NEUTRON AND NEUTRON-INDUCED GAMMA RAY SIGNATURES AS A TEMPLATE MATCHING TECHNIQUE FOR EXPLOSIVES DETECTION

by

REBECCA L. BREWER

B.S., Kansas State University, 2005

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical and Nuclear Engineering College of Engineering

> KANSAS STATE UNIVERSITY Manhattan, Kansas 2009

> > Approved by:

Major Professor William L. Dunn, Ph.D.

ABSTRACT

Improvised explosives devices (IEDs) are the cause of many casulaties worldwide. Current methods for detecting IEDs are insufficient. A signature-based scanning technique based upon the fact that explosives consist primarily of hydrogen, oxygen, nitrogen, and carbon is examined as a possible rapid, standoff method for detecting IEDs. Devices employing this method rely on a template-matching technique in which the detector responses acquired through neutron and photon interrogation are compared to responses from a known explosive. A figure-of-merit is calculated to determine how well the template and the unknown match. This thesis explores the feasibility of employing the neutron interrogation aspect of this method.

Table of Contents

Τa	able o	of Contents	iii
Li	st of	Figures	v
Li	st of	Tables	vi
A	cknov	wledgements	vii
1	Intr 1.1	oduction and Background Introduction	1 1
	$1.2 \\ 1.3 \\ 1 4$	System Requirements	$ 1 \\ 3 \\ 2 $
ი	1.4 F	Device Operation Principles	ა ლ
2	2.1 2.2	Metal Detectors Metal Detectors X-Bay Badiography	o 5 5
	2.2	2.2.1 Transmission Radiography 2.2.2 Dual-Energy Radiography	6 6
		 2.2.3 Backscatter Radiography 2.2.4 Computed Tomography 2.2.4 Computed Tomography 	$6 \\ 7$
	$2.3 \\ 2.4$	Spectroscopy Nuclear Magnetic Resonance	7 8
	2.5 2.6	Neutron Activation Analysis	8 8
	2.7 2.8 2.0	Fast Neutron Analysis Pulsed Fast Neutron Analysis Pulsed Fast Neutron Transmission Spectroscopy	9 9 10
	2.9 2.10 2.11	Pulsed Fast/Thermal Neutron Analysis	10 10 10
	2.12 2.13	Fast Neutron Scattering Analysis	11 11
	$2.14 \\ 2.15$	Nuclear Quadruple Resonance	12 12
		 2.15.1 Improved Landmine Detection System 2.15.2 Delft University Neutron Backscattering Imaging Detector 2.15.2 Delft University Neutron Backscattering Log during Detector 	12 13
		2.15.5 Dent University Neutron Backscattering Landmine Detector	13 15 15

		2.15.6 Other Projects	16				
3	Theory of Signature-Based Radiation Scanning						
4	4 Experiments and Results						
	4.1	Experimental Setup	20				
		4.1.1 TRIGA Mark II Reactor	20				
		4.1.2 Aluminum Box	22				
		4.1.3 Samples Tested	22				
	4.2	Experiments	22				
		4.2.1 October 25, 2005	22				
		4.2.2 April 20, 2006	24				
		4.2.3 May 7, 2007	26				
		4.2.4 August 6, 2007	29				
		4.2.5 August 14, 2007	31				
		4.2.6 October 3, 2007	32				
5	Con	clusions and Recommendations 4	42				
	5.1	Conclusions	42				
	5.2	Recommendations	42				
	5.3	Additional Applications	42				
Bi	bliog	raphy	18				

List of Figures

1.1	Inelastic Neutron Scattering	4
1.2	Neutron Absorption	4
2.1	FNSA Schematic	4
2.2	Improved Landmine Detection System	4
2.3	DUNBLAD Apparatus	5
2.4	Z Backscatter Portal 1	6
2.5	Z Backscatter Van 1	7
4.1	Photograph of One Experimental Configuration	1
4.2	Example Spectrum	1
4.3	October 25, 2005 Experiment Configuration	3

List of Tables

Types of Fertilizer	22
NIM Components	24
Neutron Data - October 25, 2005	24
HPGe Data - October 25,2005	25
NaI(Tl) Data - October 25, 2005	26
October 25, 2005 Figures-of-Merit	26
HPGe Data - April 20, 2006	27
NaI(Tl) Data - April 20, 2006	28
April 20, 2006 Figures-of-Merit	28
Neutron Data - May 7, 2007	29
HPGe Data - May 7 , 2007	30
May 7, 2006 Figures-of-Merit	31
Neutron Data - August 6, 2007	32
HPGe Data - August 6, 2007	34
August 6, 2007 Figures-of-Merit	35
Neutron Data - August 14, 2007	35
HPGe Data - August 14, 2007	36
August 14, 2007 Figures-of-Merit	37
Neutron Data - October 3, 2007	37
HPGe Data - October 3, 2007	38
October 3, 2007 Figures-of-Merit Using Fert30 as Template	39
October 3, 2007 Figures-of-Merit Using Fert 36 as Template	40
October 3, 2007 Figures-of-Merit Using FertMix as Template	41
	Types of FertilizerNIM ComponentsNeutron Data - October 25, 2005HPGe Data - October 25, 2005NaI(Tl) Data - October 25, 2005October 25, 2005 Figures-of-MeritHPGe Data - April 20, 2006NaI(Tl) Data - April 20, 2006April 20, 2006 Figures-of-MeritNeutron Data - May 7, 2007HPGe Data - May 7, 2007May 7, 2006 Figures-of-MeritNeutron Data - May 7, 2007HPGe Data - August 6, 2007HPGe Data - August 6, 2007HPGe Data - August 14, 2007August 14, 2007 Figures-of-MeritNeutron Data - October 3, 2007HPGe

Acknowledgments

The author would like to express gratitude to the many people who aided in the completion of this thesis. The author would, in particular, like to thank Dr. William L. Dunn for his continuous support and encouragement throughout the completion of this thesis. He always believed the author could complete this project even when she was unsure of her abilities to do so.

The author also thanks Dr. J.K. Shultis and Dr. Kevin B. Lease for serving on her supervisory committee. She is also grateful for the contributions of David Vu, Xianzhi Yang, Justin Lowrey, Clell J. Solomon, Jr., Ryan Green, Lisa Kitten, Joshua Van Meter, Cristi Pedotto, Dominic Pedotto, Tom Dunn, and the K-State TRIGA Mark II Reactor Staff.

This research was supported in part by M2 Technologies, Inc., Contract No. M67854-02-D-1110 Task 1/8/11 from the United States Marine Corps System Command, and the National Academy for Nuclear Training Fellowship Program.

Chapter 1 Introduction and Background

1.1 Introduction

Improvised explosive devices (IEDs) caused 2,398 deaths and 22,378 injuries to members of the United States military during the Global War on Terrorism between October 7, 2001 and April 4, 2009 [1]. In addition, numerous bystanders have been injured or killed. Many of these explosive devices are hidden and detonated in automobiles. Currently, vehicles entering military bases, embassies, and other similarly access-controlled locations are checked for explosives by physical search, x-rays, or scent dogs [2]. Physical searches are time consuming and could be unsafe for the searcher. X-rays are inconclusive when used on vehicles because their primary function is to detect metals, which make up a significant portion of an automobile. Scent dogs can be unreliable and get tired after several searches. One can only conclude that current methods of detecting explosives are insufficient. Thus, it is necessary to create a rapid, non-intrusive system for detecting explosives if the number of casualties due to IEDs is to be reduced.

1.2 System Requirements

An explosive device consists of three primary components: an explosive, a detonator, and packaging. Historically, detection has been based upon detecting the packaging because it often is metal. Recently, it has become more common to use wood or plasitc for the packaging [3]. Therefore, detecting the packaging has become an unreliable method. Detection

methods based upon finding the explosive and/or detonator must be developed. This project focuses on detecting the explosive.

The most commonly used explosives consist primarily of hydrogen, oxygen, carbon, and nitrogen. Further, the fraction of an explosive's molecules consisting of nitrogen and oxygen is high and the fraction consisting of carbon and hydrogen is low. In addition, the density of an explosive typically ranges from 1.2 to 2.0 grams per cubic centimeter [4, 5], which is greater than the density of most organic materials but less than the density of most metals [6]. Therefore, a successful explosives detection system will be able to not only identify the presence of hydrogen, oxygen, carbon, and nitrogen, but also determine the ratio of one element's composition to another's. The system should also have a low false alarm rate and be able to detect the presence of an explosive material with other inert materials present.

Nuclear-based methods, particularly neutron interrogation, are useful because the elements hydrogen, oxygen, carbon, and nitrogen vastly differ in their modes of interaction with neutrons. These differences allow researchers to determine which of these elements are present. Neutrons are a beneficial method of interrogation because they penetrate an object one to two meters without much attenuation, even steel casings [7–9]. This allows a neutron interrogation system to be non-intrusive, i.e., a package or vehicle can be examined without having to unpack it. Additionally, electromagnetic forces have no impact on neutrons so they interact only with nuclei, which contributes to their large penetration ability.

Neutron sources are readily available as radioisotope sources and as neutron generators. Neutron generators accelerate nuclear particles that are used to bombard deuterium, tritium, or beryllium. The particles react with a target to produce neutrons. Most radioisotope sources and generators are portable. However, sources cannot be turned "on" and "off" as can neutron generators, which makes generators safer when not in use.

An interrogation system must also meet strict safety standards. Neutrons are particularly hazardous and must be properly shielded. The user must also be safe, so a system that can be operated remotely is desired. It must also be constructed so that if an accident were to occur, little or no radiation would be released.

Finally, the system must rapidly interrogate an unknown and quickly analyze the results.

The entire process should take only a few minutes.

1.3 Neutron Interactions

Neutrons are either scattered or absorbed. In scattering, a neutron collides with a nucleus and loses an element-dependent amount of energy. The nucleus is either left in the ground state but with additional kinetic energy (elastic scattering) or in an excited state (inelastic scattering). In inelastic scattering, the nucleus usually returns to the ground state by emission of an inelastic scatter gamma ray, as illustrated in Figure 1.1. When a neutron is absorbed a compound nucleus in an excited state often results. The excited nucleus returns to the ground state by emitting one or more capture gamma rays, as illustrated in Figure 1.2. These gamma rays are characteristic of the target nucleus. Other absorption interactions lead to emission of neutrons, protons, deuterons, or other charged particles including fission fragments.

1.4 Device Operation Principles

Signature-based interrogation relies on a template-matching technique. Detector responses are acquired through neutron and photon interrogation of an unknown object and are compared to a "template" consisting of detector responses that are typical of those from a known explosive. Then, a figure-of-merit is calculated to determine how well, statistically, the template matches the unknown and the figure-of-merit serves as an indication of the probability that the unknown object contains an explosive. A database of explosive templates will be created for different types of packaging. This method differs from many other interrogation techniques in using both photon and neutron interrogation, which provides more information than using either individually. The research discussed in this thesis focuses on the neutron interrogation portion of the explosives identification method.

Fig. 1.1. Inelastic Neutron Scattering (from http://www.glossary.oilfield.slb.com/DisplayImage.cfm?ID=644)

Fig. 1.2. Neutron Absorption (from http://www.glossary.oilfield.slb.com/DisplayImage.cfm?ID=645)

Chapter 2 Existing Explosive Detection Methods

There are currently a wide variety of methods for detecting explosives. Some work better than others and some are applicable to certain specific situations. Several methods are discussed below.

2.1 Metal Detectors

A rudimentary method of detecting explosives is use of the metal detector. It is comprised of a coil that generates a magnetic field [3, 10] that is disturbed by metal objects. Although light weight [10], this device is unreliable. It can only be used to detect explosives encased in metal. In addition, metal detectors cannot be used to detect explosives within most vehicles because metal components of the vehicle would result in too many false positives.

2.2 X-Ray Radiography

Sometimes called Roentgenography [11], x-ray radiography depends on the absorption coefficients and atomic numbers of the elements in an object. This type of system does not actually detect explosives, but rather explosive-like characteristics. Advantages of x-ray radiography are that it is safer for humans and objects being tested than other methods [12], it is a well understood method, and it is inexpensive compared to neutron-based methods. X-ray machines are reasonably sized [4, 5], have a ten to fifteen foot standoff potential [13], and x-ray devices are acceptable to the general public. A major disadvantage is the depenence upon a human to interpret an image properly. Since explosives can be molded into infinitely many forms, they cannot be recognized by shape. Objects of similar density appear identical and high density objects can obscure lower density objects. Typically, x-ray systems have a high false positive rate due to these shortfalls. In addition, the elements hydrogen, oxygen, nitrogen, and carbon, of which the majority of explosives are primarily composed, have low interaction probabilities with x radiation [4, 5]. Four specific types of radiography are discussed below.

2.2.1 Transmission Radiography

Also called conventional or single-energy x rays, this method measures how much an x-ray beam is attenuated after passing through the object in question. An image of the object is created in which the areas where the beam is less intense appear darker. In this system, a thin strong absorber and a thick weak absorber appear identical. [12] Although images are produced with a high resolution [13], they are only indicative of bomb parts such as fusing, wiring, and metal and not of explosives themselves [14]. The detector and source are required to be on opposite sides of the object in question [13]. The images produced via transmission x rays do not provide enough information for the detection of explosives.

2.2.2 Dual-Energy Radiography

The object is scanned at two energy levels, e.g., once at about 80 kV and once at above 100 kV. At the lower energy level, the absorption is dependent upon the thickness and atomic number of the object material. At the higher energy absorption is dependent on density. [12] A transmission image is created at each energy and the two images are compared to determine if explosives are present [12, 14]. Carbon, nitrogen, and oxygen are dark in the low energy image, but not in the high energy image [12]. The false positive rate of this type of system is roughly twenty percent [15].

2.2.3 Backscatter Radiography

An image from the x rays reflected back toward the x-ray source (backscatter image) is created and in addition another image may be created via the transmission method described above (forward scattering image) [12, 14]. The backscatter image is dependent upon how much energy is absorbed during forward scattering, how much energy is backscattered, and how many x rays reach the backscatter detectors [12]. Hydrogen, oxygen, carbon, and nitrogen are more efficient at scattering x rays and therefore stand out more (are darker) on backscatter images while they are barely visible in transmission images [9]. Both the forward scatter and backscatter images are affected by the object's placement in relation to the x-ray source and the detectors [12]. Although the resolution of images generated via this method is not as good as images produced via transmission x rays, backscatter x rays give more information than transmission x rays [13] since the forward scatter image provides information on high density materials and the backscatter image provides information on organic materials [14].

2.2.4 Computed Tomography

In tomographic imaging, images are constructed from the transmission of photons through an object. The image is a function of the object's attenuation coefficient(s). [11] The sources and detector are rotated around the object so a cross-sectional image of the object can be obtained. The cost of operating a computed tomography system is high [12, 14] and the system results in a higher radiation dose than x-rays and therefore requires more shielding [9, 14]. It can be difficult and time consuming to obtain transmission measurements of a target at many angles. The data analysis is also a time-consuming process [13].

2.3 Spectroscopy

In spectroscopic analysis, a small sample of the object in question is burned and the light emitted is dispersed through a prism. The color and thickness of the spectral lines is characteristic of the composition and density of the object. [11] Obviously, this method cannot be used on an explosive device as the explosive would detonate when burned.

2.4 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) imaging uses radiofrequency photons. The object is placed in a strong magnetic field in which radiofrequency photons are absorbed by neutrons. The neutrons then de-excite by releasing a photon of almost the same energy as the original photon. The material of an object can be identified because different elements absorb radiofrequency photons of different frequencies. Only elements with odd numbers of protons can be imaged because pairs of protons and neutrons cancel one another out. [11] Additionally, since a high-powered magnet is used, NMR cannot be applied to objects containing or encased in metal [6].

2.5 Neutron Activation Analysis

The object is bombarded with neutrons and results in the production of radioactive isotopes. Whereas an object can be moderated by neutrons and the residual gamma rays emitted by radioisotopes can, in principle, be used to identify the nuclides present, this technique is not good for explosives detection because the half lives of nuclides vary considerably and the elements typically found in explosives do not produce many radioisotopes.

2.6 Thermal Neutron Activation

The primary objective of a thermal neutron activation $(\text{TNA}^{\textcircled{R}})$ system is to identify nitrogen, usually via detection of the 10.83-MeV capture gamma ray from ¹⁴N. Neutrons produced by a radioisotope source or a neutron generator are moderated (thermalized) to thermal energies that average about 0.025 eV. The thermal neutrons then bombard the object in question and a fraction of the neutrons are absorbed by the nuclei of the elements within the object. The nuclei de-excite by emitting prompt gamma rays of energy characteristic of the nuclei. This system can only be used to determine if an element such as nitrogen is present, not for what use it is intended, i.e., the results of analysis are the same for an explosive containing nitrogen and a fertilizer containing nitrogen. Due to this characteristic, there can be a high false positive rate [12, 14]. This method has limited sensitivity and can be quite expensive [12, 14]. It also must be corrected for background created by thermal neutron interactions with shielding, detectors, and surrounding materials. It cannot be used to identify carbon or oxygen [16, 17], and is slow compared to other neutron interrogation methods [10, 16]. $\text{TNA}^{\textcircled{R}}$ can be used to detect as few as 200 g of explosive material [12], but is unable to interrogate large targets due to the limited penetration ability of thermalized neutrons.

2.7 Fast Neutron Analysis

Fast Neutron Analysis (FNA) identifies not only nitrogen, as in the TNA^(R) method, but also hydrogen, oxygen, and carbon. It uses high energy fast neutrons, usually from a neutron generator, to excite nuclei via inelastic scattering and the nuclei de-excite by releasing characteristic gamma rays. The gamma rays are detected by several detectors surrounding the object in question [18, 19]. The intensity of the gamma rays is indicative of the amount of an element within an object while the energy is indicative of the type of element. The intensity can be used to calculate elemental ratios. [9] However, the use of high energy neutrons causes a high background in the gamma ray detectors which skew the results. This method does not require the use of moderators, as in TNA^(R), which makes the system have less mass and be more portable [6]. More complex than TNA^(R), FNA provides more accurate results [9, 10].

2.8 Pulsed Fast Neutron Analysis

Pulsed Fast Neutron Analysis (PFNA^(R)) is similar to FNA, except the neutron source is pulsed instead of a constant stream in an attempt to reduce the high gamma ray background that occurs in FNA. The neutron pulses are usually nanoseconds long and must be as monoenergetic as possible in order to ensure that all neutrons travel at identical velocities [9, 10, 20]. Pulses are usually about 8 MeV [5, 21]. The neutrons produce gamma rays through inelastic scattering and the gammas are detected with an array of thallium doped sodium iodide (NaI(Tl)) detectors [5, 20]. The time from the start of the neutron pulse to the detection of a gamma ray is measured. This allows for the determination of not only elemental composition of the object, but also the spatial location of the elements within the object. One major setback to $PFNA^{(\mathbb{R})}$ is that it is difficult to create an efficient high energy pulsed neutron source that can be safely operated and is cost effective [10, 12]. However, $PFNA^{(\mathbb{R})}$ devices have a false positive rate of less than five percent [12].

2.9 Pulsed Fast Neutron Transmission Spectroscopy

First used by Overly [20, 22], nanosecond pulsed beams of neutrons attenuate when passing through an object [23, 24]. The neutron beam energy is measured before and after transmission [20]. A pulsed fast neutron transmission spectroscopy (PFNTS) system is costly, heavy, and can be unsafe [5]. Since this is a transmission method, it requires that the object be between the source and detector [6].

2.10 Pulsed Fast/Thermal Neutron Analysis

Pulsed fast/thermal neutron analysis (PFTNA) is essentially a combination of the TNA^{(\mathbb{R})} and PFNA^{(\mathbb{R})} methods. A neutron generator produces a beam of microsecond long pulses and the resulting inelastic scatter gammas are measured. After a series of pulses, the generator is turned off for approximately 100 microseconds and prompt gammas from the capture of thermal neutrons are measured [9, 10, 25]. This system usually employs a bismuth germanate (BGO) or gadolium ortho-silicate (GSO) detector [25]. The data acquisition can be performed in as few as thirty seconds [25], but as with any system, the longer the data acquisition time, the more accurate the measurement.

2.11 Neutron Backscattering

The objective of neutron backscattering (NBS) is to determine hydrogen content within an object [26–28]. It is based upon the principle that explosives contain a higher concentration of hydrogen than inert materials [27, 28]. The method was introduced in 1999 by F.D. Brooks with the intended application of detecting land mines [27].

An object under question is interrogated by bombarding it with a beam of fast neutrons. Neutrons scattered and thermalized by the object are then detected with a thermal neutron detector. If hydrogen is present, the neutrons will undergo more moderation than in non-hydrogenous materials resulting in a higher thermal neutron flux in the hydrogenous material. An NBS system quickly scans an object for explosives. It is insensitive to metals, which allows for the detection of explosives that do not contain metal and for application in detecting explosives in automobiles. However, moisture content of the atmosphere impacts the effectiveness of the system - a high moisture content causes hydrogen rich materials to be indistinguishable from the atmosphere. In addition, false positives can result from inert hydrogen rich materials such as water and plastics [27].

2.12 Fast Neutron Scattering Analysis

A monoenergetic neutron beam alternating between two energies bombards an object in question [4, 5, 29]. Neutrons scattered by the object are detected at forward and backward angles as shown in Figure 2.1 [4, 5, 24]. The type, number, intensity, and scattering angle of the neutrons are characteristic of the elements composing the object [4]. An explosives signature is created by combining measurements from the two detectors [4, 5].

2.13 Associated Particle Imaging

Associated Particle Imaging (API) uses the alpha particle from the ${}^{3}H(d,n){}^{4}He$ reaction in the production of 14-MeV neutrons to "tag" the neutron. A 3.5 MeV alpha particle is emitted at the same time as and 180° from each 14-MeV neutron. The tagging of the neutron allows for close monitoring of the neutron's direction, which allows for spatial mapping without a pulsed neutron beam. As in FNA and PFNA[®], the characteristic gamma rays are used to determine the elemental composition of the object. [5, 6, 30]

2.14 Nuclear Quadruple Resonance

Nuclear Quadruple Resonance (NQR) detects the electric quadrupole moment in ¹⁴N [6, 10]. A radiofrequency signal is applied to the object in question [10, 14] moving ¹⁴N to a higher energy state [14]. If ¹⁴N is present, a radio signal will be produced when the radiofrequency signal is removed [10]. The radio signal is unique to ¹⁴N and can be detected with a radio receiver [8, 10]. This method produces no ionizing radiation [14] which makes it safer than most of the other methods detailed in this chapter. However, the radio signal is usually weak which means the target must be in close proximity to the radiofrequency field, therefore, this method can only be used on small items [14]. In addition, the radio signal can be indistinguishable from electronic noise [6] and the system is expensive and requires large amounts of power [31].

2.15 **Projects Employing Methods**

2.15.1 Improved Landmine Detection System

The Canadian Department of National Defense (DND) in conjunction with General Dynamics Canada (GDC) created a multisensor system to detect landmines after concluding that no single detection method could successfully determine the presence of a landmine [16]. This system, called the Improved Landmine Detection System (ILDS) employs an electromagnetic induction metal detector, a ground probing radar, and a forward-looking infrared imager as primary detection methods in the first vehicle [10, 16]. If a landmine is suspected, a TNA[®] system housed in a second vehicle is then used as a secondary detection method [10, 16, 32]. An illustration of the system can be found in Figure 2.2. This TNA[®] system is based upon detection of the 10.83-MeV prompt gamma from nitrogen. The DND chose to only look at the single prompt gamma because there are few competing gammas at that energy, nitrogen has a relatively high thermal neutron capture cross-section, and a thallium doped sodium iodide (NaI(Tl)) detector can be used instead of a bulkier germanium detector. The system is equipped with a 10⁸ neutrons per second ²⁵²Cf source, four 3x3 NaI(Tl) detectors at ninety degree intervals, and a source to detector distance of 30 cm. This system was found to be able to detect landmines within a 1200 cm^2 radial area and nitrogen concentration as low as 100 grams in as little as five minutes. [32]

2.15.2 Delft University Neutron Backscattering Imaging Detector

The Delft University Neutron Backscattering Imaging Detector (DUNBID) employs neutron backscattering to detect explosives [27]. It consists of 16 parallel ³He proportional counters in a 80 cm by 70 cm by 7 cm box [10, 27]. The detectors are made of aluminum, are 50 cm long, and are 2.5 cm in diameter. A 0.5 mm cadmium sheet is on top of the detectors to filter out slow neutrons. The neutron source is a 7000 neutron per second ²⁵²Cf source placed in the center of the detector array. [27] The entire apparatus weighs approximately 10 kg [27] and is mounted on a remote control vehicle [10].

2.15.3 Delft University Neutron Backscattering Landmine Detector

The Delft University Neutron Backscattering Landmine Detector (DUNBLAD) was developed by the same team that developed the DUNBID. The DUNBLAD employs both metal detection and neutron backscattering. The DUNBLAD uses eight 50 cm long, 2.54 cm diameter ³He detectors divided into two groups of four placed 18 cm apart and a ²⁵²Cf source between the two sets of four detectors. The downside to using the ²⁵²Cf source is that it cannot be turned off. The DUNBLAD would need to be constructed so that if an accident were to occur, no additional radioactive material would be released. However, the advantage of the neutron source over a neutron generator is that the neutron source can be carried by a person while a neutron generator would need to be on a cart or wheeled platform. [28]

The neutron backscatter and metal detector apparatuses are encased in polychlorotrifluorethylene, a plastic containing no hydrogen. The DUNBLAD has two 1.5 m carbon fiber poles and is carried by a person as shown in Figure 2.3. The weight of the detector is balanced by batteries, which will run up to eight hours. The detector is workable but would ideally be lighter as it weighs approximately 18 kg. It also does not work very well on uneven terrain. [28]

Fig. 2.2. Improved Landmine Detection System from [33]

Fig. 2.3. DUNBLAD Apparatus from [28]

2.15.4 Pulsed Elemental Analysis with Neutrons

The Pulsed Elemental Analysis with Neutrons (PELAN) system, created by Ancore (formerly Science Applications International Corporation) uses PFTNA by employing a pulsed deuterium-tritium neutron generator [10, 29, 34, 35]. It consists of two primary units: one composed of the power supply and neutron generator and the other of a BGO gamma ray detector and shielding [25, 34, 35]. The entire apparatus weighs approximately 40 kg [34, 35]. The neutron generator provides 10 microsecond pulses of 14-MeV neutrons [29, 34, 35]. The system is fully automated and is controlled with a palm or laptop computer [25, 34, 35]. The PELAN takes five minutes to analyze an object, is unaffected by temperature, and can operate up to six hours before its twelve volt battery must be recharged [10, 35]. The system compares the measurements to previous measurements to determine if an explosive is present [25]. The creators of the device see it as a confirmatory sensor [35].

2.15.5 $Z^{(\mathbb{R})}$ Backscatter PortalTM and $Z^{(\mathbb{R})}$ Backscatter VanTM

Both the $Z^{(\mathbb{R})}$ Backscatter Portal and $Z^{(\mathbb{R})}$ Backscatter Van use transmission and backscatter x rays to create images of vehicles. The portal, shown in Figure 2.4 uses an array of 225 keV x-ray beams to create real-time images of vehicles traveling around six miles per hour. One

Fig. 2.4. Z Backscatter Portal from http://www.as-e.com/products_solutions/cargo_vehicle_inspection.asp

scan produces one transmission image and three backscatter images. The transmission image displays the approximate density of the vehicle contents while the backscatter images, which are taken to the left, right, and above the vehicle, can be used to get an idea of the contents of the vehicle. The van, shown in Figure 2.5, uses a similar array of x-ray beams to create a single backscatter image. It is powered by an on-board generator so it can interrogate an object while the van is in motion. [36]

2.15.6 Other Projects

In addition to the projects described above, GE Security is creating a Quadrupole Resonance Confirmation Sensor (QRCS) that employs NQR [10]. The Nanosecond Neutron Analysis System (SENNA) uses API to find carbon to oxygen and oxygen to nitrogen ratios [10]. The Detection and Imaging of Anti-Personnel Landmines by Neutron Backscattering Techniques

Fig. 2.5. Z Backscatter Van from http://www.as-e.com/products_solutions/cargo_vehicle_inspection.asp

(DIAMINE) system uses a ²⁵²Cf source to emit neutrons that backscatter with probability inversely proportional to the atomic number of the scattering element and undergo a residual energy loss that is also inversely proportional to the atomic number of the scattering element. The Hydrogen Density Anomaly Detection (HYDAD) system uses a AmBe or ²⁵²Cf source and one or more neutron detectors to detect neutrons moderated by hydrogen [10, 29]. The source-detector geometry is similar to that of DUNBLAD's but data processing and analysis are different [37].

Chapter 3

Theory of Signature-Based Radiation Scanning

The proposed method of explosives detection, introduced by Dunn et. al. [38], employs some of the concepts behind the methods detailed in Chapter 2. However, it differers from the techniques in that it seeks to detect if an explosive is present rather than measure the unknown object's content.

A photon and/or neutron beam is aimed at a target. Detectors, placed on the same side of the object as the photon and/or neutron beam record backscattered and generated responses. A figure-of-merit is used to calculate the statistical match between the template and the responses acquired. The neutron interrogation method is based on fast and thermal neutron backscattering and neutron-induced gamma rays from hydrogen, oxygen, carbon, and nitrogen. Hydrogen and nitrogen emit 2.223-MeV and 10.83-MeV prompt gamma rays, respectively, via neutron capture. Carbon emits a 4.43-MeV inelastic-scatter gamma ray; nitrogen emits 1.64-MeV, 2.31-MeV, and 5.11-MeV inelastic-scatter gamma rays; and oxygen emits a 6.128-MeV inelastic-scatter gamma ray. The response, R_i , at each energy *i* is measured and compared to the template, S_{li} , which is the response of a known explosive in configuration *l.* R_i and S_{li} are used to calculate the figure-of-merit for a given configuration using Equation 3.1 below.

$$\varsigma_{l} = \sum_{i=1}^{N} \alpha_{i} \frac{(\beta R_{i} - S_{li})^{2}}{\beta^{2} \sigma^{2} (R_{i}) + \sigma^{2} (S_{li})},$$
(3.1)

where N is the number of responses, β scales the response to match the template, and α_i is

a normalized weight factor defined as

$$\alpha_i = \frac{\omega_i}{\sum_{i=1}^N \omega_i},\tag{3.2}$$

where ω_i is the weight factor for the i^{th} response, and $\sigma^2(R_i)$ is the variance of R_i and $\sigma^2(S_{li})$ is the variance of S_{li} . Also, it can be shown that the standard deviation of the figure-of-merit can be expressed as

$$\sigma(\varsigma_l) = 2 \left[\sum_{i=1}^{N} \alpha_i^2 \frac{(\beta R_i - S_{li})^2}{\beta^2 \sigma^2(R_i) + \sigma^2(S_{li})} \right]^{\frac{1}{2}},$$
(3.3)

A cutoff value ς_0 will be established. If $\varsigma > \varsigma_0$ it is unlikely that the target contains an explosive; if $\varsigma \leq \varsigma_0$ the target is likely to contain an explosive. A database of templates reflecting several different common explosives in a variety of environments can be created.

Advantages of this method over those discussed in Chapter 2 include:

- a simplified process due to detecting the presence of an explosive rather than measuring the amount of explosive,
- does not require human interpretation of the response to determine if an explosive is present, and
- can be operated remotely, which increases the safety of the operator.

Chapter 4 Experiments and Results

4.1 Experimental Setup

The general setup for the experiments included the following equipment

- an aluminum box
- a Canberra high purity germanium (HPGe) detector model GC2019 (serial number 04057961) with cryostat model 7600 SI and preamplifier model 2002CSI
- the Kansas State University TRIGA Mark II Nuclear Research Reactor tangential beam port
- Canberra Genie 2000 3.1 computer software
- Canberra InSpector 2000 Model IN2K (serial number 05032284)

A photograph of the setup is shown in Figure 4.1. A typical spectrum produced by the Genie software is shown in Figure 4.2.

4.1.1 TRIGA Mark II Reactor

The Kansas State University TRIGA Mark II Nuclear Research Reactor tangential beam port is an aluminum tube six inches in diameter surrounded by an eight inch diameter cadmium-lined steel tube. The center of the beam tube is 2.75 inches below the reactor core centerline [39].

Fig. 4.1. Photograph of One Experimental Configuration

Fig. 4.2. Example Spectrum

4.1.2 Aluminum Box

The aluminum box was constructed of 0.0625 inch thick aluminum sheets. The box has dimensions of 3 feet by 3 feet by 3 feet When placed in front of the beam port it is raised 17.25 inches above the floor with a wooden pallet. Inside the box is a wood and aluminum platform that raises the sample 14.25 inches above the bottom of the box.

4.1.3 Samples Tested

The samples were selected based upon their representation of a number of chemicals and densities or based upon their common presence in vehicles. The samples tested on the various experiment dates include silica sand, water, calcium carbonate (chalk), rubber (mulched), aluminum, fertilizer, antifreeze, windshield washer fluid, black car paint, soybeans, and polyethylene. Three types of fertilizer were used to simulate explosives: the two listed in Table 4.1 and a 50-50 mixture of the two.

 Table 4.1. Types of Fertilizer

Manufacturer	Brand	Name	% ¹⁴ N
Free Flow	Green Thumb	Premium Lawn Fertilizer 30-3-3	30
Scotts	Lawn Pro	Super Turf Builder w/ Halts Crabgrass Preventer 36-3-4	36

4.2 Experiments

4.2.1 October 25, 2005

The experiment performed October 25, 2005 used a 20% efficient HPGe detector, a Bicron model 802-3x3 three by three NaI detector (serial number 08067856) connected to a Canberra Unispec (serial number 22060239), and a ³He detector with the NIM components listed in Table 4.2. The experiment configuration is shown in Figure 4.3. A two gallon plastic can containing disel fuel was placed inside the aluminum box as well as a one gallon paint can filled with granulated sugar. The samples were contained in 10 gallon drums. The neutron

Fig. 4.3. October 25, 2005 Experiment Configuration

detector was set to a high voltage of 800 V, a coarse gain of 8, and a fine gain of 0. The lower and upper level discriminators were set at 24 and 100, respectively. The reactor operated at 240 kW and data were taken for forty minutes of live time, twenty minutes of which a cadmium sheet was placed in front of the neutron detector.

The data acquired from the neutron detector are shown in Table 4.3. The counts and standard deviation obtained from the Genie software outputs for the pertinent energies are shown in Table 4.4. The pertinent NaI data from the Genie software output are shown in Table 4.5. The figure-of-merit for each sample was calculated using the thirty percent fertilizer as the template. These values are shown in Table 4.6.

The results for all these inert samples are significantly greater than zero indicating that

14510 11								
Component	Make	Model	Serial Number					
NIM Bin	Tennelec	TB3	6079					
NIM Power Supply	Tennelec	TC911-6	251					
Pre-Amplifier	Canberra	2006	07041903					
High Voltage Power Supply	Bertran	353	800					
Amplifier	Canberra	2012	681933					
Single Channel Analyzer	Ortec	406A	2604					
Scaler	Canberra	1773	481210					
Counter/Timer	Tennelec	TC545A	200					

Table 4.2.NIM Components

Table 4.3. Neutron Data - October 25, 2005

Sample	R_i without Cd	$\sigma(R_i)$	R_i with Cd	$\sigma(R_i)$
Air	2193	47	2048	45
Aluminum	2736	52	2308	48
Fertilizer 30	3393	58	2813	53
Sand	3374	58	2624	51
Water	3939	63	3245	57

they are not explosives. From the results, it can be concluded that inert samples tend to give large figure-of-merit values, hopefully allowing differentiation from explosives.

4.2.2 April 20, 2006

The experiment performed April 20, 2006 used the HPGe and Bicron model 802-3x3 three by three NaI detectors used on October 25, 2005 connected to the same Canberra Unispec. The aluminum box was placed 94 inches from the beam collimator with a car windshield in from of it. The HPGe detector was 57 inches from the center of the beam and the NaI detector was 46 inches from the center of the beam on the side of the beam opposite the HPGe detector. The samples were placed in ten gallon drums. The samples tested were

Table 4.4. III de Data - October 25,2005						
R_i (i in MeV)	Air	Aluminum	Fertilizer 30	Sand	Water	
R _{0.871}	15825	15713	19084	15233	15161	
$\sigma(R_{0.871})$	509	2901	2777	2991	3543	
R _{1.262}	507	857	1183	0	1734	
$\sigma(R_{1.262})$	44	74	90	0	160	
R _{1.64}	437	951	0	366	0	
$\sigma(R_{1.64})$	232	237	0	277	345	
R _{1.885}	1555	0	0	55	404	
$\sigma(R_{1.885})$	504	0	300	32	292	
R _{2.223}	8968	15340	22156	14866	76398	
$\sigma(R_{2.223})$	475	1390	239	334	771	
R _{2.31}	0	103	716	270	0	
$\sigma(R_{2.31})$	0	207	101	226	0	
R _{4.43}	1436	1024	1132	2265	1152	
$\sigma(R_{4.43})$	307	79	248	271	90	
$R_{4.945}$	767	1236	14	2730	1267	
$\sigma(R_{4.945})$	52	64	446	76	66	
R _{5.11}	0	0	0	0	0	
$\sigma(R_{5.11})$	0	169	0	0	0	

Table 4.4. HPGe Data - October 25,2005

rubber, aluminum, silica sand, fertilizer 30%, polyethylene, and an empty barrel (air). Each sample was analyzed for 1200 seconds live time. The reactor operated at 240 kW.

The counts and standard deviation obtained from the Genie software outputs for the pertinent energies are shown in Table 4.7. The pertinent NaI data from the Genie software output are shown in Table 4.8. The figures-of-merit for the neutron induced gamma ray data from the HPGe with the fertilizer 30% serving as the template are listed in Table 4.9.

The data obtained from the NaI detector were not specific enough for analysis and therefore were not used in calculating the figures-of-merit. A high number of counts only occur at a few energies, most of which are the result of backscattering. These data are not as useful

R_i (i in MeV)	Air	Al	Fert30	Sand	Water		
$R_{0.871}$	0	28601	0	0	0		
$\sigma(R_{0.871})$	0	2613	0	0			
$R_{1.262}$	0	0	0	15811	0		
$\sigma(R_{1.262})$	0	0	0	1645	0		
$R_{1.64}$	0	0	0	18377	0		
$\sigma(R_{1.64})$	0	0	0	1161	0		
R _{1.885}	0	0	0	37760	0		
$\sigma(R_{1.885})$	0	0	0	1131			

Table 4.5. NaI(Tl) Data - October 25, 2005

Table 4.6. October 25, 2005 Figures-of-Merit

Sample	ς	$\sigma(\varsigma)$
Air	276.420	5.766
Aluminum	45.903	3.681
Sand	136.491	4.834
Water	1163.937	8.260

as the HPGe data, so use of the NaI detector for detection of neutron induced gamma rays was discontinued in all subsequent experiments.

The figures-of-merit for all the inert samples were again significantly greater than zero indicating that they are not explosives. From the results, it can be concluded that inert samples tend to give large figure-of-merit values differentiating them from the fertilizer.

4.2.3 May 7, 2007

The experiment performed May 7, 2007 used the HPGe detector as well as two Scionix Holland type 25B3/LM-E1-L-X europium doped lithium iodide (LiI(Eu)) neutron detectors (serial numbers SAV804 and SAV805) each with a Spectrum Techniques Spectech Model ST360 counters (serial numbers 1219 and 1221). The neutron detector crystals are 25 mil-

<u> </u>		111 0.0	Data 1	<u>-pin -o</u> ,	2000	
R_i (i in MeV)	Air	Al	Fert30	Poly	Rubber	Sand
R _{0.871}	3487	4989	5955	6951	6891	6144
$\sigma(R_{0.871})$	234	111	171	166	187	191
$R_{1.262}$	0	428	353	610	698	479
$\sigma(R_{1.262})$	0	44	53	68	61	55
$R_{1.64}$	0	0	154	0	0	0
$\sigma(R_{1.64})$	0	0	77	0	0	0
$R_{1.885}$	0	0	299	0	0	0
$\sigma(R_{1.885})$	0	0	80	0	0	0
R _{2.223}	3760	5543	12356	33726	22472	6361
$\sigma(R_{2.223})$	132	123	159	221	191	129
$R_{2.31}$	0	138	0	0	0	0
$\sigma(R_{2.31})$	0	57	0	0	0	0

Table 4.7. HPGe Data - April 20, 2006

limeters by 3 millimeters and are mounted in an aluminum housing with a Mu-metal shield and a built in voltage divider of 6 megaohms. Each of the Spectech counters was set to a high voltage of 380 V. The aluminum box was placed 88 inches from the beam collimator with a car windshield in front of it. The HPGe detector was 54 inches in front of and 63.75 inches from the center of the beam. Both neutron detectors were 50 inches in front of and 79.2 inches from the center of the beam. The bare neutron detector was 33.5 inches above the floor and the cadmium covered detector was 30 inches above the floor. The samples were placed in 5 gallon buckets. The buckets are 13 inches tall with an inner diameter of 11.5 inches and an outer diameter of 11.875 inches. The samples tested were rubber, aluminum, silica sand, water, calcium carbonate, fertilizer 30-3-3, fertilizer 36-3-4, fertilizer mix, polyethylene, and an empty barrel (air). Each sample was analyzed for 2000 seconds. The reactor operated at 120 kW.

The data acquired from the neutron detector are shown in Table 4.10. The counts and standard deviation obtained from the Genie software outputs for the pertinent energies are

		· · · ·		1 /		
R_i (i in MeV)	Air	Al	Fert30	Poly	Rubber	Sand
R _{0.871}	1089482	55359	0	0	83177	0
$\sigma(R_{0.871})$	114	6834	0	0	6883	0
R _{1.262}	1077451	0	0	38709	0	0
$\sigma(R_{1.262})$	110	0	0	1942	0	0
R _{1.64}	0	0	0	0	0	77114
$\sigma(R_{1.64})$	0	0	0	0	0	5931
R _{1.885}	0	160548	34660	32717	20103	37457
$\sigma(R_{1.885})$	0	8188	6893	3143	2899	8418
R _{2.223}	0	186233	81153	372937	297710	192045
$\sigma(R_{2.223})$	0	7163	7819	22822	15624	8196

Table 4.8. NaI(Tl) Data - April 20, 2006

Table 4.9. April 20, 2006 Figures-of-Merit

Sample	ς	$\sigma(\varsigma)$
Air	373.023	6.215
Aluminum	239.224	5.562
Polyethylene	1241.095	8.394
Rubber	341.348	6.079
Sand	175.708	5.149

shown in Table 4.11. The figures-of-merit for the neutron and neuton-induced gamma ray data with the fertilizer mix serving as the template are listed in Table 4.12.

The results of this experiment show significant differences between the simulated explosives and the inert materials. The figures-of-merit for the fertilizers and both less than 10 while all the inert materials have figures-of-merit greater than 75. A good cutoff value for this experiment would be about 50. It can now be concluded that the template-matching technique can be used to detect explosives.

Sample	R_i without Cd	$\sigma(R_i)$	R_i with Cd	$\sigma(R_i)$
Air	299308	547	37918	195
Aluminum	341670	585	50345	224
Chalk	357442	598	49484	222
Fertilizer 30	333335	577	42262	206
Fertilizer 36	341938	585	43856	209
Fertilizer Mix	337237	581	42191	205
Polyethylene	354355	595	42143	205
Rubber	397901	631	51969	228
Sand	378537	615	53570	231
Water	313774	560	38906	197

Table 4.10. Neutron Data - May 7, 2007

4.2.4 August 6, 2007

The experiment performed August 6, 2007 used the HPGe detector as well as the two Scionix Holland LiI(Eu) neutron detectors each with a Spectrum Techniques Spectech Model ST360 counters set to a high voltage of 380 V. The aluminum box was place 93 inches from the beam collimator with a car windshield in front of the box. The HPGe detector was 57 inches in front of and 54 inches from the center of the beam. Both neutron detectors were 50 inches in front of and 79.2 inches from the center of the beam. The bare neutron detector was 46.5 inches above the floor and the cadmium covered detector was 44.5 inches above the floor. The samples were placed in one gallon paint cans. Samples tested were rubber, aluminum, silica sand, water, calcium carbonate, fertilizer 30-3-3, fertilizer 36-3-4, fertilizer mix, polyethylene, and soybeans. Each sample was analyzed for 1000 seconds. The reactor operated at 185 kW.

The data acquired from the neutron detector are shown in Table 4.13 and the data from the HPGe detector are shown in Table 4.14 with the number of counts and standard deviation obtained from the Genie software outputs. The figures-of-merit for the neutron and neutron-induced gamma ray data with the fertilizer mix serving as the template are

	Water	0	0	582	49	0	0	0	0	16950	178	0	0	404	66	441	36	0	0	0	0
	Sand	5010	1160	0	0	33	16	0	0	5616	139	0	0	989	122	770	47	0	0	180	91
	Rubber	2338	37	0	0	0	0	0	0	10650	258	0	0	41	193	553	42	0	0	226	92
2002	Poly	4698	1229	504	31	0	0	0	0	15299	187	0	0	784	128	532	39	46	106	210	82
- May 7, 2	FertMix	6187	1183	0	0	0	0	0	0	7713	153	0	0	396	100	291	194	205	66	301	94
Ge Data -	Fert36	5148	454	0	0	0	0	0	0	7882	168	0	0	646	121	842	197	209	92	0	0
11. HP(Fert30	10120	37	0	0	0	0	0	0	7428	149	225	115	600	56	268	139	255	102	779	128
Fable 4.	Chalk	5612	1110	0	0	0	0	0	0	5514	87	0	0	728	26	532	38	69	107	0	0
L '	Al	0	0	0	0	0	0	0	0	5514	134	0	0	475	41	468	35	0	0	0	0
	Air	6631	1082	185	36	0	0	0	0	7627	240	0	0	486	52	146	139	0	0	140	82
	R_i (i in MeV)	$R_{0.871}$	$\sigma(R_{0.871})$	$R_{1.262}$	$\sigma(R_{1.262})$	$R_{1.64}$	$\sigma(R_{1.64})$	$R_{1.885}$	$\sigma(R_{1.885})$	$R_{2.223}$	$\sigma(R_{2.223})$	$R_{2.31}$	$\sigma(R_{2.31})$	$R_{4.43}$	$\sigma(R_{4.43})$	$R_{4.945}$	$\sigma(R_{4.945})$	$R_{5.11}$	$\sigma(R_{5.11})$	$R_{6.128}$	$\sigma(R_{6.128})$

, 2007
~
May 7
Data -
HPGe
4.11.
ole

Sample	ς	$\sigma(\varsigma)$
Air	279.483	5.782
Aluminum	99.990	4.472
Chalk	148.225	4.935
Fertilizer 30%	4.747	2.087
Fertilizer 36%	8.065	2.383
Polyethylene	157.628	5.011
Rubber	681.580	13.054
Sand	430.251	7.226
Water	300.102	5.886

Table 4.12. May 7, 2006 Figures-of-Merit

listed in Table 4.15.

The results do not display as significant differences between the simulated explosives and the inert materials as in the May 7, 2007 experiments. This can be attributed to the smaller sample size. However, the explosives stimulants still have values close to zero and a cut-off values of about 15 would differentiate inert from explosive-like samples.

4.2.5 August 14, 2007

The experiment performed August 14, 2007 used the HPGe detector as well as the two Scionix Holland LiI(Eu) neutron detectors each with a Spectrum Techniques Spectech Model ST360 counters set to a high voltage of 380 V. The aluminum box was place 93 inches from the beam collimator with a car windshield in front of the box. The HPGe detector was 57 inches in front of and 54 inches from the center of the beam. Both neutron detectors were 50 inches in front of and 79.2 inches from the center of the beam. The bare neutron detector was 46.5 inches above the floor and the cadmium covered detector was 44.5 inches above the floor. The samples were placed in one quart paint cans. Samples tested were rubber, aluminum, silica sand, water, calcium carbonate, fertilizer 30-3-3, fertilizer 36-3-4, fertilizer mix, polyethylene, antifreeze, black car paint, windshield washer fluid, and an empty barrel

Sample	R_i without Cd	$\sigma(R_i)$	R_i with Cd	$\sigma(R_i)$
Aluminum	182523	427	32752	181
Chalk	234920	485	41781	204
Fertilizer 30	237882	488	41924	205
Fertilizer 36	238535	488	41008	203
Fertilizer Mix	236768	487	41121	203
Polyethylene	240957	491	39710	199
Rubber	272481	522	44920	212
Sand	252112	502	44082	210
Soybeans	256266	506	42573	206
Water	247874	498	40083	200

Table 4.13. Neutron Data - August 6, 2007

(air). Each sample was analyzed for 1000 seconds. The reactor operated at 175 kW.

The data acquired from the neutron detector are shown in Table 4.16 and the data from the HPGe detector are shown in Table 4.17 with the number of counts and standard deviation obtained from the Genie software outputs. The figures-of-merit for the neutron and neutron-induced gamma ray data with the fertilizer mix serving as the template are listed in Table 4.18.

The results of this experiment do not conclusively distinguish the inert materials from the simulated explosives. However, it is thought that the sample placement in relation to the detector may be off so the detector cannot "see" the sample.

4.2.6 October 3, 2007

This experiment is a rerun of the August 14, 2007 experiment. However, the bottom of the HPGe detector's dewar is raised 4.5 inches above the floor. The detector center is 31.75 inches above the floor, 57 inches from the beam port center , 52.75 inches from the reactor and 39.75 inches from the box front. The cadmium covered neutron detector is 33.5 inches above the floor, 64 inches from the reactor, 68 inches from the beam port centerline, and

25.5 inches from the box front.

The data acquired from the neutron detector are shown in Table 4.19 and the data from the HPGe detector are shown in Table 4.20 with the number of counts and standard deviation obtained from the Genie software outputs. The figures-of-merit for the neutron and neutron-induced gamma ray data with the fertilizer 30 serving as the template are listed in Table 4.21. The figures-of-merit for the neutron and neutron-induced gamma ray data with the fertilizer 36 serving as the template are listed in Table 4.22. The figures-of-merit for the neutron and neutron-induced gamma ray data with the fertilizer mix serving as the template are listed in Table 4.23.

As shown in the above tables, the system is again generally able to distinguish between explosives and non-explosives. These results can lead to the conclusion that the template matching technique works for samples of quantities as small as one quart. The few instances in which an inert sample's figure-of-merit is less than the figure-of-merit if the simulated explosives means that a few false positives might occur with very small sample sizes. It may be that this can be remedied by calculating weight factors for each of the response energies for the figure-of-merit equation.

	Water	3143	714	0	0	215	155	2013	130	13504	158	0	0	560	106	329	88	0	0	0	0
	Soybeans	3472	62	281	118	545	116	2572	145	10132	141	0	0	223	87	309	32	139	74	0	0
	Sand	2035	40	364	71	0	215	1831	110	4514	123	0	0	393	86	471	38	85	73	0	0
, 2007	Rubber	3023	37	0	0	384	115	2053	133	8130	139	0	0	308	82	445	39	133	22	0	0
August 6	Poly	1883	701	131	129	501	120	1696	128	12401	179	0	0	0	0	278	34	41	71	0	0
e Data - A	FertMix	6038	14	0	0	534	266	1994	142	7005	134	0	0	0	0	254	32	24	85	321	81
14. HPG	Fert36	2372	639	138	112	526	195	1816	139	7411	161	0	0	0	0	51	66	192	71	0	0
Cable 4.	Fert30	4923	122	356	127	482	52	1933	157	6797	133	0	0	230	95	204	30	366	88	483	83
	Chalk	2028	632	0	0	801	157	1996	142	3949	152	0	0	0	0	134	116	0	0	0	0
	Al	2446	619	0	0	581	197	2984	146	3533	123	0	0	144	27	408	43	0	0	0	0
	R_i (i in MeV)	$R_{0.871}$	$\sigma(R_{0.871})$	$R_{1.262}$	$\sigma(R_{1.262})$	$R_{1.64}$	$\sigma(R_{1.64})$	$R_{1.885}$	$\sigma(R_{1.885})$	$R_{2.223}$	$\sigma(R_{2.223})$	$R_{2.31}$	$\sigma(R_{2.31})$	$R_{4.43}$	$\sigma(R_{4.43})$	$R_{4.945}$	$\sigma(R_{4.945})$	$R_{5.11}$	$\sigma(R_{5.11})$	$R_{6.128}$	$\sigma(R_{6.128})$

2007
6,
August
Data -
HPGe
4.14.
ole

Sample	ς	$\sigma(\varsigma)$
Aluminum	932.593	7.815
Chalk	31.333	3.346
Fertilizer 30%	12.996	2.685
Fertilizer 36%	5.756	2.191
Polyethylene	75.842	4.173
Rubber	958.815	7.869
Sand	1084.831	8.116
Soybeans	233.357	5.527
Water	144.192	4.901

Table 4.15.August 6, 2007Figures-of-Merit

Table 4.16. Neutron Data - August 14, 2007

Sample	R_i without Cd	$\sigma(R_i)$	R_i with Cd	$\sigma(R_i)$
Air	49277	222	11492	107
Aluminum	77685	279	17069	131
Antifreeze	141169	376	25723	160
Chalk	127753	357	25415	159
Fertilizer 30	155121	394	30202	174
Fertilizer 36	140638	375	26977	164
Fertilizer Mix	172930	416	32327	180
Paint	134319	366	27197	165
Polyethylene	122400	350	22466	150
Rubber	150080	387	27655	166
Sand	119422	346	23859	154
Washer Fluid	174240	417	30305	174
Water	162772	403	28139	168

	Water	3907	35	213	127	212	112	1631	107	8346	125	0	0	176	62	126	23	0	0	0	0
	WshrFl	1470	35	308	110	55	194	1863	113	9250	129	0	0	0	0	44	63	0	0	0	0
	Sand	1813	246	0	0	438	111	1389	84	1476	101	0	0	170	60	167	21	0	0	0	0
	Rubber	3264	33	367	102	563	152	1650	108	3670	109	0	0	0	0	172	60	0	0	0	0
20	Poly	577	11	0	0	343	119	1257	89	6719	115	0	0	0	0	127	50	0	0	0	0
ust 14, 200	FertMix	2471	126	238	109	179	188	1845	136	4266	103	0	0	0	0	229	25	0	0	234	73
ata - Aug	Fert36	3374	45	191	96	408	121	1501	122	3586	101	0	0	0	0	0	0	0	0	0	0
HPGe Da	Fert30	3373	104	0	0	87	121	1652	105	4085	130	0	0	0	0	19	89	312	67	358	69
4.17. F	Chalk	2926	31	0	0	69	137	1387	93	1568	88	0	0	33	65	56	51	0	0	0	0
Table	Paint	1568	235	0	0	138	69	1554	142	4614	110	0	0	0	0	606	76	0	0	982	87
	Antifrz	2260	461	200	98	319	120	1584	119	6228	111	0	0	0	0	86	76	0	0	0	0
	Al	1496	71	0	0	144	93	2042	88	931	67	0	0	0	0	160	49	0	0	0	0
	Air	887	48	0	0	73	95	681	62	606	54	0	0	0	0	0	0	0	0	0	0
	R_i (i in MeV)	$R_{0.871}$	$\sigma(R_{0.871})$	$R_{ m 1.262}$	$\sigma(R_{1.262})$	$R_{1.64}$	$\sigma(R_{1.64})$	$R_{1.885}$	$\sigma(R_{1.885})$	$R_{2.223}$	$\sigma(R_{2.223})$	$R_{2.31}$	$\sigma(R_{2.31})$	$R_{4.43}$	$\sigma(R_{4.43})$	$R_{4.945}$	$\sigma(R_{4.945})$	$R_{5.11}$	$\sigma(R_{5.11})$	$R_{6.128}$	$\sigma(R_{6.128})$

20(
14,
August
Data -
PGe
7. H
4.17
le

Sample	ς	$\sigma(\varsigma)$
Air	6662.224	12.777
Aluminum	3470.337	10.854
Antifreeze	344.497	6.093
Chalk	670.935	7.198
Fertilizer 30%	91.905	4.379
Fertilizer 36%	330.283	6.029
Paint	445.270	6.496
Polyethylene	7469.561	13.147
Rubber	169.965	5.106
Sand	955.234	7.862
Washer Fluid	87.351	4.323
Water	135.422	4.824

Table 4.18. August 14, 2007 Figures-of-Merit

Table 4.19.Neutron Data - October 3, 2007

Sample	R_i without Cd	$\sigma(R_i)$	R_i with Cd	$\sigma(R_i)$
Background	92499	304	20605	144
Aluminum	167923	410	34638	186
Antifreeze	246934	497	42326	206
Black Car Paint	250810	501	47148	217
Chalk	198578	446	38079	195
Fertilizer 30%	248896	499	45208	213
Fertilizer 36%	268469	518	47098	217
Fertilizer Mix	244523	494	44390	211
Polyethylene	255726	506	39318	198
Rubber	266663	516	45219	213
Sand	208050	456	40236	201
Water	266440	516	40465	201
Washer Fluid	294930	543	48515	220

Table 4.20. HPGe Data - October 3, 2007

Water	2445	689	129	102	538	96	1545	110	7917	132	0	0	0	0	155	9	0	0	0	0
Washer Fld	3175	663	343	132	534	126	1342	104	8904	141	0	0	0	0	246	28	0	0	0	0
Sand	1369	589	0	0	361	89	1428	83	1566	80	0	0	269	76	40	48	0	0	0	0
Rubber	4637	38	0	0	509	130	1527	108	3666	102	0	0	0	0	95	87	0	0	0	0
Poly	2133	638	0	0	423	117	1618	26	7820	124	0	0	0	0	224	29	0	0	0	0
FertMix	4437	41	0	0	297	110	1472	113	3654	112	0	0	0	0	165	26	0	0	250	75
Fert36	4587	41	339	102	436	139	1939	104	3986	130	0	0	0	0	149	26	0	0	0	0
Fert30	2121	145	144	90	592	188	1397	94	3471	97	0	0	0	0	219	28	238	71	436	73
Chalk	1991	18	251	91	364	79	1221	81	1328	82	0	0	228	61	221	59	0	0	0	0
Paint	2824	94	0	0	785	176	1192	113	4736	110	0	0	0	0	0	98	533	54	838	85
Antifrz	4715	120	120	109	458	26	1639	105	6207	112	0	0	0	0	179	20	0	0	0	0
Al	1537	56	209	85	472	115	2789	96	1301	82	0	0	0	0	313	72	0	0	0	0
Air	538	45	154	66	426	78	786	27	810	69	0	0	0	0	122	41	0	0	0	0
R_i (i in MeV)	$R_{0.871}$	$\sigma(R_{0.871})$	$R_{1.262}$	$\sigma(R_{1.262})$	$R_{1.64}$	$\sigma(R_{1.64})$	$R_{1.885}$	$\sigma(R_{1.885})$	$R_{2.223}$	$\sigma(R_{2.223})$	$R_{2.31}$	$\sigma(R_{2.31})$	$R_{4.43}$	$\sigma(R_{4.43})$	$R_{4.945}$	$\sigma(R_{4.945})$	$R_{5.11}$	$\sigma(R_{5.11})$	$R_{6.128}$	$\sigma(R_{6.128})$

Sample	ς	$\sigma(\varsigma)$
Air	6787.405	12.836
Aluminum	1461.943	8.745
Antifreeze	54.016	3.834
Paint	13.300	2.701
Chalk	548.055	6.843
Fertilizer 30%	0.000	0.000
Fertilizer 36%	90.760	4.365
Fertilizer Mix	25.156	3.167
Polyethylene	106.896	4.547
Rubber	76.074	4.177
Sand	350.714	6.120
Washer Fluid	419.734	6.401
Water	134.489	4.816

 Table 4.21. October 3, 2007 Figures-of-Merit Using Fert30 as Template

Sample	ς	$\sigma(\varsigma)$
Air	8429.874	13.551
Aluminum	2278.584	9.821
Antifreeze	110.774	4.588
Paint	87.679	4.327
Chalk	1259.661	8.425
Fertilizer 30%	90.760	4.365
Fertilizer 36%	0.000	0.000
Fertilizer Mix	102.562	4.501
Polyethylene	125.094	4.834
Rubber	5.661	2.182
Sand	710.550	7.302
Washer Fluid	81.643	4.251
Water	162.468	5.049

Table 4.22.October 3, 2007 Figures-of-Merit Using Fert 36 as Template

<u></u>	00 01 1110110	0.000
Sample	ς	$\sigma(\varsigma)$
Air	6830.182	12.857
Aluminum	1462.510	8.747
Antifreeze	27.421	3.236
Paint	47.203	3.707
Chalk	711.563	7.304
Fertilizer 30%	25.156	3.167
Fertilizer 36%	102.562	4.501
Fertilizer Mix	0.000	0.000
Polyethylene	99.726	4.496
Rubber	81.942	4.255
Sand	285.141	5.811
Washer Fluid	480.482	6.621
Water	145.181	4.909

Table 4.23.October 3, 2007 Figures-of-Merit Using FertMix as Template

Chapter 5 Conclusions and Recommendations

5.1 Conclusions

The template matching technique for detection of explosive materials holds much promise. It has been shown that the method can distinguish explosive surrogates from inert materials when interrogated with neutrons. Samples of various sizes at a distances greater than a meter were able to be identified as an explosive or non-explosive.

5.2 Recommendations

Further experimentation is still necessary to optimize this system. This should include experimentation at various distances, experimentation with clutter, and experimentation with different actual or simulated explosives. It is also recommended that these results in this thesis and future experimentation be used to determine appropriate values of α_i (weight factors) for each energy "i." In addition, experimentation with a neutron generator is necessary to make the system portable. The system should also be automated to perform the interrogation, analysis, and give a positive or negative result with the click of a button. Once these steps are complete, a template library can be created.

5.3 Additional Applications

Since the determination of the elements within an object is based upon comparison of signatures, this device could be used in a vast number of applications. It could be employed for quality control of foods or chemicals to ensure they are the appropriate composition. It could be used to find illicit drugs or nuclear materials. Scientists could use it to test imported goods for lead paint. The possibilities for its uses are endless.

Bibliography

- [1] Analysis Defense Manpower Data Center Data and Programs Division. Dod personnel and military casualty statistics, defense manpower data center, casualty summary by reason, October 7, 2001 through April 4, 2009. Technical report, 2009. available at [http://siadapp.dmdc.osd.mil/personnel/CASUALTY/gwot_reason.pdf].
- [2] E.L. Reber, L.G. Blackwood, A.J. Edwards, J.K. Jewell, K.W. Rhode, E.H. Seabury, and J.B. Klinger. Idaho explosives detection system. *Nuclear Instruments and Methods* in *Physics Research B*, 241:738–742, 2005.
- [3] P. Machler. Detection technologies for anti-personnel mines. In Symposium on Autonomous Vehicles in Mine Countermeasures, Moterey, 1995.
- [4] A. Buffler. Contraband detection by fast neutron scattering. In Proceedings of the 2nd National Nuclear Technology Conference, South Africa, 2001. Paper No. D-O3.
- [5] A. Buffler. Contraband detection with fast neutrons. *Radiation Physics and Chemistry*, 71:853–861, 2004.
- [6] E.M.A. Hussein and E.J. Waller. Review of one-sided approaches to radiographic imaging for detection of explosives and narcotics. *Radiation Measurements*, 29:581–591, 1998.
- [7] A.J. Caffrey, J.P. Cole, R.J. Gehrke, and R.C. Greenwood. Chemical warfare agent and high explosive identification by spectroscopy of neutron-induced gamma rays. *IEEE Transactions on Nuclear Science*, 39:1422–1426, 1992.
- [8] K.P. Hong, C.M. Sim, V. Em, S.W. Lee, Y.J. Kim, S.Y. Park, J.Park, and H.J. Kim. Comparison with existing interrogation system technologies for explosives. In *Proceed-*

ings of the International Symposium on Research Reactor and Neutron Science, Daejeon, Korea, 2005.

- [9] C. Bruschini. Commercial systems for the direct detection of explosives (for explosive ordnance disposal tasks). Technical report, Ecole Polytechnique Federale de Lausanne (EPFL) & Vrije Universiteit Brussel (VUB), 2001.
- [10] Geneva International Centre for Humanitarian Demining. Guidebook on Detection Technologies and systems for Humanitarian Demining. 2006.
- [11] G.M. Stone. Application and limitations of advanced technologies in explosives detection. *IEEE*, pages 81–87, 1990.
- [12] S. Singh and M. Singh. Explosives detection system (EDS) for aviation security. Signal Processing, 83:31–55, 2003.
- [13] Existing and Potential Standoff Exposive Detection Techniques. National Academy of Sciences, 2004.
- [14] L. Thiesan, D. Hannum, D.W. Murray, and J.E. Parmeter. Survey of commercially available explosives detection technologies and equipment 2004. Technical report, U.S. Department of Justice, 2005. Document Number 208861.
- [15] H. Strecker. Automatic detection of explosives in airline baggage using elastic x-ray scatter. *Medicamundi*, 42:30–33, 1998.
- [16] A.A. Faust, J.E. McFee, H.R. Andrews, and H. Ing. Investigation of the feasibility of fast neutron analysis for detection of buried landmines. In J.T. Broach, R.S. Harmon, and H.H. Holloway, editors, *Detection and Remediation Technologies for Mines and Minelike Targes XI*, volume 6217. SPIE, 2006.
- [17] G. Vourvopoulos. Accelerator based techniques for contraband detection. Nuclear Instruments and Methods in Physics Research B, 89:388–393, 1994.

- [18] T. Gozani. Neutron based non-intrusive inspection techniques. In G. Vourvopoulus, editor, Proceedings of the Fifth International Conference on Applications of Nuclear Techniques, volume 2867, pages 174–181, Crete, Greece, 1997. SPIE.
- [19] T. Gozani. Novel applications of fast neutron interrogation methods. Nuclear Instruments and Methods in Physics Research A, 353:635–640, 1994.
- [20] B.J. Micklich, C.L. Fink, and T.J. Yule. Accelerator requirements for fast-neutron interrogation of luggage and cargo. In *Proceedings of the 1995 Particle Accelerator Conference*, Dallas, TX, 1995.
- [21] R. Loveman, J. Bendham, T. Gozani, and J. Stevenson. Time of flight fast neutron radiography. Nuclear Instruments and Methods in Physics Research B, 99:765–768, 1995.
- [22] C.L. Fink, P.G. Humm, M.M. Martin, and B.J. Micklich. Evaluation of few-view reconstruction parameter for illicit substance detection using fast-neutron transmission spectroscopy. *IEEE Transactions on Nuclear Science*, 43:1352–1356, 1996.
- [23] F.D. Brooks, A. Buffler, M.S. Allie, K. Bharuth-Ram, M.R. Nchodu, and B.R.S. Simpson. Determination of HCNO concentrations by fast neutron scattering analysis. *Nuclear Instruments and Methods in Physics Research A*, 410:319–328, 1998.
- [24] A. Buffler, F.D. Brooks, M.S. Allie, K. Bharuth-Ram, and M.R. Nchodu. Material classification by fast neutron scattering. *Nuclear Instruments and Methods in Physics Research B*, 173:483–502, 2001.
- [25] G. Vourvopoulos. Pulsed fast/thermal neturon analysis: A technique for explosive detection. *Talanta*, 54:459–468, 2001.
- [26] G. Nebbia. The use of tagged 14 MeV neutron beams for the detection of illicit materials in land and sea transportation. In 2005 IEEE Nuclear Science Symposium Conference Record, pages 134–137, Puerto Rico, 2005. IEEE.

- [27] Victor Bom and C.W.E. van Eijk. Using the method of neutron back scattering imaging to detect hidden explosives. In 2005 IEEE Nuclear Science Symposium Conference Record, pages 138–142, Puerto Rico, 2005. IEEE.
- [28] C. Datema, V.R. Bon, and C.W.E. van Eijk. DUNBLAD, the delft university neutron backscattering landmine detector. In *Proceedings of the fifth International Symposium* on Technology and the Mine Problem, 2002.
- [29] F.D. Brooks, A. Buffler, and M.S. Allie. Detection of anti-personnel landmines using neutrons and gamma-rays. *Radiation Physics and Chemistry*, 71:749–757, 2004.
- [30] E. Rhodes, C.E. Dickerman, A. DeVolpi, and C.W. Peters. APSTNG: Radiation interrogation for verification of chemical and nuclear weapons. *IEEE Transactions on Nuclear Science*, 39:1041–1045, 1992.
- [31] J.A. Bamberger, R.A. Craig, T.Y. Colgan, A.J. Peurrung, B.E. Schmitt, and D.C. Stromswold. Time-neutron detection for landmines. *IEEE*, pages 1336–1340, 2004.
- [32] T. Cousins, T.A. Jones, J.R. Brisson, J.E. McFee, T.J. Jamieson, E.J. Waller, F.J. LeMay, H. Ing, E.T.H. Clifford, and E.B. Selkirk. The development of a thermal neutron activation (TNA) system as a confirmatory non-metallic land mine detector. *Journal of Radioanalytical and Nuclear Chemistry*, 235:53–58, 1998.
- [33] Thermal neutron activation (TNA) for non-metallic land mine detection, 2004. Fact Sheet.
- [34] P.C. Womble, G. Vourvopoulos, J. Paschal, I. Novikov, and A. Barzilov. Results of field trials for the PELAN system. In *Proceedings of the SPIE*, volume 4786, pages 52–57, 2002.
- [35] P.C. Womble, G. Vourvopoulos, and J. Paschal. Detection of landmines using the PELAN system. 2001.

- [36] A. Chalmers. Rapid inspection of cargos at portals using drive-through transmission and backscatter x-ray imaging. In *Proceedings of SPIE*, volume 5403, 2004.
- [37] F.D. Brooks and M. Drosg. The HYDAD-D antipersonnel landmine detector. Applied Radiation and Isotopes, 63:565–574, 2005.
- [38] William L. Dunn, K. Banerjee, Austin Allen, and Joshua Wayne Van Meter. Feasibility of a method to identify targets that are likely to contain conventional explosives. *Nuclear Instruments and Methods in Physics Research B*, 263:179–182, 2007.
- [39] Kansas State University Department of Mechanical and Nuclear Engineering. General Characteristics of the KSU TRIGA Mark II Reactor.