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Abstract

The reader will recall that the classical p-Lebesgue spaces are those functions defined on

a measure space (X,µ) whose modulus raised to the pth power is integrable. This condition

gives many quantitative measurements on the growth of the function, both locally and

globally. Results and applications pertaining to such functions are ubiquitous. That said,

the constancy of the exponent p when computing
∫
X
|f |p dµ is limiting in the sense that

it is intrinsically uniform in scope. Speaking loosely, there are instances in which one is

concerned with the p growth of a function in a region A and its q growth in another region

B. As such, allowing the exponent to vary from region to region (or point to point) is a

reasonable course of action.

The task of developing such a theory was first taken up by Wladyslaw Orlicz in the

1930’s. The theory he developed, of which variable Lebesgue spaces are a special case,

was only intermittently studied and analyzed through the end of the century. However,

at the turn of the millennium, several results and their applications sparked a focused and

intense interest in variable Lp spaces. It was found that with very few assumptions on

the exponent function many of the classical structure and density theorems are valid in

the variable-exponent case. Somewhat surprisingly, these results were largely proved using

intuitive adaptations of well-established methods. In fact, this methodology set the tone for

the first part of the decade, where a multitude of “affirmative” results emerged. While the

successful adaptation of classical results persists to a large extent today, there are nontrivial

situations in which one cannot hope to extend a result known for constant Lp.

In this paper, we wish to explore both of the aforementioned directions of research.

We will first establish the fundamentals for variable Lp. Afterwards, we will apply these

fundamentals to some classical Lp results that have been extended to the variable setting.



We will conclude by shifting our attention to Littlewood-Paley theory, where we will furnish

an example for which it is impossible to extend constant-exponent results to the variable

case.
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Chapter 1

The Fundamentals of Variable

Lebesgue Spaces

1.1 Preliminaries

Let (X,µ) be a measure space. Denote by M = M (X,µ) the set of µ-measurable functions

fromX into the complex plane, C, or into the extended real numbers, [−∞,∞]. An exponent

for (X,µ), is any element of M taking values in [1,∞]. We denote the set of exponents by

E = E (X,µ). It is worth noting that some authors allow their exponents to take values

below one. Most, if not all, of these authors still insist that the exponent be positive. In

the rare event we consider such exponents, we will call them generalized exponents.

Fix p ∈ E . Given any f ∈M , the identity

|f(x)|p(x) = exp [p(x) log |f(x)|]

shows that |f |p is measurable. Since it is also nonnegative, the integral
∫
X
|f(x)|p(x) dµ(x)
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is well-defined. Thus, the functional ρp : M → [0,∞] given by

ρp(f) :=

∫
Fp

|f(x)|p(x) dµ(x) + ess sup
x∈F cp

|f(x)|

is also well-defined, where Fp := {p <∞}. In the event that µ(F c
p ) = 0, we are taking the

second term in the definition of ρp(f) to be zero. The functional ρp is called the p-modular

for (X,µ). We take a moment to record some useful properties of this functional.

Proposition 1.1. Let p ∈ E and f, g ∈M . Then the following hold:

(a) ρp(f) ≥ 0, with equality if and only if f = 0, µ a.e.

(b) ρp(f) ≤ ρp(g), whenever |f | ≤ |g|, µ a.e.

(c) ρp is convex.

(d) Suppose ρp(f/t0) <∞, for some t0 > 0. Define F (t) := ρp(f/t), for t ≥ t0. Then F is

bounded by ρp(f/t0), non-increasing, continuous and has zero limit at infinity.

(e) (Fatou’s lemma) For any {fn} ⊂M ,

ρp

(
lim inf
n→∞

|fn|
)
≤ lim inf

n→∞
ρp(fn)

Proof. Parts (a) and (b) follow immediately from the definition of ρp.

(c) To prove this part, let λ ∈ [0, 1]. Recall that t 7→ tq is convex on [0,∞), for every
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q ≥ 1. Thus,

ρp((1− λ)f + λg) =

∫
Fp

|(1− λ)f(x) + λg(x)|p(x) dµ(x) + ess sup
x∈F cp

|(1− λ)f(x) + λg(x)|

≤
∫
Fp

[(1− λ) |f(x)|+ λ |g(x)|]p(x) dµ(x)

+ ess sup
x∈F cp

[(1− λ) |f(x)|+ λ |g(x)|]

≤
∫
Fp

[
(1− λ) |f(x)|p(x) + λ |g(x)|p(x)

]
dµ(x)

+ (1− λ) ess sup
x∈F cp

|f(x)|+ λ ess sup
x∈F cp

|g(x)|

= (1− λ)ρp(f) + λρp(g).

(d) Assume the additional hypothesis stated for this part of the proposition. That F is

bounded by ρp(f/t0) and non-increasing follow from part (c) above. That F is continuous

on its domain of definition and has zero limit at infinity both follow from the dominated

convergence theorem.

(e) This follows immediately from the usual Fatou lemma:

ρp

(
lim inf
n→∞

|fn|
)

=

∫
Fp

[
lim inf
n→∞

|fn(x)|
]p(x)

dµ(x) + ess sup
x∈F cp

[
lim inf
n→∞

|fn(x)|
]

≤ lim inf
n→∞

∫
Fp

|fn(x)|p(x) dµ(x) + lim inf
n→∞

[
ess sup
x∈F cp

|fn(x)|

]

= lim inf
n→∞

ρp(fn).

�

Now that we have established the most basic properties for the p-modular, we can define

the function spaces that we wish to investigate throughout this paper. Given p ∈ E , let
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Lp = Lp(X,µ) be set of all µ-measurable functions f for which the p-modular of some

(inverse) scalar multiple is finite. In symbols,

Lp(X,µ) := {f ∈M : ρp(f/t0) <∞,∃ t0 > 0}.

We define a functional on Lp as follows:

‖f‖p := inf {t > 0 : ρp(f/t) ≤ 1}.

By Proposition 1.1(e), the set {t > 0 : ρp(f/t) ≤ 1} is nonempty, for each f ∈ Lp. Hence,

the functional specified above is well-defined and finite, for every f ∈ Lp. As the notation

suggests, ‖·‖p will turn out to be a seminorm, and furthermore, under the usual convention

of identifying functions that are equal µ a.e., it will actually be a norm. Of course, this

needs to be verified. To this end, we gather some preliminary facts about ‖·‖p that are

useful in their own right.

Proposition 1.2. Let p ∈ E and f, g ∈ Lp.

(a) ‖f‖p ≥ 0, with equality if and only if f = 0, µ a.e.

(b) ‖f‖ ≤ ‖g‖, whenever |f | ≤ |g|, µ a.e.

(c) ρp

(
f/ ‖f‖p

)
≤ 1, whenever f 6= 0 µ a.e. In other words, the infimum in the definition

for the seminorm of f is achieved, whenever f 6= 0 µ a.e.

(d) Suppose, in addition, that p is bounded on its finiteness set; i.e. ess supx∈Fp p(x) < ∞.

Then ρp

(
f/ ‖f‖p

)
= 1, whenever f 6= 0 µ a.e.

(e) (unit ball property) ρp(f) ≤ 1 if and only if ‖f‖p ≤ 1.
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(f) If ρp(f) ≤ 1 or ‖f‖p ≤ 1, then ρp(f) ≤ ‖f‖p.

(g) If ρp(f) > 1 or ‖f‖p > 1, then ‖f‖p ≤ ρp(f).

Proof. (a) If f = 0 µ a.e., then ρp(f/t) = 0, for every t > 0, whence ‖f‖p = 0. Now, assume

that f 6= 0, µ a.e. Then there exists ε > 0 such that µ(E) > 0, where E := {|f | ≥ ε}.

Suppose, in order to reach a contradiction, that ‖f‖p = 0. By the definition of ‖f‖p, we

may then find a sequence {tn} such that tn < ε, tn ↘ 0 and ρp(f/tn) ≤ 1. So, for all n, we

have

1 ≥ ρp(f/tn) (1.1)

≥
∫
E∩Fp

∣∣∣∣f(x)

tn

∣∣∣∣p(x) dµ(x) + ess sup
x∈E∩F cp

∣∣∣∣f(x)

tn

∣∣∣∣
≥ ε

tn

[
µ(E ∩ Fp) + ess sup

X
1 E∩F cp

]
.

Letting n→∞ in (1.1) yields the desired contradiction, which completes the proof of (a).

(b) If |f | ≤ |g|, µ a.e., then ρp(f/t) ≤ ρp(g/t), for every t > 0, by Proposition 1.1(c).

Therefore, {t > 0 : ρp(g/t) ≤ 1} ⊂ {t > 0 : ρp(f/t) ≤ 1}, whence ‖f‖p ≤ ‖g‖p.

(c) Choose tn > 0 such that tn ↘ ‖f‖p and ρp(f/tn) ≤ 1. Now, apply Fatou’s lemma

(Proposition 1.1(e)) to the sequence {fn}, where fn := f/tn.

(d) Put p0 := ess supx∈Fp p(x). Assume, with a view to reach a contradiction, that

ρp

(
f/ ‖f‖p

)
< 1. Under this assumption, we may choose 0 < t < ‖f‖p so close to ‖f‖p so
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that
(
‖f‖p /t

)p0
ρp

(
f/ ‖f‖p

)
≤ 1. For such a t, observe that

ρp

(
f

t

)
=

∫
Fp

(‖f‖p
t

)p(x) ∣∣∣∣∣f(x)

‖f‖p

∣∣∣∣∣
p(x)

dµ(x) +

(‖f‖p
t

)
ess sup
x∈F cp

∣∣∣∣∣f(x)

‖f‖p

∣∣∣∣∣
≤
(‖f‖p

t

)p0
ρp

(
f

‖f‖p

)

≤ 1.

By the infimal definition of ‖f‖p, it must be that ‖f‖p ≤ t, contradicting the choice of t.

Hence, our assumption is false; i.e. ρp

(
f/ ‖f‖p

)
≥ 1. In view of part (c) of this proposition,

the proof of (d) is complete.

(e) If ρp(f) ≤ 1, then 1 ∈ {t > 0 : ρp(f/t) ≤ 1}, whence ‖f‖p ≤ 1. This shows that

ρp(f) ≤ 1 implies ‖f‖p ≤ 1.

Now, assume that ‖f‖p ≤ 1. Note first that we may assume additionally that ‖f‖p 6= 0,

for otherwise both ρp(f) = ‖f‖p = 0. Since 0 < ‖f‖p ≤ 1, we have that |f(x)|p(x) / ‖f‖p ≤∣∣∣f(x)/ ‖f‖p
∣∣∣p(x), for every x ∈ X. Thus,

ρp(f)

‖f‖p
=

∫
Fp

|f(x)|p(x)

‖f‖p
dµ(x) + ess sup

x∈F cp

∣∣∣∣∣f(x)

‖f‖p

∣∣∣∣∣
≤
∫
Fp

∣∣∣∣∣f(x)

‖f‖p

∣∣∣∣∣
p(x)

dµ(x) + ess sup
x∈F cp

∣∣∣∣∣f(x)

‖f‖p

∣∣∣∣∣
= ρp

(
f

‖f‖p

)

≤ 1,

so that ρp(f) ≤ ‖f‖p ≤ 1, as desired

(f) We have already shown in the proof of (e) that ‖f‖p ≤ 1 implies that ρp(f) ≤ ‖f‖p.

Pairing this with the new found fact that ρp(f) ≤ 1 is equivalent to ‖f‖p ≤ 1 proves (f).
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(g) Since ρp(f) ≤ 1 is equivalent to ‖f‖p ≤ 1, we may assume ρp(f) > 1 to prove this

part. By convexity, we have ρp(f/ρp(f)) ≤ ρp(f)/ρp(f) = 1, whence ‖f‖p ≤ ρp(f). �

As stated above, we will use these facts to argue that Lp, under the usual identification,

is a normed vector space. In fact, more can be said. This is the content of the following:

Theorem 1.3. Lp is a complex vector space and the functional ‖·‖p is a seminorm on Lp.

If one identifies functions in Lp that are equal µ a.e., then Lp is Banach space.

Proof. Clearly, Lp is nonempty: it contains the zero function. Positive definiteness is the

content of Proposition 1.2(a). Since ρp(f/t) = ρ((αf)/(|α| t)), for all t > 0, we see that

αf ∈ Lp, whenever f is. To show the homogeneity of ‖·‖p, let f ∈ Lp and α ∈ C. We may

assume that α 6= 0 and that f 6= 0 µ a.e. Under these additional assumptions, Proposition

1.2(c) applies and we find that

ρp

(
αf

|α| ‖f‖p

)
= ρp

(
f

‖f‖p

)
≤ 1,

whence ‖αf‖ ≤ |α| ‖f‖p. Analogously,

ρp

 f
‖αf‖p
|α|

 = ρp

(
αf

‖αf‖

)
≤ 1,

whence ‖f‖p ≤ ‖αf‖p / |α|, or equivalently, |α| ‖f‖p ≤ ‖αf‖p. By antisymmetry, ‖αf‖p =

|α| ‖f‖p.

We will now show that Lp is closed under addition and that ‖·‖p satisfies the triangle

inequality: Let f, g ∈ Lp. If either f or g vanished µ a.e., then the desired results would
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be trivial. So, we may safely assume that both f and g do not vanish µ a.e. Thus, the

following computations are valid:

ρp

(
f + g

‖f‖p + ‖g‖p

)
= ρp

(
‖f‖p

‖f‖p + ‖g‖p
f

‖f‖p
+

‖g‖p
‖f‖p + ‖g‖p

g

‖g‖p

)

≤
‖f‖p

‖f‖p + ‖g‖p
ρp

(
f

‖f‖p

)
+

‖g‖p
‖f‖p + ‖g‖p

ρp

(
g

‖g‖p

)

≤
‖f‖p

‖f‖p + ‖g‖p
+

‖g‖p
‖f‖p + ‖g‖p

= 1.

This simultaneously shows that Lp is closed under addition and that ‖·‖p satisfies the triangle

inequality. Note that the first and second inequalities in the computation above are justified

by Propositions 1.1(c) and 1.2(c), respectively.

It remains show that Lp is a Banach space under the specified identification. Let {fn}

be a Cauchy sequence in Lp. For each k ∈ N, choose fnk such that

∥∥fnk+1
− fnk

∥∥
p
≤ 2−k.

Consider the finite sum sm :=
∑m

k=1

∣∣fnk+1
− fnk

∣∣. By the triangle inequality, we see that

sm ∈ Lp and ‖sm‖p <
∑m

k=1 2−k < 1, whence ρp(sm) ≤ 1. Since sm is a monotonically

increasing sequence, it makes sense to define s := limm→∞ sm. By Fatou’s lemma, we

have that ρp(s) ≤ lim infm→∞ ρp(sm) < 1. Thus, s ∈ Lp, and therefore, is finite µ a.e.

Consequently, the series f := fn1 +
∑∞

k=1 fnk+1
− fnk converges absolutely µ a.e and is an

element of Lp. Note that f = limk→∞ fnk , µ a.e. We claim that fn → f in Lp. To this end,

let ε > 0. Choose N ∈ N so large so that m,n ≥ N implies ‖fm − fn‖p < ε, or equivalently,

8



‖(fm − fn)/ε‖p < 1. Then, for n ≥ N , Fatou’s lemma and the unit ball property imply that

ρp

(
f − fn
ε

)
≤ lim inf

k→∞
ρp

(
fnk − fn

ε

)
≤ lim inf

k→∞

∥∥∥∥fnk − fnε

∥∥∥∥
p

< 1,

whence ‖f − fn‖ ≤ ε, by the definition of ‖·‖p. In summary, given ε > 0, there is an N ∈ N

so that n ≥ N implies ‖f − fn‖p ≤ ε; i.e. fn → f in Lp. �

As the discussion thus far has been in a general setting, we now take a moment to discuss

how variable Lebesgue spaces coincide and differ from the usual (constant) Lebesgue spaces.

It is natural to first point out that variable Lebesgue spaces with the relevant norms, as

defined above, are indeed generalizations of the usual Lebesgue spaces with the usual norm.

To see this, let p ∈ [1,∞] be a constant.

If 1 ≤ p < ∞, then ρp(f) is the usual p-integral of |f |. That is, ρp(f) =
∫
X
|f |p dµ. In

this case, ρp(f) is finite if and only if ρp(f/t) is finite for any t 6= 0. Thus, Lp, as defined

above, coincides with the usual Lp. Here, the norms defined on the spaces coincide because

ρp

(
f

t

)
≤ 1⇔ 1

tp

∫
X

|f |p dµ ≤ 1⇔
(∫

X

|f |p dµ
) 1

p

≤ t.

In the event that p = ∞, then ρp(f) is the essential supremum of |f | over all of X.

Therefore, Lp, as defined above, coincides with the usual L∞ in that it is the set of all

essentially bounded µ-measurable functions on X. The norms agree in this scenario, since

ρp

(
f

t

)
≤ 1⇔ ess sup

X
|f | ≤ t.

9



To briefly illustrate that variable Lebesgue spaces are fundamentally different from the

classical Lebesgue spaces, we provide two examples in which these spaces exhibit behaviors

that are somewhat counterintuitive. For our first example, let X := [1,∞), dµ := dx and

p(x) := x. Let α ∈ C\{0} denote the constant function x 7→ α. If t0 > |α|, the computation

∫ ∞
1

∣∣∣∣αt0
∣∣∣∣x dx = lim

n→∞

(
|α| t−10

)n − |α| t−10

ln
(
|α| t−10

) (1.2)

shows that α ∈ Lx. This is to be held in contrast to the fact that the only constant function

contained in any of the constant-exponent Lebesgue spaces on [1,∞) is the zero function.

As a side remark, it is worth noting that if we omit the scaling factor t0 in (1.2) we could

only conclude that α ∈ Lp if and only if |α| < 1. So, in general, it is not sufficient to take

Lp to be the set {f ∈M : ρp(f) <∞} in our definition.

For our next example, we consider X = Rn, dµ = dx. The translation invariance

of Lp(Rn) for constant p is so fundamental a property that is often taken for granted.

Unfortunately, such liberties are not permissible in the variable setting. More precisely,

in [1], Diening proves the existence of a nonzero translation that is not continuous on

Lp(Rn), whenever the p is nonconstant. More precisely, if p is essentially non-constant (i.e.

ess supX p > ess infX p), then there exists t ∈ Rn\{0} such that the translation operator

f(x) 7→ f(x− t) is not continuous. While elementary, these two examples already provide a

glimpse of what has motivated much of the research recently put forth from the mathematical

community regarding this subject: to what extent can the results and methods established

for classical Lebesgue (and other exponent) spaces be extended to variable Lebesgue spaces.

This is a theme that we will revisit extensively throughout this dissertation.

10



Before moving on to the next section, it is worth mentioning that there are several

alternative definitions of the modular used when defining the variable Lebesgue function

spaces. The modular introduced at the outset of this section was first formulated by Kováčik

and Rákosńık in [6]. Two different modulars are given and predominantly used in [2]. In

that text, the authors show that these various modulars all define the same function space

and, in fact, that all of the resulting norms are equivalent.

1.2 Properties of Bounded Exponents

Even in the constant setting, one must often separate the extreme values of 1 and ∞

when formulating results for Lp spaces. This trend persists to the variable setting. In this

section, we limit ourselves to the discussion of bounded exponents; i.e. exponents such that

p+ := ess supX p <∞. With this added hypothesis, the two main results of this section are

that modular and norm convergence coincide and that simple functions that vanish outside

a set of finite measure are dense. We start by proving the first of these two claims:

Proposition 1.4. If p is a bounded exponent, then ρp-convergence and ‖·‖p-convergence in

Lp are equivalent.

Proof. By Proposition 1.2(f), we see that norm convergence always implies modular conver-

gence, even when p has an infinite part or is unbounded. So, we need only show modular

convergence implies norm convergence, whenever p+ <∞. To this end, let {fn} ⊂ Lp with

ρp(fn) → 0, as n → ∞. For any 0 < ε < 1, choose N so large so that n ≥ N implies

11



ρp(fn) ≤ εp
+

. Then

ρp

(
fn
ε

)
=

∫
X

|fn|p
(

1

ε

)p
≤ 1

εp+
ρp(fn) ≤ 1,

for all n ≥ N . Consequently, ‖fn‖p ≤ ε, for n ≥ N . Since 0 < ε < 1 is arbitrary, it follows

that ‖fn‖p → 0, as n→∞. �

Theorem 1.5. The class of simple functions that vanish outside a set of finite measure is

dense in Lp, whenever p is a bounded exponent.

Proof. Let S0 denote the class of simple functions that vanish outside a set of finite measure.

If E ⊂ X is measurable and µ(E) <∞, then

ρp(1 E) ≤ µ(E) <∞,

whence 1 E ∈ Lp. Since every element of S0 is a finite linear combination of indicator

functions on finitely µ-measured sets, it follows that S0 ⊂ Lp. Now, let f ∈ Lp with f ≥ 0.

There exists a sequence {sn} of simple functions such that 0 ≤ sn ≤ f and sn ↗ f . (See

[10].) Choose t > 0 such that ρp(f/t) <∞. As 0 ≤ sn ≤ f , we have

ρp(sn) ≤ ρp(f) ≤ max
{

1, tp
+
}
ρp(f/t) <∞.

From this, it follows that each sn ∈ Lp. Since |f − sn|p → 0 pointwise and

|f − sn|p ≤ (2f)p =

(
2t
f

t

)p
≤ max

{
1, (2t)p

+
}(f

t

)p
∈ L1,

Lebesgue’s dominated convergence theorem implies that ρp(f−sn)→ 0, whence ‖f − sn‖p →

0, by Theorem 1.4 above. In summary, we have shown that any f ≥ 0 in Lp is in the closure

12



(in Lp) of S0. For general (i.e. complex) f ∈ Lp, write f = (a+−a−)+(b+− b−)i, where a±

are the positive and negative parts of the real part of f and similarly for b±. Use the above

to get sequences {a±n } and {b±n } in S0 such that a±n → a± and b±n → b± in Lp, respectively.

Put sn := (a+n − a−n ) + (b+n − b−n )i. Then each sn is a (complex-valued) simple function, and

furthermore,

‖f − sn‖p ≤
∥∥a+ − a+n∥∥p +

∥∥a− − a−n∥∥p +
∥∥b+ − b+n∥∥p +

∥∥b− − b−n∥∥p → 0,

as n→∞. �

1.3 Hölder’s Inequality and Embeddings

In this section, we wish to provide one of the ubiquitous tools of classical analysis: Hölder’s

inequality. This inequality will allow us to see how many of the Lp spaces are nested

within each other. Moreover, Hölder’s inequality will motivate the introduction of the

conjugate norm in the next section, which ultimately leads to the very useful norm conjugacy

inequality.

For the proofs of many of the inequalities to follow, it will be convenient to introduce

the following function defined on the µ-measurable subsets of X:

k(E) := ess sup
X

1 E =


0 µ(E) = 0

1 µ(E) 6= 0

.
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Theorem 1.6 (Hölder’s inequality). Let p and q be exponents. If the function r defined by

the equation

1

r(x)
=

1

p(x)
+

1

q(x)
(1.3)

is an exponent (i.e. r ≥ 1), then there exists a constant K = K(p, q) ∈ [1, 5] such that

‖fg‖r ≤ K ‖f‖p ‖g‖q , (1.4)

for every f, g ∈M . If p and q are constant exponents, then K = 1.

Proof. Decompose the finiteness set of r, Fr, into the following three sets:

A := {r = p <∞} = {q =∞, p <∞},

B := {r = q <∞} = {p =∞, q <∞},

C := {r < p <∞} = {r < q <∞}

Let us assume first that ‖f‖p , ‖g‖q ≤ 1 so that ρp(f), ρq(g) ≤ 1. Since A ⊂ F c
q , we have

ess sup
A
|g| ≤ ess sup

F cq

|g| ≤ ρq(g) ≤ 1.

It follows that |g| ≤ 1 a.e. on A, so that |g|r ≤ 1 a.e. on A, which in turn implies that

ess supA |g|
r ≤ K(A). Hence,

∫
A

|fg|r ≤ ess sup
A
|g|r

∫
A

|f |p ≤ k(A)ρp(f) ≤ k(A). (1.5)

In a symmetric manner, we also find that

∫
B

|fg|r ≤ k(B). (1.6)
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To estimate on C, we first recall that the convexity of the exponential function justifies the

following:

|fg|r = exp [r log (|f | · |g|)] = exp

[
r

p
log (|f |p) +

r

q
log (|g|q)

]
≤ r

p
|f |p +

r

q
|g|q ,

on C. Hence, we have∫
C

|fg|r ≤
∫
C

r

p
|f |p +

r

q
|g|q (1.7)

≤
(

ess sup
C

r

p

)∫
C

|f |p +

(
ess sup

C

r

q

)∫
C

|g|q

≤
(

ess sup
C

r

p

)
ρp(f) +

(
ess sup

C

r

q

)
ρq(g)

≤ ess sup
C

r

p
+ ess sup

C

r

q
.

Since F c
r = F c

p ∩ F c
q , we see that

ess sup
F cr

|fg| ≤

(
ess sup

F cr

|f |

)(
ess sup

F cr

|g|

)
(1.8)

≤

(
ess sup

F cp

|f |

)(
ess sup

F cq

|g|

)

≤
[
k(F c

p )ρp(f)
] [
k(F c

q )ρq(g)
]

≤ k(F c
p )k(F c

q ).

At last, we may combine inequalities (1.5) through (1.8) to obtain

ρr(fg) =

∫
Fr

|fg|r + ess sup
F cr

|fg|

=

∫
A

+

∫
B

+

∫
C

|fg|r + ess sup
F cr

|fg|

≤ k(A) + k(B) + ess sup
C

r

p
+ ess sup

C

r

q
+ k(F c

p )k(F c
q )

=:K.
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Considering the definition (1.3) of r, it is straight-forward to verify that 1 ≤ K ≤ 5. Since

K ≥ 1, we may conclude, by the convexity1 of ρr, that

ρr

(
fg

K

)
≤ ρr(fg)

K
≤ 1,

so that

‖fg‖r ≤ K. (1.9)

Since (1.9) holds for all f, g ∈M with ‖f‖p ≤ 1 and ‖g‖q ≤ 1 and since ‖·‖r is homogeneous

(of degree 1), (1.4) follows via a scaling argument. Finally, by sheer exhaustion of cases, it

is easy to see that K = 1, whenever p and q are constant exponents. �

As an immediate application of Hölder’s inequality, we can obtain a slightly more general

version of a well-known embedding result. The set up is as follows: Assume p and r are two

exponents with r ≤ p a.e. Since 1 ≤ r ≤ p, it is not difficult to see that 0 ≤ 1/r − 1/p ≤

1− 1/p ≤ 1, whence

q :=
1

1
r
− 1

p

=
pr

p− r

is an exponent (i.e. q ≥ 1). Assuming that f ∈ Lp and 1X ∈ Lq, then Hölder’s inequality

implies that f = f · 1X ∈ Lr, and in fact,

‖f‖r ≤ K ‖f‖p ‖1X‖q .

This proves the following:

1Here is where we need that r ≥ 1.
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Proposition 1.7. If 1 ≤ r ≤ p, where p and r are exponents, and 1X ∈ L
pr
p−r , then Lp

continuously embeds in Lr with embedding norm at most K ‖1X‖ pr
p−r

.

In the event that µ(X) < ∞, then 1X ∈ Lq, for all exponents q, whence Lp ↪→ Lr,

whenever r ≤ p, in this scenario.

1.4 Norm Conjugacy

The most common application of Hölder’s inequality arises when the exponents p and q are

stipulated to satisfy the extended real-valued equation:

1

p(x)
+

1

q(x)
= 1, (1.10)

for all x ∈ X. In this case, we say q is the conjugate exponent to p and is customarily

written p′ instead of q.

Having defined the conjugate exponent to p, we wish to define the conjugate norm to

‖·‖p. This is the functional |||·|||p defined on M given by

|||f |||p := sup
ρp′ (g)≤1

∫
X

|fg| dµ.

The next proposition accounts for the variety of definitions for |||·|||p used by different authors.

Proposition 1.8. The following equalities hold:

|||f |||p = sup
‖g‖p′≤1

∫
X

|fg| dµ = sup
ρp′ (g)≤1

∣∣∣∣∫
X

fgdµ

∣∣∣∣ = sup
‖g‖p′≤1

∣∣∣∣∫
X

fgdµ

∣∣∣∣
= sup

ρp′ (g)≤1,g∈S

∫
X

|fg| dµ = sup
‖g‖p′≤1,g∈S

∫
X

|fg| dµ

where S is the class of simple functions on X.

17



Proof. The unit ball property implies that {ρp′ ≤ 1} =
{
‖·‖p′ ≤ 1

}
. This shows that the

first and second, the third and fourth, and the fifth and sixth expressions are respectively

equal. Moreover, it is clear that |||f |||p is at least as large as the third and fifth expressions.

So, we need only show the reverse inequality holds in each of these cases. To this end, let

h ∈ Lp′ with ρp′(h) ≤ 1. Since ||h| sign f | ≤ |h|, ρp′ (|h| sign f) ≤ ρp′(h) ≤ 1, whence

∫
X

|fh| dµ =

∣∣∣∣∫
X

f (|h| sign f) dµ

∣∣∣∣ ≤ sup
ρp′ (g)≤1

∣∣∣∣∫
X

fgdµ

∣∣∣∣ .
Taking the supremum over all such h proves the first desired inequality. On the other hand,

we may find a sequence hn of nonnegative simple functions that converge monotonically

up to |h|. Since |hn| ≤ |h|, for each n, it follows, as above, that ρp′(hn) ≤ 1, for each

n. Furthermore, the sequence |fhn| converges monotonically up to |fh|; and so, by the

monotone convergence theorem,

∫
X

|fh| dµ = lim
n→∞

∫
X

|fhn| dµ ≤ lim
n→∞

[
sup

ρp′ (g)≤1,g∈S

∫
X

|fg| dµ

]
= sup

ρp′ (g)≤1,g∈S

∫
X

|fg| dµ.

As above, taking the supremum over all such h yields the second desired inequality. �

It is straight forward to verify that |||·|||p is a semi-norm on the class of µ-measurable

functions, f , for which |||f |||p <∞. For specificity, let us denote this class by CNp. If µ is σ-

finite, then this semi-norm is a full-fledged norm, provided we make the usual identification

of functions that are equal µ a. e. This is not difficult to see at present, but we refrain from

proving it at this point, since it is also an immediate consequence of the norm conjugate

inequality below.
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Hölder’s inequality shows that Lp, as defined in the first section, continuously embeds

in CNp with embedding norm at most K, where 1 ≤ K ≤ 5 is as in Theorem 1.6. We will

soon see that the reverse inclusion also holds so that CNp is nothing other than Lp. As

hinted at a moment ago, the proof of this inclusion will require that the underlying measure

be σ-finite.

Lemma 1.9. Assume that µ is σ-finite. Then there exists a constant K = K(p) ∈ [1, 3]

such that ρp(f) ≤ K = K(p), whenever |||f |||p ≤ 1. If p is constant, then K = 1.

Proof. We first decompose Fp into two sets:

A := {p = 1}

B := {1 < p <∞}.

Let us estimate on A. Put g := 1 A. Since A = F c
p′ , it follows that

ρp′(g) = ess sup
F c
p′

|g| ≤ k(A) ≤ 1.

Thus, ∫
A

|f |p = k(A)

∫
X

|fg| ≤ k(A) |||f |||p ≤ k(A).

Now we estimate on B: Suppose additionally for the moment that
∫
B
|f |p <∞. Assume,

for the sake of contradiction, that
∫
B
|f |p > 1. Then it follows from Proposition 1.1(d) that

there is a t > 1 so that
∫
B
|f/t|p = 1. Put g(x) = |f(x)/t|p(x)−1 1 B(x). Then

ρp′(g) =

∫
Fp′

∣∣∣∣∣
∣∣∣∣f(x)

t

∣∣∣∣p−1 1 B(x)

∣∣∣∣∣
p′

dµ(x) + ess sup
x∈F c

p′

∣∣∣∣∣
∣∣∣∣f(x)

t

∣∣∣∣p−1 1 B(x)

∣∣∣∣∣ =

∫
B

∣∣∣∣f(x)

t

∣∣∣∣p dµ(x) = 1
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Then

|||f |||p ≥
∫
X

|f(x)g(x)| dµ(x) = t

∫
B

∣∣∣∣f(x)

t

∣∣∣∣p dµ(x) = t > 1.

This is a contradiction, whence
∫
B
|f |p ≤ 1, as desired.

In the event that it is unknown a priori that
∫
B
|f |p < ∞, we consider the sequence of

truncations given by

fn(x) = min
{
n

1
p(x) , |f(x)|

}
1 Bn(x),

where the Bn are such that Bn ⊂ Bn+1 ⊂ B and
⋃
nBn = B and µ(Bn) < ∞, for each

n. This is possible, by the (assumed) σ-finiteness of µ. Since
∫
B
|fn|p ≤ nµ(En) < ∞ and

|||fn|||p ≤ |||f |||p ≤ 1 (since |fn| ≤ |f |), the result above implies that

∫
B

|fn|p ≤ 1, (1.11)

for each n. By construction, as n→∞, we have |fn|p ↗ |f |p pointwise, whence

∫
B

|fn|p ↗
∫
B

|f |p . (1.12)

Combining (1.11) with (1.12), we may deduce that
∫
B
|f |p ≤ 1 so that

∫
B

|f |p = k(B)

∫
B

|f |p ≤ k(B).

Finally, we estimate on F c
p : Put M := ess supF cp |f |. If µ(F c

p ) = 0, there is nothing to

prove. So, assume µ(F c
p ) > 0. By the definition of essential supremum, given 0 < ε < 1,

there exists a subset E = E(ε) of F c
p such that 0 < µ(E) <∞ (σ-finiteness used here) and

|f | ≥ (1 − ε)M , for all x ∈ E. Put g = 1
µ(E)

1 E. Since E ⊂ F c
p = {p =∞} = {p′ = 1}, it
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follows that ρp′(g) = 1, whence

(1− ε)M =
1

µ(E)

∫
E

(1− ε)M ≤ 1

µ(E)

∫
E

|f | =
∫
X

|fg| ≤ |||f |||p ≤ 1.

Letting ε→ 0 shows that M ≤ 1 = k(F c
p ).

In summary, we have shown that

|||f |||p ≤ 1⇒ ρp(f) ≤ k(A) + k(B) + k(F c
p ) =:K.

Notice that K = 1 when exactly one of the three sets A, B or F c
p has positive measure. In

particular, this happens when p is constant. �

Corollary 1.10. Lp = CSp, provided that µ is σ-finite. Lp ⊂ CSp, even if µ is not σ-finite.

Proof. As remarked above, Hölder’s inequality implies that Lp ⊂ CSp. On the other

hand, if f ∈ CSp, then the CSp norm of f/ |||f |||p is no greater than 1. Consequently,

ρp(f/ |||f |||p) < ∞, by Lemma 1.9. (We are making the trivial assumption that f 6= 0.)

Hence, f ∈ Lp, showing the opposite inclusion. �

Corollary 1.11 (Norm conjugacy inequality). If µ is σ-finite, then there are constants

K1 = K1(p) ∈ [1/5, 1] and K2 = K2(p) ∈ [1, 3] such that

K1 |||f |||p ≤ ‖f‖p ≤ K2 |||f |||p .

The first inequality holds even if µ is not σ-finite. If p is constant, then K1 = K2 = 1 so

that

‖f‖p = |||f |||p .
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Proof. Through Corollary 1.10, we have established that |||f |||p is finite if and only if ‖f‖p

is also finite. (Note that the above chain of inequalities, properly interpreted, reflects this

fact.) So, we may assume that both are finite. We have already argued that the first

inequality is a consequence of Hölder’s inequality. The constant K1 = 1/K, where K is the

constant from that theorem. To prove the second inequality, let K be as in Lemma 1.9. We

now apply the same scaling technique that can be found as before: Since f/ |||f |||p has CSp

norm no greater than 1, the convexity of ρp and Lemma 1.9 justify that

ρp

(
f

K |||f |||p

)
≤ 1

K
ρp

(
f

|||f |||p

)
≤ 1,

whence f/ |||f |||p has Lp norm no greater than K. By homogeneity, ‖f‖p ≤ K |||f |||p. Taking

K2 = K finishes the proof. �
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Chapter 2

Advanced Topics

In this chapter, the intention is to demonstrate the uses of the basic tools that we have

devised from the previous chapter in the settings of duality and Riesz-Thorin interpolation.

In both instances, it will be shown that the now canonical proofs of these two results readily

lend themselves to the variable setting. That said, the successful execution of these proofs,

unsurprisingly, require some results to handle the nuances that arise due to the potentially

variable exponent.

2.1 Duality

Given a normed vector space V , we denote by V ′ the normed vector space of bounded linear

functionals from V → C endowed with the usual operator norm. We wish to characterize

(Lp)′. The characterization is motivated by norm conjugate inequality. More precisely, for

g ∈ Lp′ , we define the integral operator associated to g to be the operator I(g) : Lp → C
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given by I(g)(f) :=
∫
X
fgdµ. Hölder’s inequality ensures that I(g) is a well-defined operator

and that it is bounded. The linearity of the integral implies the linearity of I(g), whence

I(g) ∈ (Lp)′.

We have thus defined an operator I : Lp
′ → (Lp)′. Again using the linearity of the

integral, we find that I is linear. What’s more, by Proposition 1.8, we have the identity

‖I(g)‖(Lp)′ = |||g|||p′ .

From this and the results from the previous section, it follows that I is an injective, bounded,

linear operator from Lp
′

into (Lp)′, whenever the underlying measure, µ, is σ-finite. If we

tack on the additional hypothesis that p be a bounded exponent, then it actually turns out

that this operator is an isomorphism.

Theorem 2.1. Suppose µ is σ-finite and p is a bounded exponent. Then I : Lp
′ → (Lp)′ is

an isomorphism.

Proof. Given the exposition preceding the statement of the theorem, it remains to prove

that the I is surjective. Fix T ∈ (Lp)′.

We will first show the result with the added assumption that µ(X) <∞. Then 1 E ∈ Lp,

for every measurable E ⊂ X. Thus, the set function ν(E) := T (1 E) is well-defined on the

same σ-algebra as µ. We wish to show that ν is a complex measure that is absolutely

continuous with respect to µ. Observe that µ(E) = 0 implies that 1 E = 0 µ a.e., and

consequently T (1 E) = 0, by linearity. In particular, ν(∅) = 0. Now, let {Ek} be a pairwise
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disjoint sequence of measurable sets and put E :=
⋃
k Ek. Since

ρp

(
1 E −

n∑
k=1

1 Ek

)
= ρp

(
∞∑

k=n+1

1 Ek

)
=

∞∑
k=n+1

µ(Ek)→ 0,

as n → ∞ and since p+ < ∞, we may conclude that
∑n

k=1 1 Ek → 1 E in Lp, by Theorem

1.4. Hence,

ν(E) = T (1 E) =
∑
k

T (1 E) =
∑
k

ν(Ek),

by the continuity of T , completing the proof that ν is a complex measure absolutely con-

tinuous with respect to µ. By the theorem of Lebesgue, Radon and Nikodym, we may find

a g ∈ L1 such that

T (1 E) = ν(E) =

∫
X

1 Eg, (2.1)

for every measurable E ⊂ X. By the linearity of T and the integral, (2.1) implies

T (f) =

∫
X

fg, (2.2)

for every simple f ∈ Lp.

Let f ∈ L∞. Since µ(X) < ∞, L∞ ⊂ Lp. Also, since p+ < ∞, simple functions are

dense in Lp. Hence, by extracting a subsequence and truncating if needed, we may find a

sequence, {fn}, of simple functions in Lp that are uniformly bounded by M := 2 ess sup |f |

and converge almost everywhere to f as well as in the Lp norm. Thus, we may invoke the

continuity of T and the dominated convergence theorem to get

T (f) = lim
n→∞

T (fn) = lim
n→∞

∫
fng =

∫
fg.

As f ∈ L∞ is arbitrary, we conclude that (2.2) holds on L∞.
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Now, let f ∈ Lp be simple with ‖f‖p ≤ 1. Since f is simple, h := |f | sign g ∈ L∞ and

|h| ≤ |f |, whence ∫
X

|fg| =
∣∣∣∣∫
X

hg

∣∣∣∣ (2.3)

= |T (h)|

≤ ‖T‖Lp→C ‖h‖p

≤ ‖T‖Lp→C ‖f‖p

≤ ‖T‖Lp→C .

Noting that (p′)′ = p and taking the supremum in (2.3) over all such f , we may deduce that

|||g|||p′ ≤ ‖T‖Lp→C. Thus, g ∈ Lp′ .

Finally, we use the new found fact g ∈ Lp′ to conclude that (2.2) holds for all f ∈ Lp as

follows: Given any f ∈ Lp, choose a sequence, {fn}, of simple functions in Lp that converge

to f in the Lp norm. Then∣∣∣∣Tf − ∫ fg

∣∣∣∣ = lim
n→∞

∣∣∣∣Tfn − ∫ fg

∣∣∣∣
= lim

n→∞

∣∣∣∣∫ fng −
∫
fg

∣∣∣∣
≤ lim

n→∞

∫
|fn − f | |g|

≤ lim
n→∞

5 ‖fn − f‖p ‖g‖p′

= 0,

whence Tf =
∫
fg, as desired.

We now replace the assumption that µ(X) <∞ with the assumption that µ is σ-finite.

Choose a sequence, {Xk}, of measurable subsets of X such that Xk ⊂ Xk+1, µ(Xk) < ∞
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and X =
⋃
kXk. It is clear that that T restricts to a bounded linear operator on Lp(Xk).

By the work above, we may find gk ∈ Lp
′
(Xk) such that the restriction of T to Lp(Xk) is

given by integration over Xk against g. Extend each gk to X by putting gk = 0 outside of

Xk. Since T is given by integration against gk on Xk, it follows that gl = gk µ a.e. on Xk,

for every l ≥ k. Consequently, the function g = limk gk is well-defined and has the property

that g = gk on Xk, for every k. Given f ∈ Lp(X) with ‖f‖p ≤ 1, the monotone convergence

theorem implies ∫
X

|fg| = lim
k→∞

∫
X

|fgk|

= lim
k→∞

∣∣∣∣∫
Xk

(|f | sign gk) gk

∣∣∣∣
= lim

k→∞
|T (|f | sign gk)|

≤ lim
k→∞
‖T‖Lp→C ‖|f | sign gk‖p

≤ ‖T‖Lp→C ,

whence g ∈ Lp′ . Now that we know g ∈ Lp′ , we will be able to argue that T is given by

integration against g, thereby, completing the proof of this theorem. Given any f ∈ Lp,

define fk := f1Xk . Observe that |f − fk|p → 0 everywhere and that |f − fk|p ≤ 2p
+ |f |p ∈

L1. Consequently, ρp(f−fk)→ 0, which, in turn, implies that ‖f − fk‖p → 0, since p+ <∞.

Since g ∈ Lp′ , its integral operator is continuous on Lp, by Hölder’s inequality. This paired

with the assumed continuity of T implies that

T (f) = lim
k→∞

T (fk) = lim
k→∞

T |Lp(Xk)(fk|Xk) = lim
k→∞

∫
Xk

fk|Xkgk = lim
k→∞

∫
X

fkg = lim
k→∞

I(g)(fk)

= I(g)(f).
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If in addition, p is (essentially) bounded away from one, then we have the obvious

corollary:

Corollary 2.2. Suppose µ is σ-finite and that 1 < ess infX p ≤ ess supX p <∞, or equiva-

lently, that p and p′ are both bounded exponents. Then Lp is reflexive.

Now that we effectively know how to identify bounded linear functional defined on Lp,

we can revisit norm conjugacy.

Proposition 2.3. Suppose µ is σ-finite and p is a bounded exponent. Then f ∈ Lp′ if and

only if

sup

{∣∣∣∣∫
X

fgdµ

∣∣∣∣ : ‖g‖p ≤ 1, g ∈ S

}
(2.4)

is finite. If f ∈ Lp′, then |||f |||p′ is equal to (2.4).

Proof. For brevity, denote the supremum in (2.4) by A. By Proposition 1.8, we always have

that |||f |||p′ ≥ A, since the supremum for |||f |||p′ is being taken over a larger set. So, if f ∈ Lp′ ,

then |||f |||p′ <∞, by Corllary 1.10, and therefore, A <∞.

Let us assume, on the other hand, that A < ∞. Define T = Tf : S ∩ Lp′ → C

by Tg :=
∫
fg. Since p is bounded, S ∩ Lp is dense in Lp. Moreover, by assumption,

T is bounded on this dense subset. By the Hanh-Banach theorem, we may extend T to

a bounded linear functional defined on all of Lp. By duality, our extension is given by

integration against some f̃ ∈ Lp′ , whence
∫
fg =

∫
f̃ g, for every g ∈ S ∩ Lp. This implies

that f = f̃ almost everywhere so that f ∈ Lp′ .
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In any event, if we know that f ∈ Lp′ , then we can show that |||f |||p′ = A as follows: We

have already pointed out that we always have |||f |||p′ ≥ A. So, it remains to show the reverse

inequality. To this end, let g ∈ Lp with ‖g‖p ≤ 1. Choose a sequence of simple functions,

{gn}, with ‖gn‖p ≤ 1, for all n, and such that gn → g in Lp, as n→∞. Then∣∣∣∣∫ fg

∣∣∣∣ ≤ ∣∣∣∣∫ f(g − gn)

∣∣∣∣+

∣∣∣∣∫ fgn

∣∣∣∣ ≤ C ‖f‖p′ ‖g − gn‖p + A. (2.5)

Since f ∈ Lp′ , the first term in sum on the right vanishes as n→∞. Thus, letting n→∞

first, then taking the supremum over all such g in (2.5) gives the desired inequality. �

2.2 The Riesz-Thorin Interpolation Theorem

In this section, we will state and prove a version of the Riesz-Thorin interpolation theorem

for variable Lebesgue spaces. As in the constant exponent setting, this theorem allows

us determine the boundedness of a given operator for a certain range of Lp spaces into a

corresponding range of Lq spaces, provided that we know that it is bounded on two “endpoint

spaces”. The major limitation of this particular interpolation theorem arises from the fact

the intermediary exponents are defined so rigidly. More precisely, in practice, it often turns

out that verifying that a certain operator, T , is bounded on the endpoint spaces boils down

to determining whether or not the endpoint exponents have a certain property. Due to the

rigidity of the way in which the intermediary exponents are defined, it frequently turns out

that they also enjoy the same property as the endpoint exponents. As such, we could just as

well have concluded that T is bounded on the intermediary space without having to appeal
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to the Riesz-Thorin theorem. Despite this limitation, the theorem is not without merit.

Often times, it can provide a quick way to verify certain embeddings.

Before moving on to the statement of the theorem, we recall some notation: p− :=

ess infX p and p+ := ess supX p. Having recalled this, let us state and prove the theorem.

Theorem 2.4. Let (X,µ) and (Y, ν) be σ-finite, complete measure spaces. For k = 0, 1,

assume that pk and qk are bounded exponents. Suppose that we have a linear operator, T ,

that carries Lp0(X) ∩ Lp1(X) into M (Y ) and satisfies

‖Tf‖q′k ≤Mk ‖f‖pk , (2.6)

for every f ∈ S (X) ∩ Lpk(X). For z ∈:= {z : 0 ≤ Re z ≤ 1}, define pz and qz by

1

pz
=

1− z
p0

+
z

p1
and

1

qz
=

1− z
q0

+
z

q1
.

Then, given any θ ∈ (0, 1), the inequality

‖Tf‖q′θ ≤ CM1−θ
0 M θ

1 ‖f‖pθ (2.7)

holds, for every f ∈ S (X) ∩ Lpθ(X), where 1 ≤ C ≤ 15.

Proof. We present and adaptation of the now standard proof for the constant exponent case.

This, for example, can be found in [7]. Fix θ ∈ (0, 1) and let f ∈ S (X) ∩ Lpθ(X). We will

break the proof of the theorem into steps:

Step 1: Make reductions. Because T is linear, we may assume that f 6= 0, since the

desired inequality holds for f = 0. Since a constant multiple of a simple function is still

a simple function, the linearity of T , the homogenity of the norm and a scaling argument
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allows us to further assume that ‖f‖pθ = 1 and show

‖Tf‖q′θ ≤ CM1−θ
0 M θ

1 . (2.8)

Furthermore, by Proposition 2.3, to prove (2.8), it suffices to prove that

∣∣∣∣∫
Y

Tf(y)g(y)dν(y)

∣∣∣∣ ≤ KM1−θ
0 M θ

1 , (2.9)

for every g ∈ S (Y )∩Lqθ(Y ), with ‖g‖qθ ≤ 1. Note that K is the Hölder inequality constant

and C is product of K and the norm conjugate exponent. This is why 1 ≤ C ≤ 15.

Step 2: Set notation and definitions. Under the above assumptions, we may write

f =
m∑
j=1

aje
iαj1 Aj

and

g =
n∑
k=1

bke
iβk1 Bk ,

where the aj, bk > 0, αj, βk ∈ R, µ(Aj), µ(Bk) < ∞, and the Aj and Bk are, respectively,

pairwise disjoint. Now, we define

fz(x) :=
m∑
j=1

a
pθ(x)

pz(x)

j eiαj1 Aj(x)

and

gz(y) :=
n∑
k=1

b
qθ(y)

qz(y)

k eiβk1 Bk(y).

Finally, we put

F (z) :=

∫
Y

Tfz(y)gz(y)dν(y).
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Step 3: Argue that F is continuous and bounded on S and analytic on int(S).

Note first, by construction, pθ(x) ∈ [1,∞]. Now, we have that (1 − θ)p1(x) + θp0(x) ≥ 1,

since p0, p1 ≥ 1 and θ ∈ (0, 1). Consequently, for a.e. x ∈ X,

pθ(x) =
p0(x)p1(x)

(1− θ)p1(x) + θp0(x)
≤ p0(x)p1(x) ≤ p+0 p

+
1 <∞.

So, we, in fact, have pθ(x) ∈ [1, p+0 p
+
1 ]. Note also that

−1 <
1

p−1
− 1 ≤ 1

p1(x)
− 1

p0(x)
≤ 1− 1

p−0 (x)
< 1,

for a.e. x ∈ X. Hence, regarding

pθ(x)

pz(x)
= pθ(x)

[
1

p1(x)
− 1

p0(x)

]
z +

pθ(x)

p0(x)
.

as a linear polynomial in z, it follows that the linear coefficient maps X → [−p+0 p+1 , p+0 p+1 ]

while the constant coefficient maps X → [0, p+0 p
+
1 ], since p0 ≥ 1. In a symmetric manner,

we deduce that, if we regard

qθ(x)

qz(x)
= qθ(x)

[
1

q1(x)
− 1

q0(x)

]
z +

qθ(x)

q0(x)

as a polynomial in z, then the linear coefficient maps Y → [−q+0 q+1 , q+0 q+1 ] while the constant

coefficient maps Y → [0, q+0 q
+
1 ]. Since we may rewrite F as

F (z) =
m∑
j=1

n∑
k=1

∫
Y

T

[
a
pθ(·)
pz(·)
j 1 Aj(·)

]
(y)b

qθ(y)

qz(y)

k 1 Bk(y)dν(y),

Lemma 2.6, which is stated and proved below, ensures that F is the finite sum of functions

that are continuous and bounded on S and analytic on int(S), and therefore, is itself such a

function.
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Step 4: Obtain bounds for F on the ∂S. Assume that Re z = 0 and write z = it,

with t ∈ R. Since the Aj are pairwise disjoint and the aj > 0, we have

ρp0(fz) =

∫
X

∣∣∣∣∣
m∑
j=1

a
pθ(x)

pz(x)

j eiαj1 Aj(x)

∣∣∣∣∣
p0(x)

dµ(x)

=

∫
X

∣∣∣∣∣
m∑
j=1

a
pθ(x)

[
1

p1(x)
− 1
p0(x)

]
it+

pθ(x)

p0(x)

j eiαj1 Aj(x)

∣∣∣∣∣
p0(x)

dµ(x)

=

∫
X

m∑
j=1

∣∣∣∣apθ(x)[ 1
p1(x)

− 1
p0(x)

]
it+

pθ(x)

p0(x)

j eiαj1 Aj(x)

∣∣∣∣p0(x) dµ(x)

=

∫
X

m∑
j=1

a
pθ(x)
j 1 Aj(x)dµ(x)

=

∫
X

∣∣∣∣∣
m∑
j=1

aje
iαj1 Aj(x)

∣∣∣∣∣
pθ(x)

dµ(x)

= ρpθ(f)

≤ 1,

since ‖f‖pθ = 1. In brief, for z with Re z = 0, we have ρp0(fz) ≤ 1, and therefore, ‖fz‖p0 ≤ 1.

Making the obvious substitutions, the same argument shows that ‖gz‖q0 ≤ 1, for z with

Re z = 0. Thus, for z with Re z = 0, Hölder’s inequality gives

|F (z)| ≤
∣∣∣∣∫
Y

Tfz(y)gz(y)dν(y)

∣∣∣∣ (2.10)

≤ K ‖Tfz‖q′0 ‖gz‖q0

≤ KM0 ‖fz‖p0 ‖gz‖q0

≤ KM0.

The above argument readily lends itself to the alternate situation in which Re z = 1. In

this case, we find that ‖fz‖p1 and ‖gz‖q1 are both no greater than 1, and as such, we may

33



apply Hölder’s inequality to ultimately get

|F (z)| ≤ KM1, (2.11)

for z with Re z = 1.

Step 5: Invoke Hadamard’s three lines lemma. Using Hadamard’s three lines

lemma with (2.10) and (2.11) as our respective boundary estimates, we find that

|F (z)| ≤ (KM0)
1−τ (KM1)

τ = KM1−τ
0 M τ

1 , (2.12)

for all τ ∈ [0, 1] and z such that Re z = τ . In particular, choosing τ = z = θ in (2.12), we

get exactly (2.9), since fθ = f and gθ = g. �

Corollary 2.5. Under the same hypothesis as Theorem 2.4, T has a unique continuous

extension to all of Lpθ(X).

Proof. Since pθ is a bounded exponent, S (X)∩Lpθ(X) is a dense linear subspace of Lpθ(X),

whence the corollary follows from the general theory of Banach spaces. �

It should also be remarked that the Riesz-Thorin interpolation theorem has even more

generalized version in the Orlicz space setting in which the operator is further allowed to

be sublinear. The proof of this result is highly technical and requires quite a bit of Orlicz

space machinery, and therefore, is not presented in detail here. The necessary details can

be found in [8].

34



Also, it worth mentioning that the Riesz-Thorin theorem is often presented along side the

Marcinkiewicz interpolation theorem. At this point, it is unknown whether or not this latter

interpolation theorem has a generalization to the variable setting. The major complication

halting progress with the Marcinkiewicz theorem is that it seems intimately tied to the

Cavalieri’s principle, and therefore, distribution functions. These complications and related

ideas are presented [3].

We end this section by stating and prove the following somewhat technical lemma that

was required for the third step of the proof for the Riesz-Thorin theorem.

Lemma 2.6. Let p1 and p2 be bounded exponents. Suppose T : Lp1(X1, µ1) → Lp
′
2(X2, µ2)

is linear and continuous. For k = 1, 2, suppose we are given positive real numbers ak, Bk

and Mk, measurable sets Ak with µk(Ak) < ∞ and measurable functions mk, bk : Xk → R

that satisfy −Mk ≤ mk(xk) ≤Mk and 0 ≤ bk(xk) ≤ Bk, for a.e. xk ∈ Xk. For z ∈ S, define

F (z) :=

∫
X2

T
[
a
m1(·)z+b1(·)
1 1 A1(·)

]
(x2)a

m2(x2)z+b2(x2)
2 1 A2(x2)dµ2(x2).

Then F is continuous and bounded on S and analytic on int(S).

Proof. To make the reading slightly less cluttered, we introduce the notation

αk(xk, z) := a
mk(xk)z+bk(xk)
k 1 Ak(xk)

and

Qk(xk, z, w) :=
αk(xk, z)− αk(xk, w)

z − w
− αk(xk, z)mk(xk) log ak

Note that under this notation, we may rewrite F as

F (z) =

∫
X2

T [α1(·, z)](x2)α2(x2, z)dµ2(x2).
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We now make some preliminary estimates, the first of which is basic. For a.e. xk ∈ Xk,

|αk(xk, z)| =
∣∣∣amk(xk)Re z+bk(xk)
k a

imk(xk) Im z
k 1 Ak(xk)

∣∣∣ (2.13)

= a
mk(xk)Re z+bk(xk)
k 1 Ak(xk)

≤ Ck1 Ak(xk),

where Ck := max
t∈[−Mk,Mk+Bk]

atk. From (2.13), we get

|Qk(xk, z, w)| = |αk(xk, z)|

∣∣∣∣∣amk(xk)(w−z)k − 1

w − z
−mk(xk) log ak

∣∣∣∣∣ (2.14)

= |αk(xk, z)|
∣∣∣∣e[mk(xk) log ak](w−z) − 1

w − z
−mk(xk) log ak

∣∣∣∣
= |αk(xk, z)|

∣∣∣∣∣∣
[∑∞

j=0
([mk(xk) log ak](w−z))j

j!

]
− 1

w − z
−mk(xk) log ak

∣∣∣∣∣∣
= |αk(xk, z)|

∣∣∣∣∣
∞∑
j=2

[mk(xk) log ak]
j (w − z)j−1

j!

∣∣∣∣∣
≤ Ck1 Ak(xk)

∞∑
j=2

(Mk |log ak|)j |w − z|j−1

j!

= CkM
2
k |log ak|2 |z − w|1 Ak(xk)

∞∑
j=0

(Mk |log ak| |z − w|)j

(j + 2)!

≤ CkM
2
k |log ak|2 |z − w| eMk|log ak||z−w|1 Ak(xk),

for a.e. xk ∈ Xk. Now, for |z − w| sufficiently small, the expression CkM
2
k |log ak|2 |z − w| eMk|log ak||z−w|

is no greater then 1. Thus,

ρpk(Qk(·, z, w)) :=

∫
Xk

|Qk(xk, z, w)|pk(xk) dµk(xk) (2.15)

≤ CkM
2
k |log ak|2 |z − w| eMk|log ak||z−w|µk(Ak)

→ 0,
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as w → z, since µ(Ak) <∞. Since p+k <∞, it follows that

lim
int(S)3w→z

‖Qk(·, z, w)‖pk = 0. (2.16)

Note also that (2.16) immediately gives

lim
int(S)3w→z

‖αk(·, z)− αk(·, w)‖pk = 0, (2.17)

since

‖αk(·, z)− αk(·, w)‖pk ≤ |z − w|
(
‖Qk(·, z, w)‖pk + ‖αk(·, z)mk(·) log ak‖pk

)
.

We can now proceed with proving the analyticity of F . We decompose the defining

difference quotient as the sum of two integrals:

F (z)− F (w)

z − w
=

∫
X2
T [α1(·, z)](x2)α2(x2, z)dµ2(x2)−

∫
X2
T [α1(·, w)](x2)α2(x2, w)dµ2(x2)

z − w

=

∫
X2

T [α1(·, z)](x2)α2(x2, z)− T [α1(·, w)](x2)α2(x2, z)

z − w
dµ2(x2)

+

∫
X2

T [α1(·, w)](x2)α2(x2, z)− T [α1(·, w)](x2)α2(x2, w)

z − w
dµ2(x2)

=

∫
X2

T

[
α1(·, z)− α1(·, w)

z − w

]
(x2)α2(x2, z)dµ2(x2)︸ ︷︷ ︸

I

+

∫
X2

T [α1(·, w)] (x2)

[
α2(x2, z)− α2(x2, w)

z − w

]
dµ2(x2)︸ ︷︷ ︸

J

.

Put

I ′ :=

∫
X2

T [α1(·, z)m1(·) log a1] (x2)α2(x2, z)dµ(x2)

and

J ′ :=

∫
X2

T [α1(·, z)] (x2)α2(x2, z)m2(x2) log a2dµ2(x2).
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We claim that I → I ′ and J → J ′, as w → z. To see that I → I ′, we use the linearity of

the integral and T along with Hölder’s inequality to obtain

|I − I ′| =

∣∣∣∣∣
∫
X2

T

[
α1(·, z)− α1(·, w)

z − w

]
(x2)α2(x2, z)dµ2(x2)

−
∫
X2

T [α1(·, z)m1(·) log a1] (x2)α2(x2, z)dµ(x2)

∣∣∣∣∣
=

∣∣∣∣∫
X2

T [Q1(·, z, w)] (x2)α2(x2, z)dµ2(x2)

∣∣∣∣
≤ K ‖T [Q1(·, z, w)] (·)‖p′2 ‖α2(·, z)‖p2

≤ K ‖T‖
Lp1→Lp

′
2
‖Q1(·, z, w)‖p1 ‖α2(·, z)‖p2 ,

where K is the constant appearing in Hölder’s inequality. The desired conclusion now follows

by (2.16). The computation for J in relation to J ′ is slightly more tedious, but no more

difficult. First, we mimic what we did earlier and break J − J ′ into two sub-integrals:

J − J ′ =
∫
X2

T [α1(·, w)] (x2)

[
α2(x2, z)− α2(x2, w)

z − w

]
dµ2(x2)

−
∫
X2

T [α1(·, z)] (x2)α2(x2, z)m2(x2) log a2dµ2(x2)

=

∫
X2

T [α1(·, w)] (x2)

[
α2(x2, z)− α2(x2, w)

z − w
− α2(x2, z)m2(x2) log a2

]
dµ2(x2)

+

∫
X2

(T [(α1(·, w)] (x2)− T [α1(·, z)] (x2))α2(x2, z)m2(x2) log a2dµ2(x2)

=

∫
X2

T [α1(·, w)] (x2)Q2(x2, z, w)dµ2(x2)︸ ︷︷ ︸
S1

+

∫
X2

T [α1(·, w)− α1(·, z)] (x2)α2(x2, z)m2(x2) log a2dµ2(x2)︸ ︷︷ ︸
S2

.
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Next, we estimate each of these individually:

|S1| ≤ K ‖T [α1(·, w)] (·)‖p′2 ‖Q2(·, z, w)‖p2 (2.18)

≤ K ‖T‖
Lp1→Lp

′
2
‖α1(·, w)‖p1 ‖Q2(·, z, w)‖p2

≤ KC1 ‖T‖Lp1→Lp′2 ‖1 A1‖p1 ‖Q2(·, z, w)‖p2 ,

where we have used Hölder’s inequality, the boundedness of T and (2.13), respectively.

Following analogous arguments, we have

|S2| ≤ K ‖T‖
Lp1→Lp

′
2
‖α1(·, w)− α1(·, z)‖p1 ‖α2(·, z)m2(·) log a2‖p2 . (2.19)

Now, the expression on the far right of (2.18) tends to 0, as w → z, by (2.16). On the

other hand, the expression on the far right of (2.19) tends to 0, as w → z, by (2.17).

Consequently, J → J ′, as w → z. Hence, we have shown F is analytic on int(S); and

moreover, the derivative F ′ is given by I ′ + J ′.

We now move on to the continuity of F on the entire strip S. This poses no additional

difficulty, for we simply use the same techniques as above:

|F (z)− F (w)| =

∣∣∣∣∣
∫
X2

T [α1(·, z)− α1(·, w)] (x2)α2(x2, z)dµ2(x2)

+

∫
X2

T [α1(·, w)] (x2) [α2(x2, z)− α2(x2, w)] dµ2(x2)

∣∣∣∣∣
≤ K ‖T‖

Lp1→Lp
′
2
‖α1(·, z)− α1(·, w)‖p1 ‖α2(·, z)‖p2

+KC1 ‖T‖Lp1→Lp′2 ‖1 A1‖p1 ‖α1(·, z)− α2(·, z)‖p2 .

As w → z in S, both terms in this final sum tend to zero by (2.18), proving the (uniform)

continuity of F in S.
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Finally, we argue that F is bounded in S. Having laid the ground work above, this is

quite straight forward:

|F (z)| ≤ K ‖T [α1(·, z)] (·)‖p′2 ‖α2(·, z)‖p2

≤ K ‖T‖
Lp1→Lp

′
2
‖α1(·, z)‖p1 ‖α2(·, z)‖p2

≤ KC1C2 ‖T‖Lp1→Lp′2 ‖1 A1‖p1 ‖1 A2‖p2

<∞.

�
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Chapter 3

The Boundedness of a Certain Square

Function on Lp(Rn)

3.1 Motivation

A fundamental strategy that surfaces frequently in mathematics is the ability to ascertain

properties of functions by investigating their image under certain operators. While this

theme is present in virtually all branches of mathematics in one guise or another, it is at

the forefront of Fourier and, more generally, Harmonic analysis. In fact, one customarily

begins their study of these subjects with the examination of the Fourier transform (resp.

series). In doing so, one is invariably lead to a pantheon of results that relate a given

function to its transformed image; e.g. the Riemann-Lebesgue lemma and the Plancherel

identity. The success of analyzing functions via their Fourier transform (resp. series) has

lead mathematicians to mimic this scheme. This brings us to the subject matter of this final
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chapter: square functions.

Since their first appearance nearly a century ago, square functions have earned some

recognition among prominent mathematicians and have established themselves as an indis-

pensable tool in the realm of function theory. To somewhat oversimplify their construction,

the basic idea is as follows: Partition the domain of definition of a given function. On

each piece of the partition, transform the function via a “local squaring transformation”.

Amalgamate these pieces (via integration or summation). And finally, take the square root

of the amalgamation.

As alluded to above, the desire is be able to estimate each of the local transformations

and hope that the interactions of these local estimates are amenable enough so that, upon

piecing them together, our created operator is bounded, or in an ideal situation, has norm

comparable to the transformed function. To provide a more concrete example, we briefly

recount the groundbreaking work of Littlewood and Paley in the 1930’s.

The setup for their celebrated result is as follows: Given a sequence of Fourier coefficients

{an}∞n=0, consider the formally defined function f(θ) :=
∑

n ane
inθ. Put ∆0f(θ) := a0 and

∆kf(θ) :=
∑

2k−1≤n<2k

ane
inθ,

for k ≥ 1. The ∆k are simply the dyadic truncations of the Fourier series. The associated

square function of this dyadic decomposition is

Sf(θ) :=

(
∞∑
k=0

|∆kf(θ)|2
) 1

2

.

Here, the |∆kf |2 is our “local squaring transformation”. With this setup, the Littlewood-

Paley result is that ‖Sf‖p ' ‖f‖p, for 1 < p < ∞, and typifies the ideal scenario for
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square functions. Thus, if one wishes to estimate the norm of a given function, f , and is

allowed some flexibility with these estimates, it suffices to estimate the image, Sf . This

can be advantageous precisely because estimating Sf effectively boils down to estimating

the localized dyadic truncations. For a more comprehensive history of square functions and

survey of some related results, the reader is referred to [11].

3.2 Terminology and Notation

To streamline the exposition to follow, we will set forth some notation to be used for the

remainder of the text.

We will be using the familiar calculus evaluation notion f(x)|bx=a which, of course, is

simply a less space consuming way of writing f(b)−f(a). Along side this notation, however,

we introduce the following:

f(x){bx=a:= f(a) + f(b).

For us, the primary advantage of these two evaluation notations is their ability to properly

bookkeep certain sums. This will become evident in the proof of Theorem 3.1. Another nice

property that these evaluations have is that they behave nicely when dealing with products

of functions of distinct variables. More precisely, suppose f(x1, ..., xn) =
∏n

k=1 fk(xk). Then

f(x1, ..., xn)|bjxj=aj = [f(bk)− f(ak)]
∏
k 6=j

fk(xk)

and

f(x1, ..., xn){bjxj=aj= [f(ak) + f(bk)]
∏
k 6=j

fk(xk).
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These observations justify some computations that arise in the following section.

Moving on, let On denote the n-dimensional first “octant”. That is,

On := (R+)n = {s = (s1, ..., sn) ∈ Rn : sk > 0, k = 1, ..., n}.

On has a natural group structure being the n-fold product of the Abelian group R+. More

precisely, the multiplication in On that we will be using is st := (s1t1, ..., sntn) and inverses

will be given by s−1 = 1/s := (1/s1, ..., 1/sn). With this group structure, we let On act

on Rn in an obvious way: i.e. sx := (s1x1, ..., snxn). Finally, we will be using a group

homomorphic functional π : On → R+, which is given by π(s) := 1/(s1 · · · sn). Note that π

is a product of n functions each of which is just a function of an individual sk, k = 1, ..., n.

Thus, it behaves nicely respect with the evaluations at the outset of the section in the way

described earlier.

With this structure and notation, we now let On act on (complex vector-valued) func-

tions, f , defined on Rn as follows:

fs(x) := π(s)f
(x
s

)
=

1

s1 · · · sn
f

(
x1
s1
, ...,

xn
sn

)
.

We call fs the s-dilation of f . Note that we will often be regarding fs(x) as a function

defined on Rn × Rn in the natural way: (x, s) 7→ fs(x).

All of this notation was set so that we could define, and later manipulate, a type of

square function succinctly: Given K : Rn → R, we define the square function associated to

K to be the operator

SKf(x) :=

√∫
On
|(Ks ∗ f)(x)|2 π(s)ds.
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Here we are letting K and f be any measurable functions for which the right hand side

makes sense. This will work, if, for example, K is smooth, f ≥ 0 and both have compact

support.

The function K will be called the kernel of our square function. As it turns out, we

will not be concerned with the square function associated to K. Rather, we will focus on

the square function associated to a certain transformation of K. This transformation is a

differential operator, being a composition of multiple differential operators, all of the same

form. The individual operators will be given by

DjK(x) := xj∂jK(x) +K(x).

The composite operator is then

DK(x) := Dn · · ·D1K(x).

Although it is not truly essential to the discussion, it is worth noting that, with a some

computation and induction, one has the nice formula

DK(x) = (−1)n
n∑
j=0

∑
α∈{0,1}n
|α|=j

xα∂αK(x).

The construction of this operator is motivated by the fact that it behaves nicely with

respect to the dilation involved in the formulation of our square functions. To see this,
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assume that K ∈ C∞ and observe that

∂

∂sj
[Ks(x)] =

∂

∂sj

[
π(s)K

(x
s

)]
=

1

s1 · · · sj−1sj+1 · · · sn
∂

∂sj

[
1

sj
K

(
x1
s1
, ...,

xn
sn

)]
=

1

s1 · · · sj−1sj+1 · · · sn

(
1

sj

[
∂jK

(
x1
s1
, ...,

xn
sn

)](
−xj
s2j

)

+

[
K

(
x1
s1
, ...,

xn
sn

)](
− 1

s2j

))

= −π(s)

[
xj
sj
· ∂jK

(x
s

)
+K

(x
s

)] 1

sj
·

= −(DjK)s(x)
1

sj
.

Our final expression is also smooth, since K is. Thus, we may iterate this computation,

starting with j = 1 and proceeding incrementally one step at a time. More precisely, at the

second iteration, we replace Ks(x) with −(D1K)s(x) 1
s1

to get

∂2

∂s2∂s1
[Ks(x)] =

∂

∂s2

[
−(D1K)s(x)

1

s1

]
= (−1)

∂

∂s2
[(D1K)s(x)]

1

s1

= (−1)2(D2D1K)s(x)
1

s2s1
.

Continuing on in the fashion, we ultimately obtain the identity

∂n

∂sn · · · ∂s1
[Ks(x)] = (−1)n (DK)s (x)π(s). (3.1)

This identity paired with some well executed integration techniques will be the cornerstones

to proving the unboundedness of SDK on variable Lp, for a nontrivial class of functions K.
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3.3 A Counter Example

As mentioned, we will eventually see that for a large class of functions, K, the transformed

kernel, DK, will not admit a bounded square function from variable Lp(Rn) into itself,

where n ≥ 1. The nuance of this result is twofold in the sense that if p is constant or if

n = 1, then there are examples for which our constructed transformation will be bounded

from Lp(Rn) into itself. Our null result ultimately hinges on the following:

Theorem 3.1. Suppose K ∈ C∞(Rn) is real-valued, does not vanish at the origin and is

such that DK ∈ L1(Rn). Then there exists a constant C = C(K,n) > 0 such that

C

|R|

∫
R

f(y)dy ≤ SDKf(x), (3.2)

for every rectangle R, every x ∈ R and f ≥ 0 supported in R; or equivalently,

[
C

|R|

∫
R

f(y)dy

]
1 R ≤ SDKf, (3.2′)

for every f ≥ 0 supported in R.

Proof. Fix a rectangle R = (a1, b1) × · · · × (an, bn) in Rn. Since K(0) 6= 0, we may choose

ε > 0 so small so that (−1)nK(0) − ε and (−1)nK(0) + ε are nonzero and have the same

sign. By continuity, choose δ > 0 so that maxk |zk| ≤ δ implies |K(z)−K(0)| < 3−nε. Put
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lk = (bk − ak)/δ and l = (l1, ..., ln). Then, for x, y ∈ R observe that

∣∣∣[Ks(x− y)−K(0)π(s)]
∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

∣∣∣ (3.3)

=
∣∣∣[K(s−1(x− y))−K(0)

]
π(s)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

∣∣∣
≤
∣∣K(s−1(x− y))−K(0)

∣∣ π(s)
{2l1
s1=l1
· · ·
{2ln
sn=ln

=
∑

t∈{1,2}n

∣∣K((tl)−1(x− y))−K(0)
∣∣ π(tl)

< 3−nε
∑

t∈{1,2}n
π(tl)

= 3−nεπ(s)
{2l1
s1=l1
· · ·
{2ln
sn=ln

= 3−nε
n∏
k=1

3

2lk

= ε
δn

2n
1

|R|
.

Also note that, for x, y ∈ R, we have

Ks(x− y)
∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

= (K(0)π(s) + [Ks(x− y)−K(0)π(s)])
∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

(3.4)

= K(0)
[
π(s)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

]
+ [Ks(x− y)−K(0)π(s)]

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

= K(0)

[
n∏
k=1

(
s−1k
∣∣2lk
sk=lk

)]
+ [Ks(x− y)−K(0)π(s)]

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

= K(0)
n∏
k=1

[
−(2lk)

−1]+ [Ks(x− y)−K(0)π(s)]
∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

.

= (−1)nK(0)
δn

2n
1

|R|
+ [Ks(x− y)−K(0)π(s)]

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

.

Combining (3.3) and (3.4), we get

[(−1)nK(0)− ε] δ
n

2n
1

|R|
≤ Ks(x− y)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

≤ [(−1)nK(0) + ε]
δn

2n
1

|R|
. (3.5)
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Consequently, either

C

|R|
≤ −Ks(x− y)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

, (x, y ∈ R) (3.6)

or

C

|R|
≤ Ks(x− y)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

, (x, y ∈ R) (3.7)

where

C :=
δn

2n
max {− [(−1)nK(0) + ε] , (−1)nK(0)− ε}.

Note that C > 0, by the choice of ε, and depends only on K and n. In particular, C does

not depend on f or R.

Without loss of generality, we may assume that we are in the case of (3.6). Then, for

x ∈ R, suppf ⊂ R and f ≥ 0, we have

C

|R|

∫
R

f(y)dy ≤
∫
R

−
[
Ks(x− y)

∣∣2l1
s1=l1
· · ·
∣∣2ln
sn=ln

]
f(y)dy

=

∫
Rn
−
(∫ 2l1

l1

· · ·
∫ 2ln

ln

∂n

∂s1 · · · ∂sn
[Ks(x− y)] dsn · · · ds1

)
f(y)dy

=

∫
Rn
−
(∫ 2l1

l1

· · ·
∫ 2ln

ln

(−1)n(DK)s(x− y)π(s)dsn · · · ds1
)
f(y)dy

=

∫ 2l1

l1

· · ·
∫ 2ln

ln

(−1)n+1(DK)s ∗ f(x)π(s)dsn · · · ds1

=

∫ 2l1

l1

· · ·
∫ 2ln

ln

√
π(s)

[
(−1)n+1(DK)s ∗ f(x)

√
π(s)

]
dsn · · · ds1

≤
(∫ 2l1

l1

· · ·
∫ 2ln

ln

π(s)dsn · · · ds1
)1/2

SDKf(x)

≤ (log 2)
n
2 SDKf(x).

Dividing through by (log 2)
n
2 , gives (3.2). Note that the resulting constant still only depends
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on K and n. �

Corollary 3.2. If SDK is bounded on Lp(Rn), then there exists a constant C = C(K,n)

such that

1

|R|
‖1 R‖p ‖1 R‖p′ ≤ C, (3.8)

for any rectangle R ⊂ Rn.

Proof. Fix a rectangle R. Let f ≥ 0 be supported in R with ‖f‖p ≤ 1. By the homogeneity

and monotonicity of the norm, Theorem 3.1, and the assumed boundedness of SDK on Lp,

we have

1

|R|

[∫
Rn
f(y)1 R(y)dy

]
‖1 R‖p =

∥∥∥∥[ 1

|R|

∫
R

f(y)dy

]
1 R

∥∥∥∥
p

(3.9)

≤ ‖CSDKf‖p

≤ C ‖f‖p

≤ C.

By norm conjugacy (for positive functions), the supremum of
∫
Rn f(y)1 R(y)dy over all such

f is, up to a factor of five, ‖1 R‖p′ . Thus, taking the supremum in (3.9) over all such f

yields (3.8). �

Corollary 3.3. Suppose p is a bounded exponent and n ≥ 2. If SDK is bounded on Lp(Rn),

then p must be a constant exponent.
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Proof. By Corollary 3.2, the estimate (3.8) holds for every rectangle in Rn. Since n ≥ 2, it

must be that p is constant. See the discussion on pages 2009 to 2010 of [5] for more details. �

In view of these results, we have shown that there is no hope for our constructed square

functions to behave nicely with respect to variable Lebesgue spaces of higher (than linear)

dimensional Euclidean space (equipped with Lebesgue measure). This is the case no matter

how nice our underlying kernel is, as long as it still satisfies the hypothesis of Theorem 3.1.

Needless to say, this would be of little interest if our square functions always behaved poorly;

i.e. if they behaved poorly even in the constant exponent case. As it turns out, with a little

more structure on the underlying kernel, we can ensure that the square function associated

to the transformed kernel is bounded on Lp, provided that the exponent is constant. Let us

illustrate.

For this illustration, we will assume K is a smooth, product kernel supported in [−1, 1]n

and does not vanish at the origin. More precisely, we assume that

K(x1, ..., xn) = k1(x1) · · · kn(xn),

where each kj ∈ C∞c (R,R) is supported in (−1, 1) and kj(0) 6= 0. Since K is a product

kernel, it readily follows that

DK(x) = Dn · · ·D1 [k1(x1) · · · kn(xn)] =
n∏
j=1

[
xjk

′
j(xj) + kj(xj)

]
.

From this, we see that the transformed kernel, DK, is also a smooth, product kernel sup-

ported in [−1, 1]n. Put ψj(xj) := xjk
′
j(xj) + kj(xj) and observe that ψj(xj) = d

dxj
[xjkj(xj)].

From this, we may deduce both that ψj is not identically zero, for otherwise, kj would not
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be smooth at the origin. We may also deduce from ψj(xj) = d
dxj

[xjkj(xj)] that each ψj

has mean value zero. In summary, DK is a non-trivial, smooth, product kernel supported

[−1, 1]n such that each factor has mean value zero. By the work of R. Fefferman, et al, (see

[4]) it follows that the operator SDK is bounded on Lp(Rn), for every constant p ∈ (1,∞).

This, of course, is to be held in contrast with the fact that SDK is not bounded on any

non-constant variable Lebesgue space, by the results above.
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