

2001

KANSAS PERFORMANCE TESTS WITH

WINTER WHEAT VARIETIES

REPORT OF PROGRESS 879

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

CONTENTS

INTRODU	JCTION		1
2001 WH	EAT CROP		
W	eather Conditions		1
	September precipitation	Figure 1	1
	October and November temps	Figure 2	1
Cr	op Development		2
	Statewide crop development	Figure 3	2
	2000-2001 Wheat crop condition	Figure 4	2
	Topsoil moisture	Figure 5	2
Ins	sects		3
Ha			
		Figure 6	4
	ARIETIES GROWN IN KANSAS		
Ac	reage Distribution		4
	Leading wheat varieties	Figure 7	4
	•	Figure 8	
	·		
-	•	nter Wheat Varieties, Table 1	6
	MANCE TEST RESULTS		
Ok	pjectives		8
Va	rieties Included in Tests		8
Pa	rentage and Origin of Public Varieties	Table 2	
	ivate Entrants and Their Entries	Table 3	
	_	al Tests	
	, ,	Table 4	
		1	
	•		
Gr	The state of the s	3-2001	
	Eastern Kansas tests	Figure 9	
	Central Kansas tests	Figure 10	
	Western Kansas tests	Figure 11	
V:	Irrigated tests	Figure 12	
Y 10	eld (bushels per acre)	Table 5	
	(% of test average)	Table 6 Table 7	
т.	Multiyear Averages	Table 8	
	est Weight (lb per bushel)	Table 9	
	eading (days +/- check)	Table 10	
	ant Height (inches) sease and Lodging Notes	Table 11	
		Lengths, and Hessian Fly Ratings, Table 12	_
	otein Values from 2000 Tests	Table 13	
APPEND		Table 10	40
		Policy, and Duplication Policy	hack cover
	•	olicy, and Duplication Policy	
	// III IDUI(UI 3		Dack COVE

2001 KANSAS WHEAT PERFORMANCE TEST

INTRODUCTION

This publication presents results from the 2000-2001 Kansas Winter Wheat Performance Tests and other information related to winter wheat variety performance. The information included in the report is intended to assist wheat producers in the variety selection process. The first section summarizes statewide growing conditions and harvest information for the entire 2001 Kansas wheat crop. Statewide acreage distribution of leading Kansas varieties and a summary of important agronomic and quality traits for these varieties follow. The third section presents procedures and results for the 2001 Kansas Winter Wheat Performance Tests.

2001 CROP CONDITIONS

Weather Conditions

The 2000-2001 wheat season had some interesting weather that contributed to a less than ideal growing season. The first challenge was the extremely hot and dry planting period. Rainfall ranged from 3/4" to 2 1/5" below the 30-year average in September (Figure 1). This was on top of extremely hot and dry conditions in August.

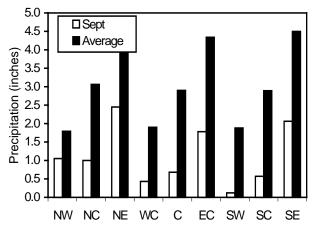


Figure 1. September 2000 precipitation by crop reporting district.

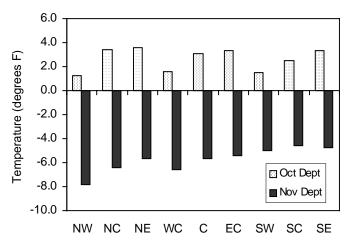


Figure 2. October and November temperature departures from normal.

Although the dry conditions moderated at the end of October, temperatures took a very quick nosedive (Figure 2). October average temperatures ranged 1 - 3 °F above normal. In contrast, November average temperature ranged from 5 to almost 8 °F below normal. This meant the wheat had very little time for growth and tillering before entering dormancy.

Winter conditions, unlike recent years, were fairly close to normal. There were periods of snow cover, favorable moisture, and very little sub-zero weather.

Spring conditions continued to be fairly normal. This meant periods of cool, wet weather broken by short periods of extremely warm conditions. The western third of the state tended toward warmer and drier conditions than the rest of the state.

Cool, wet conditions in early June allowed for an extended grain fill period. Excessive rainfall was a particular problem in the northeastern division. The Seasonal (October-June) total precipitation was above normal in all divisions, but this did not totally offset the earlier unfavorable conditions.

(From Mary Knapp, KSU State Climatologist).

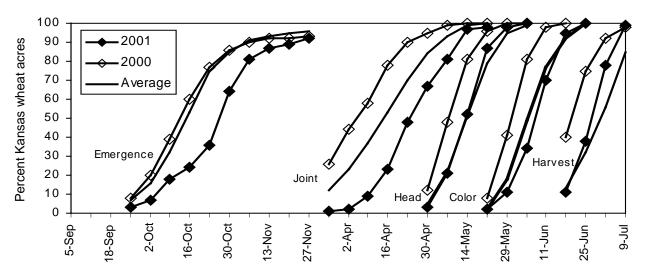


Figure 3. Statewide development of the 2000-2001 winter wheat crop.

Crop Development

The 2001 wheat crop lagged far behind last year at almost every stage of development (Figure 3). Dry soils delayed seeding and emergence across much of the state. November brought muchneeded precipitation, but cold temperatures slowed emergence and limited fall growth. In the spring, many of the poorest fields were plowed and replanted to summer crops. The wheat was slow to break dormancy in the spring. Jointing lagged 3-4 weeks behind last year and 2 weeks behind the 5-year average. Heading did not lag as much as jointing and was comparable to the average. Adequate rainfall and temperatures allowed the crop to fill the grain Although the rate of harvest was behind

that of last year, it actually outstripped the 5-year average.

Only about 50% of the crop started out in good to excellent condition (Figure 4). The condition of the crop generally declined from there until mid-May when over 75% was rated as fair or worse. The crop rebounded in response to the mild weather in spring and early summer and ended up with over 30% in good or excellent condition.

Soil moisture was short or very short on 99% of the acres in mid-September (Figure 5). The moisture situation finally improved in November when snow and rain accompanied cold temperatures. Winter and spring precipitation recharged soil moisture so that only 2-3% of the

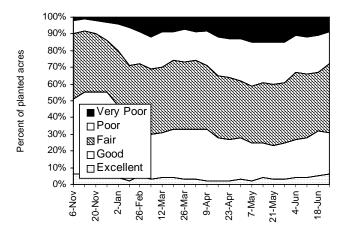


Figure 4. Condition of Kansas winter wheat crop, 2000-2001.

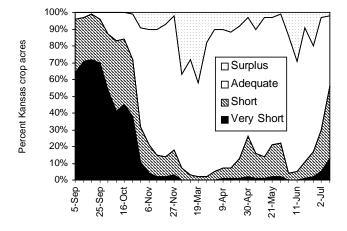


Figure 5. Statewide status of topsoil moisture, 2000-2001.

acres was ranked as short or very short of moisture by mid-March. Soils dried out somewhat in April and May, but rainfall was generally adequate for grain filling. After some early June rainfall, soil moisture declined until the completion of harvest.

(From *Crop-Weather* reports, Kansas Agricultural Statistics, Topeka).

Diseases

The hot, dry summer of 2000 greatly reduced survival of volunteer wheat. This affected wheat streak mosaic virus and leaf rust, which survive on volunteer wheat. Dry conditions in the fall slowed planting progress, which probably further reduced fall disease problems. Rains eventually came to some areas, but then cold weather set in. Stands were very variable.

Winter conditions were cold and snowy and leaves were killed back to the ground in most fields. This was expected to reduce survival of diseases like leaf rust and powdery mildew that require green leaves. Surprisingly, no snow mold was reported and winter injury was uncommon.

In March and April, disease levels were unusually low. Spindle streak mosaic virus and soilborne mosaic virus were below average, but some new locations for these diseases were reported in western areas that received fall rains. Tan spot started strong in many continuous wheat fields and eventually became the second most important foliar disease in 2001. In many cases it seemed to spread into rotated fields. Speckled leaf blotch was active in a few fields. Wheat streak mosaic virus was generally rare, although there were a few hot spots. Powdery mildew and barley yellow dwarf were hard to find. Leaf rust was essentially absent.

Wheat stripe rust was first reported in southern Kansas on May 2 at Hutchinson on the mid-canopy leaves of variety 2137. Almost every plant had at least one stripe rust infection. Since it wasn't on the flag leaf, spores must have arrived prior to flag leaf emergence, which occurred during the last week of April. During the week of May 7, reports of stripe rust on middle leaves were coming from between Dodge City and McPherson and from south of Highway 56 to the Oklahoma border. By May 14, lesions were appearing on flag leaves. The varieties 2137, Hondo, Kalvesta, Lakin, Niobrara, Oro Blanco,

Platte, Prairie Red, TAM 107, TAM 110, Trego, and Venango were most often found to have a serious problem with stripe rust.

Unusually warm weather from May 14-17 was expected to inhibit further development of the epidemic. Stripe rust lesions on most varieties began to dry and turn brownish. In some cases, only a brown necrotic stripe was produced with no new pustules. Even when the rust was inhibited, flag leaf damage was often severe from the brown necrotic stripe reaction. By May 18, stripe rust had nearly defoliated susceptible varieties at the late milk stage across a wide area, mostly south of Highway 56.

On May 19, a cool, wet period began that lasted three weeks. On May 23, we began to hear reports of serious stripe rust north of I-70. By May 29, reports came from as far east as Seneca, as far west as Goodland, and as far north as Belleville. The epidemic north of I-70 was probably due to spores moving up from south central Kansas in a second wave of migration.

Losses due to stripe rust were documented in fungicide test plots. In southwest Kansas, losses sometimes exceeded 50% on susceptible varieties. In south central and north central Kansas, losses on 2137 ranged up to 20%. These losses were somewhat mitigated by cool weather which helped grain filling.

(From Robert Bowden, K-State Extension Plant Pathologist).

Insects

Insect pests caused relatively little statewide damage to the 2001 wheat crop. Army cutworm moths were active in Kiowa County in early October. Fall armyworm was causing problems in early-planted fields in southwest Kansas by this time. Several fields in southwest Kansas were treated for this pest. Little insect activity was noted in early spring. Low numbers of flea beetles were found in western Kansas in early May. Armyworm moths were numerous in May and June, but the wheat matured fast enough to escape significant damage from this pest.

(From Kansas Department of Agriculture Cooperative Economic Insect Reports).

Harvest Statistics

The Kansas Agricultural Statistics' July 11 estimate of the 2001 crop was 327.6 million bushels harvested from 8.4 million acres. This continues the 4-year decline in total production since the 1997 crop of close to 500 million bushels (Figure 6). This estimate was up 15% from the June forecast but down 6% from last year's production. The statewide yield average of 39 bushels per acre was up 5 bushels from the June prediction and 2 bushels above last year's final average.

(From July 11, 2001 *CROPS* report, Kansas Agricultural Statistics, Topeka).

WHEAT VARIETIES GROWN IN KANSAS

Acreage Distribution

The leading wheat varieties planted in Kansas are reported in Figures 7 and 8 and in Table 1. The top five varieties occupied 70.3% of the state's seeded acreage in 2001.

The top 10 varieties for each crop-reporting district are presented in Figure 7. In the western districts, 2137 and TAM 110 acreages increased. Acreages of Jagger, TAM 107, Ike, and Larned acreages were steady or dropped slightly. TAM

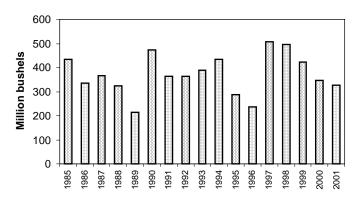


Figure 6. Historical Kansas winter wheat production.

107, the acreage leader for many years, ranked as low as the third variety in two of the three western districts. Blends maintained or increased their share of the acreage in the southwest and west central districts, but dropped in the northwest district.

Jagger and 2137 were still the most popular varieties in the central districts. However, blends ranked second in the north central district with 21% of the acreage. Karl/Karl 92 continue to occupy a significant portion of the acreage, especially in the north central district. The acreage of 2163 continues to drop in this region.

2137, Jagger, and Karl/Karl 92 were the most prevalent varieties in eastern Kansas once again. Jagger tended to dominate in the southeast with 50% of the acreage, but 2137 was the leading

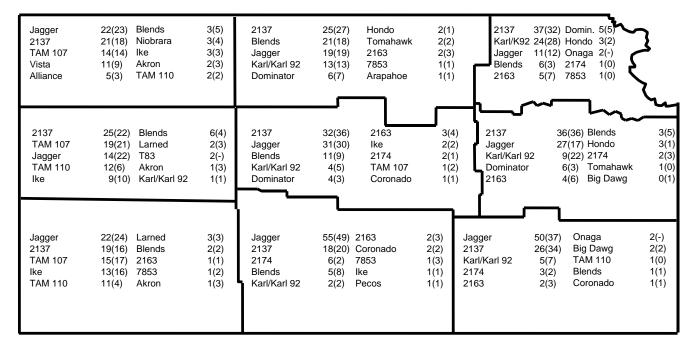


Figure 7. Leading wheat varieties in Kansas, presented as percent of seeded acreage by crop reporting district for 2000 and 2001 (2000 in parentheses). From Kansas Agricultural Statistics, Topeka.

variety in the northeast and east central districts. Onaga appeared in the top ten of the northeast and southeast districts for the first time.

Figure 8 illustrates the historical statewide distribution of the top 10 varieties in 2001. These varieties occupied 80.7% of the planted wheat Jagger and 2137 together acres in 2001. accounted for 58.1% of the 2001 acres. percentage of acres occupied by Karl 92, 2163, and TAM 107, the predominant varieties for most of the 1990s, continued to decline at 10.6% in 2001. The remaining 5 varieties in the top 10 accounted for 12% of 2001 wheat acres. Ike was popular in the mid to late 1990s, but has declined in recent years. The acreage of Coronado has been relatively steady for the past 3 years. 2174. TAM 110, and Dominator are relatively new varieties with increasing acreages. (From February 12, 2001, Wheat Variety report, Kansas Agricultural Statistics, Topeka).

Agronomic Characteristics

Comparative ratings for important agronomic traits, pest resistance, and milling and baking quality are listed in Table 1. Varieties are included in this table if they appear in the annual Wheat Variety survey report from Kansas Agricultural Statistics. Disease and insect ratings are from the annual report, Wheat Variety Disease and Insect Ratings by Robert L. Bowden and H. Leroy Brooks. Agronomic ratings are from

wheat breeders, extension specialists, and researchers. Ratings for a given trait in this table are experts' best estimates of the relative performance of the varieties based on information and observations over several seasons and from numerous sources. The ratings are updated annually to account for changes in performance that occur over time and to adjust for the changes in ranking that arise with the continued additions of new varieties.

New Variety Descriptions

Brief descriptions of new public entries in the performance tests are included below. These descriptions are abstracted from release notices or other material provided by releasing agencies.

Intrada is the first hard white winter wheat variety released by the Oklahoma Agricultural Experiment Station. It is of medium late maturity and is intermediate in timing of first hollow stem stage. Test weight has been outstanding and grain yields have been competitive in Oklahoma tests. Baking evaluations for Intrada have been good to excellent.

Intrada is resistant to soilborne mosaic virus and stem rust, moderately resistant to leaf rust, moderately susceptible to tan spot and powdery mildew. It is susceptible to Russian wheat aphid, greenbug, and Hessian fly and has intermediate tolerance to acid soils.

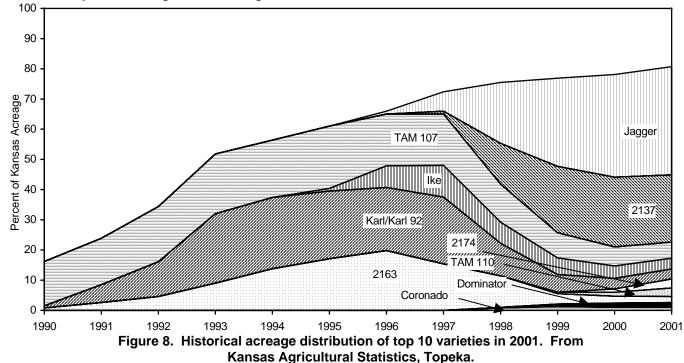


Table 1a. Comparisons of leading winter wheat varieties - agronomy & quality.

	Percent						_				Relative
	Kansas				l	Relative	2				milling
	seeded					Coleop-		Winter	Al		and
	acreage	Test	Straw	Matur-		tile	Shat-	hardi-	Toler-	Protein	baking
Variety ¹	2001	weight	strength	ity	Height	length	tering	ness	ance	content ³	quality
Jagger	35.8	4	4	1	5	6	5	6	3	3	EX*
2137	22.3	4	1	3	5	7	5	3	2	7	AC
TAM 107	5.3	4	2	1	4	5	2	2	9	6	LD
lke	3.6	3	4	4	6	7	2	3	8	3	AC
Karl/Karl 92	3.3	3	4	1	3	7	3	3	9	3	EX*
2174	3.0	3	1	3	4	5	3	4	5	3	AC
TAM 110	2.8	3	2	1	5	5	2		8	7	AC
2163	2.0	6	1	3	3	7	6	4	2	7	LD
Dominator	1.5	4	3	4	2	8	7	3	8	3	AC
Coronado	1.1	3	1	2	2	8	4	5	3	3	AC
Larned	1.0	4	5	4	9	3	3	3	8	4	AC
Vista	1.0	4	6	5	2	8	3	2	7	6	AC*
7853	0.9	4	4	3	5	7	3	5	8	3	EX
Alliance	0.5	4	4	4	6	8	3	3		8	AC
Hondo	0.5	3	1	5		6	4	3	3		
Akron	0.4	3	5	5	6	6	3	3		7	AC
Ogallala	0.4	2	2	3	2	7	6	4	5	2	EX
Pecos	0.4	4	1	1		7	4	5	5		AC
Tomahawk	0.4	4	3	3		6	3	2	8		AC
Big Dawg	0.3	4	1	6	7	4	3	5	5	2	AC
Niobrara	0.3	4	5	3	7	6	3	3	6	8	AC
G1878	0.2	3		4		5			5		
Arapahoe	0.2	4	5	6	6	7		3	6	5	AC
Eagle	0.2	4	5	4			2	3			EX*
Newton	0.2	4	4	3	6	6	2	5	9	6	AC
Onaga	0.2	3		3	2	6				3	
T81	0.2			2		7					
T83	0.2										
Thunderbolt	0.2	2		3	7	6			7	4	AC
Blends	7.0	_		-	•	-			-	•	
Hard Whites	0.8										
Other Hard	3.8										
	Scale:	1=Best	1=Best	1=Early	1=Short	1=Long	1=Best	1=Best	1=Best	1=Best	

9=Poor 9=Poor 9=Late 9=Tall 9=Short 9=Poor 9=Poor 9=Poor

¹ Varieties and % seeded acreage from the Feb. 12, 2001, Wheat Variety survey, KS Ag. Statistics, Topeka, KS.

² Most ratings are experts' best estimate based on information and observations from many sources.

Agronomic information by Joe Martin, Hays, and Allen Fritz, Jim Shroyer, Ray Lamond, Kraig Roozeboom KSU Agronomy.

³ Summary of crop performance test results from recent years.

⁴ Ratings compiled by P.J. McCluskey are based on data from the KSU Department of Grain Science and Industry, the U.S. Grain Marketing and Production Research Center, and inputs from the milling and baking industries. See annual update of "Milling & Bread-baking Qualities of Hard Winter Wheat Varieties" for more information.

EX = Exceptional; large kernels; high protein content; very good milling, mixing, and commercial bread-baking.

AC = Acceptable; milling and baking attributes acceptable but not outstanding for all properties, may have minor defects.

LD = Less Desirable; one or more serious quality defects.

^{-- =} Inadequate information or conflicting data.

^{*}Strong blending wheat; needed for blending with weaker wheats, may not be suitable alone for bread flour.

Table 1b. Comparisons of leading winter wheat varieties - diseases & insects.

Resistance or tolerance to: ⁵														
Soil-	Spindl	Wheat	Barley				Speckl			Powd-		Hes-	Russ.	_
borne	streak	streak	yellow	Leaf	Stem	Stripe	leaf	Glume	Tan	dery	Head	sian	wheat	
mosaic	mosaic	mosaic	dwarf	rust	rust	rust	blotch	blotch	spot	mildew	scab	fly	aphid	Variety
1	2	4	7	8	3	1	3	6	3	7	8	9	9	Jagger
1	5	4	6	7	7	8	4	7	4	4	9	2	9	2137
8	7	5	8	9	3	8	6	6	7	1	7	9	7	TAM 107
1	5	9	6	9	3	6	8	6	7	6	7	1	9	lke
1	3	9	8	9	6	3	5	3	3	3	5	9	9	Karl/Karl 92
1	5	7	5	6	8	5	4	7	5	2	5	9	9	2174
9	7	5	8	9	3	8	6	6	7	1		9	9	TAM 110
1	4	4	6	7	4	7	4	8	5	2	9	2	9	2163
1	1	7	6	8	3	6	4	4	5	4	7	3	9	Dominator
1	3	6	6	7	3	6	6	6	6	4	9	5	9	Coronado
9	8	9	9	8	2	2	7	8	9	5	6	3	9	Larned
8	7	9	7	7	6	1	5	6	8	4		1	9	Vista
1	5	5	6	7	4	7	9	5	6	4	7	9	9	7853
9	7	9		8	2	3	7		7			2	9	Alliance
1	3	4	6	3	4	9	3	3	6	2	3	4	9	Hondo
9	9	9	9	8	3	4	9	7	5	1		8	9	Akron
9	8	5	7	5	3	6	5	6	6	6		9	9	Ogallala
1	6	6	7	7	5	8	5	4	6	6		3	9	Pecos
1	4	8	8	4	3	8	8	8	4	3	9	9	9	Tomahawk
1	2	4	7	7	5	1	2	3	3	6	7	9	9	Big Dawg
8	7	7		7	3	8	7	7	8			9	9	Niobrara
1	2	7		8	6				7	4		9	9	G1878
8	7	7		5	2	4	4	5	8	6		1	9	Arapahoe
9	9	7	9	8	4		7		9	5		9	9	Eagle
1	6	6	9	9	3	4	9	8	9	6		9	9	Newton
1	5	5	6	5	8	6	5		8	4	5	5	8	Onaga
8	4	6	7	7	3	2	7		6	1		8	9	T81
						2			6					T83
8	7	5	7	1	8	5			6	7		9	9	Thunderbolt
														Blends
														Hard Whites
														Other Hard

Scale: 1=Most resistant/tolerant 9=Least resistant/tolerant

More complete and final ratings in addition to descriptions of disease and insect pests are available in

⁵ Disease and insect resistance ratings provided by R.L. Bowden and W.W. Bockus, KSU Plant Pathology; and Leroy Brooks, KSU Entomology.

[&]quot;Wheat Variety Disease and Insect Ratings 2001" by Robert L. Bowden and H. Leroy Brooks.

Intrada is susceptible to pre-harvest sprouting and should not be grown in central and eastern Kansas as a result. Lodging may occur under conditions of high straw production or under irrigation. (Release notice from Oklahoma Agricultural Experiment Station).

Lakin hard white winter wheat was released by the Kansas Agricultural Experiment Station in August of 2000. It has performed best in southwest Kansas in both dryland and irrigated tests. Lakin is susceptible to leaf rust and has very little sprouting tolerance, thus it should not be considered for production in central or eastern Kansas. Lakin is unique in that it is the first white wheat released by K-State that has outstanding noodle quality along with above-average bread quality.

Lakin is of medium maturity, has good winterhardiness, and is intermediate in shattering resistance. It is moderately resistant to stem rust and wheat streak mosaic virus. It is resistant to soilborne mosaic virus but is susceptible to leaf rust and Hessian fly. (Release notice from Kansas Agricultural Experiment Station).

Stanton hard red winter wheat was released by the Kansas Agricultural Experiment Station in 2000. It was developed at the KSU Agricultural Research Center at Hays to address potential damage from Russian wheat aphid. Stanton derives resistance to that pest from PI222350. In the absence of Russian wheat aphid in western Kansas, Stanton has performed as well as or better than the best red wheat varieties and better than the currently available Russian wheat aphid resistant varieties.

Stanton is medium late in maturity, has white chaff, and is a tall semidwarf with good straw strength. Its winterhardiness is equal to Scout and it is non-shattering. Milling and baking characteristics are good. Stanton is moderately resistant to wheat streak mosaic virus and Hessian fly, resistant to leaf and stem rust, and susceptible to soilborne mosaic virus and barley yellow dwarf masaic virus. (Release notice from Kansas Agricultural Experiment Station).

PERFORMANCE TEST RESULTS

Objectives

To help Kansas growers select wheat varieties

suited for their area and conditions, the Kansas Agricultural Experiment Station annually compares both new and currently grown varieties and hybrids in the state's major crop-producing areas. The objective is to provide Kansas growers with unbiased performance information on varieties available in the state.

Varieties Included in Tests

Parentage and origin of public varieties included in the 2001 performance tests are listed below.

Table 2. Parentage of public wheat varieties.

Release											
Variety	Parentage	stat	e yr.								
HARD REI	<u>D</u> :										
Akron	TAM 107/Hail	CO	1994								
Alliance	Arkan/Colt//Chisholm	NE	1994								
Arapahoe	Brule/3/Pkr*4/Agent/Beloterkovskaia 19	98/La NE	ncer 1988								
Culver	Trapper//CMN/OT/3/CIMMYT /Scout/4/										
_	sib/Homestead/5/Arapahoe	NE	1998								
Custer	F29-76/TAM 105//Chisholm	OK	1994								
lke	Dular/Eagle//2*Larned/Cheney/3/Colt	KS	1993								
Jagger	KS82W418/Stephans	KS	1994								
Karl 92	F ₁₁ head row selection from 'Karl'	KS	1992								
Millennium		NIE	1000								
	/Agent//Kavkaz	ΝE	1999								
Newton	Pitic62/Chris sib//2*Sonora64/Klein Rei	naiac KS	or 1978								
Nichroro		NE									
Niobrara	TAM 105*4/Amigo//Brule		1994								
Prairie Red		CO	1998								
Scout 66	Composite of 85 Scout selections	NE	1967								
Stanton	PI222350/KS87H57//TAM 200/ KS87H66/3/KS87H325	KS	2000								
TAM 107	TAM 105*4/Amigo	TX	1984								
TAM 302	Probrand 812/Caldwell//TX86D1310	TX	1998								
Vista	NE68513/NE68457//Centurk/3/Brule	NE	1992								
Wesley	PlainsmanV/Odesskaya51//Colt/Cody	NE	1998								
Windstar	TX79A2729//Caldwell/Brule field sel #6		1330								
	/3/Siouxland	NE	1997								
2137	W2440/W9488//2163	KS	1995								
2163	Pioneer line W558/5/Etoile de Choisy//										
	Clarkan/3/Cl15342/4/Purdue 4946A4										
	(Pioneer)	KS	1989								
2174	IL 71-5662/PL 145//2165	OK	1997								
HARD WH											
Betty	Jagger 'Sib' selection	KS	1998								
Heyne	Plainsman V/KS75216//SWM754308/3		4000								
	Plainsman V/Lindon//KS82W422	KS	1998								
Intrada	Rio Blanco/TAM 200	OK	2000								
Lakin	Arlin/KS89H130	KS	2000								
Nuplains	Abilene///PlainsmanV//Newton/Arthur7		1999								
Trego	RL6005/RL6008//2*Larned/3/Cheney/L Bennet sib/5/TAM 107/6/Rio Blanco		d/4/ 1999								
SOFT RED			1000								
Caldwell	<u>z</u> . Benhur sib *2/Siette Cerros	IN	1981								
• • • • • • • • • • • • • • • • • • • •	IL77-2933/IL77-3956//Pike/Caldwell	IL	1998								
raskaskia	ILTT-2933/ILTT-3936//PIKE/CaldWell	IL	1998								

Public varieties are selected for inclusion in the tests based on several criteria. Most represent new or established varieties with potential for successful use in Kansas. Some are included as long-term checks for use in environment or maturity comparisons. Others are entered at the request of the originating institution.

Privately developed varieties are entered into the Kansas Wheat Performance Tests by their originators or marketers. Entry is voluntary. Entrants choose both the entries and test sites and pay a fee for each entry-location to help defray test expenses. The program is similar to those for corn, sorghum, soybean, and alfalfa.

The 2001 private entrants and entries are listed in Table 3. Seven entrants provided a total of 18 varieties for testing at locations of their choice. Public and private entries were grown together at random in the same tests. Growers interested in more detailed descriptions of private entries should contact the entrants directly (see addresses and telephone numbers in Table 3 or consult the Kansas Crop Improvement Certified Seed Directory).

Table 12 describes the characteristics of seed submitted for testing. Seed quality, including such factors as size, purity, and germination, can be important in determining the performance of a variety. Wheat seed used for entries in the Kansas Crop Performance Tests is prepared professionally and usually meets or exceeds Kansas Crop Improvement Certification standards. Performance of a given variety or hybrid comparable to that obtained in these tests is best assured under similar environmental and

Druccol

AariPro

cultural conditions and with the use of certified or professionally prepared seed.

Environmental Factors Affecting Individual Tests

Locations of test sites are shown on the map on the front cover. Four locations had to be abandoned because of environmental factors. Environmental factors should be considered when examining the remaining results as well. Several locations were subjected to unusual levels of stripe rust, significantly affecting test results. Site descriptions and management practices for each site are summarized in Table 4. Location codes in parentheses after each location name are used as column headers in the data tables.

EAST

Brown County (BR), Cornbelt Experiment Field, Powhattan: This test was planted after corn in adequate moisture. All plots established good stands and exhibited very good yield potential. In spite of the fact that the nursery was planted on corn ground, very little Fusarium head blight was observed.

Riley County (RL), Ashland Research Farm, Manhattan: This test was planted in adequate moisture and had very good stands going into winter resulting in very little winterkill. Soil moisture was adequate to surplus throughout the growing season. Susceptible lines showed severe symptoms of soilborne mosaic virus in late March and early April. Moderate levels of stripe rust infection were observed, and leaf rust

Polansky

Table 3. Private entrants and entries in the 2001 Kansas Wheat Performance Tests.

Coortzon

AgriPro AgriPro Wheat, Inc. 6515 Ascher Rd Junction City, KS 66441 785-210-0218 AP 97-075 Exp Cutter Hondo Thunderbolt	Drussel Seed and Supply 2197 W Parallel Road Garden City, KS 67846 316-275-2359 T81	Goertzen Goertzen Seed Research 14604 S Haven Rd Haven, KS 67543 316-465-2675 Kalvesta Venango	Polansky Polansky Seed PO Box 306 2729 M St Belleville, KS 66935 785-527-2271 Dominator
AGSECO DeLange Seed (AGSECO) PO Box 7 Girard, KS 66743 316-724-6223 7853 Onaga TAM 110	General Mills General Mills Operations Inc PO Box 5022 Great Falls, MT 59403 406-761-6252 (W) NuFrontier (W) NuHorizon (W) Golden Spike	NK Novartis Seeds PO Box 340 Hartsville, SC 29551 800-476-1318 (S) BL930390 (S) Coker 9474 (S) Coker 9663	

Table 4. Wheat Performance Test site descriptions and management in 2001.

REGION COUNTY and	Site, location code,		Soil type	Fe	rtiliz s/ac	er		eeding rate ¹
Cooperator	and nearest town		previous crop	N	Р	K		nd row spacing
<u>EAST</u>								
BROWN	Bunck Seed Farms	10/11/00	Grundy silty clay loam	75			Fall	90 lb/a
Allan Fritz	Everest	7/3/01	Corn, 2000		20		Spring	7.5 in. row spacing
RILEY	Ashland Agronomy Farm (RL)	10/10/00	Reading silt loam	40			Fall	75 lb/a
Allan Fritz	Manhattan	6/28/01	Oats, 2000	50			Spring	9 in. row spacing
FRANKLIN	EC KS Experiment Field (FR)	10/12/00	Woodson silt loam	8	32		Fall	1200000 seeds/a
Keith Janssen	Ottawa	6/18/01	Wheat, 2000	80			Spring	7 in. row spacing
LABETTE	SE Agric Res Ctr (LB)	11/20/00	Parsons silt loam	70 50	60		Fall	75 lb/a
Jim Long	Parsons	6/18/01	Corn, 2000	50			Spring	7 in. row spacing
NORTH CENTRAL								
REPUBLIC	NC KS Experiment Field (RP)	10/9/00	Crete silt loam 6.2	80	30		Fall	60 lb/a
Barney Gordon	Belleville	7/9/01	Wheat, 2000				Spring	7.5 in. row spacing
SMITH	Farmer's Field (SM)	10/10/00	Silty loam				Fall	60 lb/a
Barney Gordon	Smith Center	7/9/01	Wheat, 2000	80	50		Spring	7.5 in. row spacing
SOUTH CENTRAL								
HARVEY	Harvey Co Expt Field (HV)	10/20/00	Ladysmith silty clay loam	89	32		Fall	60 lb/a
Mark Claassen	Hesston	6/27/01	Soybean, 2000				Spring	8 in. row spacing
RENO	SC KS Experiment Field (RN)	10/21/00	Ost silt loam	75	40		Fall	60 lb/a
Bill Heer	Hutchinson	6/26/01	Canola, 2000	50			Spring	8 in. row spacing
STAFFORD	Sandyland Expt Field (SD)		Pratt loamy fine sand	68	46			60 lb/a
Vic Martin	St. John	N/A	Sorghum, 1999	50			Spring	7 in. row spacing
SUMNER Allan Fritz	Max Kolarik Farm (SU) Caldwell	Abandoned N/A	Sandy loam Wheat, 2000	70	25		Fall Spring	60 lb/a 9 in. row spacing
Allairritt	Caluwell	IN/A	Wileat, 2000				Spring	7 III. TOW Spacing
<u>WEST</u>								
ELLIS	Agric Res Ctr - Hays (EL)		Harney clay loam				Fall	60 lb/a
T. Joe Martin	Hays	N/A	Wheat, 1999	75			Spring	12 in. row spacing
THOMAS	NW Res-Ext Ctr (TD)	9/27/00	Keith silt loam	50			Fall	60 lb/a
Pat Evans	Colby	7/4/01	Wheat, 1999				Spring	12 in. row spacing
GREELEY	SW Res-Ext Ctr (GD) Tribune	9/15/00 6/28/01	Richfield silt loam Corn, 1999	5 60	25		Fall	55 lb/a
Alan Schlegel							Spring	10 in. row spacing
FINNEY Merle Witt	SW Res-Ext Ctr (FD) Garden City	11/20/00 7/3/01	Keith silt laom Wheat, 1999	60			Fall Spring	45 lb/a 10 in. row spacing
Wielle Witt	curucii ony	775701	wilcut, 1777				Spring	To ini. Tow spacing
IRRIGATED								
STAFFORD	Sandyland Expt Field (SI)		Pratt loamy fine sand	68	46		Fall	90 lb/a
Vic Martin	St. John	N/A	Corn, 1999	50			Spring	7 in. row spacing
THOMAS Pat Evans	NW Res-Ext Ctr (TI)	9/26/00 7/4/01	Keith silt loam 7.4	100	30		Fall Spring	90 lb/a
	Colby	7/4/01	Soybeans, 2000				Spring	12 in. row spacing
FINNEY Merle Witt	SW Res-Ext Ctr (FI) Garden City	9/29/00 6/25/01	Keith silt loam Corn, 1999	90 			Fall Spring	75 lb/a 10 in. row spacing
STEVENS	Jim Kramer Farm	10/4/00	Richfield sandy loam	50	30	-	Fall	90 lb/a
Allan Fritz	Hugoton	6/28/01	Corn, 2000	50 50	3U 		Spring	90 ib/a 9 in. row spacing
. alon i ita		5,20,01	55.11, 2000	50			Spring	. an row spaoning

¹ Seed weight of 2001 entries ranged from 24 to 44 grams/1000 kernels, averaging 32 grams/1000 kernels (see Table 12).

developed late in the growing season, but did not greatly reduce yields. Heavy rains in the month before harvest caused significant lodging.

Franklin County (FR), East Central Experiment Field, Ottawa: Favorable planting conditions resulted in good stands. Diseases caused less damage than typical for this location. However, leaf rust was present along with a trace of stripe rust.

Labette County (LB), Southeast Agricultural Research Center, Parsons: Dry weather in early fall followed by extremely wet weather delayed planting until mid-November. The wheat did not emerge until January. Cool spring weather slowed early growth, but the wheat was developing rapidly by early April. Leaf diseases were minimal.

NORTH CENTRAL

Republic County (RP), North Central Experiment Field, Belleville: Extremely dry conditions in early fall caused the test to be planted into dry soil. The wheat emerged when rains fell in late October. Good stands were obtained, but some stand was lost to winterkill. Early spring was cooler than normal with significant snowfalls in late February and early March. Cool. wet conditions in May provided very good grain filling conditions. Some stripe rust symptoms were observed in susceptible varieties.

Smith County (SM), Farmer's field, Smith Center: Adequate moisture at planting resulted in good stand establishment in mid-October. Spring weather was cool and wet. Grain filling conditions were favorable.

SOUTH CENTRAL

Harvey Harvey County (HV), County Experiment Field, Hesston: Wheat planting was delayed by extremely dry soil conditions. Heavy rainfall occurred within the first week after Stand establishment was generally good, but cold temperatures in November greatly limited wheat development before dormancy. Winter precipitation was somewhat above normal in January, well above average in February, but below normal during the other winter months. Mean temperatures were sharply below normal in November and December and, to a lesser extent, colder than usual in February and March. Final wheat stands were somewhat less

than desirable in a few varieties. temperatures were near normal, but the other spring months were cooler than usual. spring period was dryer than usual, except for Favorable temperatures and moisture June. Moderate substantially benefited grain filling. soilborne mosaic symptoms occurred in late March and early April, significantly affecting subsequent growth and yield of some varieties. Stripe rust began to appear in early May, ultimately affecting the yield and test weight of susceptible varieties. No insects of significance were observed. Rain during the harvest period reduced test weight.

Reno County (RN), South Central Experiment Field, Hutchinson: Extremely dry fall conditions were mitigated by nearly an inch of rain 5 days before planting. Cool, dry conditions characterized the winter months, resulting in little wheat growth. Spring conditions were not favorable until mid to late May when the weather became wet and cool. These conditions continued through June, allowing good grain filling. A heavy rain just before harvest may have lowered test weights. Stripe rust lowered yields and test weights of susceptible varieties.

Stafford County, dryland (SD), Sandyland Experiment Field, St. John: Extremely dry, unfavorable planting conditions were followed by an early, harsh winter. Stripe rust was present on susceptible varieties. All these factors combined to make yields so variable that the test had to be abandoned.

Sumner County (SU), Max Kolarik farm, Caldwell: Heavy rains soon after planting caused severe crusting that prevented adequate stand establishment. As a result the test was abandoned.

WEST

Ellis County (EL), KSU Agricultural Research Center, Hays: A mid-October planting had very irregular stands because of non-uniform seedbed moisture. Early November rains did not improve stands appreciably, thus a second planting was attempted. Cold weather set in and delayed emergence until spring. The late-emerged stands were also poor and variable so the test was abandoned.

Thomas County, dryland (TD), Northwest Research-Extension Center, Colby: Good stands were established in all plots. Snow cover on the coldest winter days prevented winter kill. Cool temperatures and beneficial rains slowed early development until June, which was hot and dry. Stripe rust and minimal leaf rust were observed.

Greeley County, dryland (GD), Southwest Research-Extension Center, Tribune: Soil moisture was marginal at planting. Early spring conditions were dry, but the grain filling period was favorable. Susceptible varieties exhibited stripe rust symptoms.

Finney County, dryland (FD), Southwest Research-Extension Center, Garden City: Dry conditions at planting did not appear favorable, but all entries emerged. Most tillers of the more tender varieties (i.e. Newton, Heyne, and Culver) were killed during the winter. These later retillered with spring rains and below normal temperatures through the first week of June. Hot conditions in late June prematurely killed many of the late-maturing, retillered varieties. Stripe rust was severe on many varieties. Leaf rust also was noted.

IRRIGATED

Stafford County, irrigated (SI), Sandyland Experiment Field, St. John: See description for dryland test.

Thomas County, irrigated (TI), Northwest Research-Extension Center, Colby: See description for dryland test.

Finney County, irrigated (FI) Southwest Research-Extension Center, Garden City: Sprinkler irrigation in the fall facilitated good seeding establishment. The harsh winter thinned stands to some extent. May rains provided good grain filling conditions. Stripe rust symptoms were severe on susceptible varieties. Some leaf rust also was noted.

Stevens County, irrigated (SV) Kramer Seed Farms, Hugoton: This nursery was planted following corn and looked good from planting on. Good stands were obtained and the crop was well established going into winter. This nursery had very high yield potential throughout the growing season. The primary production constraint was a very heavy infection of stripe

rust. The resistant lines (i.e. Heyne, Betty, Karl 92, Jagger) did very well, but the susceptible varieties suffered yield losses of 60% or more due to the disease. Test weights of susceptible varieties also were reduced.

Test Results and Variety Characterization

Results from Kansas tests are presented in Tables 5 through 13. The information in these tables is derived from replicated varietal comparisons at several sites representing various wheat-producing areas of the state.

Characteristics of specific 2001 entries can best be determined by examining Figures 9-12, Table 1, and data in Tables 5 through 13 for the relative performance of new varieties or hybrids of interest compared to those the grower is currently planting. Yields are reported in Table 5a-d as bushels per acre (60 pounds per bushel) adjusted to a moisture content of 13%, where moistures were reported at harvest. In Table 6a-d, bushel yields are converted to yields as percentages of the test averages to speed recognition of highest yielding entries (more than 100%, the test average). The excellent performances of several of the entries are highlighted in these tables.

Growers should examine Table 7a-d to check the performance of entries over several years at locations closest to their farms. These tables present yields averaged over 2, 3, and 4 years. One-year or one-location results can be misleading because of the possibility of unusual weather conditions. This year especially, the unusually severe outbreak of stripe rust caused otherwise excellent varieties to perform poorly at some locations.

Additional agronomic characteristics are presented in Table 8a-d (test weights); Table 9a-d (relative heading dates); Table 10a-d (heights); Table 11 (disease and lodging notes); Table 12 (planted seed characteristics, coleoptile lengths, and Hessian fly ratings); and Table 13 (protein). Minimal shattering occurred in the tests in 2001.

At the bottom of each table is the LSD (least significant difference) for each column of replicated data. The use of the LSD is intended to reduce the chance of overemphasizing small differences in yield or other characteristics. Small variations in soil structure, fertility, water-holding characteristics, and other test-site characteristics can cause considerable yield variation among

plots of the same variety grown only a short distance apart.

Another statistical parameter is the coefficient of variation (CV) shown at the bottom of most columns. This figure, if properly interpreted, can be used to estimate the degree of confidence one may have in the data presented. In this testing program, CV's below 10% generally indicate reliable, uniform data, whereas CV's from 11% to 15% usually indicate less desirable but generally useful data for the rough performance comparisons desired from these tests.

Coleoptile Measurements

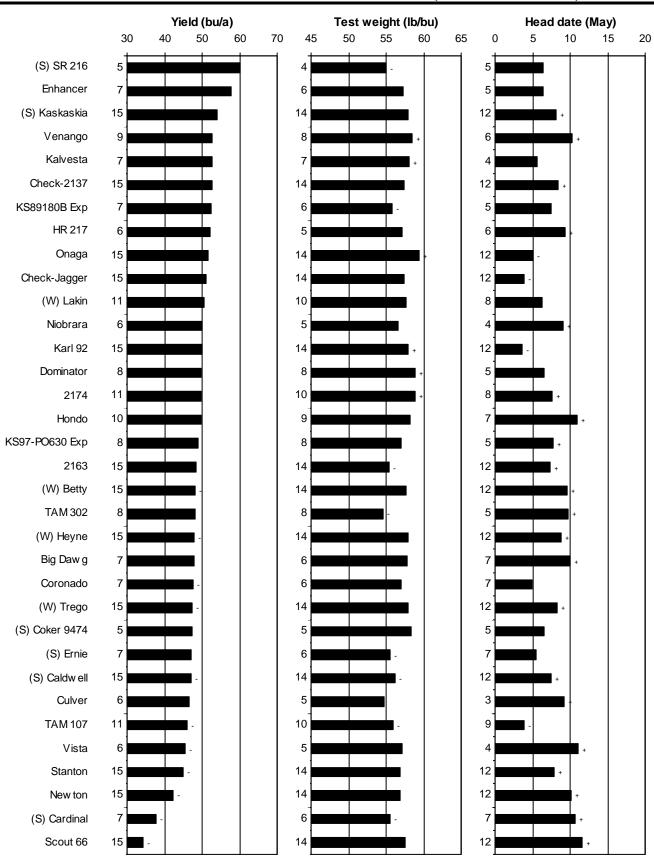
Coleoptile length is a primary factor in determining the relative ability of a variety to emerge from deep planting. We have no evidence that coleoptile length plays a significant role in a variety's ability to emerge through a crust or compacted soil. However, long coleoptiles elongate faster than short coleoptiles, thereby sometimes escaping crusting problems as the result of quicker emergence.

Coleoptile length measurements will predict the relative ability of a cultivar to emerge from deep plantings through noncrusted soil. The actual planting depth for a variety is not limited to its coleoptile length. Once the coleoptile has reached its maximum length, the primary leaf breaks through the coleoptile and has the ability to move through an additional 2 to 3 inches of dry, noncompacted soil. Recent tests demonstrated that if a coleoptile elongated to 3.75 inches, the plant still had an 80% chance of emerging from a 6-inch planting Emergence decreased to 40% for 2.5-inch coleoptiles and 20% for 2.0-inch coleoptiles.

Maximum coleoptile elongation of a variety is influenced heavily by soil temperature. As soil temperature increases from 65° F to 85° F, the coleoptile lengths of all varieties are reduced about 30%. As soil temperature decreases from 65° F, coleoptile lengths of the standard height varieties Larned and Eagle change very little, but the coleoptiles of semidwarf varieties TAM 107, Karl 92, and TAM 200 actually increase in length. At 53° F, the coleoptile lengths of TAM 107, Karl 92, and TAM 200 are equal to that of Eagle, and at 40° F, they are equal to that of Larned. If a producer is faced with deep planting because of dry soil late in the planting season, choice of

variety will have minimal effects on stand establishment. The same can be said for plantings made during our optimum planting times when soil temperature is already below 65° F. Plantings made in the latter part of August or early September when soil temperature is high will be the most vulnerable to poor emergence because of coleoptile length. If plantings have to be made deeper than 3.5 inches when soil temperature is high, it is advisable to use a variety that has a long coleoptile.

Coleoptile ratings reported in Table 12 are based on measurements at 75° F, which is the average soil temperature in western Kansas on Sept 1 at the 4-inch depth. Varieties with a rating of 8 had average coleoptile lengths of 2.4±.2 inches, whereas those rated 3 averaged 4.2±.2 inches. For one variety to be significantly different from another, the ratings must differ by at least 2 points.


Graphical Performance Summaries

Figures 9-12 summarize the performance of each variety standardized to the average of two check varieties: Jagger and 2137. These were the most popular varieties in 2001 with 58% of the total wheat acreage.

The number of direct comparisons of a given variety with the check varieties has a bearing on the confidence one can place in the performance of that variety. The number beside each bar shows the number of years that variety was compared to the check varieties. In general, the greater the number of years that a variety has been tested, the greater confidence one can put in comparisons of that variety with the checks.

Symbols beside each bar indicate if a given variety was significantly greater (+) or lower (-) than the average of the check varieties. As with individual test results, small differences should not be overemphasized. Rather, relative ranking and large differences are better indicators of varietal performance.

FIGURE 9. WHEAT VARIETY PERFORMANCE SUMMARY, EASTERN REGION, 1998-2001

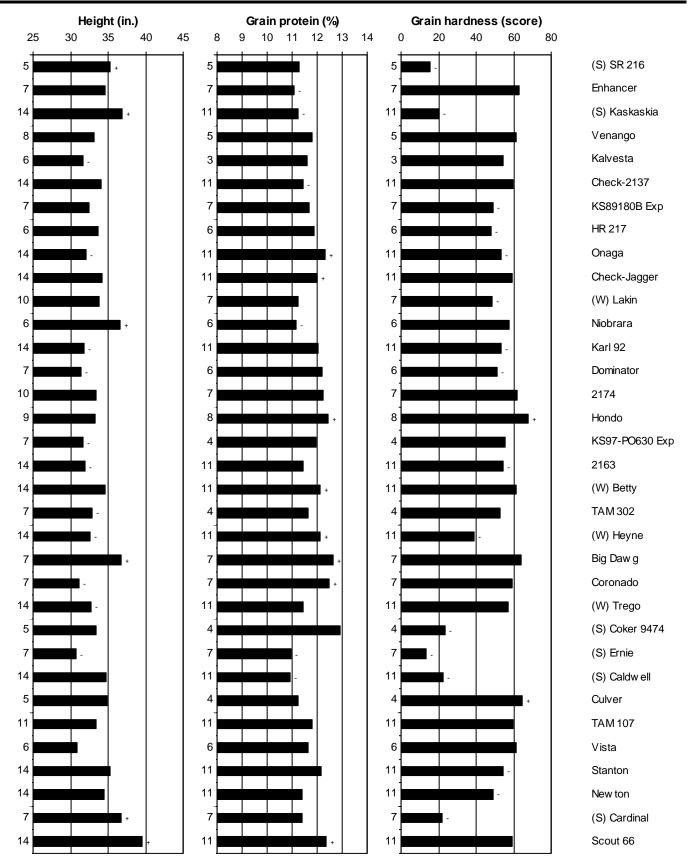
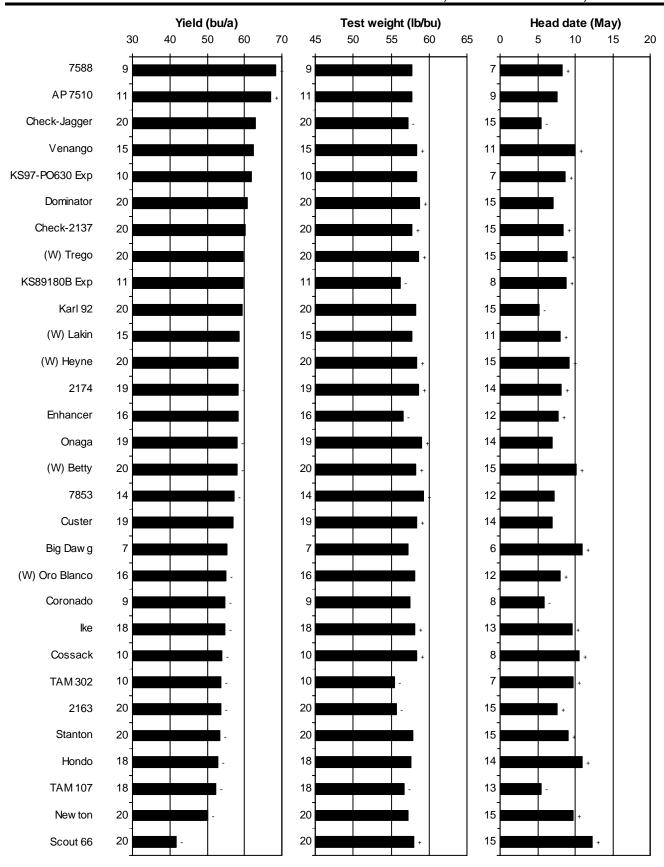



FIGURE 10. WHEAT VARIETY PERFORMANCE SUMMARY, CENTRAL REGION, 1998-2001

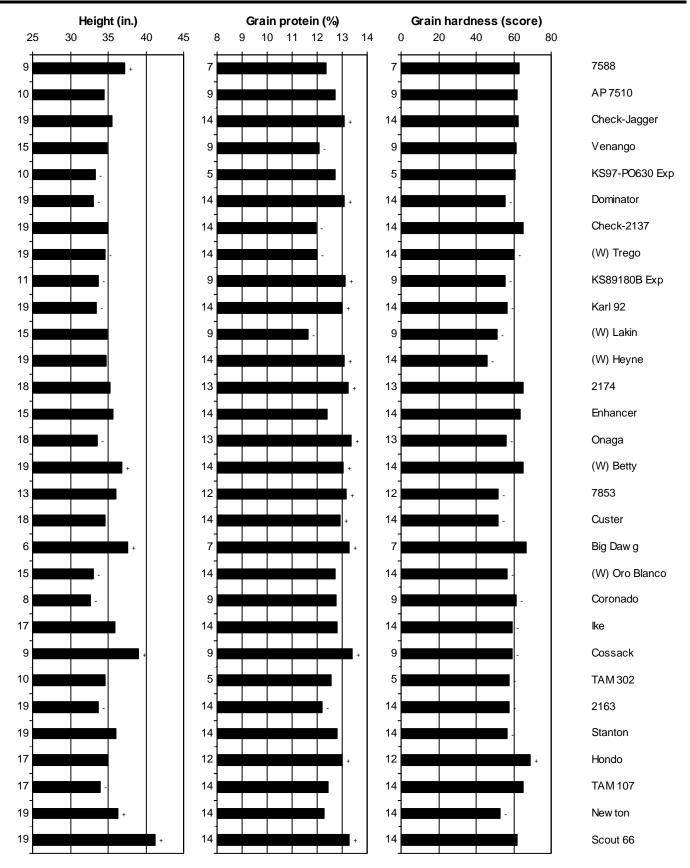


FIGURE 11. WHEAT VARIETY PERFORMANCE SUMMARY, WESTERN REGION, 1998-2001

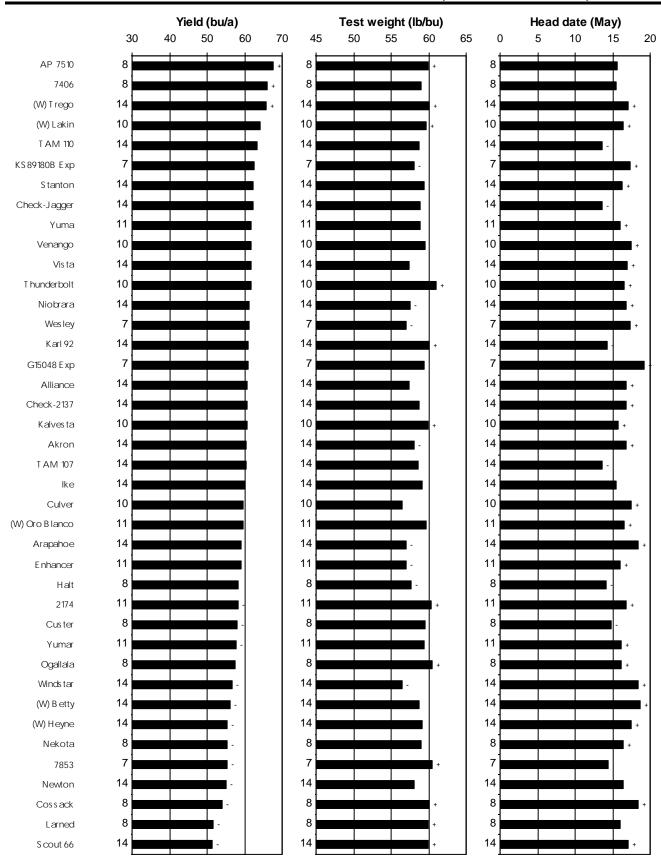


FIGURE 11. WHEAT VARIETY PERFORMANCE SUMMARY, WESTERN REGION, 1998-2001

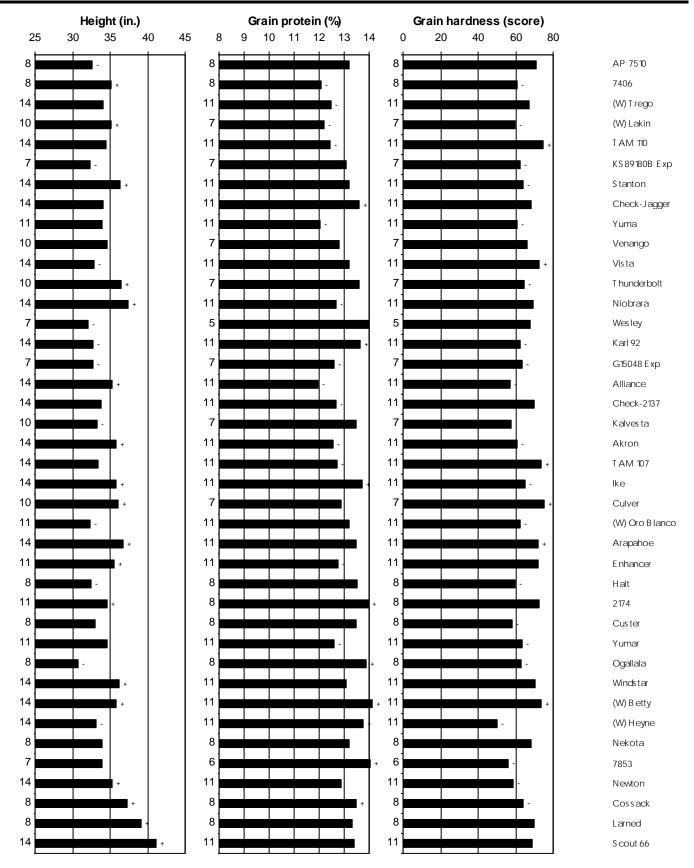
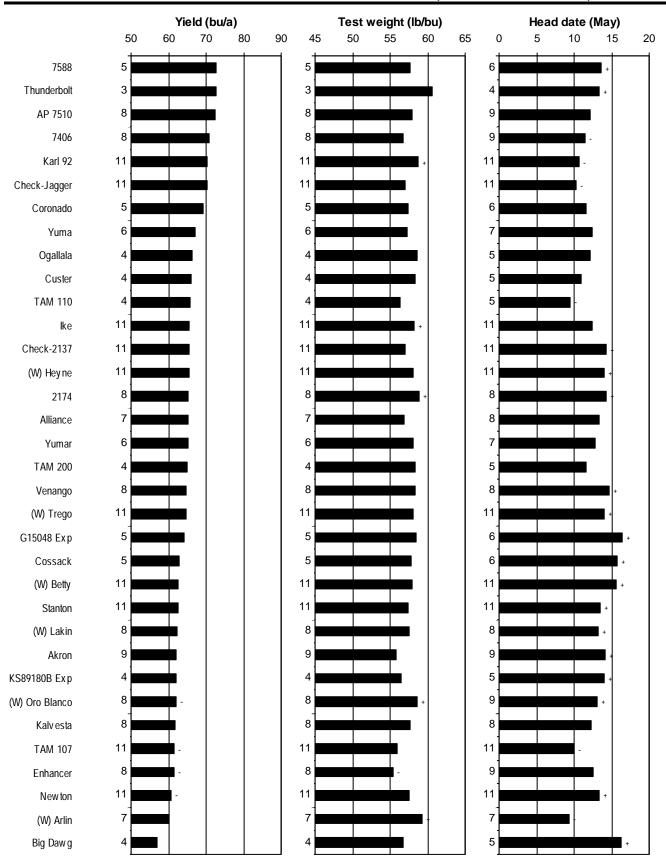
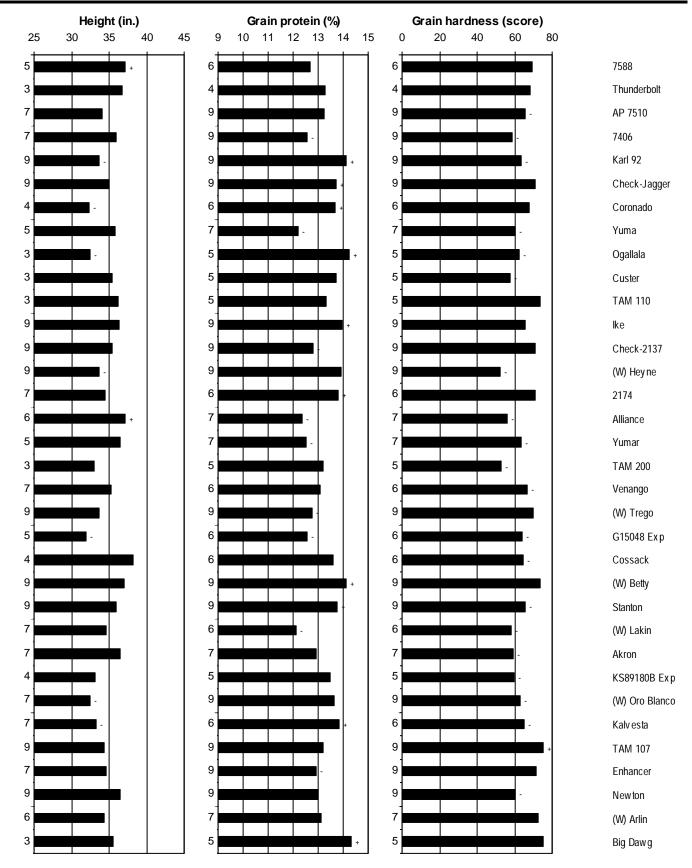




FIGURE 12. WHEAT VARIETY PERFORMANCE SUMMARY, IRRIGATED REGION, 1998-2001



Table 5a. Yield (bushels per acre)
2001 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	B LB 4	l Avg.	Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	l Avg.
AgriPro						Public					
AP 97-075 Exp	36	65				(S) Caldwell	44	58	55	44	50
Cutter				50		(S) Kaskaskia	64	65	56	51	59
Hondo	48	59				(W) Betty	53	66	45	46	53
AGSECO						(W) Heyne	47	71	46	37	50
7853				49		(W) Lakin	47	68	53	50	55
Onaga	44	67	48	51	52	(W) Trego	35	69	52	54	52
General Mills						2137	50	69	61	55	59
(W) NuFrontier	43	63	58	48	53	2163	42	65	63	21	47
(W) NuHorizon	48	51	55	43	49	2174	42	69	54	55	55
(W)Golden Spike	18	31	55	36	35	Culver	34	50			
Goertzen						Jagger	50	63	63	53	57
Kalvesta	48	71	64	48	58	Karl 92	56	70	56	56	59
Venango	41	70	56	54	55	KS97-PO630 Exp	47	71	35	47	50
NK						Newton	41	53	57	34	46
(S) BL930390				39		Scout 66	37	39	39	27	36
(S) Coker 9474				50		Stanton	42	50	54	50	49
(S) Coker 9663				53		TAM 302	38	64	57	41	50
Polansky											
Dominator	46	71				Average	44	62	54	47	52
						CV (%)	11	8	9	8	
						LSD (0.05)**	7	7	7	5	

¹ BR = Brown County test at Bunck Seed Farm near Everest, KS.

² RL = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5b. Yield (bushels per acre)
2001 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Ή		S	OUT	Н			N	ORT	Ή		S	OUT	<u>H</u>	
Brand / Name	RP	¹ SM ²	Avg.	HV ³	RN ⁴	SD	⁵ SU	⁶ Avg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD ⁵	รบ ⁶	Avg.
AgriPro									2174	42	71	56	39	55			47
AP 97-075 Exp	56	75	66	33	45			39	Alliance	58	77	68					
Cutter				48	58			53	Arapahoe	67	71	69					
Hondo	59	52	56	28	34			31	Culver	54	67	61					
AGSECO									Custer	27	62	44		53			
7853				40	51			46	lke	52	73	63					
Onaga	44	68	56	32	51			41	Jagger	65	87	76	46	61			54
General Mills									Karl 92	52	82	67	50	61			56
(W) NuFrontier	56	71	64	33	52			43	KS97-PO630 Exp	46	75	61	30	51			40
(W) NuHorizon	60	68	64	26	53			40	Millennium	61	77	69					
(W)Golden Spike	56	63	59	19	47			33	Newton	48	65	56	32	40			36
Goertzen									Niobrara	59	65	62					
Kalvesta	42	72	57						OK95571Exp				32	44			38
Venango	51	70	61	35	48			41	Prairie Red		66						
Polansky									Scout 66	48	55	51	34	41			37
Dominator	60	82	71	52	58			55	Stanton	53	69	61	23	50			36
Public									TAM 107	52	62	57					
(W) Betty	58	80	69	52	62			57	TAM 302	45	57	51	34	43			39
(W) Heyne	44	77	60	53	61			57	Vista	56	73	64					
(W) Intrada	45	72	58						Wesley	64	87	76					
(W) Lakin	47	70	59	36	47			42									
(W) Nuplains	56	67	61						Average	52	70	61	37	50			43
(W) Trego	63	74	69	42	45			44	CV (%)	9	6		7	7			
2137	50	73	61	39	47			43	LSD (0.05)**	7	6		4	5			
2163	36	64	50	25	44			34									

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

 $^{^3\,\}mathrm{HV}$ = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

⁵ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁶ SU = Sumner County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5c. Yield (bushels per acre)
2001 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	l Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	l Avg.
AgriPro						Akron		73	53	29	52
Thunderbolt		77	47	35	53	Alliance		70	48	22	46
AGSECO						Arapahoe		74	55	31	53
7853				27		Culver		70	48	23	47
TAM 110		72	52	26	50	lke		72	50	22	48
Drussel						Jagger		82	47	32	54
T81			59	34		Karl 92		77	48	37	54
General Mills						KS97-PO630 Exp		70	46	26	47
(W) NuFrontier		76	51	31	52	Millennium		76			
(W) NuHorizon		68	45	31	48	Newton		70	44	18	44
(W)Golden Spike		70	58	24	51	Niobrara		70	49	27	49
Goertzen						Prairie Red		72	52	26	50
Kalvesta		71	49	23	48	Scout 66		66	50	33	50
Venango		72	46	34	51	Stanton		75	54	33	54
Public						TAM 107		69	51	24	48
(W) Betty		71	49	20	47	TAM 302		67	48	22	45
(W) Heyne		71	49	21	47	Vista		72	43	26	47
(W) Intrada		73	46	30	49	Wesley		73	51		
(W) Lakin		71	51	26	49	Windstar		70	47	25	47
(W) Nuplains		67	50	22	46						
(W) Trego		76	48	35	53	Average		72	49	27	50
2137		71	47	26	48	CV (%)		3	11	8	
2174		70	48	30	49	LSD (0.05)**		3	7	3	

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 5d. Yield (bushels per acre)
2001 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI 3	SV 4	Avg	Brand / Name	SI ¹	TI ²	FI ³	SV ⁴	Avg.
Drussel						Public					
T81			43			(W) Betty		64	33	77	58
General Mills						(W) Heyne		57	38	87	60
(W) NuFrontier		72	45	64	61	(W) Intrada			42	45	
(W) NuHorizon		67	46	62	59	(W) Lakin		58	42	25	42
(W)Golden Spike		65	44	39	49	(W) Trego		70	48	24	47
Goertzen						2137		61	38	45	48
Kalvesta		59	41	30	43	2174		65	42	68	58
Venango		68	41	39	50	Akron		65	42	32	46
						Alliance		69			
						Ike		69	39	58	55
						Jagger		65	37	72	58
						Karl 92		69	39	79	63
						KS97-PO630 Exp		62	37	58	53
						Newton		62	40	48	50
						Stanton		73	45	44	54
						TAM 107		60	40	37	46
						TAM 302		65	45	28	46
						Average		65	41	51	52
						CV (%)	-	4	6	11	
						` '					
						LSD (0.05)**		3	3	8	

 $^{^{1}\,\}text{SI} = \text{Stafford County test at Sandyland Experiment Field near St. John, KS.}$

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁴ SV = Stevens County test at Kramer Seed Farms near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6a. Yield (% of test average)
2001 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.	Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	l Avg.
AgriPro						Public					
AP 97-075 Exp	82	105				(S) Caldwell	100	93	103	94	98
Cutter				106		(S) Kaskaskia	147	106	103	110	116
Hondo	109	95				(W) Betty	121	106	84	99	102
AGSECO						(W) Heyne	107	115	85	79	96
7853				105		(W) Lakin	106	111	99	107	106
Onaga	100	108	89	108	101	(W) Trego	79	111	97	114	101
General Mills						2137	115	112	114	116	114
(W) NuFrontier	99	102	108	103	103	2163	96	104	116	44	90
(W) NuHorizon	109	83	102	91	96	2174	95	112	101	118	106
(W)Golden Spike	41	50	102	77	67	Culver	78	80			
Goertzen						Jagger	115	102	117	114	112
Kalvesta	110	114	119	102	111	Karl 92	127	113	105	119	116
Venango	94	114	105	114	107	KS97-PO630 Exp	107	114	65	100	96
NK						Newton	94	86	106	72	90
(S) BL930390				83		Scout 66	85	63	73	57	70
(S) Coker 9474				106		Stanton	95	82	100	106	96
(S) Coker 9663				113		TAM 302	88	103	106	87	96
Polansky											
Dominator	104	115				Average	44	62	54	47	52
						CV (%)	11	8	9	8	
						LSD (0.05)**	15	11	13	12	

¹ BR = Brown County test at Bunck Seed Farm near Everest, KS.

 $^{^2\,\}text{RL}$ = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6b. Yield (% of test average)
2001 CENTRAL Kansas Winter Wheat Performance Tests.

	NORTH	sc	UTH	1		NORTH	so	UTH
Brand / Name	RP ¹ SM ² Avg	. HV ³ RN ⁴	SD ⁵	SU ⁶ Avg.	Brand / Name	RP ¹ SM ² Avg.	HV ³ RN ⁴	SD ⁵ SU ⁶ Avg.
AgriPro					Alliance	111109110		
AP 97-075 Exp	107107107	90 91		90	Arapahoe	128 100 114		
Cutter		130115		123	Culver	104 96 100		
Hondo	113 74 94	76 69		72	Custer	52 87 70	106	
AGSECO					lke	100 104 102		
7853		110102		106	Jagger	124 123 124	125 123	124
Onaga	85 97 91	88 101		94	Karl 92	99 116 108	138122	130
General Mills					KS97-PO630 Exp	88 106 97	83 101	92
(W) NuFrontier	108 101 104	90 104		97	Millennium	117109113		
(W) NuHorizon	114 96 105	71 106		89	Newton	91 92 91	87 81	84
(W)Golden Spike	107 89 98	53 93		73	Niobrara	112 92 102		
Goertzen					OK95571Exp		88 88	88
Kalvesta	80 102 91				Prairie Red	93		
Venango	97 100 98	97 95		96	Scout 66	91 78 84	93 82	87
Polansky					Stanton	101 97 99	63 100	81
Dominator	114116115	141116		129	TAM 107	100 88 94		
Public					TAM 302	87 81 84	94 86	90
(W) Betty	110113112	143123		133	Vista	107103105		
(W) Heyne	83 110 97	145 121		133	Wesley	123124124		
(W) Intrada	85 102 93							
(W) Lakin	90 100 95	99 95		97	Average	52 70 61	37 50	43
(W) Nuplains	107 95 101				CV (%)	9 6	7 7	
(W) Trego	121 105 113	115 90		102	LSD (0.05)**	13 8	10 10	
2137	95 104 99	107 94		101	-			
2163	70 91 80	68 87		77				
2174	79 100 90	107110		109				

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^{5}}$ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁶ SU = Sumner County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6c. Yield (% of test average)
2001 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	٩
AgriPro						Akron		102	106	105	1
Thunderbolt		107	94	127	109	Alliance		97	97	79	ç
AGSECO						Arapahoe		104	110	115	1
7853				99		Culver		98	97	84	ç
TAM 110		101	105	96	101	lke		100	102	82	ç
Drussel						Jagger		114	95	116	1
T81			120	124		Karl 92		107	97	135	1
General Mills						KS97-PO630 Exp		98	93	94	ç
(W) NuFrontier		105	102	112	107	Millennium		106			
(W) NuHorizon		94	91	113	99	Newton		98	89	67	8
(W)Golden Spike		98	118	89	102	Niobrara		98	100	100	ç
Goertzen						Prairie Red		100	106	95	1
Kalvesta		99	99	86	95	Scout 66		92	102	119	1
Venango		101	93	123	105	Stanton		105	109	120	1
Public						TAM 107		96	104	86	ç
(W) Betty		98	100	74	91	TAM 302		93	97	80	ç
(W) Heyne		98	98	77	91	Vista		100	87	95	ç
(W) Intrada		101	92	110	101	Wesley		102	103		
(W) Lakin		98	104	93	98	Windstar		97	95	91	ç
(W) Nuplains		93	102	82	92						
(W) Trego		106	98	128	111	Average		72	49	27	5
2137		99	96	95	97	CV (%)		3	11	8	
2174		97	98	109	101	LSD (0.05)**		4	15	12	

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 6d. Yield (% of test average)
2001 IRRIGATED Kansas Winter Wheat Performance Tests.

ان ان	11 -	· FI ·	SV	Avg.	Brand / Name	SI '	TI ²	FI ³	SV ⁴	Avg.
					Public					
		104			(W) Betty		99	80	153	111
					(W) Heyne		87	92	171	117
	111	109	127	116	(W) Intrada			101	89	
	104	112	123	113	(W) Lakin		90	102	50	81
	100	107	77	94	(W) Trego		107	117	47	90
					2137		94	93	88	91
	90	99	60	83	2174		100	101	134	112
					Akron		100	102	63	88
	100	100	''		Alliance		107			
					lke		107	93	115	105
					Jagger		100	90	143	111
					Karl 92		106	96	156	119
					KS97-PO630 Exp		95	90	116	101
					Newton		96	98	96	96
					Stanton		112	109	86	102
					TAM 107		92	96	73	87
					TAM 302		100	110	56	89
							0.5	4.4	- 4	50
					_					52
					, ,					
					LSD (0.05)**		5	8	15	
	 	111 104 100	104 111 109 104 112 100 107 90 99	104 111 109 127 104 112 123 100 107 77 90 99 60	104 111 109 127 116 104 112 123 113 100 107 77 94 90 99 60 83	Public 111 109 127 116 (W) Heyne 104 112 123 113 (W) Lakin 100 107 77 94 (W) Trego 2137 90 99 60 83 105 100 77 94 Akron Alliance Ike Jagger Karl 92 KS97-PO630 Exp Newton Stanton TAM 107 TAM 302 Average CV (%)	Public (W) Betty (W) Heyne 111 109 127 116 (W) Lakin 100 107 77 94 (W) Trego 2137 90 99 60 83 105 100 77 94 Akron Alliance Ike Jagger Karl 92 KS97-PO630 Exp Newton Stanton TAM 107 TAM 302 Average CV (%) Average CV (%)	Public (W) Betty 99 (W) Heyne 87 111 109 127 116 (W) Lakin 90 100 107 77 94 90 99 60 83 105 100 77 94 105 100 77 95 105 1	Public (W) Betty 99 80 (W) Heyne 87 92 111 109 127 116 (W) Intrada 101 100 107 77 94 (W) Trego 107 117 2137 94 93 90 99 60 83 105 100 77 94 Akron 100 102 Alliance 107 100 Ike 107 93 Jagger 100 90 Karl 92 106 96 KS97-PO630 Exp 95 90 Newton 96 98 Stanton 112 109 TAM 107 92 96 TAM 302 100 110 Average 65 41 CV (%) 4 66	Public (W) Betty 99 80 153 (W) Heyne 87 92 171 111 109 127 116 (W) Lakin 90 102 50 (W) Trego 107 117 47 2137 94 93 88 105 100 77 94 Akron 100 102 63 Alliance 107 107 Ike 107 93 115 Jagger 100 90 143 Karl 92 106 96 156 KS97-PO630 Exp 95 90 116 Newton 96 98 96 Stanton 112 109 86 TAM 107 92 96 73 TAM 302 100 110 56 Average 65 41 51 Average 65 41 51 CV (%) 4 6 11

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁴ SV = Stevens County test at Kramer Seed Farms near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 7a. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - EAST.

	Brown-Powhattan			<u>Rile</u> y	-Manh	attan	_Franl	klin-Ot	<u>tawa</u>	Labette-Parsons			
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	
AgriPro													
Hondo	42	42	46	58	51	52							
AGSECO													
7853													
Onaga	43	47	48	60	57	59	49	53	56	49	41	46	
General Mills													
(W) NuFrontier													
(W) NuHorizon													
Goertzen													
Enhancer													
Kalvesta	46			63			59						
Venango	40	39		66	60		57						
NK													
(S) BL930390										46			
(S) Coker 9474										52	43	48	
(S) Coker 9663										61	52	54	
Polansky													
Dominator	44			59	51	51							
Public													
(S) Caldwell	43	45	45	53	48	47	55	53	55	49	41	45	
(S) Kaskaskia	54	55	54	64	60	58	55	56		54	45	49	
(W) Betty	49	45	45	56	50	50	47	52	59	48	44	47	
(W) Heyne	44	46	48	62	52	54	46	49		44	36	41	
(W) Lakin	48	48		58	51		55			48	39		
(W) Trego	38	39	44	58	48	49	52	54		48	40	44	
2137	44	41	46	62	53	55	59	61	66	54	46	50	
2163	38	40	45	59	52	53	59	60	64	37	33	39	
2174	41	42		60	52		54			51	42		
Culver	36	39		52	47								
Jagger	47	47	50	59	51	51	53	55	52	54	46	50	
Karl 92	49	51	53	63	54	53	50	51	55	52	42	43	
KS97-PO630 Exp	43			68			45			49			
Newton	40	36	41	47	42	41	56	54	53	42	36	37	
Scout 66	36	37	40	34	30	30	43	41	42	26	22	28	
Stanton	41	41	43	48	45	46	54	56		43	35	39	
TAM 302	39			54			58			50			
Average	42	43	46	56	50	50	53	54	57	48	41	45	

Table 7b. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - CENTRAL.

		epub ellevi		Sr S <u>mith</u>	nith- Cen		larve lessto			Reno tchin			taffoi hn (9	[.] d- 95-00)		umne well (
Brand / Name	2YR	3YR	4YR	2YR	3YR	2YR	3YR	4YR			4YR			4YR			
AgriPro																	
Hondo	58	68	69	56	64	34	42	45	28	39	40						
AGSECO						-											
7853						40	45	48	44	52	52	58	57	47	38	38	32
Onaga	55	64	68	71	74	38	42	47	48	55	56				48		
General Mills																	
(W) NuFrontier	60			69													
(W) NuHorizon	62			73													
· ·	02			7.5													
Goertzen															4.4		
Enhancer												55	53		41		
Kalvesta	57	65		72	76 70					 							
Venango	62	71		76	78	40	46		43	54		63					
Polansky																	
Dominator	66	74	75	80	81	47	53	54	45	50	50	56	57		40	39	
Public																	
(W) Betty	62	68	70	78	78	48	52	53	46	48	48	55	57		34	36	
(W) Heyne	56	62	67	72	74	45	48	51	47	55	55	44	52		49		
(W) Intrada	61			79													
(W) Lakin	59	71		74	76	40	45		38	45		54					
(W) Nuplains	66			75													
(W) Trego	67	76	76	76	81	44	48	52	41	49	50	57	56		35		
2137	62	70	73	75	80	40	44	49	41	47	50	55	59	48	52	50	44
2163	46	57	60	70	71	33	40	44	41	48	49	54	56	47	41	40	34
2174	56	67		71	76	40	44	47	49	52	53	53	58		43	44	
Alliance	60	67	69	79	80												
Arapahoe	64	72	72	73	77												
Culver	62	71		73	78							50					
Custer	53	66	69	70	76				46	55	58	46	51	40	42	49	40
Ike	61	70	70	76	78							51	50	42	31	33	28
Jagger	69	71	74	79	78	46	52	55	47	55	56	58	64	52	49	48	40
Karl 92	63	70	74	81	81	46	50	53	51	54	54	45	48	39	38	37	34
KS97-PO630 Exp	61			80		37			51								
Millennium	63			74													
Newton	54	60	61	67	70	36	42	45	32	39	39	52	53	42	30	28	24
Niobrara	61	69	72	72	78							58	58	48			
Prairie Red																	
Scout 66	46	51	52	50	55	33	30	34	30	34	35	41	44	35	27	27	23
Stanton	60	70	70	67	73	33	32	39	42	48	50	41	44		40		
TAM 107	60	64	67	67	72												
TAM 302	56			68		38			36								
Vista	59	67	67	70	74												
Wesley	66	75		81	86												
Average	60	68	69	72	76	40	44	47	42	49	49	53	54	44	40	40	33
Avelage	00	00	บฮ	12	70	40	44	47	44	43	43	JJ	J4	44	40	40	55

Table 7c. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - WEST.

Brand / Name	Ellis-l	Hays (9 3YR	97-00) 4YR	Tho	mas-C 3YR	olby 4YR	Greel 2YR	ey-Tril 3YR	oune 4YR	Finney-Garden City 2YR 3YR 4YR			
AgriPro													
Thunderbolt	72			62	59		62			36	44		
	12			02	59		02			30	44		
AGSECO										0.4	4.0	40	
7853	 70	70								31	40	43	
TAM 110	76	78	77	61	63	66	67	69	65	32	44	45	
Drussel													
T81							73	74		36	44		
General Mills													
(W) NuFrontier				58						31			
(W) NuHorizon				53						33			
Goertzen													
Enhancer	68	71											
Kalvesta	68			58	59		66			29	40		
Venango	72			60	59		65			34	42		
Polansky													
Dominator	71	76	74										
Public													
(W) Betty	64	67	66	56	58	61	59	61	56	27	37	40	
(W) Heyne	64	68		50	51	57	62	64		24	35	38	
(W) Intrada				56						34			
(W) Lakin	70			57	62		70			31	44		
(W) Nuplains				57 55									
(W) Trego	79	79		63	68	70	69	73		34	47	46	
2137	66	72	71	57	59	63	64	66	63	32	43	45	
2174	65	72	70	52	54		61			32	41		
Akron	69	72	73	58	59	64	69	72	68	29	39	40	
Alliance	72	73	72	54	59	64	69	72	65	28	40	40	
Arapahoe	66	68	69	54	56	61	68	71	65	30	39	41	
Culver	68			55	57		68			26	38		
lke	72	72	71	58	59	62	64	67	62	30	42	44	
Jagger	72	75	75	61	61	66	64	67	64	31	43	46	
Karl 92	68	74	70	57	61	64	63	64	59	35	45	46	
KS97-PO630 Exp				56						31			
Millennium				60									
Newton	65	65	61	56	57	60	61	64	58	23	34	36	
Niobrara	71	73	71	57	61	65	67	68	63	32	44	43	
Prairie Red				60						31			
Scout 66	56	61	61	53	53	56	54	56	54	29	36	36	
Stanton	70	73		59	61	64	67	72		34	45	46	
TAM 107	74	75	72	58	60	63	66	68	64	29	41	42	
TAM 302				55						27			
Vista	68	72	72	62	66	67	66	70	64	31	42	42	
Wesley	66			57	59		67						
Windstar	64	67	68	52	54	59	63	68	63	26	37	38	
Average	69	71	70	57	59	63	66	67	63	30	40	42	

Table 7d. Multiyear yield averages (bu/acre) Kansas Wheat Performance Tests - IRR.

;								/-Gard	en City	Stevens-Hugoton			
Brand / Name	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	2YR	3YR	4YR	
Drussel													
T81							49	57					
General Mills													
(W) NuFrontier				67			49						
(W) NuHorizon				64			48						
Goertzen													
Kalvesta	71			58			50			50			
Venango	66			67			49			60			
Public													
(W) Betty	68	71		60	63	65	42	49		68	72	72	
(W) Heyne	72			54	61		39	47		80	83		
(W) Intrada													
(W) Lakin	63			61			49			59			
(W) Trego	62			71	76		51	57		51	63		
2137	70	76	63	63	69	73	51	59	51	61	66	68	
2174	63	67		62			52			67			
Akron				61	69	73	43	51		51	62	65	
Alliance				67	73	76							
Ike	61	68	57	66	73	75	46	55	46	69	72	71	
Jagger	80	73	59	64	70	76	46	56	47	75	79	77	
Karl 92	74	69	56	65	69	70	50	59	48	74	82	78	
KS97-PO630 Exp)			61			47						
Newton	72	72	57	59	64	66	43	48	38	58	62	61	
Stanton	46			70	74		50	57		59	68		
TAM 107	58	48	38	64	68	73	46	55	45	51	63	64	
TAM 302				66			50						
Average	67	66	53	63	69	72	47	54	45	64	71	70	

Table 8a. Test weight (pounds per bushel)
2001 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB '	⁴ Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	Avg.
AgriPro						Public					
AP 97-075 Exp	58	53				(S) Caldwell	57	54	58	57	56
Cutter				59		(S) Kaskaskia	60	56	59	57	58
Hondo	53	56				(W) Betty	60	57	61	60	59
AGSECO						(W) Heyne	61	56	59	59	59
7853				59		(W) Lakin	58	57	60	59	58
Onaga	62	57	60	61	60	(W) Trego	58	56	58	59	58
	02	<i>31</i>		01		2137	60	55	59	58	58
General Mills						2163	56	51	58	54	54
(W) NuFrontier	57	56	59	57	57	2174	60	58	60	60	60
(W) NuHorizon	60	58	61	58	59	Culver	52	49			
(W)Golden Spike	54	45	55	54	52	Jagger	59	54	60	58	57
Goertzen						Karl 92	61	57	60	59	59
Kalvesta	59	56	60	58	58	KS97-PO630 Exp	58	56	57	57	57
Venango	58	58	60	60	59	Newton	57	53	59	56	56
						Scout 66	59	55	59	58	58
NK						Stanton	56	53	58	59	56
(S) BL930390				52		TAM 302	52	53	57	55	54
(S) Coker 9474				60							
(S) Coker 9663				59							
Polansky						Average	58	55	59	58	57
Dominator	61	57				CV (%)	3		1	2	
	01	01				LSD (0.05)**	2		1	1	

¹ BR = Brown County test at Bunck Seed Farm near Everest, KS.

 $^{^2\,\}text{RL}$ = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8b. Test weight (pounds per bushel)
2001 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Ή		S	OUT	Н			N	ORT	Н		S	OUT	Н	
Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD	⁵SU	⁶ Avg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD ⁵	รับ ⁶	Avg.
AgriPro									Alliance	59	58	59					
AP 97-075 Exp	59	59	59	56	53			54	Arapahoe	59	59	59					
Cutter				59	58			59	Culver	59	59	59					
Hondo	59	59	59	56	55			55	Custer	58	58	58		58			
AGSECO									lke	59	59	59					
7853				57	57			57	Jagger	59	59	59	57	57			57
Onaga	59	59	59	60	58			59	Karl 92	59	60	60	60	59			60
General Mills									KS97-PO630 Exp	58	59	58	55	56			56
(W) NuFrontier	59	59	59	56	57			57	Millennium	59	59	59					
(W) NuHorizon	59	59	59	57	59			58	Newton	58	58	58	56	55			56
(W)Golden Spike	59	59	59	54	55			54	Niobrara	59	59	59					
Goertzen									OK95571Exp				55	53			54
Kalvesta	59	59	59						Prairie Red		59						
Venango	59	59	59	57	57			57	Scout 66	58	59	58	58	58			58
Polansky									Stanton	59	59	59	55	56			56
Dominator	59	60	60	59	58			58	TAM 107	59	59	59					
Public									TAM 302	58	58	58	54	53			54
(W) Betty	59	59	59	59	60			59	Vista	59	59	59					
(W) Heyne	59	59	59	60	59			59	Wesley	59	59	59					
(W) Intrada	59	59	59														
(W) Lakin	59	59	59	56	56			56	Average	59	59	59	57	57			57
(W) Nuplains	59	59	59						CV (%)	1	1		1	2			
(W) Trego	59	59	59	58	57			58	LSD (0.05)**	1	1		1	2			
2137	59	59	59	57	55			56									
2163	56	56	56	54	53			54									
2174	59	59	59	59	57			58									

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴ RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^{5}}$ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁶ SU = Sumner County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8c. Test weight (pounds per bushel)
2001 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	l Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg
AgriPro						Akron		60	61	54	59
Thunderbolt		62	62	58	61	Alliance		57	59	47	54
AGSECO						Arapahoe		59	58	47	55
7853				58		Culver		55	61	44	53
TAM 110		59	60	55	58	lke		61	62	51	58
Drussel						Jagger		62	62	57	60
T81			63	57		Karl 92		61	63	59	61
General Mills						KS97-PO630 Exp		60	59	54	58
(W) NuFrontier		61	60	55	59	Millennium		61			
(W) NuHorizon		60	62	52	58	Newton		59	61	47	56
(W)Golden Spike		57	58	45	53	Niobrara		57	60	50	56
Goertzen						Prairie Red		59	60	56	58
Kalvesta		61	62	56	60	Scout 66		61	61	57	60
Venango		60	60	57	59	Stanton		59	61	57	59
Public						TAM 107		59	60	56	58
(W) Betty		59	62	52	58	TAM 302		53	57	48	53
(W) Heyne		61	62	52	58	Vista		59	59	48	55
(W) Intrada		62	63	59	61	Wesley		58	61		
(W) Lakin		61	62	57	60	Windstar		56	59	45	54
(W) Nuplains		61	63	48	57						
(W) Trego		60	61	59	60	Average		59	61	53	58
2137		58	62	57	59	CV (%)		2	3	3	
2174		62	62	58	61	LSD (0.05)**		1	2	2	

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 8d. Test weight (pounds per bushel)
2001 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI 3	SV 4	Avg.	Brand / Name	SI ¹	TI ²	FI ³	SV ⁴	Avg.
Drussel						Public					
T81			60			(W) Betty		56	59	60	58
General Mills						(W) Heyne		57	60	60	59
(W) NuFrontier		57	60	59	59	(W) Intrada			62	55	
(W) NuHorizon		58	61	57	59	(W) Lakin		58	60	49	56
(W)Golden Spike		51	49	49	50	(W) Trego		55	59	52	55
Goertzen						2137		55	60	53	56
Kalvesta		55	60	52	56	2174		57	61	58	58
Venango		55	61	53	57	Akron		54	59	51	55
						Alliance		55			
						lke		59	59	56	58
						Jagger		53	59	58	57
						Karl 92		58	60	60	59
						KS97-PO630 Exp		54	61	54	56
						Newton		57	60	54	57
						Stanton		56	60	51	56
						TAM 107		51	59	48	53
						TAM 302		53	58	45	52
						Average		55	59	54	56
						CV (%)		4	3	3	
						LSD (0.05)**		3	2	2	

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁴ SV = Stevens County test at Kramer Seed Farms near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9a. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2001 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR	RL ²	FR	3 LB	Avg.	Brand / Name	BR ¹	RL ²	FR ³	LB ⁴	Avg.
AgriPro						Public					
AP 97-075 Exp		-4.0				(S) Caldwell		-5.0	-3.0	-8.8	-5.6
Cutter				-7.3		(S) Kaskaskia		-5.0	-3.3	-8.8	-5.7
Hondo		-3.0				(W) Betty		-4.0	-2.3	-5.3	-3.8
AGSECO						(W) Heyne		-4.0	-1.0	-4.3	-3.1
7853				-5.5		(W) Lakin		-7.0	-4.3	-11.0	-7.4
Onaga		-7.0	-3.8	-11.3	-7.3	(W) Trego		-4.5	-2.8	-8.5	-5.3
General Mills						2137		-4.5	-3.8	-9.8	-6.0
(W) NuFrontier		-2.5	-1.3	-5.0	-2.9	2163		-6.0	-4.5	-6.0	-5.5
(W) NuHorizon		-0.5	1.0	-2.3	-0.6	2174		-5.5	-3.5	-9.8	-6.3
(W)Golden Spike		2.0	4.0	1.0	2.3	Culver		-2.0			
Goertzen						Jagger		-5.5	-5.0	-10.5	-7.0
Kalvesta		-8.0	-4.8	-10.3	-7.7	Karl 92		-9.0	-8.0	-12.5	-9.8
Venango		-2.5	0.0	-5.3	-2.6	KS97-PO630 Exp		-5.0	-3.0	-9.3	-5.8
NK					-	Newton		-2.5	-1.0	-3.0	-2.2
(S) BL930390				-5.5		Scout 66		13.0	7.0	13.0	11.0
(S) Coker 9474				-9.3		Stanton		-1.5	-2.8	-7.5	-3.9
(S) Coker 9663				-6.8		TAM 302		-3.5	-1.5	-5.5	-3.5
Polansky											
Dominator		-5.0				Average		-4.0	-2.5	-7.3	-4.6
						CV (%)		0.5	0.3	0.7	
						LSD (0.05)**		1.4	0.6	1.2	

¹ BR = Brown County test at Bunck Seed Farm near Everest, KS.

 $^{^2\,\}text{RL}$ = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9b. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2001 CENTRAL Kansas Winter Wheat Performance Tests.

	NORTH		so	UTH			NORTH		so	UTH	
Brand / Name	RP ¹	HV ²	RN ³	SD ⁴	Avg.	Brand / Name	RP ¹	HV ²	RN ³	SD ⁴	Avg.
AgriPro						Alliance	-0.8				
AP 97-075 Exp	-3.3	-7.5	-4.0		-5.8	Arapahoe	-2.0				
Cutter		-7.0	-3.5		-5.3	Culver	-2.5				
Hondo	-0.3	-3.8	-2.5		-3.1	Custer	-4.3		-6.0		
AGSECO						lke	-3.0				
7853		-8.3	-4.5		-6.4	Jagger	-3.8	-9.8	-7.8		-8.8
Onaga	-3.8	-8.8	-7.0		-7.9	Karl 92	-5.3	-12.0	-9.0		-10.5
General Mills						KS97-PO630 Exp	-3.5	-7.5	-4.3		-5.9
(W) NuFrontier	-2.3	-5.0	-0.5		-2.8	Millennium	-0.3				
(W) NuHorizon	-0.8	-0.3	-0.8		-0.5	Newton	-1.3	-3.5	-2.5		-3.0
(W)Golden Spike	-1.8	4.5	-1.3		1.6	Niobrara	-0.8				
Goertzen						OK95571Exp		-8.8	-7.0		-7.9
Kalvesta	-3.3					Prairie Red					
Venango	-2.8	-4.0	-3.5		-3.8	Scout 66	18.0	16.0	12.0		14.0
Polansky						Stanton	-3.5	-3.0	-3.3		-3.1
Dominator	-3.5	-9.5	-5.0		-7.3	TAM 107	-5.3				
Public						TAM 302	-3.8	-6.3	-2.8		-4.5
(W) Betty	-2.3	-6.8	-2.3		-4.5	Vista	-0.8				
(W) Heyne	-1.8	-7.3	-2.3		-4.8	Wesley	-1.5				
(W) Intrada	-3.5										
(W) Lakin	-2.0	-9.5	-6.0		-7.8	Average	-2.5	-6.3	-4.0		-5.1
(W) Nuplains	-1.0					CV (%)	0.3	0.8	0.6		
(W) Trego	-3.0	-7.3	-3.3		-5.3	LSD (0.05)**	0.6	1.5	1.0		
2137	-3.8	-9.5	-5.3		-7.4						
2163	-3.8	-8.3	-5.3		-6.8						
2174	-3.8	-8.8	-4.5		-6.6						

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

 $^{^3\,\}mathrm{RN}$ = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^4\,\}text{SD}$ = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9c. Heading (days +/- Scout 66, Scout 66 heading listed as date in May) 2001 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ² GD ³	FD ⁴	Avg.	Brand / Name	EL ¹	TD ² G	D ³	FD ⁴	Avg.
AgriPro					Akron		-2.0 -	0.8	-1.3	-1.3
Thunderbolt		-1.8 -0.3	-3.0	-1.7	Alliance		-0.8	1.0	2.8	1.0
AGSECO					Arapahoe		0.0	0.5	2.8	1.1
7853			-3.3		Culver		-1.5	0.0	2.0	0.2
TAM 110		-3.5 -3.0	-4.5	-3.7	Ike		-2.0 -	2.5	1.3	-1.1
Drussel					Jagger		-4.3 -	4.3	-4.8	-4.4
T81		2.3	-3.0		Karl 92		-4.0 -	3.3	-4.5	-3.9
General Mills					KS97-PO630 Exp		-2.0 -	0.3	-1.5	-1.3
(W) NuFrontier		0.0 -0.5	-0.3	-0.3	Millennium		8.0			
(W) NuHorizon		0.5 1.8	1.8	1.3	Newton		-1.3	0.5	2.3	0.5
(W)Golden Spike		7.5 7.5	3.5	6.2	Niobrara		-1.0 -	1.3	1.0	-0.4
Goertzen					Prairie Red		-4.0 -	3.8	-3.8	-3.8
Kalvesta		-3.3 -1.8	-3.3	-2.8	Scout 66		20.0 1	8.0	28.0	22.0
Venango		-1.0 1.5	-1.0	-0.2	Stanton		-1.8 -	1.0	-3.8	-2.2
Public					TAM 107		-4.0 -	3.8	-4.0	-3.9
(W) Betty		-0.8 1.0	0.5	0.3	TAM 302		-1.0	1.5	0.3	0.3
(W) Heyne		-1.5 0.3	1.8	0.2	Vista		-1.5	0.3	2.5	0.4
(W) Intrada		-3.3 -0.8	-2.8	-2.3	Wesley		0.0 -	0.3		
(W) Lakin		-3.0 -1.5	-3.3	-2.6	Windstar		1.0	1.0	2.8	1.6
(W) Nuplains		2.5 3.5	2.5	2.8						
(W) Trego		-1.0 -1.0	-2.8	-1.6	Average		-1.2 -	0.4	-0.9	-0.8
2137		-2.0 0.3	-3.5	-1.8	CV (%)		0.4	0.6	0.7	
2174		-2.5 -1.0	-3.3	-2.3	LSD (0.05)**		0.7	1.1	1.4	

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

²TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 9d. Heading (days +/- Newton, Newton listed as date in May) 2001 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI	TI 2	FI 3	SV ⁴	Avg.	Brand / Name	SI 1	TI ²	FI ³	SV ⁴	Avg.
Drussel						Public					
T81			-2.3			(W) Betty		1.0	0.5		8.0
General Mills						(W) Heyne		8.0	0.0		0.4
(W) NuFrontier		1.8	0.0		0.9	(W) Intrada			-0.8		
(W) NuHorizon		1.8	0.3		1.0	(W) Lakin		-2.5	-1.5		-2.0
(W)Golden Spike		9.3	3.8		6.5	(W) Trego		-0.5	0.0		-0.3
0.000						2137		-1.8	-0.5		-1.1
Goertzen Kalvesta		-23	-2.0		-2.1	2174		-1.0	-0.5		-0.8
Venango			0.3		1.0	Akron		-1.3	0.0		-0.6
			0.0			Alliance		-0.5			
						Ike		-1.5	-0.8		-1.1
						Jagger		-4.0	-3.3		-3.6
						Karl 92		-3.8	-3.8		-3.8
						KS97-PO630 Exp		0.0	0.0		0.0
						Newton		20.0	12.0		16.0
						Stanton		0.0	-0.5		-0.3
						TAM 107		-3.0	-3.8		-3.4
						TAM 302		1.8	0.5		1.1
						Average		-0.2	-0.7		-0.4
						G			0.6		
						CV (%)		0.6			
						LSD (0.05)**		1.2	1.2		

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

²TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

 $^{^4\,\}text{SV}$ = Stevens County test at Kramer Seed Farms near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10a. Plant height (inches)
2001 EASTERN Kansas Winter Wheat Performance Tests.

Brand / Name	BR ¹	RL^2	FR ³	LB ⁴	l Avg.	Brand / Name	BR ¹	RL^2	FR ³	LB '	¹ Avg.
AgriPro						Public					
AP 97-075 Exp		35				(S) Caldwell		35	29	32	32
Cutter				31		(S) Kaskaskia		38	33	33	34
Hondo		36				(W) Betty		38	29	30	32
AGSECO						(W) Heyne		35	27	28	30
7853				30		(W) Lakin		35	28	30	31
Onaga		30	26	29	28	(W) Trego		35	27	28	30
General Mills						2137		37	29	28	31
(W) NuFrontier		37	30	32	33	2163		32	27	23	27
(W) NuHorizon		30	27	28	28	2174		36	28	30	31
(W)Golden Spike		37	33	36	35	Culver		36			
Goertzen						Jagger		38	30	29	32
Kalvesta		33	27	29	29	Karl 92		32	27	29	29
Venango		35	28	29	31	KS97-PO630 Exp		33	25	26	28
NK						Newton		35	29	30	31
(S) BL930390				27		Scout 66		40	36	36	37
(S) Coker 9474				28		Stanton		34	30	31	32
(S) Coker 9663				33		TAM 302		36	27	28	30
Polansky											
Dominator		32				Average		35	29	30	31
						CV (%)			4	6	
						LSD (0.05)**			2	2	

¹ BR = Brown County test at Bunck Seed Farm near Everest, KS.

 $^{^2\,\}mathrm{RL}$ = Riley County test at Ashland Experiment Farm near Manhattan, KS.

³ FR = Franklin County test at East Central Experiment Field near Ottawa, KS.

⁴ LB = Labette County test at KSU Southeast Agricultural Research Center near Parsons, KS.

⁽S) = Soft red winter wheat; (W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10b. Plant height (inches)
2001 CENTRAL Kansas Winter Wheat Performance Tests.

	N	ORT	Н		S	OUT	Н			N	ORT	Н		S	OUT	Н	
Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN	SD.	⁵su'	⁶ Avg.	Brand / Name	RP ¹	SM ²	Avg.	HV ³	RN ⁴	SD ⁵	SU ⁶	Avg.
AgriPro									Alliance	26	26	26					
AP 97-075 Exp	24	28	26	28	33			30	Arapahoe	26	29	28					
Cutter				29	36			32	Culver	24	28	26					
Hondo	24	28	26	25	30			28	Custer	23	29	26		31			
AGSECO									lke	26	27	26					
7853				27	34			31	Jagger	25	29	27	27	34			30
Onaga	24	29	26	24	31			27	Karl 92	23	27	25	26	31			28
General Mills									KS97-PO630 Exp	24	25	25	25	31			28
(W) NuFrontier	28	31	29	28	33			30	Millennium	29	32	31					
(W) NuHorizon	26	28	27	23	29			26	Newton	27	31	29	28	33			30
(W)Golden Spike	30	34	32	31	35			33	Niobrara	29	28	28					
Goertzen									OK95571Exp				26	33			29
Kalvesta	23	25	24						Prairie Red		29						
Venango	24	28	26	26	30			28	Scout 66	31	26	28	32	39			36
Polansky									Stanton	24	29	27	25	35			30
Dominator	23	27	25	26	32			29	TAM 107	22	30	26					
Public									TAM 302	25	26	25	27	32			29
(W) Betty	26	33	29	30	34			32	Vista	24	24	24					
(W) Heyne	24	29	26	29	33			31	Wesley	25	28	26					
(W) Intrada	24	24	24														
(W) Lakin	24	28	26	26	33			30	Average	25	28	26	27	33			30
(W) Nuplains	27	28	27						CV (%)	3	7		6	5			
(W) Trego	25	26	25	26	33			29	LSD (0.05)**	1	3		2	2			
2137	24	28	26	28	33			30									
2163	23	26	25	23	31			27									
2174	24	29	26	26	33			30									

¹ RP = Republic County test at North Central Experiment Field near Belleville, KS.

² SM = Smith County test near Smith Center, KS.

³ HV = Harvey County test at Harvey County Experiment Field near Hesston, KS.

⁴RN = Reno County test at South Central Experiment Field near Hutchinson, KS.

 $^{^{5}}$ SD = Stafford County Dryland test at Sandyland Experiment Field near St. John, KS.

⁶ SU = Sumner County Dryland test at Max Kolarik farm near Caldwell, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10c. Plant height (inches)
2001 WESTERN Kansas Winter Wheat Performance Tests.

Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	l Avg.	Brand / Name	EL ¹	TD ²	GD ³	FD ⁴	Avg.
AgriPro						Akron		39	33	29	34
Thunderbolt		38	33	30	34	Alliance		37	31	29	32
AGSECO						Arapahoe		41	34	31	35
7853				30		Culver		39	34	28	33
TAM 110		35	31	26	31	lke		36	32	29	32
Drussel						Jagger		35	32	26	31
T81			30	29		Karl 92		34	30	26	30
General Mills						KS97-PO630 Exp		34	30	25	29
(W) NuFrontier		40	32	29	34	Millennium		40			
(W) NuHorizon		33	28	28	30	Newton		40	30	26	32
(W)Golden Spike		42	35	31	36	Niobrara		41	34	32	35
Goertzen						Prairie Red		34	31	26	30
Kalvesta		33	30	26	30	Scout 66		47	37	36	40
Venango		35	31	28	31	Stanton		38	33	31	34
Public						TAM 107		34	31	25	30
(W) Betty		37	33	26	32	TAM 302		36	32	25	31
(W) Heyne		33	31	25	30	Vista		35	30	26	30
(W) Intrada		34	29	27	30	Wesley		35	29		
(W) Lakin		36	31	28	32	Windstar		40	33	29	34
(W) Nuplains		36	30	26	31						
(W) Trego		35	29	28	31	Average		37	31	28	32
2137		35	30	25	30	CV (%)		3	5	6	
2174		36	31	26	31	LSD (0.05)**		2	2	2	

¹ EL = Ellis County test at KSU Agricultural Research Center near Hays, KS.

² TD = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

 $^{^3}$ GD = Greeley County test at KSU Southwest Research-Extension Center near Tribune, KS.

⁴ FD = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 10d. Plant height (inches)
2001 IRRIGATED Kansas Winter Wheat Performance Tests.

Brand / Name	SI ¹	TI ²	FI 3	SV 4	Avg.	Brand / Name	SI ¹	TI ²	FI ³	SV ⁴	Avg.
Drussel						Public					
T81			34			(W) Betty		34	35		35
General Mills						(W) Heyne		32	32		32
(W) NuFrontier		36	36		36	(W) Intrada			33		
(W) NuHorizon		32	33		32	(W) Lakin		32	34		33
(W)Golden Spike		39	39		39	(W) Trego		31	34		33
						2137		32	34		33
Goertzen						2174		31	35		33
Kalvesta		29	32		30	Akron		34	35		34
Venango		33	34		33	Alliance		35			
						lke		34	36		35
						Jagger		29	34		31
						Karl 92		29	32		30
						KS97-PO630 Exp		30	32		31
						Newton		36	35		35
						Stanton		35	37		36
						TAM 107		29	32		31
						TAM 302		32	33		33
							_				
						Average		32	34		33
						CV (%)		4	3		
						LSD (0.05)**		2	1		

¹ SI = Stafford County test at Sandyland Experiment Field near St. John, KS.

² TI = Thomas County test at KSU Northwest Research-Extension Center near Colby, KS.

³ FI = Finney County test at KSU Southwest Research-Extension Center near Garden City, KS.

⁴ SV = Stevens County test at Kramer Seed Farms near Hugoton, KS.

⁽W) = Hard white wheat.

^{**} Unless two varieties differ by more than the LSD, little confidence can be placed in one being superior to the other.

Table 11. Disease and lodging notes from 2001 Kansas Wheat Performance Tests.

S	tripe	Rust	SB ³	BB ⁴	_	Lodging (%				S	Stripe Rust		SB ³	BB ⁴	_	Lod	Lodging (%		b)
Brand / Name	RN ¹	GR ²	RL	RN	RL	FR	LB	н٧	RN	Brand / Name -	RN ¹	GR ²	RL	RN	RL	FR	LB	HV	RN
AgriPro										(W) Nuplains		6							
AP 97-075 Exp	5		1	1	20			2	26	(W) Trego	7	3	1	1	40	13	6	8	48
Cutter	1			1			5	25	63	2137	8	5	1	1	20	3	0	1	4
Hondo	9		1	1	0			2	26	2163	7		1	1	0	5	0	0	2
Thunderbolt		2								2174	5	1	1	1	10	11	0	0	9
AGSECO										Akron		3							
7853	7			1			0	2	21	Alliance		2							
Onaga	6		1	1	5	18	1	2	2	Arapahoe		2							
TAM 110		5								Culver		4	7		5				
Drussel										Custer	8			1					5
T81		0								Ike		1							
General Mills										Jagger	1	0	1	1	90	3	3	6	13
(W) NuFrontier	2	0	4	2	50	0	1	0	16	Karl 92	3	1	1	1	0	11	3	15	8
(W) NuHorizon	1	0	7	9	0	1	0	0	2	KS97-PO630 Exp	4	1	1	1	5	54	0	1	4
(W)Golden Spike	-	1	, 7	1	0	0	0	1	4	Millennium									
									_	Newton	5	3	1	8	0	1	0	0	4
Goertzen		7	4		0	1	0			Niobrara		7							
Kalvesta	0	7	4		0	1	0			OK95571Exp	7			1				5	9
Venango	8	4	1	1	0	2	0	0	33	Prairie Red		6							
NK										Scout 66	1	3	8	8	30	14	0	1	56
(S) BL930390							0			Stanton	5	1	7	1	0	3	1	2	30
(S) Coker 9474							0			TAM 107		7							
(S) Coker 9663							0			TAM 302	8	3	1	1	0	5	0	2	9
Polansky										Vista		0							
Dominator	4		1	1	0			0	8	Wesley		0							
Public										Windstar		1							
(S) Caldwell			1		30	3	2			-									
(S) Kaskaskia			1		0	2	9			Average	5	3	2	2	15	10	1	3	16
(W) Betty	1	0	1	1	50	20	0	3	14	CV (%)	19	41	38	24			167		74
(W) Heyne	1	0	1	1	35	41	0	0	3	LSD (0.05)**	1	2	1	1		15	3	2	17
(W) Intrada		1																	
(W) Lakin	8	8	1	1	5	10	6	3	9										

Most disease ratings by Bob Bowden, Ext. Plant Pathologist; 1 = best, least disease reaction, 9 = poorest, most disease reaction. Single-location ratings should be interpreted with care. A number of ratings from many locations should be used to develop a more complete picture of disease and/or lodging reaction.

¹Bob Bowden - 5/9/01 and 5/18/01, rated on 1-9 scale.

³SB = Soilborne mosaic virus - 3/21/01

 $^{{\}bf ^2}$ Curtis Thompson - 6/6/01, rating based on % of flag leaf infected.

⁴BB = Bacterial blight - 5/18/01

Table 12. Planted seed characteristics, coleoptile lengths, and Hessian fly ratings.

Brand / Name	1000 Seed Test weight weigh (grams) (lb/bu			length		v		Test weight (lb/bu)	per lb.	length	
AgriPro						(W) Nuplains	24.8	63.0	18.3	7	S
AP 97-075 Exp	40.3	61.3	11.3	8	S	(W) Trego	29.5	62.7	15.4	6	Н
Cutter	39.8	64.4	11.4	5	S	2137	30.5	62.7	14.9	7	Н
Hondo	31.3	62.5	14.5	6	Н	2163	29.0	57.2	15.6	7	Н
Thunderbolt	33.0	63.7	13.7	6	S	2174	28.8	62.1	15.8	5	Н
AGSECO						Akron	43.5	62.0	10.4	6	S
7853	32.5	63.7	14.0	7	S	Alliance	29.8	61.2	15.2	8	Н
Onaga	29.8	60.9	15.2	6	R	Arapahoe	30.3	57.9	15.0	7	Н
TAM 110	34.0	62.7	13.3	5	S	Culver	32.0	56.8	14.2	6	S
Drussel						Custer	32.8	59.4	13.9	8	S
T81	31.5	62.7	14.4	7	S	lke	35.5	62.3	12.8	7	Н
	31.3	02.7	14.4			Jagger	34.5	63.2	13.1	6	S
General Mills						Karl 92	35.8	61.8	12.7	7	S
(W) NuFrontier	34.0		13.3	5	S	KS97-PO630 Exp	25.8	55.7	17.6	6	Н
(W) NuHorizon	41.3	65.1	11.0	5	S	Millennium	31.3	57.3	14.5	7	Н
(W)Golden Spike	39.8	63.5	11.4	5	S	Newton	37.3	58.0	12.2	6	S
Goertzen						Niobrara	28.8	57.9	15.8	6	S
Enhancer	33.0	58.1	13.7	5	Н	OK95571Exp	29.0	57.9	15.6	8	S
Kalvesta	35.5	58.5	12.8	7	S	Prairie Red	41.0	60.4	11.1	5	S
Venango	29.5	63.6	15.4	7	Н	Scout 66	27.8	62.1	16.3	3	S
NK						Stanton	29.3	59.0	15.5	6	Н
(S) BL930390	35.8	60.7	12.7	5	S	TAM 107	32.0	59.0	14.2	5	S
(S) Coker 9474	35.0	61.4	13.0	4	Н	TAM 302	32.3	54.9	14.1	5	Н
(S) Coker 9663	39.5	60.3	11.5	3	Н	Vista	33.5	62.1	13.5	8	R
Polansky						Wesley	31.0	53.4	14.6	7	S
Dominator	27.8	63.1	16.3	8	Н		29.5	60.8	15.4	7	S
Public							43.5 24.3	65.1 53.4	18.7 10.4	8 3	
(S) Caldwell	27.5	56.8	16.5	8	Н	Average	32.4	60.3	14.3	3 6	
(S) Kaskaskia	32.0	59.6	14.2	6	н	Ü		-		-	
(W) Betty	28.8	56.3	15.8	7	S						
(W) Heyne	27.0	59.8	16.8	6	S						
(W) Intrada	24.3	59.8	18.7	6	S						
(W) Lakin	30.0	56.8	15.1	7	S						

¹ Coleoptile length measured at 75 degrees F, which is the average soil temperature at 4" in western Kansas on September 1. Coleoptile rating of 3 is long and is equal to about 4.2", a rating of 8 is short and is equal to about 2.4". See discussion of coleoptile length on page 13. Ratings provided by T. Joe Martin, Kansas State University Agricultural Research Center - Hays.

² Hessian fly ratings by E. Parker, USDA; S = majority of plants susceptible, H = mixture of susceptible and resistant plants (heterogenous), R = majority of plants resistant. Tested with the Great Plains Hessian fly.

Protein Content

Samples of grain from each variety harvested from Kansas Wheat Performance Tests are submitted annually for analysis of protein content, kernel hardness, and kernel weight and other tests. Screening for protein and other analyses are conducted by the staff at the U.S. Grain Marketing and Production Research Center in Manhattan, Kansas. Because of the time requirement for obtaining analyses, protein results presented below are for the previous year's tests.

Table 13. Protein (% at 14% moisture) 2000 Kansas Winter Wheat Performance Tests.

			Eas	t				Cen	tral				W	est		Irrigated				
Brand / Name	BR	RL			Avg.	RP	ΗV			SU	Avg.	EL			Avg.	ST	TI		Avg.	
AgriPro																				
Hondo	1/1	14.3				1/16	10.6	15.2				1/10	15 /	15.2	2 15.2					
Thunderbolt	14.1	14.5				14.3									5 15.3		1/1 7	15.4		
Thunderbolt						17.0						17.0	10.0	10.0	10.0		17.7	10.7		
AGSECO																				
7853							10.5	14.9	13.5	10.3				16.4						
Onaga	13.4	13.9	10.5	11.4	12.3	14.4	10.5	14.8	14.6	10.9	13.0									
TAM 110												12.7	13.5	15.1	13.8					
AWWPA																				
(W) Arlin														15.1		14 2	14 0	15.2	14.5	
(W) Oro Blanco						13 9	96	14.2	12.8	10.2	121	12.8	14 7		3 14.3				15.1	
(VV) OTO BIATICO						10.0	5.0	17.2	12.0	10.2	. 12.1	12.0	14.7	10.0	, 14.0	10.4	17.7	10.1	10.1	
Drussel																				
T81														14.3	3			14.9		
General Mills																				
(W) GM10003						14.0						13.5	14 5	15.3	3 14.4	144	13.6	14 0	14.3	
(W) NuFrontier						13.7									2 14.1				14.5	
(W) NuHorizon						13.1									14.6				14.8	
(W) NuWest						14.0									15.8				15.7	
(**)********																				
Goertzen																				
Enhancer	12.5	11.7	9.0			14.4	9.1	14.9	12.3	9.6	12.1	13.7	15.2	14.8	14.6	14.9	14.3	15.3	14.8	
G15048 Exp															14.7				14.8	
Kalvesta		14.0				15.1									' 15.1				15.6	
Venango	13.4	13.9	9.1			13.3	9.5	14.1	11.8	9.6	11.7	13.7	15.2	15.0	14.6	14.9	14.5	14.2	14.5	
NK																				
(S) BL930390				10.7																
(S) Coker 9474				12.7																
(S) Coker 9663				10.5																
Polansky																				
Dominator	12.7	13.9				13.8	10.1	14.8	13.0	10.5	12.4	13.7								
Quantum																				
7406												12.9	14.5	14.5	14.0	15.0	13.6	14.4	14.3	
7588						14.3	9.4	14.5	12.4						14.4				14.3	
AP 7510								15.0							14.4				15.0	
XH1711													13.9				13.4			
XH3207															13.9				15.3	
							(0	ontinu	ied)											

Table 13. Protein (% at 14% moisture) 2000 Kansas Winter Wheat Performance Tests.

			Eas	t				Cen	tral				w	est		Irrigated				
Brand / Name	BR	RL			Avg.	RP	Н۷			SU	Avg.	EL			Avg.	ST			Avg.	
XH7463						12.0	0.1	14.4	10.2			12.0	15 1	110	3 14.3	12.0	12.2	140	14.0	
XH9801						13.9	9.1	14.4	10.3			13.0	15.1	14.0					15.3	
XH9806												140	15 /	15.6	 3 15.0				15.3	
XH9815												14.0	15.4	15.0					15.3	
X119013																15.9	14.7	15.4	15.5	
Terra HR 217				10.9																
Dublic																				
Public (S) Caldwell	12.4	127	0.7	10 0	11.2															
(S) Kaskaskia					11.5															
(W) Betty	_	_		_	12.5	111	10.3	 2 14.6	1/1	0.7	12.6	15.2	15 /	15.7	 ' 15.4	 15 /	140	15.0	15.4	
		13.0						15.5				_			15.4				15.4	
(W) Heyne (W) Intrada	13.0	13.0	9.0		12.0	13.6			14.3						13.6		14.1			
(W) Lakin		 11.5		 11 /				13.9							14.6				 14.3	
	12.3	11.5	9.0	11.4	11.1	13.7			10.9	9.0			15.2			15.1	13.4	14.5	14.3	
(W) Nuplains	12.0	12.4	 0 0	11 2	 11.4			14.0		0.7					 3 14.2	 15 0		117	14.4	
(W) Trego 2137					11.4			13.7							3 14.2				14.7	
2163					11.7			14.0				12.0	14.9	14.3	14.0	14.7	14.4	15.0	14.7	
						_		14.0 15.4 ا						15.5	 5 15.7	4E 0		1F.G	15.0	
2174 Akron	12.7	14.0	9.6	12.1	12.3	14.0	10.4	15.4	13.7	10.7	13.0				15.7 14.4	15.2	13.6		15.3	
Alliance						 14.9			11.1						14.4					
Arapahoe						14.9			13.4						15.6		13.5	14.3		
Culver	 12.0	 12.7				14.4			13.4						14.9					
Culver	12.0	12.7				_		 14.7				14.3	15.2	10.2						
Ike						_		1 4 .7 3 15.3			_				 - 15.4				15.5	
	12.6	13.7	10.7	11 5				15.1				_			15.4				15.6	
Jagger Karl 92	_	_	_	_	12.1			13.1							15.6				15.3	
KS89180B Exp					11.7			14.5 14.4							5 15.3				14.9	
•					12.2			15.2							15.3				16.2	
KS97-PO630 Exp Millennium	13.3	13.0	10.2	12.1	12.2	14.1		13.2	11.7	9.0	12.3		15.5		10.2	10.7	10.1	15.0	10.2	
Newton	11.0	12.5	10.2	10.6	11.3			 14.4	122	10.2	11.0				 ' 14.7	140	127	15.0	14.8	
		12.5				14.2									14.7 3 14.3				14.0	
Niobrara Prairie Red	13.2	12.0				14.2			11.5											
Prowers 99															14.2 2 15.0					
Scout 66	 12 0	 14.1	10.1	12.0	126	 14.3	9.9	 15 7	14.2	11 1	13.0				14.8					
					11.9			14.3							14.0	16.6	 14.8	15 1	15.5	
Stanton					11.7															
TAM 201	13.1	12.0	9.4	11.0	11.7	13.7		13.6 14.6				13.4	14.0	14.8	14.3	15.6	13.3	14.0	14.5	
TAM 301	 115	12.1	0.4	10.4	11.0						 12.1	15.2	110	15.0		12.7	12.6	15 1	111	
TAM 302		13.1 12.5		10.4	11.9	14.0 15.0			12.2						2 15.1 3 14.6	13.7	13.6	15.1	14.1	
Vista	13.2	12.5							13.2						14.0					
Wesley						14.7 14.1			 12.1				16.1) 14.6					
Windstar									ı∠. l								10.0	140		
Yuma Yumar						13.1 14.1									3 13.5 5 14.1			14.8 14.5		
	40.1	40.4	0.0	44.4				440	40.0	0.0										
Test Average	13.1	13.1	9.6	11.4		14.1	9.8	14.6	12.8	9.9		14.0	14.9	15.1		15.3	3 14.2	15.2		

For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading. The URL is http://www.ksu.edu/kscpt.

Excerpts from the UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES*

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 869 '2000 Kansas Performance Tests with Soybean Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

CONTRIBUTORS

MAIN STATION, MANHATTAN

Kraig Roozeboom, Associate Agronomist (Senior Author)

Robert Bowden, State Extension Plant Pathologist

Leroy Brooks, State Extension Entomologist Mary Knapp, KSU State Climatologist Allen Fritz, KSU Wheat Breeder

EXPERIMENT FIELDS

Mark Claassen, Hesston W. Barney Gordon, Scandia William Heer, Hutchinson Keith Janssen, Ottawa Victor Martin, St. John

RESEARCH CENTERS

Patrick Evans, Colby James Long, Parsons T. Joe Martin, Hays Alan Schlegel, Tribune Merle Witt, Garden City

Others providing information for this report:

William Bockus, Plant Pathology
Elburn Parker, USDA
Ray Lamond, Agronomy
Pat McCluskey, Grain Science & Industry

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

For those interested in accessing crop performance testing information electronically, visit our World Wide Web site. Most of the information contained in this publication is available for viewing or downloading.

The URL is http://www.ksu.edu/kscpt.

Excerpts from the UNIVERSITY RESEARCH POLICY AGREEMENT WITH COOPERATING SEED COMPANIES*

Permission is hereby given to Kansas State University to test varieties and/or hybrids designated on the attached entry forms in the manner indicated in the test announcements. I certify that seed submitted for testing is a true sample of the seed being offered for sale.

I understand that all results from Kansas Crop Performance Tests belong to the University and the public and shall be controlled by the University so as to produce the greatest benefit to the public. Performance data may be used in the following ways: 1) Tables may be reproduced in their entirety provided the source is referenced and data are not manipulated or reinterpreted; 2) Advertising statements by an individual company about the performance of its entries may be made as long as they are accurate statements about the data as published, with no reference to other companies' names or cultivars. In both cases, the following must be included with the reprint or ad citing the appropriate publication number and title: "See the official Kansas State University Agricultural Experiment Station and Cooperative Extension Service Report of Progress 869 '2000 Kansas Performance Tests with Soybean Varieties', or the Kansas Crop Performance Test website, http://www.ksu.edu/kscpt, for details. Endorsement or recommendation by Kansas State University is not implied."

These materials may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

CONTRIBUTORS

MAIN STATION, MANHATTAN

Kraig Roozeboom, Associate Agronomist (Senior Author) Robert Bowden, State Extension Plant Pathologist Leroy Brooks, State Extension Entomologist Mary Knapp, KSU State Climatologist Allen Fritz, KSU Wheat Breeder

EXPERIMENT FIELDS

Mark Claassen, Hesston W. Barney Gordon, Scandia William Heer, Hutchinson Keith Janssen, Ottawa Victor Martin, St. John

RESEARCH CENTERS

Patrick Evans, Colby James Long, Parsons T. Joe Martin, Hays Alan Schlegel, Tribune Merle Witt, Garden City

Others providing information for this report:

William Bockus, Plant Pathology Elburn Parker, USDA Ray Lamond, Agronomy Pat McCluskey, Grain Science & Industry

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan 66506
SRP 879
July 2001