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INTRODUCTION

Estrous behavior and hormonal regulation of estrcus phenomena

have been studied by investigators for many years. In the course of

these investigations many theories have been postulated in order to

uxolain the neuro Bnd hormonal phenomena associated with estroua

regulation in various domestic and wild animals. The first systematic

study of the estrous cycle was undertaken by Stockard and Papanicolaou

(1917) in a common laboratory animal, the guinea pig. Employing the

vaginal smear technique, these investigators presented a detailed

picture of the histological and physiological characteristics in the

reproductive tract associated with estrcuo cycling. Several years

later detailed descriptions of ostrous cycles were established in the

rat (Long and Evans, 1922) and mouse (Allen, 191'?). Since that time e

voluminous amount of literature has been published concerning interplay

between environmental stimuli with gonadotrooin-steriod interaction on

the physiology and biochemistry associated with estrous cycling.

Prior to 1940, it was generally believed that circulating levels

of estrogens and progestagens acted directly on the anterior pituitary

(pars distalis or sdenohypophysis) in a servo-regulatory "feedback"

mechanism to regulate the various steges of the estrous cycle (f^oore

and Price, 193?). During the 19?a*s there appeared in the literature

evidence that Implicated yet another area of the brain (diencephalon)

in estrous regulation, iiaily and Brewer (1921) and Camus and Hioussy

(1922) working with the don, and Smith (1927) with the rat, reported

genital atrophy in animals with hypothalamic damage. Smith demonstrated

that genital atrophy could be induced by damaging the median eminence



without impairment to the oitultrtry* In addition, clincal evidence

clearly indicated that hypothaiamlc-hynophyaial interrelationshlpe ex-

ieted in reproductive processes* riynaf.helanic lesions were reported to

be responsible for hypogonarfiam, either alone (hacker end Warren, 1937),

in conjunction with Frohllch*s adiposogenital syndrome (Oott, 1936 and

Smith, 19?7) or the l«urBnca-^oon-51iedl syndrome (0msteen f 193e). Aleo,

precocious puberal development woe attributed to destruction of a

posterior hypothalamic mechanism caudal to the tuber cinereum (Weinberger,

19/.1),

Dey and hie co-workers were the first tc assign specific gonad

regulating functlona to the hypothalamic nuclei* Experimental damage

confined to the sntarlor hypothalamus of the guinea pig was found to

elicit genital hypertrophy, continuous vaginal coroification and narked

follicular development with corpora lutea (Dey et a^., 1940 and Dey, 19<*3).

These authors postulated that nuoh animals were unebls to secrete

luteinizing hormone (LH). Dey (1943) aleo reported that lesions con-

fined to the junction of the pituitary atolk (arcuate nucleue) produced

atrophic genitalia and eor-atant dleatrus. No further work concerning

the influence of the anterior hypothalamic area (AHA) on estrcus

regulation was conducted until Hillarp (1949) extended Dey's prece&..?s

to the rat* ay making email, bilateral, superficial lesions between

the paraventricular nucleue (PWtl and the hypophysial stalk, constant

sstrous could be produced! thus confirming Dey'e origlnel experiments*

Early electrlcel and chemical stimulation experiments addsd much

to the knowledge of eatrouo regulation, Strong, diffused electrical

stimulation applied to the brain elicited en ovulatory and paeudo-



pregnant response in the estrus rabbit (Marshall and Verney, 193G) and

the rat (Harris, 1937), By placing electrodes in discrete nuclei of

the rabbit hypothalamus, Harris localized several of the active struc-

tures. Among these areas were the tuber cinereum, nreontic area (PtiA)

and posterior nynothalamus. Intravenous administration of copper

(Fevold at ajU- 1936) and cadmium salts (Emmens, 19<*n) or various plant

juices Oradbury, 19kU) were also known to induce ovulation in the

rabbit. However, only 1/2DC1 to 1/3H[J of the intravenous dose of copper

acetcte was needed to induce ovulation if injected into the region of

the third ventricle. Since there are no demonstrable nerve endings

terminating in the anterior pituitary from the hyoothalamua, in

wwnmals, Green and Harris (19^7) and Harris (19<»0) concluded that the

neural factors which control the adenonhypophysis are humorally trans-

mitted from the hypothalamus and neurohyoonhysis to the pars distalis

via the hypophysial portal system.

More recent investigations intu this ares are concerned with (1)

quantitatinq the effects of lesions and stimulation on the above

mentioned nuclei, (2) determining the neuro and neurohumoral pathways

leading tn these nuclei from sarif'u -s of the brain and (3)

quantitating the pituitary and serum levels of gonadotropins as a

result of lesions or stimulation of rious hypothalamic nuclai.

sntagothai et_ al . (196?) and Flerko (1963) established the

imoortance of the "hypophvseotropic" area (lateral and ventral hypo-

thalamus) in the hyoothalamus by demonstrating the formation of acid-

bchiff positive cells and "castration cells" in pituitary grafts

situated in an area, extending from the paraventricular nuclei downward
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to the optic chiasm on to the rear as frr M the mamillary region, in

gonadectnmized rats, whereas pituitary rmfts in other yreas of the

brain failed to produce this effect. By implanting grafts of various

other tissues into the "hyponhyseotrnnic" area of hyponhysectemired

rats, Flcrko and Szentagothai (1957) established that pituitary grafts

were the only tissue able to induce recycling. Meanwhile, experiments

involving electrical stimulation of the "hypoDhyseotropic*1 area added

convincing evidence of its importance in cstrous regulation.

Electrical stimulation of the "hypophyseotropic" area elicited

the ovulatory resDonse (Harris, 1937 and ^aul and Lawyer, 1957) wherens

lesions in the middle portico of this area inhibited ovulation induced

by copulation in the rabbit even in the absence of ovarian atroohy

•wyer, 1959) # Critchlow (1958) demonstrated the imcortnnne of this

area in LH regulation by electrically stimulating the tuber cinereum

of barbiturate blocked rsbbita to release enough LH to induce ovulation.

From these experiments it was concluded that the "hytDOphyseotropic"

area is of vital importance in gonadotropin secretion from the pituitary.

The effects of lesions in the AHA in ?*dult female rats appear to

result in an increased production and release of follicle stimulating

hormone (FSH) (nogdanove and Schoen, 1959 and van der Uerff ten Bosch,

1959), In adult female rata estroqen was effective in retarding

hypersecretion of F5H after castration, only if the paraventricular

nuclei were intnet (Flerko, 1959), while local application of estrogen

to this region by ovarian allotransplantation results in a decreased

FGH response as evidenced by lowered uterine weights (Flerko and

Szentagothai, 1957), This suggested that a negative feedback mechanism



existed in the anterior hynnthalemtc area. Therefore, it oeeme, at

least in the female, that lesions in thB interior hypothalamic ares

result in augmented FSH production, and infers that thB anterior

hypothalamic area is an inhibitory center for the nroduction or release

of F3H.

Other lesioning experiments involving thl3 area established that

LH regulation waa also impaired. The pitultaries of anterior hypothal-

amic, preoptic rsr superchiesmic mi Insioned rata are able tc produce

LH (Oarraclough and Gorski, 1961), and under certain circumstances

(castration) release it in sufficient nuantaties to induce ovulation

(Flsrko and Bardos, 1961), but fell to do oo under the lack of such

stimuli (van der ulerff ten Bosch, 1962). As a result, the increase in

systemic estrogen creates a constant stimulus for LH release by the

pituitary. This in effect dapletes the pituitary of its LH stores and

ovulation cannot occur even when the animal is stimulated. This

phenomena was realized in experiments with androgen-sterilized

(etndrogenlzed) Female rats, which axhioit a syndrome cf constant vag-

inal estrus similar to the anterior hypothalamic or preoptic lesioned

animals (Taleisnik and McCann, 1961), whose pituiteries are low in LH

concentration. However, if they are first primed with progesterone,

the pitultaries maintain LH levels comparable to normal proestrus rats,

and furthermore, if the nituitaries of these progesterone primed rats

are stimulated, ovulation will occur (Gorski and Barraclough, 1961)*.

Without doubt, the anterior hypothalamic area and preoptic area

lasioned animals are under the influence nf estrogen (Hlllarp, 19<»9).

However, Hillarp was unable to explain why circulating estrogens are



unable tc inhibit gonadotropin relense in these constant cstrus animals.

This qttOTtion WOT lets? ri in the discovery that intact rats

united paraDiotically to a 3paysri partner will elicit an increase in

gonadntrooin secretion due to the negative feedback effect of estrogen.

Daily injections of estradiol (1.0 ug) were found to inhibit the

gonadotropin release (also negative feedback), however, daily injections

of estradiol to parabiotically united spayed»anterior hypothalamic

lesioned animals failed to block gonadotropin release (flerko, 1963).

The reason that the animals leainned in the AHA are unable tc store

gonadotropins in thB presence of nigh levels of circulating estrogens

is mainly because lesions eliminate the estrogen sensitive feedback

mechanism in the anterior hypothalamic or preoptic ?rsas*

from the above experiments Flerko (19S3) and Oarraclough and

iiorski (1961) postulated the following functions for the hypothalamic

nuclei: (1) the anterior hypothalamic and preootic areas serve as

the servoregulatory feedback receptor fnechanisms for circulating

levels of estrogen and (2) that two levels for gonadotropin regulation

exist in the hypothalamus. The "hypnphyseotrooic" nres ia concerned

with production of PBM and LH and their continuous release at e basal

level, while the anterior hypothalamic and preoptic areas act as the

release regulating mechanise for I 3H and LH in order to maintain

normal reproductive functions.

The regulation of gonadotropins, in the nreceeding paragraphs,

was discussed in relation to the interoceptive mechanism (steroid

feedback) of the organism. However, it is well known and well

documented that exteroceotive stimuli also influence reproductive



function and mating behavior. Certainlly light (F'lske, 1941),

temperature and humidity (Lee, 1926), olfaction (Brooks, 1937; Bruce,

1959 and Parkas and Bruce, 1960), tactile (Denenberg, 1962) and

sociological and environmental stimuli (Eleftheriou and iironson, 196?;

dronson and Eleftheriou, 1963 and f.ironson, Fleftheriou and Garlck, 1964)

are known to modify reproductive function. There i3 common agreement

among investigators that thess stimuli are mediated via the neocortex

and certain subcortical structures to the sensitive gonadotropin reg-

ulating complex in the hypothalamus (Arvay, 1964; Flerko, 1963 and

Sarraclough, 1964).

Anatomically the hypothalamus is considered as part of the limbic

system (Johnson, 1923; Pribrsm and r'.ouger, 1954 and Pribram, 1961).

Therefore, it is connected to the basal seotal region, caduate nucleus,

reticular formation, amygdala, hippocampus, thalamus, subthalamus and

neocortex by nerve tracts (Mason et el. , 1959; Pribram, 1961 and Goddard,

1964). The limbic system has bean known for some time to control emotion-

al and certainlly reproductive behavior. A review of the literature re-

veals that another component of the limbic system (the amygdala) exerts

an influence en normal emotional and reproductive behavior besides the

hypothalamus (Mason, 1959; Pribram, 1961 and Goddnrd, 1964). Dys-

function of thi3 structure may elicit reactions ranging from rage

(Bard and Rioch, 1937), olacidity (Adey, 1956), hypersexuality (rtnand,

Chhino and Oua, 1959; Green, Clemente and deGroot, 1957 and fling et

al. , 1960), learning (Fuller, losvold and Pribram, 1957) and endocrine

dysfunction (Martin, Endrozi and Data, 1958; Knlgge, 1961; Govard and

Gloor, 1961 and Mason, 1959).
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Hypersexuality appears to be more severe and more diversified in

the mBle than in the female (Green et_ al. , 1957; Ujod, 195G and

Anand et al., 1959). In a few instances this hypersexuality can be

abolished by castration or by lesioning the ventromedial hypothalamic

nuclei (rschreiner and Kling, 195^) or septal region (Kling et al., 19fc0).

In carefully mapping the nuclei of the amygdaloid complex in cats,

Wood (1958) noted that discrete bilateral lesions confined to the lateral

nuclei of this complex are responsible for the observed hypersexuality.

Although amygdaloid lesions cause a greater amount of hynersexuality

in males than in females, the effects on the genital organs show the

opposite effect. Amygdalectomy in the adult male rat and cat resultB

in considerable degeneration of the testes, whereas in the female cat

the ovaries remain unaffected (Greer and Yamada, 1959; Kling et al..

1960 and Yamada and Greer, 1960). In only one case ha9 precocious

development of the reproductive tract occured after lesioning the

amygdala (Elwers and Critchlow, 1960), The medial portion was found

to be involved.

In addition, further evidence for amygdaloid involvement in

reproductive function comes from experiments involving electrical

stimulation of discrete areas in the amygdaloid complex. Ovulation with

increased uterine movement can be induced in the rat (3unn and Everett,

1957) and cat (Ghealy and f'eele, 1957) by stimulating the medial portion

of this complex. Several of the above authors suggest that the

amygdaloid complex mediates behavior via the hypothalamus on the

assumption that the amygdala sends a rich network of efferent neural

connections to the anterior hypothalamic and preoptic areas, luood
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(1953), also has shown that fibers originating in the amygdaloid complex

terminate in the lateral hypothalamic area and ventromedial hypothalamic

nuclei.

In spite of the amount of information known on the effects the

amygdaloid comnlex exerts on reproductive functions and sexual behavior,

no investigation has attempted to ouantitate these effects on gonado-

tropin synthesis and release by measuring the amount of gonadotropin

in the pituitary and plasma and correlate these amounts with histo-

logical observations of the reproductive tract. Two experiments were

undertaken in order to elucidate the role the amygdala plays in reg-

ulating mating behavior and gonadotropin secretion. The animal chosen

for these experiments was the female deermouse, Peromyscus maniculatus

balrdil . Since no stereotaxic atlas existed for this species, a

stereotaxic atlas of the forebraln was constructed in order to locate

internal brain structures for the accurate placement of lesions.

Experiment one was to determine which nuclei of the emygdaloid complex

are responeible for normal or aberrant mating behavior, while experi~

ment two was concerned with measuring the effects of incomplete bi-

lateral ablation of the basolateral amygdaloid nuclei on pituitary

gonadotropin synthesis, storage and release.

MATERIALS AND METHDDS

CLHSTRUCTICN CF THE STEREOTAXIC ATLAS

Initially, five adult female deermice (P. m. balrdll ) weighing

19 grams were employed to determine the vertical and horizontal zero
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plenes. The animals mere anesthetized with 1,? mg of soriiun nento-

itol, injected intranprttoneally, and oriented in a rri rat

stereotaxic apparatus (Trent, Welle Jr.) (figs. 1 and 2). Due to the

extreme angle the brain made t:dth the horizontal zero plane using this

instrument, the interaural line connecting the external auditory meat!

was not used as the axin For rotation of the head. Instead, turned-

down ear plugs (1/16") uere placed in the e;~ra and pulled down under

the skull, itith the head in thi3 nosition (Figs. 1 and 2) the snout

MOO freely turned unward or downward for placement oF the upper incisor

bar. The upoer incisor bar was used to firmly support the uoper jaw

at p. point k.O mm above the horizontal plane of the ear bars. The upper

incisor bar then was mowed anteriorly or ncsterinrlv until the most

posterior portion of the junction of the lombdoidal and sagittal

sutures formed the 0,0,0 coordinate (Fig, 3).

Gross intern?! structure was detprnined by two methods. Internal

structure was ascertained by dissecting an entire head in the mid-

sagittal plane (Fig, U) end measuring petition* of internal structures

under a stereotaxic scope. In addition, electrolytic lesions (20 u«/20

seconds) were placed at various coordinates in the brain and their

position determined histologically. The animals uere dot ed, their

heads trimmed of skin and olaced in 10 percent neutral formalin for

2k hours. The brains then were removed from the skulls, dehydrated in

dioxane, embedded in paraffin, sectioned at 25 ju and staineo with

Cresyl Violet Ulue by the methed cf Powers and Clark (1955),

ceaoOffing the transverse sections of en intact brain, the mid-

sagittal dissected brain and the serial transverse Beetlone of the
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lesioned brains, the angle of sectioning (A - A f
) wgs determined

(Fig. 3). Representative serial sections of a transverse non-lesinned

brain were chosen to be nhotographed and enlarged. Diagrammatic

sketches were marie of the right half of each photomicrograph and mount-

ed to its respective counteroart. The combined photomicrograph-diagram-

matic sketch was nhotographed with coordinates to make the plates for

the atlas. "A* on the A - A' axis (Fig. 3) represents the horizontal-

vertical coordinate at the top-most surface of the brain which inter-

sects the vertical plane, while A' represents the bottom-most horizont-

al-vertical coordinate that intersects the vertical Diane. The above

method of illustrating the coordinates was employed because of the

inability to obtain a complete series of transverse sections sectioned

parallel to the vertical zero plane of the stereotaxic apparatus. 3y

comparing the transverse photomicrograph-diagrammatic composites,

carefully noting positions of nuclrd and nerve tracts, with the position

of lesions in the lesioned brains, two longitudinal diagrammatic

sketches were constructed.

All dimensions used in the atlas are in millimeters. In addition,

the contours of the main portions of fiber tracts (striped areas)

were drawn in full lines, and the approximate outlines of cell groups,

nuclei and subcortical areas indicated by interrupted lines.

. 'ins also were lesioned at various coordinates to determine the

accuracy of the atlas. Corrections were made when necessary.

EFFECT cr u ; __ ,. t
-

.

..•. ;.; ,n l : ;ioi

Adult female deermice weighing 15 to 19 g were anesthetized with

sodium pontobarbitol, oriented in a stereotaxic instrument and lesion-

ed bilaterally in either the basolateral or medial amygdaloid nuclei.
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Monopolar electrodes were made by coating epilation needles (dirtcher

Corporation) with an ethyl acetate-plastic solution. After the plastic

air-dried, about 0.5 mm of coating was removed from the tip. A large

stainless steel bar, inserted in the anus, served as the indifferent

electrode. Lesions were produced by electrocoagulation uBing an LM-3

Radio Frequency Lesion Maker (Grass Instruments Inc.) discharging 20 uA

of current for 3D to 'O seconds. The resultant lesions were less than

0.5 mm in diameter.

All females were housed individually in new or descsnted trans-

parent pla tic cages and given water and standard laboratory rat chow

ad libitum throughout the duration of the experiment. The animals

were housed in a well ventilated room after the operation and placBd

on a light cycle of 14 hours of artifical light. Two days were allowed

for recovery from the operation after which a confirmed stud was placed

in the cage with the female, and the estrous cycle followed by daily

vaginal smears. If more than 20 sperm per field were found in the wet

vaginal smear, the male was removed and the female isolated for ten to

fifteen days at which time she was killed. At the time of death these

animals wnre examined for pregnancy and general condition of the

reproductive tract. All non-mated females were killed twenty-four days

from the time of the operation. The brains of all lesloned animals

were removed and treated as before. Location of lesions was confirmed

by histological examination.

EFFECTS OF BASOLATERAL AMYGDALOID LESIONS ON PITUITARY AND PLASMA

GONADOTROPINS

Adult female deermice weighing 15 to 19 g were anesthetized with
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sodium pentobarbitol and lesioned bilaterally in the basolateral

nuclear group (basolateral and lateral nuclei) of the amygdala. A

monopolar electrode mas again used to coagulate the desired brain area

employing the same technique as before except that the lesions were

produced by a High Frequency Hyfricator (Birtcher Corporation) dis-

charging 1.5 mA of current for 7,0 seconds.

The treated animals, isolated one per cage, uiere taken to the

animal room and housed under the same conditions as in the previous

experiment. Daily vaginal smears were taken of all females until they

were killed at the prescribed time. Only animals with aberrant cycles

(i.e. long periods of diestrus with an occasional oroestrus smear) or

acyclic animals were used in the sampling. Blood and pituitaries from

3 groups per Deriod of five to seven animals per group were collected

at 1, 2 and 3 weeks following the operation. At autopsy, the ovarian,

pituitary and blotted uterine tissue was weighed to the nearest 0.1 mg

on a Roller Smith torsion balance while body weights were recorded to

the nearest 0.1 g on a standard triple beam balance. Blood was collect-

ed in heparlnized syringes by entering thB orbital sinus of the eye.

Plasma was obtained by centrifugation at 1000 x g for fifteen minutes

in a refrigerated centrifuge and stored in a freezer for later analysis.

Pituitaries were removed from the animBl as quickly as possible, weigh-

ed and placed in a 2.0 ml vial with 0,5 ml of 0.35% saline. The

entire vial then was frozen in a cold bath of acetone and dry ice. The

heads of the lesioned animals were placed in 10% neutral formalin for

histological examination. Likewise, 3 groups (5 to 7 animals per group)

of normal animals In qroestrus, estrus and diestrus were killed and
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treated as outlined for the leaioned animals.

The pooled pituitaries were homogenized in cold saline and made

up to a final concentration of 0,8 rng/ml to 1.2 mg/ml. The amount of

follicle stimulating hormone (FSH) in the pituitary homoqenate bias

assayed according to the uterine weight increase method of Klinefelter,

Albright and Griawold (19U3) in immature mice. Groups of five

receptor mice (SwIbs strain) were injected subcutaneously with six

injections over five days with either homogenate (0.1 ml/injection)

or various doses of standard FSH (NIH-FSH-S3 ovine) in saline and

killed on the sixth day. Uterine tubes were carefully dissected out

intact, trimmed of fat and weighed to the nearest 0.1 mg. A standard

F.iH-dose response curve was constructed from the following eouation:

Y = 605.322 + 27<».10S (log X), where Y Is uterine weight (mg/100 g of

body weight) and X is mg of FSH, (Fig, 16). Pituitary FSH content was

calculated in each sample using the above equation and corrected to ug

of FSH per mg Df pituitary tissue.

Pituitary and plasma levels of luteinizing hormone (LH) were

assayed by the ovarian ascorbic acid depletion method of Schaffert and

Kingsley (1955) as modified by Parlow (1961) in immature rats. Receptor

rats (Holtzraen strain) were pretreated (made pseudopregnant) with a

single subcutaneous injection of 50 International Units of Pregnant

Mares Serum Gonadotropin (Equinex) in 0.1 ml of saline, followed 56

hours later by a single subcutaneous injection of 25 International

Units of Human Chorionic Gonadotropin (A.P.L.). Six days later, the

following dDSB3 of standard LH (NIH-b<»-S5 ovine) saline, 0.5, 1.0, 5.0,

20.0 and 100,0 ug in 1.0 ml of saline or 1.0 ml of pituitary homogenate
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were injected in groups of four to five primed rata intraveniously in

the tail vein under ether anesthesia. In addition, 0.6 ml of plasma

was injected in groups of two primed rats. Four hours later the animala

were killed with ether, their left ovaries removed, weighed and assay-

ed for ascorbic acid. The aacoroic acid content of the ovary, in rag*

(mg of ascorbic acid per 10Q g of ovarian tissue), was determined by

the following formula:

«S of Ascorbic Acid - Optical Density x dilution x 100

factor x mg of ovarian tissue

The factor was calculated from a standard ascorbic acid solution,

and ita units are Optical Denaity per ug. Pituitary and plasms LH

concentrations were calculated from a standard LH dose response curve

derived from the following eouation: Y « 67,656 * 27,55? log X, where

Y is ovarian ascorbic acid in ma% and X is ug of luteinizing hormone.

The values for LH then were transformed into milliunita of LH per mg

of pituitary tissue or ml of plasma (Fig, 17),

RESULTS

CONSTRUCTION OF THE STEREOTAXIC ATLAS

The stereotaxic atlas of the forebrain of P. m, bairdll consists

of 20 plates of transverse sections and ? lonqitudinal parasagittal

diagrammatic sketches illustrating reoresentative brain structures,

of which only the most pertinent diagrams related to this thesis are

shown here (Figs. 5 - 9), These sketches best illustrate the anatomical

relationship between the amygdaloid comolex and the important gonado-
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tropin regulating nuclei of the hypothalamus. In addition, figures 1

and 2 illustrate the position of a deermouse in the stereotaxic

apparatus at the time of the operation,

EFFECT OF AMYGDALOID L ESI CMS EN ESTROUS CYCLING AND MATING BEHAVIOR

The results of lesioning discrete amygdaloid nuclei in the

female deermouse on estrous cycling and mating behavior are presented

in tabulated form in Table 1.

TABLE 1

Effects of amygdaloid lesions on eatrous cycling
and mating behavior in the deermouae.

Treatment N
Estrous

condition
Estrous
behavior

Intact,
Normal

25 Cycling Mating

Medial
Lesions

10 Cycling No»matlng

Basolateral
Lesions

2<*« Cycling Mating

, Percent Mating
,st r . -no r 2.1— Estrous 2— Eatrous

92

62

* Five basolBteral lesioned animals mated in diestrus.

a

o

33

Lesions in the medial amyqdaloid nuclei resulted in cycling but

no-mating, whereas lesions confined to the basolateral amygdaloid nuclei

resulted in both cycling and mating. The coordinates used to produce

the medial le3ions were 5.0 mm (horizontal direction) : ^2.3 mm

(lateral direction) : -b.S mm (vertical direction) (Fig. 3), The

average area of tissue destruction in the anteroposterior direction

in the brains of animals with medial amygdaloid lesions ranged from
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the ventromedial portion of the hippocampus anterior to the level of

the posterior limits of the dorsal and ventromedial hypothalamic

nuclei (Fig. 10). Tissue destruction in the lateral direction ex-

tended from the medial border of the basolateral nuclei including the

dorsal portion of the cortical amygdaloid nuclei. The average lesion

was cylindrical in nature with an average height of about 1.0 ram and

diameter of 0.5 mm.

Basolateral amygdaloid lesions resulting in cycling and mating

(Table 1), are diagrammaticly represented in figure 11. The co-

ordinates used to produce these lesions were the same in the horizontal

and vertical direction as those of the medial amygdaloid lesions,

except, ^2.8 mm was employed in the lateral direction. In the anterio-

posterior direction, the average area of tissue destroyed in the drains

of animals with basolateral amygdaloid lesions was similar to the area

destroyed in the brains of animals with medial lesions. However, in

the lateral direction, the area destroyed in basolateral lesioned

animals extended from the medial border of the basolateral nuclei

laterally to the middle portion of the lateral amygdaloid nuclei in-

cluding most of the centromedial amygdaloid nuclei. The average

dimensions of these lesions were similar to the medial amygdaloid

lesions.

Sixty-two percent of the animals lesioned in the basolateral

nuclei mated during their first B3trous cycle, whereas ninty-two

percent of the normal animals mated during a comparable length of time.

In addition, five of the lesioned animals mated in diestrus, which

taken to indicate hypersexuality.
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Fifty-five percent of the 100 animals bilaterally lenlnned in

the bnsolataral amygdaloid nuclei mere found satisfactory (failed to

cycle or had unusually long psrinris of diestrus) for use in this

experiment. The vaginal smears nf the sixty non-cyclic animals

resembled that of die3trus.

Location of the lesions in the basolateral comnlex (coordinates;

5,5 mm : £?,0 mm: -4.8 mm) are illustrated in figure 12. The overage

area of tissue destruction in thB anterioposterior direction, extended

from the levBl of the middle oortion of the dorsal and ventral hypo-

thalamic nuclei to the anterior harder of the posterior hypothalamic

nuclei. Laterally, the lesions extended from the middle of the baso-

lateral amygdaloid nuclei well into the lateral amygdaloid nuclei. In

addition, portions nf the cortical and centromadial amygdaloid nuclei

were involved. The lesions were cylindrical in nature with an average

height of about H.G mm and diameter of 0»5 mm.

It was found that leainns this far anterior in the basolateral

nuclei increased the number of non-cycling animals about 40% as

compared with lesions in the posterior oortion Df this nucleus.

Figure 13 is a graph illustrating the eTfect of basolateral

amygdaloid lesions on ovarian, uterine and pituitary weight. All

tissue weights are expressed as mg of tissue per 103 g of body weight

(mgX) to correct for variation in body weight. A linear relation

exists in the ovarian weight with progression of the estrous cycle in

normal imlesioned animals. From a mean value of 93,? mg£ at diLftrus,
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the ovarian weight increased to a mean weight of 122.1 mg% at eatrus.

The effect of lesions on ovarian weight resulted in a diohasic resoonse.

From a mean weight of 1D3.1 mg% at one week following the ooeration,

the ovarian weight increased to 182.2 mg% at two weeks then decreased

to a mean weight of H*7.9 mq% three weeks following the ooeration.

The rise in ovarian weight at two weeks was a result of luteinization

of ovarian follicles (Fig. IB). Three weeks following the operation,

the ovaries were still heavily luteinized with both degenerating corpora

lutea and fully luteinized corpora lutea, but growing follicles also

were present (Fig. 19).

Normal weights for blotted uterine tissue rose from a mean di-

estrus value of 123.0 mg% to 237.1 mg5£ at estrus. The same general

trend in uterine weight also was noted in the treated animals, except

the increase was leas pronounced. From a mean weight of 87.0 rag% one

week after the operation, the uterine weight increased to a mean weight

of 16*1.3 mq% three weeks after lesioning, which was comparable to that

of proestrus. In addition, figure 13 shows that although the pituitary

weights of the animals with lesions increased with time following the

operation, the increase in weight was only 11.3 percent greater than

the peak value observed for prneatrus (8.8 mg%).

During the estrous cycle, normal plasma levels of luteinizing

hormone (LH) decreased slightly from a mean diestrus concentration

of 0.82 milliunits per ml (Fig. 1*0 to a mean concentration of 0.78

milliunits per ml at proestrus, then increased sharply to an estrus

level of 2.0 milliunits per ml. as the plasma levels of LH increased,

pituitary levels of cycling animals decreased in amount from a mean
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concentration of 0.6 milliunlts per mg at diestrus to a mean value of

0.16 milliunlts per mg at estrus.

Plasma LH levels increased linearly with time following baso-

lateral amygdaloid lesions, while pituitary LH content decreased

linearly during the same period. From a mean concentration of 0.59

milliunlts per ml one week following the ooeratlon, the plasma LH con-

tent rose to a three week value of 2.62 milliunlts per ml. The

pituitary LH concentration at one week following the operation decreased

from 0.*»9 milliunlts per mg of tissue to a low value of 0.09 milliunlts

per mg three weeks following lesioning.

Pituitary follicle stimulating hormone (FSH) content in normal

estrous cycling animals decreased from a mean concentration of **.07

ug/mg of pituitary tissue at diestrus to 1.87 uq/mg at proestrus where

it remained essentially unchanged Into the estrus period (Fig, 15).

However, a diphasic response in pituitary FSH content was noted in the

tre ted animals following the operation. From a comparable diestrus

value of k,G uq/mg at one week following the lesions, the pituitary

FSH content increased ?t*U% (13.95 ug/mg) at two weeks then sharply

decreased to a diestrus level of 3.96 ug/mg at three weeks.

The pituitary FSH to LH ratio For normal estrous cycling females

was *».00 during diestrus, 1.79 during proestrus and 7.30 during the

estrus period of the cycle.



Fig. 1. Lateral view of £. m. balrdll In position In a modified
rat stereotaxic aDpnratus.
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Fig. 2. Dorsal view of P. m. halrdil In position In a modified
rat stereotaxlc~apparatus.



2k



Fig. 3. Sagittal outline of skull indicating outline of brain
and positions of plane at which transverse sections
of brain were made.
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Fig, *». Sagittal section of head of P. m. bairdli indicating
position of brain in situ .
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Figa. 5-9. Composite diagrammKtic-photomicrogrephic trsnaverae
Bsctions illuatrntlng representative structures in

the brain of P> m. bairdU. Height and lateral
acalea are In^ralTliweiera. A . A« axle repreaenta
angle at which brain wee sectioned, abbreviations
used to describe nauroanatomlcal structures*

Alii. Nucleus amygdaloldeue baaalia psra lateralis
ACE Nucleus smygdalcideuo centrnlia
AGO Nucleua smygdaloidaue corticalis
AO Nucleus anterodorsalia thai ami
AHA Ares anterior hypothalami
Ai. Nucleus amygdaloideua lateral ie
AM Nucleus anteromedialls thai ami
AME Nuclsus amygdsloideue medial is
ARH Nucleua arcuatus hypothalami
AV ftucleue ant eroventrails thsleml
CC Corpus callosum
CH Commissure hippocampi (Commissure fomicis)
CI Capsula interna
CL Nucleus eubthalemicue (tuys)
CLA CIsuetrum
CO Chiasms optlcum
CPU Nucleus caudatue/Putamsn
CT Nucleua centralis tegmenti (Bechterew)
OMH Nucleue dorsomedlalla hypothalami
FA Fissure amygdsloidea
FO Gyrus dantatue (Faacia dentate)
FM Flesura hippocampi
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FI Fimbria hippocamoi
FR Flssura rhinalia
FX Fornix (Corpus, columns

)

GL Corpus genieuiatum laterals
HL wucleus habenulnrie lateralis
MM Nucleus hsbenulsris medlslls
HP Tractus habenulo-interpedunculariB (Fanciculua

retroflSMusXKsynsrt)
HPC Hippocampue (Comu Ammonis)
IP vucleus intsrpeduncularis
LHA Area lateralis hypothalami
La Nucleus lateralis septi
LT Nuclsus lateralis thai ami
LTP uclsus lateralis thalami pars posterior
MO Nucleus medlodorsalis thai ami
HF8 Fasciculus medial is telencephali (Medial forebrain

bundle)
MT Trsctus sismillo-thnlamicua (Vice d*»zyr)
»TM Nucleus posterior thai ami
CA Nucleus olfactorius anterior
OT Tractus opticus
P Pons
MS Psdunnulus cerebri
PF Nucleus psrsfssclcularis thulami
PH Nucleus posterior hypothalami
Pin CortsK piriformis
mi Nuclsus premamillaris dorsal is
PMU Nuclsus oremamillaria ventral is
PT Nucleus parataenielle thalami
FN Nucleus paraventrlcularla thslaml
PtfW .uclsus paraventricularls hypothalami
RE Nucleus reunions thai ami
IF Formatlo reticularis (msssncephsll)
RH Nuclsus rhomboideus thai ami
RT Nucleus reticularis thalsml
SM Stria medullaris thalaml
w Substantia nigra
SO Nucleus supraopticus hypothalami
ST Stria terminalls (Tnsnle ssmiclrcularia)
TS Nucleus triangularis septl
TT Tractus raaralllo-tegmentaiis
TUO Tuberculum olfactorlum
V Uentriculus cerebri
V/A Nucleus vsntralls thalami Dars anterior
VD Nucleus ventral la thalaml pars dorsomedlells
VE Nuclsus vsntralls thalami
|M Nucleus ventralis thalami pars medlalls
\tm Nuclsus ventromedial la hypothalami
Zl Zona inccrta
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Fig. 10. Diagrammatic illustration of a transverse section of
the brain of P. m. bairdll . MBshed area on left
hemisphere represents location of lesions. Sight
hemisphere represents location of various nuclei.
Coordinates of lesion are: 5.0 mm : -?,3 mm :

-U.B mm.





Fig, 13, Dieorammptir illustration of a transverse section of
the brain of P. m. halrrill . Meshed Brea on left
hemisphere represents location of lesions, Right
hemisphere represents location of various nuclei.
Coordinates of lesion are: 5,0 mm • £2,8 mm :

-**.B mm.





rig, 1?. Pisc,reie»atie illustration of a transverse section of
the brain of P, m. bairiill . Meshed area on left
hemisphers reprssenta location of 1 salons, Sight
hemisphere represents location of various nuclei*
Coordinates of lesion are: 5,5 ram t -2,0 mm :

•i»,Q mm.
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Fig. 13. fcfTect or basolnterdl RfflygdBlolri lesions on ovarian,
uterine end pituitary weights* Tissue weight Is
expresssd as mg of tissue per 100 g of body weight
(«g*> to correct for body weight variations. Stags
of cycle and weeks following leslonlng are plotted
along the abscissa, D * dlestrus, P prosstrus and
£ m estrus period in the estrous cycle. Loch point
represents the mean of three groups (5 to 7 eniasle/
group).
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Fig. 1%, Plasma and pituitary levels of luteinizing hormone
(rilliunits/mn or ml) during 3 phases of the
estrous cycle and during 3 ueeks after baaolateral
amygdaloid Ibs^ooe. D *» diestrus, P ornnntrus,
and E a estru9 period in the estrous cycle. Each
point represents the mean value of U (pituitary)
of 2 assay animals (plasma).
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Fiq. 15. Effect of basolateral amygdaloid lesions on pituitary
follicle stimulating hormone content. Stage of
eatroua cycle and weeks after leaioninq are plotted
on the abscissa. dieatrus, P » proestrus and
E Bstrus staqea in the estrous cycle. Each nnint
represents the mean of 5 aasay animals.





Fia. tin Standard dose reanonee curve for follicle etlmulet*
tng hormone* (FSH) calculated fro» the following
enuationt V * 603.3?? * 27fc.l08<log X), tJiere V
Is uterlnt* weight in irq/IOG g of body weight and
X la ng of FSH. Each point represent* the mean
responae of 5 receptor aninala.

* Obtained from the Endocrinology Study Section,
fcetionel Institutes of Health,
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Fig. 17. Standard dose response curve Tor luteinizing hornonE*
(LH) calculated from the following eauatian: Y

i7*65C - 27.55Z(leci X), where Y Is ovarian rssnnrbic

acid in mg/100 g of tisBue and X is UQ of LH. Each
point represents the mean resoonse of 5 receptor
animals.

• Obtained from the Endocrinology 5tudy Section,
National Institutes of Hr; ~:l th.





< ig. 1U. Ovarian auction of a female deer^ouea taken two
weeka after leaionlng the baadnteral amygdaloid
nuclei, stained with Hematoxylin and ^oain. -uta
larne cornora lute*.
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i itj, 19. Ovarian section of a female deermouse taken three
weeks after leaicning the baaolaterel amygdaloid
nuclei, atalned with Hematoxylin and Coaln. Note
foilidea and corpora lutoe.
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DISCUSSION AMD CONCLUSIONS

NSTRUCTION OF THt -iTE :, 7 : I . n.

The forebrain of the deermouse (P. m. bnirdii ) was found to

be anatomically similar in ell respects to the rat (de Groot, 1959

and Zeman and Innes, 1963). Hypothalamic and thalamic nuclei of

the deermouse occupied approximntly the same position and were ahout

equal in size in comoarison to the brain of the rnt. However, the

amygdala of the deermouse appears to be larger in proportion to its

brain in comparison to the rot, whereas the rat aope-rs to have

greater cortex to brain ratio. Pribram (1966) contends that the

amygdala functions as a hemostatic and orienting mechanism for the

basic emotions of fighting, fleeing, feeding and sex. Therefore, it

is not suprisinc that any structure that would function in making the

animal better oriented to its env/iroment should be r than in en

animal less deoendent on its senses and environment. Since the deer-

mouse is the nrogenitor of the rat, the rat is considered evolutionally

a higher animal, and therefore, has a better degree of neural integrat-

ion. Thus, the r^t is expected to have a greater cortex to brain rntio,

CFFC.CT G£ AMY GO -LI [
'-

j

[T :

\
CVCLI ' FT-

.

Experiments involving the effects of subtotal or total amygde-

lectomy on mating behavior are well documented, doth hyoosExuality

and hypersexuality, with or without imnairment of other Terms of

behavior have been reaorted by Kling and Schwartz (1961), Lioddard

(I960 and ichreiner and Ming (1953). Bilateral or unilateral lesions

confined to the medial and centromedial amygdaloid nuclei resulted in
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a decrease in sexual (mating) behavior which agrees well with previous

reports of the above investigators. Mhlll :ichreiner and Kling renort-

ed a decrease in sexual behavior lasting m long as two weeks, this

effect lasted three week3 in this experiment (termination of experi-

ment).

Uilateral or unilnteral lesions confined to the baaolateral

amygdaloid nuclei did not appear tc ciafoly alter mating behavior.

Although only 3ixty-two percent of the animals with baaolateral

lesicna mated during their first estrous cycle; thir. transient effect

in itself, does not represent an alteration in normal mating behavior.

It would not seem unreasonable to assume that the lag in mating was a

result of general apathy due to general traunm (uood, 1950).

Wood (195B) investigated the effect of discrete bilateral lesions

in the lateral amygdaloid nuclei of cats and discovered that hyper-

sexuality becjan only after a period of one to three MMk< . Since the

lateral nucleus is part of the baaolateral complex (Kolegami at al.,

1955), the effect of basolateral leaions should suoport Mood's

experiment to a certain degree. Indeed this was the case, five

animals that mated in diestrus mated two weeks after the operation.

In eddition, all five of these animals were not only lesioned in the

baaolateral nuclei but four of them had some portion of the laterel

nuclei destroyed. Therefore, it appears that lesions confined to the

posterior portion of the baaolateral nuclei ara relatively ineffective

in producing hypersexuality in this species, furthermore, at least

some lateral nuclear destruction is necessary to producs a hyper-

sexual resnonse.
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Since hippocamoal damage was observed in animals uiith both types

of lesions, it was concluded that the intoority of this structure ex-

erts little if any direct control on rating hehavior in this species.

Anand at aU (1959), Pribram and : agshaw (1953), Schreiner and

Kling (1953) and Terzian and Ore (1955) observed hypersexuality in

bilateral amyndnlectomized animals, whereas, Green and his co-worker3

(1957) and Kling and Schreiner (1961) reported that amyqrialectomy had

no effect on sexual behavior. The present investigation suoports the

view that the medial amygdaloid nuclei exert an important influence

in maintaining normal mating behavior while the basolateral amygaaloid

complex acts on an inhibiting center for controlling the mating urge.

In addition, these data suggest that the mating drive originates in

the medial amygdaloid nuclei but is inhibited by the nuclei of the

basolateral complex in a reciprocal manner. Therefore, the upsetting

of this balance may possibly explain the varied effects in behavior

attributed to dysfunction of the amygdala.

EFFECT 0F_
j

f- t- L AMYGDALOID L S|l ^__ 'IT-.sIT •
j

L .MA

GCN Oi.T h IMS

Pituitary gonadotropin concentrations were found to be consistant

with irevicus findings in the rat (ochwortz and Caldarelli, 19

Marie et ol. , 1965 and Corbin, 1966) and pig (Melampy et al , , 19:

and Anderson et ul_. , 1956). In addition, Kelampy and his co-workers

and Anderson end his co-workers employing similar assay procedures

reported comparable pituitary FSHjLH ratios in the pig. tiihen olasroa

LH is corrected to ug per animal the values agree well with plasma

values reported by Schwartz and Cald^relli (1965) for the r t. jince
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no previous work appears in the literature on plasma LH concentrations

after amygdaloid lesions, it is difficult to comcare the effect of

this treatment on plasma LH levels.

Bilateral lesions confined to the basolateral amygdaloid nuclei

yielded an increase in plasma LH from one to three weeks following

lesions with an accompanying decrease in pituitary LH (Fig, 1*»). The

changes recorded in organ weights in animals with lesions can best be

correlated with altered secretion rates of pituitary and ovarian

hormones. Uterine tissue development is primarily dependant on estrogen

secretion from FSH stimulated ovarian follicles, while increases in

ovarian weight is primarily attributed to formation of corpora lutea

under the influence of LH and possibly Luteotropic hormone (LTH) in

this animal (Taleisnik and McCann, 1961). Therefore, since the uterine

tissue failed to gain weight in proportion to normal animals during the

estrous cycle, it can be concluded that a sufficient amount of FSH was

absent from the systemic circulation or that estrogen synthesis was

altered in the ovary of lesioned animals. The former assumption appears

to be more consistant with the present data in view of the fact that

during one to two weeks following lesions pituitary FSH content in-

creased indicating little if any release (Fig, 15). The rise in ovarian

weight in the lesioned animals can be correlated with formation of

corpora lutea (Fig, 19) as evidenced by a sharp increase in plasma LH

and probably LTH. However, between two and three weeks following

lesions, the ovarian weight decreased while the uterine weight increased

to almost proestrus levels. The drop in ovarian weight can best be

interpreted as resulting from increased secretion of FSH (evidenced by
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a drop in pituitary FSH content) which would permit partial resorb-

tion of corpora lutea with increased production of follicles and,

therefore, estrogen (Fig. 19). With the presence of sufficient

quantities of estrogen in the systemic circulation, the uterine tissue

becomes properly stimulated to develop. The sharp rise in uterine

weight (Fig, 13) from two to three weeks adds Bupport to the above

statement. However, since plasma FSH was unable to be determined, due

to limited amount of plasma, the only evidence in support of these

statements is the biphasic response in pituitary FSH in the treated

animals.

Another hypothesis (but less convincing) can also be described

in order to explain the train of events associated with basolateral

amygdaloid lesions. Martin &t ed, (1958) discovered that in amygdal-

ectomlzed cats and doga, plasma levels of adrenal corticoids dramatically

increased and sometimes a new type of corticoid wa3 produced. If a

qualitative change in estrogen occured in the lesioned animals, the

uterine tissue may not have been able to metabolize the new estrogen

and, therefore, not develop. The lack of normal estrogen then would

trigger the pituitary to produce FSH through the negative feedback

mechanism in the hypothalamus (Flerko, 1963), thus accounting for the

increase in pituitary FSH, Exactly what effect thia qualitative shift

in estrogen would have on pituitary synthesis and release of LH cannot

be elucidated with the present data.

The possibility that LTH is secreted as a result of basolateral

amygdaloid lesions would certainly explain the formation and persist-

ence of corpora lutea, but this hypothesis seems unlikely since the
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uterine tissue failed to increase in weight. If LTH were secreted the

uterine tissue should have been comparable in weight to animals in

pseudopregnancy.

Previous investigators have demonstrated that ovulation (LH

release) can be induced by stimulation, lesioning or ablation of the

amygdala or as a result of implantation of acid extracts of amygdala*

into the tuber cinerium. Cn Millard's assumption that LH induces

steroidogenesis in the ovary (Hlllard et al. , I960, Endroczi and

Hillard (1965) imolanted acid extracts of rabbit or dog amygdalae into

rabbit median eminence and stimulated progesterone secretion from the

ovary. 3y stimulating the medial or centromedial amygdaloid nuclei

Shealy and Peele (1957) and Koikegami et al. (1950 induced ovulation

in rabbits thus implicating the amygdela in the regulation of LH

secretion. 3unn and Evertt (1957) also produced the same effect but

did not indicate what region in the amygdala was necessary for the

elaboration of ovulation. This investigator does not feel that the

above data contradict the present experiment involving lesions, since

the above investigators stimulated an area not involved in this ex-

periment. Since a rich network of nervous connections is known to exist

between amygdaloid nuclei (Gloor, 196<»), It is not suprislng that

dysfunction of one nucleus may effect another. Thus, stimulation of

one nuclei can activate another which then oroduces the observed effect.

Shealy and Peele (1957) lesioned the basolateral and lateral

amygdaloid nuclei in rabbits and induced ovulation which is in good

agreement with the present findings. Since ovulation MM not used as

a parameter in this experiment the amount of LH released from the
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pituitary cannot be compared. However, since a tonic discharge of LH

is needed to induce ovulation (Flerko, 1963) and corpora lutea were

found in the lesioned animals, it seems reasonable to assume that

greater than normal or normal amounts of LH were secreted from the

pituitaries of the basolateral lesioned animals. As to how sustained

was the LH release and at what rate was LH released cannot be determin-

ed by this experiment or previous experiments.

The release of pituitary LH as a result of amygdaloid lesions

should not be attributed to general trauma. Although Taleisnik et jlU

(1962) noted a significant depletion of ovarian ascorbic acid from

animals one hour following puncture of the neo-cortex with an electrode,

and thus attributed the release of LH to actual spreading of a stimulus

from the site of injury to the hypothalamus, Bunn and Evertt (1957)

maintained that gross asymetric lesions not in the amygdala do not

induce ovulation. It would seem that the mechanism by which an impulse

induces LH release in the neo-cortex is different than the mechanism

that operates in the amygdala for LH release. Since the amygdala is

relatively close to the hypothalamus, the possibility of trauma causing

LH release cannot be overlooked. However, it is unlikely that a traum-

atic stimulus would be sustained for three weeks as these data indicate.

In addition, animals that were lesioned in the posterior portion of

the basolateral or medial amygdaloid nuclei (experiment one, page 16)

cycled normally, thus supporting 9unn and Evertt's assumption. Had LH

been released constantly from the pituitary, normal cycling would have

ceased and the animals would have gone into constant dieatrus as in the

case of the lesioned animals in this experiment.
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In describing a specific BtOtWls* of action for amygdaloid

regulation of pituitnry gonadotropins, the route of propagation for

e stimulus or lack of stimulus, in the case of lesions, should db

traced from its origin in the amygdala to the pituitary. It is un-

certain whether the amygdala exerts its effect directly on the

pituitary, hypothalamus Dr indirectly on the hypothalamus via another

subcortical or even cortical structure. In addition, it is not known

whether the impulse originating in the amygdala Is neural, neuro-

secretory or hormonal in nature. Pribram (1963) and Gloor (196k)

described many neural pathways by which an impulse originating in the

amygdala or from the amygdala HM travel directly to various gonado-

tropin regulating centers in the hypothalamus or indirectly to the hypo-

thalamus via other subcortical structures, Employing selective stains

for neurosecretory granriules and serotonin assays, Moore and his co-

MffcCfl (1965) have demonstrated several possible pathways by which

neurosecretory substances can reach the hypothalamus from the amygdala.

Evidence for hormonal (steroidal) stimulation of the hypothalamus via

the amygdala soerna to be ruled out as a possible pathway by Michael's

failure to alter sexual behavior in cats with estrogen implants in the

amygdala (1965), A pathway by which gonadotropins are regulated by

the amygdala will not be suggested here except to state that evidence

for both neural and neurosecretory pathways exist from the amygdala to

various other components of the limbic system.

Various lesion experiments in the median eminence and anterior

hypothalamic area implicate the hypothalamus as the passible target

area of amygdaloid activity in gonadotropin regulation. The particular
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syndrome associated with basolateral amygdaloid lesions has been

demonstrated by Taleisnik and ficCann (1961) in animals with median

eminence lesions. Constant diestrus, corpora lutea formation, decreese

in uterine and ovarian weight and low pituitary LH levels were associat-

ed with hypothalamic lesions in female rats. However, no detectable

plasma LH was found in these animals which the authors attributed to

impaired LH synthesis. They also concluded the lower uterine weight

was due to low levels of FSH and probably LH, However, it should be

pointed out that LH was neither detected in normal plasma nor in the

plasma of lesioned animals. Therefore, an accurate conclusion about

relative plasma LH levels was not drawn, Glnce the rise in pituitary

FSH in lesioned animals may be an effect of progesterone inhibition

(negative feedback) caused by high plasma titers of LH and, therefore,

not a result of lesions, its hypothalamic regulating center will not

be defined here until plasma F3H levels are determined. The low uterine

weight observed in lesioned animals from one to two weeks suggest that

this gonadotropin is decreased or absent from circulation, which agrees

with the results of Talei3nik and McGann's median eminence lesioned rats.

EN summing up the above data, it appears that the function of the

basolateral amygdaloid nuclei is to inhibit the release of pituitary

LH until it ia needed (i.e. for ovulation) via the hypothalamus.

Thereby, removal of theae nuclei results in a continued release of LH

by thfc pituitary which leads to the particular syndrome described in

this thesis. The actual synthesis of LH does not seem to be impaired,

ther this effect is a specific result of the lesions or a result of

disorganization of other behavioral patterns cannot be determined until
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further information is obtained from stimulation experiments involving

the limbic system, neurosecretory studies in the amygdala and ether

parts of the brain and other behavioral and endocrine related experi-

ments for this species.

SUMMARY

UilaterBl or unilateral electrolytic lesions, with or without

hippocampal damage, confined to the posterior portion of the medial

amygdaloid nuclei in the female deermouse (H. m. oairdii ) resulted in

normal estrous cycling but no mating, whereas lesions confined tu the

posterior portion of the basolateral amygdaloid nuclei resulted in both

normal estrous cycling and mating. In addition, five animals with

nasolateral and lateral amygdaloid lesions mated in diestrus, which

was interpreted aa a hypersexual response as a result of the treatment,

f'nese data demonstrate that the integrity of both the medial amygdaloid

nuclei and the nuclei of the basolateral amygdaloid complex are necessary

in normal regulation of sexual behavior in this species. This author

suggests that the mating drive originates in the medial amygdaloid

nuclei while being inhibited by the nuclei of the uasolateral complex

in a reciprocal manner. Therefore, the removal of the basolateral and

lateral nuclei allows for an increased expression of the functions

originating in or mediated through the medial amygdaloid nuclei. The

wide range of behavioral phenomena attrinuted to dysfunction of the

amygdaloid complex can then be explained by upsetting this inhioitory-

facilatory oalance.
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Bilateral electrolytic lesions confined to the anterior portion

of the basolateral amygdaloid nuclei resulted in an increase in

plasma luteinizing hormone (LH) throughout the ouserved postoperative

period with an accompanying decrease in pituitary LH. Synthesis of

LH did not seem to be impaired while release was enhanced. The form-

ation of corpora lutea in the ovary were the result of increased

circulatory levels of LH while the persistence of corpora lutea over

the tnree week postoperative period was probably due to the secretion

of both LH and luteotropic hormone (LTH), Thus, the observed increase

in plasma LH correlates well with the observed increase in ovarian

weight during the postoperative period.

Pituitary follicle stimulation, hormone (FaH) content was found

to increase from one to two weeks after the oneration indicating

little if any release. However, increases in uterine weight and

histological changes in the ovaries of lesioned animals demonstrate

release of pituitary FJH from two to three weeks after the operation.

The inhibition of FSH secretion from one to two weeks following the

lesions could not be explained by the above data alone. Further

evidence would be necessary to establish whetner the lag in FaH secretion

was due to the lesions or simply to tne negative feedback effect of

progesterone oue to either LH or LTH stimulation of corpora lutea.

The nature of the mechanism by which che amygdala exerts its

influence on pituitary gonadotropins is discussed. These and other

data suggest the basolateral amygdaloid complex functions as an

inhiuitor for tne release of pituitary LH via the hypothalamus either

directly through established neural and neurosecretory natnways or
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indirectly through other subcortical structures. Thereby, removal

or destruction of this inhibitory mechanism results in a particular

syndrome described in this thesis, uihether this effect is a specific

result of lesions or a result of disorganization of other aehavioral

patterns cannot be determined until further information is ootained

from stimulation experiments involving other structures in the limbic

system, neurosecretory studies in the amygdala and other parts of the

brain and other Oehavioral and endocrine related experiments for this

species.
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The effect of electrolytic lesions in the amygdaloid complex of

the female deermouse ( Peroirwacua roanlculatua bairdii ) was investigated

to further elucidate the role of the amygdala in the regulation of

mating dsbavior and gonadotropin secratlon.

Accurate placement of lesions demanded that a stereotaxic atlas

of the forabrain be constructed far this species* ThB stereotaxic

atlas consisted of twenty transverse diagrams and two longitudinal

parasagittal diagrams illustrating various representative brain struc-

tures. The internal anatomy of the brain of P« m. aairdii was found

to be uimilar to tne neuroanatomies! structures described for the rat*

jilateral or unilateral lesions, with or without hippocampai

damage were confined to the posterior oortion of the medial or baso-

latsral amygdaloid nuclei. Lesions in the medial amygdaloid nuclei

inhiuitad normal mating without impairment to normal eatroua cycling,

whereas, thirty-three percent of the animals iesioned in the basolateral

nuclei exhibited a lag of one eatroua cycle before mating, compared to

normal animals. The latter Iesioned animals aleo were shown to cycle

normally, five animals Iesioned in tne uasola^eral and lateral

amygdaloid complex united in diastrus, which was interpreted as a hyper-

sexual reuuon38 as a result of the treirment. The present investigation

supports tiie assumption that the integrity of both tne medial and nuclei

of the basul-iterai amygdaloid ctxiplex are essential in maintaining

normal mating behavior in this species. In addition, these data suggest

the mating drive originates in the medial amygdaloid nuclei wiiile ueing

inhibited by the nuclei of the basolateral amygdaloid complex in a

reciprocal manner. Therefore, tne wide range of oen«vioral phenomena



attributed to dysfunction of the arr.ygdaln can possibly be explained

by upsetting this inhibitory-f^cilatory balance.

Bilateral lesions confined to the anterior portion of the

baaolateral amygdaloid nuclei yielded an increase in plasma luteiniz-

ing hormone (LH) from one to three weeks following the operation with

an accompanying decrease in pituitary LH. During the postoperative

three week period, pituitary follicle stimulating hormone (F3H) cnntent

increased 243% at two weeks from a normal diaatrus level at one week,

then, decreased to a comparable dieatrus value at three weeks following

the operation, Changea in ovarian and uterine weight were found to be

indicative of fluctuating levels of pituitary and plasma gonadotropins.

The dramatic rise in ovarian weight two weeks following the operation

was attributed to luteinization of existing ovarian follicles due

primarily to increased circulatory lev/els of LH and possibly luteo-

tropic hormone (LTH).

The nature of the Miechanism by which the amygdala exBrts its

influence on pituitary gonadotropins is discussed. These and other

data suggest the baaolateral amygdaloid complex functions as an

inhibitor for the release of pituitary LH via the hypothalamus either

directly through established neural and neurosecretory pathways or in-

directly tnrough other subcortical structures. Thereby, removal or

destruction of tnis inhibitory mechanioraCs) (i.e. lesions or ablation)

results in a particular syndrome described in this thesis. Whether

this effect is a specific result of lesions or a result of disorgan-

ization of otner behavioral patterns cannot be determined until further

information is obtained from stimulation experiments involving the



limbic nystem, neurosecretory studios in the amygdala and otner parts

of the br«in nod other behavioral and endocrine related experiments

for this Bpecies,


