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Abstract

This thesis contains four chapters. In the first chapter, the theory of continuous p-

modulus in the plane is introduced and the background p-modulus properties are provided.

Modulus is a minimization problem that gives a measure of the richness of families of curves

in the plane. As the main example, we compute the modulus of a 2-by-1 rectangle using

complex analytic methods. We also introduce discrete modulus on a graph G = (V,E)

and its basic properties. We end the first chapter by providing the relationship between

connecting modulus and harmonic functions. This is the fact that computing the modulus

of the family of walks from a to b is equivalent to minimizing the energy over all potentials

with boundary values 0 at a and 1 at b.

In the second chapter, we are interested in the connection between the continuous and the

discrete modulus. We study the behavior of side-to-side modulus under some grid refinements

and find an upper bound for the discrete modulus using the concept of Fulkerson duality

between paths and cuts. These calculations show that the refinement will lower the discrete

modulus. Since connecting modulus can also be computed by minimizing the Dirichlet energy

of potential functions, we recall an argument of Jacqueline Lelong-Ferrand, that shows how

refining a square grid in a “geometric” fashion, naturally decreases the 2- the energy of

a potential. This monotonicity can be used to prove the convergence between continuous

and discrete modulus. We first review the linear theory of discrete holomorphicity and

harmonicity as provided by Skopenkov and Werness. Instead of reviewing their work in

full generality, we present the outline of their arguments in the special case of square grids.

Then use these results to prove the convergence between the continuous and discrete case.

We believe that our method of proof generalizes to the full case of quadrangular grids that

Werness studies.



In the third chapter, we show how to generalize all our proofs for 2-modulus to the case

of quadrangular grids with some geometric conditions on the lengths of edges and the angles

between them.

In the last chapter, a connection with potentials when 2 < p < ∞ is discussed in the

square grid case. We study the behavior of side-to-side p-modulus under the same refinements

as before and we find upper bound for the p-modulus, but only when p > 2. The rest of the

chapter is dedicated to generalizing the results from Chapter 2 to the case 2 < p <∞.
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Then use these results to prove the convergence between the continuous and discrete case.
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In the third chapter, we show how to generalize all our proofs for 2-modulus to the case

of quadrangular grids with some geometric conditions on the lengths of edges and the angles

between them.

In the last chapter, a connection with potentials when 2 < p < ∞ is discussed in the

square grid case. We study the behavior of side-to-side p-modulus under the same refinements

as before and we find upper bound for the p-modulus, but only when p > 2. The rest of the
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Preface

In the mathematical theory of conformal and quasiconformal mappings, the modulus

of a collection of curves Γ is a way of measuring the size of Γ that is (quasi)invariant

under (quasi)conformal mappings. That is, for any conformal map f the modulus of Γ

is equal to the modulus of f(Γ). One also works with the conformal extremal length which

is the reciprocal of the modulus. The fact that extremal length and conformal modulus are

conformal invariants makes them useful tools in the study of conformal and quasi-conformal

mappings.

For a graph G = (V,E) and Γ a family of paths in the graph, the originally definition of

the discrete extremal length was introduced by Duffin2. Consider a function ρ : E → [0,∞).

The ρ -length of a path is defined as the sum of ρ(e) over all edges in the path, counted with

multiplicity. The “area” A(ρ) is defined as
∑

e∈E ρ(e)2. The extremal length of Γ is then

defined as

sup
ρ

A(ρ)

`(Γ)2
.

IfG is interpreted as a resistor network, where each edge has unit resistance, then the effective

resistance between two sets of vertices is precisely the extremal length of the collection of

paths with one endpoint in one set and the other endpoint in the other set.

For reasons of convenience, we will instead work with modulus, which is essentially the

reciprocal of extremal length.

Definition 0.1 (Modulus on the plane). If ρ is a Borel measurable, real-valued non-negative

function on X, then we call ρ a density. The ρ-length of a curve, `ρ(γ) :=
∫
γ
ρds and we say

ρ is an admissible density for Γ if `ρ(γ) ≥ 1 for all γ ∈ Γ. The set of admissible densities

for Γ defined by AdmX(Γ) := {ρ : X → [0,∞)
∣∣ `ρ(γ) ≥ 1 ∀γ ∈ Γ}. Now, we define the
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modulus of a family of curves Γ as

ModX(Γ) := inf
ρ∈Adm(Γ)

∫
X

ρ2dµ.

Definition 0.2 (Modulus on the graph). We will define EX(ρ) :=
∫
X
ρ2dµ, and call it the

energy of the density ρ. The ρ− length of γ, `ρ(γ) is defined by

`ρ(γ) :=
r∑
i=1

ρ(ei).

the energy of a density ρ is

E(ρ) :=
∑
e∈E

ρ(e)2

The modulus of Γ is defined as

Mod2(Γ) := inf
ρ∈Adm(Γ)

E(ρ)

Theorem 0.3 (Main Theorem). Suppose Ω is a simply connected Jordan domain in the

complex plane and four distinct boundary points ζ1, ζ2, ζ3, ζ4 ∈ ∂Ω are fixed so as to create a

pair of opposite sides E = ∂Ω(ζ1, ζ2) and F = ∂Ω(ζ3, ζ4). Let Γ be the family of continuous

curves connecting E and F in Ω.

Suppose also that Ω is approximated by a quadrilateral lattice domain Ωn with underlying

graph Qn whose mesh-size tends to zero. Assume that there are corresponding sides En and

Fn converging to E and F respectively in the Hausdorff topology. Let Γn be the family of

paths on the graph Qn connecting En to Fn. Then,

Mod2(Γn) −→ Mod2(Γ).

Finally, we generalize most of Werness and Skopenkov theorems to the p case when p > 2

but to prove their convergence in this case we need to assume that the limit function of

a sequence of discrete p-harmonic functions is a p-harmonic function. It is still an open

xiv



problem to prove that this limit is p-harmonic.
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Chapter 1

Background on Modulus

1.1 Modulus in the plane

Definition 1.1. If (X, d, µ) is a metric measure space, then we say that γ : [0, 1]→ X traces

out a curve if γ is continuous. We say that γ is rectifiable if its total variation, denoted

TV (γ), is finite. We define the total variation of γ as

TV (γ) := sup
0=t0<t1<...<tN=1

N−1∑
j=0

|γ(tj+1)− γ(tj)|.

Definition 1.2. We recall that a function f : (X,M, µ)→ (Y,N, ν) is Borel-measurable

if for every B a Borel set in N, we have f−1(B) is a Borel set in M. Moreover, it can be

shown that it suffices to show that for every G open subset of Y , that f−1(G) is a Borel set

in the σ-algebra M.

By definition, a path family in a domain Ω is a non-empty set Γ of countable unions of

rectifiable arcs in Γ.

To define the modulus, we must discuss what ‘the set of admissible densities for Γ’,

denoted Adm(Γ) means. To this end, we must define a density. If ρ is a Borel measurable,

real-valued non-negative function on X, then we call ρ a density. Moreover, we can define

the ρ-length of a curve, `ρ(γ) :=
∫
γ
ρds and we say ρ is an admissible density for Γ

1



if `ρ(γ) ≥ 1 for all γ ∈ Γ. Finally, we define the set of admissible densities for Γ by

AdmX(Γ) := {ρ : X → [0,∞)
∣∣ `ρ(γ) ≥ 1 ∀γ ∈ Γ}. Now, we define the modulus of a family

of curves Γ as

ModΩ(X) := inf
ρ∈Adm(Γ)

∫
X

ρ2dµ.

We will define EX(ρ) :=
∫
X
ρ2dµ, and call it the energy of the density ρ.

When E ⊂ Ω̄ and F ⊂ Ω̄ the modulus ModΩ(E,F ) from E to F is defined by

ModΩ(E,F ) = ModΩ(Γ)

where Γ is the family of connected curves in Ω that join E and F .

1.1.1 Properties of the modulus

Proposition 1.3. (Basic properties of the modulus).

1. If Γ := {all curves that are not locally rectifiable}, then Mod Γ = 0.

2. If Γ := ∅ then Mod Γ = 0.

3. If there exists γ0 ∈ Γ such that γ0(t) ≡ z0, then Mod Γ =∞.

Proposition 1.4. (Monotonicity). If Γ1 ⊂ Γ2 then Mod Γ1 ≤ Mod Γ2.

Proposition 1.5. (Subadditivity). If {Γj}j∈N is a countable collection of families of

curves, then Mod (∪jΓj) ≤
∑

j Mod(Γj).

Proposition 1.6. (Extension Rule). If Γ is a family of curves in Ω ⊂ Ω′ then ModΩ(Γ) =

ModΩ′(Γ).

It means that the modulus depend only on the path family Γ and not the domain Ω, and

for this reason we will write Mod(Γ) instead of ModΩ(Γ)

2



Proof of proposition 1.6. Let ρ ∈ AdmΩ(Γ). Then define

ρ̃(z) =


ρ(z) z ∈ Ω

0 Ω′ \ Ω.

It follows that ρ̃ ∈ AdmΩ′(Γ) since ∀γ ∈ Γ,

`ρ̃(γ) =

∫
γ

ρ(z)|dz| =
∫ 1

0

ρ̃(γ(t))|γ′(t)|dt =

∫ 1

0

ρ(γ(t))|γ′(t)|dt ≥ 1,

since ρ ∈ AdmΩ(Γ) and γ ⊂ Ω. Moreover,

EΩ(ρ̃) =

∫∫
Ω′
ρ̃2dA =

∫∫
supp(ρ̃)

ρ̃2dA =

∫∫
Ω

ρ̃2dA =

∫∫
Ω

ρ2dA = EΩ(ρ), .

taking the infimum over ρ ∈ AdmΩ(Γ) results in ModΩ′(Γ) ≤ ModΩ(Γ).

To see the other direction, start with ρ̃ ∈ AdmΩ′(Γ) and define ρ = ρ̃
∣∣
Ω

. It follows

just as before that ρ ∈ AdmΩ(Γ) and EΩ(ρ) = EΩ′(ρ̃). This time taking the infimum over

ρ̃ ∈ AdmΩ′(Γ) yields ModΩ(Γ) ≤ ModΩ′(Γ), completing the proof.

Proposition 1.7. (Serial Role) Let Γ1 and Γ2 be path families contained in disjoint open

sets Ω1 and Ω2 respectively, and let Γ be a path family contained in a domain Ω1 ∪ Ω2 ⊂ Ω.

If each γ ∈ Γ contains some γ1 ∈ Γ1 and some γ2 ∈ Γ2 ,then

1

Mod Γ
≥ 1

Mod Γ1

+
1

Mod Γ2

.

Proof. Let ρj ∈ Adm(Γj). Define ρ(z) = a1Ω1(z)ρ1(z) + b1Ω2(z)ρ2(z), for some a+ b = 1 to

be chosen later. Then for all γ ∈ Γ there exists γ1 ∈ Γ1 and γ2 ∈ Γ2 so that

∫
γ

ρ|dz| ≥
∫
γ1

ρ|dz|+
∫
γ2

ρ|dz| = a

∫
γ1

ρ1|dz|+ b

∫
γ2

ρ2|dz| ≥ a+ b,

3



so that ρ ∈ Adm(Γ) . Moreover,

∫∫
ρ2dA = a2

∫∫
Ω1

ρ2
1 + b2

∫∫
Ω2

ρ2
2 := a2x+ b2y.

Since a+ b = 1, we have

a2x+ b2y = a2x+ (1− a)2y = a2(x+ y)− 2ay + y := f(a).

We want to minimize f over a ∈ [0, 1]. So, f ′(a) = 2a(x + y) − 2y = 0, yields a = y
x+y

and

consequently b = x
x+y

. So,

Mod Γ ≤
∫∫

ρ2dA =
y2x+ x2y

(x+ y)2
=

xy

x+ y
=

1
1
x

+ 1
y

.

Taking the infimum over ρ1 and ρ2 and recalling the definitions of x and y achieves the

desired result.

Proposition 1.8. (Parallel Rule). I f Γ1 ⊂ Ω1 and Γ2 ⊂ Ω2 such that Ω1 ∩Ω2 = ∅. Then

for any Ω ⊃ Ω1 ∪ Ω2 and Γ a family of curves in Ω if ∀γ ∈ Γj there exists γ′ ∈ Γ so that

γ′ ⊂ γ. Then Mod Γ ≥ Mod Γ1 + Mod Γ2.

Proof.

Let ρ ∈ Adm(Γ). Define ρj(z) := ρ(z)1Ωj(z) for j ∈ {1, 2}. Then by assumption for any

j ∈ {1, 2} and γj ∈ Γj, there exists γ′ in Γ so that γ′ ⊂ γj. It follows that ρj ∈ Adm(Γj)

since,

`ρj(γj) =

∫
γj

ρj(z)|dz| =
∫
γj

ρ(z)|dz| ≥
∫
γ′
ρ(z)|dz| ≥ 1.

Consequently,

Mod(Γ1) + Mod(Γ2) ≤
∫∫

Ω1

ρ2
1dA+

∫∫
Ω2

ρ2
2dA ≤

∫∫
Ω

ρ2dA.

4



Taking the infimum over ρ ∈ Adm(Γ) yields the desired result.

Proposition 1.9. (Symmetry Rule). If T : Ω → Ω is an involution, i.e., T ◦ T (z) = z,

and T (Γ) = Γ, then

Mod(Γ) = inf
ρ∈Adm(Γ)

ρ=ρ◦T | detDT |

∫∫
Ω

ρ2dA,

Proof. It is clear that

Mod(Γ) ≤ inf
ρ∈Adm(Γ)

ρ=ρ◦T | detDT |

∫∫
Ω

ρ2dA,

Now, Suppose ρ is admissible. Define ρ̃ := (ρ ◦ T )| detDT |. Then

∫
γ

ρ̃(s)ds =

∫
γ

(ρ ◦ T )| detDT ||dz| =
∫
T−1◦γ

ρ(w)dw =

∫
T◦γ

ρ(w)dw ≥ 1,

where the second equality follows by a change of variables and the third equality since

T ◦ T = Id, and the final inequality since T (Γ) = Γ. Hence ρ̃ ∈ Adm(Γ). So, we define

ρ′ = ρ+ρ̃
2

. It is clear that ρ′ is admissible since it is a convex combination of admissible

densities. Moreover,

ρ′ ◦ T =
ρ ◦ T + ρ̃ ◦ T

2
=
ρ̃+ ρ ◦ T ◦ T

2
= ρ′.

Note, (ρ′)2 = 1
4

(ρ2 + ρ̃2 + 2ρρ̃) = 1
2
ρ2 + 1

2
ρ̃ρ, since ρ̃2 = (ρ ◦ T )(ρ ◦ T )| detDT |2 = ρ2 ◦ T .

Consequently,

inf
σ∈Adm(Γ)

σ=ρ◦T |detDT |

∫∫
Ω

σ2dA ≤
∫∫

Ω

(ρ′)
2
dA =

1

2

∫∫
Ω

ρ2dA+
1

2

∫∫
ρ̃ρdA

≤1

2

[∫∫
Ω

ρ̃+

(∫∫
Ω

ρ̃2dA

) 1
2
(∫∫

Ω

ρ2dA

) 1
2

]
=

∫∫
Ω

ρ2dA,

where the second line follows from Cauchy-Schwarz inequality and again that ρ̃2 = ρ2 ◦ T .

Taking the infimum over ρ ∈ Adm(Γ), we attain the desired result.
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1.1.2 Conformal invariance

Theorem 1.10. (Conformal Invariance of Modulus). If ϕ : Ω→ ϕ(Ω) is analytic and

one-to-one, and Γ is a family of curves in Ω, then ϕ(Γ) := {ϕ ◦ γ : [0, 1]→ ϕ(Ω)} satisfies,

ModΩ(Γ) = Modϕ(Ω)(ϕ(Γ)).

Proof. Fix arbitrary ρ ∈ Adm(ϕ(Γ)). Then
∫
ϕ◦γ ρ(w)|dw| ≥ 1 for all γ ∈ Γ. Define ρ̃(z) :=

ρ(ϕ(z))|ϕ′(z)| ∀z ∈ Ω. Then we observe,

∫
γ

ρ̃(z)|dz| =
∫
γ

ρ(ϕ(z))|ϕ′(z)||dz| =
∫
ϕ◦γ

ρ(w)|dw|.

So we can conclude that ρ̃ ∈ Adm(Γ). Hence,

ModΩ(Γ) ≤
∫∫

Ω

(ρ̃(z))2 dA(z) =

∫∫
Ω

(ρ(z))2 |ϕ′(z)|2dA(z) =

∫∫
ϕ(Ω)

ρ2(w)dA(w).

Since ρ ∈ Adm(ϕ(Γ) was arbitrary, we can then take the infimum over all ρ ∈ Adm(ϕ(Γ)) to

attain, ModΩ(Γ) ≤ Modϕ(Ω)(ϕ(γ)). Repeating the process with ϕ−1 in the place of ϕ results

in the opposite inequality, and we achieve the desired result.

Proposition 1.11. If Ω is a Jordan domain and ξ1, ξ2, ξ3, ξ4 ∈ ∂Ω are distinct and ordered

counter clockwise, then there exists a unique h > 0 and a unique conformal map ϕ : Ω→ R

where R is normalized so that R := {z : 0 < Re z < 1 and 0 < Im z < h}, satisfying

ϕ(ξ1) = hi, ϕ(ξ2) = 0, ϕ(ξ3) = 1, and ϕ(ξ4) = 1 + hi.

Proof. The proposition claims both uniqueness and existence. First we will show existence.

(Existence)

By the Riemann Mapping theorem, there exists ϕ1 : Ω → H where H = {z : Im z ≥

0} and by Schwarz reflection principle and Caratheodory’s theorem, ϕ can be extended

continuously to Ω̄, so WLOG xj := ϕ(ξj) ∈ R for j ∈ {1, 2, 3, 4}. Then by a linear fractional

transformation ϕ2 we can send x1 7→ 0, x2 7→ 1, x3 7→ λ, x4 7→ ∞ for some 1 < λ <∞. Then,

we can define a linear fractional transformation, ϕ3 that takes 0 7→ −A, 1 7→ −1, λ 7→ 1, and
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∞ 7→ A. Since linear fractional transformations are uniquely defined by where they send

three points, this is not immediately obvious. So to see this, we will explicitly define the

inverse of ϕ3 as

ϕ−1
3 (z) =

(
z + A

−z + A

)(
A+ 1

A− 1

)
.

Since we want ϕ−1
3 (1) = λ we have to choose the correct A. So we define A so that,

ϕ−1
3 (1) =

(
A+1
A−1

)2
= λ. This means that A =

√
λ+1√
λ−1

. Since λ > 1, A is positive, also we see

that A > 1 as needed to keep the ordering of our points correct along the real line (i.e.,

ϕ3 ◦ ϕ2 ◦ ϕ1(ξj) < ϕ3 ◦ ϕ2 ◦ ϕ1(ξk) whenever j < k. Then the Schwarz-Christoffel integral,

∫ z

0

1√
(ζ2 − A2) (ζ2 − 1)

dζ,

will take the points −A,−1, 1, A to the corners of a rectangle of height h depending on A,

and width 1 and will preserve the order as desired.

(Uniqueness). Using the conformal invariance theorem of the modulus, suppose that

there are two maps ϕ1, ϕ2 that map Ω to the rectangles Rhj := {z : 0 < Re z < 1 and 0 <

Im z < hj} for j ∈ {1, 2} and h1 6= h2. Then, consider the conformal map ϕ2 ◦ ϕ−1
1 from

Rh1 to Rh2 ,fixing the orders of the corners. Then, consider the family of curves Γ := {γ :

[0, 1] → Rh1

∣∣Re γ(0) = 0,Re γ(1) = 1}. Since ModRh1 (Γ) = ModRh2 (ϕ2 ◦ ϕ−1
1 (Γ), by the

basic example below we will have that h1 = h2, a contradiction.

1.1.3 Examples

Example 1) The Basic Example For this example we make the following claim:

Let R := {z = x + iy ∈ C : 0 < x < `, 0 < y < h} denote the rectangle of height h and

length `, also let E := {z ∈ R : Re z = 0} and F := {z ∈ R : Re z = `}. If Γ = ΓR(E,F )

then, Mod(Γ) = h
`
.

Proof. For all 0 < y < h define γy(t) := t + iy. Then if ρ ∈ Adm(Γ), in particular,
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`ρ(γy(t)) ≥ 1, so `ρ(γy(t)) =
∫ `

0
ρ(t, y)dy ≥ 1. Using Cauchy-Sechwartz we obtain,

1 ≤
[∫ `

0

ρ(t, y)dt

]2

≤
(∫ `

0

ρ2(t, y)dt

)(∫ `

0

dt

)
= `

∫ `

0

ρ2(t, y)dt.

In particular, 1
`
≤
∫ `

0
ρ2(t, y)dt. Integrating over y, we get

h

`
=

∫ h

0

1

`
dy ≤

∫
R
ρ2dA,

so that Mod(Γ) ≥ h
`
.

For the other direction, we define ρ0(z) = 1
`
1R(z) and observe that

∫
R ρ

2 = h`
`2

= h
`
.

Hence, if ρ0 ∈ Adm(Γ), then Mod(Γ) ≤ h
`
. Indeed,

`ρ(γ) =

∫ `

0

1

`
|γ̇(t)|dt ≥ 1

`

∫ `

0

|Re γ̇(t)|dt ≥ 1

`
(Re γ(1)− Re γ(0)) ≥ 1 ∀γ ∈ Γ,

where the penultimate inequality follows from

∫ `

0

|Re γ̇(t)|dt = sup
0=t0<...<tN=1

N−1∑
j=0

|Re γ(tj+1)− Re γ(tj)| ≥ γ(1)− γ(0).

Thus we conclude ρ0 is admissible, which completes the proof.

Annulus Example Let A := {z : r < |z| < R}. Then define the family of curves

ΓA := {γ : [0, 1] → C
∣∣|γ(0)| = r, |γ(1)| = R, and γ(t) ∈ A,∀t ∈ [0, 1].}. We will show that

Mod(ΓA) = 2π
ln(R)−ln(r)

.

Proof. First, let Γ̃A := {γ ∈ ΓA
∣∣γ(t) = eiθγr(t) for some θγ ∈ (−π, π)}, that is Γ̃A is the set

of radial curves from ΓA that do not intersect the negative real axis. Then clearly, Γ̃A ⊂ ΓA,

so that by monotonicity Mod(Γ̃A) ≤ Mod(ΓA). Then, ∀γ ∈ Γ̃A we have that γ ⊂ As := {z ∈

C \ (−∞, 0]
∣∣r < |z| < R}, the slit annulus. The (analytic) complex logarithm defined on

the slit plane then takes As to {z ∈ C
∣∣ ln(r) < Re z < ln(R) and − iπ < Im z < iπ}. Thus,
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ϕ1(z) := z−(ln(r)−πi)
ln(R)−ln(r)

, is analytic and one-to-one satisfying,

ϕ1 (log(As)) =

{
z ∈ C

∣∣0 < Re z < 1 and 0 < Im z < h =
2π

log(R)− log(r)

}
:= Rh.

Finally, we observe that the curves γ ∈ Γ̃A are mapped to the horizontal curves connecting

A := ∂R ∩ {z
∣∣Re z = 0} to B := ∂R ∩ {z

∣∣Re z = 1}, so that by the basic example and the

conformal invariance of the modulus we know Mod(Γ̃A) = Mod(ΓRh(C,D)) = h = 2π
ln(R)−ln(r)

.

Hence,

2π

ln(R)− ln(r)
≤ Mod(ΓA). (1.1)

To see the other direction, we consider the density, ρ0(z) := C
|z| , with C to be determined

later. Choose γ ∈ ΓA and consider the polar form of the parametrization of γ, i.e., γ(t) =

r(t)eiθ(t). We observe,

`ρ0(γ) =

∫
γ

ρ0(s)ds =

∫ 1

0

ρ0(r(s)eiθ(s))
∣∣r′(s)eiθ(s) + iθ′(s)r(s)eiθ(s)

∣∣ ds ≥∫ 1

0

C

|r(s)|
|r′(s)| ds ≥ C

∫
I

r′(s)

r(s)
ds ≥ C ln (|γ|)

∣∣∣∣|γ|=R
|γ|=r

= C [ln(R)− ln(r)] , (A.1)

where the top row follows from a simple change of variables, and the product rule. The set

I ⊂ [0, 1] is chosen to be the set of s ∈ [0, 1] such that r′(s) > 0, and the final inequality

follows since the integral
∫
I
r′(s)
r(s)

ds, is the total variation of the natural logarithm of r over

the set I, which is at least as big as the evaluation of the natural logarithm at exteme values

of I. In light of (A.1) and desiring to make ρ0 be admissible, we choose C = 1
ln(R)−ln(r)

. Since

γ ∈ ΓA was arbitrary, we then have that ρ0 is indeed admissible. Hence,

Mod(ΓA) ≤
∫∫

A

ρ2
0(s)dA(s) =

1

(ln(R)− ln(r))2

∫ 2π

0

∫ R

r

1

s2
(sdsdθ) =

2π

ln(R)− ln(r)
. (1.2)

from(4.1) and(4.2) we have 2π
ln(R)−ln(r)

≤ Mod(ΓA) ≤ 2π
ln(R)−ln(r)

.
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1.2 Modulus of 2 by 1 rectangle using complex analysis

In the following a conformal map f from a region D to another region G is assumed to be

analytic in the domain D and one-to-one and onto G. Conformal maps f satisfy f ′(z) 6= 0,

for all z ∈ D, which means that infinitesimally the map stretches uniformly in all directions.

Also, the inverse function f−1 is a conformal map of G to D.

If we suppose that f is an analytic function which is defined in the upper half-disk

D+ := {|z|2 < 1, Im(z) > 0}, and we further suppose that f extends continuously to the

real axis, so that it takes on real values on the real axis, then f can be extended to an

analytic function on the whole unit disk D by the formula

f(z̄) = f(z) ∀z ∈ D.

This formula states that the values taken by f at points that are symetric with respect to

R are symmetric with respect to R in f(D). This is known as the Schwarz Reflection

Principle. There are many applications for the reflection principle. For instance, it is used

to derive an explict formula for the conformal map that maps a half-plane onto the interior

of a polygon. This is known as the Schwarz-Chritoffel mapping function, see (1.3).

A

B C D

E

Figure 1.1: 2 by 1 rectangle

Now, we want to compute the following connecting modulus in the 2 by 1 rectangle
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R = [−1, 1]× [0, 1]. using complex analysis. Namely, we want the modulus of the family of

curves connecting the side AB = {−1}× [0, 1] to the segment CD = [0, 1]×{0}. See Figure

1.1

By symmetry, there is a unique conformal map F that maps the unit disk D to the unit

square such that

F (z̄) = F̄ (z), F (−z̄) = −F̄ (z) ∀z ∈ D

F

EA

DCB

Figure 1.2: Mapping the semidisk into 2 by 1 rectangle

So, the quadrilateral (R;A,B,C,D) is conformally equivalent to (D+; ei
3π
4 ,−1, 0, 1), where

D+ = {z ∈ C : |z| ≤ 1, Im(z) > 0}. This means that F is a conformal map from the

semidisk into a 2 by 1 rectangle see Figure 1.2. Now, we map the semidisk to the upper half

plane. First, map the upper half disk to the upper half plane with semidisk removed with

f(z) = −i z+i
z−i . See Figure 1.3. We have, f(ei

3π
4 ) = −(

√
2 + 1)

ei
3π
4

f

−(
√
2 + 1)

Figure 1.3: Mapping the semidisk into the upper half plane with semidisk removed

Next, using the Joukowsky transform, g(z) = 1
2
(z + 1

z
), map the upper half plane with

semidisk removed to the upper half plane. See Figure 1.4. We have g(−(1 +
√

2)) = −
√

2
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−(
√
2 + 1)

g

0 1−1−
√
2

Figure 1.4: Map the upper half plane with semidisk removed into the upper half plane

Then, there is a unique Mobuis transformation

τ(z) =
az + b

cz + d

which maps 0 → 1, −1 → −1, 1 → λ, −
√

2 → −λ. See Figure 1.5. Solving the

equations we get,

τ(z) =
(3λ− 1)z + (λ+ 1)

(3− λ)z + (λ+ 1)

and

λ = 7− 4
√

2 + (4− 2
√

2)

√
2−
√

2

0 1−1−
√
2

τ

1−1−λ λ

Figure 1.5: Mapping the upper half plane into the upper half plane with equaly spaced
vertices

Using Schwarz-christoffel map see Fiigure 1.6, we can map the upperhalf plane with

prevertices −1, 1, λ,−λ to a rectangle by :

φ(w) = C

∫ w

0

dz√
(1− z2)(1− κ2z2)

dz, (1.3)

where κ := 1
λ
, so 0 < κ < 1 and C > 0 is a constant to be determined so that φ(1) = 1/2.
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Below p2 depends on λ.

Let the corners of the rectangle be at

1

2
,

1

2
+ ip2, −1

2
+ ip2, −1

2

where p2 > 0

1−1−λ λ

φ

1
2

−1
2

φ(λ)φ(−λ)

Figure 1.6: Schwarz-christoffel map

To evaluate C, set

φ(1) =
1

2

C

∫ 1

0

dz√
(1− z2)(1− κ2z2)

=
1

2

C =
1

2
∫ 1

0
dz√

(1−z2)(1−κ2z2)

2C K(κ) = 1

Where

K(κ) :=

∫ 1

0

[(1− z2)(1− κ2z2)]−
1
2dz

is known as a complete elliptic integral of the first kind3.
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By setting z = sinφ, we obtain

K(κ) =

∫ π
2

0

[1− κ2 sin2 φ]−
1
2dφ

Next we have,

ip2 = C

∫ 1
κ

1

[(1− z2)(1− κ2z2)]−
1
2dz

Replacing z by 1
z
, we get :

ip2 = C

∫ 1

κ

[(z2 − 1)(z2 − κ2)]−
1
2dz

and

p2 = C

∫ 1

κ

[(1− z2)(z2 − κ2)]−
1
2dz

The integeral for p2 can also be written as a complete elliptic integeral of the first kind.

Namely,

p2 = K(κ′)

where κ′ =
√

1− κ2.

Then,

Mod(AB,CD) = p2 = C K(κ′) =
K(κ′)

2 K(κ)
= 0.68063417306

1.3 Modulus on Graphs

Let G be a graph with vertex set V and edges set E. The sets of vertices and edges are

assumed to be finite, with n = |V | vertices and m = |E| edges. The graph may be directed

or undirected. We will define the weight function to be σ : E → (0,∞). A graph is called

unweighted if σ ≡ 1. Here, we will consider only unweighted graph.

A walk is a finite sequence of vertices v1, v2, ...., vr in V , with the property that (vi, vi−1) ∈ E

or a finite sequence of edges γ = e1, e2, ......, er where ei = (vi, vi−1) for i = {1, 2, ....., r} For

each walk there is a graph length `(γ) = r. In general, given any edge density ρ : E → R
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the ρ− length of γ, `ρ(γ) is defined by

`ρ(γ) :=
r∑
i=1

ρ(ei).

This notation depends on the walk, so instead for every walk define the following edge-usage

vector:

N (γ, e) :=

 1 if e ∈ γ

0 otherwise.

Then the ρ-length of γ can be written as

`ρ(γ) =
∑
e∈E

N (γ, e)ρ(e).

Let Γ be a family of walks and let ρ : E → R be an edge density, the graph length and

ρ− length of Γ are defined as

`(Γ) := inf
γ∈Γ

`(γ) and `ρ(Γ) := inf
γ∈Γ

`ρ(γ)

The family Γ is associated to a set of densities called the admissible set Adm(Γ) defined as

follows:

Adm(Γ) := {ρ : E → R, `ρ(Γ) ≥ 1}

1.3.1 Energy and modulus

Given a real parameter p ≥ 1 or p =∞, the p− energy of a density ρ is

Ep(ρ) :=


∑
e∈E
|ρ(e)|p if 1 ≤ p <∞

max
e∈E
|ρ(e)| if p =∞.
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For 1 ≤ p ≤ ∞ the p−modulus of Γ is defined as

Modp(Γ) := inf
ρ∈Adm(Γ)

Ep(ρ)

Moreover, an edge density is called extremal for a given family Γ and a given p if

Modp(Γ) = E(ρ)

1.3.2 Properties of discrete p-modulus

The continuous and discrete modulus share many of the same properties although the proof

can be different.

Remark 1.12.

• The modulus of an empty family is defined to be zero ∀ρ

• If Γ contains a constant walk then Adm(Γ) = ∅ and Modp(Γ) =∞

Proposition 1.13. For 1 ≤ p < ∞, let G = (V,E) be a finite graph, and let Γ1,Γ2,Γ be

families of walks.

• (Monotonicity) If Γ1 ⊂ Γ2 then Modp Γ1 ≤ Modp Γ2.

• (Subadditivity) If {Γj}j∈N is a countable collection of families of curves, then Modp (∪jΓj) ≤∑
j Modp(Γj).

Proof.

(Monotonicity)

If Γ1 ⊂ Γ2 then ρ ∈ Adm(Γ2) implies that ρ ∈ Adm(Γ1) Thus, Adm(Γ2) ⊂ Adm(Γ1) and

Modp(Γ1) = inf
ρ∈Adm(Γ1)

Ep(ρ) ≤ inf
ρ∈Adm(Γ2)

Ep(ρ) = Modp(Γ2)
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(Subadditivity)

Fix ε > 0. For each j choose ρj ∈ Adm(Γj) so that Ep(ρj) ≤ Modp(Γj) + ε
2j

.

Then define ρ := (
∑
j∈N

ρpj)
1
p . We will show that ρ ∈ Adm(∪Γj). To this end let γ ∈ ∪jγj.

then there is k such that γ ∈ Γk. Since ρ ≥ ρk , so that `ρ(γ) ≥ `ρk(γ) ≥ 1. Moreover,

Modp(Γ) ≤ Ep(ρ) =
∑
e∈E

ρ(e)p =
∑
e∈E

∞∑
j=1

ρj(e)
p =

∞∑
j=1

∑
e∈E

ρj(e)
p =

∞∑
j=1

Ep(ρj) ≤ ε+
∞∑
j=1

Modp Γj

Take ε→ 0 we will get the desired resuilt.

Proposition 1.14. (Parallel Rule)

Let G = (V,E). Let Γ1(s, t),Γ2(s, t) two sets of families of walks from s, t ∈ V such that

Γ1(s, t) ∩ Γ2(s, t) = ∅ , that is , E(Γ1) ∩ E(Γ2) = ∅ and Γ1(s, t) ∪ Γ2(s, t) = Γ(s, t). Then

Modp(Γ) = Modp(Γ1) + Modp(Γ2)

Proof. Let ρ ∈ Adm(Γ). Define ρj = ρ1Γj where j = 1, 2. For any γi ∈ Γj there is γ′ ⊂ Γsuch

that γ′ ⊂ γj for j = 1, 2. This implies that `ρj(γj) ≥ `ρ(γ′) ≥ 1. So that ρj ∈ Adm(Γj).Then

Ep(ρ) =
∑
e∈E

ρ(e)p

=
∑

e∈E(Γ1)

ρ(e)p +
∑

e∈E(Γ2)

ρ(e)p

=
∑

e∈E(Γ1)

ρ1(e)p +
∑

e∈E(Γ1)

ρ2(e)p

= Ep(ρ1) + Ep(ρ2)

Take the infimum to both side we get the desired result.

Proposition 1.15. (Serial Rule)

Let C be a cut for Γ := Γ(s, t). Define Γ1 := Γ(s, C), and Γ2 := Γ(t, C). Then for 1 ≤ p <∞
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and 1
p

+ 1
q

= 1, we have

1

Modp Γ
≥

{
(Modp Γ1)

q
p + (Modp Γ2)

q
p

[Modp Γ1 Modp Γ2]
q
p

} q
p

=

{(
1

Modp Γ1

) q
p

+

(
1

Modp Γ2

) p
q

} p
q

Proof. WLOG, assume G = (V,E) is connected. For j = 1, 2, assume Γj 6= ∅, and let

Ej = ∪γ∈ΓjE(γ) and for ρ̃j ∈ Adm(Γj) define ρj = ρ̃j1Ej . Then ρj ∈ Adm(Γj).

Let ρ = aρ1 + bρ2 for some a + b = 1 to be chosen later. Then for any γ ∈ Γ there exists

γj ∈ Γj such that γj � γ for j = 1, 2. So that, 1 = a + b ≤ a`ρ1(γ1) + b`ρ2(γ2) = `ρ(γ) and

ρ ∈ Adm(Γ).

Moreover,

Ep(ρ) =
∑
e∈E

ρ(e)p =
∑
e∈E

(aρ1(e) + bρ2(e))p = ap`p(ρ1) + bp`p(ρ2) := apx+ bpy := f(a, b)

we will minimize f(a, b) subject to a+ b− 1 = 0.

Hence,

f(a) = apx+ (1− a)py

and
∂f

∂a
= pap−1x− p(1− a)p−1y

and therefor,
∂f

∂a
= 0 =⇒ a = (1− a)

(y
x

) 1
p−1

The last equation follows since p and a are nonzero so we can solve for a.

So we have that

a

(
1 +

(y
x

) 1
p−1

)
=
(y
x

) 1
p−1

Thus,

a =
y

1
p−1

y
1
p−1 + x

1
p−1
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and

b =
y

1
p−1

x
1
p−1 + x

1
p−1

With the choices of a, b and the fact that that 1
p

+ 1
q

= 1 we have

Modp Γ ≤ Ep(ρ) =
xy(

x
q
p + y

q
p

)p−1

By back substituting for x and y , and taking the infimum over all ρj ∈ Adm(Γj) we get the

desired result.

1.3.3 Modulus of connecting families

We will be interested in computing the modulus of families Γ(A,B) of all walks connecting

two sets of nodes A and B in a graph G.

Example 1.16 (Basic Example). Let G be a graph consisting of k simple paths in parallel,

each path taking ` hops to connect a given vertex s to a given vertex t, see Figure 1.7. Let

s t

...

...

...

...

...
...

...
...

k

`

Figure 1.7: k parallel paths with ` hops

Γ be the family consisting of the k simple paths from s to t. Then `(Γ) = ` and the size of

the minimal cut is k. A straightforward computation shows that

Modp(Γ) =
k

`p−1
for 1 ≤ p <∞,

19



In particular, Modp(Γ) is continuous in p, and

Mod1(Γ) = k, Mod2(Γ) =
k

`
, lim

p→∞
Modp(Γ)1/p = Mod∞,1(Γ) =

1

`
.

Intuitively, when p ≈ 1, Modp(Γ) is more sensitive to the number of parallel paths, while for

p� 1, Modp(Γ) is more sensitive to short walks.

The case p = 2, tries to strike a balance between shortness of paths and number of

different pathways.

1.4 Families of cuts and Fulkerson duality for p-modulus

Let G = (V,E) be a graph. Fix two subsets A,B ⊂ V , such that A ∩ B = ∅. Let Γ be the

connecting family of all simple paths between A and B. And let Γ̂ be the family of all the

minimal cuts between the two sets A,B. A cut is a subset C ⊂ E so that when C is removed

from E, the remaining connected components never contain simultaneously a node a ∈ A

and a node b ∈ B. Another way to say this is that every walk from A to B must necessarily

contain an edge from C. A cut C is minimal, if removing an edge from C, makes C not be

a cut anymore.

A cut γ̂ ∈ Γ̂ also has a usage vector N̂ (γ̂, e) given by the indicator function on the set

γ̂ ⊂ E. Also, a density η ∈ Adm(Γ̂) is admissible for Γ̂ if the usual condition

N̂ η ≥ 1,

is satisfied.

The two families Γ and Γ̂ are related in interesting ways, and we say that Γ̂ is the

Fulkerson blocker of Γ. In particular, Γ̂ can be seen to be the set of all extreme points of

the convex set Adm(Γ).

Given p ∈ (1,∞), we let q ∈ (1,∞) be the Hölder conjugate exponent of p so that

pq = p + q. The p-modulus of Γ and the q-modulus of Γ̂ are basically reciprocal of each

20



others.

Then the q-modulus of the family Γ̂ of cuts is equal the infimum of the q-energy of all

the densities η ∈ Adm(Γ̂). It is a fact that

Adm(Γ̂) = {η : ηTρ ≥ 1 ∀ ρ ∈ Adm(Γ)}.

Theorem 1.17 (4). With the notations above, we have

Modp(Γ)
1
p Modq(Γ̂)

1
q = 1

When p = q = 2, we have the special case:

Mod2(Γ) Mod2(Γ̂) = 1.

In the plane, there is a similar classical result that sometimes goes under the name of

“conjugate modulus”.

Theorem 1.18. 5 Let Ω be a Jordan domain and let E and F be finite unions of closed

subarcs of ∂Ω. Assume E ∩ F 6= ∅. Then there is a rectangle R having sides parallel to the

axes and a conformal map φ of Ω onto the rectangle R with a finite number of horizontal

line segments removed suvh that ϕ ∈ C(Ω) and ϕ(E) and ϕ(F ) are the vertical sides of the

rectangle if and only if there is an arc σ ⊂ ∂Ω such that

E ⊂ σ and F ∩ σ = ∅

In this case, the modulus from E to F is the ratio of the height to the length of this rectangle.

Moreover, if Γ̂ is the family of curves in Ω separating E from F , then

Mod2(Γ̂) =
1

Mod2(Γ)
.
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1.5 Connecting modulus and harmonic functions

Let G = (V,E). Let a, b be two vertices in V . Let Γ be the family of walks between a and

b. The modulus of Γ can by found be minimizing the Dirichlet energy

E2(φ) :=
∑

e={x,y}∈E

(φ(x)− φ(y))2

over all the potentials φ : V → R satisfying φ(a) = 0 and φ(b) = 1. The function that attains

the minimum is called the capacitary function for a and b. Also, the minimal energy is called

the capacity of the pair (a, b), and we write it as Cap(a, b).

Every such potential φ defines density,

ρφ(e) := |φ(x)− φ(y)| ∀e = {x, y} ∈ E

which can be thought as the gradient of φ.

Also

E2(ρφ) =
∑
e∈E

ρφ(e)2 = E2(φ).

It is a known fact, originally due to Duffin6, that Cap(a, b) = Mod2(a, b).

Moreover, the capacitary function φ is harmonic at every x 6= a, b, meaning that

(Lφ)(x) :=
∑
y∼x

(φ(x)− φ(y)) = 0, (1.4)

where L = diag(A1) − A is the Combinatorial Laplacian and A(x, y) = 1x∼y is the

adjacency matrix.

The advantage of the p = 2 case is that the connecting 2-modulus Mod2(a, b) can be

computed by solving the following Laplacian system

Lh = δb − δa,
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where δx is the indicator function of the node x.

For 1 < p <∞, the extremal density for the modulus of a connecting family of walks can

be related to a generalized voltage potential. And finding the p-modulus of Γ is equivalent7

to minimizing:

∑
e={x,y}∈E

|φ(x)− φ(y)|p

subject to

φ(a) = 0 and φ(b) = 1.

In this case the capacitary function solves

(Lpφ)(x) :=
∑
y∼x

|φ(x)− φ(y)|p−2(φ(x)− φ(y)) = 0, ∀x 6= a, b.
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Chapter 2

Approximating a domain with square

grids and study the convergence of

2-modulus

We are interested in the connection between continuous and discrete modulus. We will focus

our attention on the plane, and curve families where the curves are connecting two sides of

a domain. First, we will focus on comparing continuous modulus to discrete modulus on

grids. Our main goal is to find an upper bound, and, if possible, establish convergence of

the discrete modulus as the mesh of the grid tends to zero.

To begin, we look square grids of rectangular domains and consider the family of all

curves connecting the two vertical sides.

2.1 Behavior of side-to-side modulus under grid refine-

ments

Let Rn be a rectangular domain with a 1
n
-grid. Namely, Rn is a graph with nodes,

Vn = {( i
n
,
j

n
) : i0 ≤ i ≤ i1, j0 ≤ j ≤ j1}
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and edges

En = {e = {x, y} : for x, y ∈ Vn and ||x− y||∞ = 1}

Let Γn be the family of walks in Rn from {Re z = i0
n
} to {Re z = i1

n
}. Pick a cell (a square)

and refine it by subdividing each side into k equal length intervals. Call the resulting graph

Rn,k. Let Γn,k be the family of walks in Rn,k, from {Re z = i0
n
} to {Re z = i1

n
}, with

i1 − i0 = n. Pick ρ = 1
n

on the horizontal edges of the original grid and ρ = 1
nk

on the new

horizontal smaller edges. As discussed in Example 1.16, 2-modulus strikes a balance between

short paths and number of different paths. Therefore, it is not clear what will happen to

Mod2(Γn,k) relative to Mod2(Γn), because, although we added longer walks, there are now

more ways to go from side to side. In fact, as we will see, we have

Mod2(Γn,k) ≤ Mod2(Γn).

(For simplicity, In what follows we drop the subscript 2, that is Mod2(Γ) = Mod(Γ)).

We have that

ρ(e) =


1
n

if e is an old edge

1
nk

if e is a new edge

Such a ρ is admissible for Γn,k. To see this, consider a simple path γ ∈ Γn,k and assume

that γ contains M old edges for some M ≤ r := `(γ). If γ uses at least one new edge, then

γ it must use at least k new edges and at least n− 1 old edges. Thus, in this case,

`ρ(γ) =
r∑
i=1

ρ(ei) = M

(
1

n

)
+ (r −M)

(
1

nk

)
≥ (n− 1)

(
1

n

)
+ k

(
1

nk

)
= 1

On the other hand, if γ does not use any new edges, then it must use M ≥ n of the old ones,

and

`ρ(γ) =
M

n
≥ 1.
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Mod(Γn,k) ≤ Mod(Γn)− 2

(
1

n

)2

+ k(k + 1)

(
1

kn

)2

= Mod(Γn)− 1

n2
+

1

kn2

= Mod(Γn)− 1

n2

(
1− 1

k

)
(2.1)

Now we compute the original modulus Mod(Γn). Again if ρ = 1/n on all the horizontal

edges, then ρ is admissible for Γn. So

Mod(Γn) ≤ E(ρ)

= n(n+ 1)

(
1

n

)2

= 1 +
1

n
(2.2)

Now let Γ̂n be the family of all the cuts for Γn. In this example a cut is obtained by choosing

at least one horizontal edge for each one of the n + 1 levels of the grid. Let η := 1
n+1

on all

horizontal edges of Rn. For γ̂ ∈ Γ̂n, we have

`η(γ̂) =
∑
e∈γ̂

η(e) ≥ (n+ 1)
1

n+ 1
= 1

Then, η is admissible, and we get

Mod(Γ̂n) ≤ E(η)

= n(n+ 1)

(
1

n+ 1

)2

=
n

n+ 1
.

By Fulkerson duality,

Mod(Γ̂n)Mod(Γn) = 1

So
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Mod(Γn) =
1

Mod(Γ̂n)

≥ n+ 1

n

= 1 +
1

n
(2.3)

Hence, (2.2) and (2.3) show that

Mod(Γn) = 1 +
1

n
. (2.4)

Applying (2.4) to (2.1), we get

Mod(Γn,k) ≤ 1 +
1

n
− 1

n2

(
1− 1

k

)
= Mod Γn

[
1− k − 1

n(n+ 1)

1

k

]
. (2.5)

Equation(2.5) gives an upper bound for modulus after one cell refinement.

2.1.1 Square grid domains

The previous calculation shows that the refinement will lower the discrete modulus. To

continue, one would have to either refine repeatedly, or refine all cells simultaneously. This

is where the type of modulus family seems to be of importance. In whatfollows, we will focus

on general square grid domains

Definition 2.1. Let Ω be a simply connected domain in C. We say Ω is a square grid

domain, if Ω is tiled by a square grid Q0.

Let E and F be disjoint arcs of the boundary of Ω that are unions of edges in Q0, we

write ΓQ0(E,F ) for the family of walks on the edges of Q0 that connect E and F . If Qn

are grid refinements of Q0, the goal is to show that as the mesh of Qn tends to zero, the

corresponding discrete modulus of ΓQn(E,F ) decreases and tends to the continuous modulus

ModΩ(E,F ).
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As an example, we now discuss the 2-by-1 rectangle case of Section 1.2. We saw that if

E = [A,B], the short side, and F = [C,D], half of the long side, then

ModΩ(E,F ) � 0.68.

Here we describe our numerical example that we obtained using 61 by 31 grid to approximate

the 2 by 1 rectangle.

Mod(U,V) = 0.71554

Figure 2.1: Mod(E,F ) � 0.715

In the case of connecting families Γ(E,F ) the convergence of the discrete modulus to

the continuous one can be proved using known results about the convergence of harmonic

functions, see Theorem 2.2 below. The general case is open. For instance, little is known

about the modulus of unions of connecting families, even numerical evidence.
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Figure 2.2: The 2 by 1 rectangle with 61 by 31 grid – Horizontal edges

Theorem 2.2 (Main Theorem). Let Ω be a square grid domain with initial grid Q0, and let

E,F ⊂ ∂Ω be two disjoint continua consisting of unions of edges of Q0. If Qn is a sequence

of square grid refinements of Q0 with mesh tending to zero, then

ModQn(E,F )→ ModΩ(E,F ) as n→∞.

2.2 Energy decreasing1

As we saw in Section 1.5, connecting modulus can also be computed by minimizing the

Dirichlet energy of potential functions. In this section we recall an argument of Jacqueline

Lelong-Ferrand1 (see p. 163), that shows how refining a square grid in a “geometric” fashion,
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Figure 2.3: The 2 by 1 rectangle with 61 by 31 grid – Vertical edges

naturally decreases the 2-energy of a potential.

Namely, refine a square grid by adding a node on each edge, that we also connect to a

new node in each face (see Figure 2.4). After n refinements, there exists a unique harmonic

function Un on the nodes of Qn \ (E ∪ F ) satisfying:

 Un = 0 on E

Un = 1 on F
(2.6)

In particular, Un minimizes the energy

E2(Un) =
∑

e={x,y}∈E(Qn)

(Un(x)− Un(y))2
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B C

A D

Figure 2.4: Refining a square grid using Jacqueline Lwlong-Ferrand argument where a, b, c
and d are the values of φ̄n at the original nodes in the positive direction and a+b

2
, c+b

2
, d+c

2
, a+d

2

for each new node on the old edges and a+b+c+d
4

for the center point of the square

over all functions on V (Qn) with the boundary values given in (4.6).

Assume that the value of Un at the nodes of an arbitrary square, labeled in the positive

direction, are a, b, c, d. Refine each square, and extend Un to Ūn. The values of Ūn on the

old nodes are the same as Un, but for the new nodes we set Ūn equal to a+b
2
, c+b

2
, d+c

2
, a+d

2

for each new node on the old edges, and we set Ūn equal to a+b+c+d
4

on the new node in the

middle of the old face. Now we compare the old energy to the new energy:

E(Un)− E(Ūn) =
∑

e={x,y}

(Un(x)− Un(y))2 −
∑

e={x,y}

(
Ūn(x)− Ūn(y)

)2

=

[
(a− b)2

2
+

(b− c)2

2
+

(c− d)2

2
+

(d− a)2

2

]
−[

(a− b)2

4
+

(b− c)2

4
+

(c− d)2

4
+

(d− a)2

4

+
(a+ b− c− d)2

16
+

(b+ c− a− d)2

16
+

(d+ c− a− b)2

16
+

(a+ d− b− c)2

16

]
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Then, after some simplifications, we get:

E(U)− E(Ūn) =
1

8

[
(a− b)2 + (b− c)2 + (c− d)2 + (d− a)2

]
−

1

8
[(d− a)(b− c) + (a− b)(c− d) + (b− c)(d− a) + (a− b)(c− d)]

Finally,

E(Un)− E(Ūn) =
1

8

{
[(a− b)− (c− d)]2 + [(d− a)− (b− c)]2

}
≥ 0

This shows that

E(Un+1) ≤ E(Un). (2.7)

This monotonicity can be used to prove Theorem 2.2. Namely, in the book1, Lelong-Ferrand

develops a notion of discrete analytic function, and shows that harmonic functions are real

parts of analytic functions. The energy monotonicity (2.7) allows her to extract a convergent

subsequence and then Morera’s Theorem is used to show that the limiting function is analytic.

Now we will prove the montoncity in general for any admissible ρ in γn. Consider a square

grid network Rn of mesh size 1/n, covering a simply connected polygonal domain Ω in the

plane. Given two polygonal arcs E and F on ∂Ω, consider a family Γn of walks on Rn that

connect nodes in V (Rn)∩E to nodes in V (Rn)∩F . A refinement consists in taking a square

Q in Rn, choosing an integer k = 2, 3, ..., and replacing the four edges in E(Q) by another

square grid Qk of mesh 1
nk

.

For simplicity, we first assume that Q has the property that Q ∩ ∂Ω = ∅. Also, we write

Rn,k for the new square grid approximation of Ω, and Γn,k for the family of walks connecting

V (Rn) ∩ E to V (Rn) ∩ F in Rn,k.

Note that E(Rn,k) can be split into old (longer) edges and new (shorter) ones. Namely

E(Rn,k) = E(Rn \Q)
⋃

E(Qk).
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The four removed edges of Q consist of a pair of vertical edges, which we call Ev(Q), and a

pair of horizontal edges, called Eh(Q). Likewise, the edge-set of Qk splits into Ev(Qk) and

Eh(Qk).

Assume that ρ ∈ RE(Rn)
≥0 is admissible for Γn. Define a density ρ′ ∈ RE(Rn,k)

≥0 as follows:

ρ′(e) :=


ρ(e) for e ∈ E(Rn \Q)

1
k

max
Ev(Q)

ρ for e ∈ Ev(Qk)

1
k

max
Eh(Q)

ρ for e ∈ Eh(Qk)

Theorem 2.3. ρ′ is admissible for Γn,k.

Proof. Let γ ∈ Γn,k. We want to decompose it into excursions inside Q and excursions

outside of Q. To do this, we first write V (Q) for the four original nodes of Q and

V ◦(Qk) = V (Qk) \ V (Q)

for the new nodes in the grid Rn,k. Then, writing γ = x0 x1 · · · xm, in terms of the nodes

xj ∈ V (Rn,k) visited, we let

T ◦1 := inf{j ≥ 0 : xj ∈ V ◦(Qk)}.

Namely T1 is the first time γ visits a “new” node. Then

S1 := inf{j > T ◦1 : xj ∈ V (Q)}.

Likewise, we define

T ◦i := inf{j > Si−1 : xj ∈ V ◦(Qk)},

and

Si := inf{j > T ◦i : xj ∈ V (Q)}.
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Then

γ1 = x0 · · · xT ◦1−1

only uses “old” edges, and

γ◦1 = xT ◦1−1 · · · xS1

only uses “new” edges. Therefore, repeating this process we can write

γ = γ1 γ
◦
1 γ2 γ

◦
2 · · ·

Each subwalk γj that uses only old edges will have

`ρ′(γj) = `ρ(γj)

For the subwalks γ◦j = xT ◦j −1 · · · xSj , using only new edges, there are two cases:

(a) xT ◦j −1 and xSj are neighbors in Q.

(b) xT ◦j −1 and xSj are diagonally opposite in Q.

Using these two cases, we replace each γ◦j by either one old edge of Q or two consecutive

edges of Q so as to get a walk γ̃ that only visits old edges. We claim that

`ρ′(γ) ≥ `ρ(γ̃) ≥ 1.

The second inequality follows from the admissibility of ρ. To check the first inequality, look

at case (a) first. Without loss of generality, e′ := {xT ◦j −1, xSj} is a horizontal edge of Q.

Then, γ◦j must traverse at least k horizontal edges in Eh(Qk), hence

`ρ′(γ
◦
j ) ≥ k

(
1

k
max
Eh(Q)

ρ

)
= max

Eh(Q)
ρ ≥ ρ(e′). (2.8)

Case (b) is analogous, except that now γ◦j will have to traverse at least k horizontal edges

and at least k vertical edges.
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Theorem 2.4. Let a and b be the old ρ on the top horizontal edge and the bottom one

respectively. Let c and d be the old ρ on the right vertical edge and the left one respectively.

If a > b and d > c, for k > max{a2
b2
, d

2

c2
}. We have

E(ρ′) ≤ E(ρ).

Proof. WLOG , Assume that k > a2

b2

E(ρ)− E(ρ′) =

 ∑
e∈Eh(Q)

ρ(e)2 −
∑

e∈Eh(Qk)

ρ′(e)2

+

 ∑
e∈Ev(Q)

ρ(e)2 −
∑

e∈Ev(Qk)

ρ′(e)2


= a2 + b2 − k(k + 1)

(
1

k
a

)2

+ c2 + d2 − k(k + 1)

(
1

k
d

)2

= b2 − 1

k
a2 + c2 − 1

k
d2

> b2 − b2

a2
a2 + c2 − b2

a2
d2

> 0 + d2

[
c2

d2
− b2

a2

]
> 0

The assumpsion on k means that when the gradient is big we need to refine the grid more

to get the energy decreasing.

The theory of discrete analytic functions has advanced since the work of Lelong-Ferrand.

In particular, they can now be defined on much more general “grids”. In the next section,

we review the recent papers of Skopenkov and Werness, that were written for the case of

grids whose “squares” are quadrilaterals with orthogonal diagonals and some uniform bound

on the eccentricity.

Instead of reviewing their work in full generality, we will present the outline of their

argument in the special case of square grids. The point of this being that in Chapter 4 we

will extend this to the general 1 < p <∞ case.

35



2.3 Skopenkov and Werness work

2.3.1 Discrete holomorphicity

We will review the linear theory of discrete holomorphicity and harmonicity as provided

by Skopenkov. The main definition of discrete holomorphicity on quadrilateral lattices is

provided by a discrete form of the Cauchy-Riemann equations. The following theorems and

definitions work for orthogonal lattices, whose vertices are identified with a set V (Q) ⊂ C,

which are collections of quadrilaterals where the diagonals of each face are orthogonal to

each other. Since every bounded face of Q is a quadrilateral, our graph admits a 2-coloring

of the vertices into black and white. The black vertices will be denoted by Q• and the white

vertices by Q◦. Thus, the set of all vertices of Q may written as V (Q) = Q• ∪Q◦. Assume

f∗

Figure 2.5: Our original square grid can be thought as the black vertices of a 2-coloring grid

we have a square grid with mesh size M . If f is a square face then Diam(f) =
√

2M where

M is the side-length of the square.

Area(f) = M2 =
1

2
Diam(f)2 (2.9)

Now, For each face f assign a center point, which is the intersection of the orthogonal

diagonals of the face. Then, trace a line between each vertex (the original vertex) and

the center point of the face. The resulting graph is a 2-coloring graph with black and white

vertices, which is unique up to interchanging the black and white vertices. The black vertices
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are the original one and the white are the center points of the original faces. Thus each square

grid domain corresponding to a 2-coloring graph.

The resulting graph has faces f ∗ (see Figure 2.5) with mesh size
√

2
2
M for the new grid

and Diam(f ∗) = M . I will call the set of all the center points of the square faces Q◦ and the

set of all our original vertices ( the black vertices) Q•.

Definition 2.5. A function g : V (Q) → C is discrete holomorphic if for every face

f = [z1z2z3z4] we have
g(z1)− g(z3)

z1 − z3

=
g(z2)− g(z4)

z2 − z4

A function h : V (Q)→ R is discrete harmonic if it is the real part of a discrete holomor-

phic function.

In the continuum, harmonicity may be described via the minimization of the Dirichlet

energy :

EΩ(u) :=

∫
Ω

|Ou|2dxdy

In the discrete case such a definition may be given as well. For a face f of Q we write f ∈ Q

and we will let the discrete gradient of a function u : V (Q)→ R on that face be the unique

complex number OQu(f) such that

OQu(f)� (z3 − z1) = u(z3)− u(z1)

and

OQu(f)� (z4 − z2) = u(z4)− u(z2)

where � means the dot product between two complex numbers. In particular,

|OQu(f)|2 =
(u(z3)− u(z1))2

|z3 − z1|2
+

(u(z4)− u(z2))2

|z4 − z2|2
.

We may now define the Dirichlet energy.
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Definition 2.6. The discrete Dirichlet energy is

EΩ(u) :=
∑
f∈Q

|OQu(f)|2 · Area(f)

=
1

2

∑
f=[z1z2z3z4]∈Q

[
|z2 − z4|
|z1 − z3|

(u(z3)− u(z1))2 +
|z1 − z3|
|z2 − z4|

(u(z2)− u(z4))2

]

where the latter equality follows from the orthogonality of the lattice. In particular, for our

grid we will have

EΩ(u) =
1

2

∑
f=[z1z2z3z4]∈Q

[
(u(z3)− u(z1))2 + (u(z2)− u(z4))2

]

Definition 2.7. The discrete Laplacian of u : V (Q)→ R is

4Qu(z) = −∂EQ(u)

∂u(z)
=

∑
f=[z1z2z3z4]∈Q

|z2 − z4|
|z1 − z3|

(u(z3)− u(z1)).

Note that 4Qu is a weighted version of the combinatorial Laplacian L defined in (1.4),

when thinking of the graph obtained from Q by keeping only the black vertices Q• and

connecting them across the corresponding diagonals. In particular, for our purposes we will

assume that u is only defined on Q•.

Lemma 2.8. For each z ∈ V (Q), we have

4Qu(z) =
∑

f=[z1z2z3z4]∈Q
z1=z

i5Q u(f)� (z2 − z4)

With these definitions, many of the familiar identities from the continuous theory may

be translated to the discrete theory. We will state the Green’s identity and the maximum

principle.

Lemma 2.9 (Maximum principle, Lemma 2.58). Let Q be an orthogonal lattice and let
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U : V (Q)→ R be discrete harmonic. Then

max
z∈Q•

U(z) = max
z∈Q•∩∂Q

U(z).

Lemma 2.10 ( Lemma 2.48). Let Q be an orthogonal lattice and u, v : Q• → C be arbitrary

functions. Then ∑
z∈Q•

[u4Q v − v4Q u] = 0

Note that there are no boundary terms in the Green’s identity because of the symetric

of the laplacian matrix and the inner product of u and v. In particular, uTLv = vTLu and

the weight is the same in our case.

2.3.2 Werness and Skopenkov convergence step by step

Here we state the main result of Werness and Skopenkov.

Theorem 2.11. Let Ω be a simply connected “square grid” domain, as in Definition 2.1,

meaning that Ω is initially tiled by a square grid Q0. Let Qn be the n-th refinement of Q0 as

we described in section 2.2 and let g : C → R be a given smooth function that will be used

as boundary data for the Dirichlet problem.

Then, the unique discrete harmonic functions Un on Qn with boundary values g∣∣∂Qn con-

verge uniformly to the unique continuous harmonic u on Ω with boundary values g∣∣∂Ω
.

Moreover,

E2(Un) −→
∫

Ω

|∇u|2dA, as n→∞.

In the next few sections, we present their proof in the simplified setting of square grids.

The key is that these methods can be generalized to more flexible quadrangulations of the

plane, as we will explain later in Chapter 3.

To guide the reader, here is a list of the main steps in their proof.

• First, they show how to approximate any given rectifiable curve with a union of square

faces so that the sum of the diameters of the faces is not bigger than a constant times
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the length of the given curve.

• Then they provide control on the oscillation of a function on the lattice in terms of the

discrete Dirichlet energy along a path.

• Also, they obtain an estimate of the oscillation between two pairs of points in terms

of the semi-energy over the boundary of a ball containing the two points.

• Finally, they integrate over radii r and obtain a modulus of continuity in terms of the

Dirichlet energy.

• Next, it is shown how the discrete gradients approximate the continuous ones and how

the Laplacian operator approximates the continuous one.

• Then, they show how the uniform limit of a sequence of discrete harmonic functions is

necessarily harmonic.

• In conclusion, the Theorem of Ascoli-Arzela is used to extract a convergent subse-

quence, due to the equicontinuity of the discrete energy minimizers.

Another reason for listing these steps, is to determine which steps might be easily generalized

to the p 6= 2 case, and which ones require more work.

2.3.3 Estimate the energy and eqcontinuity

Lemma 2.12. Let Q be a square grid and γ : [0, 1] → C be rectifiable closed loop with

Diam(γ) ≥ 4M , where M is the side-length of squares in Q. Then

∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ 9√
2
`(γ)

Proof. Fix a face f such that f ∩ γ 6= ∅. Let f̂ be the subgrid of Q consisting of the face f

and all faces f ′ which share a vertex with f . We will call f̂ the neighborhood of f .
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Since Diam(γ) ≥ 4M = 2
√

2 Diam(f), then γ \ f̂ 6= ∅. Therefore,

Diam

⋃
f ′∈f̂

γ ∩ f ′
 ≥ 2M,

because γ must cross the annulus f̂ \ f .

Thus, since the length must sum up to at least the diameter of f

∑
f ′∈f̂

`(γ ∩ f ′) ≥ 2M =
√

2 Diam(f).

Then ∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ 1√
2

∑
f∈Q
f∩γ 6=∅

∑
f ′∈f̂

`(γ ∩ f ′)

Note that f̂ is composed of at most nine faces. Thus,

∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ 1√
2

∑
f∈Q

∑
f ′∈Q

`(γ ∩ f ′)1{f∩γ 6=∅,f ′∈f̂}

≤ 1√
2

∑
f ′∈Q

`(γ ∩ f ′) ·#{f ∈ Q : f ∩ γ 6= ∅, f ′ ∈ f̂}

≤ 9√
2

∑
f ′∈Q

`(γ ∩ f ′)

≤ 9√
2
`(γ)

In particular, when γ = ∂B(z, r) is inside the square grid domain and r > 2M , then

∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ Cr. (2.10)

Definition 2.13. The semi-energy of a function u : Q• → R along a path w0w1w2........wn
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of Q• is

Êw0w1w2........wn(u) =
1

M

n∑
i=1

(u(wi)− u(wi−1))2.

Lemma 2.14 (Lemma 4.18). Given a path γ : w0w1w2........wn,

Êγ(u) ≥ (u(wn)− u(w0))2

`(γ)

where

`(γ) :=
n∑
j=1

|wj − wj−1| = Mn

is the Euclidean length of the path, and M is the side-length of a square in V (Q).

Proof. By Cauchy-Schwarz,

|u(wn)− u(w0)|2 = ≤

[
n∑
i=1

(u(wi)− u(wi−1))2

]
n

≤ Êw0w1....wn(u) · nM.

So the desired inequality follows.

We will wish to use the previous lemma to obtain an estimate on the energy of a discrete

harmonic function over the entire square grid in terms of the difference between the value

of the function at a pair of points which implies the equicontinuity. Fix z ∈ C and r > 0 ,

define the semi-energy at distance r from a point z by

Êz
r (u) :=

∑
f∈Q,f∩∂Br(z)6=∅

| 5Q u(f)|2 ·M

Definition 2.15. Let Q be the square grid. For any ball BR intersect Q, we will define QR

to be the union of all the faces that contains in Q∩BR. And for z ∈ QR we will call Qz
R the

component of QR that contains z. Note that QR need not to be connected.

Lemma 2.16. Let Q be a square grid, z, w be a pair of vertices in Q•, and u : Q• → R be

a discrete harmonic function. Take R > |z − w|+M and assume that no vertices of Q• lie
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on the circle of radius R about x := (z+w)
2

. Let

δR := |u(z)− u(w)| − max
z′,w′∈∂Q∩BR

|u(z′)− u(w′)|

If δR > 0, then there is a constant C such that

ÊxR(u) ≥ C
δ2
R

R

Proof. WLOG, assume u(z) > u(w). Let QR, Qz and Qw be as defined in Definition(2.15).

By the maximum principle, there is z′ ∈ ∂QR ∩ Q• with u(z′) > u(z) and a point w′ with

u(w′) < u(w). We will consider three cases:

Case 1 : If ∂QR ∩ ∂Q = ∅, then there are two faces that contain z′ and w′. These two faces

also intersect the boundary of BR. Thus, there is a path γ = w0w1....wr of black vertices

that connect the two points z′ and w′ which is contained in faces that intersect ∂BR.

Note that `(γ) = rM =
∑r

i=1 |wi−wi−1| ≤
∑

f∗∈Q,f∗∩∂BR 6=∅
Diam(f ∗), since |wi−wi−1| are

the diameters of the new faces f ∗.

By Lemma 2.14 we have the following:

ÊxR(u) ≥ Êw0w1...wr ≥
(u(z′)− u(w′))2

rM

≥ (u(z)− u(w))2

rM
≥ δ2

R

rM

≥ δ2
R∑

f∗∈Q,f∗∩∂BR 6=∅
Diam(f ∗)

≥ C
δ2
R

R

Note that the first inequality follows because the number of faces that connect z′ and w′

are less than or equal the number of faces that intersect the boundary of BR. And the last

inequality follows by using equation (2.10).

Case 2: If ∂QR ∩ ∂Q 6= ∅, then if there is an arc of the circle with the same properties in

Case 1 which stays inside Q, we are done. So, assume that the boundary of the circle splits

into multiple components. Let Cz′ be the arc which intersect the face that contains z′ and
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Cw′ be the arc which intersect the face that contains w′. Let z′′ be the vertex in ∂QR ∩ ∂Q

at one of the end points of Cz′ and the same for w′′. Then there is a path of black vertices

of faces that intersect the boundary of BR and connect z′′ and z′ and another path that

connect w′′ and w′. Also,

(u(z′)− u(z′′)) + (u(w′′)− u(w′)) ≥ ((u(z)− u(w))− (u(z′′)− u(w′′)) ≥ δR.

Thus, either (u(z′) − u(z′′)) or(u(w′′) − u(w′) is greater than δR
2

. WLOG, assume that

(u(z′)− u(z′′)) > δR
2

. Let γ = w0w1....wr be the path that connects z′′ and z′ then applying

the same argument as Case 1 to those points gives the desired bound.

Case 3: Assume that either z′ or w′ is contained in ∂QR \ ∂Q. WLOG, say z′ is. Take z′′

as in the Case 2, then there is a path of black vertices of faces intersect the boundary of BR

that connects z′′ and z′.

u(z′)− u(z′′) = (u(z′)− u(w′))− (u(z′′)− u(w′)) ≥ ((u(z)− u(w))− (u(z′′)− u(w′)) ≥ δR

Then the desired bound obtained as in the first case.

Case 4: If neither z′ nor w′ are contained in ∂QR \ ∂Q, then

0 > ((u(z)− u(w))− (u(z′)− u(w′)) ≥ δR

but this contradicts our hypothesis. So, this case is impossible.

Proposition 2.17. Let Q be a square grid. Let u : Q• → R be a discrete harmonic function.

Let z, w be a pair of vertices in Q•. Then, there is a constant C such that for R ≥ |z−w|+M

|u(z)− u(w)| ≤ C log−
1
2

[
R

|z − w|

]
E

1
2
QR

(u) + max
z′,w′∈∂Q∩BR

|u(z′)− u(w′)|

Proof. Let δR := |u(z) − u(w)| − max
z′,w′∈∂Q∩BR

|u(z′) − u(w′)|. If δR ≤ 0, then the required

estimate holds automatically. Assume that δR > 0. By Lemma 2.16 and by observing that
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δr > δR for r < R, we have

∫ R

|z−w|
Êr(u)dr ≥

∫ R

|z−w|
C
δ2
r

r
dr

= Cδ2
R log

[
R

|z − w|

]
(2.11)

Now, by the definition of semi-energy and equation(2.9) , we get

∫ R

|z−w|
Êr(u)dr ≤

∫ R

0

∑
f∗∈Q,f∗∩∂Br(z)

| 5Q u(f ∗)|2.Diam(f ∗)

=

∫ R

0

∑
f∗∈Q

| 5Q u(f ∗)|2.Diam(f ∗).1{f∗∩∂Br 6=φ}

=
∑
f∗∈Q

| 5Q u(f ∗)|2.Diam(f ∗)

∫ R

0

1{f∗∩∂Br 6=φ}

≤
∑
f∗∈Q

| 5Q u(f ∗)|2.Diam(f ∗) Diam(f ∗)

=
∑
f∗∈Q

| 5Q u(f ∗)|2.Diam(f ∗)2

= 2
∑
f∗∈Q

| 5Q u(f ∗)|2.Area(f ∗)

= 2EQR(u) (2.12)

Combining equations (2.11) and (2.12) and the definition of δR, we obtain the proposition.

2.3.4 Laplacian Approximation

Lemma 2.18. (Gradient Approximation)8

For any square face f ∗ = [z1z2z3z4] we have, for any g ∈ C3(C),

| 5 g −5Qg| ≤ CM max
z∈f∗
|D2g(z)|
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Lemma 2.19. Let Q be a square grid lattice, and R be a square of side-length r > M inside

Q. Then for any g ∈ C3(C) we have

∣∣∣∣∣ ∑
w∈R∩Q•

[4Q(g|Q•)](w)−
∫
R

4g dxdy

∣∣∣∣∣ ≤ C(rM max
z∈R
|D2g(z)|+ r3 max

z∈R
|D3g(z)|)

Proof. Take an arbitrary function g ∈ C3(C) and without loss of generality assume R is

centered at 0. Expand g as

g(z) = a0 + a1 Re z + a2 Im z + a3 Re z2 + a4 Im z2 + a5|z|2 + ḡ(z)

Where Dkḡ(0) = 0 for k = 0, 1, 2. We will prove Laplacian Approximation in several

particular cases and then combine them together.

• The cases g(z) = 1, g(z) = Re z, g(z) = Im z all follows immediately since all three of

those functions are both harmonic and discrete harmonic.

• The case g(z) = |z|2. we know that

∫
R

4|z|2dxdy =

∫
R

4dxdy = 4 Area(R)

We wish to show that ∑
w∈Q•∩R

[4Q(|z|2)](w)

approximates 4 Area(R).

For any two points z, w ∈ Q• we have that

Re w̄(z − w) = Re[(a− ib)(x− a+ i(y − b)] = ax− a2 − b2 + by = ax+ by − |w|2
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and

|z − w|2 = |x+ iy − a− ib|2 = |(x− a) + i(y − b)|2 = (x− a)2 + (y − b)2

= |z|2 + |w|2 − 2(ax+ by) = |z|2 + |w|2 − 2 Re w̄(z − w)− 2|w|2

Combine the last two equalities we have that

|z|2 = |z − w|2|+ |w|2 + 2 Re w̄(z − w)

Now, For any point w ∈ Q• using the previous two identities we have that

[4Q(|z|2)](w) = [4Q(|z − w|2 + 2 Re[w̄(z − w)] + |w|2)](w) = [4Q(|z − w|2)](w)

because the last two terms are discrete harmonic functions.

Let z′ be the intersection of the diagonals of a face f . So we have the facts,

Area(z1z2z
′z4) =

1

2
Area(z1z2z3z4)

And

Im[(2z′ − z2 − z4)(z4 − z2)] = 0
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Then, by expanding around z′ we have

[4Q(|z − w|2)](w) =
∑

f=[z1z2z3z4],z1=w

i5Q (|z − w|2)(f)(z4 − z2)

=
∑

f=[z1z2z3z4],z1=w

i5Q (|z − z′|2 + 2 Re[(z′ − w)(z − z′)] + |z − w|2)(f)(z4 − z2)

=
∑

f=[z1z2z3z4],z1=w

i5Q (2 Re[(z′ − w)(z − z′)])(f)(z4 − z2)

=
∑

f=[z1z2z3z4],z1=w

2 Im[(z′ − w)(z4 − z′)]− 2 Im[(z′ − w)(z2 − z′)]

=
∑

f=[z1z2z3z4],z1=w

2 Im[(z′ − w){(z4 − z′)− (z2 − z′}]

=
∑

f=[z1z2z3z4],z1=w

2 Im[(z′ − w)(z4 − z2)]

=
∑

f=[z1z2z3z4],z1=w

4 Area(z1z2z
′z4)

= 2
∑

f=[z1z2z3z4],z1=w

Area(z1z2z3z4)

Take the sum over all the vertex w such that w ∈ R ∩Q• we have that

∑
w∈Q•∩R

4Q(|z|2)](w) =
∑

z1,z3∈R

2 Area(f) +
∑

z1∈R,z3 /∈R

2 Area(f)

= 2 Area(RQ) +
∑

z1∈R,z3 /∈R

2 Area(f)

Where RQ is the union of all the faces contained entirely in R. The second sum is

bounded by CMr where r is the side length of R and M is the mesh size of the square

grid. Thus,

4 Area(R)− 2 Area(RQ) ≤ CrM

• For g(z) = Re z2. We know that

∫
R

4Re(z2)dxdy = 0
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As we did in the previous case we get

[4Q Re z2](w) =
∑
f :z1=w

2 Im((z′ − w)(z2 − z4)) = 0

• For g(z) = Im z2. This is analogous to the previous case.

• For the case when Dkg(z) = 0 at the center of R for k = 0, 1, 2. By integrating the

estimate

| 4 g(z)| ≤ Crmax
z∈R
|D3g(z)|

we get ∣∣∣∣∫
R

4gdxdy
∣∣∣∣ ≤ Cr3 max

z∈R
|D3g(z)|.

Now, by the estimate | 5 g(z)| ≤ Cr2 max
z∈R
|D3g(z)|, |D2g(z)| ≤ Crmaxz∈R |D3g(z)|,

and the gradient approximation we get

∣∣∣∣∣ ∑
w∈R∩Q•

[4Qg](w)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

w∈R∩V (Q)

∑
z1z2z3z4:z1=w

i5Q g · (z4 − z2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z1∈R,z3 /∈R

i5Q g(f) · (z4 − z2)

∣∣∣∣∣∣
≤

∑
z1∈R,z3 /∈R

(|5Qg(f)−5g(z1)|+ |5g(z1)|) · |z2 − z4|

≤
∑

z1∈R,z3 /∈R

(
CM max

z∈R
|D2g(z)|+ Cr2 max

z∈R
|D3g(z)|

)
|z2 − z4|

≤
∑

z1∈R,z3 /∈R

(
CMrmax

z∈R
|D3g(z)|+ Cr2 max

z∈R
|D3g(z)|

)
|z2 − z4|

≤ Cr2 max
z∈R
|D3g(z)|

∑
z1∈R,z3 /∈R

|z2 − z4|

≤ Cr3 max
z∈R
|D3g(z)|

The last inequality follows by lemma (2.12)
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• The general case when

g(z) = a0 + a1 Re z + a2 Im z + a3 Re z2 + a4 Im z2 + a5|z|2 + ḡ(z)

follows from the special cases.

2.3.5 Uniform limit

Lemma 2.20. Let Qn be a sequence of square grids approximating a domain Ω. Let un :

Q•n → R be a sequence of discrete harmonic functions such that un converges uniformly to a

continuous u : Ω→ R. Then the function u is harmonic.

Proof. Take an arbitrary smooth function v : Ω→ R that vanishes outside a compact subset

K ⊂ Ω. By Weyl’s lemma it suffices to show that
∫

Ω
u4vdxdy = 0 for any such v. Consider

an intermediate infinite square lattice Zn with edge length
√

2Mn. For a face f of the n-th

lattice Zn denote ũn(f) := max
z∈f∩K

u(z). By continuity, ũn → u uniformly in the support of v

and it can be extended to the whole complex plane by taking it to be zero otherwise. Thus

by uniform convergence and the laplacian approximation, we have

∣∣∣∣∣∣
∫

Ω

u4 vdxdy −
∑
z∈Q•n

[un4Qn (v|Q•n)](z)

∣∣∣∣∣∣
≤

∑
f∈Zn:f∩K 6=∅

|ũn(f)|

∣∣∣∣∣∣
∫
f

4vdxdy −
∑

z∈f∩V (Q)

[4Qnv](z)

∣∣∣∣∣∣
≤ (#{f ∈ Zn : f ∩K 6= ∅}) max

K
|u|C

(
Mn

√
2Mn max

z∈R
|D2v(z)|+

√
2Mn

3
max
z∈R
|D3v(z)|

)
≤ (#{f ∈ Zn : f ∩K 6= ∅})(max

K
|u|)

(
max
z∈R
|D2g(z)|+ max

z∈R
|D3g(z)|

)
M

3
2
n

≤ Area(K)

Mn

.(max
K
|u|).

(
max
z∈R
|D2g(z)|+ max

z∈R
|D3g(z)|

)
M

3
2
n = O(M

1
2
n )→ 0 as n→∞
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Now, By Green’s identity and the harmonicity of un,

∑
z∈Q•

[un4Qn v|Q•n ](z) =
∑
z∈Q•

[v|Q•n 4Qn un](z) = 0

Thus , ∫
Ω

u4 vdxdy = 0

And we can say that u satisfies the weak Laplacian condition so, by Weyl’s lemma u is

harmonic.

We may now use these results to establish the final limit theorem.

2.3.6 The convergence

Proof of Theorem 2.11. Note that since the domain Ω is bounded, the grids Qn are contained

in some large ball B. By the Maximum principle, we know that |Un| are uniformly bounded

by max
z∈V (Q)

|g(z)| <∞.

Now, we will show that the family of functions {Un}n∈N are equicontinuous. So, we need

to show that there exists some positive function δ(ε) such that for every n and for every

z, w ∈ Q•n, |z − w| < δ(ε) implies that |Un(z) − Un(w)| < ε. Suppose we are in the case

Mn < |z − w|, let R = (Diam(B)|z − w|) 1
2 . Then by Proposition(2.17), we have

|Un(z)− Un(w)|

≤ C log−
1
2

[
R

|z − w|

]
E

1
2
Qn,R

(Un) + max
z′,w′∈∂Qn∩B

|Un(z′)− Un(w′)|

≤ CE
1
2
Qn,R

(Un) log−
1
2 [Diam(B)−

1
2 |z − w|−

1
2 ] + (Diam(B)|z − w|)

1
2 .max

z′∈B
|D1g(z′)|

which tends to zero as |z −w| → 0. Note that we have used equation (2.7) to get a uniform

bound of the energy.

If we consider the case when |z − w| < Mn, then set R = (Diam(B)Mn)
1
2 just replace
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each |z − w| with Mn in the bound above. Thus, we got

|Un(z)− Un(w)|

≤ C log
−1
2

[
R

|z − w|

]
E

1
2
Qn,R

(Un) + max
z′,w′∈∂Qn∩B

|Un(z′)− Un(w′)|

≤ CE
1
2
Qn,R

(Un) log−
1
2 [Diam(B)−

1
2 |z − w|−1Mn

1
2 ] + (Diam(B)|z − w|)

1
2 .max

z′∈B
|D1g(z′)|

≤ CE
1
2
Qn,R

(Un) log−
1
2 [Diam(B)−

1
2Mn

− 1
2 ] + (Diam(B)Mn)

1
2 .max

z′∈B
|D1g(z′)|

If |z − w| < δ0, we can choose Mn small enough as we wish and Mn < ε0 for all but finitely

many n. This proves the equicontinuity.

Now, by Arzela-Ascoli, we know that there exists a subsequence of the Uk converges

uniformly to a u continuous on the closure of Ω. By Lemma (2.20), the limit function is

harmonic in Ω. Also, for any z ∈ ∂Ω, there exists a sequence of points zn ∈ ∂Qn ∩Q•n such

that zn → z as n→∞, and thus u = g on ∂Ω. Since this limit is unique, the entire sequence

Un converges uniformly to u as desired.

2.4 Proof of our Main Theorem

Here we give the proof of Theorem 2.2.

Proof. Since Ω can be thought of as a topological rectangle with a pair of opposite sides E

and F , let E ′ and F ′ consist of the other pair of opposite sides.

To compute ModΩ(E,F ) in the plane, when ∂Ω is smooth, it is enough to solve the mixed
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Dirichlet-Neumann problem below:



∆u = 0 On Ω

u = 0 On E

u = 1 On F

∂u
∂η

= 0 On E ′ ∪ F ′.

(2.13)

However, it turns out that the solution u for (2.13) minimizes the Dirichlet energy, over all

functions with u|E = 0 and u|F = 1. Namely, we can minimize the energy with only the

Dirichlet boundary conditions and the the Neumann conditions get satisfied automatically.

This holds also in more general domains, including our case of square grid domains, as can

be seen in Corollary H.2 of Garnett-Marshall5.

Moreover, since u can also be thought as the real part of a conformal map and Ω is

a Jordan domain, we can apply Carathéodory’s Theorem (see Theorem I.3.1 of Garnett-

Marshall5), and conclude that u ∈ C(Ω). In particular, u solves the Dirichlet Problem with

its own boundary values. Therefore, we can apply the convergence result in Theorem 2.11

and conclude that there is a sequence of discrete harmonic functions Un that are 0 on E and

1 on F whose energy converges to E(u).

To be precise, Theorem 2.11 requires the boundary data g to be a smooth function. So

given ε > 0, we approximate u uniformly within ε with a smooth function gε. Also, we may

assume that gε = 0 on an open set containing E and gε = 1 on an open set containing F .

Now, let Uε and Un,ε be the harmonic extensions of gε to Ω and Qn respectively. Since our

discrete harmonic functions Un minimize the discrete energy among all functions on Qn with

0 on E and 1 on F we get that

EQn(Un) ≤ EQn(Un,ε)→ EΩ(Uε).
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In particular,

lim sup
n→∞

EQn(Un) ≤ EΩ(Uε). (2.14)

Letting ε → 0, by the maximum principle Uε converges uniformly to u on Ω, and moreover

the partial derivatives converge as well (locally on compact subsets of Ω), as can be seen by

using the Poisson kernel representation on a small disk and passing the partial derivatives

under the integral sign. Therefore, since the left hand-side in (2.14) does not depend on ε,

we have

lim sup
n→∞

EQn(Un) ≤ EΩ(u). (2.15)

Now we need to prove that lim infn→∞ EQn(un) ≥ EΩ(u). For that we need to look at the

family of cuts Γcuts
n . First, note that every cut may be replaced by a walk from E ′ to F ′

along the white vertices (that are placed in the middle of each face) see Figure 2.6. Namely,

every walk connecting the two components of green vertices in Figure 2.6 corresponds to

a unique cut for the paths on the black vertices connecting the two components of blue

vertices, and conversely, every such cut corresponds to a walk as above. Also, once the two

green components are collapsed to a single node, then the usage vectors for dual paths vs.

cuts will be exactly the same. Hence the modulus of the family of cuts is exactly equal to

the modulus of the family of dual paths on the dual grid Q̂n.

So the minimal energy for the family of dual paths, Mod2(Γcuts
n ), is equal to the reciprocal

of EQn(Un) (by Fulkerson duality, Theorem 1.17). On the other hand, Q̂n also provides a

discrete approximation of the continuous problem on Ω with 0 on E ′ and 1 onF ′. It is known

that the energy of minimizer v for the latter problem is also the reciprocal of EΩ(u). This is

Theorem 1.18. So, let Vn be the potential minimizer of the discrete energy on the dual grid

Q̂n. Applying the previous argument again, and noting that the more general form of the

Skopenkov-Werness result allows for the boundary of the approximating grid to converge to

∂Ω in the Hausdorff distance, we have that

lim sup
n→∞

EQn(Vn) ≤ EΩ(v). (2.16)
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Figure 2.6: A five-by-ten grid

So, since EQn(Un) = EQn(Vn)−1, and EΩ(u) = EΩ(v)−1,

lim inf
n→∞

EQn(Un) ≥ EΩ(u). (2.17)

Finally, (2.15) and (2.17) complete the proof.
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Chapter 3

Generalizing to quadrangular grids

with bounded geometry

We will prove the convergence of the modulus in more general lattices. We will work with

a quadrilateral lattice, which is a planar graph Q with a given straight line embedding into

C whose vertices are identified with the set V (Q) such that each bounded face of Q is a

quaderilateral. We will always assume that the quadrilaterals are orthogonal. See Figure 3.1

Figure 3.1: The first two from the left are quadrilateral with orthogonal diagonals and the
third is not allowed since the edges are not disjoint and the fourth is not allowed also because
the diagonals are not orthogonal

Also, we know that our graph admits a 2-coloring of the vertices as black and white, See

Figure 3.2.

56



Figure 3.2: Any quadrilateral lattice can be two-colored

We will define the mesh size of the lattice by

M(Q) := sup
z∼w
|z − w|

which is the maximal edge length of a lattice Q. Here for any simply connected domain

we will approximate it by a sequence of quaderilteral lattices {Qn}. So, we will provide the

definition of the approximation as

Definition 3.1. We will say that {Qn} approximates a simply connected domain Ω if the

following hold:

• Mn → 0 as n→∞

• dHaus(∂Qn, ∂Ω)→ 0 as n→∞.

Where

dHaus(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

is the Hausdorff distance between the two metric spaces X and Y

Skopenkov proved the convergence between discrete and continuous Dirichlet solutions,

with some uniform conditions that provide local control over the geometry of the quadrilat-

eral lattice. Werness thinks that the uniform control is very important to prove this kind
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of convergence but it is a very strong condition that will excludes many reasonable lattices.

Throughout this chapter we will consider Werness’s K-round quadrilateral lattices.

Definition 3.2. A quadrilateral f = [z1z2z3z4] is K-round if all the interior angles are

bounded by 2π
K

and the ratio of the length of any pair of edges is less than K. We will call

a lattice Q K-round if all faces in the lattice are K-round for a fix K. Note that always

K ≥ 4 and our square grids are 4-round lattices.

The main result for this chapter is to prove the following theorem

Theorem 3.3. Let Ω be a simply connected domain. Let Qn be a sequence of K-round finite

orthogonal lattices that approximates a domain Ω and g : C→ R be a given smooth function

that will be used as boundary data. Then, the unique discrete harmonic functions φn on Qn

with boundary values g∣∣∂Qn converge uniformly to the unique harmonic φ on Ω with boundary

values g∣∣∂Ω
. Moreover,

ModQn(En, Fn)→ ModΩ(E,F ) as n→∞.

First we again recall the main steps in the Werness and Skopenkov papers. However, we

skip the proofs in this more general case.

3.1 Geometric preliminaries

Lemma 3.4. 8 If f = [z1z2z3z4] is K-round then the lengths of the edges are bounded below

by Diam(f)
2K

and the lengths of diagonals are bounded below Diam(f)
4K2 .

the next lemma is to control the area in terms of their diameters, which is generalize the

equation (2.9).

Lemma 3.5. 8 There is a constant CK, deponding only on K such that

Area(f) ≥ CK Diam(f)2
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The idea of the proof is to divide each quadrilateral into two triangles and then use the

bound of the edges and the angle between these two edges which we know from Lemma 3.1.

Now, we will generalize Lemma 2.12 which is approximate any rectifiable curve. So, that

the sum of the diameters of the faces is not bigger than a constant times the length of the

given curve.

Lemma 3.6. 8 Let Q be a K-round lattice and γ : [0, 1] → C be rectifiable closed loop with

Diam(γ) ≥ 2M , where M is the side-length of squares in Q. Then there exists a constant

CK such that ∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ CK`(γ)

In particular, when γ = ∂B(z, r) is inside Q and r > 2M , then

∑
f∈Q
f∩γ 6=∅

Diam(f) ≤ CKr. (3.1)

For the proofs of all the geometric properties of K-round ,see[8].

3.2 Estimate the energy and equicontinuity

We will eastimate the difference between values of a discrete harmonic function at two

black vertices through the distant between them. We will follow Skopenkov and Werness

arguments. Through the following arguments we will be given a pair of black vertices z and

w and we will also consider a ball BR of raduis R centered at the point x = z+w
2

. We will

recall the definition of QR, Qz and Qw from Chapter 2 (see Definition 2.15).

Definition 3.7.

The semi-energy of a function φ : Q• → R along the path w0w1w2........wn is

Êw0w1w2........wn(φ) =
n∑
i=1

| 5 φ(f ∗i )|2 · |wi − wi−1|
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where fi is a quaderilteral with diagonal wiwi−1.

Lemma 3.8. Let φ : V (Q) → R be any function on any quadrilateral lattice and let

w0w1.....wn be a path on the black vertices of Q•. Then

Êp,w0w1w2........wn(φ) ≥ |φ(wn)− φ(w0)|2

`(w0w1w2........wn)

where

`(w0w1w2........wn) :=
n∑
j=1

|wj − wj−1|

is the Euclidean length of the path.

We will apply the above lemma to estimate the amount of semi-energy at distance r from

our pair of points. Fix z ∈ C and r > 0 then the semi-p-energy at distance r is defined to be

Êz
r :=

∑
f∈Q,f∩∂Br(z)

| 5 φ(f)|2 ·Diam(f)

Lemma 3.9. Let Q be a K-round orthogonal lattice, z, w be a pair of vertices in Q•, and

φ : Q• → R be a discrete harmonic function. Take R > |z − w| + M restricted to those R

with no vertices of Q on the circle of radius R about (z+w)
2

. Let

δR := |φ(z)− φ(w)| − max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|

If δR > 0, then there is a constant CK depending only on K such that

Êp,R(φ) ≥ CK
δ2
R

R

We now integerate this in r to obtain the desired result.

Proposition 3.10. Let Q be a K-round orthogonal lattice. Let φ : Q• → R be a discrete

harmonic function. Let z, w be a pair of black vertices. Then, there is a constant CK depends
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only on K such that for R ≥ 2|z − w|

|u(z)− u(w)| ≤ CK log−
1
2

[
R

|z − w|

]
E

1
2
QR

(u) + max
z′,w′∈∂Q∩BR

|u(z′)− u(w′)|

3.2.1 Laplacian Approximation

Lemma 3.11. (Gradient Approximation)8

For any K-round f ∗ = [z1z2z3z4] we have, for any g ∈ C3(C),

| 5 g −5Qg| ≤ CKM max
z∈f∗
|D2g(z)|

Lemma 3.12. Let Q be a K-round lattice , and R be a square of side-length r > M inside

Q. Then for any g ∈ C3(C) we have

∣∣∣∣∣∣
∑

w∈R∩V (Q)

[4Q(g|Q•)](w)−
∫
R

4g dxdy

∣∣∣∣∣∣ ≤ CK(rM max
z∈R
|D2g(z)|+ r3 max

z∈R
|D3g(z)|)

We may now use these results and the results from Chapter 4 to establish the final

convergence theorem.

3.3 Skopenkov and Werness convergence

Lemma 3.13. Let Ω be a bounded simply-connected domain with smooth boundary. Let

{Qn} be a sequence of K-round quaderilteral lattices approximating the domain. Then for

any C2(C) smooth function η : C→ R, EQn(η|Qn)→ EΩ(η) as n→∞

Theorem 3.14. Let Ω be a simply connected domain, Ω is approximated by a quadrilateral

lattice Q0. Let Qn be a sequence of K-round quadrilateral lattices approximating the domain

and g : C→ R be a given smooth boundary value. Then, the discrete p-harmonic functions φn

on Qn with boundary values g∣∣∂Qn converge uniformly to the unique continuous p-harmonic

φ on Ω with boundary values g∣∣∂Ω
.
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3.4 Proof the final result

proof of main theorem 0.3. Let φ minimize the continuous energy with 0 on E and 1 on

F . Since φ solves the Dirichlet Problem with its own boundary values we can apply the

convergence result in Theorem 3.14 and say that there is a sequence of discrete harmonic

functions φ′n that are 0 on En and 1 on Fn whose energy converges to E(φ). Since our discrete

harmonic functions un minimize the discrete energy among all functions with 0 on En and 1

on Fn we get that

EQn(φn) ≤ EQn(φ′n)→ EΩ(φ)

Thus,

lim sup
n→∞

EQn(φn) ≤ EΩ(φ)

Now we need to prove that lim inf EQn(φn) ≥ EΩ(φ). For that we need to look at the family of

cuts Γcuts
n . First, note that every cut may be replaced by a walk from E ′ to F ′. Namely, every

walk connecting E ′ and F ′ corresponds to a unique cut between E and F and conversely,

every such cut corresponds to a walk as above. Hence the modulus of the family of cuts is

exactly equal to the modulus of the family of dual paths. Also, there are E ′n and F ′n such

that dHaus(E
′
n, E

′)→ 0 and dHaus(F
′
n, F

′)→ 0 as n→∞.

Lemma 3.15. dHaus(E
′
n, E

′)→ 0 and dHaus(F
′
n, F

′)→ 0 as n→∞

Proof. WLOG Assume that Ω tiled by a square grid domain with side-length 1. Fix a white

node x in ∂Q̂n ∪E ′n. There is x′ ∈ Q̂n such that the edge e = {x, x′} is perpenducular to an

edge e′ = {u1, u2} of black vertices in ∂Qn. Let y be the intersection point of e and e′. Then

y ∈ E ′ and

|x− y| ≤ 2−n

and

dHaus(x,E
′) ≤ 2−n
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which implies that

sup
x∈E′n

dHaus(x,E
′) ≤ 2−n (3.2)

Now, fix z ∈ E ′. There is an edge {u1, u2} of black vertices such that z ∈ {u1, u2}. Then

|z − y| ≤ 2−n. Thus by triangle inequality, |z − x| ≤ 2−n and dHaus(z, E
′
n) ≤ 2−n Since z

arbitrary,

sup
z∈E′n

dHaus(z, E
′
n) ≤ 2−n (3.3)

Equation (3.2) and equation( 3.3) implies that

dHaus(E
′, E ′n) ≤ 2−n → 0 as n→∞

So, let Vn be the potential minimizer of the discrete energy with 0 on E ′n and 1 on F ′n.

Then Applying the previous argument again,

EQn(Vn) ≤ EQn(V ′n)→ EΩ(v)

. Thus,

lim inf
n→∞

EQn(φn) ≥ EΩ(φ).

This completes the proof.
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Chapter 4

The case when p 6= 2, conclusion and

future work

In this chapter, we will explore which results in the previous chapters extend to the p 6= 2

case. In particular, our goal is to modify all of our work in Chapter 2 to the case 1 < p <∞,

in such a way that the proofs will hold in the more general case of quadrilateral lattices with

orthogonal diagonals.

4.1 Behavior of side to side p-modulus under grid re-

finements

Let Rn be a rectangular 1
n
-grid. Namely, Rn is a graph with nodes,

Vn = {( i
n
,
j

n
) : i0 ≤ i ≤ i1, j0 ≤ j ≤ j1}

and edges

En = {e : e = {x, y} for x, y ∈ Vn and ||x− y||∞ = 1}
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Let Γn be the family of walks in Rn from {Rez = i0
n
} to {Rez = i1

n
}. Pick a cell ( a square)

and refine it by subdividing each side into k equal length intervals. Call the resulting graph

Rn,k. Let Γn,k be the the family of walks in Rn,k from {Rez = i0
n
} to {Rez = i1

n
}, with

i1 − i0 = n. Pick ρ = 1
n

on the horizontal edges of the original grid and ρ = 1
nk

on the new

horizontal smaller edges.

It is not clear what will happen to Modp(Γn,k) rekative to Modp(Γn) ,because, although

we added longer walks, there are now more ways to go from side to side. In fact, as we will

see, we have

Modp(Γn,k) ≤ Modp(Γn)

We have that

ρ(e) =


1
n

if e old edge

1
nk

if e new edge

Such a ρ is admissible. To see this, consider a simple path γ ∈ Γn,k and assume that γ

contains M old edges for some M ≤ r := `(γ). If γ uses at least one new edge, then it must

use at least k new edges and at least n− 1 old edges. Thus, in this case,

`ρ(γ) =
r∑
i=1

ρ(ei) = M

(
1

n

)
+ (r −M)

(
1

nk

)
≥ (n− 1)

(
1

n

)
+ k

(
1

nk

)
= 1

On the other hand, if γ does not use any new edges, then it must use M ≥ n of the old ones,

and

`ρ(γ) =
M

n
≥ 1.

So,

Modp(Γn,k) ≤ Modp(Γn)− 2

(
1

n

)p
+ k(k + 1)

(
1

kn

)p
= Modp(Γn)− 2

np
+

k + 1

kp−1np

= Modp(Γn)− 1

np

(
2− k + 1

kp−1

)
(4.1)

65



Now, we compute the original Modulus Modp(Γn). Again if ρ = 1
n

on all the horizontal

edges, then ρ is admissible for Γn. So

Modp(Γn) ≤ E(ρ)

= n(n+ 1)

(
1

n

)p
=
n+ 1

np−1
(4.2)

Now let Γ̂n be the family of all the cuts for Γn. In this example a cut is obtained by choosing

at least one horizontal edge for each one of the n+1 levels of the grid.

Let η̂ = 1
n+1

on horizontal edges of Rn. Then η is admissible and we get

Modq(Γ̂n) ≤ E(η̂)

= n(n+ 1)

(
1

n+ 1

)q
=

n

(n+ 1)q−1

By Fulkerson duality,

Modq

1
q (Γ̂n)Modp

1
p (Γn) = 1

So

Modp

1
p (Γn) =

1

Modq

1
q (Γ̂n)

≥
(

(n+ 1)q−1

n

) 1
q
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Thus, using that 1
p

+ 1
q

= 1 we have

Modp(Γn) ≥
(

(n+ 1)q−1

n

) p
q

=
(n+ 1)

p(q−1)
q

n
p
q

=
n+ 1

n
p
q

=
n+ 1

np−1
(4.3)

Hence, combining equations (4.2) and (4.3), we have that

Modp(Γn) =
n+ 1

np−1
(4.4)

Apply (4.4) to (4.1), we get

Modp(Γn,k) ≤
n+ 1

np−1
− 1

np

(
2− k + 1

kp−1

)
=
n+ 1

np−1

[
1− 1

n(n+ 1)

(
2− k + 1

kp−1

)] (4.5)

Equation(4.5) gives an upper bound of p- modulus after one cell refinement.

Thus

Modp(Γn,k) ≤ Modp(Γn)

[
1− 1

n(n+ 1)

(
2− k + 1

kp−1

)]

4.2 Decreasing of p-energy when p ≥ 2

Here we will recall Definition 2.1 and as we saw in Section 1.5 computing connecting p-

modulus is equivalent to minimizing p-energy subject to the boundary values. We will refine

grids by adding a node on each edge that we also connect to a new node in each face. again

we will recall an argument of Jacqueline Lelong-Ferrand that shows how refining a square

grid in a geometric fashion, decreases the p-energy( see Figuer 2.4 )

Namely, refine a square grid by adding a node to each edge, that we also connect to a
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new node in each face. After n refinements, there exist a unique p-harmonic function φn on

the nodes of Qn \ (E ∪ F ) satisfying:

 φn = 0 on E

φn = 1 on F
(4.6)

In particular, φn minimizes the energy

E(φ) =
∑

e={x,y}∈E(Qn)

|φ(x)− φ(y)|p

over all functions on Q•n with the boundary values given in (4.6).

Assume that the value of φn at the nodes of an arbitrary square are a, b, c, d, in the

positive direction. Refine each square, and extend φn to φ̄n. The values of φ̄n on the old

nodes are the same as φn, but for the new nodes we set φ̄n equal to a+b
2
, c+b

2
, d+c

2
, a+d

2
for each

new node on the old edges, and we set φ̄n equal to a+b+c+d
4

on the new node in the middle

of the old face.

Remark 4.1. Note that if the square that we pick it not in the boundary, each edge is sharing

between two squares. So, when we compute the energy, we need to divide by 2. For example

the edge between the two values a and b has energy value |a − b|p. we will only consider

|a−b|p
2

when we compute thye energy of a chosen square.
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Now we compare the old p-energy to the new p-energy:

E(φn)− E(φ̄n) =
∑

e={x,y}

|φn(x)− φn(y)|p −
∑

e={x,y}

∣∣φ̄n(x)− φ̄n(y)
∣∣p

=

[
|a− b|p

2
+
|b− c|p

2
+
|c− d|p

2
+
|d− a|p

2

]
−[

|a− a+b
2
|p

2
+
|a+b

2
− b|p

2
+
|b− b+c

2
|p

2
+

| b+c
2
− c|p

2
+
|c− c+d

2
|p

2
+
| c+d

2
− d|p

2
+
|a+d

2
− d|p

2
+
|d− a+d

2
|p

2

+

∣∣∣∣a+ b− c− d
4

∣∣∣∣p +

∣∣∣∣a+ b− c− d
4

∣∣∣∣p +∣∣∣∣a+ d− b− c
4

∣∣∣∣p +

∣∣∣∣a+ d− b− c
4

∣∣∣∣p]
=

2p − 2

2p+1
[|a− b|p + |b− c|p + |c− d|p + |d− a|p]

− 1

4p
[2|(a− d) + (b− c)|p + 2|(a− b) + (d− c)|p]

Put

x = a− b, y = b− c, z = d− c, w = a− d,

Then ,for p ≥ 2 we get:

E(φ)− E(φ̄n) =
2p − 2

2p+1
[|x|p + |y|p + |z|p + |w|p]− 2

4p
[|w + y|p + |x+ z|p]

=
2p − 2

2p+1
[|x|p + |z|p]− 2

4p
|x+ z|p +

2p − 2

2p+1
[|y|p + |w|p]− 2

4p
|y + w|p

=
1

2p−1

[
2p − 2

4
(|x|p + |z|p)−

(
|x+ z|

2

)p]
+

1

2p−1

[
2p − 2

4
(|y|p + |w|p)−

(
|y + w|

2

)p]
≥ 1

2p−1

[
1

2
(|x|p + |z|p)−

(
|x|+ |z|

2

)p]
+

1

2p−1

[
1

2
(|y|p + |w|p)−

(
|y|+ |w|

2

)p]

The last inequality follows using p ≥ 2.

Now, by convexity we have that,

1
2
(|x|p + |z|p) >

(
|x|+|z|

2

)p
and 1

2
(|y|p + |w|p) >

(
|y|+|w|

2

)p
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Then, we can conclude that

E(φn)− E(φ̄n) ≥ 0

This shows that

E(φn+1) ≤ E(φn). (4.7)

This monotonicity can be used to prove the convergence between the p-modulus of a domain

and the p-modulus of its grid approximation.

For now we will generalize the Skopenkov and Werness work to the case 1 ≤ p ≤ ∞

but we will consider the case of grids whose faces are squares. However, our proofs should

generalize to quadrangular lattices with orthogonal diagonals.

4.3 Basic facts about discrete p-harmonic functions on

graphs

Let G = (V,E) be a finite graph, where V is the set of all the vertices and E is the set of all

the edges. For a real valued function φ on V and x ∈ V , 1 < p <∞, we will review all the

definitions from the Holopainen and Soardi paper9.

Definition 4.2. The pth power of the gradient is defined by

|Dφ(x)|p =
∑
y∼x

|φ(y)− φ(x)|p

Definition 4.3. The p - Dirichlet sum is defined by

Ip(φ, V ) =
∑
x∈V

|Dφ(x)|p
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Definition 4.4. The p - Laplacian is defined by

4pφ(x) =
∑
y∼x

sign(φ(y)− φ(x))|φ(y)− φ(x)|p−1 =
∑
y∼x

(φ(y)− φ(x))|φ(y)− φ(x)|p−2

In the continuum, p-harmonicity may be described via the minimization of the variational

integeral: ∫
D

| 5 h|pdm

For u ∈ Lp(G) and for every D ⊂ G among all functions in W 1,p(D) with same values in ∂D,

where G is an oben set that is contained in a noncompact, connected and oriented manifold

of class C∞.

In the discrete such a definition may be given as well. For a face f of Q we write f ∈ Q

and we will let the discrete gradient of a function φ : V (Q)→ R on that face by:

|Dφ(f ∗)|p =
(
|Dφ(f ∗)|2

) p
2

We may now define the discrete p-energy.

Definition 4.5. The discrete p-energy is

Ep,Q(φ) :=
∑
f∗∈Q

|Dφ(x)|p · Area(f ∗)

=
1

2

∑
f∗∈Q

[
|z2 − z4|
|z1 − z3|p−1

|φ(z3)− φ(z1)|p +
|z1 − z3|
|z2 − z4|p−1

|φ(z2)− φ(z4)|p
]

In the case of square lattices, which we assume throughout, the expression for the energy

may be made more explicit:

Ep,Q(φ) =
1

2

∑
f∗∈Q

[
1

|z3 − z1|p−2
|φ(z3)− φ(z1)|p +

1

|z4 − z2|p−2
|φ(z4)− φ(z2)|p

]

Definition 4.6. A function φ is discrete p-harmonic in V if 4pφ(x) = 0 for every x ∈ V .

Definition 4.7. Let G = (V,E) be a graph. If Ip(φ, V ) < ∞, then φ is said to be energy
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finite

4.4 Comparison principle and Maximum principle for

discrete p - harmonic functions on graphs

Definition 4.8. A lower semi-continuous function φ : Ω→ R∪{+∞} that is not identically

+∞ is p-superharmonic function, if it is satisfies the comparison principle with respect to

p-harmonic functions in every subdomain D with closure in Ω: i.e., whenever a p-harmonic

function h ∈ C(D) is such that

φ(x) ≥ h(x)

for all x ∈ ∂D then

φ(x) ≥ h(x)

for all x ∈ D

Remark 4.9. A function h is p-harmonic if and only if h and −h are super p-harmonic

functions.

Theorem 4.10 (Comparison principle). 9 Let u be a p-superharmonic and v p-subharmonic

functions in a finite set S ⊂ V such that u ≥ v in ∂S. Then u ≥ v in S.

Now, using Comparison principle we can prove a weak version of the maximum principle

Theorem 4.11 (Maximum principle (weak version)). Let G be a finite graph and h be

p-harmonic function on G such that a ≤ h ≤ b on ∂G. Then a ≤ h ≤ b on V (G).

Proof. We claim first that h ≤ b on V (G). Set v := h(x) − b. By the assumption we have

v ≤ 0 on ∂G. By comparison principle, v ≤ 0 on V (G) which implies that h ≤ b on V (G).

Next, we claim h ≥ a on V (G). Set u := a − h(x). By the assumption we have u ≥ 0 on

∂G. By comparison principle, v ≥ 0 on V (G) which implies that h ≥ a on V (G).

Now, we will prove the maximum principle for the discrete p-harmonic functions
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Theorem 4.12. Let G = (V,E) be a finite graph. Assume that ∅ 6= B ⊂ V is a set of

boundary points. Let φ : V → R be a function which is discrete p-harmonic on the interior

points V \B and attains its global maximum value m := maxV φ at an interior point. Then,

m = max
B

φ.

Proof. Assume φ has its maximum m at some interior point x ∈ V (G). Since φ is discrete

p-harmonic we have that

∑
y∼x

(φ(y)− φ(x))|φ(y)− φ(x)|p−2 = 0

and φ(y) − φ(x) is nonpositive for every y, hence we have that φ(y) = φ(x) for all y ∼ x,

which means that the global maximum is attained at every neighbor of x as well. This can

be repeated in an oil spill fashion all the way to the boundary. A similar result holds for the

minimum value.

4.5 Estimate the energy and equicontinuity

We will estimate the difference between values of a discrete p -harmonic function at two

black vertices through the distant between them. we will generalize Skopenkov and Werness

arguments for the case when 1 < p < ∞ and for the given p, we will let q ∈ (1,∞) be the

Hölder conjugate exponent of p so that pq = p+ q.

Through the following arguments we will be given a pair of black vertices z and w and

we will also consider a ball BR of raduis R centered at the point x = z+w
2

. We will recall the

definition of QR, Qz and Qw from Chapter 2 (see Definition 2.15).

Definition 4.13.

The semi-p-energy of a function φ : Q• → R along the path w0w1w2........wn is

Êp,w0w1w2........wn(φ) =
1

Mp−1

n∑
i=1

|Dφ(f ∗i )|p
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Lemma 4.14.

Êw0w1w2........wn(φ) ≥ |φ(wn)− φ(w0)|p

`p−1(w0w1w2........wn)

where

`(w0w1w2........wn) :=
n∑
j=1

|wj − wj−1| = nM

is the Euclidean length of the path.

Proof.

By Hölder inequality, we see that

|φ(wn)− φ(w0)|p =

∣∣∣∣∣
n∑
i=1

(φ(wi)− φ(wi−1))

∣∣∣∣∣
p

≤

(
n∑
i=1

|φ(wi)− φ(wi−1)|p
) p

p

.

(
n∑
i=1

1

) p
q

=
1

Mp−1

n∑
i=1

|φ(wi)− φ(wi−1)|p.(nM)p−1

= Êp,w0w1w2........wn(φ).`p−1(w0w1.....wm)

and the result follows.

We will apply Lemma 4.14 to estimate the amount of semi-p-energy at distance r from

our pair of points. Fix z ∈ C and r > 0 then the semi-p-energy at distance r is defined to be

Êz
r,p :=

∑
f∗∈Q,f∗∩∂Br(z)

|Dφ(f)|p ·Diam(f)

Lemma 4.15. Let Q be a square grid, z, w be a pair of vertices in Q•, and φ : Q• → R be a

discrete p-harmonic function. Take R > |z − w| + M restricted to those R with no vertices

of Q on the circle of radius R about (z+w)
2

. Let

δR := |φ(z)− φ(w)| − max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|
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If δR > 0, then there is a constant Cp depends only on p such that

Êp,R(φ) ≥ Cp
δpR
Rp−1

Proof.

WLOG, assume φ(z) > φ(w). Let QR, Qz and Qw as defined before (see Definition 2.15).

By the maximum principle, there is z′ ∈ ∂QR ∩ Q• with φ(z′) > φ(z) and a point w′ with

φ(w′) < φ(w). We want to prove that the graph QR∩∂BR contains two black vertises joined

by a path in Q•R ∩ ∂BR. Now, consider the following cases:

Case 1 : If ∂QR ∩ ∂Q = ∅, then there are two faces that contain z′ and w′. These two faces

also intersect the boundary of BR. Thus, there is a path γ = w0w1....wr of black vertices

that connect the two points z′ and w′ which is contained in faces that intersect ∂BR.

Note that by using equation (2.10) we have that

(`(γ))p−1 = (rM)p−1 =

(
r∑
i=1

|wi − wi−1|

)p−1

≤

 ∑
f∗∈Q,f∗∩∂BR 6=∅

Diam(f ∗)

p−1

≤ CpR
p−1

(4.8)

Since |wi − wi−1| are the diameters of the new faces f ∗.

Now, by using Lemma 4.15 and equation(4.8), we have the following:

Êxp,R(φ) ≥ Êp,w0w1...wr ≥
(φ(z′)− φ(w′))p

(rM)p−1

≥ (φ(z)− φ(w))p

(rM)p−1

≥ δpR
(rM)p−1

≥ Cp
δpR
Rp−1

Note that the first inequality follows because the number of faces that connect z′ and w′ are

less than or equal the number of faces that intersect the boundary of BR.

Case 2: If ∂QR ∩ ∂Q 6= ∅, then if there is an arc of the circle with the same properties in
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Case 1 which stays inside Q, we are done. So, assume that the boundary of the circle splits

into multiple components. Let Cz′ be the arc which intersect the face that contains z′ and

Cw′ be the arc which intersect the face that contains w′. Let z′′ be the vertex in ∂QR ∩ ∂Q

at one of the end points of Cz′ and the same for w′′. Then there is a path of black vertices

of faces that intersect the boundary of BR and connect z′′ and z′ and another path that

connect w′′ and w′. Also,

(φ(z′)− φ(z′′)) + (φ(w′′)− φ(w′)) ≥ ((φ(z)− φ(w))− (φ(z′′)− φ(w′′)) ≥ δR.

Thus, either (φ(z′) − φ(z′′)) or(φ(w′′) − φ(w′) is greater than δR
2

. WLOG, assume that

(φ(z′)− φ(z′′)) > δR
2

. Let γ = w0w1....wr be the path that connects z′′ and z′ then applying

the same argument as Case 1 to those points gives the desired bound.

Case 3: Assume that either z′ or w′ is contained in ∂QR \ ∂Q. WLOG, say z′ is. Take

z′′ as in the Case 2, then there is a path of black vertices of faces intersect the boundary of

BR that connects z′′ and z′.

φ(z′)− φ(z′′) = (φ(z′)− φ(w′))− (φ(z′′)− φ(w′)) ≥ ((φ(z)− φ(w))− (φ(z′′)− φ(w′)) ≥ δR

Then the desired bound obtained as in the first case.

Case 4: If neither z′ nor w′ are contained in ∂QR \ ∂Q, then

0 > ((φ(z)− φ(w))− (φ(z′)− φ(w′)) ≥ δR

but this contradicts our hypothesis. So, this case is impossible.

Proposition 4.16. Let Q be a square grid. For p > 2 Let φ : Q• → R be a discrete p-

harmonic function. Let z, w be a pair of black vertices. Then, there is a constant Cp depends

only on p such that for R ≥ 2|z − w|
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|φ(z)− φ(w)| ≤ CpE
1
p

p,QR
(φ)

(
Rp−2|z − w|p−2

|z − w|p−2 −Rp−2

) 1
p

+ max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|

Proof.

Let δR := |φ(z) − φ(w)| − maxz′,w′∈∂Q∩BR |φ(z′) − φ(w′)|. If δR ≤ 0, then the required

estimate holds automatically. Assume that δR > 0. By using Lemma 4.15 and by observing

that δr > δR for r < R. So, we have

∫ R

|z−w|
Êp,r(φ)dr ≥

∫ R

|z−w|
Cp
δpR

r
p
q

dr

= Cpδ
p
R(R2−p − |z − w|2−p)

for easy computation:

∫ R

|z−w|
Êp,r(φ)dr ≥ Cpδ

p
R

(
|z − w|p−2 −Rp−2

Rp−2|z − w|p−2

)
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Now, by the definition of semi-p-energy , we get

∫ R

|z−w|
Êp,r(φ)dr ≤

∫ R

0

∑
f∗∈Q,f∗∩∂Br(z)

|Dφ(f)|p ·Diam(f ∗)

=

∫ R

0

∑
f∈Q

|Dφ(f ∗)|p ·Diam(f ∗).1{f∗∩∂Br 6=∅}

=
∑
f∈Q

|Dφ(f ∗)|p ·Diam(f ∗)

∫ R

0

1{f∗∩∂Br 6=∅}

≤
∑
f∗∈Q

|Dφ(f ∗)|p ·Diam(f ∗) Diam(f ∗)

=
∑
f∗∈Q

|Dφ(f ∗)|p ·Diam(f ∗)2

= 2
∑
f∗∈Q

|Dφ(f ∗)|p · Area(f ∗)

= 2Ep,QR(φ)

By Combining the last two inequalities we have

Cpδ
p
R

(
|z − w|p−2 −Rp−2

Rp−2|z − w|p−2

)
≤ 2Ep,QR(φ)

By substituting δR, we have

Cp(|φ(z)− φ(w)| − max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|)p ≤ 2Ep,QR(φ)

(
|z − w|p−2 −Rp−2

Rp−2|z − w|p−2

)−1

By taking both sides to the power 1
p

|φ(z)− φ(w)| − max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)| ≤ CpE
1
p

p,QR
(φ)

(
|z − w|p−2 −Rp−2

Rp−2|z − w|p−2

)− 1
p

|φ(z)− φ(w)| ≤ CpE
1
p

p,QR
(φ)

(
Rp−2|z − w|p−2

|z − w|p−2 −Rp−2

) 1
p

+ max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|
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4.6 p-Laplacian Approximation

Lemma 4.17. Let Q be a square grid lattice, and R be a square inside Q, of side-length r

geater than the mesh-size M . Fix 1 < p <∞. Then for any g ∈ C4(C) we have

∣∣∣∣∣∣
∑

w∈R∩V (Q)

[4p,Q(g|Q•)](w)−
∫
R

4pg dxdy

∣∣∣∣∣∣ ≤ Cp

[
(r2(p−1) max

z∈R
|D2g(z)|+ r2p−1(max

z∈R
|D3g(z)|)p−1

]

Proof. Take an arbitrary function g ∈ C4(C) and without loss of generality assume R is

centered at 0. Expand g as

g(z) = a0 + a1 Re z + a2 Im z + a3 Re z2 + a4 Im z2 + a5|z|2 + ḡ(z)

Where Dkḡ(0) = 0 for k = 0, 1, 2. We will prove Laplacian Approximation in several

particular cases and then combine them together.

• The cases g(z) = a0 follows immediately because it is both discrete and continuous

p-Laplacian are zero.

• In the case g(z) = Re z, we consider z a complex number such that z = x + iy. So,

g(z) = x, hence 4px = 0, and

∫
R

4p Re zdxdy = 0.

We wish to show that the sum over all the points v ∈ V (Q)∩R of discrete p-laplacian

is zero, that is, ∑
v∈V (Q)∩R

[4p,Q(Re z)](v) = 0

Note that for any verterx v in the graph, it has at most 4 neighbors namely v1, v2, v3, v4.
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Then,

[4p,Q(Re z)](v) =
∑
w∼v

(g(w)− g(v)) |g(w)− g(v)|p−2

=
∑
w∼v

(Rew − Re v)|Rew − Re v|p−2

=
∑
w∼v

Re(w − v)|Re(w − v)|p−2

Remark 4.18. Since we are working orthogonal diagonals, so for each face we can rotate

them so they are parallel to the x and y axis. As a result we will have that v1 and v2

has the same real parts and v3 and v4 has the same real parts, v2 and v3 has the same

imaginary parts and v1 and v4 has the same imaginary parts.

Thus, we will use the fact that x = x1+x3
2

and x = x2+x4
2

[4p,Q(Re z)](v) = Re(v1 − v)|Re(v1 − v)|p−2 + Re(v2 − v)|Re(v2 − v)|p−2

+ Re(v3 − v)|Re(v3 − v)|p−2 + Re(v4 − v)|Re(v4 − v)|p−2

=
1

2
Re(v2 − v4)|Re(v2 − v4)|p−2 +

1

2
Re(v4 − v2)|Re(v4 − v2)|p−2

+
1

2
Re(v1 − v3)|Re(v1 − v3)|p−2 +

1

2
Re(v3 − v1)|Re(v1 − v3)|p−2

=
1

2
Re(v1 − v3 + v3 − v1)|Re(v1 − v3)|p−2

+
1

2
Re(v2 − v4 + v4 − v2)|Re(v2 − v4)|p−2

= 0

Take the sum over all the vertex w such that w ∈ R ∩ V (Q) we have that

∑
w∈V (Q)∩R

4p,Q(Re z)(w) = 0
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• For g(z) = Im z. This is analogous to the previous case.

• For g(z) = Re z2.

The p- laplacian is defined by 4pg = 5 · (| 5 g|p−25 g) and we have

| 5 g|p−2 = (| 5 g|2)
p−2
2

Which implies that

| 5 g|p−2 = 2p−2(x2 + y2)
p−2
2

Thus, the p-Laplacian is approximated by the following:

| 4p g| =|2p−1(p− 2)(x2 + y2)
p−4
2 (x2 − y2)|

= |2p−1(p− 2)|z|p−4 Re z2|

≤ 2p−1(p− 2)

(
r√
2

)p−4
r√
2
· | cos 2θ|

≤ 2p−1(p− 2)

(
r√
2

)p−3

≤ Cpr
p−3

Next, we take the integral over R,

∫
R

| 4p g| ≤ Cpr
p−3 Area(R) ≤ Cpr

p−1 ≤ Cpr
2(p−1)

Now, we want to approximate the sum over all over the points w ∈ V (Q) ∩ R of the
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discrete p-Laplacian of Re z. So,

[4p,Q(Re z2)](v) =
∑
w∼v

(g(w)− g(v)) |g(w)− g(v)|p−2

=
∑
w∼v

(Rew2 − Re v2)|Rew2 − Re v2|p−2

=
∑
w∼v

Re(w2 − v2)|Re(w2 − v2)|p−2

≤
∑
w∼v

|w2 − v2||w2 − v2|p−2

≤
∑
w∼v

|w − v|p−1(|w|+ |v|)p−1

≤
∑
w∼v

(√
2

2
M

)p−1(
2
r√
2

)p−1

Thus,

[4p,Q(Re z2)](v) ≤ CpM
p−1rp−1

Now, take the sum over x ∈ R ∩ V (Q) and note that the number of vertices in R are

at most C ·
(
r
M

)2

∑
x∈R

[4p,Q(Re z2)](x) ≤ Cpr
p−1Mp−1

( r
M

)2

≤ Cpr
p

Hence, ∑
x∈R

[4p(Re z2)] ≤ Cpr
2(p−1)

• For g(z) = Im z2. This is analogous to the previous case.

• For g(z) = |z|2. The p- laplacian is defined by 4pg = 5 · (| 5 g|p−25 g) and we have

| 5 g|p−2 = (| 5 g|2)
p−2
2
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Which implies that

| 5 g|p−2 = 2p−2(x2 + y2)
p−2
2

Thus, for p ≥ 2 the p- laplacian is

| 4p g| =
∣∣∣2p−1

[
(x2 + y2)

p−2
2 + (p− 2)(x2 + y2)

p−2
2

]∣∣∣
=
∣∣∣2p−1(x2 + y2)

p−2
2 (p− 1)

∣∣∣
≤ 2p−1(p− 1)|z|p−2

≤ Cpr
p−2

Then, take the integral over R, we have that

∫
R

| 4p g| ≤ Cpr
p

[4p,Q(|z|2)](v) =
∑
w∼v

(g(w)− g(v)) |g(w)− g(v)|p−2

=
∑
w∼v

(|w|2 − |v|2)||w|2 − |v|2|p−2

=
∑
w∼v

(|w| − |v|)(|w|+ |v|) |(|w| − |v|)(|w|+ |v|)|p−2

=
∑
w∼v

(|w| − |v|)p−1(|w|+ |v|)p−1

≤
∑
w∼v

(√
2

2
M

)p−1(
2
r√
2

)p−1

≤ Cpr
(p−1)Mp−1

Take the sum over all v ∈ R ∩ V (Q), we have

∑
v∈R∩V (Q)

[4p,Q(|z|2)](v) ≤ Cpr
p−1Mp−1

( r
M

)2

≤ Cpr
2(p−1)
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• For the caseg̃(z) when Dkg̃(z) = 0 at the center of R for k = 0, 1, 2. by some simplifi-

cation we get

4pg = | 5 g|p−4

[
| 5 g|24 g + (p− 2)

∑
i,j=1,2

∂g

∂xi

∂g

∂xj

∂2g

∂xi∂xj

]

We will use the following estimates:

| 4 g(z)| ≤ Crmax
z∈R
|D3g(z)|

| 5 g(z)| ≤ Cr2 max
z∈R
|D3g(z)|

|D2g(z)| ≤ Crmax
z∈R
|D3g(z)|

Thus,

| 4p g| =| 5 g|p−4

∣∣∣∣∣| 5 g|24 g + (p− 2)
∑
i,j=1,2

∂g

∂xi

∂g

∂xj

∂2g

∂xi∂xj

∣∣∣∣∣
≤
(
Cr2 max

z∈R
|D3g(z)|

)p−2(
Crmax

z∈R
|D3g(z)|

)
+ (p− 2)rmax

z∈R
|D3g(z)|

(
r2 max

z∈R
|D3g(z)|

)p−4

≤ Cpr
2p−3

(
max
z∈R
|D3g(z)|

)p−1

+ Cpr
2p−7

(
max
z∈R
|D3g(z)|

)p−3

By integrate the last inequality over R, we get

∫
R

| 4p g| ≤ Cpr
2p−1

(
max
z∈R
|D3g(z)|

)p−1

+ Cpr
2p−5

(
max
z∈R
|D3g(z)|

)p−3

Now, by the estimate | 5 g(z)| ≤ Cr2 max
z∈R
|D3g(z)|, |D2g(z)| ≤ Crmaxz∈R |D3g(z)|,
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and the gradient approximation we get

∣∣∣∣∣∣
∑

x∈R∩V (Q)

[4Qg](x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈R∩V (Q)

∑
y∼x

(g(y)− g(x)) |g(y)− g(x)|p−2

∣∣∣∣∣∣
≤

∑
x∈R∩V (Q)

∑
y∼x

|g(y)− g(x)|p−1

=
∑

x∈R∩V (Q)

|Dg(x)|p−1

=
∑
f∈R

|Dg(f)|p−1 · |z3 − z1|

=
∑

x∈R∩V (Q)

(|Dg(x)−5g(y)|+ |5g(y)|)p−1 · |z3 − z1|

≤
∑

x∈R∩V (Q

(
CM max

x∈R
|D2g(x)|+ Cr2 max

x∈R
|D3g(z)|

)p−1

· |z3 − z1|

≤
∑

x∈R∩V (Q)

(
CMrmax

z∈R
|D3g(z)|+ Cr2 max

z∈R
|D3g(z)|

)p−1

· |z3 − z1|

≤ Cpr
2(p−1)

(
max
x∈R
|D3g(z)|

)p−1 ∑
x∈R∩V (Q)

|z3 − z1|

≤ Cr2p−1

(
max
z∈R
|D3g(z)|

)p−1

The last inequality follows by lemma (2.12)

• The general case when

g(z) = a0 + a1 Re z + a2 Im z + a3 Re z2 + a4 Im z2 + a5|z|2 + ḡ(z)

follows from the special cases.
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4.7 Gradient Approximation

Lemma 4.19. For any square face f = [z1z2z3z4] and a function g ∈ C2(Ω) we have

||Dg(f)|p − | 5 g|p| ≤ Cp(Diam(f))2p(max
z∈f
|D3g|)p

Proof. using Lemma 5.3? , we have

|Dg(f)| − | 5 g| ≤ |Dg(f)−5g| ≤ C Diam(f) max
z∈f
|D2g|

Using the estimate

| 5 g| ≤ C Diam2(f) max
z∈R
|D3g(z)|

and

|D2g(z)| ≤ C Diam(f) max
z∈R
|D3g(z)|

We have that

|Dg|p ≤
(
C Diam(f) max

z∈f
|D2g|+ | 5 g|

)p
=

(
C(Diam(f))2 max

z∈f
|D3g|

)p
= Cp(Diam(f))2p(max

z∈f
|D3g|)p

≤ Cp(Diam(f))2p(max
z∈f
|D3g|)p

Thus,

||Dg|p − | 5 g|p| ≤ Cp(Diam(f))2p(max
z∈f
|D3g|)p
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4.8 The uniform limit

We need to show that if we are given a collection of discrete p-harmonic functions defined

on grids whose meshe tends to zero and which do converge, then the limit must itself be

p-harmonic in the usual sense.

Proposition 4.20. Let Qn be a sequence of square grids approximating a domain Ω. Let

φn : Q•n → R be a sequence of discrete p-harmonic functions such that φn converges uniformly

to a continuous φ, φ : Ω→ R. Then the function φ is p-harmonic in Ω.

This proposition have not been proved yet in general case. Since the laplacian operator

when p = 2 is rely different from the p-laplacian operator when p > 2. So, if we assume that

the limit function is p-harmonic we will get the following convergence results.

We may now use these results to establish the final convergence theorem.

4.9 The convergence Results

Lemma 4.21. Let Ω be a bounded simply-connected domain with smooth boundary. Let

{Qn} be a sequence of square lattices approximating the domain. Then for any C2(C) smooth

function η : C→ R, Ep,Qn(η|Qn)→ Ep,Ω(η) as n→∞

Proof. Let Q̃n be the union of all the faces of Qn and all the interior edges. Since Qn

approximating the domain Ω, we have that ∂Qn is contained within εn neighborhood of ∂Ω

and ∂Ω is contained within εn neighborhood of ∂Qn for some εn → 0 as n → 0. Thus, as

n→∞,

Area(Ω \ Q̃n)→ 0,

and

Area(Q̃n \ Ω)→ 0,

Moreover, there is a compact neighborhood Ω′ of Ω which contains all Q̃n. Thus,

EΩ(η)− EQ̃n(η) = EΩ\Q̃n(η)− EQ̃n\Ω(η)→ 0
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By Gradient Approximation Lemma 4.19, we get EQ̃n(η)− EQn(η)→ 0 as n→∞ and thus

the lemma follows.

Theorem 4.22. Let Ω be a simply connected “square grid” domain, meaning that Ω is

initially tiled by a square grid Q0. Let Qn be the n-th refinements of Q0 as we describe it in

section 2.2 and g : C → R be a given smooth function that will be used as boundary data.

Then, the sequence of solutions discrete p-harmonic functions φn on Qn with boundary values

g∣∣∂Qn converge uniformly to the unique p- harmonic function φ with boundary values g∣∣∂Ω
.

Moreover,

Ep,Qn(φn)→ Ep,Ω(φ)

Proof.

Note that since the domain Ω is bounded, the grids Qn are contained in some large ball B.

By the Maximum principle, we know that |φn| are uniformly bounded by maxz∈B |g(z)| <∞.

We now show that the family of functions {φn}n∈N are equicontinuous, which is to say

that there exists some positive function δ(ε) such that for every n we have that for every

z, w ∈ Q•n we have that |z − w| < δ(ε) implies that |φ(z)− φ(w)| < ε.

Suppose we are in the case Mn < |z − w|, let R = 3 Diam(B)|z − w| Then we have

|φ(z)− φ(w)| ≤ CpE
1
p

p,QR
(φ)

(
Rp−2|z − w|p−2

|z − w|p−2 −Rp−2

) 1
p

+ max
z′,w′∈∂Q∩BR

|φ(z′)− φ(w′)|

≤ CpE
1
p

p,B(φn)

(
Diam(B)p−2|z − w|p−2

1− 3 Diam(B)p−2

) 1
p

+ 3 Diam(B)|z − w|max
z′∈B
|D1g(z′)|

By using equation (4.7), we know that the energy is decreasing and there is a uniform bound.

So, we get a uniform bound for the energy and |φn(z)− φn(w)| → 0 as |z − w| → 0.
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If we consider the case when |z − w| < Mn, then set R = 3(Mn|z − w|). We have that

|φ(z)− φ(w)| ≤ CpE
1
p

p,B(φn)

(
M

2(p−2)
n

1− 3Mp−2
n

) 1
p

+ 3Mn|z − w|max
z′∈B
|D1g(z′)|

We can choose Mn small enough. This proves the eqcontinuty. Now, by Arzela-Ascoli, we

know that there exists a subsequence of the φn converges uniformly to a φ continuous on

the closure of Ω. By the assumption, the limit function is p-harmonic in Ω. Also, for any

z ∈ ∂Ω, there exists a sequence of points zn ∈ ∂Qn ∩ Q•n such that zn → z as n → ∞, and

thus φ = g on ∂Ω. Since this limit is unique , the entire sequence φn converges uniformly to

φ as desired. Moreover, there is a subsequence φ′n that is 0 on E and 1 on F such that as

Ep,Qn(φn) ≤ Ep,Qn(φ′n)→ Ep,Ω(φ)

Which implies that

lim sup Ep,Qn(φn) ≤ Ep,Ω(φ)

Applying the theorem to the family of cuts and replace each cut with a walk from E ′ to F ′

implies that

lim sup Ep,Qn(vn) ≤ Ep,Ω(v)

Thus,

lim inf Ep,Qn(φn) ≥ Ep,Ω(φ)

Thus, the final result follows.
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