w('Testing "=" using unequal functor arguments: '),

(compare(=,l,2) = compare(=,l,l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(17) :- w('Testing "=" using complex terms of different arity: '),

(re(=,l,l)= re(l,l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(18) :- w('Testing "==" using complex terms of different names: '),

(ree(l,l) = re(l,l)->

w('passed')

;

wCFATLED')),

nl.

dotest(19) :- w('Testing "==" for failure using equal complex terms: '),

(compare(=,l,l)= compare(=,l,l) ->

wCFATLED')

;

w('passed')),

nl.

dotest(20) :- w('Testing "==" using variables instantiated to unequal values: '),

X=7,Y=17,

(X = Y->
w('passed')

;

w('FAILED')),

nl.

dotest(21) :- w('Testing "==" for failure using variables

instantiated to equal values: '),

X=17,Y=17,

(X = Y->
wCFATLED')

;
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w('passed')),

nl.

dolest(22) :- w('Testing "=" using an atom and an integer: '),

(xyz = 17 ->

w('passed')

;

wCFATLED')),

nl.

dotest(23) :- w('Testing "@<" using unequal integers: '),

(17 @< 18 ->

w('passed')

;

w('FAILED')),

nl.

dotest(24) :- w('Testing "@<" for failure using equal integers: '),

(17 @< 17 ->

w('FATLED')

;

w('passed')),

nl.

dotest(25) :- w('Testing "@<" for failure using unequal integers: '),

(0 @< -7 ->

w('FAILED')
;

w('passed')),

nl.

dotest(26) :- w('Testing "@<" using unequal atoms: '),

(xyy @< xyz ->

w('passed')

;

w('FAILED')),

nl.

dotest(27) :- w('Testing "@<" for failure using equal atoms: ').

(xyz @< xyz ->

w('FAILED')

;

w('passed')),

nl.

dotest(28) :- w('Testing "@<" for failure using unequal atoms: '),

(xyz @< xyy ->

w('FAILED')
;

w('passed')),

nl.

dotest(29) :- w('Tesnng "<§><" using complex terms of different names: ').

(compar(=,l,l) @< compare(=,l,l) ->

w('passed')

;

wCFATLED')),

nl.

dotest(30) :- w('Tesung "@<" for failure using equal complex terms: '),

(compare(=,l,l) @< compare(=,l,l) ->

wCFATLED')

;

w('passed')),
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nl.

dotest(31) :- w('Testing "@<" for failure using unequal functor arguments'. '),

(compare(=,l,2) @< compare(=,l,l) ->

wCFAILED')

;

w('passed')),

nl.

dotest(32) :- w('Tesring "@<" for failure using complex teims of different arity: '),

(re(=,l,l)@<re(l,l)->

w('FATLED')

;

w('passed')),

nl.

dotest(33) :- w('Testing "@<" using variables instantiated to unequal values: '),

X = -6,Y = 17,

(X @< Y ->

w('passed')

;

wCFMLED')),
nl.

dotest(34) :- w('Testing "@<" for failure using variables

instantiated to equal values: '),

X = -6,Y = -6,

(X @< Y ->

wCFATLED')

;

w('passed')),

nl.

dotest(35) :- w('Testing "@<" for failure using variables

instantiated to unequal values: '),

X = -6,Y = -7,

(X @< Y ->

w('FAILED')

;

w('passed')),

nl.

dotest(36) :- w('Testing "@<" using an atom and an integer: '),

(17 @< xyz ->

w('passed')

;

w('FAILED')),

nl.

dotest(37) :- wCTesting "<§><" for failure using an atom and an integer: '),

(xyz @< 17 ->

wCFAILED')

;

w('passed')),

nl.

dotest(38) :- w('Testing "<§»" using unequal integers: '),

(18 @> 17 ->

w('passed')

;

w('FAILED')),

nl.
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dotest(39) :- w('Testing "@>" for failure using equal integers: ').

(17 @> 17 ->

wCFAILED')
;

w('passed')),

nl.

dotest(40) :- w('Tesang "@>" for failure using unequal integers: '),

(-33 @> ->

w('FAILED')

;

w('passed')).

nl.

dotest(41) :- w('Testing "@>" using unequal atoms: '),

(xyz @> xyy ->

w('passed')

;

wCFATLED -

)),

nl.

dotest(42) :- w('Testing "@>" for failure using equal atoms: ').

(xyz @> xyz ->

wCFAILED -

) ;

w('passed')),

nl.

dotest(43) :- w('Tesdng "<§»" for failure using unequal atoms: '),

(xyy @> xyz ->

w('FAILED')

;

w('passed')).

nl.

dolest(47) :- w('Tesnng "<§»" using unequal complex terms: '),

(compare(=,l,l) @> compar(=,l,l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(48) :- w('Testing "@>" for failure using equal complex terms: '),

(compare(=,l,l) @> compare(=,l,l) ->

w('FAILED')
;

w('passed')),

nl.

dotest(49) :- w('Tesnng "@>" for failure using unequal complex terms: '),

(compar(=,l,l) @> compare(=,l,l) ->

w('FAILED')

;

w('passed')),

nl.

dotest(50) :- w('Tesdng "@>" using variables instantiated to unequal values: '),

X = -6,Y = 17,

(Y @> X ->

w('passed')

;

w('FAILED')),

nl.
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dotest(51) :- w('Testing "@>" for failure using variables

instantiated to equal values: ')•

X = -6,Y = -6,

(Y @> X ->

w('FAILED')

;

w('passed')),

nl.

dotest(52) :- w('Testing "@>" for failure using variables

instantiated to unequal values: ').

X = -7,Y = -6,

(X @> Y ->

w('FAILED') ;

w('passed')),

nl.

dotest(53) :- w('Testing "@>" using unequal functor arguments: '),

(compare(=,l,2) @>= compare(=,l,l) ->

w('passed')

;

wCFATLED')),

nl.

dotest(54) :- w('Testing "@>" for failure using unequal functor arguments: '),

(compare(=,l,2) <§»= compare(=,2,l) ->

w('FAILED')

;

w('passed')),

nl.

dotest(55) :- w('Testing "@>" using complex terms of different arity: '),

(re(=,l,l) @>= re(l.l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(56) :- w('Testing "@>" for failure using complex terms of different arity: '),

(re(l,l) <S» re(=,l,l) ->

wCFATLED')

;

w('passed')),

nl.

dotest(57) :- w('Testing "@>" using an atom and an integer: '),

(xyz @> 17 ->

w('passed')

;

w('FAILED')),

nl.

dotest(58) :- w('Testing "@>" for failure using an atom and an integer: '),

(17 <S» xyz ->

wCFATLED')
;

w('passed')),

nl.

dotest(59) :- w('Testing "@=<" using unequal integers: '), (17 @=< 18 ->

w('passed')

;
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w('FAILED')),

nl.

dotest(60) :- w('Testing "@=<" using equal integers: '),

(17 @=< 17 ->

w('passed')

;

wCFAILED')),

nl.

dotest(61) :- w('Tesung "@=<" for failure using unequal integers: ').

(0 @=< -7 ->

wCFAILED')

;

wfpassed')),

nl.

dotest(62) :- w('Testing "@=<" using unequal atoms: '),

(xyy @=< xyz ->

w('passed')

;

w('FAILED')),

nl.

dotest(63) :- w('Testing "@=<" using equal atoms: '),

(xyz @=< xyz ->

w('passed')

;

w('FAILED')),

nl.

dotest(64) :- w('Tesung "@=<" for failure using unequal atoms: '),

(xyz @=< xyy ->

w('FAILED') ;

w('passed')),

nl.

dotest(65) :- w('Testing "@=<" using complex terms of different names: '),

(compar(=,l,l) @=< compare(=,l,l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(66) :- w('Tesung "@=<" using equal complex terms: ').

(compare(=,l,l) @=< compare(=,l,l) ->

w('passed')
;

w('FAILED')),

nl.

dotest(67) :- w('Testing "@=<" for failure using unequal functor arguments: '),

(compare(=,l,2) @=< compare(=,l,l) ->

w('FATLED')

;

w('passed')),

nl.

dolest(68) :- w('Testing "@=<" for failure using complex terms of different arity: ').

(re(=,l,l) @=< re(l,l) ->

wCFAILED') ;

wfpassed')),
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nl.

dotest(69) :- w('Tesling "@=<" using variables instantiated to unequal values: ').

X = -6,Y = 17.

(X @=< Y ->

w('passed')

;

wCFMLED 1

)),

nl.

dotest(70) :- w('Testing "@=<" using variables instantiated to equal values: '),

X = -6,Y = -6,

(X @=< Y ->

w('passed')

;

w('FAILED')),

nl.

dotest(71) :- w('Testing "@=<" for failure using variables

instantiated to unequal values: '),

X = -6,Y = -7,

(X @=< Y ->

w('FATLED')

;

w('passed')),

nl.

dotest(72) :- w('Testing "@=<" using an atom and an integer: '),

(17 @=< xyz ->

w('passed')
;

wCFMLED')),
nl.

dotest(73) :- w('Testing "@=<" for failure using an atom and an integer: '),

(xyz @=< 17 ->

w('FAILED')

;

wfpassed')),

nl.

dotest(74) :- w(Testing "@>=" using unequal integers: ').

(18 <§»= 17 ->

w('passed')

;

wCFArLED')),

nl.

dotest(75) :- w('Testing "@>=" using equal integers: ').

(17@>= 17 ->

w('passed')

;

w('FAILED')),

nl.

dotest(76) :- w('Testing "@>=" for failure using unequal integers: '),

(-33 <g»= ->

wCFATLED')

;

w('passed')),

nl.

dotest(77) :- w('Testing "@>=" using unequal atoms: '),
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(xyz @>= xyy ->

w('passed')

;

w('FAILED')),

nl.

dotest(78) :- w('Testing "@>=" using equal atoms: ').

(xyz @>= xyy ->

w('passed')

;

w('FAILED')),

nl.

dotest(79) :- w('Testing "@>=" for failure using unequal atoms: ').

(xyy @>= xyz ->

wCF/MLED')

;

w('passed')).

nl.

dotest(83) :- w('Testing "@>=" using unequal complex terms: '),

(compare(=,l,l) @>= compar(=,l,I) ->

w('passed')

;

wCFArLED')),

nl.

dotest(84) :- w('Testing "@>=" using equal complex terms: ').

(compare(=,l,l) @>= compare(=,l,l) ->

w('passed')

;

w('FAILED')),

nl.

dotest(85) :- w('Tesung "<§»=" for failure using unequal complex terms: '),

(compar(=,l,l) @>= compare(=,l,l) ->

w('FAILED -

)

;

w('passed')),

nl.

dotest(86) :- w('Tesung "@>=" using variables instantiated to unequal values: ').

X = -6,Y = 17,

(Y <§»= X ->

w('passed')

;

wCFATLED')),

nl.

dotest(87) :- w('Testing "<§>>=" using variables instantiated to equal values: '),

X = -6,Y = -6,

(Y @>= X ->

w('passed')

;

wCFAILED')),

nl.

dotest(88) :- w('Testing "@>=" for failure using variables

instantiated to unequal values: ').

X = -7,Y = -6,

(X <§»= Y ->

w('FAILED')

;
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w('passed')),

nl.

dotest(89) :- w('Testing "@>=" using unequal functor arguments: '),

(compare(=,l,2) @>= compare(=,l,l) ->

w('passed') ;

wCFATLED')),

nl.

dotest(90) :- w('Testing "@>=" for failure using unequal functor arguments: '),

(compare(=,l,2) <§»= compare(=,2,l) ->

w('FAlLED') ;

w('passed')),

nl.

dotest(91) :- w('Testing "@>=" using complex terms of different arity: ').

(re(=,l,l)<S»=re(l,l)->

w('passed')

;

w('FAILED')),

nl.

dotest(92) :- w('Tesring "@>=" for failure using complex terms of different arity: '),

(re(l,l) @>= re(=,l,l) ->

wCFATLED')

;

w('passed')),

nl.

dotest(93) :- w('Testing "@>=" using an atom and an integer: '),

(xyz @>= 17 ->

w('passed')
;

wCFATLED')),

nl.

dotesl(94) :- w('Testing "@>=" for failure using an atom and an integer: '),

(17 @>= xyz ->

w('FATLED')
;

w('passed')),

nl.
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ABSTRACT

This paper presents a survey of current tools and techniques which are used for the dynamic

validation of software. Also presented in this paper is the requirements and design for the

Automated Regression Test System (ARTS).

Early error detection and correction is important in determining the success or failure of a

software product. Several studies have shown us that it is extremely important to detect

software errors as early as possible in a product's life cycle. Many software tools and

techniques have been developed to aid us in the detection of errors or "bugs". The common

goal of these tools and techniques is to demonstrate that the product being tested is free of

errors.

Several tools which have been developed for the specific purpose of validating the

correctness of compilers are examined. These validation systems can be classified as being

either test case generators or test case drivers. Archiving systems and comparators may also be

part of the compiler validation tool.

The Automated Regression Test System presented in this paper is a test case driver and

archiver which can be used to regression test compilers or interpreters which run on the UNTXf

operating system. Although the ARTS is limited to regression testing only, it has the flexibility

required to regression test any compiler or interpreter supported by UNIX.

t UNIX is a trademark of Bell Laboratories


