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Abstract 

Chemical separations are a necessary component in many scientific analyses.  

Microfluidics, the use of micron-sized fluidic channels defined in glass or polymer 

blends, is a powerful branch of separation science that is developing rapidly.  

Miniaturized analytical devices offer important advantages compared to traditional 

bench-top techniques, most notably capillary electrophoresis (CE).   

 This dissertation was focused on developing several novel methods to improve 

microfluidic based separations and techniques.  The electrophoretic separation of small 

similarly charged analytes can be very difficult.  Chapter 2 discusses a new buffer that 

has been developed for fast, high efficiency separations of amino acids by micellar 

electrokinetic chromatography (MEKC). This buffer is more environmentally friendly 

than the most commonly used surfactant containing buffers for MEKC separations.  It 

uses a commercially available dish washing soap by Seventh Generation™ Inc. that 

contains three micelle forming agents; sodium lauryl ether sulfate (anionic), 

cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (MEA) (non-

ionic), and is completely void of organic solvents.   

Many biological samples contain analytes below the limit of detection of 

traditional detection systems; therefore, chapter 3 reports the fabrication of nanoporous 

membranes on microfluidic devices that are capable of analyte concentration enrichment.  

Donnan exclusion is responsible for the preconcentration of fluorescent dyes near a 

 



charged, porous titania membrane.  The level of analyte enrichment was monitored, and 

enrichment factors greater than 4000 in 400 s were obtained for 2,7-Dichlorofluorescein.   

Chapter 4 describes the fabrication and characterization of paper based 

microfluidic devices.  Mixtures of acrylate modified photocurable polymers were used to 

photolithographically define channels on multiple paper substrates.  Flow characteristics 

are described and their use for monitoring complications associated with type 1 diabetes 

is demonstrated.  Finally in Chapter 5, Sol-gel modified gold surfaces for preventing 

protein adsorption during surface plasmon resonance (SPR) detection are also presented.  
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 This dissertation was focused on developing several novel methods to improve 

microfluidic based separations and techniques.  The electrophoretic separation of small 
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has been developed for fast, high efficiency separations of amino acids by micellar 

electrokinetic chromatography (MEKC). This buffer is more environmentally friendly 

than the most commonly used surfactant containing buffers for MEKC separations.  It 

uses a commercially available dish washing soap by Seventh Generation™ Inc. that 

contains three micelle forming agents; sodium lauryl ether sulfate (anionic), 

cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (MEA) (non-

ionic), and is completely void of organic solvents.   

Many biological samples contain analytes below the limit of detection of 

traditional detection systems; therefore, chapter 3 reports the fabrication of nanoporous 

membranes on microfluidic devices that are capable of analyte concentration enrichment.  

Donnan exclusion is responsible for the preconcentration of fluorescent dyes near a 

 



 

charged, porous titania membrane.  The level of analyte enrichment was monitored, and 

enrichment factors greater than 4000 in 400 s were obtained for 2,7-Dichlorofluorescein.   

Chapter 4 describes the fabrication and characterization of paper based 

microfluidic devices.  Mixtures of acrylate modified photocurable polymers were used to 

photolithographically define channels on multiple paper substrates.  Flow characteristics 

are described and their use for monitoring complications associated with type 1 diabetes 

is demonstrated.  Finally in Chapter 5, Sol-gel modified gold surfaces for preventing 

protein adsorption during surface plasmon resonance (SPR) detection are also presented.  
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CHAPTER 1 -  Introduction  

1.1 Chemical Separations 

The ability to separate mixtures of analytes into their principle components, detect 

and quantify them is critically important for a wide variety of scientific disciplines.  

There are many different separation methods available today, including high performance 

liquid chromatography (HPLC), capillary electrophoresis (CE), field flow fractionation 

(FFF), and gas chromatography (GC).  Each of these methods has its own advantages and 

limitations.  In this dissertation I will report results from research that sought to 1) 

improve the selectivity of electrokinetic based separations, 2) increase analyte 

concentration prior to separation, and 3) develop paper microfluidic devices that might 

prove useful for performing very low cost analysis in resource poor situations.  In this 

introductory chapter the mechanisms that underlie these separation and fluidic transport 

methods will be discussed. 

Chapter 2 will discuss the development of a new method to increase the resolving 

power and selectivity of an already developed separation technique.  After a separation, a 

method of detection is required with the ability to quantitate each analyte independently.  

There are many well developed detection mechanisms; however, there are many samples 

that cannot be detected because their concentrations are below the limit of detection 

(LOD).  Chapter 3 will discuss a novel method for sample preconcentration.  Capillary 

Electrophoresis (CE) is one of many methods for separating analytes from a mixture and 

can easily be coupled with many different detectors for analysis, such as laser induced 

fluorescence (LIF), mass spectrometry, UV-Visible absorption, conductivity, and 
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refractive index.  CE is one of the youngest separation mechanisms, still being optimized 

today.  This separation technique is widely used because it requires very small sample 

sizes, as small as a single mammalian cell, and also consumes drastically reduced reagent 

volumes.  Previously developed separation techniques, i.e. chromatography, relied on the 

use of a mobile phase and a stationary phase.  The mobile phase is typically an aqueous 

unbuffered solution or an aqueous/organic mixture.  The stationary phase can come in 

many forms, from a thin silica layer on glass to a tube packed with small, potentially 

porous particles.  The analytes being separated interact with each phase and depending 

upon their relative interaction times with each phase, the analytes are separated.  CE 

differs from other commonly used separation mechanisms in that it typically employs the 

use of an open unpacked tube and a chemically buffered mobile phase and is limited to 

separation of ions.  As such, modifications to CE have been made to allow the separation 

of neutral compounds.  Some of these modifications to traditional CE use pseudo-

stationary phases, such as micellar electrokinetic chromatography (MEKC) and 

microemulsion electrokinetic chromatography.  However, capillary 

electrochromatography employs a traditional stationary phase.  These methods separate 

analytes based on their hydrophobicities.  There are also methods that use discontinuous 

buffer systems such as capillary isoelectric focusing and capillary isotachophoresis, but 

the original use, capillary zone electrophoresis (CZE), employs no stationary phase and 

separates the analytes exclusively by their respective electrophoretic mobilities induced 

by an electric field in a background electrolyte solution (BGE).  All of the separation 

techniques listed above have similar separation mechanisms but are all extensions of 

CZE.1-5 
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1.1.1 Capillary Electrophoresis 

1.1.1.1 Electrophoretic Mobility 

When an electric field is applied axially along an aqueous capillary channel, ions 

migrate at a velocity proportional to the field strength.  This electrostatic force can be 

represented by the following equation where F is the force, q is the charge on the ion, and 

E is the applied field strength.   

(1.1)                                              qEF =  

The field strength is defined as: 

(1.2)                                               
L
VE =  

where V is the applied voltage and L is the length of the capillary.  This force is countered 

by the viscous forces that are inherent in the electrolyte solution.  Stoke’s law gives the 

viscous force felt by a spherical particle as: 

(1.3)                                          eprF υπη6=  

where η is the solution viscosity, r is particle radius and υep is the electrophoretic velocity 

of the particle.  These two forces reach a steady state quickly after the voltage is applied.  

Equations 1.4 and 1.5 can be combined and solved to give the electrophoretic velocity of 

a charged particle relative to the solution velocity: 

(1.4)                                       
r

qE
ep πη

υ
6

=  

An electrophoretic mobility (μep) is further defined as: 

 (1.5)                                     
r

q
E
ep

ep πη
υ

μ
6

==      
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From the electrophoretic mobility we can see that the charge and the size of an analyte 

are the major factors in defining electrophoretic mobility, and for analytes of similar sizes 

their mobilities are greatly dependant on their relative charges.  Therefore, analytes are 

separated by their effective charge to size ratios.  The actual velocity and mobility of a 

particle is also affected by an additional attribute, the electroosmotic mobility (μeo) and 

velocity (υeo), coming from the movement of the bulk fluid in the channel, i.e. 

electroosmotic flow (EOF).1, 2, 4-6 

1.1.1.2 Electroosmotic Flow 

EOF is a phenomenon that arises in capillary channels filled with an electrolyte 

solution where upon the application of a voltage along the length of the channel bulk 

fluid movement is generated.  This fluid flow is generated in glass devices because the 

surfaces of these devices are negatively charged above a pH of 3 due to the ionized 

silanol groups on the glass surface.  These negative charges attract solvated cations 

(counterions) creating an electric double layer (EDL).  The EDL can be broken down into 

three components according to the Gouy-Chapman model.  Directly adjacent to the wall 

is an adsorbed layer of cations.  An imaginary plane through the center of these adsorbed 

cations is called the inner Helmholtz plane.  Beyond the inner Helmholtz plane is the 

Stern layer, which is the region between the inner and outer Helmholtz planes, a region 

comprised of a higher concentration of solvated counterions.  Finally, there exists the 

diffuse layer.  The diffuse layer decays rapidly towards the bulk solution where 

electroneutrality laws are again observed.  In the diffuse layer an imaginary plane, the 

slip plane, separates the mobile ions in solution from the immobile ions near the surface.  
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There is an electrical potential at this boundary, called the zeta potential (ζ).  A Gouy-

Chapman model of the EDL is shown in Figure 1.1.   

 

Figure 1.1 - Gouy-Chapman model of the EDL, where ψ is the electrical potential 

due to the surface charge density 

Generally the thickness of the diffuse layer for typical buffer concentrations is between 1 

and 100 nm.  This thickness is not important for typical microfluidic applications as the 

EDL thickness is much smaller than the minimum channel dimension.  However, as 

channel dimensions approach the EDL, thickness does play a role, i.e. nanochannels.  The 

thickness of the diffuse layer, also known as the Debye length (λD) at 25 oC is: 
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(1.6)                        
sii

D Icz

1010 1015.21004.3 −− ×
=

×
=λ     

where zi is the valency of the ion, ci is the electrolyte concentration and Is is the ionic 

strength. 

 (1.7)                                        2

2
1

iis zcI ∑=  

The effect of λD will be discussed later in this chapter.7 

When a voltage is applied axially to the surface of the channels there is bulk fluid 

movement.  For the purposes herein, the surfaces of the channels are negatively charged 

and after the application of a positive voltage, the excess cations in the diffuse layer will 

migrate towards the anode.  Bulk fluid movement occurs due to the viscous drag created 

by these cations.  There is no movement at the surface, but the velocity increases rapidly 

in the diffuse part of the double layer and remains constant across the majority of the 

channel width, giving a flat flow profile.  This flow profile is one of the major advantages 

of CE compared to other separation mechanisms, as it helps reduce band broadening.  

The Smoluchowski equation describes the electroosmotic velocity of the bulk liquid: 

 (1.8)                              EE
k

eoeo μ
η

ςε
υ =−= 0  

where ε0 is the permittivity of free space, k is the dielectric constant, and μeo is the 

electroosmotic mobility.  Therefore, the total (electrokinetic) velocity or mobility of an 

analyte is given by: 

 (1.9)                                      Eepeoek )( μμυ +=  
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An advantage of CE is that υeo > υep anion, therefore, all analytes have an overall migration 

towards the cathode and detector. 

In CE, in order to separate analytes from one another they must be charged.  All 

neutral analytes move with the EOF and are detected at the same time.  CZE is employed 

in Chapter 2 for the separation of amino acids.  These analytes are negatively charged and 

have negative mobilities.  Many amino acids have similar charges and similar sizes, and 

so from equation 1.5, should have similar electrophoretic mobilities.  This is a common 

problem with CZE and so a second orthogonal separation mechanism such as 

hydrophobicity must be employed to completely separate the analytes, as will be 

discussed further below.1, 2, 4-6   

Another major advantage of CE deals with the flow of fluid through the capillary 

or microfluidic channel.  In other separation methods where fluid transport is 

accomplished with pressure driven flow, there exists a parabolic flow profile.  This 

originates from the viscous drag forces that are higher at the fluid channel interface.  This 

parabolic flow profile leads to higher solution velocities at the center of the channel, 

leading to the broadening of analyte bands thus decreasing the efficiency of the 

separation.  Electroosmotic flow profiles on the other hand have a relatively flat flow 

profile.  The flow profile decreases rapidly from the slip plane towards the surface which 

is proportional to the electrical potential as shown in Figure 1.1.  A comparison of the 

flow profiles is shown in Figure 1.2.   
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Figure 1.2 - Velocity profiles for pressure-driven and electrokinetic flow through a 

capillary or microfluidic channel 

1.1.2 Separation Parameters 

There exists a set of analytical parameters that allow separations to be qualified as 

“good” or “bad”.  The most important of these parameters is the efficiency (number of 

theoretical plates, N), which is directly related to the plate height (H).  In CE, most of the 

band broadening mechanisms are stochastic in nature and so a peak can be represented as 

a Gaussian distribution.  For a Gaussian peak, σ, is the standard deviation of the peak and 

σ2 is referred to as the peak variance.  A sample chromatogram, Figure 1.3, shows the 

common analytical parameters used to describe a peak. 

 

Figure 1.3 - Sample chromatogram displaying common analytical parameters. 
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The variance is defined as: 

(1.10)                                           Dt22 =σ

where D is the diffusion coefficient of the analyte and t is time.  The peak standard 

deviation approximately one fourth of the peak width at the base and this along with the 

separation distance (l) can be used to calculate the efficiency of the separation. 

 (1.11)                                          
2

⎟
⎠
⎞

⎜
⎝
⎛=

σ
lN  

 Separation efficiency can be directly related to the plate height: 

 (1.12)                                            
N
lH = . 

Since separation efficiency is used to quantify the quality of the separation we can see 

from equation 1.10 that the easiest way to increase separation efficiency is to decrease the 

peak variance.  There are many factors that lead to increasing the variance such as 

diffusion, detection, adsorption, temperature (Joule heating), detection, injection, and 

electrodispersion.  The total variance ( ) can be defined as the sum of the contributions 

from each individual factor. 

2
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Therefore, if they can be decreased or eliminated the separation efficiency is increased.  

Most of these factors can be easily eliminated or drastically reduced depending on 

experimental setup.  Contribution from electrodispersion is eliminated by using a 

constant ionic strength buffer.  Injection variance for a gated injection, the injection used 

in this work, is defined as 

 (1.14)        
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Injection variance is a function of injection plug length.  Decreasing the plug size 

decreases the associated variance.  For laser-induced fluorescence detection the variance 

is defined as spatial filter size divided by the collection objective magnification.  Since 

the spatial filter in the optical set-up defines the detection spot size, the same top hat 

equation for injection can be used here.  For LIF with proper filters and optics this is 

insignificant and can be ignored.  Variance with respect to fluid flow rises with the 

occurrence of parabolic flow profiles, typically generated from pressure difference, 

defined in equation 1.15 for a rectangular microfluidic channel.   
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Where d and w are the channel depth and width, and ΔP/L is the pressure drop along the 

channel.  Electrokinetic transport with appropriate field strengths has flat flow profiles as 

shown in figure 1.2.  Parabolic flow profiles can also be generated from Joule heating or 

pressure differentials across the channels.  Pressure differentials can be eliminated by 

keeping fluid reservoir levels the same to prevent hydrodynamic flow and Joule heating 

only occurs at extremely high field strengths.  With the proper detection setup, buffer, 

field strength, and fluidic reservoir heights; all of the terms in equation 1.13 can be 

drastically reduced or ignored except for diffusion, so a high efficiency separation is said 

to be diffusion limited. 

It is important to reduce all of the contributions to dispersion; however, it is most 

important to fully resolve the peaks.  Resolution (Rs) is the measure of how well two 

peaks are separated from one another.  It is defined as: 

(1.16)          
σ4)(

)(2

21

12 t
ww
ttRs

Δ
=

+
−

=  

 10



where (t) is the peak time and (w) is the peak width.   It can be further related to the 

efficiency of the separation by: 

 (1.17)    
μ
μΔ

=
4
NRs   

where μΔ  is the difference between the mobilities of the neighboring analytes and μ is 

the mean of the mobilities.  Generally a resolution of 1.5 is desired as this indicates the 

peaks are base line resolved.1, 2, 4-6 

1.1.3 Micellar Electrokinetic Chromatography 

MEKC is a powerful technique for separating uncharged analytes and/or analytes 

with similar electrophoretic mobilities.  Micelle forming agents are added to the BGE 

above their critical micelle concentration (cmc).  Micelles are molecules with charged 

hydrophilic head groups and hydrophobic “tails”.  When in aqueous solution above the 

cmc, they form spherical colloids with the head groups on the outside of the sphere and 

the tails extending inwards towards the core of the micelle.  These micelles act as a 

pseudo-stationary phase and interact with the analytes during the separation.  The 

micelles have their own electrophoretic mobility based on their charge and size.  

Typically anionic surfactants are used because their electrophoretic mobilities are in the 

opposite direction of the electroosmotic flow.  In the experiments in Chapter 2 both 

anionic surfactants are used as well as mixed surfactant systems with anionic, cationic 

and zwitterionic surfactants.  The mixed micelle system is predominated by an anionic 

component and, therefore, should have an overall negative electrophoretic mobility.  

Micelles increase the resolving power by adding a second separation mechanism that 

increases the selectivity of the buffer solution.  As the analytes travel towards the detector 
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they partition into and out of the micelles at different rates.  Since the micelles are 

moving slower than the bulk fluid flow the amount of time that the analyte spends in the 

micelle will increase the time it takes for the analyte to reach the detector.  Analytes with 

similar electrophoretic mobilities will interact differently with the micelles depending on 

their hydrophobicities and each analyte will have its own partition coefficient K: 

(1.18)                  
M

PS

c
c

K =  

where cPS is the molar concentration of analyte in the pseudo-stationary phase and cM is 

the concentration in the mobile phase.  The partition coefficient can also be used to define 

the retention factor (k') of an analyte, which is a ratio of the amount of time the analyte 

spends in the stationary phase compared to the mobile phase: 
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where VS, VM, tr, t0, and tm, are the volume of the stationary, mobile phase, retention times 

of an analyte, unretained analyte (rate of EOF), and the micelles, respectively.  A ratio of 

the retention factor for multiple analytes in a separation is the separation selectivity (α) is 

defined as: 
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The selectivity is always defined such that α > 1.   

Resolution of analytes in a CE separation have already been discussed in this 

chapter, however, there are additional contributions to resolution when considering 
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MEKC.  Resolution for typical CZE separations is defined in equation 1.16 and 1.17, 

resolution for chromatography with traditional mobile and stationary phase is defined as: 
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However, for MEKC there is an additional term.  For MEKC of neutral analytes there is a 

specific time window where all peaks will elute.  This window is defined as the time 

between t0 and tM, i.e. for neutral analytes with no electrophoretic mobility, they cannot 

elute before the dead time and analytes that do not interact with micelles will have a 

velocity equal to the υeo, and completely retained analytes will have velocity equal to the 

velocity of the micelle (υmc).  Because of this extra consideration the resolution for 

MEKC can be defined as:  
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The additional term at the end results from the limited elution window.  In order to 

increase the elution window and also increase the peak capacity of a separation it is 

common to add organic solvents.  These solvents will alter the partition coefficient by 

changing the hydrophobicity of the mobile phase.  These solvents also suppress EOF 

which increases the separation time, but also increases the interaction between the 

analytes and micelles, which can increase the resolving power of the buffer.1, 2, 4-6 
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1.2 Preconcentration and Double Layer Overlap 

Electrokinetic transport has already been described in this chapter; however, all of 

the previous theory and discussion included one major assumption, that the Debye length 

(λD) is much less than the smallest channel/pore dimension (h).  If h/ λD < 5 or even closer 

to 1, the previous rules of fluid transport no longer apply.  When h/ λD < 5 ion transport 

through these small channels is dominated by an electrochemical equilibrium, Donnan 

equilibrium.  This equilibrium theory has been developed to explain the electrochemical 

equilibrium that exists when charge selective nanochannels or nanopores are in contact 

with a bulk electrolyte solution.  The phenomenon occurs when localized ionic 

concentrations change to compensate for the electrochemical potential difference 

between two regions separated by a charge selective membrane.  These rules do follow 

some assumptions as well; however, these fit our application explained in Chapter 3.  

Here a microchannel and nanoporous membrane fit the criteria, because the limiting 

dimensions of the microfluidic channel are much greater than the porous membrane.  For 

this explanation, the microfluidic channel will be treated as a bulk solution.  In a 

nanoporous membrane that is negatively charged, the EDL theory remains appropriate to 

the extent that an adsorbed layer and Stern layer exist, however, the diffuse layers from 

opposing sides can either overlap or come in close proximity to one another.  The 

electrochemical equilibrium associated with Donnan equilibrium is a result of the 

difference in electrochemical potential inside the nanopore versus the bulk solution 

outside.  This potential change is compensated by differences in ionic concentrations.  

The electrochemical potential ( iμ
~~ ) of an ion at constant temperature and pressure can be 

defined as: 
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where iμ~ is the chemical potential, F is the Faraday constant, ψ is the electric potential 

due to the surface charge, 0~
iμ  is the standard chemical potential of ion i at constant 

temperature and pressure, R is the gas constant, T is the temperature, γa is the activity 

coefficient, and c0 is the standard molarity of 1 M.  In the nanopore, the wall is negatively 

charged; therefore, there is higher concentration of free cations than anions due to the 

charge on the walls of the pore.  The electrochemical potential of these cations are equal 

inside (II) the nanopores and in the bulk (I) solution, and can be described by the 

following equation: 

(1.24)              II0II0I )/ln()/ln( Φ+=Φ+ Ι FzccRTFzccRT iiii

where Φ represents the electric potential.  The Donnan potential (ΦD) is the electric 

potential difference between the two sides, i.e. ΦD = ΦII - ΦI: 
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which results in the Donnan ratio (rD) of cations and anions: 
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with a valency of 1 and -1, respectively.  The Donnan ratio shows that a negatively 

charged nanopore adjacent to a bulk electrolyte will result in a cation selective pore 

which excludes anions.  This interaction is called the exclusion-enrichment effect (EEE).  

The EEE can be explained by considering the anionic permeability of the pore as the 

Debye length increases.  When λD << h the ionic flux (φ*) is proportional to the 
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geometric cross section (S*) of the channel.  When the Debye length becomes similar to 

the effective pore height the new effective flux (φeff) is proportional to the effective 

geometric cross section (Seff), which for the case of h/λD = 5 or less, is drastically reduced 

effectively excluding anions from the pore.  The ion flux is proportional to the 

concentration of ions along the longitudinal axis (x) of the pore, so the exclusion-

enrichment coefficient (β) can be define as: 

 (1.27)             
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where P is the permeability of the ions.  Coefficients less than 1 would indicate exclusion 

of anions from a negatively charged pore.  All of the above theory is derived under the 

assumption of no external field, where all of the fluidic movement is based on diffusion.7, 

8 

Upon application of an external field electrokinetic transport occurs along with 

diffusion.  However, the transport of ions through nanopores can create large forces and 

large irregularities in fluidic movement at the junction creating complex flow 

circulations.  Analyte concentration enrichment does occur, as seen in Chapter 3, but the 

current electrokinetic theory cannot completely explain the mechanics at the junction.  

When the external field is applied the concentration enrichment does occur due to the 

generation of concentration gradients of ionic species adjacent to the ion selective 

membrane.  On the anodic side of the porous region an anodic diffusion boundary layer 

(DBL) develops.  This DBL has lower ionic concentration levels when compared to the 

bulk solution, and the anions move away from this region.  In order to observe 

electroneutrality the surrounding cations not transported through the membrane also 

vacate the DBL creating a charge depletion zone.  Since the anions cannot traverse the 
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membrane they will begin to increase in concentration on the anodic side of the 

membrane at the anodic border of the DBL.  Conversely, on the cathodic side of the 

membrane, an additional DBL will develop due to the increase of cations that are 

transported through the membrane and in order to obey electroneutrality there will be an 

increase in the local ionic concentration.  These regions of ionic depletion and enrichment 

are called concentration polarization zones.  Figure 1.4 demonstrates the effect of 

concentration at both the anodic and cathodic side of a membrane with an applied 

external field.   

 

Figure 1.4 - Concentration polarization zones at an ion selective membrane, where 

Imob is the ionic strength of the mobile phase 

The degree of ion depletion and enrichment in the DBL is directly proportional to the 

applied electric field.  This attribute of ion selective membranes can be used to enrich the 

concentration of analytes at a microfluidic/nanofluidic junction.7, 8 

 The creation of the ion depletion zones also has an effect on the current flow 

through the membrane.  The ionic concentration on the anodic side of the membrane can 

decrease to the point where the current through the membrane reaches a limit due to 

 17



insufficient ions to transport the current across the membrane.  The limiting current (Ilim) 

is defined as: 

 (1.28)    
δ

bc
nFADI =lim  

where n is the number of electrons transferred per molecule, A is the surface area of the 

membrane, cb is the concentration of the bulk solution and δ is the DBL thickness.  

Therefore, the current through the membrane is directly proportional to the surface area 

of the membrane.7, 8 

 

1.3 Microfluidics 

The advantages that microfluidic devices have over conventional separation 

techniques potentially have the power to alter how chemical analysis is performed.  These 

devices are capable of performing multiple analytical processes rapidly, in a parallel 

manner, and with reduced sample and solvent consumption.  Microfluidics is a relatively 

young field in the separation sciences.  It differs from traditional separation devices in 

that the devices consist of multiple intersecting channels on a single solid substrate.  The 

ability to design a variety of channel layouts allows the microchips to perform many 

different analytical procedures on one fluidic platform.  There are three basic channel 

variations, “T” junctions, cross intersections, and straight channels.  The “T” junctions 

can easily be used to bring into contact two different analytes for mixing purposes, the 

cross intersections can be used for valving and fluidic switching, and the straight 

channels are typically used to perform chromatographic or electrokinetic separations.  

These channel structures can be combined in many different combinations to tailor the 
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device for each individual application.  The most common application combines a cross 

intersection and a straight channel.  Using electrokinetic transport, a sample and 

separation buffer can be brought in contact at the intersection, upon fast switching of the 

voltages a small sample plug can be injected into the separation channel where the 

analytes are separated and detected.  An injection is shown in Figure 1.5.  With the 

application of different voltages at each channel reservoir, additional considerations are 

necessary to calculate the electric field.  Using a combination of Ohm’s Law (1.29) and 

Kirchhoff’s Law (1.30) the voltage at the intersection of multiple channels can be 

calculated. 

(1.29)                                            IRV =  
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Kirchhoff’s current law states that the current into an intersection is equal the current out 

of the intersection.  Using this along with measured channel resistances the voltage at the 

intersection can be calculated.  The electric field of the separation channel can be 

calculated using the voltage drop from the channel intersection to end of the separation 

channel and the length of the separation channel using equation 1.2.  An increase in 

electric field strength is another advantage of microchips.  Microfluidic devices can 

typically operate at higher electric fields because as the channel dimensions decrease the 

surface area to volume ration increases giving better heat dissipation.  Also, as the lengths 

decrease, the voltages necessary to reach high field strengths also decrease.  The 

increased field strength decreases the separation times from minutes to seconds.  These 
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rapid separations can be easily automated and sequential separations are possible.  

Solvent and sample requirements are also decreased with these devices.  The ability to 

manipulate small volumes especially through decreased sample injection is another 

advantage, as it decreases the variance of the separation, as outlined in section 1.1.2.   

 

Figure 1.5 - Injections on a microfluidic device at a cross intersection 

1.3.1 Laminar Flow 

In other separation methods turbulent flow is often generated.  Turbulent flow is 

characterized as chaotic flow which can cause mixing, also decreasing the separation 

efficiency.  The Reynolds number is a measure of the flow characteristics of a contained 

fluidic stream, laminar or turbulent, given as: 

(1.31)        
η
ρυcd

=Re  

where dc is the tube diameter, ρ is the fluid density and η is the viscosity of the fluid.  

Turbulent flow is generally not desired for microfluidic applications as it increases 

mixing and band broadening.  Laminar flow is defined as flow that moves in expected 

paths, Reynolds numbers below 2300.  Laminar flow is possible with both electrokinetic 

and hydrodynamic transport.9  This allows two streams that come in contact at a junction 
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on a microfluidic device to not readily mix.  Any mixing will be diffusion related.  For 

fluids in microfluidic devices the Reynolds number is often less than 1.   

1.4 Conclusions 

In the subsequent chapters I will examine multiple applications of microfluidic 

devices.  Chapter 2 will discuss MEKC and the creation of a new separation buffer using 

a mixed micelle system that alters the selectivity and enhances the separation efficiency 

of amino acids.  Chapter 3 will utilize multiple properties outlined in this chapter 

including laminar flow to create a titania nanoporous membrane at the intersection of 

multiple microfluidic channels, and using double layer overlap and Donnan equilibrium 

to increase the concentration of analytes on microfluidic devices.  In Chapter 4, an 

exciting new field of paper based microfluidic devices capable of performing biologically 

relevant assays is reported.  Chapter 5 describes the fabrication of protein resistant 

surfaces for surface plasmon resonance detection of proteins.  Finally, Chapter 6 

discusses the future outlook for these projects.
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CHAPTER 2 -  A Novel, Environmentally Friendly Sodium 

Lauryl Ether Sulfate, Cocamidopropyl Betaine, Cocamide 

MEA Containing Buffer for Micellar Electrokinetic 

Chromatography on Microfluidic Devices 

The majority of this chapter is published as: Hoeman, Kurt W., Culbertson, 

Christopher T., Electrophoresis, 2008, 29(24), 4900-5 

2.1 Introduction 

Micellar electrokinetic chromatography (MEKC) is a very powerful separation 

technique, developed by Terabe et al.10, and has been used to study a wide variety of 

analytes.  While MEKC initially focused upon the separation of neutral analytes, it has 

also been used to improve the separation of charged analytes that have hydrophobic 

functional groups.11-17  One particularly important class of charged analytes whose 

separations have been improved by MEKC are amino acids.  While amino acids are 

charged, 15 of the 20 have very similar mass to charge ratios and this makes them 

difficult to separate by free solution electrophoresis.  In order to improve such 

separations, one can add a second, orthogonal separation mechanism such as 

hydrophobicity through the addition of micelle forming agents in the separation buffer.  

There are multiple reports of both native and fluorescently labeled amino acids 18-24 being 

separated using MEKC20, 25.  Most of the MEKC separations of amino acids reported thus 

far have, however, used sodium dodecyl sulfate (SDS) as the micelle forming reagent. 
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While SDS is by far the most commonly used micelle forming agent, it does have 

some selectivity limitations.  To overcome some of these limitations, additives are used 

to modify the selectivity of the surfactant.  Organic solvents, in particular are regularly 

added to MEKC buffers.  These additives are especially useful to improve the separation 

of exceedingly hydrophobic analytes, as they shift the partition equilibrium towards the 

mobile phase.  Methanol, ethanol, propanol, tetrahydrofuran (THF) and acetonitrile are 

the organic modifiers most commonly added to MEKC buffers13.  The addition of organic 

solvents to running buffers, however, also tends to increase separation time, generates 

migration time reproducibility problems as organic additives have a higher vapor 

pressure and tend to evaporate faster, and makes the buffer less environmentally friendly. 

In our search for a more environmentally friendly MEKC buffer with modified 

and improved resolving power, speed, and selectivity, we came across the family of 

Seventh Generation™ Inc. products.  Seventh Generation™ Inc. produces household 

products that are environmentally friendly and non-toxic. One of the products 

manufactured by Seventh Generation™ Inc., Free & Clear™ Dishwashing Liquid, 

contains three micelle forming agents sodium lauryl ether sulfate (SLES) (anionic), 

cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (MEA) 

(nonionic) as shown in Figure 2.1 which are not readily commercially available in 

combination or separately.  All three of these surfactants are more environmentally 

friendly than SDS according to the Danish EPA26.  To the best of our knowledge none of 

these surfactants have been used previously as micelle forming agents for MEKC.  The 

only reagent that closely resembles any of these that has been reported as a micelle 

forming reagent is SLES. Ding et al. has previously reported the use of SLES as a 
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surfactant for MEKC27.  In this report, the surfactant was synthesized through the 

sulfoxidation of Brij-30, referred to as Brij-S.  Ding et al. reported that the Brij-S 

molecule contained between 1 and 11 ethoxy groups and their buffer contained high  

 

Figure 2.1 - Chemical structures of the micelle forming agents in the Seventh 

Generation™ Free & Clear™ Dishwashing Liquid  

concentrations of organic additives27.  Conversely, the SLES in the Seventh Generation™ 

detergent has only 3 ethoxy groups.  The addition of two other types of micelle forming 

agents, the lack of organic additives, and the use of more environmentally friendly 

reagents should create an alternative to SDS containing buffers.  Along with the need for 

using only small volumes of buffers on microfluidic devices, this buffer helps to provide 

a truly “green” microfluidic-MEKC separation technique, which will be attractive for 

future use.   
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This chapter reports a MEKC buffer containing three environmentally friendly 

micelle forming agents, two of which, to our knowledge, have not been previously used 

for MEKC separations.  This buffer provides faster separations than previously optimized 

MEKC buffers for amino acid separations, exhibits a different selectivity than SDS, 

generates equal or better efficiencies, and is completely void of organic solvent additives. 

 

2.2 Materials and Methods  

2.2.1 Reagents and Fluorescent Labeling 

Sodium dodecyl sulfate, sodium borate, DMSO, sodium bicarbonate, and 

acetonitrile were purchased from Fisher Scientific. The amino acids alanine (A), arginine 

(R), asparagine (N), aspartic acid (D), glutamic acid (E), isoleucine (I), leucine (L), lysine 

(K), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan 

(W), and valine (V) were obtained from MP Biomedicals (Solon, OH) and were labeled 

with BODIPY FL STP ester sodium salt from Invitrogen (Eugene, OR).  The amino acids 

were prepared by making 5 mM solutions of each amino acid in 0.15 M sodium 

bicarbonate pH = 9.1.  A 5 mg vial of BODIPY FL was diluted with 1.0 mL of DMSO, 

and then 450 µl of the amino acid cocktails along with 50 µl of the labeling cocktail were 

combined in micro-centrifuge tubes at a molar ratio of 5.3:1, amino acid to BODIPY 

respectively.  The samples were then placed on a shaker in the dark for ~4 h.  Assuming 

complete reaction with the labeling compound the concentration of labeled amino acids 

was 0.92 mM.  The samples were then stored in a freezer until use.  For separations each 

amino acid cocktail was diluted 1:500 into the MEKC buffer. The new MEKC buffer was 
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prepared by combining varying percent concentrations (w/w) of Free & Clear™ 

Dishwashing Liquid from Seventh Generation™ Inc. (Burlington, VT) and 0.01 M 

sodium borate.   

 

2.2.2 Microchip Design and Fabrication 

2.2.2.1 Glass Microchip Fabrication 

Photomasks fabricated using AutoCAD 2006 software (Autodesk, Inc.; San 

Rafael, CA), were submitted to Fineline Imaging (Colorado Springs, CO).  The 

photomasks for this application had channels 25.4 µm wide which increased to 200 μm 

wide as the channels approached the solution reservoirs.  The narrow sections of the 

channels where the injections and separations took place had the following dimensions: 

the sample, buffer, buffer waste and separation channels were 0.73, 1.20, 1.20, and 3.75 

cm long, respectively.  Microchips were fabricated with borosilicate glass (10.16 cm x 

10.16 cm x .08 cm) (Telic; Valencia, CA), which had a chrome layer followed by a layer 

of AZ1500 positive tone photoresist.  The glass plates from Telic were exposed through a 

photomask with the channel design on it using a UV exposure system (ThermoOriel, 

Stratford, CT).  The plate was then placed in a photoresist developing solution 

(Microposit Developer, Shipley Co.; Marlborough, MA) for 90 s, and then rinsed with 

H2O.  Next, the plate was placed in chrome etchant (Transene, Co., Danvers, MA), and 

again rinsed with H2O followed with drying under a stream of nitrogen.  Finally, it was 

placed into a glass etching solution until the desired channel depth was reached.  The 

buffered oxide glass etchant was comprised of (NH4/HF, 10:1) which was combined with 
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H2O and HCl at a final ratio of 1:4:2, respectively.  The channel depth was measured 

using a profilometer (Ambios Technology; Santa Cruz, CA); the final channel 

dimensions were 50.1 μm wide and 10.1 μm deep.  The glass plates were then cut into 

single microchips, 2.54 cm x 5.08 cm, using a glass dicing saw (MTI Crystal; Richmond 

CA).  Access holes were drilled into the etched and diced plate at the terminal ends of the 

channels using 1.5 mm diamond tipped drill bits (Rio Grande; Albuquerque NM).  An 

additional glass plate from Telic, without chrome and photoresist was diced into identical 

pieces to act as the cover plate for the device.  The glass sections were then submerged in 

5 M sulfuric acid for 10 min., followed by rinsing with H2O.  Each piece of glass was 

then swabbed with acetone, ethanol and H2O using clean room swabs (Great Barrington, 

MA), and dried under nitrogen.  A set of five cover plates and 5 etched pieces were 

placed in a glass slide holder and submersed in solution of 1000 mL H2O and 25 mL 

Versa-Clean liquid soap (Fisher Scientific; Pittsburgh, PA) and placed in a sonicator for 

12 minutes.  After rinsing with copious H2O and dried they were placed in acetone and 

sonicated for 12 minutes.  Without drying they were placed in the etchant solution for 10 

s, and then rinsed and placed in a hydrolysis solution (1:1:2, NH4OH: 30% H2O2: H2O) 

for 12 minutes.  Finally they were rinsed and placed in flowing 18.1 MΩ H2O and 

sonicated for 12 minutes.  One of each of the cover plates were placed in contact with the 

etched side of the channel piece and clipped together with binder clips.  The reservoirs 

were dried out and vacuum was applied to the reservoirs to pull the channels dry from the 

excess H2O.  The microchips were then placed in a 100 oC oven for 2 hours.  Finally the 

two sides were irreversibly thermally bonded together in a kiln (Evenheat; Caseville, MI).  
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Solution reservoirs, 8 mm special wall glass tubing cut into 0.25 inch sections, were then 

attached above drilled access holes using epoxy (Epoxy Technology; Billerica, MA).   

2.2.2.2 Poly(dimethysiloxane) Microchip Fabrication 

A clean silicon wafer (Silicon Inc.; Boise, ID) was used as the substrate for the 

fabrication of the mold.  An aliquot of negative tone photoresist SU-8 2010 (MicroChem 

Corp.; Newton, MA) was deposited on the wafer which was adhered to the chuck of a 

spin coater.  A spin program was used to create a ~20 μm film on the surface.  After a 

baking protocol to remove solvent from the photoresist, the photomask, designed in a 

similar fashion as before, was placed on top of the photoresist and illuminated with the 

UV exposure system.  The wafer was place on hot plates for a post-bake procedure as 

suggested by the manufacturer and then developed in a SU-8 developing solution.  This 

resulted in the mold for the fabrication of the microfluidic device. 

To fabricate the poly(dimethylsiloxane) (PDMS) chip, the prepolymer and curing 

agent were mixed in a 10:1 ratio and degassed.  The PDMS, 13 g, was poured on top of 

the silicon wafer mold, and 9 g was poured onto a cleaned 75 mm x 50 mm glass slide, 

which will act as the other side of the device.  They were baked in an 80 oC oven for 15 

minutes.  The two pieces were then pulled off their substrates and placed in conformal 

contact with one another so the previous sides which were in contact with the substrates 

are now in contact.  The resulting device was placed back in the oven for an additional 1 

hour.  Access holes were “punched” into the PDMS at the ends of the channels and with 

3 mm biopsy punches.  Solution reservoirs, ¼” sections of 8 mm special wall glass 

tubing, were attached using uncured PDMS as the adhesive, which required an additional 

baking time of 20 minutes to cure. 
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2.2.3 Separations  

To prepare the chips for separations the channels were flushed with 1.0 M sodium 

hydroxide, followed by water, and then the MEKC buffer.  All solutions were made using 

18.0 MΩ ultra pure water (Barnstead; Dubuque, IA) and filtered through 0.45 µm syringe 

tip filters (Millipore; Bedford, MA).  The separation voltages were applied using an in-

house built power supply controlled with LabVIEW (National Instruments; Austin, TX).  

After injection of the sample, the separated fluorescently labeled amino acids were 

detected using laser induced fluorescence (LIF).  The excitation source for the LIF 

detection system was a diode pumped Nd:YAG laser at 473 nm (CrystaLaser; Reno, 

NV).  The laser beam was reflected off a 500 nm long pass dichroic mirror (Omega 

Optical Inc.; Brattleboro, VT) into a 40 x objective which focused the light into a section 

of the channel.  The analyte emission was collected using the same objective and passed 

through a dichroic mirror, a 500 µm pinhole, and a 500-580 nm band pass filter (Omega 

Optical).  The filtered signal was detected using a photomultiplier tube (Hamamatsu; 

Bridgewater, NJ).  The signal was amplified with a low-noise current pre-amplifier 

(Stanford Research Systems; Sunnyvale, CA) which employed a 30 Hz low pass filter.  

This signal was collected at 100 HZ with a National Instruments 6036E data acquisition 

card in a PC. 

2.3 Results and Discussion 

2.3.1 MEKC Buffer Optimization 

To initially study the MEKC buffer we chose to separate four BODIPY FL STP 

ester labeled amino acids, aspartic acid, phenylalanine, threonine, and proline with 
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widely varying hydrophobicities.  The concentration of the Seventh Generation™ 

dishwashing liquid was varied between 0% and 10% (w/w) and combined with 10 mM 

sodium borate solutions to make a series of running buffers.  The amino acids used in 

these separations were labeled with BODIPY FL STP ester and were diluted into the 

separation buffer at a concentration of 2 μM.  Separations of the four amino acids were 

performed in all of the different running buffers, varying concentration (%, w/w) of 

Seventh GenerationTM dish washing liquid and 10 mM sodium borate, with the same field 

strength, 900 V/cm, as shown in Figure 2.2.   
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Figure 2.2 - Electropherogram of 4 BODIPY FL STP ester labeled amino acids.  The 

amino acids are represented with their one letter abbreviations, and B represents 

the BODIPY FL blank. 

using the 5.0% Seventh Generation™ dishwashing liquid yielded the fastest separations 

where all peaks were sufficiently resolved, with resolution of at least 1.5.  The Seventh 

Generation™ buffer successfully separated the amino acids with nice Gaussian shaped 

peaks faster than previously optimized buffers developed in our group using SDS28, 29 and 

with equal or higher separation efficiencies.  For example the final peak, i.e. 
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phenylalanine,  in the 5.0% Seventh Generation™ and SDS buffers in Figure 2.3 was 

detected 69% (9 s) faster and with 19% higher efficiency (~94 k) using the Seventh 

Generation™ buffer.  The higher separation efficiencies for the Seventh Generation™ 

buffer compared to the SDS may be due to the fact that the Seventh Generation™ buffer 

is a mixed micelle system.  Mixed micelle systems have been shown previously to 

generate higher separation efficiencies due to their decreased structural order and a lower 

surface charge density.  This is believed to improve the mass transfer kinetics for the 

partitioning of the analyte between the buffer and the micelle.30 

One interesting aspect of this buffer is that the selectivity changed with increasing 

surfactant concentration, e.g. the phenylalanine traded places with aspartic acid and 

proline traded places with the excess BODIPY peak with increasing surfactant 

concentration.  This is a phenomenon that is not commonly seen in MEKC separations.  

Most previous reports which have examined the effect of surfactant concentration on  
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Figure 2.3 - Electropherogram of 4 amino acids in 5.0% Seventh Generation™ 

Dishwashing Liquid and 10 mM sodium borate, and in 50 mM SDS, 10 mM sodium 

borate, and 20% acetonitrile. 

selectivity have shown that changing the surfactant concentration (i.e. phase ratio) does 

not modify the separation selectivity (α = ky/kx).31, 32  Selectivity, rather, is typically 

altered by changing the surfactant, using mixed micelles, or by the addition of organic 

modifiers.31-34  There is, however, one recent report by Wang et. al. where increasing the 

SDS concentration altered the selectivity of 2-chlorophenol and 4-nitrophenol.  The 
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authors in this report attributed the change in migration order to the amplified 

contribution of hydrogen bonding at high surfactant concentration levels.35  The micelle 

forming agents in the buffer that we are using are capable of forming hydrogen bonds 

with the analytes used in this analysis and this may be the reason for the change in 

selectivity seen with the change in surfactant concentration.   

 While the actual concentrations of the surfactant used in the optimized 

separation buffer is not known, the MSDS for the solution allowed us to calculate a 

concentration range for each of the surfactants used.  SLES, cocamidopropyl betaine, and 

cocamide MEA had concentration ranges in the 5% buffer of 3.5 mM to 35 mM, 1.4 mM 

to 14 mM, and 2.0 mM to 20 mM, respectively.  In the longer term we would like to be 

able to obtain each surfactant in reasonably small quantities from the manufacturers to 

better examine the usefulness of each surfactant in different combinations and 

concentrations.  One potential issue in using a commercial off-the-shelf product such as 

this is the batch-to-batch reproducibility.  While this has not been specifically tested yet, 

the one 500 mL bottle that we have, at present, would be sufficient to last more than 20 

years under daily use (50 µL/day) thus reducing the importance of such issues.   

 

2.3.2 Separation of Hydrophobic Amino Acids 

To examine the potential of the buffer to separate more hydrophobic analytes, we 

moved to a set of the most hydrophobic amino acids - phenylalanine, isoleucine, leucine, 

tryptophan, valine, and methionine.  These amino acids were again labeled with BODIPY 

FL, and were separated on the same style glass microchip using the same injection and 

separation voltages.  At 5.0% Seventh Generation™ buffer the peaks were not all 
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resolved.  To increase the interaction of the hydrophobic analytes with the micelles, a 

higher concentration of Seventh Generation™ was used.  The 10.0 % Seventh 

Generation™ buffer separated the amino acids to the point where the majority of the 

peaks were baseline resolved (Figure 2.4).   

 

Figure 2.4 - Electropherogram of 6 hydrophobic amino acids in optimized MEKC 

buffer: 10.0% Seventh Generation™ Dishwashing Liquid, and 10 mM sodium 

borate, and in 50 mM SDS, 10 mM sodium borate, and 20% acetonitrile. 

We also attempted to separate these six amino acids using a previously optimized 50 mM 

SDS, 10 mM sodium borate and 20% acetonitrile buffer for comparison.  The 10.0% 
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Seventh Generation™ buffer overall gave higher efficiencies (211%) and shorter 

migration times (75%) compared to the SDS buffer with field strength of 900 V cm-1 

(Table 2.1).  

V M I I L F W
N 74000 66000 72000 77000 71000 61000 52000

tr (s) 20.6 21.6 23.6 24.1 24.5 31.7 36.6

V M I I L F W
N 35000 33000 31000 33000 30000 25000 41000

tr (s) 27.3 28.3 31.0 32.0 33.4 43.3 48.0

    10% Seventh Generation TM , 10 mM Sodium Borate

    50 mM SDS, 20% Acetonitrile, 10 mM Sodium Borate

 

Table 2.1 - Theoretical plates and retention times for the separation of hydrophobic 

amino acids 

2.3.3 Separation of Hydrophilic Amino Acids 

To examine the potential for separating more hydrophilic compounds, we 

attempted the separation of six of the most hydrophilic amino acids proline, glutamic 

acid, aspartic acid, lysine, asparagine, and arginine were examined in this new buffer.  

The 5.0% Seventh Generation™ buffer completely separated the six amino acids (Figure 

2.5).  It provided substantially faster separations than the SDS containing buffer.  The set 

of analytes was also separated with the same 50 mM SDS, 10 mM Borate buffer 

previously used but without the acetonitrile.  The removal of the acetonitrile significantly 

increased the EOF; however, the separation was still slower than the separation 

performed in the Seventh Generation™ buffer as seen in Figure 2.5.  Both buffers yielded 

high efficiency separations, where plate numbers obtained were above 100,000 plates and 

some peaks with ~200,000 plates.  The second lysine peak in the Seventh  
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Figure 2.5 - Electropherogram of 6 hydrophilic amino acids in optimized MEKC 

buffer: 5.0% Seventh Generation™ Dishwashing Liquid, and 10 mM sodium 

borate, and in 50 mM SDS, and 10 mM sodium borate. 

Generation™ buffer generated 180,000 plates, 10,200 N/s, and a plate height of 0.19 μm.  

Whereas for the 50 mM SDS and 10 mM sodium borate buffer  generated 147,000 plates, 

6700 N/s, and a plate height of 0.23 μm.  With both buffers lysine gave two peaks.  This 

was because lysine has two amine functional groups that can be labeled using with the 

derivatization agent.  The multiple labeling was problematic with the 50 mM SDS and 10 

mM sodium borate running buffer because the first lysine peak overlapped the arginine 
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peak, effectively making it impossible to separate Arg and Lys in the same separation.  

This was not a problem with the Seventh Generation™ buffer, as we were able to 

completely resolve the two amino acids.  The second Lys peak in the Seventh 

Generation™ buffer generated 36% more theoretical plates and was 20% faster than the 

corresponding Lys peak in the best SDS buffer.  

2.3.4 Serpentine Chip Separations 

Finally a set of fifteen amino acids were separated using a serpentine style PDMS 

microfluidic device.  This fluidic pattern has been previously reported and used to 

separate amino acids with a SDS, sodium borate and acetonitrile buffer.29  Briefly the 

fluidic channels were 75 μm wide and had tapered turns where the channels were 25 μm 

wide, and all channels were 13 μm deep Figure 2.6.  The separation channel was 32.3 cm 

long with LIF detection at 25.3 cm.   

 

Figure 2.6 - Channel layout for serpentine chip separations 

A MEKC buffer containing 6% Seventh Generation was used to separate the amino acids.  

For comparison the same analytes were separated using a 50 mM SDS and 10 mM 

sodium borate buffer.  Both buffers generated high efficiency separations with field 

strengths of 415 V/cm, and yielding 375,000 plates, 3150 N/s and 1.5 x 106 N/m for Phe 
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in the seventh generation buffer, and 190,000 plates, 1660 N/s and 751,000 N/m for Phe 

in the SDS buffer as seen in Figure 2.7.  In the previous separations on glass microfluidic 

devices the SDS based buffers had slower separation times, whereas in this case the 

Seventh Generation buffer was slower.  Studies have shown that surfactants molecules 

can partition into PDMS,29 the surfactants in the seventh generation buffer might have 

different interactions with the PDMS compared to the SDS which is a possible 

explanation for the increased separation times.   

 

Figure 2.7 - Electropherogram of 15 amino acids in a MEKC buffer on a PDMS 

serpentine chip: 6.0% Seventh Generation Dishwashing Liquid, and 10 mM sodium 

borate, and in 50 mM SDS, and 10 mM sodium borate. 

 39



A change in selectivity of the buffer was again noticed here with major changes with 

respect to Asp and Glu.  Fluorescently labeled amino acid separations have previously 

been performed on similarly fabricated devices and the authors reported much longer 

separation times at higher field strengths; however, the fluorescent tag previously used 

was much larger, 150 u, and was negatively charged.  Both of which would increase the 

migration time of the analytes. 

   

2.4 Concluding Remarks 

The most attractive feature of this buffer is the decreased effect it has on the 

environment.  Chemicals are assigned hazard ratings for their effect on humans and the 

environment, where the ratings for humans contain an alphabetic and numeric rating; 

only a numeric rating is used for the environment.  For human hazard ratings the number 

relates to acute exposure, while the letter coding relates to chronic exposure.  The 

numeric rating class 1, for example, refers to acute exposure with irreversible effects after 

exposure to low doses, and with class 5 there is no reason for concern regarding adverse 

effects to heath.  The chronic classes are similar where class A is equivalent to class 1 as 

class E is to class 5.  According to the 2001 Danish EPA report SDS, SLES, and 

cocamidopropyl betaine have environmental hazard class ratings of 3, 4, and 4, and 

human health hazards of 2D, 3E, and 4E, respectively.  Therefore, the micelle forming 

agents in the Seventh Generation™ dishwashing liquid pose less of an environmental and 

human hazard than the most commonly used surfactant in MEKC, (i.e. SDS).  This buffer 

also has the additional advantage of obviating the need for organic additives when 

optimizing partition coefficients.  Also the evaporation of organic additives over the 
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course of a series of runs will generate changes in both the partition coefficient and the 

electroosmotic flow, thus affecting the migration time reproducibility.  The absence of 

organic solvents in the Seventh Generation™, therefore, should produce more robust and 

reproducible separations.  Finally, buffers without organic solvents also have a higher 

EOF, which allows for the successful injection of slower more negatively charged 

analytes. The change in the selectivity of the buffer, the decreased separation time, and 

the ability to tailor the surfactant concentration to resolve peaks of interest is a powerful 

characteristic of this buffer.  These attributes along with the lack of organic solvents 

makes this new buffer a “green” option for MEKC analysis.   
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CHAPTER 3 -  Electrokinetic Trapping Using Titania 

Membranes Fabricated Using Sol-Gel Chemistry on 

Microfluidic Devices 

 The majority of this chapter is to be published as: Hoeman, Kurt W., Lange, 

Jeffrey J., Roman, Gregory T., Higgins, Daniel A., Culbertson, Christopher T., 

Electrophoresis, 2009, accepted. 

3.1 Introduction 

Microfluidic devices have many potential advantages over commercial scale 

chemical analysis instrumentation in that they can integrate multiple chemical processing 

steps with rapid and high efficiency separations onto a single monolithic device.  Several 

different types of chemical processing and handling steps have been demonstrated on 

these devices including mixing, reactions, filtering, preconcentration and separations.36, 37  

These processing and handling steps have also been integrated with on-chip 

waveguides,38, 39 lasers,40, 41 and photodiodes42 to generate devices capable of performing 

biochemical analyses with laser induced fluorescence (LIF) detection.43, 44  Although LIF 

is an extremely sensitive detection method, its limit of quantitation generally lies within 

the nM to pM range of concentrations. In many cases, there exist samples in which the 

analyte of interest is too dilute to be detected even by LIF.  To further improve LIF 

detection on microfluidic devices, especially for low concentration analytes, 

preconcentration methods need to be integrated with separation and detection. 
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Numerous examples of analyte concentration enrichment on microfluidic devices 

have been reported.  These include field amplified sample stacking (FAS),45, 46 

electrokinetic trapping, isotachophoresis (ITP),47-49 chromatographic preconcentration,50, 

51 micellar sweeping,52, 53 and membrane preconcentration54, 55 among others.  In most 

previous microfluidic membrane preconcentration studies, the microfluidic devices have 

been fabricated using multilayer lithography and fabrication techniques that incorporate 

commercially available track etched membranes.56-59  The track-etched membranes are 

sandwiched between two poly(dimethylsiloxane) (PDMS) layers in which channels have 

been molded.  While the precise mechanism of concentration is not completely clear it is 

generally thought that it is related to the double layer overlap that occurs in the 

nanochannels.  This double layer overlap results in a decrease in electroosmotic flow and 

also limits the ability of ions of the same charge as that on the pore walls from entering 

(i.e. Donnan exclusion).  For slightly larger pores where double layer overlap is not 

expected, surface vs. bulk conductivity mismatches have been postulated as the 

concentration mechanism.58-60  Sandwiching of nanoporous membranes into microfluidic 

devices does have some limitations including inefficient bonding between lithographic 

layers that can result in leaks and chemical compatibility issues with polymer 

microfluidics.  In addition to these sandwiched type microfluidic configurations, on-chip 

analyte preconcentration has recently been achieved using hydrogel microplugs that are 

formed in situ.61  These microstructures are limited, however, in that they are currently 

capable of generating relatively low enrichment factors (500x) and analyte leakage into 

the hydrogel plug has been observed.  Similarly, Song et al. have demonstrated laser 

patterned membranes in microfluidic channels which can be used for concentration 
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enrichment.54, 62  Finally, the use of microfluidic channels connected via nanofluidic 

channels (nanofluidic filters), have been used for preconcentration.63-66  Electrokinetic 

transport in these nanochannels has been studied in depth, especially in relation to how 

double layer overlap in the nanochannels generates an asymmetric flow of cations and 

anions through these channels that results in the  trapping of ions of the same charge as 

found on the channel walls in front of the nanochannels.67-70  Wang et al. used this 

electrokinetic trapping mechanism to demonstrate million-fold preconcentration of 

GFP.71  Electrokinetic trapping at nano/microchannel interfaces has also recently been 

shown to trap not just small analytes but larger particles as well.60  Two potential 

limitations of these nano/micro interface devices are 1) the multiple step lithography 

processes required to fabricate them and 2) the small interfacial cross-sectional area 

between the channels that limit the speed at which analyte concentration can be 

performed.72 

Fluid flow in microfluidic channel manifolds is generally laminar in nature due to 

the large surface area to volume ratio in the channels.  The Reynolds numbers in such 

devices is often << 1.  A variety of groups have taken advantage of such flow 

characteristics in order to form structures or create specific surface patterns in 

microchannels.73-75  In relation to concentrating analytes, the most notable of these 

structures are membranes.76   Zhao et al., for example, have demonstrated the synthesis of 

nylon membranes using laminar flow within microfluidic devices.77  To date, however, 

there have been no reports that demonstrate the fabrication of nanoporous membranes on 

microfluidic devices using sol-gel chemistry.  Sol-gel chemistry has proven to be 

extremely versatile in a number of fields including optics, electronics, catalysis, chemical 
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sensing, and chemical separation.78, 79  Sol-gel chemistry is very versatile and 

encompasses a wide variety of functional materials that can be synthesized using 

different metal alkoxide precursors.  Nanoporous and mesoporous materials with high 

porosities and low densities that are transparent can be easily fabricated.80  There is no 

intrinsic reason that such materials cannot be synthesized in situ in microfluidic channels 

in order to create nanoporous membranes with specific surface functionalities. The 

chemical flexibility of sol-gel processing has the potential to generate a vast number of 

different membranes for specific physical processes. 

In this chapter, the fabrication of titania nanoporous membranes using sol-gel 

chemistry where the membrane is fabricated at an intersection of channels on a 

microfluidic device is reported.  The membranes were fabricated using laminar flow to 

bring a sol-gel precursor/alcohol and a water/alcohol solution into contact at an 

intersection.  The size of the membranes could be controlled by varying the 

concentrations of the precursor and the water in the alcohol solutions.  After formation of 

these membranes, electrokinetic trapping of 2,7-Dichlorofluorescein was performed. 

Concentration enrichment factors of over 4000x were obtained in about 400 seconds. 

 

3.2 Materials and Methods 

3.2.1 Reagents and Materials 

Titanium isopropoxide (Ti(OPri)4) (Gelest, Morrisville, PA) and anhydrous 2-

propanol (IPA) (Sigma Chemical Co., St. Louis, MO) were used for membrane 

fabrication.  The buffer for these studies contained sodium phosphate (Fisher Scientific, 
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Pittsburgh, PA).  The analytes, 2,7-Dichlorofluorescein (DCF), Rhodamine B, and 

Rhodamine 6G (Acros, Geel Belgium) were used for the preconcentration studies.  All 

solutions were made using 18.0 MΩ  cm ultra pure water (Barnstead; Dubuque, IA) and 

filtered through 0.45 µm syringe tip filters (Millipore; Bedford, MA).   

Microchips were fabricated with white crown (B270) glass (Telic; Valencia, CA) 

photomask blanks.  The chip design and fabrication process have been reported 

previously.81  Briefly, the channel network included a 0.7 cm long sample channel (S),1.1 

cm long waste (W) and running buffer (B) channels, and a 3.7 cm long separation 

channel (SP) (Figure 3.1 A).  All channels were 50.1 µm wide and 10.2 µm deep.  The 

glass plates, precoated with chrome and photoresist, were exposed through a photomask 

with the channel design using a UV exposure system.  The channel depth was measured 

using a profilometer (Ambios Technology; Santa Cruz, CA).  The remaining photoresist 

and chrome was removed and the glass plates were then cut into single microchips using 

a glass dicing saw (MTI Crystal; Richmond CA).  Cover plates of the same type of glass 

were also cut to the appropriate dimensions.  Four access holes were drilled above the 

channels with diamond tipped drill bit (Rio Grande, Albuquerque, NM).  After extensive 

cleaning, the two glass pieces of glass were placed into contact with each other and then 

were thermally bonded in a kiln (Evenheat; Caseville, MI).  Solution reservoirs, ¼” 

sections of 8 mm special wall glass tubing, were attached above two of the drilled access 

holes, W and SP, using epoxy (Epoxy Technology; Billerica, MA).  Nanoport® 

assemblies (Upchurch Scientific; Oak Harbor, WA) were attached above the remaining 

two channels, S and B, with J-B weld.  Figure 3.1 shows the orientation of channels and 

reservoirs with respect the titania membrane. 
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Figure 3.1 - Schematic illustration of the membrane fabrication shows A) the 

desired liquid-liquid interface position B) the membrane formation and C) the 

preconcentration voltage scheme.  Key: sample channel (S), buffer channel (B), 

waste channel (W), and separation channel (SP) 

3.2.2 Membrane Fabrication 

The microfluidic devices were prepared for membrane formation by first rinsing 

with 1.0 M sodium hydroxide and methanol, followed by drying in a 100 oC oven for 2 

hours.  Syringe pumps, equipped with 500 μL Hamilton syringes (model 81220), were 

connected to fused silica capillary (150 μm i.d. with a total volume of 5 μL; Polymicro 

Technologies, Phoenix, AZ) and used to deliver fluids to the microfluidic device to 

fabricate the membranes.  Syringe A was filled with anhydrous 2-propanol, and syringe B 

was filled with a mixture of water and 2-propanol.  The ratio of water and 2-propanol 

varied depending on desired thickness of the membrane.  Syringe A was loaded onto an 

infusion and withdrawal syringe pump (NE-1000; New Era Pump Systems, Wantagh, 

NY).  Syringe B was loaded onto an infusion only syringe pump (11 Plus; Harvard 

Apparatus, Holliston, MA).  Using lure lock and Nanoport® fittings, the syringes were 

connected to the ports on the microfluidic device.  Syringe A was fitted to the sample 

reservoir and Syringe B to the buffer reservoir.  Both pumps were then used in infusion 
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mode at varying rates so that a liquid-liquid interface was visible at the intersection of the 

channels.  The interface between the fluids was stable due to the laminar flow within the 

channels.  The flow rates were ~3.00 μL/min and ~1.00 μL/min for A and B, 

respectively.  Flow rates were then adjusted so the interface exited the intersection into 

the waste channel and not into the separation channel, i.e. similar to how the 

sample/buffer interface would look for a standard gated injection on a microfluidic 

device.  Once the interface was stabilized, the pumps were stopped and the capillary 

attached to syringe A was disconnected from the microchip so the reactive species could 

be loaded into it.  This capillary was placed into a microcentrifuge tube containing 

anhydrous 2-propanol.  The pump was switched to withdrawal mode, and allowed to pull 

for 10 min at 3.0 μL/min, and then for 2 min at 1.0 μL/min, to allow the flow to stabilize 

in the reverse direction.  A 35% (v/v) sol-gel precursor solution was made with Ti(OPri)4 

in anhydrous 2-propanol, immediately prior to its use.  With syringe pump A still in 

withdrawal mode, a ~233 nL plug of the precursor solution was drawn into the capillary 

by pulling for 14 s at 1 μL/min.  The end of the capillary was then rinsed off in 

anhydrous 2-propanol, to prevent any precursor from the exterior of the capillary from 

entering the stock 2-propanol.  The capillary was then placed back in the microcentrifuge 

tube containing the anhydrous 2-propanol.  The pump was then run for 3.75 min at 1 

μL/min to pull the precursor plug further into the capillary.  This generated an anhydrous 

2-propanol plug in front of the precursor plug and served to delay the entrance of the 

precursor plug into the intersection until the liquid-liquid interface could be reestablished 

when the capillary was re-attached to the microfluidic device prior to membrane 

fabrication.  The capillary was then reconnected to the chip and the pumps were changed 
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back to the settings used to optimize the interface.  The two syringe pumps were then 

turned back on and when the precursor passed through the intersection it reacted with the 

water in the solution on the other side of the interface and created a nanoporous 

membrane.  After the membrane was formed, the 2-propanol solutions were pumped for 

an additional 10 min to ensure the entire precursor solution was out of the channels.  The 

channels were then flushed with water followed by 80 mM sodium phosphate, pH 11.50; 

i.e. the sample buffer for analyte concentration studies.  A pH of 11.5 was chosen after a 

qualitative study was performed using different pH buffers.  The results of this study 

showed faster and higher levels of concentration enrichment at higher pH’s.  The devices 

were allowed to sit for 24 hours before any preconcentration studies, providing sufficient 

time for the buffer to penetrate the nanoporous membrane.  There was no investigation 

into membrane performance as a function of time after formation.  So this time was set 

somewhat arbitrarily.   

 

3.2.3 Analyte Preconcentration 

To determine the ability of the membrane to concentrate analytes, a 16 bit CCD 

camera (Roper Scientific) attached to a Nikon TE2000U epi-illuminescent inverted 

microscope with an Hg-Arc lamp and a FITC filter cube was used to image a section of 

the channels and membrane.  Voltages were applied to the channels via platinum 

electrodes using a custom designed Bertan high voltage power supply. The magnitudes of 

the applied voltages were controlled using an in-house written LabView program.   

After letting a chip with a titania membrane sit for at least 24 hours, the channels 

were flushed with new buffer by replacing the buffer in the reservoirs and applying 
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negative pressure to the reservoirs.  The analyte to be concentrated was then placed in the 

sample reservoir and pulled through the chip with negative pressure applied at the waste 

reservoir.  The chip was then affixed to the stage of the inverted microscope and platinum 

electrodes placed in the reservoirs to apply the necessary electric fields to the device.  To 

monitor the preconcentration, the CCD camera was set to collect 100 ms images every 15 

s.  To prevent photobleaching of the analyte between images, the manual shutter for the 

epi-illuminescence system was opened and closed every 15 s to coincide with the CCD 

camera.  Depending on the level of preconcentration, neutral density filters were used to 

prevent oversaturation of the pixels on the CCD camera.  Two different filters were used 

ND4 and ND8 which decreased the initial light intensity to 25% and 12.5%, respectively.  

The fluorescence intensity of analyte standards were measured using the same camera 

conditions in a chip of the same channel dimensions while the analyte was 

electroosmotically moved through the device.  All images were captured using 

WinView32 software (Roper Scientific, Trenton, NJ) and analyzed using ImageJ 

software (NIH). 

3.3 Results and Discussion 

3.3.1 Membrane Fabrication   

Titania nanoporous membranes were fabricated by hydrodynamically bringing 

together an anhydrous 2-propanol solution containing 35% (v/v) titanium isopropoxide 

with a 2-propanol solution containing varying amounts of water as described in the 

experimental section above.  The thicknesses of the sol-gel membranes generated were 

both a function of 1) the interaction time between the sol-gel precursor and the water and 
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2) the % water in the 2-propanol solution. In general, the thickness of each membrane 

formed increased along the length of the membrane from the corner of the channel 

intersection where the S and B channels met to the other end of the membrane where the 

SW and S channel met (See Figure 3.1 A).  The widths of the channels reported below 

were made at the center point of the membrane in the intersection.  Membranes fabricated 

using either 50:50 or 60:40 solutions of H2O in IPA resulted in membranes with 

thicknesses that averaged 4.7 μm or 39.5 μm.  The 5 µm thick membrane will be referred 

to as the thin membrane and the 40 µm thick membrane will be referred to as the thick 

membrane.  Although it was apparent from simple optical microscopy that the 

membranes spanned the width of the channel intersection, the vertical characteristics of 

the membrane could not be determined through simple bright field microscopy.  Previous 

work in our group was performed in order to better understand the morphology of the 

membrane.  Especially in regards to the shape of the sides of the membrane and whether 

the membrane spanned the entire depth of the channel intersection.  One of the thin 

membranes was imaged using multiphoton microscopy.  After the membrane was 

fabricated in the microfluidic manifold, the manifold was filled with 1 mM fluorescein 

and allowed to sit for ~ 2 hrs prior to imaging.  Cross sections of the membrane over the 

depth of the channel demonstrated an intact vertical sidewall with constant width.82, 83  

3.3.2 Preconcentration   

Concentration enrichment was performed by applying 300 V to the sample 

reservoir 150 V to the waste reservoir, while the channels on the other side of the 

membrane were grounded.  The voltage at the waste reservoir was applied to induce a 

small electroosmotic flow away from the membrane and into the waste channel.8, 84  
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Previous papers have shown that this helps to improve the preconcentration at nano/micro 

interfaces.  This smaller voltage in the adjacent channel aids in continual buffer 

replenishment.  This prevents large electric field gradients from forming at the 

concentration enrichment zone that can de-stack the analytes, that could effectively 

decrease the level of enrichment.8, 84  Initially, one of the thin membranes fabricated with 

35% titanium isopropoxide and 50:50; H2O:IPA was studied by concentrating 31 nM 

DCF in 80 mM sodium phosphate, pH = 11.50.  After 145 s of analyte concentration, the 

intensities measured by the CCD camera were near the limit of linearity for the response 

of the pixels, so the ND4 filter was inserted.  After 325 s the ND4 was removed and the 

ND8 filter was inserted for the same reason.  Figure 3.2 shows fluorescence micrograph 

images captured with the CCD camera of preconcentration near the nanoporous 

membrane at four different times, and the colors are added for enhanced contrast.   
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Figure 3.2 - Fluorescence micrographs taken at 40, 115, 265, and 385 s after 

preconcentration voltages were applied. 

In these devices the preconcentration plug did not span the width of the channels.  

The majority of the preconcentration occurred on the left side of the channel near the 

membrane in the area where the electric field lines were of the greatest magnitude.  

Therefore, the manner in which the concentration enrichment levels and factors were 

calculated must be defined.  For the data shown in Figure 3.3, both the maximum 

intensity at a single pixel (0.57 μm2) and the average pixel count over 266 pixels (151 

μm2) are reported.  Pixel sizes were calculated by measuring the number of pixels across 

a channel of known width.  All of the data were background subtracted.  The data for the 

images taken with the ND filters in the light path were multiplied by factors of 3.76 and 
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7.34 for the ND4 and ND8 filters, respectively.  These values were determined from the 

actual change in intensity measured with the same standards at each light intensity level.  

The light intensity level correction factors were close to the values given on the filters 

themselves of 4 and 8, respectively.  The maximum pixel count indicates that the sample 

was concentrated to above 130 μM.  This was a concentration enrichment factor of over 

4000X.   

In previous reports of preconcentration over nanoporous membranes or at 

microfluidic-nanofluidic junctions, the manner in which the concentration factor was 

calculated has been discussed by some groups;54, 61, 64 however, it is not always explained.  

The concentration factor reported is greatly dependent upon this calculation.  For 

example, for the data shown in Figure 3.3 there was a 38% difference in the measured 

maximum count at a single pixel (288,000) and the mean intensity for 266 pixels 

(179,000 counts).  Also, if the averaged area was decreased from 266 pixels to only 9 

pixels (5.1 μm2) the average count increased to 279,000.  This value is 148% greater than 

the 266 pixel area that encompassed the majority of the concentration region.  The 

number of pixels used for averaging, therefore, changes the mean intensity significantly 

as shown in Figure 3.4.  For the purposes of this chapter, we report both maximum 

intensity values as well as mean values with the area/number of pixels used.  The 

maximum values are reported because they give an idea of the greatest amount of 

concentration enrichment; however, it is not an extremely accurate representation of the 

system, as line scans from the CCD camera show pseudo-Gaussian shaped enrichment 

profiles as seen in Figure 3.5.   
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In addition, the maximum pixel location moved between each acquired image (i.e. 15 

seconds) by as much as 10 pixel lengths due to flow instabilities.  Kim et. al. have 

reported the creation of fluid vortices under similar conditions due to the nonequilibrium 

electroosmotic flow,85 as discussed in Chapter 1.  Some form of averaging over a defined 

area, therefore, was necessary in order to better understand the actual levels of analyte 

enrichment.  The images in Figure 3.2 correspond with the data in Figure 3.3.   

 

Figure 3.3 - Data showing the preconcentration of DCF in 80 mM Sodium 

Phosphate (pH = 11.5).  Concentration standard values for 2.6, 26, and 130 μM are 

shown.  The light intensity was decreased with a ND4 filter and ND8 filter after 145 

s and 325 s, respectively.  Current Traces are also shown for the three electrodes 

used for preconcentration. 
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The current from the high voltage power supply was monitored and recorded 

during the concentration enrichment.  Figure 3.3 shows that there was virtually no change 

in the current during the period of concentration enrichment.  The current through the 

membrane during the enrichment period averaged ~23 μA.  The slight increase in current 

at the start of the preconcentration, we believe, can be attributed to the establishment of a 

small charge depletion zone near the membrane, as previously reported.59  After the 

formation of the charge depletion zone, the remaining constant current flow indicated 

constant flow of the cations, which were carrying the current through the membrane.  

Further identification of a charge depletion zone was verified by applying a voltage 

between the two channels on the anodic side of the membrane after a concentration 

enrichment study.  The current measured at the grounded terminal was lower than 

expected initially and slowly grew to the expected current between the two unobstructed 

reservoirs.  This initial decrease in current was due to the charge depletion zone. Previous 

reports of microchip preconcentration report mechanisms for preconcentration such as 

double layer overlap and electroosmosis of the second kind.  The preconcentration device 

used in this report contained a negatively charged membrane.  The concentration 

enrichment that we saw with our membranes was most likely due to Donnan exclusion, 

which is closely related to double layer overlap.  For this mechanism, when the electric 

field is initiated, solvated counter ions (i.e. cations in this case) freely pass through the 

membrane.  The negatively charged membrane, on the other hand would repel co-ions 

(i.e. anions in this case), accounting for the concentration enrichment of the negatively 

charged DCF. 
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Figure 3.4 - Effect of changing the number of pixels used to measure the 

concentration enrichment levels. 

 

Figure 3.5 - Line scans showing the Gaussian shaped profiles of the enriched DCF 

Thicker membranes were fabricated using the same microchip channel pattern.  

These membranes were fabricated in the same way as the thin membranes but using a 

60:40 H20:IPA instead of a 50:50 solution.  Concentration enrichment was performed on 
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this device in a similar manner as above but with a few differences.  For this study, the 

concentration of DCF was decreased to 10 nM and the ND8 filter was used for the entire 

length of the preconcentration.  The voltages were applied until the intensity reached a 

plateau.  Voltage was then applied to the sample reservoir and the ground electrode was 

moved to the waste channel (W) to electrokinetically pump the enriched analyte out of 

the analysis region and to replenish the channels with fresh buffer and analyte for 

additional analyte concentration studies.  This analysis was run in triplicate, and the 

maximum intensity values are shown in Figure 3.6.  The data collected for the thick 

membrane was acquired with the ND8 filter in the path of the excitation source, so the 

data was multiplied by 7.34 to correct for the filter.  The thicker membrane did not 

preconcentrate to the same level as the thin membrane.  This device concentrated to ~20 

μM or by a factor of 2000 in 900 s.  This concentration was calculated from a graph of 

concentration standards that displayed a linear relationship between the analyte 

concentration and pixel intensity (Figure 3.7).  The thick membrane reached a limit to its 

ability to concentrate analyte as the concentration enrichment reached a plateau after 900 

seconds.  The data collection was terminated at 1005 s because the rollover in intensity 

was a common feature in multiple data sets and the error between multiple runs had also 

decreased which led the authors to believe concentration enrichment had ceased.  This 

limitation was not seen with the thin membranes where the concentration increased until 

the pixels in the CCD camera were saturated even with the ND8 filter in place.  The 

thinner membrane also preconcentrated approximately 10 times faster than the thick 

membrane.  The preconcentration rate was determined by fitting linear least squared lines 

to the data in Figure 3.3 and Figure 3.6 and comparing the slopes of the lines.   
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Figure 3.6 - Concentration enrichment profile of 10 nM DCF. 

The difference in analyte concentration rates is probably at least partially dependent upon 

the membrane thickness.  Thicker membranes should be more resistant to mass transport 

of ions through the membrane.  If the resistance of the membrane increases the current 

should decrease in accordance with Ohm’s law.  The current through the membrane was 

monitored during the preconcentration with the same voltages applied identically as with 

the thinner membrane.  The current measure through the thick membrane was ~10 μA 

compared to 23 µA for the thin membrane, a decrease of 57%.  The decrease in current 

through the membrane may account for some or all of the differences seen in the 

enrichment rates between the thin and thick membranes.  Further studies, however, on 

multiple membranes could be performed to determine the exact relationship.  
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Figure 3.7 - Fluorescence intensity standards for DCF measured with the CCD 

camera for concentrations of 2.6, 26 and 130 μM. 

Finally, it should be noted that the plug of enriched analyte might also be 

concentrated along z-axis in the channel as well as the x- and y-axis.  Because of this 

possibility, all of the data collected in this study was taken with the z focus at the same 

location in the channel.  Changing the focus point in the channel was seen to affect the 

intensity as much as 25%. 

3.3.3 Ion Selectivity 

Other researchers have reported microfluidic preconcentration devices which 

show cation/anion selectivity.  Kim et. al. reported a device which concentrates anionic 

compounds but does not concentrate cationic compounds.63  The devices reported above 

produce interesting results depending upon the charge of the analytes.  The titanium 

oxide based membrane should have a negative charge at pH 11.50.86  Preconcentration 
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studies were performed as above, however, using Rhodamine B and Rhodamine 6G 

(R6G) on the thick membrane.  R6G, a cation, did concentrate; however, the enrichment 

occurred in the membrane and not in a region separated from the titania membrane.   

 

Figure 3.8 - CCD images of the concentration enrichment of Rhodamine 6G (A) and 

Rhodamine B (B), color artificially added for enhancement. 

We believe this was due to the interaction between the positively charged R6G and 

negatively charged titania surface.  This further supports the hypothesis that it was 

Donnan exclusion that was responsible for the preconcentration.  Rhodamine B, a 

zwitterion, concentrated in a manner similar to DCF.  Interestingly, however, the rate of 

concentration was much slower than that of DCF on the thick membrane.  The 

Rhodamine B preconcentrated to only approximately 15% the level of the DCF in 2500 s 

i.e. two and a half times longer than for DCF.  CCD images of the Rhodamine 

concentration enrichment is show in Figure 3.8. 
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3.3.4 Membrane Reproducibility 

While the sol-gel based nanoporous membranes reported above were easy to 

fabricate it was difficult to generate reproducible membrane thicknesses for a given 

water:IPA ratio.  Novel methods to fabricate more reproducible membrane thicknesses 

are still being investigated.  The hydrolysis reaction of Ti(OPri)4 and water has many 

aspects that can affect the resulting membrane quality.  Both the [Ti(OPri)4] and [H2O] 

affect the membrane.  The width of the membrane was easily altered via changing the 

[H2O].  However, membranes fabricated by the same method often varied in their 

thickness, their attachment to both the top and bottom of the channel, and even their 

color/opaqueness.  To further optimize the membrane formation it would be helpful to 

perform further analysis such as to gather SEM images to determine the pore diameter 

and membrane structure.  The membranes, however, are too fragile, and the membrane 

cannot be accessed in a manner that does not result in its total destruction.  With the 

current configuration therefore, performing such imaging was not possible.  Additional 

chip designs might allow for membrane fabrication where further analysis steps could be 

achieved.  Possible designs might include fabricating a membrane on a glass/PDMS 

device where the channel and cover plate could be separated.  However, Ti(OPri)4 readily 

absorbs into PDMS,87 and this makes quantifying the amount of precursor that reaches 

the intersection very difficult.  

 

3.4 Concluding remarks 

 Analyte concentration enrichment is necessary for many analytical 

problems.  Here we have developed a method to fabricate titania membranes using sol-
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gel chemistry in a microfluidic chip.  These devices have an increased area at the 

microfluidic/nanofluidic interface of the preconcentrator, allowing fast preconcentration 

of analytes via Donnan exclusion.  Analyte enrichments of greater than 4000 in 400 

seconds were generated.   
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CHAPTER 4 -  Fabrication and Characterization of Paper 

Based Microfluidic Devices Used for the Detection of 

Acetoacetate in Artificial Urine 

4.1 Introduction 

Traditionally microfluidic devices are fabricated out of glass or polymer based 

substrates.  Into these substrates micrometer sized channels are etched or molded.  These 

devices have been shown to be very useful for many different applications.  Typically, 

microfluidics device are much less expensive than bench top analytical devices, however, 

they still require expensive substrates, equipment for fabrication, and detection hardware, 

limiting their usefulness.  A commonly stated goal of microfluidics is to make small 

devices useful for field analysis.  While research using glass and polymer based 

microfluidics remains very popular, a few groups have begun to examine other materials 

and approaches to the fabrication of microfluidic devices for field based analysis.  One of 

the most interesting recent approaches is the use of paper as a substrate material.  

Whitesides and coworkers originally reported the fabrication of paper based microfluidic 

devices.88-91  These innovative devices were fabricated by soaking a piece of paper 

substrate in a photoresist, followed by exposure through a photomask and a developing 

step to remove uncross-linked polymer.  Channels in these devices were defined using the 

negative tone photoresist SU-8.  Several biological assays were demonstrated on these 

devices.  Abe et.al. developed similar paper microfluidic devices, and have fully 

automated the process by using a inkjet printer to dispense small amounts of toluene onto 
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polystyrene infused paper.  The dispensed toluene selectively dissolves the hydrophobic 

polymer leaving behind a channel network.   

These devices have exciting possible applications in the field of colorimetric 

biological assays.  Glucose, protein, and pH assays have recently been demonstrated on 

paper microfluidic devices.88, 89, 92  There are many additional biologically relevant assays 

that could be performed using this technology.    

Assays in which fluid is drawn across a solid porous substrate through the use of 

capillary pressure are called lateral flow assays (LFA).  Most platforms encompass 

multiple analyte regions for complexation or reaction of analytes with the sample.  The 

resulting product is typically a compound that can be easily detected by the eyes as the 

result of a visible color change.  LFAs that utilize antibody-antigen interactions have 

multiple names, immunoaffinity chromatography and immunochromatographic 

chromatography.  A common example of one of these devices is the home pregnancy test.  

Human chorionic gonadotropin (hCG) is a hormone that is secreted by the placenta into 

the bodily fluids shortly after pregnancy begins.  In LFA home pregnancy tests, the hCG 

is bound to antibodies and indicators to give the user a color change or a small electronic 

display can indicate a positive test via electrochemical detection.93, 94  Many LFAs use 

colloidal gold, detectable by the human eye at high concentrations, modified with surface 

antibodies which will bind at detection regions to the target molecule for the assay. 

At the present, the devices being fabricated have multiple limitations associated 

with the polymer used for defining the channels on the paper substrate.  Some of the 

limitations include extensive fabrication times, channels too hydrophobic for immediate 

use, and solvent compatibility.  The motivation of this research was to improve the ease 
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of fabrication and use through the development of a novel polymer for defining the 

channels.  The devices discussed in this chapter have overcome the limitations of the 

previously reported devices, and have been used to perform novel paper microfluidic 

assays. 

Paper microfluidics devices show great promise in the field of LFA.  They can be 

fabricated very inexpensively and are capable of performing very rapid analysis.  The 

ketone assay devices discussed later in this chapter can be fabricated at a cost of $0.26 

per device.  The paper devices can be patterned with the necessary channels to carry out 

multiple assays from a single sample introduction region.  This rapidly evolving field has 

the potential to change the way disease diagnosis and monitoring is performed in 

developing regions around the world and here at home.      

Untreated diabetics often suffer from a condition called Diabetic Ketoacidosis 

(DKA), where the levels of ketones in the blood and urine are elevated.  Low insulin 

levels decrease the uptake of glucose into cells causing cells to search for alternate energy 

sources.  When the decreased insulin level is detected, the body begins several processes 

that mimic fasting.  Since cell uptake of glucose is prevented, glycolysis also ceases.  

Now the process gluconeogenesis, the formation of glucose from pyruvate, is accelerated 

to provide energy to the body.  The cells cannot uptake the glucose due to low insulin 

levels, which is also the reason for increased glucose levels in the body when insulin 

levels are very low.  Pyruvate is a major component of the Krebs cycle and the Krebs 

cycle is disrupted when pyruvate concentrations are very low.  Elsewhere, free fatty acids 

are converted into acetyl coenzyme A (acetyl-CoA), another reactant in the Krebs cycle.  

Acetyl-CoA is no longer integrated into the Krebs cycle and instead diverted to  
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mitochondrial ketone body formation.95, 96   The ketone bodies produced are acetoacetate 

and beta-hydroxybutyrate.  These compounds are used primarily by the brain and heart as 

an alternate energy sources.  If these compounds are created in large quantities the pH of 

blood is lowered.  Blood pH is generally stable, 7.35 - 7.45, and slight changes can cause 

proteins in the blood to denature resulting in tissue damage.  DKA is prominent in type 1 

diabetes and can be fatal if untreated.  With the increased ketone levels in the blood, 

ketone levels are also heightened in the urine.  Testing urine is less invasive than testing 

blood and is typically how ketone levels are monitored.  For similar reasons increased 

levels of ketone bodies in the urine are also indications of starvation and low 

carbohydrate diets.  Recently, elevated levels of ketones in the body at the onset of type 1 

(insulin-dependent) diabetes have been linked to potential  future instabilities in glycemic 

index.97  Careful monitoring of DKA can greatly affect future treatments and prevent 

unnecessary complications.   

Other changes in urine may also be monitored for clinical reasons.  The pH of 

urine varies between 8 and 4.5, although it is typically between pH 6 and 7.  Changes in 

urine pH can be indicative of certain health related issues.  Changes in the pH can be a 

sign of different types of kidney stones.98-101  Decreased urine pH can be an indicator of 

the most common type of kidney stones, uric acid, while increased pH can be a symptom 

of calcium phosphate stones.   

In this chapter, the fabrication of paper based microfluidic devices is reported.  

The channels in these devices are defined using a novel photocurable polymer mixture 

possessing enhanced properties and capable of performing clinically relevant biological 

assays related to diabetes. 
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4.2 Materials and Methods 

4.2.1 Reagents and Substrates 

Two types of paper substrates were used to fabricate the devices reported below, 

qualitative grade cellulose fiber filter paper (Fisherbrand P8; Fisher Scientific), and 

Durx® 670 cleanroom wipes (Berkshire; Great Barrington, MA).  The cleanroom wipes 

were composed of 55% cellulose and 45% polyester, and the filter paper was 100% 

cellulose.  The paper products were patterned with different combinations of the 

following chemicals SU-8 2010 and 2002 (MicroChem Corp; Newton, MA), Zipcone 

UA, Zipcone UE, methacryloxypropyl PDMS (RMS-033) (Gelest; Morrisville, PA), 

NOA 74 optical adhesive (Norland Products; Cranbury, NJ), and 2,2-dimethoxy-2-

phenylacetophenone (DMAP) (Acros; Geel, Belgium).  The ketone assay used the 

following reagents, ethyl acetoacetate (Aldrich; St. Louis, MO), sodium nitroprusside 

(Fisher Scientific; Pittsburgh, PA), and glycine (Acros).  The target for this assay was 

acetoacetate, which was synthesized from the ethyl acetoacetate via the saponification of 

the ethyl acetoacetate with sodium hydroxide. 102  Specifically, 0.45 mL of the ethyl 

acetoacetate was diluted to a volume of 15.0 mL with 0.2 M sodium hydroxide and 

placed in the refrigerator for 48 hours prior to use.  This assay was to mimic ketone 

detection in urine, the artificial urine contained 1.1 mM lactic acid, 2.0 mM citric acid, 25 

mM sodium bicarbonate, 170 mM urea, 2.5 mM calcium chloride, 90 mM sodium 

chloride, 2.0 mM magnesium sulfate, 10 mM sodium sulfate, 7.0 mM potassium 

dihydrogen phosphate, 7.0 mM dipotassium hydrogen phosphate, and 25 mM ammonium 

chloride dissolved in 18.0 MΩ water adjusted to pH 6.0 with 1.0 M hydrochloric acid.88  

Yamada’s universal indicator, 25 mg thymol blue, 60 mg methyl red, 300 mg 
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bromothymol blue, and 500 mg phenolphthalein dissolved in 500 mL of ethanol and 

neutralized to a green color with 50 mM NaOH and diluted to 1.0 L with H2O, was used 

for pH studies on these devices.103 

The photomasks used for these devices were low-resolution masks printed on ink-

jet transparencies using a Hewlett-Packard printer (HP 1160cp; Palo Alto, CA).  The 

designs were created using either Microsoft PowerPoint (Redmond, WA) or AutoCAD 

2006 software (Autodesk, Inc.; San Rafael, CA).   

4.2.2 Fabrication of Paper Devices 

These devices were initially fabricated on the cleanroom wipes using the SU-8 

photoresist to confirm the previous results.88-91  The method involved cutting 1” by 2” 

section of the substrate and placing a small amount (~ 0.5 mL) of SU-8 2010 on the paper 

and rolling out the excess photoresist with a glass stirring rod.  This was placed on a 

hotplate and baked at 130 °C for 10 min to remove the organic solvents and then allowed 

to cool for 2 minutes.  Next the device was exposed to UV light through the photomask 

using a flood exposure system (ThermoOriel, Stratford, CT), the device received 900 

mJ/cm2.  The device was post baked on the hotplate for an additional 10 min at 130 °C 

followed by cooling at room temperature for 2 min.  Finally the device was developed in 

an acetone bath for 2 min and allowed to air dry.  The resulting device exhibited very 

hydrophobic channels which would not readily wick aqueous solutions.  Treating the 

devices with an oxygen plasma cleaner for 1 minute increases the hydrophillicity of the 

channels.  The same fabrication method was used on other substrates and the results will 

be discussed later in this chapter.   
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Paper devices were also fabricated using novel polymeric materials.  Initially, 

devices were fabricated with commercially available UV curable acrylate functionalized 

silicone using a similar fabrication process.  The baking steps were unnecessary as the 

polymer is not solvated in organics.  The mask was placed directly on the liquid polymer 

and UV exposure induced polymerization.  Exposure was followed by development in 

acetone.  Different polymer compositions were tested and the results will be discussed 

later in this chapter. 

4.2.3 Flow Directionality 

The cleanroom wipes are composed of cellulose fibers hydroentangled with 

polyester fibers.  The manufacturer’s fabrication of these devices imparts a machining 

directionality onto the product.  Striations are created on the cellulose side of the 

cleanroom wipe, exhibiting increased fiber density.  In order to study the fluid flow 

characteristics multiple devices were fabricated from different designs where there was a 

main flow channel that branched into multiple channels at different angles.  An example 

of photomask used to fabricate these devices is shown in Figure 4.1.  The main channel 

was always aligned with the paper striations and the flow into the side channels was 

measured as a ratio compared to the area filled in the coaxial channel. 

 

 

Figure 4.1 - Photomask used for flow directionality studies on cleanroom wipes 
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4.2.4 Ketone Assay 

The presence of acetoacetate in artificial urine can be detected from the 

complexation of the analyte with sodium nitroprusside.  To enhance the assay the analyte 

first reacts with glycine to form an imine, which causes a more intense color change 

when it reacts with the nitroprusside.102  The reaction scheme is shown in Figure 4.2. 

 

Figure 4.2 - Reaction of acetoacetate with glycine 

Previous reports state that the glycine and nitroprusside will react without the presence of 

acetoacetate, causing the premature decomposition of the nitroprusside salt.104  This two 

step scheme created the necessity for a derivatization zone on the device where the 

acetoacetate could react with the glycine prior to complexation with the nitroprusside 

salt.  Figure 4.3 shows the channel dimensions used for this device.  First a 0.700 μL 

aliquot of 5.0% sodium nitroprusside (w/w) in 5.0% dimethylformamide (DMF) (v/v) in 

H2O was deposited in the circular detection pad.  Next, a 0.700 μL aliquot of 100 mM 

glycine in 100 mM phosphate buffer (pH 9.4) was dispensed into the middle 

derivatization zone.  Both areas were allowed to dry for 5 minutes prior to sample 

spotting.  The acetoacetate sample from the refrigerator was diluted into the artificial 

urine before use.  Upon use, 10 µL of sample was placed into the sample region on the 

right and allowed to migrate towards the derivatization zone and finally to the detection 

pad.  The device was allowed to dry in room temperature air before analysis. 
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Figure 4.3 - Channel design used for the ketone assay, all measurements in microns 

and the channel width was 700 µm, created in AutoCAD 

4.2.5 pH Assay 

The device fabricated for this test consisted of single channels with triangle 

shaped detection regions. The Yamada universal indicator was spotted in this triangle 

region and allowed to dry twice.  Aliquots of 0.3 µL were spotted each time.  When ready 

for use 5 µL of sample was deposited onto the spotting region and allowed to migrate 

towards the detection pad.  The color change is immediate and some of the colors decay 

with time.  Slightly wet samples were scanned with the desktop scanner without damage. 

4.2.6 Multilayer Devices 

Devices were also fabricated similarly to previously reported multilayer paper 

devices.90  These devices were made from two separate pieces of patterned paper.  The 

top layer was patterned with two unconnected channels separated by ~7.0 mm and the 

bottom later with a connecting channel.  The ends of the connecting channels had small 

circular regions, ~4 mm diameter, to increase the overlap of the channels.  The bottom 

layer was adhered to a glass slide with double stick tape.  Another section of tape, of 

similar length, had access holes created with a biopsy punch above the ends of the single 

channel and was placed above the bottom layer.  Small amounts of cellulose fibers were 
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compressed into circles approximately 4 mm in diameter and less than 1 mm thick.  

These were placed above the terminal ends of the single channel where the double stick 

tape had been removed.  Finally, the top layer was properly aligned and adhered to the 

bottom layer.  An aliquot of dyed H2O was added to one end of the multilayer device and 

the fluid migrated, was transported to the bottom channel, and back to the other end of 

the top layer, with no noticeable leaking.    

4.2.7 Measurements and Data Processing 

Optical micrographs for the flow directionality studies were captured using a 

digital camera (DS-5M; Nikon; Japan) attached to a camera port on a stereomicroscope 

(SMZ-1500; Nikon).  Area calculations were made using Image J (NIH).  The images for 

the ketone assay were captured on a color flat bed scanner (ScanMaker 4900; Microtek 

International; Hsinchu, Taiwan).  The images were processed using Photoshop CS4 

(Adobe Systems Inc.; San Jose, CA).  The images were converted to CMYK color profile 

and the integrated color density was measured over the area of the detection region.  The 

resulting integrated densities were subtracted from the blank and multiplied by negative 

one to achieve positive values; these values are the adjusted integrated densities (AID).  

These values were plotted against the concentration of the analyte and fitted to a 

quadratic fitting function using Igor Pro (WaveMetrics Inc.; Lake Oswego, OR).  

4.3 Results and Discussion 

4.3.1 Optimization of Paper Devices 

Initial reports describing the fabrication of paper microfluidic devices used the 

negative tone SU-8 photoresist to pattern the channels in the paper.  Fabricating devices 
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using this method heeds some limitations including long fabrication times and the 

additional step of oxygen plasma treatment to create hydrophilic channels.  The goal of 

this research was to find a new more promising polymer that no longer had the 

limitations associated with the SU-8 patterned paper.  SU-8 photoresist contains a photo 

initiator that catalyzes a polymerization reaction upon exposure to UV light.  In our 

search for a more suitable polymer we looked at other chemicals that can undergo photo 

initiated polymerization.  Gelest, a common manufacturer of silicon based polymers and 

monomers, produces multiple acrylate and methacrylate modified silicones that undergo 

photo initiated polymerization.   

Initially, these devices were fabricated with the protocol explained in this chapter 

using the Zipcone UA.  To examine the integrity of the channels H2O, dyed with food 

coloring, was added to the channels.  Extensive leaking outside the channel boundaries 

was noticed.  Inspection with a microscope showed non-uniform polymer coating of the 

substrate attributed to small pores in the cross linked polymer.  However, one immediate 

advantage was noticed, there was no need for oxygen plasma treatment, i.e. aqueous 

solutions wicked immediately into the substrate.  In an attempt to increase the 

homogeneity of the polymer coating, excess polymer was no longer removed with a glass 

rod prior to exposure and the exposure energy was decreased from 900 to 225 mJ/cm2.  

The result was a uniform polymer covering, still on the order of the paper thickness.  

Care was taken to remove any air bubbles between paper substrate and the bottom glass 

slide or the photomask.  Addition of fluid now showed complete retention in the 

patterned channel.  These devices were fabricated with large channel widths, ~1.5 mm, in 

optimized devices smaller channels are desirable as they decrease the necessary sample 
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size.  Smaller channels (50-200 µm) were patterned from a high resolution photomask, 

and the features were not resolved after developing.  This was attributed to over 

exposure, and the exposure energy was decreased to 135, 90 and 45 mJ/cm2.  At 45 and 

90 mJ/cm2 the excess polymer was not sufficiently cross linked.  Exposure energies of 

135 mJ/cm2 resulted in devices where small 200 µm features could be patterned, however 

we noticed that after just a few hours of sitting at room temperature the polymer began 

cracking extensively.  This was also associated with a curling of the device, attributed to 

the polymer shrinking.  Additionally, the devices were not flexible, as any torque applied, 

caused severe cracking of the polymer.  These attributes were unforeseen and made the 

devices not applicable for paper microfluidic devices.   

In a second attempt to produce an acceptable photocurable polymer, a different 

formulation for a photocurable PDMS was found on an internet blog.105  This polymer 

comprised 10 g of methacryloxypropyl functionalized PDMS (RMS-033, Gelest; 

Morrisville, PA) mixed with 200 mg of 2,2-dimethoxy-2-phenylacetophenone (DMAP, 

Acros; Geel, Belgium) dissolved in 400 mg xylenes.  Devices were fabricated with this 

polymer using the same method as the Zipcone UA.  Different energies were used for the 

crosslinking of the polymer (225 – 450 mJ/cm2), but all of the resulting devices exhibited 

very hydrophobic channels which would not wick fluid, and decreased channel definition 

compared to the Zipcone UA devices.  The crosslinked polymer had a very tacky surface.  

It was, however, much more flexible and did not crack or curl after curing and sitting at 

room temperature.  These properties and the fact that it was a methacrylate functionalized 

silicone lead to a third polymer formulation attempt, a mixture of the Zipcone UA and 

this RMS-033/DMAP mixture.  These two polymers were mixed at different weight 
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percents and patterned on the cleanroom wipes.  The resulting polymers took on the 

properties of the major component in the mixture, i.e. the mixtures high in zipcones had 

too much cracking and mixtures higher in photocurable PDMS resulted in hydrophobic 

channels. 

A fourth polymer formulation was then attempted using photocurable adhesives 

manufactured by Norland Optical Adhesives (Cranbury, NJ).  One product NOA 74 

contained a mixture of isodecyl acrylate (15-35%), trimethylpropane polyoxypropylene 

(4-15%) and a mercapto-ester (43-65%).  The exact mercapto-ester is unknown as it is a 

trade secret.  Devices were fabricated with the same protocol as above, however, the 

optical adhesive adhered the photomask to the paper device.  Separation of the mask from 

the paper device resulted in damage to the substrate, but selective polymerization was 

demonstrated.   

As in previous attempts, the NOA 74 adhesive was mixed at specific weight 

percents with the Zipcone UA.  Devices fabricated with this mixture exhibited promising 

properties.  The resulting polymer did not adhere to the photomask, so the already 

inexpensive ink-jet printed transparencies could be cleaned and reused.  They must be 

cleaned because the area below the opaque regions of the mask has uncured polymer but 

it can easily be removed by swabbing with acetone.  Only small amounts of polymer 

were needed for the fabrication of these devices, but the amount is dependent on the 

paper substrate used.  The polymer amounts were optimized and the devices required 25 

and 30 µL/cm2 for the filter paper and cleanroom wipes, respectively.  These devices 

exhibited very hydrophilic channels, well defined channel dimensions, fabrication times 
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from start to finish of less than 3 minutes, and required only 53 mJ/cm2 of energy for 

crosslinking.  These devices looked very promising.  

4.3.2 Characterization of Paper Microfluidic Devices 

Fluid flow on these devices was dependant on the paper substrate, and for the 

cleanroom wipes the directionality of the paper striations.   The cleanroom wipes, made 

of polyester and cellulose, have a directionality associated with the wipe.   These devices 

are hydroentangled 55% cellulose and 45% polyester.  The hydroentangling process 

creates “striations” in the paper substrate.  The striations are high density areas of fibers.  

The striations play an important role in the flow characteristics on the paper fluidic 

devices.  According to Giddings,1 fluid flow in paper and thin layer chromatography is 

driven by the capillary pressure; 

(4.1)         
r

p γ2
=Δ  

where γ is the surface tension and r is the radius of curvature of the advancing fluidic 

meniscus.  An assumption can be made that the paper products can be modeled as a 

simple bed of capillaries with similar capillary radii, rc.  For this application rc would be 

half the distance between adjacent fibers.  If the advancing meniscus had zero contact 

angle then r = rc, and if there was a contact angle, θ, then r = rc cos θ.  Giving the 

capillary pressure;  

 (4.2)    
cr

p θγ cos2
=Δ  

Average flow velocity, v , through a capillary is defined as: 

(4.3)       
ηL

prv c

8

2Δ
=   
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where Δp/L is a constant pressure gradient in the capillary and η is the solution viscosity.  

Combining equations 4.2 and 4.3 and replacing L with the distance the fluid has traveled, 

Xf, the following equation is obtained for fluid velocity in a paper device; 

 (4.4)      
η
θγ

f

c

X
rv
4

cos
=  

Therefore velocity is directly proportional to the distance between fibers in a paper 

microfluidic device, and decreases as the fluid travels further into the channel.  Velocity 

can be defined as distance traveled per unit time, so equation 4.4 can be rearranged to; 
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If equation 4.4 is integrated with the assumption that the distance traveled is zero at time 

zero, then distance traveled in a device is given as; 
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Some terms in equation 4.6 will be the same for devices fabricated on different 

substrates, i.e. all devices are used with aqueous solutions and both materials are made of 

hydrophilic materials, so the surface tension, meniscus angle and viscosity should be 

similar for all devices.  Therefore the only aspect that should affect fluid velocity and 

distance of travel is the effective distance between the fibers. 

The difference in fluid flow was initially noticed with devices fabricated with 

channels in the form of a cross with equal lengths extending from a central pad, as shown 

in Figure 4.4 A.  When fluid was added to the central reservoir the channels parallel to 

the striations filled approximately 3 times faster.  
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Figure 4.4 - Demonstration of fluid flow distance and speed vs. cleanroom wipe 

striation direction. 

On the same devices, 10 µL of fluid would completely fill the parallel channels whereas 

20 µL was required to fill all of the channels.  When all the channels were oriented at 45° 

from the fibers, the channels all filled at the same rate and only 15 µL was required to fill 

all the channels.   

In order to further examine this fluid flow behavior, devices were fabricated with 

the dimensions shown in Figure 4.1.  The ratio of fluid flow into a perpendicular channel 

compared to parallel channel for widths of 500, 700 and 1000 µm was approximately 

50%.  As the fluidic interface meets the striations in the cleanroom wipe the distances 

between fibers decrease which also decreases the velocity.  This, in turn, decreases the 

distance traveled. Generally, as the angle between the fiber and channel decreased, the 

flow ratio increased.   

Fluid velocity was also measured as a function of spotting volume on devices 

with a long (17 cm) serpentine channel.  This channel design was fabricated on both 

paper substrates.  For the case of the cleanroom wipes, the paper striations were oriented 

at 45° from the long channel portions to minimize the time fluid would flow across the 

striations.  Different fluid amounts () were added to the reservoirs and the flow distance 

was measured as a function of time on both paper substrates.  The final flow distances 
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were 4.46, 4.44, 4.22, 7.94, 9.90, and 10.81 cm for 20, 30 and 40 µL depositions on the 

FP and CRW, respectively.  Figure 4.5 represents the distances measured with Image J 

software for the different fluid volumes and paper substrates.  These flow characteristics 

confirm the theory outline above.  As the fiber density increased the flow velocity and 

distance the fluid traveled decreased.  The flow velocity and distance were initially 

defined as a function of the pressure on the capillary.  This pressure was the external 

atmospheric pressure forcing the fluid into the paper channel.  In these devices the 

channels were defined on both sides of the paper affecting the applied pressure.   

 

 

Figure 4.5 - Fluid distance traveled as a function of spot volume vs. time for 17 cm 

serpentine channels fabricated on cleanroom wipes (CRW) and filter paper (FP).   

When a fluid is dispensed onto the spotting region of the device, not all of the fluid 

immediately flows down the channel.  Especially for large volumes there is a bead of 

fluid formed at the reservoir, and this bead forms on top and bottom of the device.  Due 

to gravity there is an increased bead of fluid on the underside of the horizontally 
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positioned device.  This effectively reduced the capillary pressure.  For the cleanroom 

wipe the flow velocity was much higher, which decreased the effect this lowered 

capillary pressure has on the flow characteristics.  Conversely, the filter paper with its 

decreased velocity was affected by this to a much larger extent.  The volume spotted was 

proportional to the size of the bead formed on the bottom of the device; therefore the 

larger volumes had an increased negative pressure gradient at the channel head.  This was 

one reason the larger volumes exhibited decreased flow distances.  Evaporation is another 

factor that affects the flow distance, and increasing flow times are increasingly affected 

by evaporation.  However, increased flow distances also increase the surface area which 

also increases the speed of evaporation.  So evaporation affected the flow distances on 

both substrates, but in different ways.   

After polymer optimization and flow characterization, the limiting channel 

features and densities were measured.  A photomask was created in AutoCAD to mimic a 

previously used design to define the limiting channel dimensions and densities.91  The 

photomask used is shown in Figure 4.6. 

 

Figure 4.6 - Photomask design used to measure channel and barrier feature 

dimensions, the units are in microns 

The channel dimensions were verified using a microscope and computer software.  This 

pattern was fabricated on filter paper and cleanroom wipes where the striation 
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directionality was both parallel and perpendicular to the fluidic channels.  To test for 

fluidic patterning 35 mL aliquots of dyed H2O were added to these devices and allowed 

to sit for 15 minutes.  Upon inspection the minimum channel features that filled with 

fluid were 90 µm, 130 µm, and 90 µm and the minimum barrier width was 500 µm, 300 

µm, and 150 µm for the cleanroom wipe parallel to striation orientation, cleanroom wipe 

perpendicular to striation, and the filter paper, respectively.  The major difference in these 

characteristics was the barrier width.  This difference was attributed to the striation.  

There were instances where fluid flow along fibers in a striation was noticed transporting 

the fluid to the other side of the barrier.  The ability to fabricate devices with higher 

channel densities is advantageous as it decreases the overall size of the necessary device.  

The filter paper also had a higher degree of definition in the channel walls.    

4.3.3 Ketone Assay Results 

This assay was designed to measure acetoacetate, a chemical commonly found in 

the urine of a diabetic.  The acetoacetate was synthesized as discussed earlier and diluted 

into the artificial urine at 16 mM, and serial diluted to 8, 4, 1.5 and 0.5 mM.  These 

assays were carried out on devices fabricated from the design in Figure 4.3, on the filter 

paper.  Filter paper was chosen because of the decreased flow velocity, giving added time 

for the complexation of acetoacetate with glycine.   The paper absorbed the sample fluid 

almost immediately, however, the channels required 15 minutes to dry, and additional 

time for the colors to develop.  Figure 4.7 represents the same assay chip at different 

times.  The reaction kinetics have previously been studied in great detail,102 but the 

studies were carried out in solution and since these devices were allowed to dry the 

kinetics were affected.   
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Figure 4.7 - Scanned images of the ketone assay devices at varying times 

The areas of the detection pads were measured using Adobe Photoshop and the adjusted 

integrated densities (AID) were plotted against sample concentrations.  Triplicate 

measurements were performed and are shown in Figure 4.8.  The data was fitted to a 

quadratic fit, the equations and correlation coefficients are shown in Table 4.1. 

 

Figure 4.8 - Ketone Assay, measured AID for known acetoacetate concentrations as 

a function of time, n = 3. 
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Time Quadratic Linear Constant  r 2

22.5 min -4.04E+08 1.30E+07 5.12E+03 0.976
25.0 min -4.81E+08 1.54E+07 6.67E+03 0.983
27.5 min -5.92E+08 1.77E+07 1.00E+04 0.984
50.0 min -7.08E+08 2.10E+07 1.73E+04 0.990
18.75 hrs -1.51E+08 6.66E+06 2.77E+03 0.981

 

Table 4.1 - Quadratic fitting information for the ketone assay results in Figure 4.8 

The measured values changed with time as expected from previous reports.  The results 

from a kinetic study of the measured AID versus time for a 16 mM acetoacetate sample 

are shown in Figure 4.9.  There was a definite change in measured AID, as a function of 

time for this assay; however, after approximately 40 minutes the change in signal was 

minimal.   

 

Figure 4.9 - Kinetic study for ketone assay 

We have demonstrated the ability to semi-quantitatively measure the acetoacetate 

levels in artificial urine using paper microfluidic devices.  The time between sample 
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introduction and measurement play an important role in the assessment of ketone levels.  

From the kinetic study it appears that after approximately 40 minutes major changes in 

the color have ceased and appropriate measurements can be made.  

4.3.4 pH Assay Results 

One of the additional goals of paper microfluidic devices is to increase the 

number of different assays performed on a single device.  The ability to perform the 

multiple assays from a single sample could greatly decrease disease diagnosis time for 

health care professionals.  Another assay that could be easily performed on urine sample 

is pH.  Devices were fabricated as described earlier in this chapter.  An example of the 

assay detection region is shown in Figure 4.10. The color changes for the pH assay were 

immediate, making the measurement difficult due the wet substrate.  In Figure 4.10 the 

top portion is a scanned image acquired only 2 min after spotting of the sample, while the 

channels are not completely dry.  The color differences are most noticeable at this point.  

When the channels are allowed to dry completely, the color changes are no longer 

distinguishable.  This coincides with the definition of pH; a measurement of the 

concentration of hydrogen ions in solution.  There was no attempt to quantify this assay, 

as this is only a qualitative technique.  The pH device demonstrated similar capabilities 

compared to traditional pH paper, in distinguishing the difference of solutions in this pH 

range.  
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Figure 4.10 - Results from the pH assay on a paper microfluidic device with the 

corresponding pH’s 

4.3.5 Advantages of New Devices 

This new blend (50:50; Zipcone UA: NOA 74) of commercially available 

polymers that has been used to fabricate paper microfluidic devices has a few major 

advantages over the previously reported devices.  The first advantage is the speed of 

fabrication.  Compared to the SU-8 paper devices fabricated by Whitesides and 

coworkers, these devices can be fabricated in approximately 3 minutes, almost ten times 

faster.88-91  Abe et. al. reported devices requiring even more time, over 2 hours, from start 

to finish.92  The speed is an important advantage, but probably not the most important.  

These new devices obviate the need to treat the channels with an oxygen plasma cleaner 

to create hydrophilic channels.  This requirement makes field analysis unrealistic.  

Infrastructure needed to operate such instrumentation is not common in remote locations.  

The decreased energy required for polymerization is also a potential advantage.  From the 

standpoint of green living lower power consumption is inherently better for the 

environment.  Again, considering usage and fabrication in remote locations, high 

intensity UV light sources require considerable power and cost, which could be 
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problematic.  One previous report does include using natural sunlight, 6 min at 12 p.m. 

on June 25, 2008, as the polymerization source.91  The device shown in Figure 4.4 E was 

polymerized in natural sunlight for 100 s at 4 p.m. on January 30, 2009.  The decreased 

light intensity, from the sun, does increase the polymerization time compared to in-lab 

fabricated devices, but our devices are again fabricated much faster.  The future 

applications for these devices are still being examined.  Although the currently reported 

uses all relate to biological samples this will most likely change with extension to other 

scientific fields.  The devices fabricated with the polystyrene infused paper would have 

limited application to aqueous based uses, whereas these new devices have shown 

compatibility with common organic solvents.   

4.4 Concluding Remarks 

The development of new paper based microfluidic devices with improved 

characteristics has a promising future in the field of clinical analysis of common 

biological relevant samples.  Understanding the fluidic flow parameters, dependent on the 

paper substrate chosen, allow for the correct design of future applications and assays.  For 

example, a future application may require rapid fluidic transport and a substrate with 

large pore/fiber distances would be required.    
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CHAPTER 5 -  Surface Plasmon Resonance Detection of 

Proteins Using a Titanium Dioxide Modified Surface 

5.1 Introduction 

5.1.1 SPR Background and Significance 

Proteomics, the study of global protein expression in cells, is of great interest to a 

variety of researchers studying the etiology of diseases.  Many diseases result (or 

manifest themselves) due to changes in protein expression.  A better understanding of 

how protein expression changes during the development of a disease would allow both 

earlier diagnoses and identify potential target molecules for treatment.  There is 

considerable interest in understanding how protein expression changes.  Proteins can be 

detected by a variety of methods and techniques.  In proteomics, some methods for 

studying proteins are 2-D gel electrophoresis and Mass Spectrometry, these techniques, 

however, are time consuming and very expensive.106  Other techniques such as refractive 

index detection or UV/Vis are less expensive but have limitations.  Typical refractive 

index (RI) detectors tend to have the poorest sensitivity with detection limits in the high 

μM range, and UV/Vis absorbance detection at 200 nm in the low μM range.  There is at 

present no sensitive, universal method for detecting proteins which are separated via CE 

or high-performance liquid chromatography (HPLC).  In this chapter we report our 

attempts at a method for the sensitive detection of proteins using surface plasmon 

resonance (SPR), where the SPR will be used as a RI detector.  Refractive index (η) is 

 88



the relationship of how fast light travels in different mediums (υ) when compared to its 

speed in a vacuum (c) : 

(5.1)                    υη c=  

Any change in the properties of a medium will change its optical properties and 

give a refractive index change.  While SPR has been traditionally used to monitor 

specific ligand-analyte and antibody-antigen interactions107-109 it can be modified for use 

as a bulk refractive index detector.  This method would obviate the need to label analytes 

and worry about multiple labeling issues.  This could potentially allow for lower limits of 

detection (LOD), which is necessary in the fields of disease research, where protein 

expression is altered and researchers desire the ability to detect low concentrations and 

small concentration changes of these proteins over time.   There are problems involved in 

detecting proteins at these at low concentrations such as the inherent nature of proteins to 

adsorb to surfaces.  Although universal detectors exist in the form of RI and UV/Vis 

absorbance, they tend to lack the sensitivity necessary to detect low abundance regulatory 

proteins. 

The goal of this research was to create a novel protein resistant surface on a gold 

substrate to use as a sensitive label free SPR detector of proteins at the end of a 

microfluidic channel.  In order to realize a sensitive, robust, universal SPR detector for 

proteins we needed to minimize the protein adsorption.  Many different researchers have 

shown the ability to prevent protein adsorption onto surfaces.  When dealing with gold as 

the surface, Whitesides and his group found that the use of ethylene glycol terminated 

thiol molecules work the best.  It is known that thiol compounds tend to form Self 

Assembled Monolayers (SAM) when placed in the presence of a gold surface.  The use of 

ethylene glycol SAM’s will lead to a moderately hydrophilic surface as well as a surface 
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that has been shown to be biocompatible, which would complement its use for protein 

detection.110-115  The synthesis of SAM’s is a simple process, and allows for tailoring of 

the SAM along the way so their properties can be changed for different chemical 

applications.  The basic formula of the thiol compound that we were interested in is:  

HS(CH2)m(OCH2CH2)nOH.  Changing the number of CH2 groups in the alkane chain can 

drastically change the physical properties of the SAM.110  When m > 10 the region of the 

alkane chain tends to be completely trans-extended, this is an attractive property so the 

formed layer will have a uniform thickness.110  Pale-Grosdemange et. al. have shown that 

changing the number of ethylene glycol units that terminate the alkane chain changes the 

properties of the SAM as well, and their experiments have shown that n = 3 is the optimal 

number of units to prevent protein adsorption and for ease of synthesis.110 

The novel surface that will be discussed in this chapter is a TiO2 thin layer 

terminated with the similar ethylene glycol groups to prevent protein adsorption.  An 

additional goal of this project was to increase the sensitivity of the detector.  Sensitivity 

could be increased by terminating the protein resistant surface with a stationary phase, to 

transiently preconcentrate the analytes near the surface to increase the LOD, creating a 

more sensitive detector. 

 

5.1.2 SPR Theory 

SPR is a very sensitive detection method for many substances, including proteins.  

SPR works by monitoring the refractive index within ~200 nm of a gold-dielectric 

interface.  The detection volume can be a continuously flowing solution above the surface 

or a patterned surface that allows ligand-analyte interactions.  The detection takes place 
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by focusing a laser line onto a gold surface, an IR laser in this case.  The light is focused 

in such a way that it impinges upon the surface at many different angles of incidence, and 

the reflection of the light is monitored by an array detector.  There are two instrumental 

setups for SPR.  One method uses a laser which is scanned through different angles and 

the resulting reflection is collected with the detector.  The second method employs optics 

which allows the laser light to interact with the surface at many angles simultaneously, 

and the array detector monitors the reflectance at each angle.  The second method was 

used for this research.  When the light interacts with the surface it is possible for the light 

to cause the free electrons on the gold surface to oscillate in resonance with the incident 

light.  These oscillating electrons are called surface plasmons (SP).  SP’s can have 

different energies that are dependent upon the dielectric function of the metal (εm) and the 

adjacent medium (εd), as shown by this equation: 

(5.2)                                   
dm

dm
sp εε

εεω
+

=
c

k  

In the equation, ksp is the wave vector of the SP, ω/c is the wave vector in a vacuum, and 

the dielectric constant is the square of the index of refraction.109, 116-118  One common way 

to excite surface plasmons occurs when the dielectric functions of adjacent mediums are 

of different signs.  For example gold has a negative dielectric function, and water has a 

positive dielectric function.  This is why these two substances are most commonly used 

for SPR.  The laser light used to excite the SP must be p-polarized light, and must be 

coupled to the surface via a prism.  This is because light must impinge on the surface at 

an angle that is beyond the critical angle (θc) for a glass/air interface, defined from Snell’s 

law as: 
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where n1 is the RI of the denser medium and n2 is the RI of the less dense medium. 

The electric component of the p-polarized light must be in the same plane of incidence 

with the gold surface to initiate SPs on the surface.  Laser light is usually coupled to the 

surface using a prism in what is known as the Kretschmann configuration which can be 

seen in Figure 5.1, this causes the oscillation of SPs on the surface.109, 116, 117   

 

Figure 5.1 - Kretschmann Configuration and the creation of surface plasmons 

(inset) 

This oscillation at the surface will cause the reflected light at a specific angle of incidence 

to decrease.  This decrease in intensity can be measured by the array detector.  The 

electric field generated by the plasmons extends out between 200 and 300 nm from the 

surface.108, 109  This means that the gold on the surface must be very thin, usually around 

50 nm in order to sense RI changes at the surface or in bulk solution.  The thin gold 

surface decreases the active volume to between 150 to 250 nm from the surface.  It is also 
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important to note that the oscillating plasmons are dependent upon the RI of the 

surroundings at the surface, so an environmental change will cause a shift in the SPR 

angle which can be monitored.  That is, if a material with a different refractive index is 

within the necessary distance from the surface then a change in the SPR angle will be 

seen.  RI and SPR are both very sensitive to changes in temperature.  So maintaining a 

constant temperature is very important when reproducible analytical measurements are 

desired.  Therefore, these devices can be used as a refractive index detector, and 

moreover as a universal detector since no functionalization of the analyte is necessary.   

5.2 Materials and Methods 

5.2.1 Synthesis of SAM 

The synthetic route for these SAM’s is relatively simple and consisted of 3 steps.  

In the first step 3.05 mL of triethylene glycol was refluxed with 0.34 mL of 50% aqueous 

NaOH (w/w) under nitrogen.  After 1 hr, 0.932 mL of 11-bromo-1-undecene was added 

and the two compounds were stirred at ~100 oC for 24 hours in a nitrogen atmosphere.  

The resulting compound was then extracted four times with hexanes, rotary evaporated, 

and then purified by column chromatography.  This resulted in the following compound 

HO(CH2CH2O)3(CH2)10CH2, the 1H NMR’s for this product and the starting materials are 

in Appendix A.  NMR’s were acquired only in CDCl3 with one exception.   The first 

product had an unexpected triplet at 2.5 ppm, this was expected to be the terminal OH.  

The addition of D2O caused this peak to be eliminated and a new peak at ~4.8 ppm to 

show up in the spectrum.  The next step in the synthesis was to add a thiol acetate group 

to the terminal double bond.  This was accomplished by adding the olefin 300 mM in 
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methanol, 3 equivalents of thiolacetic acid, 10 mg AIBN, and irradiating with 365 nm 

light (UV exposure system, ThermoOriel, Stratford, CT) for 5 hours.  The resulting 

compound then had the acetate group removed, accomplished by refluxing with 0.1 M 

HCL in an alcohol solution for 5 hours.  The reactants were then rotary evaporated and 

then purified by column chromatography.  The final compound collected was 

HS(CH2)11(OCH2CH2)3OH.  The NMR showed the multiple peaks that confirmed the 

product.  The peaks at 5.0 and 5.7 ppm that were previously seen, corresponding to the 

terminal vinyl group, are eliminated and the new peak at 2.5 ppm was due do the 

hydrogen’s on the carbon bonded to the sulfur atom.  All NMR data corresponded to 

previous reports on synthesis of this compound.110  

The next step was to create the SAM on the gold surface.  This was accomplished 

by cleaning the gold surface by oxygen plasma for 5 minutes, to remove any 

contaminates from the surface.  The thiol compound was then dissolved in absolute 

ethanol at 1.0 mM and put in contact with the surface where it remained for 24 hours.110, 

113  

5.2.2 Titanium Dioxide Surface Fabrication 

Titanium isopropoxide (Gelest) dissolved in anhydrous 2-propanol solutions were 

used to create thin titanium dioxide surface on gold coated coverslips.  These films were 

created by two different methods, dip and spin coating.  The substrates were dip coated 

using an in house built dip coater in the Higgins Group.  The devices were attached to the 

dipping arm and lowered into a 9.0 mM titanium isopropoxide solution, held fully 

submerged for 5 seconds and then removed.  This dipping cycle was performed twice on 

each substrate.  Although the devices appear dry after dipping they were allowed to sit at 
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room temperature for 2 hours prior to further use in a covered petri dish.  These films 

were expected to be on the order of 2 nm.119  Titania films were also created via a spin 

coating process.  The substrate was attached to a Teflon base with double sided tape and 

attached to the spin chuck.  An aliquot, 65 µL, of 9.0 mM titanium isopropoxide was 

deposited on the surface and spun at 2000 rpm for 35 seconds.  The substrates were 

removed and allowed to dry for 2 hours prior to further use at room temperature in a 

covered petri dish.   

5.2.3 Titania Modification 

The surfaces were modified with different functional groups in order to alter the 

surface properties of the films.  Previous alteration of the surface chemistry of titania has 

been demonstrated.87  Functionalization of the surface was carried out in aqueous 

solution in a glass beaker.  Prior to functionalization, the glass beaker was filled with the 

modification solution to modify the silanol groups on the beaker surface.  This was 

necessary to ensure modification of the substrate surface and not the glassware.  The 

modification solution was replaced prior to substrate functionalization.  The solutions 

used were 20 mM aqueous solutions of 2-

[methoxy(polyethylenoxy)propyl]trimethoxysilane and aminopropyltriethoxysilane 

yielding ethylene oxide and amine functionalized surfaces, respectively.  Prior to 

functionalization the surfaces were dipped in a 30% ethylamine solution for a few 

seconds, and then rinsed in water.  The titania on gold surfaces were then placed in the 

appropriate functionalization solution at 60 °C for 4 hours.  After heating the surfaces 

were rinsed with water and dried in a stream of nitrogen and allowed to dry in a covered 

petri dish for 1 hr prior to further use. 
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5.2.4 Surface Characterization 

Change in the surface chemistry was monitored with water contact angle 

measurements and x-ray photoelectron spectroscopy (XPS).  Contact angle measurements 

were collected with an in house built apparatus previously described.120  Briefly, a 

machined mirror/substrate holder was placed on the stage of a Nikon SMZ-1500 

stereomicroscope.  The holder had a ledge horizontal to the stage to hold the substrate 

and a ledge machined at 45° to the stage to hold a mirror.  The microscope was focused 

onto the mirror to image the substrate from a perpendicular viewpoint.  A 5 µL droplet of 

water was placed on the substrate surface, after 1 min an image was captured with a 

digital camera attached to the camera port.  The image was processed with Nikon ACT-

2U software to measure the angle between the surface and the droplet.   

XPS data was collected by Chundi Cao in Dr. Keith L. Hohn’s research group in 

the Department of Chemical Engineering here at Kansas State University.  Data was 

collected for the following surfaces, bare gold, Au-TiO2, and Au-TiO2-PEG. 

5.2.5 SPR Instrumentation 

There were two different SPR measurement devices used in this research.  Both 

SPREETA devices were manufactured by Texas Instruments in collaboration with 

Nomadics.  Initially the TSPR1A1700100 sensor was used with a SPREETA evaluation 

module kit, consisting of a docking station for the sensor, a plastic flow cell, and 

computer integration cables.  Upon discontinuation of this sensor the TSPR2K11 sensor 

was used with the SensiQ Discovery instrumentation.  The discovery and new sensor had 

dual stainless steel flow channels for real-time background subtraction and an additional 

integrated valve for sample injection.  The sensor schematic is shown in Figure 5.2.   
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Figure 5.2 - Sensor schematic and sizes of the TSPR1A1700100 (a) and TSPR2K11 

(b) sensors and image of both sensors 

The sensors both contained totally enclosed optics.  A small LED mounted with a 

polarizer that shines onto the back of the gold coated section of glass.  The light that 

reflects off the surface is directed towards a mirror that reflects the light to a detector 

array.  The sensors were shipped with gold coated surfaces on the device, which had to be 

removed to attach the fabricated titania and SAM surfaces.  The gold was removed by 

swabbing the surface with aqua-regia using cleanroom swabs.  Beneath the gold was an 

additional titanium adhesion layer, removed by swabbing with the same solution used to 

etch glass, previously described in chapter 2.   New surfaces were attached to the clean 

SPREETA surface using index matching oil to ensure no loss of signal intensity.  Flow 

cells were attached to the new surfaces, and a seal preventing fluid leakage was created 

by pressure from tightening screws.  Fluidic connections were made with PEEK tubing.  

Various buffers and sample solutions were used to test the surfaces for their abilities to 

prevent protein adsorption. 
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5.3 Results and Discussion 

5.3.1 Surface Characterization 

5.3.1.1 Contact Angle Measurements 

Initially the surfaces were characterized via water contact angle measurements, as 

outlined above.  Measurements were taken on the following surfaces; Gold/Gold Oxide, 

TiO2 coated gold, aminopropyl modified TiO2 coated gold, and polyethylene glycol 

modified TiO2 coated gold, Figure 5.3.  The contact angle measurements were 78.5 ± 2.2, 

63.2 ± 3.6, 40.8 ± 3.9 for the Au, Au-TiO2, and Au-TiO2-PEG, respectively (n = 4).  The 

aminopropyl surface was not used for SPR analysis but, to monitor the modification via 

silane chemistry its contact angle was 65° (n = 1).   

 

Figure 5.3 - Contact angle measurements on Au (A), Au-TiO2 (B), Au-TiO2-

aminopropyl (C), and Au-TiO2-PEG (D). 

These measurements demonstrated the expected results.  The surface with the terminal 

ethylene oxide groups should be the most hydrophilic and exhibit the lowest contact 
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angle.  In general, as the expected hydrophillicity of the surface increase the surface 

contact angle decreased. 

5.3.1.2 XPS 

The XPS survey scans were collected on the Au, Au-TiO2, and Au-TiO2-PEG 

surfaces.  The data shown in Figure 5.4 was the collected XPS spectra for the Ti 2p 

region, showing the presence of titanium after surface formation via the dip coating 

process.  Figure 5.5 shows the O 1s region, which demonstrates the increase in oxygen on 

the surface, the shift in binding energy between the Au-TiO2, and Au-TiO2-PEG was 

expected due to the PEG modification. 

 

Figure 5.4 - XPS survey spectra for Ti 2p region for Au, Au-TiO2, and Au-TiO2-

PEG surfaces. 
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Figure 5.5 - XPS survey spectra for O 1s region for Au, Au-TiO2, and Au-TiO2-

PEG surfaces. 

 

5.3.2 SPR Measurements 

The initial data was collected with the TSPR1A1700100 sensor and the 

SPREETA evaluation module kit.  The channel input was connected to a 4-way valve 

(Upchurch Scientific; Oak Harbor, WA) and the 3 other valve ports were connected to; a 

syringe mounted on a syringe pump containing buffer, a syringe with 347 mM Lysozyme 

in buffer, and a waste line.  The buffer used for this initial study was 50 mM SDS, 10 

mM sodium borate in a 20 % acetonitrile (v/v) solution.  Both syringe pumps were set at 

30 µL/min and the valve was positioned to pump the buffer over the SPR surface.  After 

signal stabilization the valve was switched for 150 s and the response was monitored.  

Multiple 150 s injections were performed, the first and second injection are shown in 

Figure 5.6. 
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Figure 5.6 - SPR sensogram of 150 s injections of 347 mM Lysozyme over a bare Au 

surface; 30.0 µL/min flow rate.  

The resulting sensogram showed the detection of Lysozyme.  The response did not return 

to the baseline indicating protein adsorption on the gold surface.  An advantage of using 

the SPREETA devices was the ease in switching between surfaces with different 

chemical modification.  The same sensor can be used with a multiple surfaces.  Next a 

SAM modified surface was attached to the sensor.  An injection of 50 mM Lysozyme 

was monitored over the surface, the resulting sensogram is show in Figure 5.7. 
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Figure 5.7 - SPR sensogram of 50 mM Lysozyme injections over a SAM modified 

gold surface 

The SAM surface exhibited resistance to protein adsorption on the surface.  This was 

noted because the sensor response returned to baseline after injection of sample.  A 1 

mg/mL sample of Lysozyme in the same buffer was injected over a Au-TiO2-PEG 

surface with the same buffer conditions, Figure 5.8. 

 

Figure 5.8 - SPR sensogram of 1 mg/mL Lysozyme injections over an Au-TiO2-PEG 

surface 

This surface also demonstrated the ability to resist protein adsorption to the titania 

modified surface.  In previous reports, the SAM surfaces was said to be unstable 

requiring new surfaces frequently.110  SAM and TiO2-PEG were tested over a period of a 
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few weeks to test their stability.  The titania surface showed protein resistance for a 

period of 4 weeks and the SAM surface began to decay after 2 weeks.  Figure 5.9 shows 

the results from the temporal study. 

 

Figure 5.9 - Temporal study showing SPR sensograms of 1 mg/mL Lysozyme 

detection on SAM and TiO2-PEG surfaces. 

Although both surfaces demonstrated protein resistance, the titania surface exhibited 

larger signal difference compared to the SAM which could increase the LOD for proteins 

when using this surface.   This increase in signal response for the titania surface could 

possibly be due to titania surface roughness which would increase the surface area 

increasing the sites for protein interaction. 

After this temporal study we switched to the new TSPR2K11 sensor in 

conjunction with the SensiQ Discovery instrumentation due to discontinuation of the 

TSPR1A1700100 sensor.  The major advantage of the new sensor is real-time 

background subtraction.  Temperature variations are a common problem with SPR 

measurements and this sensor helps to eliminate signal changes contributed to 

fluctuations in temperature.  The new sensor also had increased resolution and an 
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increased refractive index range.  All of the results for the first sensor were replicated 

with similar results.     

SPR is commonly used to monitor interactions with a sample flowing past the 

sensor and a ligand bound to the surface, i.e. ligand-analyte binding and dissociation 

constants.  Commonly, prior to sample analysis, the surface will be passivated to prevent 

non-specific adsorption.121-123   This process had not been used with results previously 

reported in this chapter.  However, this might be important as the PEG surface 

modification chemical is bulky and could prevent complete surface modification due to 

steric hindrance.  Analyte interactions with the surface can also be altered dependent 

upon the buffer composition.  Complications associated with these two ideas were 

examined by passing 0.1 mg/ml Lysozyme over previously unused Au-TiO2-PEG 

surfaces with different buffers.  Figure 5.10 shows that buffer composition does play a 

role in the signal measured as well as the prevention of protein adsorption to the surface.  

A more suitable buffer composition might prevent any and all surface adsorption.   

 

Figure 5.10 - SPR sensogram of 0.1 mg/mL Lysozyme on unused TiO2-PEG 

surfaces with different buffers 
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SPR has also been used as a post column detector for traditional separation 

techniques.124-127  Some of the previous reports have used the TSPR1A1700100 

SPREETA sensor.124  Our initial attempts were to connect the sensor to a Waters HPLC 

and use it as a post column detector.   After several attempts, with less than favorable 

results, we realized that this sensor would not be applicable for the research goal of this 

project.  The initial goal of this project was to use SPR as a “universal” detector for 

microfluidic separation analysis.  The new sensor had one major disadvantage, the 

sampling rate.  In order to sufficiently record separations it is necessary to have 21 data 

points across a Gaussian peak.128  This sensor has a sampling rate of 1 Hz, which is 50 

times slower than the first sensor.  Peaks in microfluidic analysis commonly have widths 

of less than 1 second.  This was an over-looked implication when we switched to the 

second sensor.   

5.4 Concluding Remarks 

This chapter discusses the fabrication of a titania surface fabricated on a gold 

substrate which can be further modified with terminal ethylene oxide functional groups 

capable of preventing protein adsorption.  Titania was studied because of the expected 

increase in temporal stability when compared to SAM’s.  There are many aspects of this 

project that were not completed, due to an abrupt end to the project.  The ability to easily 

fabricate inexpensive protein resistant surface has a potential use in SPR analysis.  

Further optimization and characterization of the surface is necessary.  The use of this 

device in conjunction with microfluidics is exciting, but with the limited sampling rate, is 

not feasible at this point in time.  Potential future work includes: better characterization 
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of titania surface, end capping the surface in sterically hindered areas to prevent protein 

interactions, and appropriate buffer composition for the analyte of interest. 
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CHAPTER 6 -  Conclusions and Future Outlook 

The projects discussed in this dissertation encompass a wide variety of analytical 

problems associated with the separation sciences.  An interesting previously unreported 

aspect of MEKC was presented in Chapter 2.  Future experiments with this novel buffer 

would include using the micelle forming agents in their pure forms, without all the fillers 

associated with the dishwashing soap product.   

Titanium dioxide was used in multiple forms in the research reported herein, and 

has potential use in projects where it was not used.  First we used titania for the 

fabrication of sol-gel nanoporous membranes at the junction of microfluidic channels.  

This is a very interesting area of microfluidics and better characterization of the 

membrane could enhance its properties further.  Different channel geometries that would 

allow access to the membrane could aid in this understanding.  Titania was also used to 

create protein resistant surfaces for surface plasmon resonance analysis.  This project was 

largely affected when the manufacturer decided to discontinue the sensor we were using 

and switch to a newer model.  With the new model, the sampling rate was decreased 50 

fold.  The surface modifications show yet another function of the compound TiO2 further 

analysis of these surfaces and a faster sampling rate could yield a very powerful 

microfluidic detection mechanism.   

Finally, the paper based microfluidic devices, have a very exciting future in the 

field of portable analysis devices.  There are many biological assays that can be 

performed using these devices.  Titania was not used in this application, but why not?  It 
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has the interesting property that it creates hydroxyl radicals in the presence of UV light.  

This property is utilized in many applications of our everyday lives already, and could be 

incorporated with these devices.  Spotting titanium isopropoxide on the paper substrate 

should create TiO2 on the substrate; this property could be used to catalyze detection 

mechanisms for assays.   

In the literature there have been claims about the use of paper microfluidics in 

developing nations.  This is important; however, I think there are plenty of applications 

here at home.  They have the potential to help engage a future generation of scientists.  

With the cost effective aspect of this project and the ease of fabrication, there is no reason 

that “young” scientists could not make and use these devices in classrooms across the 

country.  This would give them an exciting view of the potential chemistry has in the 

future.   

 

 

 108



CHAPTER 7 -  References  

 
(1) Giddings, J. C. Unified Separation Science; Wiley-Interscience, 1991. 
(2) Poole, C. F. The Essence of Chromatography; Elsevier: Amsterdam, 2003. 
(3) Karger, B. L.; Snyder, L. R.; Horvath, C. An Introduction to Separation Science; 

John Wiley & Sons: New York, 1973. 
(4) Heiger, D., N. High Performance Capillary Electrophoresis, 2nd. ed.; Hewlett-

Packard: France, 1992. 
(5) Cunico, R. L.; Gooding, K. M.; Wehr, T. Basic HPLC and CE of Biomolecules; 

Bay Bioanalytical Laboratory: Richmond, CA, 1998. 
(6) Jacobson, S. C.; Culbertson, C. T. In Separation Methods in Microanalytical 

Systems; Kutter, J. P., Fintschenko, Y., Eds.; CRC Press: Boca Raton, FL, 2006, 
pp 19-54. 

(7) Schoch, R. B.; Han, J.; Renaud, P. Rev. Mod. Phys 2008, 80, 839. 
(8) Höltzel, A.; Tallarek, U. J. Sep. Sci. 2007, 30, 1398-1419. 
(9) Beebe, D. J.; Mensing, G. A.; Walker, G. M. Annual Review of Biomedical 

Engineering 2002, 4, 261-286. 
(10) Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T. Anal. Chem. 1984, 

56, 111-113. 
(11) Makino, K.; Itoh, Y.; Teshima, D.; Oishi, R. Electrophoresis 2004, 25, 1488-

1495. 
(12) Silva, M. Electrophoresis 2007, 28, 174-192. 
(13) Pappas, T. J.; Gayton-Ely, M.; Holland, L. A. Electrophoresis 2005, 26, 719-734. 
(14) Chiu, T.-C.; Lin, Y.-W.; Huang, Y.-F.; Chang, H.-T. Electrophoresis 2006, 27, 

4792-4807. 
(15) Terabe, S. Anal. Chem. 2004, 76, 241A-246A. 
(16) Issaq, H. J. Electrophoresis 1999, 20, 3190-3202. 
(17) Iadarola, P.; Cetta, G.; Luisetti, M.; Annovazzi, L.; Casado, B.; Baraniuk, J.; 

Zanone, C.; Viglio, S. Electrophoresis 2005, 26, 752-766. 
(18) Ho, Y.-H.; Wu, H.-L. Electrophoresis 2006, 27, 2300-2309. 
(19) Cifuentes, A. Electrophoresis 2006, 27, 283-303. 
(20) Pumera, M. Electrophoresis 2007, 28, 2113-2124. 
(21) Cheung, R. H. F.; Marriott, P. J.; Small, D. M. Electrophoresis 2007, 28, 3390-

3413. 
(22) Nishi, H. J. Chrom. A. 1997, 780, 243-264. 
(23) Zhu, X.; Shaw, P. N.; Pritchard, J.; Newbury, J.; Hunt, E. J.; Barrett, D. A. 

Electrophoresis 2005, 26, 911-919. 
(24) Amini, A. Electrophoresis 2001, 22, 3107-3130. 
(25) Shou, M.; Smith, A. D.; Shackman, J. G.; Peris, J.; Kennedy, R. T. Journal of 

Neuroscience Methods 2004, 138, 189-197. 
(26) Torben Madsen, H. B. B., Dorthe Nylén, Anne Rathmann Pedersen, Gitte I. 

Petersen, and Flemmin Simonsen; Danish EPA, 2000. 

 109



(27) Ding, W.; Fritz, J. S. Analytical Chemistry 1997, 69, 1593-1597. 
(28) Roman, G. T.; Carroll, S.; McDaniel, K.; Culbertson, C. T. Electrophoresis 2006, 

27, 2933-2939. 
(29) Roman, G. T.; McDaniel, K.; Culbertson, C. T. Analyst 2006, 131, 194-201. 
(30) Little, E. L.; Foley, J. P. J. Microcol. Sep. 1992, 4, 145-154. 
(31) Mazzeo, J. R. In Handbook of Capillary Electrophoresis, 2 ed.; Landers, J. P., 

Ed.; CRC, 1997, pp 49-73. 
(32) Poole, S. K.; Poole, C. F. Analyst 1997, 122, 267-274. 
(33) Poole, C. F., 1 ed.; Elsevier, 2003, pp 644-659. 
(34) Poole, S. K.; Poole, C. F. Analytical Communications 1997, 34, 57-62. 
(35) Wang, M.; Wu, D.; Yao, Q.; Shen, X. Analytica Chimica Acta 2004, 519, 73-78. 
(36) Broyles, B. S.; Jacobson, S. C.; Ramsey, J. M. Anal. Chem. 2003, 75, 2761-2767. 
(37) Roper, M. G.; Shackman, J. G.; Dahlgren, G. M.; Kennedy, R. T. Anal. Chem. 

2003, 75, 4711-4717. 
(38) Mogensen, K. B.; Kwok, Y. C.; Eijkel, J. C. T.; Petersen, N. J.; Manz, A.; Kutter, 

J. P. Anal. Chem. 2003, 75, 4931-4936. 
(39) Wang, Z.; El-Ali, J.; Engelund, M.; Gotsaed, T.; Perch-Nielsen, I. R.; Mogensen, 

K. B.; Snakenborg, D.; Kutter, J. P.; Wolff, A. Lab Chip 2004, 4, 372-377. 
(40) Vezenov, D. V.; Mayers, B. T.; Conroy, R. S.; Whitesides, G. M.; Snee, P. T.; 

Chan, Y.; Nocera, D. G.; Bawendi, M. G. J. Am. Chem. Soc 2005, 127, 8952-
8953. 

(41) Vezenov, D. V.; Mayers, B. T.; Wolfe, D. B.; Whitesides, G. M. Appl. Phys. Lett. 
2005, 86, 041104/041101-041104/041103. 

(42) Kamei, T.; Paegel, B. M.; Scherer, J. R.; Skelley, A. M.; Street, R. A.; Mathies, R. 
A. Anal. Chem. 2003, 75, 5300-5305. 

(43) Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; 
Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; 
Mastrangelo, C. H.; Burke, D. T. Science 1998, 282, 484-487. 

(44) Cellar, N. A.; Burns, S. T.; Meiners, J.-C.; Chen, H.; Kennedy, R. T. Anal. Chem. 
2005, 77, 7067-7073. 

(45) Yang, H.; Chien, R. L. J. Chromatogr., A 2001, 924, 155-163. 
(46) Shiddiky, M. J. A.; Shim, Y.-B. Anal. Chem. 2007, 79, 3724-3733. 
(47) Wainright, A.; Williams, S. J.; Ciambrone, G.; Xue, Q.; Wei, J.; Harris, D. J. 

Chromatogr., A 2002, 979, 69-80. 
(48) Kaniansky, D.; Masar, M.; BielcÌŒikova, J.; Ivanyi, F.; Eisenbeiss, F.; 

Stanislawski, B.; Grass, B.; Neyer, A.; Johnck, M. Anal. Chem. 2000, 72, 3596-
3604. 

(49) Bodor, R.; Madajová, V.; Kaniansky, D.; Masár, M.; Jöhnck, M.; Stanislawski, B. 
J. Chromatogr., A 2001, 916, 155. 

(50) Yang, W.; Sun, X.; Pan, T.; Woolley, A. T. Electrophoresis 2008, 29, 3429-3435. 
(51) Yu, C.; Davey, M. H.; Svec, F.; Frechet, J. M. J. Anal. Chem. 2001, 73, 5088-

5096. 
(52) Sera, Y.; Matsubara, N.; Otsuka, K.; Terabe, S. Electrophoresis 2001, 22, 3509-

3513. 
(53) Liu, Y.; Foote, R. S.; Jacobson, S. C.; Ramsey, J. M. Lab Chip 2005, 5, 457-465. 
(54) Song, S.; Singh, A. K.; Kirby, B. J. Anal. Chem. 2004, 76, 4589-4592. 

 110



(55) Long, Z.; Liu, D.; Ye, N.; Qin, J.; Lin, B. Electrophoresis 2006, 27, 4927-4934. 
(56) Cannon, D. M., Jr.; Kuo, T.-C.; Bohn, P. W.; Sweedler, J. V. Anal. Chem. 2003, 

75, 2224-2230. 
(57) Dai, J.; Ito, T.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc 2003, 125, 13026-13027. 
(58) Zhang, Y.; Timperman, A. T. Analyst 2003, 128, 537-542. 
(59) Zhou, K.; Kovarik, M. L.; Jacobson, S. C. J. Am. Chem. Soc 2008, 130, 8614-

8616. 
(60) Kovarik, M. L.; Jacobson, S. C. Anal. Chem. 2008, 80, 657-664. 
(61) Dhopeshwarkar, R.; Sun, L.; Crooks, R. M. Lab Chip 2005, 5, 1148-1154. 
(62) Song, S.; Singh, A. K.; Shepodd, T. J.; Kirby, B. J. Anal. Chem. 2004, 76, 2367-

2373. 
(63) Kim, S. M.; Burns, M. A.; Hasselbrink, E. F. Anal. Chem. 2006, 78, 4779-4785. 
(64) Lee, J. H.; Chung, S.; Kim, S. J.; Han, J. Anal. Chem. 2007, 79, 6868-6873. 
(65) Pu, Q.; Yun, J.; Temkin, H.; Liu, S. Nano Lett. 2004, 4, 1099-1103. 
(66) Wang, Y.-C.; Han, J. Lab Chip 2008, 8, 392-394. 
(67) Chatterjee, A. N.; Cannon, D. M.; Gatimu, E. N.; Sweedler, J. V.; Aluru, N. R.; 

Bohn, P. W. J Nanopart Res 2005, 7, 507-516. 
(68) Jin, X.; Joseph, S.; Gatimu, E. N.; Bohn, P. W.; Aluru, N. R. Langmuir 2007, 23, 

13209-13222. 
(69) Kuo, T. C.; Sloan, L. A.; Sweedler, J. V.; Bohn, P. W. Langmuir 2001, 17, 6298-

6303. 
(70) Pennathur, S.; Santiago, J. G. Anal. Chem. 2005, 77, 6772-6781. 
(71) Wang, Y. C.; Stevens, A. L.; Han, J. Anal. Chem. 2005, 77, 4293-4299. 
(72) Mao, P.; Han, J. Lab Chip 2009, 9, 586-591. 
(73) Dusseiller, M. R.; Niederberger, B.; Staedler, B.; Falconnet, D.; Textor, M.; 

Voeroes, J. Lab Chip 2005, 5, 1387-1392. 
(74) Jahn, A.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Langmuir 

2007, 23, 6289-6293. 
(75) Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. Science 1999, 285, 83-85. 
(76) de Jong, J.; Lammertink, R. G. H.; Wessling, M. Lab Chip 2006, 6, 1125-1139. 
(77) Zhao, B.; Viernes, N. O. L.; Moore, J. S.; Beebe, D. J. J. Am. Chem. Soc 2002, 

124, 5284-5285. 
(78) Wright, J. D.; Sommerdijk, N. A. J. M. Sol-Gel Materials: Chemistry and 

Applications; Gordon and Breach Science Publishers, 2001. 
(79) Morishima, K.; Bennett, B. D.; Dulay, M. T.; Quirino, J. P.; Zare, R. N. J. Sep. 

Sci. 2002, 25, 1226-1230. 
(80) Collinson, M. M. Microchim Acta 1998, 129, 149-165. 
(81) Meyer, A. R.; Clark, A. M.; Culbertson, C. T. Lab Chip 2006, 6, 1355-1361. 
(82) Roman, G. T., Kansas State University, Manhattan, KS, 2006. 
(83) Hoeman, K. W.; Lange, J. J.; Roman, G. T.; Higgins, D. A.; Culbertson, C. T. 

Electrophoresis 2009, accepted. 
(84) Hatch, A. V.; Herr, A. E.; Throckmorton, D. J.; Brennan, J. S.; Singh, A. K. Anal. 

Chem. 2006, 78, 4976-4984. 
(85) Kim, S. J.; Wang, Y.-C.; Lee, J. H.; Jang, H.; Han, J. Phys. Rev. Lett. 2007, 99, 

044501. 
(86) Parks, G. A. Chem. Rev. 1965, 65, 177-198. 

 111



(87) Roman, G. T.; Culbertson, C. T. Langmuir 2006, 22, 4445-4451. 
(88) Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M. Angew. Chem., 

Int. Ed. 2007, 46, 1318-1320. 
(89) Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W.; Sindi, H.; 

Whitesides, G. M. Anal. Chem. 2008, 80, 3699-3707. 
(90) Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Proc. Natl. Acad. Sci. 2008, 

105, 19606-19611. 
(91) Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M. Lab 

Chip 2008, 8, 2146-2150. 
(92) Abe, K.; Suzuki, K.; Citterio, D. Anal. Chem. 2008, 80, 6928-6934. 
(93) Chard, T. In The Immunoassay Handbook, 2nd. ed.; Wild, D., Ed.; Nature 

Publishing Group: London, 2001, pp 572-583. 
(94) Hung, P. J.; Lee, P. J.; Sabounchi, P.; Aghdam, N.; Lin, R.; Lee, L. P. Lab on a 

Chip 2005, 5, 44-48. 
(95) Fleckman, A. M. In Principles of Diabetes Mellitus; Poretsky, L., Ed.; Kluwer 

Academic Publishers: London, 2002, pp 273-292. 
(96) Krentz, A. J.; Holt, H. B. In Emergencies in Diabetes; Krentz, A. J., Ed.; John 

Wiley & Sons, Ltd.: West Sussex, England, 2004, pp 1-32. 
(97) Sassa, M.; Yamada, Y.; Hosokawa, M.; Fukuda, K.; Fujimoto, S.; Toyoda, K.; 

Tsukiyama, K.; Seino, Y.; Inagaki, N. Diabetes Res. Clin. Pract. 2008, 81, 190. 
(98) Parks, J. H.; Coe, F. L.; Evan, A. P.; Worcester, E. M. Nephrol., Dial., 

Transplant. 2009, 24, 130-136. 
(99) Daudon, M.; Traxer, O.; Conort, P.; Lacour, B.; Jungers, P. J. Am. Soc. Nephrol. 

2006, 17, 2026-2033. 
(100) Cameron, M. A.; Maalouf, N. M.; Adams-Huet, B.; Moe, O. W.; Sakhaee, K. J. 

Am. Soc. Nephrol. 2006, 17, 1422-1428. 
(101) Maalouf, N. M.; Cameron, M. A.; Moe, O. W.; Adams-Huet, B.; Sakhaee, K. 

Clin. J. Am. Soc. Nephrol. 2007, 2, 883-888. 
(102) Laios, I. D.; Pardue, H. L. Anal. Chem. 1993, 65, 1903-1909. 
(103) Foster, L. S.; Gruntfest, I. J. J. Chem. Ed. 1937, 14, 274. 
(104) Masami, K.; Yuzo, H., G01N33/64 ed.: Japan, 1989; Vol. JP1224667A. 
(105) van der Linden, H. In http://mail.mems-exchange.org/pipermail/mems-talk/2002-

January/006029.html, 2009. 
(106) Chambers, G.; Lawrie, L.; Cash, P.; Murray, G. I. Journal of Pathology 2000, 

192, 280-288. 
(107) Nelson, B. P. F., A. G.; Brockman, J. M.; Corn, R. M. Analytical Chemistry 1999, 

71, 3928-3934. 
(108) Frutos, A. G.; Corn, R. M. Analytical Chemistry 1998, 70, 449 A - 455 A. 
(109) Smith, E. A.; Corn, R. M. Applied Spectroscopy 2003, 57, 320A-332A. 
(110) Pale-Grosdemange, C.; Simon, E. S.; Prime, K. L.; Whitesides, G. M. J. Am. 

Chem. Soc. 1991, 113, 12-20. 
(111) Jiang, X. B., Dereck A. Thant, Mamie, M. Whitesides, George M. Analytical 

Chemistry 2004, 76, 6116-6121. 
(112) Ostuni, E. Y., Lin. Whitesides, George M. Colloids and Surfaces B: Biointerfaces 

1999, 15, 3-30. 
(113) Prime, K. L. W., George M. Science 1991, 252, 1164-1167. 

 112



(114) Chapman, R. G. O., E.; Liang, M. N.; Meluleni, G.; Kim, E.; Yan, L.; Pier, G.; 
Warren, H. S.; Whitesides, G. M. Langmuir 2001, 1225-1233. 

(115) Ostuni, E. C., R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Langmuir 
2001, 17, 5605-5620. 

(116) Homola, J. Surface Plasmon Resonance Based Sensors; Springer, 2006. 
(117) Maier, S. A. Plasmonics: Fundamentals and Applications; Springer, 2007. 
(118) Shalaev, V. M.; Kawata, S. Nanophotonics with Surface Plasmons; Elsevier, 

2007. 
(119) Grunwaldt, J.-D. G., U. Baiker, A. Fresenius Journal of Analytical Chemistry 

1997, 358. 
(120) Roman, G. T.; Hlaus, T.; Bass, K. J.; Seelhammer, T. G.; Culbertson, C. T. 

Analytical Chemistry 2005, 77, 1414-1422. 
(121) Baird, C. L.; Courtenay, E. S.; Myszka, D. G. Analytical Biochemistry 2002, 310, 

93. 
(122) Liu, X.; Song, D.; Zhang, Q.; Tian, Y.; Liu, Z.; Zhang, H. Sensors and Actuators 

B: Chemical 2006, 117, 188. 
(123) Myszka, D. G. Analytical Biochemistry 2004, 329, 316. 
(124) Whelan, R. J.; Zare, R. N. Anal. Chem. 2003, 75, 1542-1547. 
(125) Castillo, J. R.; Cepria, G.; de Marcos, S.; Galbán, J.; Mateo, J.; Ruiz, E. G. 

Sensors and Actuators A 1993, 37-38, 582-586. 
(126) Cepria, G.; Castillo, J. R. Journal of Chromatography A 1997, 759, 27-35. 
(127) Jungar, C.; Strandh, M.; Ohlson, S.; Mandenius, C.-F. Analytical Biochemistry 

2000, 281, 151-158. 
(128) Felinger, A. Data analysis and signal processing in chromatography; Elsevier 

Science B.V., 1998. 
 
 

 113



 

APPENDIX A -  1H NMR Data for Chapter 5  

Figure A.1 - 1H NMR of triethylene glycol starting material 
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Figure A.2 - 1H NMR of 1-bromo-11-undecene 
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Figure A.3 - 1H NMR of undec-1-en-11-yltri(ethylene glycol) in CDCl3 
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Figure A.4 - 1H NMR of undec-1-en-11-yltri(ethylene glycol) in CDCl3 after addition 

of D2O 

 

 117



Figure A.5 - 1H NMR of (1-mercaptoundec-11-yl)tri(ethylene glycol) 
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