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This study focuses on students’ use of the mathematical concept of differentials in physics problem

solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a

charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this

paper we aim to explore students’ reasoning about the differential concept in physics problems. We

conducted group teaching or learning interviews with 13 engineering students enrolled in a second-

semester calculus-based physics course. We amalgamated two frameworks—the resources framework and

the conceptual metaphor framework—to analyze students’ reasoning about differential concept.

Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides

us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in

students’ discourse illustrates the role of concrete experiential notions in students’ construction of

mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they

can be pieced together to provide a better understanding of students’ mathematical thinking in physics.
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I. INTRODUCTION

Mathematical integration is widely used in many intro-
ductory and upper-division physics courses. Developing
expertise to use integration in physics is both necessary
and important for students to fully understand physics
concepts as well as transfer their learning to new situations.
Studies have reported that students are typically good at
evaluating a predetermined mathematical integral, but
often struggle with setting up integrals in physics problems
[1,2]. Setting up integrals in a physics problem can be
divided into several steps: setting up the expression for
an infinitesimal quantity (e.g., dE, dB), accumulating the
infinitesimal quantity, determining the variable of integra-
tion, and turning the integral into a form that can be
evaluated mathematically [2]. Hence, using integration in
physics requires students to not only understand the con-
cept of an integral as representing a Riemann sum but also
to correctly use a differential concept to express relations
between physical quantities. For example, to construct the
expression dE ¼ kdq=r2 from the fundamental Coulomb’s
law E ¼ kq=r2, a student needs to develop the understand-
ing of the differential terms (i.e., dq, dE) in the context of
an electric field. In this paper, we mainly focus on students’
reasoning of the differential terms in physics equations as
they solve physics integration problems.

Physicists construct notations based on a specific
physical situation instead of following prescriptive

mathematical symbols [3]. For instance, mathematicians
often use x; y as variables and the integrals are often written
in the form

R
fðxÞdx, whereas in physics the variables

could be r, l, and t, each representing a different meaning
associated with the corresponding physical system. The
difference of using symbols in math and physics causes
many difficulties for students as they use mathematical
notations [4]. Differential terms are context dependent,
often representing an infinitesimal amount or an infinitesi-
mal change of a physical quantity. Compared with expert
physicists, novice students have not developed a sophisti-
cated understanding of mathematical concepts and they
have less experience in physics problem solving. In this
study, we investigate students’ reasoning about differen-
tials in physics problems requiring integration. We inves-
tigate student reasoning of this topic through the lens of
resources [5] and conceptual metaphors [6].
There are three main purposes of this paper. First, we

focus on the mathematical resources that students activate
with their application of the differential concept in a phys-
ics context. The analysis of mathematical resources pro-
vides us with deeper insights into how students apply their
mathematical learning to physics problem solving. Second,
we identify the conceptual metaphors involved in students’
use of mathematical differentials and prove the existence
of metaphors in students’ higher-level mathematical think-
ing (i.e., calculus). First studied in cognitive linguistics,
conceptual metaphors are a kind of intuitive knowledge
that describes mappings between the source domains, usu-
ally from our interactions with the physical world, and
abstract concepts in target domains such as mathematics.
Identifying the conceptual metaphors that appear in student
discourse illustrates how concrete experiential notions
might affect students’ construction of scientific reasoning.
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It offers an alternative and perhaps fundamental explana-
tion of student thinking. Third, we amalgamate the two
frameworks—resources and conceptual metaphors—
which have previously typically been used separately. We
illustrate how each framework serves different purposes
and how they could be fused together to understand student
reasoning.

In the next section, we give a brief review of related
literature on students’ understanding of a differential con-
cept in the context of physics integration problems. In
Sec. III, we discuss the conceptual framework that we
chose for this study. In Sec. IV, we describe our research
setting which includes the student population and method-
ology used to collect and analyze our data. In Sec. V, we
present the results of our study. In Sec. VI, we discuss the
possible implications for instruction. In Sec. VII, we dis-
cuss the main findings and the limitations of this study, as
well as future work.

II. RELEVANT LITERATURE

In this section we review previous studies in two areas
which are closely related to our work. First, we briefly
discuss several prior studies about students’ understanding
of the differential concept in mathematics education. Since
all of the students in our calculus-based physics classes
have previously taken calculus, previous research in
mathematics education provides us with the necessary
background to understand their prior mathematics knowl-
edge and what we could possibly observe in their mathe-
matical thinking in physics contexts. It also allows us to see
what mathematicians value in students’ understanding of
the differential concept and reflect on which of these
attributes physicists might perceive as valuable in students’
thinking. Next, we provide an overview of the literature on
students’ difficulties with setting up integrals from studies
in physics education research. Our work is motivated and
built upon these previous studies.

A. Student understanding of calculus concepts

Studies in mathematics education have shown that stu-
dents are capable of following routine procedures to cal-
culate a derivative, evaluate an integral, or find the area
under a curve; however, they may lack the conceptual
knowledge of those concepts [7,8]. Orton [8] conducted
clinical interviews with 110 students to investigate their
understanding of elementary calculus. Overall, he found
that the errors made by students were structural (concep-
tual or fundamental) and students found that the execution
of a procedure was relatively easy. For an interview on the
topic of rate of change and differentiation, three main types
of incorrect responses were apparent in students’ under-
standing of the notion dx. Twenty-nine students explained
dx as ‘‘the differential of x’’ or ‘‘the rate of change of x.’’
An additional 25 students explained dx as ‘‘the limit of �x
as �x ! 0.’’ Another 20 students thought that dx was an

‘‘amount of x’’ or ‘‘x increment’’; in other words, it was
more or less the same as �x. It is clear that students did not
understand the symbols of differentiation or the approach
to differentiation. Orton pointed out that ‘‘some students
are introduced to differentiation as a rule to be applied
without much attempt to reveal the reasons for and justi-
fications of the procedure.’’ In another interview about the
integration concept, Orton found that very few students
understood integration as the limit of a Riemann sum [1].
Artigue et al. [9] administered questionnaires to both

physics and mathematics students to investigate their con-
ceptions about differentials (e.g., dx, dl). In particular, she
discussed two extreme tendencies in students’ responses.
First, the differential element lost all meaning except that it
indicated the variable of integration which may have
excluded other meanings. Second, the differential element
had material content, such as ‘‘dl is a small length’’ or ‘‘a
little bit of wire.’’ Artigue argued that the terms (e.g., small
and little bit) were associated with ‘‘looseness in reason-
ing’’ indicating students’ lack of a rigorous understanding
of the mathematical concept, even though this reasoning is
convenient and effective in physics.
Several other studies [10,11] in math education also

showed that students do not have a deep conceptual under-
standing of calculus concepts. Students learn the concepts
as procedures and their understanding is often bereft of
contextual meaning.

B. Student application of calculus in physics

In physics education research, several studies indicated
students’ lack of ability to apply the integral concept
successfully in physics contexts [2,12,13]. In mathematics,
students often learn how to follow an algorithm to evaluate
an integral and operate symbols without referring to any
concrete physical situations. Some of their conceptual
difficulties with physics integration problems could be
attributed to their insufficient understanding of mathemat-
ics concepts, such as their understanding of an integral as a
sum and the area-integral relation [13–15]. In addition, a
significant number of students have difficulties with setting
up a physics problem rather than with the calculus aspect
of the problem. In other words, their difficulty is related to
the physics context, and not the procedural aspect of doing
the calculus in the problem [12,16].
When learning physics, students’ mathematical reason-

ing could also be hindered by physical scenarios [3]. For
instance, when teaching an integrated calculus and physics
course, Yeatts and Hundhausen [3] found that most
students could solve a problem presented in a calculus
context; however, very few could solve the same problem
correctly when it was presented in a physics context. Some
studies investigated when and how students recognize the
use of integration in physics [12,17]. Even though very few
students did not realize an integral was required in a
situation, most of them did not indicate an understanding
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of why the integration concept was applicable [17]. For
instance, Cui et al. [12] found that when students were
asked why integration was applicable to the problem they
provided several responses, such as ‘‘the problems are
similar to the examples before,’’ ‘‘a quantity changes
depends on another quantity,’’ and ‘‘we need to sum up
the small parts.’’ Meredith and Marrongelle [17] described
those different types of reasoning in terms of symbolic
forms [18] as recall cue, dependence cue, and parts-of-a-
whole cue. The parts-of-a-whole cue is a more useful
resource, but it is less commonly used by introductory
students [2,17]. ‘‘How to decide the need of an integral’’
is the first important step for setting up integrals in physics
contexts, but even students who activate more useful
resources encounter several difficulties in setting up an
integral [2].

Nguyen and Rebello [2] conducted individual teaching
or learning interviews to investigate students’ common
difficulties when setting up integrals in electricity prob-
lems. They divided the process of applying integration to
physics problems into four steps: recognizing the need for
an integral, setting up the expression for the infinitesimal
quantity, accumulating the infinitesimal quantity, and com-
puting the integral. They pointed out that students’ lack of
understanding of the physical meaning in the infinitesimal
term (e.g., dx, dr) caused them to ignore the infinitesimal
term, to simply append it to the integrand, or even to prefix
d to whatever quantity was changing.’’ When accumulating
the infinitesimal quantity, almost all students started inte-
grating the expression without attending to how these
quantities should be added up. For instance, the electric
field dE is a vector quantity and the total electric field is the
vector sum of dE. In the interview conducted by Nguyen
and Rebello, eight out of 15 students did not realize they
should integrate dE by components. Students also encoun-
tered a number of difficulties in computing the integrals.
Some could be attributed primarily to students’ misunder-
standing of the physical meaning of the symbols in the
integrals. A few students still had difficulties in determin-
ing the limits of integrals.

Difficulties with setting up integrals are also prevalent
with students in upper-division physics courses. Wilcox
et al. [16] analyzed students’ responses to traditional exam
questions that involved finding the electric potential due to
a continuous charge distribution in a junior level electricity
and magnetism (E&M) course. Students’ common chal-
lenges included determining expressions for the differen-
tial charge element (dq) and finding the limits of
integration for a specific charge distribution. When setting
up the integral, nearly half of the students had difficulty
expressing the differential charge element.

Studies have reported students’ difficulties when apply-
ing integration in physics; however, researchers have not
carefully explored the students’ reasoning underlying their
difficulties. There is a gap between what mathematics

education researchers have found about students’ concep-
tual understanding in calculus and what physics education
researchers have found about students’ performance in
physics problems. The main purpose of this study
is to take one small step toward bridging this gap.
Specifically, we focus on students’ reasoning about differ-
ential concepts in the context of physics problems that
require integration and how their reasoning influences
students’ setting up integrals in these problems. This paper
builds on a recent conference proceedings paper [19] but
involves much richer data, more comprehensive analysis,
and many new findings.

III. CONCEPTUAL FRAMEWORK AND
RESEARCH QUESTIONS

The main purpose of this study is to probe students’ deep
reasoning in applying mathematical concepts in physics
contexts. We would like to situate ourselves in the
knowledge-in-pieces tradition; in other words, we are
interested in the richness and usefulness of students’ think-
ing. Under the knowledge-in-pieces [20] tradition, we
explore the various resources [5] that students use in their
mathematical thinking in physics. In addition to the resour-
ces perspective, we use the conceptual metaphor theory to
identify the fundamental coherent attributes underlying the
resources from the language that students use as they
reason about mathematics and physics concepts. Hence,
we amalgamate aspects of two theoretical perspectives: the
resources framework from physics education research and
the conceptual metaphor theory from cognitive linguistics.
In this section, we will review both perspectives and then
provide a discussion of how we integrate the two perspec-
tives in our research context.

A. Resources perspective

According to Hammer [5], resources are small-scale
knowledge elements that we use in our everyday sense
making. Generated from the knowledge-in-pieces [20]
perspective, the resources model focuses on the role of
prior knowledge that contributes to scientific learning.
When learning physics, students use a variety of resources,
such as their intuitive knowledge about the physical world
[21,22]. A significant amount of research has investigated
the role of intuitive knowledge played in formal physics
learning [21–23]. When making sense of physical phe-
nomena and processes, students use a form of intuitive
knowledge through their interaction with the physical
world, such as walking, pushing, pulling, and throwing
objects. This intuitive sense of knowledge is often referred
to as sense of mechanism or phenomenological primitives
(p-prims) according to diSessa [21]. diSessa [21] identified
several clusters of p-prims used by students when explain-
ing the motion of objects in mechanics, such as Ohm’s
p-prims, force as mover, and dying away. This intuitive
sense of knowledge could be applied directly to physics
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learning; however, if misapplied, it could cause conflicts
and barriers for students’ construction of formal physics
knowledge.

Students can also activate a variety of resources from
their mathematics knowledge, such as an intuitive sense of
number, counting [24], and symbolic forms [18]. In order to
understand how students interpret physics equations,
Sherin [18] outlined the symbolic forms, i.e., cognitive
mathematical primitives involved in student use of equa-
tions. A symbolic form consists of a symbol template and a
conceptual schema. The conceptual schema is a simple
structure associated with the symbolic form that offers a
conceptualization of the knowledge contained in the
mathematical expression [25]. As an example, the concep-
tual schema of balancing is associated with the mathemati-
cal template ½ � ¼ ½ �. In the physical situation ‘‘a book
is at rest on a desk,’’ the normal force acting on the book
due to the desk is balanced by the gravitational force on the
book due to Earth. It corresponds with the physics equation,
Non B ¼ Won B, which is a clear use of the symbol template
½ � ¼ ½ � [25]. The symbolic forms draw the connections
between the qualitative and quantitative reasoning of equa-
tions. In solving physics integration problems as discussed
in the previous section, Meredith and Marrongelle [17]
used the framework of symbolic forms to characterize the
mathematical resources that cued students to use integra-
tion, including recall cue, dependence cue, and parts-of-a-
whole cue. Symbolic forms mainly describe algebraic
equations; however, it is unclear whether this framework
could be used in other types of equations, such as matrix
equations or differential equations.

In addition to symbolic forms, several pieces of work
examined students’ use and development of mathematical
resources in physics contexts requiring mathematics from
different subfields [26,27]. Sayre and Wittmann [26]
described students’ creation of a coordinate system
resource when choosing coordinate systems in physics
mechanics problems. Black and Wittmann [27] identified
a list of procedural mathematical resources from student
work during the formation of the separate variables
procedural resource in the context of solving differential
equations in an intermediate mechanics problem. Unlike
p-prims, these resources are less primitive, usually with
internal structures, developed later in their life.

In this paper, we aim to find the mathematical resources
involved in students’ reasoning about differential terms in
physics equations. By describing the kinds of mathemati-
cal resources activated by students, wewill be able to better
understand the mechanisms of student difficulties as
described in our literature section.

B. Conceptual metaphors

Lakoff and Johnson introduced the theory of conceptual
metaphor when studying the linguistic phenomenon of
human beings [6]. This theory is based on the assumption

that our ordinary conceptual system is metaphorically
structured and metaphors are pervasive in our life, mostly
reflected by the language we use. Linguistic evidence is an
important source for exploring our intellectual system
which governs how we think and behave. Conceptual
metaphors describe the systematic mapping across mul-
tiple conceptual domains—concrete source domains and
abstract target domains. The source domains are the mental
schemata derived directly from sensorimotor experience,
whereas target domains are domains formed by subjective
or nonsensorimotor experience. According to Lakoff and
Johnson [28], a conceptual metaphor allows the use of
sensorimotor experiential-based schemata to conceptualize
a subjective experience. In metaphorical cases such as
‘‘He is brought out of depression,’’ experiencing the state
of depression is associated with locations and the change of
state is correlated with movement out of a location. ‘‘States
are locations’’ is within the vast collections of primary
metaphors identified by Lakoff and Johnson [28]. One
important characteristic of a conceptual metaphor is that
we typically conceptualize nonphysical notions like time,
mind, emotion, and ideas in terms of concrete physical
terms such as objects, substances, entities, and motions for
which we have more experience.
Conceptual metaphors have also been used to character-

ize ideas in mathematical and scientific reasoning. Núñez
brought the notion of embodiment cognition into mathe-
matics and emphasizes the role our body and brain play in
the construction of mathematical concepts [29]. He
described conceptual metaphors as ‘‘fundamental cogni-
tive mechanisms which project the inferential structure of a
source domain onto a target domain, allowing the use of
effortless species-specific body-based inference to struc-
ture abstract inference’’ [29]. Lakoff and Núñez described
two main types of metaphorical mathematical ideas:
grounding metaphors, which generate basic arithmetic
notions (e.g., ‘‘addition as adding objects to a collection’’
within ‘‘arithmetic as an object collection’’), and linking
metaphors, which generate more sophisticated ideas con-
necting arithmetic to other branches of mathematics (e.g.,
‘‘numbers as points on a line’’) [30]. Amin et al. [31]
provided an analysis of the lay and scientific usage of the
term energy from the conceptual metaphor perspective. In
phrases involving constructing human activities, such as
‘‘full of energy’’ or ‘‘drained of energy,’’ energy is under-
stood as a possession contained in a person. In scientific
use, energy transformation is often revealed in phrases
such as ‘‘in some form’’ or energy ‘‘going back and forth
between’’ different forms. The conceptualization of the
energy concept is structured as a location event-structure
metaphor, including submappings of forms of energy as
locations and energy transformation as movements. The
use of conceptual metaphors in scientific language has
been described for a number of other topics, including
thermodynamics [32] and quantum mechanics [33].
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In our study, we use both resource and conceptual
metaphor perspectives to analyze student reasoning. The
two perspectives are closely interrelated but serve different
purposes in the context of our research. First, metaphors
are often regarded as kinds of intuitive resources used in
everyday language and scientific reasoning. Second, con-
ceptual metaphor theory also aligns well with the ontolog-
ical categories of resources. Conceptual metaphors
describe the mechanism of understanding abstract notions
in terms of real objects. Chi and Slotta [34] described
learners’ ontologies when learning physics. They pointed
out that students often think about physics concepts (e.g.,
light, electric current, and heat) as things (i.e., matter
ontology); however, experts often classify those concepts
as processes. More recently, Gupta, Hammer, and
Redish [35] pointed out that this distinction is not neces-
sarily universal, rather experts too, depending upon the
context, use the matter ontology when describing phe-
nomena. However, experts are more adept than novices
at fluidly transitioning between ontologies. Hence, the
conceptual metaphor perspective could perhaps offer
us a more profound understanding of the resources that
students use.

C. Research questions

In this study, we focus on students’ use of mathematical
resources associated with the differential concept as well as
the conceptual metaphors that underlie their use of resour-
ces. Specifically, we address the following research
questions:

(1) How do we characterize student use of resources
about differentials in the context of physics prob-
lems requiring integration?

(2) What are the conceptual metaphors utilized by
students along with their use of resources?

IV. METHODOLOGY

In spring 2012, we conducted group teaching or learning
interviews [36] with 13 students from a calculus-based
physics course for engineers at a Midwestern university.
This course is the second semester of a yearlong sequence
of introductory physics courses for engineering majors.
The instructional format is two regular lectures of
50 minutes each and two studio sessions of 110 minutes
each. The lecture follows a traditional format with clicker
questions and the studio is an integrated laboratory prob-
lem solving session [37].

We selected a sample of 13 student participants from a
pool of 40 volunteers based on the convenience of sched-
ules. One of the participants was a freshman and the rest
were sophomores. Three participants were international
students and two were female. All participants had taken
prerequisite calculus of single variables (Calculus I and II).
Although our problems only required the knowledge of
single-variable calculus, eight of these participants had

previously taken and two were concurrently taking calcu-
lus of multivariables (Calculus III). We organized stu-
dents into five groups of two or three students each. In
total, each group of students completed eight 75-minute-
long interviews over the semester. For each interview, the
interviewer met separately with each group. Each inter-
view occurred within one week after students covered the
related concepts in class. Problems presented to students
were physics problems that required the use of integration
in the contexts of electricity and magnetism. We gave
students about three physics problems in each session and
asked them to discuss the problems as a group using a
whiteboard. Examples of problems are presented in
Sec. V. During the interview sessions, the interviewer
watched students work and asked them to elaborate on
their thinking when necessary. If students did not know
how to proceed, the interviewer provided them some hints
so they could continue their work. In general, the inter-
viewer did not point out students’ mistakes or try to
correct their thinking.
We videotaped and transcribed the interviews selectively

for analysis. For this study, we focused our data analysis on
students’ reasoning about differentials. We used a phenom-
enographic approach to analyze the video transcripts, in
that we did not decide a priori categories of students’
responses, rather the categories were emergent from the
data. The video transcripts were analyzed in several stages.
First, we noted the various kinds of reasoning students
provided about differentials as well as how often the
same reasoning appeared in various settings. We selected
the reasoning that appeared in more than two different
settings. Next, we categorized each kind of reasoning as
a resource and selected video clips with students’ rich
reasoning associated with each resource. We transcribed
the video clips and conducted in-depth analysis based on
information from student dialogues, gestures, and written
work on the whiteboard. We identified the metaphorical
phrases in students’ conversations and analyzed the con-
ceptual metaphors involved in metaphorical language.
After generating the conceptual metaphors from the tran-
scripts, we tried to match our metaphors with the metaphor
categories described in the literature.

V. RESULTS

In this section we present our results in three subsec-
tions. First, we describe the mathematical resources that
students activated with the use of the differential. Then we
describe the conceptual metaphors involved in students’
reasoning. Finally, we provide four case studies to illustrate
students’ activation of various mathematical resources
about differential as well as conceptual metaphors in their
mathematical reasoning. We also discuss how students
activated the resources and used the conceptual metaphors
in a physics context.
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A. Description of mathematical resources

We identified four resources about differentials that
emerged from our interviews (Table I). We provide an
overview of the four resources in this section. Then in
Sec. VC we provide examples to demonstrate how stu-
dents applied these resources in physics problems.

1. Small amount

Differential terms (e.g., dx, dr, dE) often contain con-
crete physical meanings based on physical systems. The
fundamental idea of integration is the summation of infini-
tesimal quantities. When we apply the concept of an inte-
gral to physics, we often chop an object or a physical
quantity into infinitesimal pieces and add the quantity or
its effect due to each infinitesimal piece. Hence, we use
differential terms to represent an infinitesimal piece or
amount of a physical quantity. Some physicists may prefer
to use less rigorous terms such as ‘‘extremely small or very
small piece or segment’’ to describe the meaning of differ-
ential elements. Thus, we code this knowledge resource
about differentials as small amount.

2. Point

In mathematics, differential terms such as dx carry the
meaning of an infinitesimal quantity. When constructing
the expression for infinitesimal quantities, students per-
ceive the differential term dx as points on a line and they
set up their equations accordingly. In Euclid’s geometry, a
point is defined as something that lacks all the dimensions
or something with zero dimensions. In geometry, points
often represent locations on a line, plane, or space. We
discuss how students apply this resource in physics in our
case studies.

3. Differentiation

One of the views about differentials held by students is
related to the action of taking the derivative. In mathemat-
ics, d is often used as a symbol for differentiation as in the
equation dfðxÞ ¼ f0ðxÞdx, which involves differentiating a
function with respect to a quantity. When solving physics

integration problems, we find that some students interpret
the symbol d as a cue for a mathematical operation to take
the derivative, which we refer to as the differentiation
resource.

4. Variable of integration

For some students, the symbol d indicates the variable of
integration devoid of any physical meaning. In evaluating a
mathematical integral, the notation

R
fðxÞ is commonly

used by many students, simply leaving out the term dx in
the expression

R
fðxÞdx. When computing an integral, the

only thing that students focus on is finding the antideriva-
tive of fðxÞ. In physics problems, we often see that students
do not include dx or dl as they set up equations and simply
append it to the integrand in the end. Students do not see
the differential term as representing any actual meaning
other than an abstract, purely mathematical notion.

B. Description of conceptual metaphors

Throughout our interview sessions, there were a number
of conceptual metaphors students activated while they set
up integrals. To obtain a deeper understanding of the four
resources we described above, we discuss several meta-
phors (Table II) that we identified from student work as
they activated those resources in physics contexts.

1. Objects metaphor

This metaphor describes the mapping from a concrete
object notion in their source domain based on physical
experience to the abstract mathematical concept of differ-
entials in the target domain. For example, students viewed
the differential term dx as a small segment of a bar and dq
as a small amount of charge. Students associated the
differential terms with a small amount of a physical quan-
tity in which the amount is an important attribute of an
object. Thinking of differentials as objects helped students
to quantify them in terms of the amount of length or
charge, and to identify relations between different objects
such as connecting the total length L with a small length
dx. The differentials as objects metaphor is an elaboration

TABLE I. List of resources about differentials identified in our
data set.

Resources Description

Small amount A small amount of a physical quantity, e.g., a

very small length, a small amount of charge,

often aided by visual representations

Point A point with no dimensions, sometimes aided

by visual representations

Differentiation Taking the derivative of a changing function,

often followed by mathematical operations

Variable of

integration

A variable that could be integrated

TABLE II. List of conceptual metaphors associated with the
use of differentials.

Conceptual

metaphors Description

Objects Differential terms represent an object, such as a

little charge or small length

Locations Differential terms are locations in space, such

as points along a line

Machines Form d½ � or R½ � is a machine that performs an

algorithm

Motion along

a path

In differential d½�, the variable in the box is a

traveler moving along a line
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of the object event-structure metaphor cluster originally
defined by Lakoff and Johnson [28]. The cluster of object
event-structure metaphor involving the conceptualization
of an abstract notion as a concrete object has been identi-
fied in everyday language, mathematical, and scientific
reasoning.

Lakoff and Johnson [28] described two basic metaphors
for understanding the internal structure of events and
causes—the object and location event-structure metaphors.
Event is a general term referring to anything that exists in
space and time. The object and location event-structure
metaphors are complex mappings with a number of sub-
mappings, though some may not be used. Consider the
phrases ‘‘Harry has a headache’’ and ‘‘Harry gets a head-
ache’’ in which headache is conceptualized as an object
Harry possesses. This object event-structure metaphor
includes submappings such as attributes are possessions
and changes are movements in which the acquisition of an
object (‘‘gets a headache’’) is metaphorically described as
the movement of an object (the object moves toward you).
In mathematics, Lakoff and Núñez [30] elaborated on the
cluster of object event-structure metaphor to describe
metaphorical mathematical ideas in basic arithmetic
notions, such as ‘‘addition as [in] adding objects to a
collection.’’ In thermodynamics, an application of the ob-
ject event-structure metaphor is the entropy is considered
as the possession of a system or a physical object in a
container [31].

2. Locations metaphor

This metaphor involves the use of our everyday knowl-
edge of motion in space, coming from our physical expe-
rience of movements, to understand the structure of events
[28]. When interpreting the mathematical concept of dif-
ferentials, in particular, spatial terms such as dx, dA and
dV, students conceptualize the differentials as locations in
space. The differentials as locations metaphor aligns well
with the basic location event-structure metaphor defined by
Lakoff and Johnson [28]. In the example of location event-
structure metaphor involved in everyday language, ‘‘He is
brought out of a depression,’’ the state of depression is
construed as location and the change of state is correlated
with movement out of a location. In thermodynamics, the
states of a system are understood as locations in cases like
‘‘the system is in equilibrium or at a temperature’’ [31].

3. Machines metaphor

This metaphor considers the understanding of the dif-
ferential symbol d½ � as a machine that performs certain
functions. Mathematicians also describe this type of meta-
phor as a grounding metaphor, meaning ‘‘ground our
understanding of mathematical ideas in terms of everyday
experience’’ [30]. Another example of a grounding meta-
phor is the mathematical notion of set is grounded in the
notion of a container that comes from outside mathematics

[38]. Regarding the concept of function, one of the ground-
ing metaphors is the function machine metaphor [30]. In
the function machine metaphor, a function is regarded as a
machine which performs an algorithm or calculates the
input-output relationship. Similarly, the symbols

R
and d

can also be treated as operators that execute algorithms.
When solving differentiation or integration problems,
those symbols often appear in the structures of d½ � orR½ �, where the boxes contain variables or functions.

4. Motion along a path metaphor

In the motion along a path metaphor, the source domain
depicts a fictitious motion along a trajectory. The target
domain in our context involves the abstract notion of a
differential concept. More specifically, when integrating
over the differential terms d½ �, the variable contained in
the box is conceptualized as a traveler moving along a
line. In the phrase ‘‘time flies’’ the passage of time is
conceptualized as one moving along a path or observing a
motion [28]. Mi-Kyung and Oh Nam [39] also identified
students’ use of a fictive motion metaphor when describ-
ing the solution of a differential equation. The solution is
depicted as a trajectory of a moving point and the varia-
bles in the solution function are travelers moving along
the axes.

C. Case studies

In this section we present four case studies to illustrate
students’ activation of mathematical resources and use of
conceptual metaphors in their problem solving activities.
As discussed in Sec. IV, our categorizations of mathemati-
cal resources and conceptual metaphors were those fre-
quently used by students and they appeared in student
reasoning in multiple contexts. These four case studies
allow us to provide an in-depth discussion of student
thinking. The four case studies involved two contexts—
finding the total electric field due to a line of charge in
episodes 1, 2, and 4, as well as finding the total resistance
of the cylindrical resistor with nonconstant resistivity in
episode 3.
Setting up an integral to find the total electric field is one

of the most common electrostatics problems and is familiar
to students. Using the same physics scenario gives us the
opportunity to see the variability of student reasoning and
make comparisons between different groups of students.
We do not have clear evidence to show that students
explicitly use the differentiation resource in the context
of electric field although students frequently use the words
‘‘the derivative of.’’ Hence, we decided to choose an epi-
sode of student work in the context of resistance in which
we have evidence to show that students activated the
differentiation resource. We claim that students’ activation
of resources had strong contextual dependence; however,
none of the resources were unique to a particular context.
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1. Episode 1: Student activation of the small
amount resource

This episode involves two students working on an elec-
trostatic problem (Fig. 1), which we refer to as the line of
charge problem. It was selected from the first interview
session, which occurred in the second week of their course.
This is a classic problem requiring integration in electro-
statics. Before the interview students had attended the
lecture on this topic in class and completed the related
homework assignments. We select this episode from part of
the total 20 minutes of conversation on this problem.

In order to find the total electric field at point P due to
this line of charge, the typical approach expert physicists
take consists of three major steps. The first step is to
chop the whole rod into infinitesimal pieces each of
length dx, carrying an infinitesimal amount of charge dq.
The second step is to set up the equation for dE [Eq. (1)],
which is the infinitesimal electric field at point P due to dq
[Eq. (2)]. The last step is to find the total electric field E by
integrating dE:

dE ¼ k
dq

r2
; (1)

dq ¼ Q

L
dx: (2)

Two students (Dave and Alice) discuss how to set up the
equation for dq.

Dave: I guess we can do separating little segments
of dq (sic).

As they wrote down equations for dE [Eq. (1)] and dq
[Eq. (2)], the interviewer prompted them to explain their
thinking.

Dave: [looking at Eq. (1)] Well, since this is just the
value that a particular line segment is putting on
to our P, then that would only be a tiny segment
of the charge, which is what we described as dq.
And I believe dq is what we have evaluated here
[pointing to Eq. (2)]. So, if we plug in further, we
can put that in.

Interviewer: Okay, can someone explain this equation?
[pointing to Eq. (2)]

Alice: Well, we have a charge Q over the entire length
of L, so this is just saying when you have a little
piece, cause you can write it differently, you can

write it as dq=dx ¼ Q=L. So then it is just a ratio of
a whole charge over the whole length to a little bit
of charge over a little bit of length.

Both Dave and Alice consistently used similar phrases
such as ‘‘a tiny segment’’ or ‘‘a little bit’’ to describe the
differential terms dx and dq. When explaining Eq. (1),
Dave used ‘‘a tiny segment of charge’’ to explain the
meaning of dq and ‘‘the value that a particular line segment
is putting on to our P’’ to describe dE. Apart from verbal
explanations, he also used gestures to demonstrate a small
section of the line by making a tiny interval between his
thumb and index finger on the picture (Fig. 2). In describ-
ing her reasoning, Alice made use of contrastive terms,
such as ‘‘the entire length’’ versus ‘‘a little piece’’ or ‘‘a
whole charge’’ versus ‘‘a little bit of charge.’’ Both students
considered the symbol d as representing a small piece or
segment of a physical quantity in this context. Hence, we
categorize this group of students as having applied the
small amount resource when they set up the infinitesimal
equation for dE and dq.
Dave initiated the conversation by suggesting ‘‘we can

do separating little segments of dq.’’ By separating little
segments he attempted to separate the whole rod into little
segments of charge and sum up the electric field due to
each segment of charge. We recognize that Dave activated
the parts-of-a-whole resource. Sherin [18] described the
parts of a whole as ‘‘amounts of generic substance asso-
ciated with terms that contribute to a whole.’’ Meredith and
Marrongelle [17] found that students invoke the parts-of-a-
whole resource to cue the need of integration in physics
when students interpret the integral as a sum of many
contributions. When solving the line of charge problem,
students first activated the parts-of-a-whole resource as a
cue for integration and then used a small amount resource
to set up expressions for infinitesimal quantities.

 

An insulated thin rod with length L has charge +Q uniformly distributed over the rod. 
Point P is located at a distance d from the right end of the rod.  Find the electric field at 
point P due to this charged rod. 

•P

FIG. 1 (color online). Electric field problem.

FIG. 2 (color online). Gestures in episode one.
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From the perspective of conceptual metaphors, students
construct the abstract notion of differentials in terms of
concrete objects such as the amount of a quantity. In their
conversation, students used a number of terms such as
‘‘little segment’’ and ‘‘a little bit of. . .’’ to describe the
differential terms dx and dq. Near the end of the episode, in
her response Alice says, ‘‘When you have a little piece.’’ In
this response, ‘‘a little piece’’ refers to a thing or object.
This indicates that students viewed the mathematical
notions dx and dq as substances or objects, an application
of the object metaphor.

Students in this episode broke down the line into small
line segments and then found the charge carried by each
line segment. By viewing the total length L as composed of
very small line segments dx, students were able to con-
struct ratios of the differential or infinitesimal terms (i.e.,
dq, dx) to finite quantities (i.e., Q and L). Then students
went on to build the expression for the infinitesimal charge
element dq. This group eventually found the total electric
field by adding up the electric field due to each charge
element dq successfully. The fundamental idea of integra-
tion is chopping the object into small pieces and adding the
quantity (or effect) of each piece. Hence, we recognized
the approach students invented to setting up an integral as
chopping-adding pieces. The pieces correspond to the
geometrical and physical constraints of the object. The
geometrical constraint refers to the fact that the chopped
pieces have the same dimension as the object, such as a line
chopped into small line segments or an area chopped into
small sections. The physical constraint determines how the
object should be chopped. The use of the small amount
resource and object metaphor helped students construct the
abstract notions of differentials in terms of concrete things
with which they have direct experience. In other words, it
led students to make sense of the mathematics in physical
scenarios.

2. Episode 2: Student activation of point resource

In the example of the line of charge problem (Fig. 1),
two students (Aaron and Kelly) seemed to visualize the
line as numbers of points each represented by dx. Near the
beginning of solving this problem, they started to find
the expression for infinitesimal charge element dq.

Aaron: Well, we are gonna find, like, would be like
summing up little charges at every point?

Kelly: Yeah, so it’s dq, Q=L?
Then, Kelly wrote down an equation for dq [Eq. (3)] on

the whiteboard.

dq ¼ Q

L
: (3)

Later on, before she proceeded to construct the integral
equation for total electric field, she attempted to add dx to
the right-hand side of the equation, but she was not sure

whether dx should be included in the equation. Then the
interviewer prompted the students to explain their thinking.
Interviewer: Can you guys explain this equation? What

is the meaning of this equation [Eq. (3)]?
Aaron: The charge at every single point is charge

divided by the distance.
Kelly: Basically, the point charge is at each point along

L, is the total charge over its length, so like, what’s
it called?

Aaron: Charge density.
Later, the interviewer prompted
Interviewer: So what does dq mean exactly?
Aaron: We knew we have to use integral to sum every-

thing up.We need to knowwhat we are summing up
the whole time. So, we have to find. . .

Kelly: Just find the little charges by taking the total
charge over the length it’s over, to find. . . since
it’s uniform, we can find the charge at every point.

At the beginning, Aaron started to talk about ‘‘summing
up little charges’’ which indicates that he realized that the
total electric field is the sum of (the effect due to) little
charges. Hence, Aaron seemed to have activated the parts-
of-a-whole resource. After that, they set up an equation for
dq which they described as ‘‘little charges’’ initially. Of
particular interest in this episode is that there are two kinds
of phrases emerging in their responses: charge at each
point and point charge. Students used both phrases inter-
changeably in their conversation when describing the
meaning of dq, and they did not appear to be aware that
there are two ideas involved in the two phrases. From an
expert’s point of view, charge at each point involves a
certain amount of charge located at each position on a
line; whereas point charge involves viewing a certain
amount of charge as a point quantity with no physical
size. In other words, as students used the phrase ‘‘charge
at each point,’’ they implicitly associated dq with a certain
amount of charge and dx with the location in which the
charge dq is located.
We also noticed that students used the phrases ‘‘little

charge’’ in the beginning and the end of this episode and
they used ‘‘point charge’’ elsewhere. It seems that students
related both terms to the differential term dq, implying that
they thought dq represented a small amount of charge with
negligible physical size. In physics when the size of an
object can be neglected compared to the distance from the
point of reference, the object is often viewed as a point for
simplicity. For instance, in Newtonian mechanics we often
use a point to represent the object and draw forces acting
on the point, which we describe in a free-body diagram.
The point model is also extensively used in E&M, such as
Coulomb’s law, which defines electric force between two
point charges. Thus, we conclude that students used the
point resource in two different ways: differential term dx
represents a geometrical location in space and dq repre-
sents a small amount of charge with negligible physical
dimensions.
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In another context of finding the total charge of a disk
with nonuniform charge distribution, we also found that
students used similar reasoning (i.e., charge at each point
on a disk) as they described dA (i.e., small area element)
and dq. In both geometrical shapes, students related the
spatial differential terms dx or dA with a location in a line
or plane. From the perspective of conceptual metaphors,
students used the location metaphor in their reasoning
about spatial differential terms such as dx, dA, and the
object metaphor in their reasoning about dq (i.e., amount
of charge at each location).

In this episode, students invented a different approach
towards setting up an integral, which we refer to as the
separating-adding points approach. They considered the
physical object as being separated into a number of points
located on the object or small parts of the object. This
approach differs from the chopping-adding pieces
approach that we identified in the first episode. For ex-
ample, a line might be viewed as a number of points
located along the line rather than line segments; a surface
area is viewed as points located on the surface rather than
many small pieces of areas. As discussed above, when
viewing the object as composed of points, students often
failed to relate the points with physical dimensions.
Students started with the idea of summing up little charges
at every point. When talking about charges at each point
students seemed to relate charge at a point to the ratio of
total charge to the length. If there were discrete charges
distributed and each point carried the same amount of
charge, the charge at each point would be the total charge
divided by the number of points. However, there was no
discrete charge distribution. When constructing the equa-
tion relating the point charge with the ratio [Eq. (3)],
students must have considered the length of the rod as a
proxy for the number of points on the rod. Similarly, in
another problem involving a charge disk with nonuniform
charge distribution, we found that students set up an incor-
rect equation of dq ¼ Q=A for the differential charge
element dq. We suspect that students linked the area A of
the disk with the numbers of points on the surface without
noticing the difference between the two.

We infer that when thinking of the differential terms dx
or dA as locations on a line or plane, students did not see
the connection between the differential terms and amount
of physical quantity as locations that are often regarded as
having zero dimensions. Hence, the expression for infini-
tesimal quantities (e.g., dq) often did not include a spatial
differential term (e.g., dx, dA).

3. Episode 3: Student activation of a
differentiation resource

In the example of a resistor problem (Fig. 3), the resis-
tivity is changing along the central axis of the cylindrical
resistance; thus, integration is required to find the total
resistance.
The basic resistance equation for a resistor with constant

resistivity is given by Eq. (4). To find the infinitesimal
expression for dR, two students (Zad and Alan) first
made up a resistance function [Eq. (5)] by plugging the
resistivity function into the basic resistance equation. They
then found the expression for dR [Eq. (6)] by taking the
derivative of this function with respect to x:

R ¼ �L

A
; (4)

R ¼ �ðxÞL
A

; (5)

dR ¼ d

�
�ðxÞL
A

�
¼ d�ðxÞ

A
L: (6)

Interviewer: So why did you take the derivative of this?
[pointing to Eq. (4)]

Zad: Um, because we just plugged it into. . . we plugged
what Rwas. . . into the integral of R basically. So we
need to take the derivative of it. So, we can plug into
R. Because we basically pull dx out of nowhere,
because the derivative of the only changing
function. . . then we require dx, we need to integrate
that.

 

L 0 

A material with length L and cross-sectional area A lies along the x-axis between x=0 

and x=L. Its resistivity varies along the rod according to ρ x · e .  Find the 
total resistance of this cylinder between two end faces. 

x 

FIG. 3 (color online). Resistor problem.
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Zad: We have the function. You have to take the deriva-
tive so you can take the integral. I do not know how
to explain it other than mathematically.

Alan: You need to take the integral across the whole
thing. So, in order to do that, we have to do a
derivative, but it’s basically just taking the differ-
ence from one to the other.

In Zad’s response, ‘‘changing function’’ refers to the
resistivity of the cylinder as a function of x. In an earlier
conversation, Zad said ‘‘the only variable was x, cause it’s
from 0 to L, so we have to take the integral of x from 0 to
L,’’ which indicates that Zad used the function and variable
as a cue for applying integration. Thus, we identified that
Zad had activated the dependence symbolic form as
described by Sherin [18] as ‘‘a whole depends on a par-
ticular symbol appears in the expression.’’ When asked to
explain how they set up the expression for dR [Eq. (6)],
both students provided similar reasoning—‘‘you have to
take the derivative so that you can take the integral.’’
Students perceived dR as taking the derivative of the
resistance function, and that explains why they made up
the resistance function [Eq. (5)]. Once they obtained the
resistance function, they took the derivative of the resist-
ance function as they had planned earlier. We recognize
that this group of students activated the resource of differ-
entiation when setting up the expression for infinitesimal
resistance.

In their phrases such as ‘‘plug into the integral,’’ ‘‘take
the derivative,’’ ‘‘take the integral,’’ or ‘‘do the derivative,’’
we claim that students treated the templates d½ � and R½ � as
machines; in other words, they used the machine metaphor.
In order to find the output (i.e., total resistance), students
figured out that the input of the machine

R½ � should be dR.
Next, students needed to find a function as the input
of the machine d½ �. When no such function was available,
they made up a resistance function [Eq. (5)] by plugging
the resistivity function into the fundamental resistance
equation.

Upon setting up an integral, the students’ solution
involved the purely mathematical process of finding a
function, taking the derivative of the function, and taking
the integral of the differential term. We refer to this chain
of mathematical steps as the differentiating-integrating
function approach. Another interesting phenomenon in
the students’ solution is that they never attempted to talk
about the physical meaning of the equations or make use of
visual representations (e.g., pictures). While applying this
approach, the differentiation resource and machine meta-
phor are often embedded in student reasoning about the
differential concept. The differential resource implies
thinking of the symbol d as taking the derivative of a
certain function. It is very likely that the students’ abstract
notion of d as an action comes from their experience of
performing mathematical calculations. The machine meta-
phor maps the differential form d½ � to a machine that

performs an algorithm. We could also argue that the stu-
dents’ notion about d½ � is grounded from their physical
experience of machines which perform certain functions.
Previous studies [31,39] also found that the machine meta-
phor appeared to be prevalent in students’ mathematical
reasoning.

4. Episode 4: Student activation of a variable
of integration resource

In this example, two students (Zad and Alan) were
discussing how to solve the line of charge problem
(Fig. 1). They first set up the expression for dq [Eq. (3)],
which was incorrect. Then they moved on to set up the
following integral equation:

E ¼
Z L

0
k

dq

ðdþ L� xÞ2 : (7)

However, they were not sure whether the numerator should
be dq or ðQ=LÞdx, even though they are in fact equivalent
in this situation. In the following conversation, they tried to
seek opinions from each other.
Zad: It would be dq or ðQ=LÞdx?
Alan: Well, we are just looking at a small part of the bar

right now.
Zad: The total Q=L . . . you don’t need to take the

derivative or anything, would just give you a basic
number since . . . [looks at the picture again] uni-
formly distributed over the rod, so you do not need
dq, since there is not more charge, so it would be
ðQ=LÞdx.

Alan: Our q is not changing throughout the length,
‘‘cause it’s uniform. So we should not need to
integrate q. I didn’t think.

When deciding whether dq or ðQ=LÞdx should be used
as the numerator, both students agreed that dq should not
be used inside the integral as ‘‘there is no more charge’’ or
‘‘q is not changing.’’ Students thought any quantity x
should be a variable in the differential term dx and could
be integrated. In other words, the differential represents the
variable of integration. We also noticed that students acti-
vated more than one resource about differentials. Prior to
this conversation, students used the point resource to set up
the equation for dq. In the conversation above, students
also said they should ‘‘take the derivative’’ which is an
indication of using the differentiation resource.
When they were discussing whether dq or ðQ=LÞdx

should be included inside the integral, Alan talked about
the fact that ‘‘our q is not changing throughout the length.’’
He appeared to be relating dq with the notion that the
charge is changing along the axis. However, this notion
contradicted the fact that the charge is uniformly distrib-
uted along the line. Thus, students eventually decided not
to use dq. In the case of dx, because the value of x was
changing along the axis, students decided to use ðQ=LÞdx.
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During the interviews, we found that when students
wrote down integrals many often did not include the dif-
ferential term such as

R
2�r. And later on, they simply

appended a differential term (dr) to the integrand as they
computed the integral. Consider the example of finding the
total charge of a disk with nonuniform charge distribution
in which we noticed students set up an integralR
�ðrÞ�r2dr. As we asked students to explain the term

dr, they said ‘‘as you integrate, you would go from 0 to R.’’
We suspect that students might have perceived the differ-
ential term dr as a traveler who moves along the radius
from the starting point 0 to ending point R. From the
conceptual metaphor perspective, students applied the mo-
tion along a path metaphor towards the understanding of
mathematical differential.

VI. IMPLICATIONS

This study has several important implications for
instruction. First, our categorization of resources and con-
ceptual metaphors provides us with deeper insights into
students’ underlying reasoning process. Students’
approaches to physics problems are often more visible to
instructors, but the reasoning process underlying their
approaches is often less visible. A detailed analysis of
students’ reasoning can help instructors make inferences
about what students might be thinking based on the
observed students’ work. For instance, when students write
down an equation such as dA ¼ 2�r for an infinitesimal
ring, some instructors might simply make judgments that
the students just forgot to add dr on the right-hand side of
the equation due to their carelessness. However, it is very
likely that students did not attribute any physical meaning
to the term dr, which is consistent with the resource view
of the differential element—the variable of integration.
When thinking of the differentials simply as an indicator
of doing integration, students encounter several conceptual
difficulties in an unfamiliar situation even though they
could survive by simply remembering the equations in
familiar situations.

Second, we found that some resources or conceptual
metaphors seem to be productive for students when solving
electromagnetism problems. We provided a discussion
about how students’ use of mathematical resources and
conceptual metaphors might lead to their approaches to
setting up integrals in physics. This discussion may suggest
directions for future research into which resources or
metaphors are more productive in a larger student popula-
tion and broader physics topics. While activating the small
amount resource and object metaphor, students’ solution
involved chopping an object into pieces and adding the
quantity or effect due to each piece (i.e., chopping-adding
pieces approach), which seems to involve more mathe-
matical sense making. Students appeared to be able to
translate back and forth between the math and physics
concepts. It seems that conceptualizing the symbol d½ �

in terms of a concrete object made the abstract mathe-
matical notion more transferable to physical scenarios.
The separating-adding points approach is also consistent
with the basic notion of chopping and adding; however, the
use of the location metaphor diverts students’ attention
from reasoning about the dimensions of the infinitesimal
terms and eventually seems to cause students difficulties in
setting up expressions for infinitesimal quantities. In the
differentiating-integrating function approach, students rely
on mathematical operations without much qualitative or
quantitative reasoning involved. Our detailed analysis of
student responses showed that they applied the differentia-
tion resource and machine metaphor.
Finally, our results can potentially guide the develop-

ment of instructional strategies to facilitate students’ use of
differentials in physics. For instance, if students use the
point resource, they may be unable to relate the differential
terms to their respective dimensions. To help students
relate the point quantity with its dimension, it is necessary
to help students make the connection between the point and
the amount carried by the point. Hence, it might be useful
to lead students through the process of breaking down a rod
into pieces and then shrinking each piece into infinitesimal
length. Another possible strategy is to suggest a different
metaphor (e.g., an object metaphor) that is more productive
in this situation.

VII. CONCLUSIONS

In this paper we have examined the resources and
conceptual metaphors that are involved in students’ appli-
cation of differentials in physics problems requiring
integration. We identified four resources and four concep-
tual metaphors in association with the differential concept.
Analyzing students’ reasoning from both perspectives
allows us to obtain deeper and broader insights into
students’ mathematical thinking in physics contexts.
We also provided multiple case studies to illustrate how
students applied resources and used conceptual metaphors
in various contexts of solving physics integration
problems.
Our study contributes to both mathematics and physics

education research on student use of integration in physics
problem solving. While most studies have focused on what
students are unable to do when solving integration prob-
lems, our study investigated the underlying reasoning pro-
cesses that students involve in solving physics problems
that use integration. Orton [8] and Artigue et al. [9] inves-
tigated students’ understanding about the differential con-
cept in mathematics; however, our study investigated the
various mathematical resources and conceptual metaphors
that students bring to bear while applying the differential
concept in solving physics problems. Our study also con-
tributes to the literature by providing evidence about the
existence of conceptual metaphors involved in students’
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mathematical thinking and quantitative problem solving in
introductory physics.

The small amount resource refers to a small portion of a
physical object. This resource is used across many physics
contexts, such as finding the electric field due to a charge
distribution. An object metaphor is often involved with the
use of a small amount resource. This metaphor allows
students to associate the complex mathematical notions
with their experiential knowledge of physical objects.
The point resource involves two distinct meanings: one
represents locations in space and the other represents a
point quantity with negligible physical size. However,
students seemed to be unaware of this distinction. Our
analysis of student work suggested that students’ notion
of points as locations in space is embedded in their reason-
ing of spatial differential terms such as dx, dA. Students’
notion of points as point quantities is associated with
differential terms such as dq. The point resource used in
the spatial differential terms also aligns with the location
metaphor, in which students’ metaphorical construct of
differential terms as spatial locations might be grounded
in their interactions with the physical world.

The differentiation resource involves associating differ-
entials with themathematical action of taking the derivative
of a function. We identified the machine metaphor from
students’ linguistic use while solving integration problems.
A machine usually yields an output from a given input. In
fact, mathematical operators are often treated as machines
and students are able to get the output when the input is
explicitly given to them. However, our analysis of students
solving physics problems finds that students tend to encoun-
ter difficulties if they need to find the input (e.g., a function)
in a physical scenario when using this metaphor. The vari-
able of integration resource implies that the symbol d is
purely an abstract entity, which is often followed by a
variable. We consider it likely that students activated this
resource when they simply dropped or added a differential
term in an integral equation. In the motion along a path
metaphor, students view the use of differentials as a traveler
going from one point to another when doing integration.
Mathematically, the concept of a differential has dual
aspects: it is treated as an object representing an infinitesi-
mal quantity and it is used as a mathematical operator for
differentiating a function with respect to a variable. This
dual aspect of a differential concept is also reflected in
student use of conceptual metaphors.

Among the four mathematical resources about differ-
entials, we found that the small amount and variable of
integration are the most common resources that students
used in various introductory electromagnetism problems.
We have evidence that the point resource was used by
two groups of students in several situations, such as
finding the total electric field due to a charged bar and
finding the total charge on a disk with nonuniform charge
density. The differentiation resource appeared mostly in

the work by one group of students in several different
problem contexts, though other students also mentioned
‘‘the derivative of’’ occasionally. During the interview
sessions, we found that some students seemed to have a
relative robust reasoning about differentials, and they
tended to activate the same resources across many differ-
ent situations. For example, Dave and Alice (students in
episode 1) used the small amount resource in almost all
problem contexts; Zad (student in episodes 3 and 4) used
the differentiation and variable of integration resources in
many different contexts. Some other students’ use of
resources was more flexible and context sensitive.
We do not claim that applying unproductive resources or

conceptual metaphors does not necessarily lead to the
incorrectness of setting up an integral. For instance, in
order to set up the infinitesimal expression, students need
to break down the object in a correct way that goes beyond
merely the activation of the small amount resource and
object metaphor. The differentiating-integrating functions
approach is not necessarily always an unproductive
approach. When activating the differentiation resource
and machine metaphor, if students could generate a func-
tion in a correct manner, they would eventually set up the
integral correctly.
Our findings are based on interviews with 13 engineer-

ing students and it is very likely that there are other
resources or conceptual metaphors that were not identified
in our study. On the other hand, our eight interview ses-
sions covered most of the physics topics in E&M (second-
semester calculus-based physics) that involve the use of
integration, such as the electric field due to a line or disk of
charge, Gauss’s law, resistance, Ampère’s law, and Biot-
Savart’s law. This study could potentially lead to a further
study to investigate students’ reasoning with a larger stu-
dent population and broader range of physics topics, such
as mechanics and thermodynamics. The quantitative study
will potentially explore more resources or conceptual
metaphors that were not identified in this study. It could
also provide data to support the robustness and general-
izability of each type of reasoning. One possible way is to
design a two-level multiple-choice survey, in which stu-
dents, in addition to selecting one of the choices, provide
reasoning to support their choice or suggest alternatives
that were not presented as part of the multiple choices.
Such a survey would enable us to probe the resources and
conceptual metaphors used by a larger student population,
including those that were not previously uncovered in our
study.
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Arrow of time: Metaphorical construals of entropy and the
second law of thermodynamics, Sci. Educ. 96, 818 (2012).

[32] F. Jeppsson, J. Haglund, T. G. Amin, and H. Strömdahl,
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