HIMICS: A VIRTUAL MEMCRY ENYIRCHNELT FOR) HIMI-COHPUTERS AND-A
DESCRIPTION.OF Ifg)LEVEL 1 PROCESSIR :

by
DOUGLAS EUSENE SMITH

B.S5., Fansas State University, 1973

A MASTER'S REPCR

submitted in partiel fulfiliment ¢f the

requirements for the degree

MASTER OF

tn
(o
=
]
=
Cl
=

Department of Computer Science

FANSAS STATE UNIVERSITY

Manhattan, kansas

1975

Approved Dyt




LD

AllY

£+
(27

S4H TABLE OF CONTENTS
c.2
Dacdméa

SECTION NAME CHAPTER CNE PAGE

1'1 INTRODUCTION......'.-.'....-‘............‘.‘.'.......‘.‘...... 1

1.2 TECHNIQUES FOR RECURRENT USE OF MEMORY.ececocscccacassccncasses 1
1-2.1 OVERLAY STRUCTUHS.'..-I.-.....Ii.lllll'.l‘l..'.-l‘..l. 1
1-2.2 VIRTUAL m'iORY-......C-‘..--.0-0-‘-“‘..........'....‘- 2

1.2.2,1 VIRTUAL MELORY TEGHNIQUES.......:;;11{:........ 4
1.2.2 .2 ADVANTAGES GF VIRTUAL 1‘E}IORY.......I-.IM 7

1.3 SUPPORT FOR E}mTORS-.'................I....‘.-.-.-.......'..

-J

1.4 INTER-E}HJ’LATOR CO}R‘MIICATION‘.....-.....I...‘l...""."...... 8
1.5. }IMJAGEABLE SOFIIT.JA-RE.l‘..-....‘........;'.......II.QI..-.-‘..... 8
1.6 INSTRU}Ei\?TﬁXTI-ON..I................'.........-.....‘...l.......- 9
1.6.1 RECOI(DED COmiTS.-................l..‘...............-.. 9
1.6.2 ‘]ORKING SET OPTIONS.-.‘...I--..-.....'..'..'I...l..'..- 10

1'7 OVERVIEI‘J OF TIiE SYSTEM......‘......'.............-......-...‘.. 11
1.7.1 ADVMiTAGES OF THE SYSTE}II.......I.I..-...-.....l.‘ﬁ.l.. 13
1.7-2 EXPMNATION DF LEVELS..............'.I...'-........-... 15

1.8 ImLE!‘EIqTATIOIJ.-...............I.I...-.-......".............. 16
- 1 HARD‘JARE ALLOCIXTION....-oo.-oo--oo-o-...--.....---o-o-o 17

1.8.
1I8.2 }PEI'iORY I‘EVELSII'..|IC...I...I'.......--.-..".....‘.‘.. 17
1.8-3 LOCATION OF SOFWARE-.“..’..-...............-......... 22

1.9 SmﬁIARY".....I..lI......-I.l-I...“......-...'...l..l..."... 23

1.10 INTRODUCTORY DESCRIPTION OF REMAINING CHAPTERS eeeesceccccscces 24

CHAPTER TWO
2.l THTRODUCTION, ssnsumnis swnwenes sowsmes sesmbwine bibmas oo meoass. 20
2.2 PAGE BEPLACENENT  pows sumemisms swwmmes symmsse sussmerys sompsns ¢ 08
2.3 ABDHESE VAFPING. cavuns smsmwsmessnsupseonsmmass samsswnd s s I
ki INTERDATS BHULATOR: s osiiais oo istod somiimane snsrnysssaonvenes 36
2,5 KESSAGE BICHAREE suesrrnmevmnssumemen sopmmapospmmevysunuseres ¢ 30

2‘6 E}:AI'TLE GF A T&‘kSK E:’:ECUTIC‘I*......I-I.....-.......-..'......... 39



SECTION NAME

CHAPTER THREE

3.1 INT’RODUCTION..'C...l.l..l.'...l'.l..'l'.‘..l.l‘..'......-....

3.2 03116-1'1‘1'....-c.co-o--.oot-c-ooono-t-.-nlcnlll.tvloucuooaoooi

3.2.1 SYSTm.i STATES.Q.........I--....-..-........‘...-.....

LIS
L]

Wwwww

2
=)
2
2

v

2.5.1
2.5,.2
2,5.3
.2.5 4
2.5.5
2,5.6

3.3 EXTENDED OPERA

SVC
SVC
SVC
SvC
SvC
SVC

AT .
TG

SYSTEI" GEiﬂERATIDEIll.t....lIICIO.l..l.l.".........“..
TASK CONTROL IHFORI‘!ATIONQ---oo--c-o-c.oooooocno--oncn
PARAMETER QUEUE-t-oo---oo-o---.o----oo--..-...-n-o---
SUPERVISOR CALL INSTRUCTION.eeceecassacencccascsesscns

1—1/0 IHSTRUCTIONS..-.-oo-nc.--cncocoo-.o
Z-SERVICE FUNCTIOHS..--.------.-----oonna
3-EN'D OF JOBQ....-Q...............'C...-'
5-FETCH OVERLAY.cseococccssscacccccoccsns
6—CAALL T.l‘.saS}:..l.l....-........-‘.I.‘.-....
10—CANCEL TfLSK.o..-.oo.--oct-nnoco-.ao--.

SYSTEI'IQl...l‘l".l..l..ll.l.-..p..‘--u.-a

3‘3.1 PROCESS CG:JTROL BLOCK-'....'.'.'.I.'.'..-..'..‘-l..‘.
3.3.2 SVC INSTRUCTION EXECUTION.seenssssssvssasosacsanssses

3.4 ISP FOR INTERDATA 85 ASSEMBLER LANGUAGE.ceecsceccsssascccoccs

3.5 HIMICS SYSTmi CONTROL PROCESS-'.......-...‘..‘.I.I.l.'..ll..

CHAPTER FOUR

4.1 IMRODUCTIONI'...I.........I....'.............'.-....'......

‘a.z FUTURE pJORR......I............'....QO.I...‘I.-.....'......l‘
h.Z-l EEEULATOR I‘lDDIFICATIOIqsgoc---o-co---.uoo.-...os----c—oo
4,2,2 EXTENDED OPERATING SYSTEL 1ODIFICATION.eeeescescossss
4‘-2.3 DmLOCK..‘.-.-.‘..‘......."I......l'.‘...‘.........

4.3 HII‘EICS SIJ}MRY..'..‘......-............‘...........I........

APPENDICES

APPENDIX ‘kl-l.'.-.’...........'......'.'...-.-I...............I..

APPENBIX B.I-......-..-..--'..........‘-..-........O...I......I..

APPENDIX c..l'.'l.....l..l.l......l....-.I....‘...I....‘l.Q......

APPENDIX D-.-..-..-..-................................'...-.‘.'.-

REFERENCESODOOOC........'....‘............l..-....'.-.....-.....'

ii

FAGE

53

43
4L
45
45
46
47
49
52
52
53
53
54

55
55
56
59

60

62
62
62
63
63

64

65
72
78
80

83



TLLUSATRATIONS
PAGE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

OVERLAY STRUCTIIRE....-.---.-.o-.-...---.-.-o---o..-ooot- 3
VIRTUAL MEMORY STRUCTUP\E--.-...a..-ooo---o-.noon--o----- 5
FIXED WORKING SET OPTIONS.uvsssvossssosvasssvsasannsonss 12
HIERARCHICAL STRUCTURE . uucsnssccssccsscccsosssseasasnses 1
HARDWARE VIEW OF HIERARCHICAL STRUCTURE..eseseseavscsece 18
ALTERNATE VIEW OF SYSTEM LEVELS..cecscccccssscsssncscess 19
LEVELS OF MEMORY IN THE SYSTEMeceocscecscssscccasasnsens 21
PAGE mBLE‘...'...I.-II-.l.-.‘...I.--..‘.I-.-.l..--'l..' 27
STRUCTURE CURRENT-PAGES.ccascsecscsossssasscssssvsessass 31
STRUCTU‘RE PAGE—ADDR..'..'.......l............‘-..B-...I. 32
SA}ELE PAGE.-O...‘-.'.............I.I.I.I..t“.‘..’-l... 35
EXAPEIIE VIRTUAL ADDRESSIICC-.....'...".'II.I.I.'......I 35
Svc IbISTRUCTION LIST‘-.‘O.......-.-‘.‘....I...'..I...... 48
UsER PAL‘QA}ETER BIFOGK-........I....'....Il.l....“......' ag
SYSTEM GENERATED PARAMETER BLOCK..eesesesccaccssscscssess 31
EXTOS BLOCK CONTENTS AND PLACEMENT IN THE PARTITIONseees 57
EMULATOR CONTENTSeceecasecosasscsssossnssncenncsnsasaces Ol

wwuwummw:lvml-u—u—u_upwu
W= Wik~ b

ALGORIT}D"» 2-2 PAGE FAULT }]ANDLER...‘-.-.-..l".‘.-'..........I..... 29
AI.’G’ORIT}M 2-7 A-DDRESS MPER.....‘.....‘........'--..l.‘.-‘....-... 3?

iii



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



CHAPTER ONE

1.1 INTRODUCTION

In this paper we propose a design for a hierarchiﬁal mini-
computer system called HIMICS (Hierarchical multI-tasking MinI-
computer Computer System). The system is designed with five major
objectives in mind. These objectives are:

(1) To provide virtual memory capability.

(2) To provide support for emulators.

(3) To provide inter-emulator communication.

(4) To provide manageable software.

(5) To provide sufficient instrumentation and monitor

capabilities in order to encourage meaningful
system evaluations and comparisons.

A general discussion of each of these objectives will be

given before we present the actual design of the system.

1.2 TECHNIQUES FOR RECURRENT USE OF MENMORY

There are several techniques that are commonly used in
modern day computers to execute programs which have a larger address
space than the primary memory available to them. Two of the more
commonly used techniques are overlay structures (1,6,12) and virtual

memory (2,12).

1.2.1 OVERLAY STRUCTURES
With overlay structures, segments of the program are kept
on secondary storage and brought into main memory in an hier-

archical sequence as they are needed. Pre-specified segments

=t



may be overvritten by incoming segments. This is illustrated in
Figure 1-1, Here the user has a 520K program to be run in a
320K address space. Segments A, B and C are first loaded and
execution begins. As soon as segment B is no longer neaded,
ségments D and E can be overwritten in B's address space. The
same process happens when C and E are no longer needed, They
can be overwritten by F.

From this illustration it is aspnarent that the user must
have a knowledge as to what segments are te be overwritten. It
is the user's responsibility to issue orders zor the overlay to
oeceur, This is the major disadvantage of the overlay technique.
The second technique, virtual memory, does not require the user

to have this additional knowledge.

1.2.2 VIRTUAL MEMORY

The key to virtual memory relies on the fact that, for an
instruction in a program to be execut;d, only the instruction and
the data that it operates on need be in primary memory. From
the instruction's point of view the rest of the program may
be located on any level of memory. This removes the require-
ment that the job's entire address space be in physical memory
at once. Because this physical restraint is removed, the
operating program has the illusion that it has an extremely

large memory, thus the term "virtual memory". Since a job's

entire address space need not all bte in primary memory at once,



80

400

Operating

System

Overlay Structure

User Core

Memory
320 K

User's Program 520K

A
60K
B
140K
E
|
c
80K |

Figure 1-1

60K

60K

120K




the sum of the address spaces of the jobs being multiprogrammed
is permitted to exceed the physical size of main memory. This
is illustrated in Figure 1-2, All three jobs are being exe-
cuted in a physical memory space of 280K. The total sum of

ail three jobs is 460K,

The major constraint as to the size of the virtual space
is limited by the hardware configuration. The hardware limits
the number of addressable cells. The limiting factor is the
number of bits used for an address. For example, if the hardware
allows 8 bits for an address, then there are 256 addressable
cells, The addresses would range from 0 to 255. This limits
the virtual memory to this same size of space. The virtual
space is usually considerably larger than the available primary

memory of the machine.

1.2,2,1 VIRTUAL MEKORY TECHNIQUES

Two major virtual memory techniqges are, demand-paged
memory management (1,7) and segmented memory management (1).
As was stated previously, virtual memory requires that the
instruction and data to be operated on be located in primary
memory. If this were to be done one instruction at a time it
would be too time consuming. Instead they are retrieved in
sections upon demand. If the sections are all equally divided

into the same length, they are individually referred to as a

page. This is the orgin of the term "demand-paged'" memorv.



20
40
60
80

20
40
60
80
100

20
40
60
80

100

120

140 ¢

160
180
200
220
240
260

280

Virtual Memory Structure

JOB1 Page-Blk-Status
—|(0]|5]7Yk
—| 1|6 Y]
—| 2 (16| Y
=3 N
JOB2
—lolr ]y
— {1 Y
—| 2 Y
5] 8 v
|4 N
JOB3
— o j1a | ¥
—l1jaly
i—> ] 2 N
P N
—>14 19 ¥
215 N
] — 16 N |
s 7 N |
—>18 (10 | Y
—>. 9 1 [y
—> 10 12 | ¥
—>11 13 | ¥
— 12 M |
—>73 N

Virtual Address Space Page Map
Tables

Figure 1-2

Block #

0
Operating
20 System

1
2
3
4
i 5
6
7
8
2

10

\
\ 1240 1
- 7260 12

SRR 13
“Ei‘} 280

\ N 15

. 4320
\\\)! 340 16
555 17

Physical Memory



If the sections are unequal in length they are called segments,
hence "segmented" memory. This paper will only be concerned with
the former, demand-paged memory.

At the start of execution of a user's program, the first
page is brought into primary memory. This is done by the virtual
memory module, which will be explained in sextion l.7.2. As
each instruction is executed, the virtual memory module checks
to make sure that all the address space refarenced is in
primary memory. If the address space is not in primary memory
an interrupt, called a page fault (2), is generated. The
operating system then processes this interrupt. This is done
by loading the required page into primary memory. The process
is then restarted from the point of the interrupt. Each addi-
tional required page is brought into primary memory upon request.

This can obviocusly lead to the point where primary memory
is full when a new page is being requested by the virtual mem-
ory module to be brought into primary memory. To alleviate
this situation page replacement (1) is necessary. This con-
sists of removing from primary memorf a page that does not have a
high probability of being referenced in the near future. This
page is then placed in secondary memory while the newly re-

quested page is moved into primary memory.



1.2,2,2 ADVANTAGE OF VIRTUAL MEMORY

Virtual memory is commonly used today by many large computers.

There are many advantages to be gained by using virtual memory.
Some of these advantages include:

(1) 1Increase in the number of programs that can be
multiprogrammed in a system.

(2) Capability of running a program whose address spzace
exceeds the primary memory space currently availatle,
if less than the maximum addressable memory.

(3) Makes programs more portable from large machines to
small machines.

(4) Helps eliminate fragmentation of dynamic storage
allocation.

These are especially appealing to mini-computers since mini-computers

by nature have a smaller primary memory space.

1.3 SUPPORT FOR EMULATORS
| For use in this paper, we will define an emulator to be a
firmware interpreter. This interpreter will convert a user pro-
gram from the original language, instruction by instruction,
into the desired computer actions. An emulator written for this
system must be aware of the manner in which to access the
virtual addressing system of the host processor. An emulator
will not create a machine language program. Instead, it will in
effect execute a small microprogram for each instruction of the
original language. The result of this activity will be the
execution of the original instruction.

The host machine's user assembler language itself will be

emulated by HIMICS te allow virtual memory capabilities. HIMICS

will



also allow "i:ish-level™ Languages to be emulated, Languages such asg
PL/1, APL, and COBOL are likely candidates for emulation. These
languages will require a large amount of space for their emulators,
but due to the virtual storage capabilities of the system, this

sﬁace requirement does not present a prcblem.

1.4 INTER-EMULATOR COIRMUNICATION

In many programming situations, it is desirable to use
different languages for different modules of the program. Yor
example, one might want the processing portion of his algoritlm
to be coded in an assembler language, and the input/output
sections written in a high-level language. Such process linkage
will be allowed in this system. Iuterprocess communication will
also be slicwed in this system due to the capabilities of the
host machine's operating system. A task or emulated process
can start another task executing. After starting another task,
the calling task may wait until the n;med task terminates. The
calling task on the other hand may also continue processing
and test for the called task's completion when necessery. A
task can also cancel another task whieh is executing. This
kind of communication is solely dependent upon the functions

of the host operating system.

1.5 MANAGEABLE SOFTWARE

The key to manageable software is to keep it simple., This

can be accomplished by using a structured design (3). In this



approach a complex system is divided into small indepéndent modules.
This allows one to comprehend each module without keeping the de-
tails of the entire system in mind. Furthermore, modifications to
the system are simplified since a module can be changed or added
without affecéing other modules.

4 part of this structured design is provided by the operating
systems of the host processors. Even if the operating systems
have to be modified to run in a virtual memory paging enviromment,
it is worth the trade-off. These modules are not only structured,
ghey will be almost error free from the start, and thus more manage-
able, Obviously it would require a great deal of time to produce

the equivalent modules from scratch.

‘1.6 INSTRUMENTATION

1.6.1 RECORDED COUNTS

In order to evaluate a system's efficiency it is necessary
to employ techniques to record the specific actions taken by the
system. An obvious method of instrumentation is to keep a count
of how many times a pre-specified event occurs. By knowing the
system input, and the actions caused, it is possible to evaluate
the systen.

There are two counts which must be taken for every instruction.
The first is a count for each unigue operation code. When evaluating
the system, the frequency of execution of each kind of instruction

is essential. The second count records the number of times each



page is referenced. This will be used to evaluate the performance

of the system under different paging options.

1.6.,2 WORKING SET OPTiONS

Built into the system is the ability to perform paging under
one of three options set at system generation time. These three
options have been choosen to yield different working set (1,8,9)
sizes in order to evaluate the system under various work loads
for maximum efficiency. In this paper, worﬁing set size refers
to the number of pages contained in Level 1 and Level 2 memory.
This composes a collectién of the program's most recently used pages
(11). The terms Level 1 memory and Level 2 memory will be ex-
plained in deteil in section 1.8.2 of this chapter. The first
option operates under a non-competitive fixed partitioned working
.set size. The second option will allow the system to operate
with a competitive variable working set size based on a local
paging rate., The third option, which operates on a competitive
variable working set size also, is based on a global scale and
allocates secondary memory using the LRU stack (1,10) principle.

Under option one, the total amount of secondary memory
will be divided by the total number of jobs allowed to be multi-
programmed. This will be set at system generation time. Each

job will then have a fixed working set the same size as any



other job. For example, if there are 180 page frames and 3 jobs,
each job will have 60 page frames for its use. (See Figure 1-3A).
Under option two the size of the working set for a job will be
adjusted to approach maximum efficiency as best as can be deter-
mfned. This will be based on a2 competitive paging ratio computed
on a per-job paging rate over z given time period. IJobs having
high paging rates tend to increzse their working set size while
low-paging jobs decrease their working set size.

Option three will take the entire working set available and
let all jobs have the space needed on a first come first use basis,
This treats the Level 2 memory on a global basis, whereas under
option one it was treated on a per-job basis or local level. This
will allow, for example, two jobs, job 1 needing 20 page frames
and job 2 needing 120 page frames, to be completely contained in
Level 2 memory at once. (See Figure 1-3B). Under option one
above, the fixed size per job, job 2 ecould only have 60 of its
120 pages in Level 2 memory at once.

Obviously in order to tell which of the above three methods
is the best, monitoring of the different options is necessary.
This will include a count of the number of page faults occurring
out of each memory level for each job under the given option.

There will also be an option to turn monitoring on or off.

1.7 OVERVIEW OF THE SYSTEM

The HIHICS system may be viewed as a hierarchical structure

(4,11). A structure of this nature consists of modules located

11



12
Fixed Working Set Options

0
Operating Operating
System System
20 i 80
Job 1l: 20 Pages
60 Page Frames : ] ¢ ) T
¢ i
? Job 2: 120 Pages
140 : |
60 Page Frames :
|
200 ;
220
60 Page Frames
: Unused
I
260 i 260
Figure 1-3A Figure 1-3B

Tigure 1-3



13

on differert hierarchical levels (See Figure 1-4). This type of
structure is called "layered insensitivity" (4,11). The levels

are insensitive because:each level is allowed to call upon the
services ofllevels immediately above or below it in the structure,
but not those levels farther than one level away. This means that
each l2vel is not concerned about how or where things are done

in the levels cbove it or subordinate to it, and treats them all as
one level. Each level may be referenced by the level above or
below it in the hierarchy, but no level maybe dependent on a level
which is not a logically sequential level in the hierarchy structure.
For example, level 4 of the HINICS system will interface with the
file management system level 5, and virtual storage managemcnt

level 3, but level 4 may not call upon levels 1, 2, or 6.

1.7.1 ADVANTAGES OF SYSTEM DESIGHN

There are several advantages to this type of design.

(1) The system is easier to understand.

(2) Each module is easier to implement.

(3) The verification of the entire system is accomplished
by verifying each individual level in a bottom-up
fashion,

(4) Modification of the system is simplified.

(5) The software system is relatively portable (i.e. inter-
facing with different hardware requires only the lowest

level of the system to be compatible, and the upper levels
do not require modification).



Hierarchical Structure

User Process

Virtual Processors

Virtual Storage Hanagement

Processor Resource Allocation and
Synchronization and Message

Handler - Multiplexing

File Management System

Peripheral Management

Figure 1-4

Level 1

Level 2

Level 3

Level &

Level 5

Level ©

14



15

1.7.2 EXPLANATION OF LEVELS

A short explanation of what is contained in each module follows.
Level 1 contains the user processes which are interpreted and
executed in the primary memcry of the host machine. These user
programs may Be written in any language supported by an emulator
on the HIMICS system.

Contained in Level 2 are the virtual processors. This is the
system of emulators which execute cone instruction of the user's
program at a time., Before each instruction is executed the current
real address of the virtually addressed operands must be retrieved.
Therefore all memory references must be detected and sent to level
3 to be converted before the emulation of the instruction may occur,

Level 3 contains the virtual storage management system. This
system must detect any page faults which are generated from the
virtual addresses of the instruction's operands. The wvirtual
addresses of the operands must be converted to real machine addresses.
This of course requires the page to be located in primary memory.
This management system must interact with the file management system
through the message handler in level 4 to retrieve pages to primary
Memory.

The message handler and resource allocation systems in level
4 are intermeshed deeply with the operating system of its host

machine. The message handler is responsible for the generation



16

and control of all information transfer from the file management
system. This communication will consist of I/O messages to and
from level 6, page requests from secondary memory in level 5,
and the current state of the system (i.e. ¥request page', "page
being transferred"). This message exchange coordinates the acti-
vities of levels 5 and 6 with the upper &4 levels of the system,

The file management system will res?de at level 5, It will
hanﬂle all page requesis between secondary and ﬁrimary storage.
All = input and output messages will be processed by the file
management system upon request.'.lnclﬁded in the file éanagement
module will be tables.which contzin the current location of each
job's pages. These tables are initialized when the job is started,
and are updated as pages are moved from one level of memory to another.
Level 4 will send page requests and I/0 messages through the message
‘handler requesting pages to satisfy page faults and I/O requests
when needed.

Level 6 is the peripheral management module. This module
will handle the interface with all peripheral devices connected
to the system. This may include printers, card readers, tele-
types, display terminals, or whatever hardware is available to

interface with the system.

1.8 IMPLEMNENTATION
We have just presented a machine independent description of

the virtual addressing system for a mini-computer system. Llow a



more detailed description of the implementation of the system at

Kansas State University will be presented.

1.8.1 HARDWARE ALLOCATION

The layered insensitivity graph in Figure 1-5 makes the
allocation of duties to actual hardware transparent. As can be
seen, the upper four modules will be located in an Interdata
85 computer. The lower two levels will be located in a Nova com-
puter,

The upper four levels are located in the Interdata machine
because of its greater processing speeds. The extensive software
required by the HIMICS system for each user instruction requires
a fast processor. The Interdata cycle time of 270G nanoseconds
meets these general speed requirements. The ﬁova machine is used
as a peripheral processor. This processor will have more time
to perform its duties, and yet removes a great processing overhead
from Fhe Interdata. This setup lets éach machine do what it
does best, and allows a more efficient and faster system. Using
two CPU's in effect allows parallel processing., Real I/0 may
be supervised by the Nova while the Interdata is processing a
user's program. another view of the system design is given in
Figure 1-6. The system shown is based on a multiprogramming

enviromment of three users.

1.8.2 MEMORY LEVELS
Tt is apparent from Figure 1-6 that the use of two separate

CPU's primary memory, and disk memoary creates three levals of



Hardware View of Hierarchical Structure

Level 1

Level 2

Interdata 85

Level 3

i Level 4

Leval 5

Nova

LeVel 6




i

Interdata

"Primary

Memory

Nova
Primary

HMemory

Nova Disk

//,/”

/

Alternate View of System Levels

2E3 User 1
Interface

Des Block
Operating | = __ __

Svst ) User 1

ystem Extended
Operating

System

19

ST

User 2 User 3
Interface Interface

Block Block

T E;;r7;~ User 3
Extended Extended
Operating Operating

System System

4

1

g_ Paper Taﬁe I/0 ?%

Control Panel

File
Management

Systen

User 2

User 3

Operating System

e 7‘\7

L User 2 i
/// /User 1 \
/ Address
Space
Input
3pocl “Qutput
\ Buffer
\ ‘User 3 User 1
\\ ™ User 2 T

N~ -

3 &
——%User 1

\_

i

/

User

‘

/

/T~ User 3

)
/

Figure 1-5

Output
Device

S

S

S Input

Input
Device

/////// Buffer



20

memory. These three levels will be referred to as Level 1,
Level 2 and Level 3 memory in the remainder of this paper (see
Figure 1-7). The Nova disk is the lowest level of memory or
Level 3 memory. Each user's program upon entry to the system

is spooled to an input file in this third level of memory by

the Nova. When the user's job is set to running, the program is
put into his address space, also located on Hova disk, Level 3
memory. The data input is stored in his input file. Any out-
put generated by his program will be spooled onto his output
file for print?ng when his job terminates.

Kova primary is the second level of memory for this sys-
tem. The management system which controls all page traffic in
the Nova is located here. This file system reéeives page traffie
from the Interdata, and using its own paging algorithm, re-
arranges the user's pages in the extended page space in the
Nova's Level 2 memory. If a page is being transferred to Level
3 memory (i.e. paged out of Level 2 memory), it is copied back
to the address space only if it is an original page. If a page
in Level 2 memory is requested by the Interdata to satisfy a
page fault, a bit is kept to record whether or not this page is
original to the address space in Level 3 memory. If it is, then
the page must be copied back to the user's address space before

being overwritten when paged out of the Nova's Level 2 memory.



21
Levels of Memory In The System

Interdata MOS

Operating System

JOB 1

Level 1 Memory =

JOB 2

JOB 3

Nova Core

Operating System

JOoB 1

Level 2 Memory

JoB 2

e

JCB 3

Nova Disk

Level 3 lMemory

Figure 1-7



This file management system must have tables whiéh keep
track of the pages located in its Level 2 memory and Interdata
Level 1 memory and 211 of the user's files located in Level
3 memory. This management system must alse interact with the
Interdata. Ali I1/0 communication and messages must be received
and handled by this system.

The first level of memory is located in the Interdata.
Located in Level 1 memory will be the user's PCB (Process
Control Block). Each user will have space for a fixed number
of.pages of his program, along with a page table containing

information necessary to handle page faults and address mapping.

1.8.3 LOCATION OF SOFTWARE

1/0 SVC parameter blocks are created in the user's extended
operating system in Level 1 memory. These parameter blocks are
needed to inform the peripheral processor of the type of I/0
which is to be done. Also the task identification, virtual page
number, interval timer and starting and ending location must be
included in the parameter block. These parameter blocks are
built and then passed to the Nova system.

The FCS (fixed control store) is read only memory which
contains the Interdata machine language instruction interpreter.
The I/0 instructions will not be interpreted by an emulator as are

other instructions, but will be interpreted by the program located

22



23

in the FCS., The d;namic control store (DCS) will contain the
language emulator. The address translator, which recognizes and
handles page faults and wirtual to real address tramslations,
will also be stored in the DCS portion of the Interdata Level

1 memory. The proposed design may be likened to that of a
single system, Level 1 Interdata memory corresponds to primary
memory. Level 2 Nova core memory, and Level 3 Nova disk memory

corresponds to secondary memory.

1.9 SUMMARY

In order to bring the overall picture of the HIMICS system
into focus a short summary of the system will be given. This
system will be in a multiprogramming environment. Each user
will initially have 64K of virtual address space at his dis-
posal. All real I/O will occur in the Nova. A user's source
program will be spooled into an input buffer on the Nova's
disk. The source program will then bé copied onto the user's
Virtuél address space also located on the Nova disk. The
user's data will be put in his input file on the Nova disk. The
user's source program will be divided inte fixed length pages.
Each user's program will be given a starting virtual address
of zero. As soon as the user's job is set to running by the
Interdata operating system, a PCB is created in the Interdata

memory. The page table will be located in this PCE.



24

This table will be empty when the job becomes running. A page
table is also set up in the Nova Level 2 memory.

Immediately after 2 job is started, a page fault will be
generated in the Interdata. Page zero will be requested, and
paged in from Level 3 memory to Level 1 memory. The system is
now ready to begin execution of the program.

The emulator is given the current instruction to process.
All operands must be converted to real addresses. When the page
needed is not located in the Interdata, a page fault ig generated
and processed. When all operands are mapped, the instruction may
be interpreted. The instruction gounter is incremented, and the
next instruction is executed (unless the previous instruction
was a jump of some kind).

A special case is encountered when the end of job is reached.
-An I1/0 SVC must be generated to the Nova to empty the output
buffer to the output device. Then a job termination message will
cause the address space, buffers, and Nova core page space to be
released. The Interdata extended operating system then terminates

the job in the Interdata, and a new user's job is initiated.

1.10 INTRODUCTORY DESCRIPTION OF REMAINING CHAPTERS

The remainder of this paper will be concerned with levels
one through four of the hierarchical structure, which are the

levels contained in the Interdata (Figure 1-5). Levels five



25

and six are included in a similar type report (5).

Chapter two will include a discussion of the erucial algorithms
and the data structures associated with them. Chapter three will
dwell on the implementation of the system (i.e. algorithms, flow-
charts, and software utilization). Finally, chapter four will be
a short summary of the HIMICS system and a concluding survey of

possible future work which could be done on the system.



CHAPTER THWO

2.1 INTRODUCTION

We present in chapter two of this paper a discussion of
page replacement, address mapping algorithms, and the associated
data structures, The Interdata emulator and message exchange
between processors will also be described. Finally a trace
following a program through its execution in the system will be
given. This example will demonstrate how the entire system

interacts and how the module communicate with each other.

2.2 PAGE REPLACEMENT

Page replacement strategy for the HIMICS system's primary
memory will be an implementation of the LRU (Least Recently Used)
algorithm. The approximation algorithm to be used is called MNUR
(Not Used Recently) (1), An LRU algorithm records when each
page located in primary memory was last referenced (1). When a
page fault occurs, the page which has not been referenced for
the longest time is removed to allow Qpace for the recuested
page. -If the page scheduled for removal is needed by the in-
struction which caused the fault, it must be locked in and
another unused page is paged out instead. The LRU algorithm is
an excellent paging algorithm, but the continual reference up-
dating is too time consuming when done by software. The LRU
approximeition algorithm, NUR, uses a reference bit instead of a
reference time. Each page has this reference bit associated with

it in the page table (See Figure 2-1). All reference bits are



Page Table (PAGE-TAR)

REF-BIT ORG-BIT LOCK-BIT PRES-BIT PTR MOKRITOR

Page Bit Bit Bit Bit Bits Bits
Number 0 ' 1 2 3 4-10 11-31

0

124

125

126

127

Figure 2-1



28

periodically set to zero after every page fault. Whenever a
page is referenced, its bit is set tu one. When a page fault
occurs, the first page found with a reference bit of zero is
paged out.

Algorithm 2-2 is a NUR page removal algorithm which is
employed when a page fault occurs. Before discussing the algor-
ithm, the data structures used will be described.

In order to determine whether or not a page fault has occured,
it must be known whether or not the pzze needed is in Level 1
memory. A bit in the page table will indicate whether-cr not that
page is in Level 1 Interdata memory. & list of the pages which
are present in Level 1 memory is used to correlate the start of the
page with a real address in Level 1 memory. This table of page
numbers in Level 1 memory is called CURRENT-PAGES (Figure 2-3).

The Level 1 memory partitions for ezch user will be of
fixed size in this system, although a variable size partition
scheme may be added without a great deal of system modification.
The addresses in each fixed partition will be the same for
different jobs (i.e. the starting page addresses inside each
fixed partition must be known for virtual to real address conver-
sion). Each user partition will have a tuble of the starting
page address within thzt partition. The values in this table,

called PAGE-ADDR (Figure Z-4), will not change. The number of



29
Page Fault Eandler {FAULT)

FAULT: BEGIN;
PAGE-TAB.REF-BIT(REG-PAGE)=1;
PAGE-TAB.PRES-BIT(REQ-PAGE)=1;
PAGE-TAB.FTR(REQ-PAGE)=REM-PTR;
CURRENT-PAGES(REM-PTR)=REQ-PAGE;

ALL READ-SVC(REQ-FAGE,PAGE-ADDR(REM-PTR));

DO WHILE('1'B);

REM-PTR=REM~PTR+1;

IF REM-FTR=MAX+1 THEN REM-PTR=1;

IF PAGE-TAB.REF-BIT(CURRENT-PAGES(RENM-PTR))=0 &

P4CE-TAB.LOCK-BIT(CURRENT-PAGES (REM~PTR) }=0 THEN DO;
CALL SEND-SVC(CURREFT-VACES(RENM~PTR),PAGE-ADDR(REM-PTR));
PAGE-TAB.PRES-BIT(CURRERT-PAGES(REN-PTR) )=0;
CURREIT~PAGES (REM-PTR)=NULL;
BAGE-T4B.REF-BIT=0;
RETURN;
EKD;

PAGE-TAB.REF-BIT(CURRENT-PACES (RE:-FTR) )=0;

END;

Alsorithm 2-2 (continued on the next page)



30

Term Definitions

PAGE-TABuevseseeeseaThe page table (figure 2-1).
REF-BIT'I".C,C..--Bit zZero in the page table (figu‘re 2-1)-

REQ-PAGE .4csesesssoThe page needed by the user program which caused
the page fault. For figure 2-3 it is page 5.

REM=PTReseseessssesThe poirter to the table CURRENT-PAGES, which
alwvays poirts to the available space in the
table,

ADDR-FTResssessseeeHolds the value of REM.ITR,

MAXeeceesvesasesessThe number of pages allowed in primary memory at
' one time.

CURRENT~PAGES s s seeesh table which contains the pzge numbers of the pages
which are currently located in primary memory.

NULL...--oo-l---on--BlankS-
LOCK-BITeusvssesesesBit two in the page table (figure 2-1).
SVCeeoseesnooeenceseeSymbolizes the transmission of a page renuest to

the Nova. The page required, and the recieving
address are passed as parameters.

Algorithm 2-2

(continued from preceding page)



31
The Structure CURRENT-TAGES

CURRENT-PAGES PAGE-TAB.REF-BIT
1 & 4 0
Removal Pointer . - =
REM-PTR 2 Available
2 3 2 2 1
4 1 1 0
| |
| |
' !
J Jy
1 4 4 0
REM-PTR 2 5 5 1
3 —> 3 2 2 1—0
4 1 1 0
| [
| l
f |
|
W o
1 4 4 0
REM-PTR 2 5 5 | 1
4 lf\ 3 | 2 ? 0

; i
! 1
: %
! - - .

D 4 | Available

i
:

The structure CURRENT-PAGES during the execution of the HUR algorithm.
The reference bit of pege table is also shown.

Figure 2-3



10

11

The Structure PAGE-ADDR

8192

8704

9216

9728

10240

10752

11264

11776

12288

12800

13312

13824

Figure 2-4

32



33

page spaces in each partition will be one greater than the maxi-
mum number actually located there. This will allow processor
overlap during the swapping of pages. The Interdata may work on
the NUR paging algorithm after requesting a page from the Nova.
The Nova will be processing the page fault and transferring the
requested page at the same time the Interdata is sending the
page which was removed from the user's partition. The page space
which is free will be a different one each time since the new
page is put in the available space, 2nd another page is removed
which creates the new available page space. A pointer called
REM-PTR will index the available page space address in PAGE~-ADDR,
The page number of the page which is located at the address in
the first element of PAGE-ADDR for example, will be in the first
element of CURRENT-PAGES. In this way, the Interdata address
for each page will be known.

When a page fault occurs, the proper message requesting
the needed page is sent to the Nova system. The Level 1 memory
location given to receive that page is in PAGE-ADDR(REM-PTR).
The page number of the requested page is put in CURRENT-PAGES(REM-PTR).
The reference bit and present bit are set to one in PAGE-TAB. The
pages in CURRENT-PAGES are looked at sequentially from element
REM-PTR+1 until a page with a reference bit of zero and = lock
bit of zero is found. This is the page which will be sent back

to Level 2 memory. The reference bits of the pages in CURRENT-PAGES



are set to zero during the removal search. This is in case all
reference bits are one to start with and the search goes through
the table without finding a page to remove. After a page has
been found, the reference bit of all the pages is set to zero.
REM-PTR now points to the empty page space address in the parti-
tion. The corresponding element of CURRENT-PAGES is set to null.
The free memory space is not destroyed until the next page fault

when it will be overwritten by the incoming  -requested page.

2.3 ADDRESS MAPPIKG

The process of mapping a virtual address to the actual machine
address is a simple one. The pag; table for this system will
allow 128 entries (Figure 2-1). Each page will contain 256 words.
Every byte (8bits) on the Interdata is addressable. This means
‘each page will contain 512 addressable bytes that may be referenced
(Figure 2-5). Vhen a virtual address of 16 bits is given, the
left seven bits will define the page number, and the right nine
bits will be the offset from the start of the page (Figure 2-6).
The page number determined from the virtual address is used as an
index in PAGE-TAB. The present bit for that entry is tested., If
the page is not currently in primary memory, a page fault is
gencrated. If the page is present, then the pointer to PAGE-ADDR
is taken ffom PTR in the page table. The contents of element PTR
of PAGE-ADDR is taken as the starting Interdata Level 1 memory

address for this page. The offset determined from the virtual

34



Sample Page (page zero)

6 T ]

506 507

508 509

510 all

Each byte of a word is addressable, Thus there are
512 adresses on a 256 16-bit word page.

Figure 2-5

Example Virtual Address (VIRT-ADDR)

0000011001001“01

Page # = 310 Offset = 7710 bytes

Figure 2-6



address is added to the starting address of the page to form the
effective real address of the operand. The algorithm which checks
for a page fault, and eventually performs the address map, is

given in Algorithm 2-7.

2,4 INTERDATA EMULATOR

The reasons for emulating the host machine's assembler
language are threefold. First of all, in order to implement a
virtual addressing system completely by softvare with no hard-
ware support, it is necessary to capture each memory reference.
Page faults and address maps muct be processed before the in-
struction may be executed. The sezond reason for emulation is that
all I/0 instructions must be processed by the extended operating
system and not by the altered Interdata interpreter, .The reason
for this special handling is because all peripheral management
and I/0 is performed in the Nova machine (See Chapter 1). The
third and final reason for emulation is that privileged instructions
will not be processed by the Interdata emulator. Privileged in-
sructions will not be allowed in the HIMICS system at all.

The logic of the emulator will be like that of a control
process which transfers to different routines to accomplish the
needed tasks. First a2 count of instructions types (i.e. how
many of each type instruction is executed) may be kept. This is
for monitoring purposes. ihen this monitoring is in effect, a

counter for each type of instruction is kept and incremented



Algorithm 2-7 Address lapper a

ADDRMAP: BEGIN;
REQ-PAGE=VIRT-ADDR(bits 0-6);
OFFSET=VIRT-ADDR(bits 7-15);

IF PAGE-TAB,PRES-BIT(REQ-PAGE)=0 THEN DO;
CALL FAULT(REQ-PAGE);
ADDR-PTR=REM-PTR;

END;
ELSE ADDR-PTR=PAGE-TAB.PTR(REQ-PAGE);
REAL-ADDR=PAGE-ADDR(ADDR-PTR)+OFFSET;

END ADDRMAP;

ADDR~PTR.eceecsssesssel0inter to the element of CURRENT-PAGES which
contains REQ-PAGE.

CURRENT-PAGES.+.sessVector containing the page numbers of the pages
which are currently in Level 1 memory.

FAULTe.scescsessssesrlgorithm 2-2,

OFFSETeueessseseaessRight nine bits of VIRT-ADDR,
PAGE-ADDR....eeessssFigure 2-4, Locations of pagzs in Level 1 memory.
PRES=BIT+secsesasssseBit three of the page table.
PTRovvsssssossesasesBits four through ten of the page table.
REAL-ADDR.eseseseesaComputed operand address in Level 1 memory.
REQ-PAGE.ssevsssssealieft seven bits of VIRT-ADDR.

VIRT-ADDRseeseesveeaOperand address in user program.

Algorithm 2-7



38

every time that type of instruction is found. When the current
instruction is an I/O instruction, then the virtual addresses are
mapped and page faults are processed. Centrol is then transferred
to the extended operating system for execution. If the current
instruction is not an I/O instruction, a privileged instruction

is looked for. When it is a privileged instruction, the appro=-
priate error message is generated and the process goes to end of
job.

When any other type of instruction is encountered, similar
action is taken. The instruction's counter is incremented (if
the monitor opéion is in effect), and a microcode routine is
called which executes the instruction. After the execution of
the instruction, the instruction pointer is adjusted, and the

next instruction is processed.

2.5 MESSAGE EXCHANGE

In order for this system to function properly, there must be
considerable communication between the two CPU's, In the case of
an I1/0 communication, a parameter block defining the operation to
be performed is passed to the Nova from the Interdata. This infor-
mation includes an I/0 code to define the type of I/0. The task
which is doing the I/O must also be identified., The locations
of the data involved must also be included in an I/C communication.

This parameter block is described in greater detail in chapter 3.



39

Of course the state of the system (i.e. operation completed etc.)
must also be passed back and forth. Communication concerning page
faults will also be passed, although the actual transfer of data
will occur through a direct channel from the Nova to the Inter-
data. The message exchange will be the method of coordinating

the activities of the two computer systems to operate as one

system.

2.6 EXAMPLE OF A TASK EXECUTION

In the multiprogramming environment of this system, each
user will have 64K bytes of virtual memory space at his disposal.
The user's program will enter the system in the Nova. The source
program will be quoled inte ar input buffer located on the Hova
disk space. The source program is then copied into tﬁe user's
address space where it will be divided up into fixed page segments
of 256 words each. The length of 256 words is due to the nature
of the construction of the disk. The input data will be put in
the user's input file.

The virtual enviromment will allow each user's program to
be given a starting virtual address of zero. That is, page zero
contains virtual addresses 0-511. When the job is started by
the Interdata operating system, a process control block (PCB)
is created in Interdata primary memory. Assuming X is the maximum

number of pages located in primary memory at any one time, memory



40

space for X+1 pages of the user's program will be kept in the
user's PCB. The page table, as stated earlier may have up to

128 entries. Each page entry will contain a reference bit, an
original bit, a lock bit, a present bit, a seven bit pointer,

and a monitor counter to count the references to each page
(Figure 2-1). The tables CURRENT-PAGES (Figure 2-2), and
PAGE-ADDR (Figure 2-4) along with the page table are all located
in the tasks' PCB. All data structures are empty when the job is
initiated. The file management system in the Nova will keep
track of the user's space in that part of the system (5).

When set to running by the operating system for the first
time, a page fault will be generated, because the page con-
taining the first instruction to be executed is not in Level 1
memory. Page zero will be requested by the Interdata system,
‘and the Nova system will load the page into primary memory through
a direct channel. An instruction pointer in the task's PCB will
keep track of the current instruction to be executed. The page
containing that instruction must be in the Interdata before it
could possibly be executed by the emulator.

When an 1/0 instruction is detected, the pages involved are
determined. The pages located in the Interdata will be trars-
ferred back to Level 2 memory on request if the orisinal bit shows

that the page has been altered (i.e. if the original bit of the



page table is one). If the page is not original, it will not be
transferred. If the I1/0 is a read then the page will be purged
if it is not the upper or lower boundary page. The I/O in-
struction is now processed as explained earlier.

The other.instructions will be handled as explained earlier
in the emulator description. Each memory operand if any, is
given to the virtual address translator which searches the
CURRENT-PAGES table to determine whether or not the page to te
referenced is in Interdatas memory (Algorithm 2-7). A page
féult is generaﬁed when the page is nct present. The page fault
routine eventually recuests a certain page be transferred to
primary memerv. A virtual page number along with the available
address from PAGE-ADDR are passed as parameters. The Hova locates
the desired page (5) and retrieves it from Level 2 lova memory
or from Level 3 memory (the address space on disk), and through
the data channel copies it into Interdata mcmory. The page to te
removed frem the Interdata must alwvays te recopied back to the
Nova system.

Once the pzge fault has been processed, the virtual address
for the operand(s} must be converted to an Interdata address. The
address mapper uces the table V2GZ-ADDR in the PCB to calculate
this address. The procedure is described in Alzorithm 2.7, After
the address tronslation is complete for the first eperand, the
same procedure will be followed for each memorvy roference in the

instruction.



42

The instruction is now executed by the emulator zand the
interpreter routines in the DCS, During execution, the instruction
pointer is altered (incremented unless a branch occurs), and points
to the next instruction to be executed.

When all the instructions have been executed, and the end of
job situation arises, all of the original pages in the user's
partition must be sent back to Level 2 memory. A message is sent
to the Nova to output the useir's buffer. While the Nova is
dumping the output buffers, the Interdataz may be reinitializing
the partition for the next user process. When the Novalsends a
completion message back to the Interdata, a job termination mes-
sage is sent to the Interdata extended operating system. The job

is then terminated, and another one from the ready list is started.

This process is discussed in greater detail in chapter three.



CHAPTER THREE

3.1 INTRCDUCTION

This chapter will be devoted to describing critical areas of
implementation of the HIMICS system, The host operating system
in the Interdata, 0S/16 multi-tasking (0S/16-MT), will be used
to achieve maﬂy necessary functions of the HIMICS system. A
general description of 05/16-MT is therefore presented., Also in
chapter 3, the user's extended operating system will be described.
Its functions will be given and the general algorithm of its
logic will appear in the appendix. The ISP(13) of the Interdata
85 emulator will appear in the appendix also and will be des-
cribed in this chapter. A comparison will be made with the
microcode equivalent to the ISP for two sample instructions.
Finally, a system control, high-level flowchart which appears

in the appendix will be discussed.

3.2 0S/16-MT

This multi-tasking operating system (14) performs system
control and scheduling functions. The number of tasks is vari-
able under 05/16-MT, but will be fixed for the HTIi*ICS system
each time the system is generated. A task may consist of a
single program, or it may be a main program with one or more
subprograms. There are two types of tasks: system tas¥z, and
user tasks. Each user task will be given a priorty of 0-15 with

zero being the highest priority.

43



3.2.1 SYSTE!l STATES

A task may exist in one of eight states under 0S/16-MT:

(1) Dormant

(2) Active

(3) Ready

(4) Task wait

(5) Console wait

(6) 1/0 wait

(7) Time wait

(8) Overlay wait
Dormant mezns the task has not started, or has gone to end of
job. In the HIMICS system, a task will not exist in the system
after it has terminated. A completed task will be purged and a
new task brought in; therefore, all dormant tasks will be those
waiting to be started for the first time. An active task is
the one currently executing instructions. Only one task exists
in this state at one particular time. When a task is in the
ready state, it will start or resume execution when it becomes
the highest priority ready task. The task wait state indicates
that the task has called another task into execution and is
waiting for the called task to go to end of job. Console wait
means the task is waiting for a reply from the consocle. I/0
wait means the task is waiting for completion of an I/0 rezuest,

Time wait means the task is waiting for a specific interval to

44



45

elapse, or for a specific time of davy. Overlay wait means the

task is waiting for an overlay to be loaded.

3.2,2 SYSTEM GENERATION

05/16-MT is a memory resident system. When the system is
generated, the assembled user tasks are loaded with the overating
system modules. In a normal situation, all the user tasks to be
executed would be loaded at this time. They would then be run
to completion, and the systcm would terminate. In order to run
more user tasks, the system wo:ld have to be generated again.
Under the HIMICS system, 05/16-1T :;ill stay operative while new
user tasks are brought in when other user tasks reach end of
job. The end of job instruction will not be executed in the
Interdata, Instead, a message will be built in the extended
operating system and sent to the lova system to bring in another
job. Imn this manner, a completed task is removed from the sys-
tem and a new one brought in. 05/16-4T will still think it is
the original task. Therefore, if generated with five user tasks,
the HIMICS system might process 20 jobs until given ¢ special

system termination message from the console,

3.2,3 TASK CONTROL INFORMATION
For each task present at system generation time, a nemscry
area is reserved for control information by 0S/16-MT. Systen-

oriented parameters associated with the task are maintained irn a



46

Task Control Block (TCB) separate from the task itself; User oriented
parameters are contained in a Task Block (TB) at the beginning of the
task. The HIMICS system creates a Process Control Block (PCB) for
each user task no matter when the task enters the system. This PCB
is created and.stored in the extended operating system. O0S/16-MT
refers to tasks and schedules tasks via their TCBs. Scheduling is
performed on a priority basis. Each task has a priority assigned

in its TCB., When a task is interrupted, the Program Status Word
(PSW) is saved in its TCB and registers are saved in tha TB assoc-
i;ted with that task. The task ID, status of the task, TB address,
initial PSW, priority, current and restart PSW, and a pointer to

a TCB table (TCBTAB) are all kept in the TCB for each task. TCBTAB
contains an entry for each TCB in the system. The TB contains the
register save areas, the boundary addresses for the task, and a
parameter word for passing a parameter to a called task. The PSW

and registers are restored each time a task is made ready for
execution. Parameters from the system or from other tzsks may be
passed to a task, thus enabling tasks to be designed conwveniently

to perform functions in a re-entrant manner.

3.2.4 PARAMETER QUEUE
0S/16-MT enables 16 bit parameters, from either the system
or other tasks, to be queued with a task. This feature requires

the task to allow queuing and the task program to begin with a



47

circular list of any size. When passing a parameter to a task's
parameter gqueue, the operating system puts the task in the ready
state if dormant. The parameter may indicate a certain event

or may point to a table of parameters that the activated task should
process, This queuing feature allows one task or several tasks
to queue jobs with another task. When passing the queue para-
meter to the task's list, the system adds it to the bottom of
the list. When servicing the list, the task should remove from
the top of the list for a FIFO operation. When the task finds
the list empty, it can safely terminate itself. The HIMIC3S
system will use this parameter queuing facility to keep the task
ID alive when the end of job has been reached, and a new task
may not terminate while there are parameters present in its

queue,

3.2.5 SUPERVISOR CALL INSTRUCTION

The supervisor call instruction (SVC) is a powerful tool in
the Interdata assembler language. O05/15-MT treats this instruction,
under normal operations, as an internal interrupt. The form of the
SVC instruction is:

SVC R1,A(X2)

where the Rl field is a value rather than a register. The ::(I{2)
field is an address which points to a parameter block. The RI
value defines the type of SVC while the parameter block determines

the precise operation desired and the necessary information to



SVC Instruction List (14)

SVC 1,PARBLK

Input/output operations

SVC 2,PARBLK Code 1 - pause
Code 2 - get storage
Code 3 - release storage
| Code & - set status
Code 5 - fetch pointer
Code 6 - unpack
Code 7 - log message
Code 8 - interrogate clock
Code 9 - request date
Code A - time wait
Code B - interval wait
Code C = log message and awvait responce
svc 2,0 End of job

SVC 5,PARBLK

Fetch overlay

SVC 6,PARBLK Call task

SVC 10,PARBLK Cancel task

PARBLK is an address (address plus index register) of a hlock

of storage which is used to define the desired operation.

Figure 3-1

48



49

satisfy the recuested operatiomn.

In the HIMICS system SVC instructions will be trapped in the
emulator and passed to the extended operating system. In the
majority of cases, another SVC will be created there to perform
tﬁe operation, Figure 3-1 shows a summary of 0S/16-1T SVC

instructions.

3.2.5.,1 SVC 1-I/0 INSTRUCTIONS

Under 0S/16-MT, the user does not issue I/0 commands directly;
instead, he defines the I/0 operation and the operating system does
the I/0, At the user level, the SVC 1 will be the same under the
HIMICS system. The parameter block for an I/0 SVC is shown in

Figure 3-2,

User Parameter Block

Function Code LU

e —4

Status Device Address

Starting Addiess

Ending Address

Relative Address

Write Key Read Key

Figure 3-2 (14)



50

The function code is an eight bit field which defines the I/0
operation (i.e. write ASCII and wait, read binary and proceed,
etc.)s The logical unit (LU) is just a device code for the I/0
device desired. The status byte will receive a return code after
the operation,land the device address byte will receive the
physical address of the device. The next two parameters are
virtual addresses which define the starting and ending address
for the operation. The next two parameter words are optional,
anq will not be discussed here.

When an pr SVC is decoded, the emulator transfers control
to the extended operating system. There an SVC is created with
the user's 1/0 parameter block together with an additional para-
meter block created in the extended operating system as data.
The two parameter blocks are used as the data which is passed to
the Nova system. In this manner, the user's parameter block defining
the I/0 operation and the system generated task blocks are moved
to the Nova system. The Nova system will parse the parameter
block and proceed with the I/O operation. This procedure will be
different for a read than for a write I/0. When a read operation
is specified, all full pages located within the receiving addresses
will be deleted from Level 1 Interdata memory. Pages wiiich are only
partially involved in the operation (i.e. the beginnirgz page if
the beginning address is not on a page boundary, and the ending
page if the ending address is not on a page boundarvy) are locked in

if they are located in Level 1 Interdata memory. When a write



operation is specified, all pages located in Level 1 Interdata which
are involved in the operation are lccked in. The Nova must be in-
formed as to which ones are original. No pages are transferred out
unless they are asked for by the Nova system.

The conténts of the additional parameter block are shown in

Figure 3-3.

System Generated Parameter Block

System
Known

Task ID

User

Known

Task ID

Use time since start of job

Original bits

Unused Unused

Unused Unused

Figure 3-3

51



These additional parameters will be passed to the ilova system.

Both names for the task (the task name known by 0S/16-MT at sys-

tem generation, and the task name of the current task) must be
passed to identify to the Nova which task the operation is for.

The time passed is task CPU time used to this point. The uni-
versal clock time is used to keep track of the task's CPU time

in microseconds., The original bits of the pages located in Level

1 memory are passed to the Nova. A specified word of the parameter
block will contain a bit string. The high order bits in this string
will match up with the order in which the pages appear in the page

space for the task in Level 1 Interdata memory.

3.2.5.2 SVC 2 - SERVICE FUNCTIONS

Service functions are obtained by an SVC 2 under 0S/16-MT.
The function is defined in a parameter block by a function code.
These functions will be executed as normal under HIMICS except
that they will be invoked from the exfénded operating system

rather than the user's program.

3,2,5.3 SvVC 3 - END OF JOB

An SVC 3 instruction is the normeal user command to signify
the end of his task. In the HIMICS system, this will initiate
the end of task clean-up process. The task will be purged from
the system, and another task loaded in its place. This procedure

maintains the system until there are no more jobs to be run.



3.2.5.4 SVC 5 - FETCH OVERLAY

This SVC instruction will be processed in the cxtended oper-
ating system. A fetch overlay will be treated 2s a read and
wait I/0 instruction. The procedure followed is identical to
that describea in section 3.2.,5.1 for a read I/O function. A

parameter tlccik must again be passed to the Nova system.

3.2.5.5 SVC & - CALL TASK

This SVC permits a tasi to call another task and pass =
parameter., Three types of calls are suprorted by 0S/16-MT,

(1) Start task and proceed.

(2) Start task and wait,

(3) Wait for a called task.
In a start task and proceed, the calling task may continue
execution even though the called task may not have finished
execution. In a start task and wait, the called task must com-
plete executing before the calling task may continue. In the
last type, wait for a called tack, the called task is not
started, but the calling task wust wait until the called task
has completed execution before it {the calling task) may con-
tinue. . pearameter block is used with this SVC call. The task
ID is included in this block althouzh it is not the same name
the system would recognize. This is bacause the corerating system
knows only the original name of the job which was present when the
genzvoted.  The name is treated 2s a partition name

while the zctual task iU is located in the PCL for that partitionm,



If the SVC is‘a start task and the task is dormant, the para-
meter word of ﬁhe parameter block will be queued if specified
(section 3.,2.4). If the calling task is to proceed, then both
. tasks are placed in the ready state. Otherwise the called task
is put in the ready state, and the calling task is put in the
task wait state until the called task goes to end of job. Also
the parameter cannot be queued. If the called task is not dor-
mant, the task start will not be accepted except in the case of a
start task and proceed with a parameter queue. With a wait for
a called task, the called task may not have a parameter queue.

If the called task has not yet reached end of job, the calling

task is placed in the task wait state until it does.

3.2.5.6 SVC 10 - CANCEL TASK

This SVC may cancel a task, including itself. A cancella-
tion will terminate any I/O being performed by the task at the
time it is cancelled. The cancelled task is made dormant, and
may be ;estarted at a later date by the call task SVC (section
3.2.5.5). In the HIMICS system, this will not be possible be-
cause once a task has reached end of job, it is purged from
the system. If a task is waiting for the cancelled task, the
waiting task is made ready. The parameter block associated with
this SVC instruction consists of the task name of ihe task to be
cancelled, and a status field which effectively acts as a return

code.

54



55

3.3 EXTERDED OPERATING SYSTEM

When 05/16-MT and HIMICS is generated, a program and storage
block called the Extended Operating System (EXTOS) is created
which serves as an interface between the emulator and the host
operating sysfem. The EXTOS is set up for each task in the
HIMICS multi-tasking enviromment. The program section of the EXTOS
will be coded in Interdata 80 user assembler language. Once the
system has been generated, the EXTOS remains with the user page
space and Task block while different tasks enter and leave the
system (section 3.2.2). The EXTC3 program will have 2 distinct
sections. A high level algorithm description of the EXTOS pro-
' gramming functions is given in Appendix A. The storage block

of EXTOS is described first.

3.3.1 PROCESS CONTROL BLOCK

The Process Control Block (PCB) is a storage area in the
EXTOS. The PCB will contain the current user task ID, instruc-
tion pointer, the page table (PAGE-TAB), a list of pages cur-
rently in Level 1 Interdata memory (CURRENT.TAGES), and a list
of the real Interdata addresses for the pages in the user's page
space (FAGE-ADDR).

When the system is generated with a fixed number of parti-
tions, each partition will have a fixed task n=me or identification
(ID). The individual user tasks will all have a unigue name
given by the user. This unique task name will be stored in the
PCB space. This must be done in order to allow inter-task com-

munication. When a task ID is given for a start task, the task



ID must be searched for in the PCB of all partitions in the system.
The search will be done.in the EXTOS routines which also issues the
SVC to communicate with the target task.

The instruction pointer for the task will be stored in the
PCB. This pointer contains the wvirtual address of the instruction
to be executed. This pointer is either updated during the in-
struction, or after execution of the current. instruction.

The contents of the nzgez table are described in chapter two.
This table is used by the HIMICS system to store the lock bit,
reference bit, original bit, and reference count for each page of
7the user's program.

The contents of CURRENT-PAGES is a list of the pages which
are currently located in lnterdata Level 1 memory. This list is
used by the NUR page fault algorithm {(Algorithm 2-2).

The contents of PAGE-ADDR is a list of the beginning page
addresses in the user's Level 1 page space. These addresses are
real Interdata Level 1 memory addresses. The elements of this
list correspond element by element with the contents of
CURRENT-PAGES.

Figure 3-4 shows the placement of the FCB with the rest of
the user's partition. Also shown are the routines which execute

user SVC instructions. These routines are described next.

3.3.2 SVC IRSTRUCTION EXECUTION
Uhen an I/0 SVC is to be executed, the user's parameter

Llock from the user's program is brought into EXTOS, This

56



¢ 57
EXTOS Plock Contents

. and
Placement in the Partition

Task Blocek

Unique Task Identification

Instruction Pointer

Page Table (PAGE-TAB)

Current Pages (CURREKT-PAGES)

Page Boundry Addresses (PAGE-ADDR)

Privileged Instruction Test

I/0 and Overlay SVC Routines

.

Other SVC Instruction Routines

User Page Space

Figure 3-4



user's parameter block will be concatenated with another parameter
block shown in figure 3.3, The parameter block is then passed as
a message to the Nova system by being used as data for an output
SVC to the Nova device. The Nova system will evaluate the para-
meter block, ;nd proceed with the I/O operation as directed by
this parameter block. When an overlay SVC is received, the pro-
cedure is the same because the overlay operation is identical

to a read and wait I/O instruction.

An end of job SVC means the present user must be deleted
ffom the system and a new user brought in. The operating system
must not be allowed to cancel the partition while this transfer
is taking place. The parameter gueue of the task will be pre-
vented from becoming empty in order to keep the task from termi-
nating. There will be messages sent to the Nova system specifying
the procedure to transfer users in and out. These messages will be
sent as data for an I/0 SVC from the EXTOS to the Nova system.
Thus through a basic capability of 05/16-¥T, the problem of mes-
sage communication becomes a simple I/0 simulatiom.

A call task or cancel task SVC will cause a search for a
unique task ID given by the instruction. The task ID of the PCBs
in the task partitions are compared to the specified Task ID,

For a call task, if the task is not located in the system a
message will be sent to the Nova system, when a curren% task

reaches end of job. This message will request that the next job

58



to enter the system be the specified task. If the Nova is unable
to fill the request, then the task issuing the call task SVC will
be terminated. For a cancel task, if the specified task is not
currently in ;he system, the instruction is ignored.

All other SVC instructions will be recreated and executed.

3.4 ISP (13) FOR INTERDATA 85 ASSEMBLER LANGUAGE

The incomplete ISP description for the host machine's assembler
language is given in appendix B. Obvious deletions are the ISP
fd; privileged, SVC, and floating point instructions. Privileged
instructions will not be executed by the HIMICS system and are
therefore not included. S5VC instructions will be executed by
the EXTOS so they are not included in the ISP descriptions either.
Floating point instructions are not as yet included anywhere in
the system, It is assummed they will be added to the emulator
program and therefore will have an ISP description.

The ISP description is also incomplete in that there are
many other considerations to be observed than just the basic
results of the instruction. For example, the ISP for the ATL
(add to the top of a list) instruction may be described with
two or three ISP operations. The actual microcode routine which
executes the instruction is nearly 20 operations long. This

comparison is listed in appendix C. A lower level ISP is also



60

given. This level may be easily translated to microcode. A compari-
son between the LM (load multiple) high-level ISP description, low
level ISP description, ‘and the actual microcode equivalent is also
given in appendix C. The ISP for a LM instruction is comparable

to the microcode routine in length. This is the case with many

instructions.

3.5 HIMICS SYSTEM CONRTROL P&OOEZS

The basic system is controlicd by an eﬁulator control program
(appendix D). This control algorithtm will process the instruction
pointer in the EXTOS. Before executing an instruction, the page
of the program which contains th;t instruction must be located
in Level 1 Interdata memory. The wvirtual address of any memory
reference operand must also be mapped to a real Level 1 memory
-address. Control is passed to the address mapper algorithm (ADDRMAP
algorithm 2-7) to perform this conversion. While mapping the address,
a page fault may occur. The algorithm which performs a NUR page
removal scheme (FAULT algorithm 2-2) is given control. The page
to be removed is transferred at the same time the recussted page
(the one which contains the virtual address which createc the
page fault) is brought into Level 1 Interdata memory. When the
pages referenced by the instruction are in Level 1 memory, then

the microcode routine which executes it is called, and the



61

instruction is exeéuted. The instruction pointer is adjusted as a
process of the instruction execution. Therefore control returns to
the emulator control process. This description applies to normal
instructions (i.e. not SVC instructions). Figure 3-5 shows the

contents of the emulation routine.

Emulator Contents

Address mapper - ADDRMAP

Page fault handler - FAULT

Emulator Controller

Instruction
Execution

Routines

Figure 3-5



CHAPTER FOUR

4,1 INTRODUCTION

Chapter four will discuss future modification of HIMICS, and

a concluding summary.

4.2 FUTURE VORK

There is a trememdous amount of detail which must be defined
befere EIMICS can be implemented. This section will not elaborate
on this, but rather some major areas of modification will be dis-

cussed,

4,2,1 EMULATOR MODIFICATIORS

As stated ecrlier in this paper, the privileged instruction
set is considered off limits for any task operating in the HIMICS
system. In crder to zllow 2 user to legally execute a privileged
instruction, the automatic fetch and decode of the Fixed Control
Store will have to te overridden. This instruction will force
control to reside in the FCS. 1If control is allowed to remain in
the FCS, then the emulation process will be bypassed, and the
program will terminate due to addressing errors.

An alterastive method of allowing privileged instructions is
to create the microcode which executes the instructions. This
methed would probably produce the best results in the long run
once the new code was operational.

Flocting point instructions are not included in the erula-

tior. description. There appear to be no problems which would



keep them from being added to the system.

4,2,2 EXTENDED OPERATING SYSTEM MODIFICATIONS

One feature which will be added to the HIMICS system is the
ability to change the size of the partitions in Level 1 memory.
This change mostly affects the size and type of the data structures
involved with keeping the page information needed for address map-
ping and page fault handling. The actual decisions concerning
the size of the partitions will be made in the peripheral pro-
cessor. This is to allow a maximum amount of user processing to
be done in the Level 1 processor. The best approach is probably
to use the same working set algorithms currently being documented
(5) for the Level 2 processor. These algerithms would adjust
the partition size in Level 1 memory at the same rate as Level

2 memory.

4.2.3 DEADLOCK .

A. possible deadlock situation exists in the HIMICS system due
to the inter-task communication allowed by the host operating
system. For example, if there were two tasks in the systemn, and
both were in a task wait state, the system would be in a deadlock
situation because a requested task cannot be brought into the
Level 1 memory until another task goes to end of job. This kind

of deadlock could be prevented by making sure there is at least

one task which is not in the task wait state.

63



64

4.3 HIMICS SUMMARY

The HIMICS system is a hierarchical structure which provides a
virtual memory enviromment for a network of mini-computers. The
HIMICS system does not place any reguirements on the hardware used
to implement £he system. The hierarchical design of HIMICS sllows
communication only between sequential levels in the system. This
important design attribute allows the system to use a variable number
of processors at the different levels of the hierarchy.

The implementation design should take advantage of HIHICS hier-
a?chical structure. The Level 1 processor should be microprogramable
in order to reduce the execution overhead of the emulation process.
Depending upon the number of processors used, multi-tasking cap-
abilities of the CPUs may be desired. This would result in faster
execution and better throughput for the system.

The implementation presented in this report is a design with
two processors. The faster processor with multi-tasking capabilities
is wused as the Level 1 processor. The upper four levels of the
HIMICS system will be located there. The system throughput is
greatly affected by the processing speed of this processor and its
microprograrming capabilities., As many functions as possible are
placed in the secondary processor to also help increase system
efficiency.

The HINICS system is a virtual memory system. In many cases,
this capability in itself would justify implementing the system.
System throughput should also be increased., The user must decide
whether or not the resulting benefits would justify the implementation.

of the svstem.



APPENDIX A

FLOWCHART OF THE EXTENDED OPERATING SYSTEM'S CONTROL

PRIVILEGED. YES

INSTRUCTION ' ERR

CALL ADDRMAP
FOR SyC
PARAMETER
BLOCK

\/
[/BRING USERS/
{ PARAMETER /
) BLOCK INTO

! EXTOS f

15 TNCREMENT
WRITE YES. " MONITOR DL WRITE SVC

sve ~._ox COUNTER

N

—%w\/J<




1
IS .
MONITOR B

ON

INCREMENT
OVERLAY
COUNTER

>

NoO A\

PUT TASK
IN OVERLAY
WAIT STATE

IS

READ MONITOR

SvC

NO INCREMENT
READ SVC
COUNTER

IS INCREMENT !
MONITOR EOJ §
COUNTER I
\/
GET UNIQUE TASK 1D >.< o

FROM
PARAMETER BLOCK

SEARCH FOR TASK ID
IN PCBS CURRENTLY
IN THE SYSTEM

o
N



NO

\/

1 RECREATE
l SVC

J

EXECUTE
! sSVC

—

RETURN J

15
MONITOR

s,

MONITOR
ON

|

INCREMENT

» CANCEL TASK !
| SVC COUNTER !
L |

(o e

s

INCREMENT 1
START TASK |

SVC COUNTER ‘

NO

(o1 e

i




PRINT

APPROPRIATE! '

ERROR
MESSAGE /

CREATE
PARAMETER
TO CANCEL

TASK

SVC CALL .
TO - RETURN

CANCEL TASK

\

CALCULATE ALL
PAGES INVOLVEID
IN TRANSFER

SET THE LOCK

f\ BIT FOR ALL
MES < ITHESE PAGES
\[/ mucn ARE IN |

\/

T
CREATE MODIFIED PARA- !

METER BLOCK AND SEND
TO NOVA VIA AN SVC

i

S I/0 &
’\PROCELD .

CALL
Y
,’_\*\\\\

YES~

fno

TN

RETURN

)



LOCK BEGINN-

ING PAGE IF

PRESENT IN
e LEVEL 1 MEMORY

YES !

'LOCK EKDING
PAGE IF PRE-

SENT IN LEVEL
1 MEMORY

REMOVE ALL PAGES INVOLVED
IN TRANSFER WHICH ARE NOT
LOCKED IN LEVEL 1 MEMORY

EOJ

\/

)

SEND MESSAGE TO NOVA TERM- |
INATE A TASK. SEND TASK ID |
AND ORIGINAL BITS OF ITS |
PAGES IN LEVEL 1 MEMORY i

]

Y

SEND PARAMETER TO TASX TO |
KEEP THE OPERATING SYSTEM
FROM CANCELLING THE TASK
L SPACE : !

P70

69



\/

{EEINITIALIZE
DATA STRUC-
TURES IN
EXTOS

SR

SET
. INSTRUCTION ——*  RETURN
| POINTER TO |
|  ZERO

A

|
SEARCH PCB OF PRESENT TASKS
TO SEE IF IT IS EXECUTING

X
A WATT ; l

1
</;OEUEUE “\__NO-_ REMOVE ALL JOBS WAITING ON.

i EMP'E%SK/ " TASK TO TERMINATE FROM THE!
s | TASK WAIT STATE
YES |

(so2< f

70



71

IS I N

A WAIT FOR >—NO XN pp

TASK .~ ERJ
v

SEARCH FOR TASK 1D
IN PCB OF CURRENT JOBS

ENTER TASK TASK
'WAIT STATE FOR——><_ COMPLETED

THAT TASK \\\\\7////

NO

.

o
ENTER REQUEST!
FOR TASK

TO START

RETURN !
L e



APPENDIX B
ISP DESCRIPIION OF INTERDATA 85 MACHINFE LANGUAGE EMULATOR
INSTRICTION FORIATY ZdoladC2Iod [9%1] f I<05i5s
0PCO2% := I[0]<0:7>
31,1 1= I[hl<dell>

N, R2,X2,2 1= I{0]<12:15>
A := I[11<0:15>

nou

REGISTERS:

PROGRA STATUS WORD [0:1] [ Pi5W<0:115>

STATJS := PSi/[0]<0:11>
ce = P37[0n1<12:15>
c := PSiWlol<12>
4 1= PSi[0])<13>
G HE P-..;:!’" [0]<11{'>
L 1= PSiF[nl<1s5>
Loc := P3i/[1]<0:115>

GENZRAL REGIS?ZIRS [0:151 / GRi<0:15>

3 YAROL DEFINITION:

AND 1= A = 0A0Q=0
0Al1=0
1A0=0
1A1=1

OR = Vv > 0Vv0=0
ovi=1
ivo=1 .
ivi=1

EXCLUSIVE OR := V = 0V0=0
nvi=1
1va=1
1v1=0

INPERMEDTIADIY STORAGE:

REAL ADDREEE 1= REALADDI<0:15>
RIMATHINER = REIAIIDER<N: 15>

JUNBRR OF LSLo%3 IS TIR LISY = H3LOT<0: 7>
AUTAZR OF S5358 USEA &= JS:D“LO”J<8 15>
CURRRIT POP 1= CURFNP<H:T>
VEXT BOTPOM 1= NOATPR0DP<3:15>
CONDITION COBR AJDED HTT? [

: 1= CONM1<0:3>
PAE RIPS QF CCO41 ORED POREPIER 3=

ORRFSILT<>

72



/*
/*

FIXED-POINT LOAD AdD STORE IdSTRUCTIONS
LISy LOAD IMNI!ZDIATE SHORT -

/* LCSy LOAD COMPLEUENT SAQRT
/* LHR: LOAD HALFJORD RR
/* Li: LOAD JALFIORD

/%

LIS:
LCS:
LHR:
Lil:

Lidr:

I *
/*

LAI: LOAD HALFIORD IMMEDIATE

OPCODE := 24 » (GRLR1J«N;RETURH;);
OPCODE := 25 » (GRLR1)«-H3;RETURT:);
OPCODE := N8 =+ (GRLR1J+GRLR2];RZTURI; )

OPCODE := 48 > (REALADDR«ADDRMAP(A+GRLX21]);
GRLR11«[REALADDR]);RETIURH; ) ;

OPCODE := €8 -+ (GRLR11«A+GRLX2];RETURN;);

LM: LOAD HULTIPLE
STH: STORE HALFUORD

/* STM: SPTORE NMULTIPLE

Lif:

STH:

STH:

/*
/*
/*
/*
/*
/*
/*
/*

OPCODE := D1 -+ (REALADIR<ADDRMAP(A+GR[X2]);
GRLR1I«[REALADDR];
R1=15->+35Z7JR]1;
R1215>(R1+R1+1;A«A+2)3>L113 )

QPCONE :="u40 » (REALADDR<ADDRMAP(A+GR[X2]):
GRLRAI>REATLADDR ;RETURN ; )

OPCODE := DO =+ (REALADDR<ADDRMAP(A+GR[X2]);
GRLR1J>REALADDR;
R1=15+RETFURE ;
F1=15+(R1¢31+1 A+A+2) >5Tily )

PIXED-POINT ARITHMETIC INSTRUCTIONS
ADD AND SJBSTRUCT

AIS: ADD I{H4REDIATE SHORT

AAR: ADD HALFI/ORD RR

AH:  ADD HALFWORD

AdI: ADD HALFPWORD IMUEDIAYE

Adlly ADD AALFJORD TO !NE!IORY

ACHR: ADD VITH CARRY AALFIORD RR

/* ACH: ADD WITH CARRY HALFWORD

J"l f!'
Al lrx?'
Az!‘:

OPCODE := 26 + (GRLR1J<GRLR1]1+¥;RETURN:);

OPCODE = 04 » (GRLR1]1+«GLA1I+GRIR2]3RETURY;);

OPCODE := WA - (REALADOR<ADDIAP(A+G ’[/9J}
GRLIRLI+GRI2A+[REALADDRI § RIIRIT 3 ) 3

orPCOnz (GR0R1T«GRIR1I+A+6G2LX2 T3 RETTRY ) ;

nou
o
RN
+

OPCOD-"“:’ . 61 g (uuuiulpn.?*'ll;):) )..:ID(I-‘!"G?[ {2:] ) »

13

[RZALADDRI«GRIRZ1]+[RTALAZDRI sRZTURK ) 5

QPCODE
02000

e ?[?1]+P'?E 11+3RLIR2I+C3RITURN: ) ;
43 > (RAZARADDR<ADDR! “vrmr;"[fz])
r*“[ R11«GRALR1I+LIZALADDRI+C 3 RETIRY s

on
o
=]
v

)3

*x/
*‘f
*/ -
*/
*/
*/

*/
*/

x/
* /
*/
*/
*/
* /
*/
*/
*/



74

fx SIse SIBTRAST T EEDIATE EAORT - ok

/* SR JURTRACT HNALFVNNED RR */
/* SH: SURTRACT HALFWORD *x/ .
/* SHI: SUBTRACT JdALFVVORD IMMRDIACTE */
/* SCHR: SUBPIRACT JITH CARRY HALFJ/ORD RR */
/% SCHd: SJBMRACT TP CARRY HALFwO3ID */

27 =¥ ('JI[31]+UR[ 11'“‘,1?1;..‘]; r,)

3R ((:.?[?1]*—&3[31]'uu[32],R:.ﬂJ?u,);

43 > (REALADDR<ADIRAMAP(A+GRLX21);
GRIR11+GRALR1)-LAZALADDRI 3 RETIURN )

C3 » (GRLR1J<«GRLR1]-A- pR[{QJ’AJ_JRN,),

nF (GRLIR1I+GRLR11-GRLA2]-Cs3Z7IIN ) ;

BF o (REALADDR<ADDRMAP(A+GRLX2])
GRIR1I<GRLA1]-[RRALADDRI-C;RETURN ;)3

sISsy GPCODE
SiZ: Q0PCGI=
5H: 0rCaRz

¥

i n

SHI: QPOODE
SCiiy 020008
S5Cd: OPCOIE

¥

/% COMPARZ ITHITRUCTIONS */
/x CLAR: COMNPART LOGICAL AALFWORD RR . %/
[/* CLH: COMPARE LOGICAL HALFI/ORD * /
/* CLHAI: COMPAIZT LOGICAL AALFJORD THMHEDIATE %/
[ CHR: COMPARD HALFIORZ RR . */
/% CH: COMPARE HALFVORE */
/* CHI: COMPART HALFWORD I1MEDIATH %/

CLHAR: OPCODE := 05 -» (GR[R11]: FR[RZJ RITTURN )
CLH: O0PCODE us - (REAL ADDR+ADDR”AP(A+GR[(2]);
' GRLR1]:[RFALADDRI ;RETUR )
C5 - (GR[?l]'r+uR[{2],RZ?J?N ) -
09 + (GRLR1]:72[R21;RETIRN;);
49 » (RATFALADBRADIRMAP(A+CGR[2]);
GRLR11:[RTALADDRI s RETIRT 3 )3
CI9 ~ (GALRAT:A+GR[L23RETURN ),

CLAI: OPCODE
Cir: QPCODZ
cl; OPCODNT

w un

Cilr: OQOPCOIE

/* AJLTIPLY AHD DIVIRG ITJZPRICITONS %/
/% AR MJLTIPLY JALFTORD R %/
/%  Ad: HULIIRLY ZALFVORD */
fx UAUR: NVLPIPLY AALFVORD JISIGHED RR %/
[x iy HJLTIPLT HALFV/ORD JASTGAED */
[* DAR: IIVIDZD JALFJGRD RA ) */
/* o H DI-!IDJT AALF/ORD * /

iRy 0PRADA B -~ {GRL31, ?1+1J+??[°1+1]*G’[32] JIPIRN: )

vl 020035 Lo - (‘?”nunuu ARG " A+GRL 21); H

calal ,421'!'1.]*‘&:.?[-31"’1]*':?:-. ;ttiljj] '?F‘—'URIV; );
Hdd3Zy QPOIDE 1= 89C -» (Gﬁ[ﬁl,31+13¢33[31+1]*G3[A2],?JTJnh,),
HAddy 0PC03F .:= DO - (?3A54333+ﬂﬂﬂ?fﬁ?(ﬂ#ﬁﬁ[K?]),

GRLRL, A1+ 1]+GR0R1+1I*LRTALADIZ] s RETURI ) 3
DR 0PCGIE 1= 02 » (GRLA1+1]<G3[1,R1+11 /520721,
GRLRLI<REMAINDER ;RITURA; ) 3
47 - (? CALADDR<ALGR APl A+G1 ["2}),
GRAIR1+1)«GRIRL,21+11 /L RZA5ADDR]
GRIURLI«RZHATADERAZTIRN ) g

PR QrPCOIR

1



/*
ik
I
/w
/=
/*
/*
/*
/*x

/*

NHR:
i

NHT :
OHAR:
0H:

OHT:
XHR:
XH:

XHT:
/%
THI :

/*
V&
/*
/*
/*
/*
/*

LGGICAL AJD 31T MANIPUGLATING IASFRICTIONS
N3 AD JdALFVORG AR

dHe AND HALFUOR

JAI: AR AdALFJORD IWIXDIAT.
OHAR: OR AALFPJORD RA

OHd: 0OR HALFPFORD ,

OAI: OR JALFWORD IMNEITAPE
XAR: EXCLUZIVE O0R HALFVORD 3R

AZ: EXCLUSIVE OR HALFHQORD

XAI: FXCLUSIVYE OR HAALFIORD IAYMEDIATE

\-A.J

-QPCODE := 04 = (GRIR11I<GRIRA1IAGRLR2]1;RETURY;);
QPCODE := b4 +» (AFALADDR<ALDZIAP(A+CR[ X 27 )s

GRlR1]I«GRIRLIALZRALADDR]RETURY )
OQPCODE := C4 » (GRIR11+GR[A11~4+GRLX2]; PTTJPF,),
OPCODE 1= 06 -+ (GR(R11«Ga[R1IvGRLR2]13RETURI);
OPCONE 1= L6 =+ (Ru&LADD“*AEDRJin4+JR[X2])

GRlR1]<«7Rl 71 ]VfgzdalDDn];;Equﬂ;);
OFCJDF := (b6 = (F3[31]+u3[3134n+:H[12],“LAJR!,),
OPCODE := D7 (GR[P12+GR[ 1IVGRLR2] 3RETURY ;) ;
OPCODNE = 47 - (RFALADDI+ADDRMAP(A+GRLX21]);

uR[Rl]+F?[R1]V[RmALADDR3,RPTUﬁﬂ;);
OPCODE 1= 07 -~ (GRIR11«GRLR1IVA+GRLX2];RETURN )

THI: PEST HALFWGED THHEDIATE

QPCADE C3 - (GRIR1IIANA+GRIX2]3;RETURI ) ;
RYTE HANDLING IKSTRUCTPICHS

L3id: LOAD BYTER IR

LB: LOAD BYTE

STBR: STORFE BYTF RR

SPBy STORE BYTE

EXB3R: EXCHAJGE BYTE

CLB3: COAPARU LOGICAL BYTFE

LBR: -~ OPCODE := 93 » (GRLR1<8:15>]+«GR[R2<8:15>];
GRLR1<N:7> 1«03 37THRY; )

LB: QPCODE := D3 -» (3FALADJ?‘4DDEHLP(r*ﬁ"[yq]);
GrR[R1<3: i5>]*[““AJA‘“P]
GR{R1< 17> ]« 27m 1)

ST3R: OPCODE 1= 92 » (GA[R1<3::5>]-53 [7‘<S 13> 3 RETURY ),

STh s OPCOAE 1= D2 = (Rﬂfuﬂ.u1v’““”fif(f+1?[’2j),
GPlR1<d3:153>3+[RTATLARER] OETURN;);

i

EXBR: OPCODE 3= 94 + (GR[R1<0:7>]1«GR072<8:15>]

: GRIRi<8:15>j«73[ #2<0 7>] RETURE ) ;
QPCODE := Du = (RI; LA7W’+13FPjLT(n+Cf[“;]);
GRlR1«3313> 3 LATLLAZ02) s REDURY ) :

75

!

*/
x/
*/
*/
* /
*/
*/
*/
*/

*/
*/
*x/
*x/
* /
* /

* /



/% ATL: ADD TO TOP OF LIST x/ .

/* ABL: ADD 70 BOTTOH OF LIST ny

/% RTL: RFEIOVE FRO4 T0P OF LIST */

/% RBL: RFZMOVE FROM BOTTOH OF LIST x/

ATL: OPCODE := 64 - (JUA3LOTS-JSEDSLOTS>0+(USEDSLOTS«USEDSLOTS+4;
CURTOP<CIRTOP- 1 LCURTOPI+GRLR1]; ) REZURH ;)

ABL: OPCOIT := 65 » (JUISLOTS-USTDSLOTS>0+( U0RDGL0PE<UBEDSLOTS+1:
NEXTBOT +VﬂV?mr“+1;[n“xr3OF]+r?ff1] )3 RETURT:)

RTL: OPCONT := 66 » (USEDSLOTS>N+(USEDILOPS<UZENSLOTS-1;
GR[313+E0JETOP],CURTOP+CURT0P+1;);RETURN;);

RBL: OPCODE := 67 » (USEDSLOTS>0~>(USEDSLOTS<«USEDSLOTS-

LIST PROCEGSING

TNSTRUCTIONS

GRLR1]<«[VE

XTBOT ) NEXTBOT«NEXT30T-1; )R

76

x/

/* SHIFT ANL ROTATHE INGTRIUCTIONS */
/* SLLS: SAdIFT7 LAFPT LOGICAL SH0RT ®/
/* SLHL: SAINT JALFHORD LOGICAL */
/f* SLL: SHIFT ? LOGICAL */
/* SRLS: SHAIF? RIGIT LCGGICAL FHORT */
/* USRAL: SAIFT RIGHT HALFIORD LOGICAL * f/
/* S3L: SAIFT 'RIGAT LOGICAL */

ETURN:)

SLh3: OPCODE := 91 » (GRLR1I+GR[AELI*2xxN:RETURN;)

SLiL: 0PCOIE := (D - (Gn[?1J+uR£ulj*z**(A+ ?[¥2]<12 15> );RETURY ;)

SLL 0PCOBE := 80 » (GRIA1,21+1]<GRI31, 21 +1J*2xx(A+G7[¥2]<12:15>);
AETJRN g )3

SRL5: 0PCODE 1= 90 - (uR[R1]+J [R1]/2%xy;RETURN; ) ;

/*
/*

QPCOIE
OPCODE

RLL:
nRL:

T
W n

BOTATE
ROTATE

ce

¥

AxTURT ;)

LEFD LOGICAL
ITGIT LOGICAL

(GRLR1I+GRL21]1/2%*x(A+GRLX2]<12:15>)
FC » (GRIA1,R1+1]+GRIRL,R1+1]/2xx(A+6R[Xx21<12:

i RETURN:

*/
*/

)

155)

RLL: OQOPCODE := ER » (GRLR1,R1+11«a2[R1,71+1]
x#2%x%x (A+GRL.023<11:15>)[ROTATR]; RETURT )
RRL: QOPCORT 1= BA » (G2[21, 1+1]+Gﬁ[71,“1+13
/2**(45-?'”'?[}{?](11 15>)[1 OTATE]:RETIRN: )
/* JBLAA: BHIFD? LEFT HAALFYORD ARIVTHIUMRTIC %/
/* SLA: SHIFRT LEFT A’T'fﬂ“mI' * /
/* SR SATFT RIGAT A4LrJ70RD ARITHMERIC */
f*  S3EAY SHIFD RIGHT ARITPHNETIC */
SLAA: OPCODRE 1= OF + (GI[R1]«GRLR1I* 2%« (A+332[¥21<12:15>) ;RETIRI )
Ll QRPLOST = EFF o (GalR1,Pt+1]-cR[71,21+1]

* 2% (A+GAL02]<11:15>) 3 RTTURN; )

Ay OPCCARE 1= Q8 » (GRLR11<«a[31]/2+x(A+G3L72])<12: Va» )3 AECURA )
24 OPCOAE 1= 27 -+ (GRLF1,31+1]«G3[ 71,2141

/2**(11 '-h?[ )J<11 1u>) FITUR, :’,);



77

/*  3RANCH IV“”?JCTIOES */
/* BITR5: BRAGEH TxyUK SACKVARD 35320X7T */
/* BITF5: 1RdnuJ TRUE FORVARD SH03F */
J* BPCR: ARAJCH TRUE COIDITICH RR * [/
/= BTC: ARAJICH TRIZ CORDIZTIO. */
/* 3F35: 3IANCH FALSE BACKVARD SHORT %/
f*x  BAF5: BRANCH FALSE FOAVARD SHORT * /
/* BFCR: BRANCH FALSE CONDITIOI RX *x/
/x BFC: BRANCH FALSE CONDITION * /
/* BAid: RBRAFCH INDEX HIGH %/
/* BALE: BRAJCH INDEX LOW OR EQUAL */
/% BALR: BRAJCH AWD LIJX RA * /
f* BAL: BRAINCH AND LINK * /

BT35: QPCODE 1= 20 -+ (CORIAZFULT=1->(LOC<LOC-(2%D; :RETURN:)
ORRESILT=0+(LOC+LAC+2 3 RETTIRN ;) )

= 21 » (QRRESIVLE=1+(LOC«LOC+{(2%D) BT URN: )
ORRESULT=3+(LOC«LOC+2 ;RETIRN; ) ) ;

BTCR: OPCODE := 02 » {(ORRESULT= 1**(3}05“-(}'.??[;—1'2],R:'TJ?"? )
OQRRESUL?=0-+(LOC«LOC+2;RETURN));

= 47 - (ORRES L= 1“‘*(1.100“‘.*1‘!‘6?[1{2] J—DT'F]‘)AI?H,}'
ORRESILT=0-+(LOC<LOC+U s RETURT ) ) 3

= 22 > (ORRESULT=0({LOC~LOC- (2*?),?77JRJ,)
ORRESILP=1+(LOC<LOC+2 ;RETURN ;) )

BFFS: OPCODE := 23 » (ORREIZULI=0-+>(LOC<LOC+(2%D);RETURY;)

ORRESULT=1~+( LOO<LOC+2 ;RETIRT ) ),
03 =+ (ORRESULT=0+(LOC«GRLR2];RETURAN;)
ORRESULT=1>(LOC<LOC+2 ;RETURY; ) ) ;

= 43 > (ORRESILTP=0-(LOC+A+GRLX2];RROURN)
ORRESULI=1-( LO0« JOC+4,9:TJf"));

BXH: OPCODE := €0 » (GR[R1]1+G2[R1]1+G[71+1];
(GRLR1]-G2LR21+1]) >0+ L Qf*ﬂ+€?[ 2].3:TJ?V )
(GRLR1I-GRLR1+1]1)<0+(LOC+LOC+4 : REPURN))

= C1 » (GRLR13I<GRLR1]+GR[R1+1];
(GR[R1]- ?[j1+1])<0+(LOC*n+G3[X2];EETHPH;)
(GRE211-GRL21+1])> 0 (LOC+DOC+4; PETYRY ) )

3ALR:y QPCODE g1 - (GR[?1]+UOb+?,JOL+ 2LR21; 7“”'97 ¥

BAL: QPCONE 1 Ul + (GRLR1I«LOC+u;L00«A+3R[X2]; ?ﬂTf?T, :

BTF5: OPCODE

..
I

BTC: OPCODE

BFBS: OPCODE

g
Ty
=
o
g
Q
]
L7y
n

BFC: OPCODE

BXLE: 02C00F

nonun



78

APPENDTX C

CONTAINED IN THIS APPRNDIX IS A COMPARISON BETWEER TWO
LEVELS OF ISP DESCRIPTION AND THE HMICROCODE FOR A LOAD
MULTIPLE AAD AN ADD 70 TQP OF LIST INSTRUCTIOQIS.

HIGHA LEVEL ISP FOR A LOAD MULTIPLE INSTRUCTION:

LM: OPCODE 1= D1 » (REALADDR<ADDRMAP(A+GR[X21);
GRLR1]«[REALADDR];
R1=15+RETURN;
R1=215+(R1«R1+1;A«A+2) ;LM ) ;

LOW LEVEL ISP FOR A LOAD MULTIPLE INSTRUCTION USING THE
MICROCODE VARIABLES AND REGISTERS:

LM: OPCODE := D1 » (MAR<[MDR]I+[YX1;
HMR1+MAR;
MRO<+-15;

L1 MAR«ADDRMAP([MR1]);
YD«[MDR];
MRA<MR1+7;
YDI<«YDT+MR0O
YDI=0+(¥YD+«YD+13>LM1; )
YDI=0>(RETURI) ;)

MICROQCODE FOR A LOAD MULTIPLE ITHSTRUCTION:

Lif: A MAR ,MDR,YX,DR4 CALCULATE STARTING VIRTUAL ADDR
L MR1,MAR KEEP THE INCREASING VIRTUAL
ADDRESS Il MR1
LT MRO,'FFFL! PUT -15 IN MRO
Lidl: BAL ADDRMAP(MRT) THE REAL ADDRESS OF THE VIRTUAL

ADDRESS CONTAINED IN MR1 WILL
BE PUT Il MAR

L YD ,MDR,DR2 MDR HAS CONTENTS OF LOGCATION MAR
AT MR1,MR1,'0002! VIRTUAL ADDRESS RBUMPED BY 7170
AX ¥Ypr,y¥pr, Mro,nMm,C ST FOR REGISTEZR 15

BAL (MR6)(MR7) MR6 HAS RETURN ADIRZS55 TO

EMULATOR CONTROL PROGRAN

HicGH LEVEL ISP FOR AN ADD TO TOP QF LI3ST IASTRUCTICY(DOES
HOT IJCLUDE OVERFLOW FRROR CONDITION):

ATL: G2CAODE 1= 64 +(NUMSLOTS-NSEDSLOTS>0+(USENSLOTS«IUSEDSLOTS+1
CURTOP+CURTOP-1;[CURPOP)«GRPL 1] 3 ) s PETIRN ;
AUHSLOTS-USEDELOTS<N+OQVERFLOV; Y,



LOY L

ATL:

79

EVEL ISP FOR Al ADD TO T0P OF LIST INSTRUCTION(DOES
707 IKCLUDR OVERFLOW LRZOR COFDITION):

OQPCODE

1= 64 + (MR1<[#DRI+[YX1;
MAR<ADDRMAP(LMR11)
MRS+134R2«MDR<0:7>;
MR3«DR<3:15>;
MR321R2+0VERFLOW;
MR3<MR2-+(MDR<MDR+MR5;
MR1«MR1+ 723 MAR<ADDRMAP(L¥311) ;
MR4<MDR<N:T> 3 MRu=0>( MRU<MR2);
MRu<«MRU+MRY 3 MR 1< MR 1+ MR Y ;
MAR<«ADDRMAP([MR1]) s MDR«LYD1;RETURN ;)3 )

MICRCCODE FOR AN ADD T0 TOP QOF LIST INSTRUCTIOR(DOES NOT
INCLIIDE OVERFLOW ERZOR CONDITION):

AT

ATL1:

A
BAL
LI
LB
LBR
S

MR1,MDR,YX, Ty
ADDRMAP(MRT)
MR5,'0001"
MR2,MDR ,JULL
MR3,MDR
NULL,MR3,MR2

BALNC LISTOVF(MR7)

A

AT
BAL
LB
SX
L

A

A
BAL
A
NI
BAL

MDR ,MDR ,MR5 ,DH

MR1,MR1,'0002"
ADDRIMAP(MRT)

MR4 ,MDR ,NULL
MR4,MRY MRS ,ATL1,C
MRu , MR?2

MR4 ,MR4 MRy

MR1,MR1,MR4
ADDRMAP(MRT)
MDR ,¥D ,NULL , DWW
PSW,PSW,'FFFO!
(MR6)(MRT)

START OF LIST ADDRESS IN MR1
REAL ADDRESS RETURNED IN MAR
CONSTANT ONE IN MRS

MR2 HAS NUMBER OF SLOTS AVAILABLE
MR3 HAS NUMBER OF SL0OTS USED
NUMBER USED-NUMBER OF SLOTS
OVERFLOW CONDITION

NUMBER USED +1 PUT BACK IN
NIIMBER USED 5LOT

LOOK AT SFECOND PARAMETER WORD
REAL ADDRESS IN MAR

M4 HAS CURRENT TOP POINTER
EQUAL ZERO?

YES5, TOP GETS LAST NODE
CALCULATE OFFSET OF SLOT FROM
THE HEAD OF THE LIZT

ADD OFFSET TO CURREXNT ADDRESS
MAXE IT REAL IN MAR

STORE REGISTER IN SLOT

RESET CONDITION CODES

BRANCH BACK T0 THE EMULATOR
CONTROL PROGRAM



APPENDIX D

The flowcharts for the emulator control program

(fEMULATOR

'

AV

VIRT ADDR=
INSTRUCTOR
POINTER

y

ADDRMAP
(INSTRPTR)
REALADDR ;

YES~_ | CALL EXTOS ( | INSTRPTR=

i(REALADDR) i INSTRPTR + 1

ul 5 L _
!

NO /)li\
ML

H

.l - ADJUST | R
MORITOX H> APPROPRIATE |
ON -

COUNTER j

J

BRANCH TO J

APPROPRIATE

MICROCODE
ROUTINE

YA
QlJ




81

ADDRMAP

W/

CALCULATE
VIRTUAL
PAGE NUMBER

N

[ = e

i
CALCULATE ADDRESS OFFSET |
FROM START OF PAGE i

|

i/ :

~. i
Q/PAGE IN >lo> CALL FAULT |
(LEVEL 1 | PASSING THE VIRTUAL PAGI:]‘

m:lg)?" .| NUMBER REQUESTED
¥ES

f\ —

1

\/

CALCULATE THE
!REAL ADDRESS

|
|

N
i -LURY )




i \\h

\  FAULT ;

\'-— .;_.—r___a—
\l/

SET THE REFERENCE BIT, !
| PRESENT BIT, POINTER g
. FIELD OF THE PAGE TABLE |
{_ FOR THE NEEDED PAGE N

\l/

UPDATE THE STRUCTURE ;
KEEPING TRACK OF WHICH l
PAGES ARE IN MEMORY j

v

ASK FOR

REQUESTED
PAGE

| FROM NOVA |

\,"f

SEARCH IN A SEQUENTIAL

MANNER FOR A PAGE WITH <=
REFFERENCE & LOCK BIT OF
ZERO |

i
i
=

R

SET REFERENCE BIT OF
LAST PAGE LOCKED AT
TO ZERO

— ——

. SET PRESENT

SEND THIS ;

| BIT TO ZERO “——— PAGE TO /
| FOR THIS | / THE NOVA
[ OUSTED PAGE | [ /
AV4
! f
SET ALL SET ENTRY OF THE TABLE
REFERENCE BITS‘——E> OF PRESENT PAGES TO

I B s

—

S —

L.

-

|

82



83

REFERENCES

(1) 1!adnick, Stuart E. and Donovan, John J,, Operating Systems,
McGraw-Hill Computer Science Series, 1974,

(2) Denning, Peter J., '"Virtual Memory", aCH Cemputing Surveys,
Vol. 2, Lio. 3, pp. 153-190, Sept. 1970.

(3) Stevens, liyers, and Constantine, "Grructured Design', IBM
Systems Journal, Vol. *#, lo. ’.

(4) Dijkstra, E.W. "The Structure of the T.il.E. Multiprogramiing
System'", CACM, Vol, 11, o. 5, pp. 341-346, ilay 1968.

(5) Bentz, Arlen, "A Description of HNIMICS's Level 2 Frocessor',
Computer Science Department, KSU, lanhattan, Kansas.

(6) Pankhurst, R.J., "Program Overlay Technigues," CaGl, Vol.
11, Ho. 2, pp. 119-125, Feb, 1968,

(7) Randell, B. ond Kuehmer, C.J., '"Demand Paging in Perspective,"
Proceedings, AFIPS, 1968, FJCC, Vol. 33, pt. 2, pp. 1011-1018§8,

(8) Denning, Peter J., "On Hodeling Prozram Behavior," Spring
Joint Computer Conference, 1972,

(9) Ferrari, Domenico, "Improving Locality By Critical lorkine
Sets,'" CaCH, Vol. 17, Ho. 11, pp. €14-020, ilov. 1374,

(10} 1Mattson, R. L., Gecsei, J., Slutz, D, R., and Traizer, I. L.,
"Evaluation Techniques For Sterage Hierarchies,' IBH
Systems Journal, Vol., lio. 2., 1970.

(11} anderson, Gary, "Hierarchical Structure," Computer Science
1 ] ? h
Department, Kansz2s State University, lianhiettan, Kansas,.

(12) FKatzan, H. Jr., "Storage Hierarchy Stystes," Prcceedings,
AFIPS, 1971, 33CC, Vol. 33, pp. 325-336.

(13) Bell, Gordon C., lewell, Allen, Coriputer Structures: Readings and
Zuamples, 1:ieGraw-liill Computer Science Series, 1971,

(14) Interdata Inc., Manual, C5/16 lulti-tasking Operating System
Reference lianual, Interdata Inc. Fublication iiunber 529~
367, 1974,



HIMICS: A VIRTUAL MEMORY ENVIRONMENT FOR MINI-COMPUTERS AND A
DESCRIPTION OF ITS LEVEL 1 PROCESSOR

by

DOUGLAS EUGENE SMITH

B«.S., Kansas State University, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1975



The HIMICS system is a hierarchical virtual memory system for
a network of ﬁini-computers. This paper describes the design of
this software system. A design for a possible physical implementa-
tion for the HIMICS system is also presented. This implementation
design includes the hardware required for the system, basic algorithms
needed by the system, and the data structures used in these algorithms.

- The Level 1 processer used in the design is an Interdata 85

computer. The properties of this machine and its software packages
which are relevant to the HIMICS system are described. The Nova
computer is the Level 2 processor for the implementation design.
This secondary processor is not described in this paper.

The HIMICS system will provide a virtual memory system for
the network of mini-computers and also allow the emulation of high
level languages, The implementation of this system should result
in an increase of processor efficiency aznd system throughput for

the mini-computers involved in the network.



