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Abstract

A nonparametric lack-of-fit test is proposed to check the adequacy of the presumed

parametric form for the regression function in Tobit regression models by applying Zheng’s

device with weighted residuals. It is shown that testing the null hypothesis for the standard

Tobit regression models is equivalent to test a new null hypothesis of the classic regression

models. An optimal weight function is identified to maximize the local power of the test.

The test statistic proposed is shown to be asymptotically normal under null hypothesis,

consistent against some fixed alternatives, and has nontrivial power for some local nonpara-

metric power for some local nonparametric alternatives. The finite sample performance of

the proposed test is assessed by Monte-Carlo simulations. An empirical study is conducted

based on the data of University of Michigan Panel Study of Income Dynamics for the year

1975.
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Chapter 1

Introduction

1.1 The Tobit Regression Model

Household expenditures on various categories of goods vary with household income. The

expenditures for many categories are zero when the income levels are low. Most households

would report no expenditures on automobiles or major household durable goods during any

given year. Among those households who made any such expenditure, there would be wide

variability in amount. The behavior of consumption is reflected in the Engel curve, where

a straight line can’t represent the expenditure on durable goods for both low and high

incomes. In an effort to quantify the behavior of consumption as described before, while get

around the inefficiency of Probit analysis caused by throwing away available information on

the value of the dependent variable, Professor James Tobin in 1958 proposed the model of

limited dependent variables, the name of which was later known as Tobit model, coined by

Goldberger in 1964 inspired by the difference with and similarity to Probit model.

Amemiya wrote a survey in 1984 about the Tobit regression model, in which an elemen-

tary utility maximization model was developed to illuminate the phenomenon in question.
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To be specific, let

Y = a household’s expenditure on a durable good,

y0 = the price of the cheapest available durable good,

Z = all the other expenditure,

X = income.

A household was assumed to maximize its utility U(Y, Z) under the constraint of the

budget Y + Z ≤ X and the boundary constraint y0 ≤ Y . Suppose Y ∗ is the solution of the

maximization of U subject to Y + Z ≤ X, but ignoring the other constraint, and assume

Y ∗ = m(x)+ε, where ε may be interpreted as the collection of all the unobservable variables

which affect the utility function. Then the solution Y to the original problem was depicted

as following,

Y =

{
Y ∗ if Y ∗ > y0,
y0 if Y ∗ ≤ y0.

That is, one can actually observe Y = Y ∗ · I(Y ∗ > y0) + y0I(Y ∗ ≤ y0).

We choose y0 = 0 for this report without loss of generality. Then Toibt regression model

takes the look of the following,

Y ∗ = m(X) + ε,

Y =

{
Y ∗ if Y ∗ > 0,

0 otherwise

Note that {(X, Y )} are observable, while Y ∗’s are not if Y ∗ < 0. In the following, we denote

{(xi, yi)}ni=1 as the sample from the Tobit regression model, εi’s are assumed to be i.i.d with

mean 0 and finite variance σ2.

By assuming that the regression function m(X) is linear, with the form m(X) = α+β′X

the existing work on the standard Tobit regression model mainly focuses on the estimation

of the unknown regression parameters (α, β′)′ and the error variance σ2. Under the normal-

ity assumption of the error term ε, Amemiya (1973) and Heckman (1976,1979) proposed

consistent estimators for θ = (α, β′, σ2)′, but these estimators are not consistent if the
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normality assumption is violated. Powell (1984) extended least absolute deviations (LAD)

estimation to the Tobit regression model with non-negativity dependent variable and gave

conditions under which this estimator is consistent and asymptotically normal. The consis-

tent estimator does not depend upon the functional form of the distribution of the residuals.

Nonparametric estimation were tried for this important regression model by Lewbel and Lin-

ton (2002), and Zhou (2007), but the hard-to-interpret nature of nonparametric procedure

makes the parametric modeling the first choice for practitioners.

Originally designed for the investigating of the relationship between the household ex-

penditures on durable goods and the income, Tobit regression model is now a frequently used

tool for modeling censored and truncated variables in a wide range of fields such as econo-

metrics, biometrics, agricultural and engineering. Many empirical examples can be found

in Amemiya (1984), Blaylock and Blisard (1993), McConnel and Zetzman (1993), Licht-

enberg and Shapiro (1997), Adesina and Zinnah (1993), Ekstrand and Carpenter (1998),

Anastasopoulos, Tarko and Mannering (2007) and the references therein. One of the merits

of McConnel and Zetzman (1997)’s study of the differences between urban and rural elderly

person in the use of hospital, nursing home, and physician services, was the application of

Tobit regression model to address the fact that a substantial proportion of individuals were

not likely to use the service in question over the designated study period. Nursing home

admission in the data set are truncated at six admissions and use of physician services at

25 visits. The analysis revealed that the utilization pattern of hospital, nursing home, and

physician services was unrelated to either rural or urban residential location or the avail-

ability of health resources in those areas. With the domain knowledge in Chemistry that

NO3N ’s detectable concentration is 0.1 mg/L and above, echoed by the fact that 57% of

community water system (CWS) test showed no detectable NO3N , Lichtenberg and Shapiro

(1997) used Tobit regression model in their study of the relationship between land use and

NO3N concentrations in drinking water wells. Although it is the 90’s that witnessed the

wide application of Tobit regression model, its appeal doesn’t fade with the elapse of time.
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Tobit regression model has its unique advantage in dealing with inconsistent parameter es-

timates caused by the inappropriate use of standard ordinary least squares, and is being

paid with more and more attention. Tarko and Mannering (2007) introduced Tobit regres-

sion model to the transportation arena to understand the determinant factors about the

frequency of accidents on roadway segments over some period of time. Since it is likely that

many highway segments will have no accidents reported during the analysis period, modeling

accident rates with standard ordinary least squares would result in inconsistent parameter

estimates. The left-censored accidents rate data on Indiana interstates with a clustering

at zero (zero accidents per 100 million vehicle miles traveled) led Tarko and Mannering to

the conclusion that many factors relating to pavement condition, roadway geometrics and

traffic characteristics have an influence on vehicle accident rate.

For all the literatures I cited above, the regression function m(x) is assumed to be linear.

1.2 The Research Objective

The prerequisite of an insightful application of Tobit regression model is the chosen of a

suitable parametric form of m(X), the importance of which can never be overemphasized.

The outcome of a misidentified regression function is often, if not every time, a mislead-

ing conclusion. For instance, Horowitz and Neumann (1989) showed that violation of the

linearity assumption can produce inconsistent estimators of the parameters and biased pre-

diction of the survival time in censored regression models. However, so far, the selection

of the parametric form of m(X) is still quite judgmental, as some models are chosen for

the sake of mathematical convenience, and experience-oriented, as some are chosen based

on empirical evidence. Hence, both theoretically and practically, it is necessary to develop

formal tests to check the adequacy of the selected regression function.

The tests in Tobit regression model can be roughly divided into two categories. The first

one is goodness-of-fit test, focusing on the verifying of the distribution of the error terms,

considering the fact that violation of the normality assumption can cause serious estimation
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problems. Examples in this category include Nelson (1981), Olsen (1980), Lee (1981), and

Lin and Schmidt (1984), among others.

The second category is the lack-of-fit test, focusing on checking the adequacy of the

pre-specified parametric form for the regression fucntion. Surprisingly, researches in this

category are not as thriving as the previous one. What’s more, a common property shared

by the tests in this category is that all the tests proposed have both their merits and

limitations. In order to provide the reader with a full appreciation of the lack-of-fit test

available now, I give a brief introduction of every test, along with an elaboration of each

test’s advantages and disadvantages. Wang (2007) proposed a simple nonparametric test

for checking the nonlinearity in Tobit median regression model in which the median of the

random error is assumed to be 0. By considering each distinct covariate as a category

and constructing a local window Wi, encompassing the kn nearest covariate values, around

each xi, Wang created an artificial balanced one-way table with n categories, where the

responses in the ith category are the ε̂j’s associated with the covariate values belonging to

Wi, which can be expressed as ε̂i = I(Yi ≤ max(0, β̂0 + β̂1Xi)) − 1/2. The test statistic

can be viewed as a generalization of the classical F-test statistic in the context of analysis

of variance. Wang (2007)’s test has the advantage of allowing the alternative to be any

smooth function and no knowledge about the parametric distribution of the random error is

required. However, our simulation study indicates that Wang (2007)’s test is sensitive to the

choices of the smoothing parameters. Song (2011) developed a lack-of-fit test procedure for

a more general null hypothesis based on the Khamaladze type transformation of a certain

marked residual process, assuming that the mean of ε is 0. Song (2011)’s test circumvents

the problem of window width selection or the selection of any other smoothing parameter.

Song (2011)’s test is applicable not only to linear regression functions, like Wang (2007)’s,

but any parametric regression functions. However, a major limitation pertains to Song

(2011)’s test is that the predictor variable X must be one-dimensional. Following a few

of the significant works such as Härdle and Mammen (1993), Koul and Ni (2004) in the
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classic regression models, Song and Zhang (2011) developed a lack-of-fit test based on an

empirical L2-distance between a nonparametric estimator and a parametric estimator of

the regression function being fitted under the null hypothesis. Although Song and Zhang

(2011)’s test units the beauty of not being limited to linear regression function and being

applicable to multidimensional predictors, the computation of this test is relatively tedious.

It is quite obvious that a test procedure with both the computational convenience and

the flexibility of not being limited to linear regression function is in need. In an attempt

to develop such a test, we seek inspiration from Zheng (1996)’s consistent test of functional

form of nonlinear regression models via nonparametric estimation.

As early as 1996, Zheng realized the importance of lack-of-fit test of function form in

econometrics and proposed such a test facilitated by nonparametric estimation techniques.

For the sake of completeness, the essence of Zheng (1996)’s consistent test is presented here.

It is held that for observations {(X, Y )}, where X is a m × 1 vector and Y is a scalar,

if E[|Y |] < ∞, there exists a Borel measurable function g such that E(Y |X = x) = g(x)

where x ∈ Rm. When it comes to a parametric regression model, g(x) is assumed to belong

to a parametric family of known real functions f(x, θ) on Rm×Θ where Θ ⊂ Rl. To justify

the use of a parametric model, a lack-of-fit test is needed. The null hypothesis to be tested

is that the parametric model is correct:

H0 : Pr[E(Y |X) = f(X, θ0)] = 1 for some θ0 ∈ Θ, (1.1)

while, without a specific form, the alternative hypothesis, encompassing all possible depar-

tures from the null model, is that the null hypothesis is false:

Ha : Pr[E(Y |X) = f(X, θ)] < 1 for all θ ∈ Θ,

where θ0 is defined as θ0 = arg minθ∈ΘE[Y − f(X, θ)]2.

Denote εi ≡ Y − f(X, θ0) and let p(·) be the density function of X. Under the null

hypothesis, since E(εi|X) = 0, we have E[εiE(εi|X)p(X)] = 0.
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Rewrite E[εiE(εi|X)p(X)] as E[E(εi|X)2p(X)]. Under the alternative hypothesis, since

E(εi|X) = g(X) − f(X, θ0), we have E[εiE(εi|X)p(X)] = E[E(εi|X)2p(X)] = E{[g(X) −

f(X, θ0)]2p(X)} > 0.

The unknown functions g and p can be estimated by various nonparametric methods.

Here Zheng (1996) used analytically simpler kernel regression and density methods to esti-

mate g and p. A kernel estimator of the regression function E(εi|X) can be written in the

form

Ê(εi|X) =
1

(n− 1)p̂(X)

n∑
j=1,j 6=i

1

hm
K

(
Xi −Xj

h

)
εj,

where p̂ is a kernel estimator of the density function of p, with

p̂(xi) =
1

n− 1

n∑
j=1,j 6=i

1

hm
K

(
Xi −Xj

h

)
,

where K is a kernel function, h, depending on sample size n, is a bandwidth parameter.

Let ei = Yi − f(Xi, θ̂), where θ̂ is any
√
n-consistent estimator of θ0. Zheng (1996) used

the the sample analogues of E[εiE(εi|Xi)p(Xi)] to form a test statistics:

Vn =
1

n

n∑
i=1

[eiÊ(εi|Xi)p̂(Xi)]

=
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1

hm
K

(
Xi −Xj

h

)
eiej.

Under the null hypothesis (1.1), Zheng proved that nhm/2Vn
d→ N(0,Σ), where Σ is the

asymptotic variance of nhm/2Vn, which can be consistently estimated by Σ̂ as

Σ̂ =
2

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1

hm
K2

(
Xi −Xj

h

)
e2
i e

2
j .

Finally, Zheng (1996) defined the standardized version of the test statistic Tn as

Tn =

√
n− 1

n
· nh

m/2Vn√
Σ̂

=

∑n
i=1

∑n
j=1,j 6=iK(

Xi−Xj

h
)eiej

[2
∑n

i=1

∑n
j=1,j 6=iK

2(
Xi−Xj

h
)e2
i e

2
j ]

1/2

The asymptotic null distribution of Vn, along with its power against fixed alternatives

and local alternatives, can be derived based on the central limit theorem for degenerated

U-statistics developed by Hall (1984).
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So far, two fundamental components of this report, Tobit regression model and Zheng

(1996)’s consistent test of function form, are presented. With the inspiration of Zheng

(1996)’s test, we propose a new lack-of-fit test for Tobit regression model, with a simpler

form of test statistic centered asymptotically at 0.

Throughout this paper, we will use fv, Fv to denote the density and the cumulative

distribution function (CDF) of a random variable v, use ⇒ to denote the convergence in

distribution.
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Chapter 2

Model Checking in Tobit Regression
Model via Nonparametric Smoothing

In the previous chapter, we elaborate the main idea of the two fundamental components

of this report, Tobit regression model and Zheng (1996)’s consistent test of function form.

However, under Tobit regression model, Y ∗’s are not always observable. Certain adjustments

are needed to accommodate Tobit regression model to the setup of Zheng (1996)’s consistent

test. An optimal weight function is defined to maximize the local power of the test.

Test statistics, assumptions and main results are presented in this chapter. The later

part of this chapter is devoted to the proofs of the main results.

2.1 Test Statistics and Assumptions

With a brief review of Tobit regression model,

Y ∗ = m(X) + ε,

Y =

{
Y ∗ if Y ∗ > 0,

0 otherwise,

we realize that as the solution Y ∗’s for the utility function can only be observed when

Y ∗ > 0, it is not feasible to apply Zheng (1996)’s method directly to test if m(X) =

m(X, θ) holds in the Tobit regression model. Therefore, we have to build a new regression

model which certain dependence between the observable quantity and the fitted regression

9



function m(X) is reflected. A natural way of finding such a dependence is to consider the

conditional expectation E(Y |X = x). Bear in mind that E(Y |X = x) = E[(m(X) + ε) ·

I(Y ∗ > 0)|X = x] =
∫∞
−m(x)

(m(x) + u)fε(u)du =
∫∞
−m(x)

m(x)fε(u)du +
∫∞
−m(x)

ufε(u)du =

m(x)
∫∞
−m(x)

fε(u)du+
∫∞
−m(x)

ufε(u)du. Let Qj(x) =
∫∞
x
ujfε(u)du, j = 0, 1, then E(Y |X =

x) = m(x)Q0(−m(x)) +Q1(−m(x)).

Considering the following regression model

Y = m(X)Q0(−m(X)) +Q1(−m(X)) + ξ = g(X) + ξ, (2.1)

It is easily seen that ξ and g(X) are uncorrelated.

Throughout this paper, we shall assume that the density function fε is known for the

sake of simplicity, readability and model identifiability, but fε doesn’t have to be normally

distributed. A more realistic assumption should be that fε has a known form with mean

0 and unknown variance σ2
ε . In this case, Q0 and Q1 are also functions of σ2

ε . It can be

shown that even if more regularity conditions are imposed to the model, the test procedures

proposed in this report are still applicable. An attractive feature of (2.1) is that, as a function

of m(x), g is strictly monotone provided that Fε is strictly increasing, the prove of which

will be shown in the third section of this chapter. Therefore, to test H0 : m(x) = m(x, θ),

it is equivalent to test

H0 : g(x) = g(x, θ) for some θ ∈ Θ, versus H1 : H0 is not true (2.2)

for (2.1), where g(x, θ) is the same as g(x) with m(x) replaced by m(x, θ).

Note that E(I(Y = 0)|X = x) = Pr(ε < −m(x)) =
∫ −m(x)

−∞ fε(u)du = 1−
∫∞
−m(x)

fε(u)du =

1 − Q0(−m(x)). As a function of m(x), I(Y = 0) = 1 − Q0(−m(X)) + η is also strictly

monotone provided that Fε is strictly increasing. One might consider the use of the regres-

sion model I(Y = 0) = 1 − Q0(−m(X)) + η. Since only the truncated information of Y ∗,

instead of the values for the whole dataset, are used to form the test, the corresponding test

procedure may not be as powerful as the one based on (2.1), an inspect confirmed by the

simulation studies.
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Throughout this paper, we will only focus on the model (2.1), but a brief discussion about

the performance of the test based on the model E(I(Y = 0)|X = x) = 1−Q0(−m(x)) will

be mentioned in Chapter 3.

Let θ̂ be any
√
n-consistent estimate of θ0, the true value of θ under the null hypothesis,

K be a symmetric density function and h be a sequence of positive numbers depending

on the sample size n, d be the dimension of the predictor variable, w(x) be an positive

measurable function and ξ̂i = Yi − g(Xi, θ̂). Instead of only using the residual ξ̂i as Zheng

did in his paper in 1996, we use a weighted residual ξ̂iw(Xi) to construct the test statistic,

hoping to increase the power of the test by choosing an optimal weight function. Applying

Zheng (1996)’s idea, we can use the following statistic to construct a test for the hypotheses

in (2.2), hence the hypotheses H0 : m(x) = m(x, θ) versus Ha : H0 is not true:

Vn =
1

n(n− 1)hd

∑
i 6=j

K

(
Xi −Xj

h

)
ξ̂iξ̂jw(Xi)w(Xj). (2.3)

We shall show that nhd/2Vn is asymptotically normal with mean 0 and variance

σ2 = 2

∫
K2(u)du

∫
(τ 2(x))2f 2

X(x)w4(x)dx, (2.4)

where τ 2(x) = E[(Y − g(X, θ))2|X = x]. A consistent estimator of σ2 is given by

σ̂2 =
2

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξ̂2
i ξ̂

2
jw

2(Xi)w
2(Xj). (2.5)

Hence, the test statistic for testing the hypotheses (2.2) is Tn = nhd/2Vn/σ̂.

The following is a list of assumptions needed to derive the asymptotic results of the test

statistics.

(C1). The random error ε has a bounded density function, E(ε) = 0, and E(ε4) <∞; ε

and X are independent.

(C2). τ 2(x) = E[(Y − g(X))2|X = x], ν4(x) = E[(Y − g(X))4|X = x] are continuously

differentiable with respect to x, and the derivatives are bounded by a measurable function

b(x) such that Eb2(X) <∞.
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(C3). The density function fX(x) of X and its first-order derivatives are uniformly

bounded.

(C4). m(x, θ) is continuously differentiable with respect to θ, and the derivative ṁ(x, θ)

satisfies E ‖ ṁ(X; θ) ‖4< ∞; for any
√
n-consistent estimator θ̂n of θ0, the true value of θ

under the null hypotheses,

sup
1≤i≤n

|m(Xi, θ̂n)−m(Xi, θ0)− (θ̂n − θ0)′ṁ(Xi, θ0)| = Op(1/n).

(C5). The kernel density function K(x) is continuous, bounded and symmetric around

0,
∫
x2K(x)dx <∞.

(C6). The bandwidth h→ 0, nhd →∞ as n→∞.

(C7). w(x) is continuous and E[(τ 2(X))4+ ‖ ṁ(X, θ0) ‖4]w8(x) <∞.

Conditions (C2) and (C3) are the same as the Assumption 1 in Zheng (1996), and are

very typical in nonparametric smoothing literature. Condition (C4) plays a similar role as

the Assumption 2 in Zheng (1996) to guarantee the negligibility of the higher order term in

some Taylor expansions used when showing the asymptotics of test statistics. The kernel

function in Condition (C5) and the bandwidth h in Condition (C6) are the most commonly

used ones in nonparametric literature.

2.2 Main Results

We shall assume that there always exists such a
√
n-consistent estimator for the parame-

ter θ in the regression function under the null hypothesis. The theorem below states the

asymptotic null distribution of the test statistics Tn.

Theorem 1. Suppose (C1)-(C7) hold. Then under the null hypotheses H0 in (2.2), Tn =

nhd/2Vn/σ̂ ⇒ N(0, 1), where Vn is defined in (2.3) and σ̂ in (2.5).

Hence the test of rejection H0 whenever |Tn| > z1−α/2 is of asymptotically size α, where

z1−α/2 is the (1− α/2)100% percentile of the standard normal distribution.
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For fixed alternatives, a reasonable test should have power approaching to 1 as the sample

size goes to ∞. That is, a desirable test should be consistent. For this purpose, consider a

class of fixed alternative hypotheses:

Ha : E(Y ∗|X = x) = m(x), m(x) 6= m(x, θ) for any θ, (2.6)

such that Em2(X) <∞.

To show the consistency of the proposed procedure, we have to consider the asymptotic

behavior of θ̂n under the alternative hypothesis. In the classic regression setup, Jennrich

(1969) and White (1981, 1982) showed that, under some mild regularity conditions, the

nonlinear least squares estimator converges in probability and is asymptotically normal

even in the presence of model misspecification. Similarly, for the regression model (2.1), if

we define θa = argminθE[Y −g(X, θ)]2, under the alternative hypothesis and some regularity

conditions on regression functions, one can show that
√
n(θ̂n − θa) = Op(1). We will not

pursue a rigorous verification of this claim here. The relevant discussion can be found in

Zheng (1996).

Theorem 2. Suppose all the conditions in Theorem 1 hold with θ0 replaced by θa, E[g(X)−

g(X, θa)]
2fX(X) > 0. Then for any 0 < α < 1, the test that rejects H0 in (2.2) whenever

|Tn| > z1−α/2 is consistent against the alternatives Ha in (2.6).

Sometimes it is desirable to investigate the performance of a test statistic at local alterna-

tives, in particular, when we have to determine the sample sizes needed to achieve a desired

power. For this purpose, let δ(x) be a continuous function such that Eδ2(X)w2(X) < ∞,

and consider the following sequence of local alternatives

HLOC : m(x) = m(x, θ0) + δ(x)/
√
nhd/2. (2.7)

We keep on assuming that the estimators θ̂n used in the test statistic satisfies
√
n(θ̂n−θ0) =

Op(1) without a rigorous justification. We have
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Theorem 3. Suppose all the conditions in Theorem 1 hold, then under HLOC in (2.7),

Tn ⇒ N(µ, 1), where µ = EQ2
0(−m(X, θ0))δ2(X)w2(X)fX(X)/σ and σ is defined as in

(2.4).

From Theorem 3, we conclude that the asymptotic power of the test proposed is 1 −

Φ(zα/2−µ) + Φ(−zα/2−µ), which is an increasing function of µ. Thus, the weight function

w that maximizes the power is the one that maximizes µ. But

µ =

∫
Q2

0(−m(x, θ0))δ2(x)w2(x)f 2
X(x)dx√

2
∫
K2(u)du

∫
(τ 2(x))2f 2

X(x)w4(x)dx

≤

√∫
Q4

0(−m(x, θ0))δ4(x)f 2
X(x)/(τ 2(x))2dx

2
∫
K2(u)du

with equality holding if and only if w(x) ∝ Q0(−m(x, θ0))δ(x)/τ 2(x) for all x. Note that µ

is unique for all w’s which are different up to a multiple, we may take the optimal w to be

w(x) = Q0(−m(x, θ0))δ(x)/τ 2(x). Although this weight function w is unknown because of

θ0, one can estimate it by replacing θ0 with any consistent estimate.

If the regression model I(Y = 0) = 1 − Q0(−m(X)) + η is used for model check-

ing, and the first order derivative of the density function fε of ε is bounded, then un-

der the local alternative hypothesis (2.7), one can show that Tn ⇒ N(µ, 1) with µ =

Ef 2
ε (−m(X, θ0))δ2(X)w2(X)fX(X)/σ and σ is defined in (2.4). It is easily seen that the

optimal weight function is w(x) = fε(−m(x, θ0))δ(x)/τ 2(x).

2.3 Proofs of the Main Results

Lemma 1. As a function of m(x), g(x) is strictly monotone provided that Fε is strictly

increasing.

Proof of the Lemma 1. Let h(x) = xQ0(−x) +Q1(−x), take the derivative of h(x):

h′(x) = Q0(x) + xQ′0(x)−Q′1(x)

=

∫ ∞
x

f(u)du+ xf(x)− xf(x)

= 1− F (x) > 0

14



So h(x) is strictly monotone provided that Fε is strictly increasing. In our case, let m(X) =

x, g(X), as a function of m(x) is strictly monotone provided that Fε is strictly increasing.

This property is essential to the construction of our test statistics.

The proof of Theorem 1 is facilitated by the lemmas stated below.

Lemma 2. Under condition (C1), g(x) = xQ0(−x) +Q1(−x) =
∫∞
−x[1− Fε(u)]du.

Proof of the Lemma 2. (C1) implies the existence of E|ε|, hence limx→∞x[1 − Fε(x)] = 0.

Note that

g(x) = xQ0(−x) +Q1(−x)

= x[1− Fε(−x)] +

∫ ∞
−x

ufε(u)du

= x[1− Fε(−x)]−
∫ ∞
−x

ud[1− Fε(u)]

= x[1− Fε(−x)]− u[1− Fε(u)] |∞−x +

∫ ∞
−x

[1− Fε(u)]du

=

∫ ∞
−x

[1− Fε(u)]du

Hence the lemma.

Lemma 3. From condition (C1), for each x,

|g(−m(x, θ1))−g(−m(x, θ2))−[m(x, θ1)−m(x, θ2)]Q0(−m(x, θ2))| ≤ B[m(x, θ1)−m(x, θ2)]2

for some constant B.

Proof of the Lemma 3. A Taylor expansion of g function and an application of Lemma 2,

together with the boundedness of fε, imply the result.

To find out the asymptotic distribution of the test statistic, we also need Theorem 1 of

Hall (1984) which is reproduced here for the sake of completeness.
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Lemma 4. Let Zi, i = 1, 2, ..., n be i.i.d. random vectors, and let Un =
∑

1≤i<j≤nHn(Zi, Zj),

Mn(x, y) = EHn(Z1, x)Hn(Z1, y), where Hn is a sequence of measurable functions symmetric

under permutation, with

E[Hn(Z1, Z2)|Z1] = 0, a.s. and EH2
n(Z1, Z2) <∞ for each n ≥ 1.

If [EM2
n(Z1, Z2) + n−1H4

n(Z1, Z2)]/[EH2
n(Z1, Z2)]2 → 0, then Un is asymptotically normally

distributed with mean zero and variance n2EH2
n(Z1, Z2)/2.

Proof of Theorem 1. Let ξi = Yi − g(Xi, θ0). Then ξ̂i = Yi − g(Xi, θ̂n) = ξi − [g(Xi, θ̂n) −
g(Xi, θ0)]. Hence Vn (2.3) can be written as the sum of the following three terms

V1n =
1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξiξjw(Xi)w(Xj),

V2n = − 2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξi[g(Xj , θ̂n)− g(Xj , θ0)]w(Xi)w(Xj),

V3n =
2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
[g(Xi, θ̂n)− g(Xi, θ0)][g(Xj , θ̂n)− g(Xj , θ0)]w(Xi)w(Xj).

Denote Zi = (Xi, ξi), V1n can be written in a U-statistic form with

Hn(Zi, Zj) =
1

hd
K

(
Xi −Xj

h

)
ξiξjw(Xi)w(Xj).

Under the null hypothesis, we have E[Hn(Z1, Z2)|Z1] = 0, so V1n is a degenerate U-statistic.

To apply Lemma 4 to show the asymptotic normality of V1n, a series of conditions needs to be

verified. For this purpose, we have to investigate the asymptotic behaviors of EM2
n(Z1, Z2),

EH4
n(Z1, Z2), and EH2

n(Z1, Z2), where Mn(x, y) = EHn(Z1, x)Hn(Z1, y) is defined as in

16



Lemma 4. For EM2
n(Z1, Z2), we have

EM2
n(Z1, Z2)

= E(E[Hn(Z3, Z1)Hn(Z3, Z2)|Z1, Z2])2

= E(E

[
1

h2d
K

(
X3 −X1

h

)
K

(
X3 −X2

h

)
w(X1)w(X2)w2(X3)ξ1ξ2ξ

2
3 |Z1, Z2

]
)2

=
1

h4d
E(ξ1ξ2w(X1)w(X2)

∫
K(

x3 −X1

h
)K

(
x3 −X2

h

)
w2(x3)τ 2(x3)fX(x3)dx3)2

=
1

h2d
E(ξ1ξ2w(X1)w(X2)

∫
K(u)K

(
u+

X1 −X2

h

)
w2(X1 + hu)τ 2(X1 + hu)fX(X1 + hu)du)2

=
1

h2d

∫∫
τ 2(x1)τ 2(x2)w2(x1)w2(x2)[

∫
K(u)K

(
u+

x1 − x2

h

)
w2(x1 + hu) ·

τ 2(x1 + hu)fX(x1 + hu)du]2fX(x1)fX(x2)dx1dx2

=
1

hd

∫∫
τ 2(x1)τ 2(x1 − hv)w2(x1)w2(x1 − hv)[

∫
K(u)K(u+ v)w2(x1 + hu) ·

τ 2(x1 + hu)fX(x1 + hu)du]2fX(x1)fX(x1 − hv)dvdx1dx2

=
1

hd

∫
[

∫
K(u)K(u+ v)du]2dv

∫
[τ 2(x)]4w8(x)f 4

X(x)dx+ o(1/hd.)

For EH2
n(Z1, Z2), we have

EH2
n(Z1, Z2) = E(E[H2

n(Z1, Z2)|X1, X2])

=
1

h2d

∫
K2

(
x1 − x2

h

)
τ 2(x1)τ 2(x2)w2(x1)w2(x2)fX(x1)fX(x2)dx1dx2

=
1

hd

∫
K2(u)τ 2(x+ hu)τ 2(x)w2(x+ hu)w2(x)fX(x+ hu)fX(x)dxdu

=
1

hd

∫
K2(u)du

∫
(τ 2(x))2w4(x)f 2

X(x)dx+ o(1/hm).

Similarly, for EH4
n(Z1, Z2), we have

EH4
n(Z1, Z2) =

1

h3d

∫
K4(u)du

∫
(τ 2(x))4w8(x)f 2

X(x)dx+ o(1/h3d).

Therefore, from (C6), we obtain

EM2
n(Z1, Z2) + n−1EH4

n(Z1, Z2)

[EH2
n(Z1, Z2)]2

=
O(1/hd) +O(1/(nh3d))

O(1/h2d)
= O(hd) +O(1/(nhd)) −→ 0.

By Lemma 4, we show that

nhd/2V1n ⇒ N(0, σ2), (2.8)
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where σ2 is defined in (2.4).

Now let’s consider V2n. By adding and subtracting [m(Xi, θ̂n)−m(Xi, θ0)]Q0(−m(Xi, θ0))

from g(−m(Xi, θ̂n))− g(−m(Xi, θ0)), and denoting

dni = g(Xj, θ̂n)− g(Xj, θ0)− [m(Xi, θ̂n)−m(Xi, θ0)]Q0(−m(Xi, θ0)), (2.9)

δni = m(Xi, θ̂n)−m(Xi, θ0)− (θ̂n − θ0)′ṁ(Xi, θ0), (2.10)

V2n can be written as the sum of the following two terms

V2n1 = − 2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξidnjw(Xi)w(Xj),

V2n2 = − 2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξi[m(Xj, θ̂n)−m(Xj, θ0)]Q0(−m(Xj, θ0))w(Xi)w(Xj).

Applying Lemma 3 for θ1 = θ̂n, θ2 = θ0, and x = Xi, i = 1, 2, ..., n, we have

|V2n1| ≤
2B

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|[m(Xj , θ̂n)−m(Xj , θ0)]

2w(Xi)w(Xj)

≤ 4B

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|δ2

njw(Xi)w(Xj)

+
4B

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|[(θ̂n − θ0)

′ṁ(Xj , θ0)]
2w(Xi)w(Xj)

= An1 +An2.

According to Condition (C4), An1 is bounded above by

Op(
1

n2
) · 1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|w(Xi)w(Xj).

Note that
1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|w(Xi)w(Xj) = Op(1).

Therefore, nhd/2An1 = op(1) from Condition (C6).

For An2, we have

nhd/2An2 ≤ nhd/2 ‖ θ̂n−θ0 ‖2 · 4B

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi| ‖ ṁ(Xj, θ0) ‖2 w(Xi)w(Xj) = op(1)
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by the
√
n-consistency of θ̂n, and

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi| ‖ ṁ(Xj, θ0) ‖2 w(Xi)w(Xj) = Op(1).

Hence,

nhd/2V2n1 = op(1). (2.11)

Adding and subtracting (θ̂n − θ0)′ṁ(Xj, θ0) from m(Xj, θ̂n) − m(Xj, θ0), V2n2 can be

written as the sum of the following two terms

Bn1 = − 2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξiδnjQ0(−m(Xj, θ0))w(Xi)w(Xj),

Bn2 = − 2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξi(θ̂n − θ0)′ṁ(Xj, θ0)Q0(−m(Xj, θ0))w(Xi)w(Xj).

By Condition (C4),

|Bn1| ≤ sup
1≤i≤n

|δni| ·
2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
|ξi|w(Xi)w(Xj) = Op(1/n),

thus, nhd/2Bn1 = op(1).

As for Bn2, it is easily seen that

|Bn2| ≤‖ θ̂n−θ0 ‖ · ‖
2

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξim(Xj, θ0)Q0(−m(Xj, θ0)) ‖ w(Xi)w(Xj).

Using the similar method as in proving Lemma 3.3b in Zheng (1996), one can show that

the second norm in the above inequality is the order of Op(1/
√
n), which, together with the

√
n-consistency of θ̂n, implies nhd/2Bn2 = op(1). Thus,

nhd/2V2n2 = op(1). (2.12)

From (2.11) and (2.12), we obtain

nhd/2V2n = op(1). (2.13)

The proof of nhd/2V3n = op(1) follows the same thread as above, hence omitted here for the

sake of brevity.
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To show that σ̂2 defined in (2.5), it is sufficient to show that

2

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
(ξ̂2
i ξ̂

2
j − ξ2

i ξ
2
j )w

2(Xi)w
2(Xj) = op(1), (2.14)

2

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξ2
i ξ

2
jw

2(Xi)w
2(Xj) = σ2 + op(1). (2.15)

Adding and subtracting ξi from ξ̂i, ξj from ξ̂j, the term on the left hand side of (2.14)

can be written as the sum of the following five terms,

2

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
(ξ̂i − ξi)2(ξ̂j − ξj)2w2(Xi)w

2(Xj),

8

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξiξj(ξ̂i − ξi)(ξ̂j − ξj)w2(Xi)w

2(Xj),

8

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξi(ξ̂i − ξi)(ξ̂j − ξj)2w2(Xi)w

2(Xj),

4

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξ2
i (ξ̂j − ξj)2w2(Xi)w

2(Xj),

8

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξiξ

2
j (ξ̂i − ξi)w2(Xi)w

2(Xj). (2.16)

We only show that (2.16) is the order of op(1). Note that

ξ̂i − ξi = −dni − δniQ0(−m(Xi, θ0))− (θ̂n − θ0)′ṁ(Xi, θ0)Q0(−m(Xi, θ0)),

it suffices to show that the following three terms are all of the order op(1),

− 8

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξiξ

2
j dniw

2(Xi)w
2(Xj), (2.17)

− 8

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξiξ

2
j δniQ0(−m(Xi, θ0))w2(Xi)w

2(Xj), (2.18)

−8(θ̂n − θ0)′

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
ξiξ

2
j ṁ(Xi, θ0)Q0(−m(Xi, θ0))w2(Xi)w

2(Xj).(2.19)
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For any continuous function L1(x), L2(x) such that E[L2
1(X) + L2

2(X)] < ∞, we can

show that

E

[
1

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
|ξi|ξ2

jL1(Xi)L2(Xj)

]

= 2E
1

hd
K2

(
X1 −X2

h

)
|ξ1|ξ2

2L1(X1)L2(X2)

≤
∫
K2(u)du

∫
τ 3(x)L1(x)L2(x)f 2

X(x)dx+ o(1).

If the last quantity is bounded, we have[
1

n(n− 1)

n∑
i 6=j

1

hd
K2

(
Xi −Xj

h

)
|ξi|ξ2

jL1(Xi)L2(Xi)

]
= Op(1).

Since sup1≤i≤n |dni| and sup1≤i≤n |δni| are both negligible, it is easily seen that (2.17), (2.18)

and (2.19) are all of the order of op(1).

The proof of (2.15) is similar to the proof of Lemma 3.3e in Zheng (1996), and this

completes the proof of the theorem.

Proof of Theorem 2. The proof is similar to that of Theorem 1. We only outline the main

steps here for the sake of brevity.

Substituting Yi−g(Xi)+g(Xi)−g(Xi, θ̂n) = ξi+g(Xi)−g(Xi, θ̂n) for ξ̂i and Yj−g(Xj)+

g(Xj)− g(Xj, θ̂n) = ξj + g(Xj)− g(Xj, θ̂n) for ξ̂j in Vn, Vn can be written as the sum of the

following three terms

V a
1n =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξiξjw(Xi)w(Xj),

V a
2n =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
ξi[g(Xj)− g(Xj, θ̂n)]w(Xi)w(Xj),

V a
3n =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
[g(Xi)− g(Xi, θ̂n))][g(Xj)− g(xj, θ̂n)]w(Xi)w(Xj).
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V a
3n can be further written as the sum of V a

3n1, V
a

3n2 and V a
3n2, where

V a
3n1 =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
[g(Xi)− g(Xi, θa)][g(Xj)− g(Xj, θa)]w(Xi)w(Xj),

V a
3n2 =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
[g(Xi)− g(Xi, θa)][g(Xj, θa)− g(Xj, θ̂n)]w(Xi)w(Xj),

V a
3n3 =

1

n(n− 1)

∑
i 6=j

1

hd
K

(
Xi −Xj

h

)
[g(Xi, θa)− g(Xi, θ̂n)][g(Xj, θa)− g(Xj, θ̂n)]w(Xi)w(Xj).

One can show that

V a
3n1 =

∫
K2(u)du ·

∫
[g(x)− g(x, θa)]

2w2(x)f 2
X(x)dx+ op(1),

and V a
3n2 = op(1), V a

3n3 = op(1), V a
2n = op(1). Eventually, one can show that

nhd/2Vn = nhd/2V a
1n + nhd/2

∫
K2(u)du ·

∫
[g(x)− g(x, θa)]

2w2(x)f 2
X(x)dx+ op(nh

d/2).

Finally, we can show that

σ̂2 = 2

∫
K2(u)du ·

∫
[τ 2(x) + [g(x)− g(x, θa)]

2]2w4(x)f 2
X(x)dx+ op(1).

This completes the proof.

Proof of Theorem 3. Now, define Y ∗Li = m(Xi, θ0) + εi, Y
L
i = max{Y ∗Li , 0}, and Wi =

Yi − Y L
i . The elementary inequality max{a, 0} = (a + |a|)/2 implies that Wi = [δ(Xi) +

∆n(Xi)]/2
√
nhd/2 with

∆n(Xi) = |
√
nhd/2m(Xi, θ0) + δ(Xi) +

√
nhd/2εi| − |

√
nhd/2m(Xi, θ0) +

√
nhd/2εi|.

Define ξ̂Li = Y L
i − g(Xi, θ̂n). Then ξ̂i = ξ̂Li + Wi and Vn can be written as a sum of the

following terms

V L
1n =

1

n(n− 1)hd

∑
i 6=j

K

(
Xi −Xj

h

)
ξ̂Li ξ̂

L
j w(Xi)w(Xj),

V L
2n =

2

n(n− 1)hd

∑
i 6=j

K

(
Xi −Xj

h

)
ξ̂Li Wjw(Xi)w(Xj),

V L
3n =

1

n(n− 1)hd

∑
i 6=j

K

(
Xi −Xj

h

)
WiWjw(Xi)w(Xj).
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Similar to the proof of Theorem 1, nhd/2V L
1n ⇒ N(0, σ2), where σ2 is defined in (2.4).

It is easily seen that δ(x) + ∆n(x) = δ(x)I(m(x, θ0) + ε > 0). By the independence of ε

and X1, X2, EV
L

3n equals

1

hd
EK

(
X1 −X2

h

)
W1W2w(X1)w(X2)

=
1

nh3d/2
·∫∫

K

(
x1 − x2

h

)
Q0(−m(x1, θ0))Q0(−m(x2, θ0))δ(x1)δ(x2)w(x1)w(x2)fX(x1)fX(x2)dx1dx2

=
1

nhd/2
·∫∫

K(u)Q0(−m(x+ hu, θ0))Q0(−m(x, θ0))δ(x+ hu)δ(x)w(x+ hu)w(x)fX(x+ hu)fX(x)dxdu

=
1

nhd/2

∫
Q2

0(−m(x, θ0))δ2(x)w2(x)f 2
X(x)dx+ o

(
1

nhd/2

)
.

The last integral is exactly the µ defined in Theorem 3. Therefore,

nhd/2EV L
3n → µ (2.20)

Now let’s consider Var(V L
3n). For convenience, let

Sij = K

(
Xi −Xj

h

)
WiWjw(Xi)w(Xj)− EK

(
Xi −Xj

h

)
WiWjw(Xi)w(Xj).

A simple but tedious derivation leads to

V ar(V L
3n) =

4n(n− 1)

[n(n− 1)hd]2
ES2

12 +
8n(n− 1)(n− 2)

3![n(n− 1)hd]2
ES12S13.

Note that |ES12S13| ≤ ES2
12 by Cauchy-Schwartz inequality, Var(V L

3n) is bounded above by[
4n(n− 1)

[n(n− 1)hd]2
+

8n(n− 1)(n− 2)

3![n(n− 1)hd]2

]
ES2

12.

One can show that

ES2
12 = E[K

(
X1 −X2

h

)
W1W2w(X1)w(X2)− EK

(
X1 −X2

h

)
W1W2w(X1)w(X2)]2

≤ EK2

(
X1 −X2

h

)
W 2

1W
2
2w

2(X1)w2(X2)
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Since |Wi| ≤ |δ(Xi)|/
√
nhd/2 for any i, we have

ES2
12 ≤

1

n2hd
EK2

(
X1 −X2

h

)
δ2(X1)δ2(X2)w2(X1)w2(X2) = O

(
1

n2

)
.

Therefore,

V ar(V L
3n) =

[
4n(n− 1)

[n(n− 1)hd]2
+

8n(n− 1)(n− 2)

3![n(n− 1)hd]2

]
O

(
1

n2

)
= O

(
1

n3h2d

)
,

which implies

V L
3n − EV L

3n = Op

(
1√
n3h2d

)
. (2.21)

From (2.20) and (2.21), one can get, in probability,

nhd/2V L
3n = nhd/2[V L

3n − EV L
3n] + nhd/2EV L

3n → µ.

Similarly, one can show that nhd/2V L
2n = op(1), and σ̂2 → σ2 in probability. Details are

omitted for the sake of brevity. Summarizing the above arguments, we finish the proof of

Theorem 3.
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Chapter 3

Numerical Studies

3.1 Simulation Studies

Two sets of Monte Carlo simulations, one-dimensional and two-dimensional linear regression

functions serving as the models under null hypothesis, are conducted in this section to assess

the finite sample performance of the test proposed. A variety of quadratic components, γ=0,

0.1, 0.2, 0.3, 0.5, to be specific, are added to the linear terms, serving as the alternative

models. For both sets of the simulation, models with γ = 0 are used to study the empirical

size, while models with γ=0.1, 0.2, 0.3, 0.5 are used to study the empirical powers. Sample

sizes are set at n = 100, 300, 500, 800, 1000. For each set of the Monte Carlo simulation, two

sets of models

Model I : E(Y |X = x) = m(x)Q0(−m(x)) +Q1(−m(x)),

Model II : E(I(Y = 0)|X = x) = Fε(−m(x)),

are studied under all the combinations of sample size, n and quadratic components, γ, by

repeating the tests 1000 times. The empirical level and power are determined by #{|Tn| ≥

1.96}/1000. The simulation setups are exactly the same as in Song and Zhang (2011)’s.

Ideally, the optimal weight functions should be used in the model checking. However, the

optimal weight functions depend on the true departures of the alternative models from the

null models, which, in real application, are rarely known, although some approximations

could be obtained by exploratory data analysis. Therefore, in the following simulation
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studies, we will assess the tests proposed using the noninformative weight function w(x) = 1.

For comparison purpose, simulation with an optimal weight functions are also considered.

Simulation 1: The data are generated from the one-dimensional linear regression model

Y ∗ = α + βX + γX2 + ε, Y = max{Y ∗, 0}. (3.1)

In the simulation, with X ∼ N(0, 1), ε ∼ N(0, σ2
ε), the true regression parameters are

chosen to be α = 1, β = 1 and σ2
ε = 1. We choose standard normal density function as

the kernel function, and h = n−1/5 as the bandwidth. Theoretically, under current settings

P (ε ≤ −1 − X) ≈ 24% observations of Y ∗ are truncated below 0 when γ = 0. The

vglm function in the R package VGAM is used to calculate the estimates of all unknown

parameters.

First, the uninformative weight function w(x) = 1 is considered. For Model I, the

simulation result presented on the left part of Table 3.1 shows that the empirical levels are

less than the nominal levels without any exception, hence the proposed tests are conservative.

This is very common for nonparametric smoothing tests. The test has small powers against

the alternative models for small sample sizes, but the power improves with sample sizes

getting larger.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.006 0.004 0.005 0.009 0.006 0.048 0.053 0.056 0.051 0.052
γ=0.1 0.016 0.049 0.091 0.200 0.320 0.070 0.162 0.172 0.324 0.474
γ=0.2 0.086 0.447 0.778 0.965 0.995 0.268 0.682 0.860 0.979 0.998
γ=0.3 0.353 0.924 0.996 1.000 1.000 0.557 0.978 1.000 1.000 1.000
γ=0.5 0.903 1.000 1.000 1.000 1.000 0.967 1.000 1.000 1.000 1.000

Table 3.1: d=1. Empirical powers based on Model I, left panel based on normal simulation,
right panel based on bootstrap

In general, bootstrap provides more accurate approximation to the distribution of the

test statistic than the asymptotic normal distribution. Under the null hypothesis, the test

statistic Tn has an asymptotic standard normal distribution. Therefore, Tn is asymptotically
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pivotal, which enables us to conduct a parametric bootstrap. To find the parametric boot-

strap critical values, for each sample size, we repeat the simulation under the null hypothesis

800 times, the critical values are then obtained by finding out the upper 97.5th percentile

and lower 2.5th percentile of these 800 test statistics. Using the bootstrap critical values, we

conduct the simulation again, and the empirical levels and powers are taken as the relative

frequencies of how many times the test statistics being lower than the 2.5th percentile and

bigger than the 97.5th percentile. The right part of Table 3.2 reports the simulation results.

As expected, all the empirical levels are very close to the nominal level 0.05, and the powers

are much larger than the ones reported on the left part of Table 3.1.

We also did a simulation study based on Model II. Under this condition, the same test

statistic is used with ξ̂i being replace by I(Yi = 0)− Fε(−m(Xi, θ̂)). The simulation result

is presented in Table 3.2. The left part of Table 3.2 is the simulation results based on the

critical values from Theorem 1, while the right part of Table 3.2 is the simulation results

based on the bootstrap critical values. As discussed in Chapter 2, the test is much less

powerful than the one based on Model I.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.010 0.006 0.011 0.014 0.012 0.050 0.039 0.042 0.048 0.054
γ=0.1 0.008 0.014 0.035 0.058 0.089 0.050 0.045 0.051 0.102 0.128
γ=0.2 0.015 0.095 0.191 0.365 0.479 0.075 0.138 0.220 0.539 0.654
γ=0.3 0.029 0.225 0.528 0.829 0.927 0.117 0.371 0.597 0.924 0.972
γ=0.5 0.136 0.710 0.970 0.999 1.000 0.301 0.811 0.977 1.000 1.000

Table 3.2: d=1. Empirical powers based on Model II, left panel based on normal simulation,
right panel based on bootstrap

For comparison purpose, we also conduct simulation studies based on the optimal weight

functions. Let z = (α + βx)/σε. For model I, the optimal weight function is w(x) =

Φ(z)x2/τ 2(x), and τ 2(x) = σ2
ε [1 + z2]Φ(z) + σ2

εzφ(z)− σ2
ε [zΦ(z) + φ(z)]2. For model II, the

optimal weight function is w(x) = φ(z)x2/τ 2(x), and τ 2(x) = Φ(z)(1 − Φ(z)). Again, α, β

and σε are estimated as above. Simulation results are presented in Table 3.3. The left part
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is for the test based on model I, and the right part is for the test based on the model II. It

is easily seen that the empirical levels are closer to 0.05 than the ones reported in Table 3.1

and 3.2, and as expected, the empirical powers are larger than the corresponding ones in

Table 3.1 and 3.2 for large sample sizes. Recall that the optimal weight functions are indeed

”optimal” asymptotically, so it would be no surprise to us when the empirical powers are

less than the ones reported in Table 3.1 and 3.2 for small sample cases. Also, the test based

on the model I is more powerful than the one based on the model II.

100 300 500 800 1000 100 300 500 800 1000
γ = 0 0.007 0.014 0.014 0.016 0.024 0.036 0.018 0.028 0.024 0.026
γ = 0.1 0.016 0.078 0.213 0.387 0.533 0.019 0.057 0.117 0.207 0.298
γ = 0.2 0.077 0.584 0.877 0.988 0.998 0.065 0.358 0.654 0.911 0.958
γ = 0.3 0.267 0.942 0.991 0.996 0.998 0.157 0.763 0.963 1.000 1.000
γ = 0.5 0.715 0.987 0.994 0.999 1.000 0.611 0.994 1.000 1.000 1.000

Table 3.3: d=1. Empirical powers with optimal weights, left panel based on Model I, right
panel based on Model II

Simulation 2: To see the performance of the proposed test when d > 1, we generate the

data from the models

Y ∗ = α + β1X1 + β2X2 + γ(X2
1 +X2

2 ) + ε, Y = max{Y ∗, 0}. (3.2)

In the simulation, (X1, X2) is from a bivariate normal distribution with 0 mean vector,

and identity covariance matrix with ε ∼ N(0, σ2
ε). The true regression parameters are

chosen to be α = β1 = β2 = σ2
ε = 1. We choose the product of two standard normal

density functions as the kernel function, and h = n−1/7 as the bandwidth. Theoretically,

under current settings, P (ε ≤ −1−X1−X2) ≈ 28% observations of Y ∗ are truncated below

0 when γ = 0. The censReg function in the R package censReg is used to estimate all

unknown parameters.

For Model I, the simulation result presented on the left part of Table 3.4 preserves to

be conservative. The power enhances with the increase of sample size. Similar to the one-

dimensional case, we conduct a parametric bootstrap simulation and the results are shown
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on the right part of Table 3.4. Clearly, the nominal level 0.05 is well preserved in the

bootstrap simulation and the power is much larger than the one shown on the left part of

Table 3.4.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.002 0.008 0.010 0.009 0.019 0.054 0.047 0.050 0.045 0.046
γ=0.1 0.034 0.158 0.283 0.529 0.672 0.111 0.221 0.388 0.640 0.802
γ=0.2 0.247 0.838 0.985 1.000 1.000 0.423 0.903 0.994 1.000 1.000
γ=0.3 0.690 0.999 1.000 1.000 1.000 0.851 1.000 1.000 1.000 1.000
γ=0.5 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3.4: d=2, ρ(X1, X2) = 0.2, Empirical powers based on Model I, left panel based on
normal simulation, right panel based on bootstrap

The simulation result for Model II is presented in Table 3.5. The formulation of Table

3.5 is the same as the one in Table 3.4. It is easily seen that the test is much less powerful

than the one based on Model I.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.008 0.012 0.006 0.014 0.013 0.050 0.053 0.050 0.052 0.042
γ=0.1 0.010 0.023 0.038 0.081 0.087 0.046 0.066 0.086 0.127 0.128
γ=0.2 0.021 0.090 0.207 0.396 0.519 0.070 0.211 0.247 0.479 0.536
γ=0.3 0.036 0.235 0.494 0.798 0.904 0.091 0.371 0.605 0.882 0.951
γ=0.5 0.102 0.622 0.948 1.000 1.000 0.193 0.792 0.968 1.000 1.000

Table 3.5: d=2, ρ(X1, X2) = 0.1, Empirical powers based on Model II, left panel based on
normal simulation, right panel based on bootstrap

We also did some simulation studies when X1 and X2 are correlated with ρ(X1, X2) = 0.2

and ρ(X1, X2) = 0.5. Table 3.6 is for the occasion when ρ(X1, X2) = 0.2. The left part of

this table is the result of the simulation study based on Model I, while the other part is

based on Model II.

Table 3.7 is for the occasion when ρ(X1, X2) = 0.5. The left part of this table is the

result of the simulation study based on Model I, while the other part is based on Model II.
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100 300 500 800 1000 100 300 500 800 1000
γ=0 0.003 0.008 0.009 0.008 0.019 0.004 0.013 0.009 0.019 0.010
γ=0.1 0.025 0.125 0.240 0.474 0.589 0.007 0.020 0.029 0.060 0.066
γ=0.2 0.219 0.786 0.978 1.000 1.000 0.016 0.074 0.140 0.309 0.423
γ=0.3 0.666 0.999 1.000 1.000 1.000 0.033 0.194 0.430 0.750 0.881
γ=0.5 0.997 1.000 1.000 1.000 1.000 0.118 0.650 0.970 1.000 1.000

Table 3.6: d=2, ρ(X1, X2) = 0.2, Empirical powers, left panel based on Model I, right panel
based on Model II

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.002 0.009 0.007 0.007 0.016 0.002 0.011 0.007 0.013 0.015
γ=0.1 0.025 0.097 0.202 0.425 0.535 0.007 0.020 0.035 0.053 0.053
γ=0.2 0.185 0.751 0.967 1.000 1.000 0.013 0.058 0.109 0.265 0.358
γ=0.3 0.683 0.998 1.000 1.000 1.000 0.029 0.165 0.358 0.684 0.828
γ=0.5 0.995 1.000 1.000 1.000 1.000 0.181 0.756 0.990 1.000 1.000

Table 3.7: d=2, ρ(X1, X2) = 0.5, Empirical powers, left panel based on Model I, right panel
based on Model II

Remark 3.1: For the purpose of comparison, a simulation study for simple null hypothe-

ses is conducted by using the same setups as in Simulation 1 and 2 but assuming that

α = β1 = β2 = σ2
ε = 1 are all known in the null models. The results of the simulation under

this circumstance are shown in Table 3.8. The empirical level is much closer to the nominal

level 0.05 in all cases.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.038 0.043 0.046 0.056 0.050 0.047 0.057 0.053 0.044 0.055
γ=0.1 0.075 0.126 0.189 0.326 0.433 0.117 0.302 0.524 0.736 0.844
γ=0.2 0.195 0.557 0.847 0.976 0.998 0.438 0.962 0.998 1.000 1.000
γ=0.3 0.454 0.958 0.999 1.000 1.000 0.859 1.000 1.000 1.000 1.000
γ=0.5 0.922 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3.8: Simulation results for the simple hypotheses, left panel based on Model I, right
panel based on Model II

Remark 3.2 : Under the same setup as described in Remark 3.1, we also did the simula-

tion when ρ(X1, X2) = 0.2 and ρ(X1, X2) = 0.5, respectively. The results of the simulation
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under this circumstance are shown in Table 3.9. The empirical level is much closer to the

nominal level 0.05 in all cases.

100 300 500 800 1000 100 300 500 800 1000
γ=0 0.045 0.060 0.056 0.047 0.057 0.050 0.058 0.064 0.052 0.055
γ=0.1 110 0.298 0.508 0.718 0.824 0.115 0.323 0.545 0.757 0.860
γ=0.2 0.429 0.951 0.998 1.000 1.000 0.456 0.954 0.998 1.000 1.000
γ=0.3 0.833 1.000 1.000 1.000 1.000 0.820 1.000 1.000 1.000 1.000
γ=0.5 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000

Table 3.9: Simulation results for the simple hypotheses, left panel when ρ(X1, X2) = 0.2,
right panel when ρ(X1, X2) = 0.5

Remark 3.3 : We also made a comparison study with Song and Zhang (2011)’s test pro-

cedure, and the results are mixed. When we rely on R packages to estimate the parameter,

for Model I, the proposed test is slightly powerful than Song and Zhang (2011)’s when d = 1,

but less powerful when d = 2. The conclusion reverses if bootstrap critical values are used.

Song and Zhang (2011)’s test is more powerful than the test proposed in this report. For

Model II, the test proposed in this report outperforms Song and Zhang (2011)’s for both of

the cases. For simple null hypothesis with α = β1 = β2 = σ2
ε = 1 all known, the result of

the comparison with Song and Zhang (2011)’s test doesn’t change much.

3.2 A Real Data Application

Thomas A. Mroz in 1987 undertook a systematic analysis of several theoretic and statistical

assumptions used in many empirical models of female labor supply. The data for the analysis

came from the University of Michigan Panel Study of Income Dynamics for the year 1975,

which has been cited multiple time either for the purpose of research, or for the purpose of

academic demonstration.

The sample consists of 753 married white women between the ages of 30 and 60 in 1975,

with 428 working at some time during the year, while the remaining 325 observations are

women who did not work for pay in 1975. The dependent variable, the wife’s annual hours
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of work, is the product of the number of weeks the wife worked for money in 1975 and the

average number of hours of work per week during the weeks she worked. The histogram of

wife’s annual hours of work of Figure 1 clearly shows that a large amount of women didn’t

participate in any work in the labor market, a reason why Tobit regression model is needed.

Figure 3.1: Histogram of wife’s annual hours of work

Instead of using all of the 17 variables in the original dataset, we focus on two of them,

wife’s educational attainment, in years, denoted as WE, and actual years of wife’s previous

labor market experience, denoted as AX.

We treat both wife’s educational attainment and previous labor market experience as

independent variables to explain wife’s annual hours of work. The Tobit regression takes

the form:

Y ∗i = m(X) + εi = −1364 + 0.7644xWE + 0.6981xAX + εi, i = 1, 2, ..., n,

Yi =

{
Y ∗i if Y ∗i > 0,

0 otherwise

We apply the test proposed in this report to check if there is adequacy evidence to

explain wife’s wife’s annual hours of work by using educational attainment and previous
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labor market. The hypothesis is:

H0 : m(x) = m(x, θ) for some θ ∈ Θ, versus H1 : H0 is not true

We get 4.85 as the test statistic, the corresponding p-value of which is 1.239401e-06. Since p-

value is less than 0.05, there is significant evidence to show the inappropriate use of the linear

function. Thus, it’s not appropriate to use the linear function to express the relationship

between wife’s annual hours of work and wife’s education level and previous labor market.
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Chapter 4

Conclusion

We proposed a nonparametric lack-of-fit test to check the adequacy of the presumed para-

metric form for the regression function in Tobit regression models by applying Zheng’s

device with weighted residuals. It is shown that testing the null hypothesis for the stan-

dard Tobit regression models is equivalent to testing a new null hypothesis of the classic

regression models, one of which was built based on the whole data set, while the other one

of which was built based on the part that has been truncated. An optimal weight function

is identified to maximize the local power of the test.The proposed test statistic is shown to

be asymptotically normal under null hypothesis, consistent against some fixed alternatives,

and has nontrivial power for some local nonparametric power for some local nonparametric

alternatives. The applicability of the test proposed is verified by the performance of the

finite sample Monte-Carlo simulations.
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Appendix A

R-Programs

The first part of our simulation is on Tobit linear regression with one predictor, composite

hypothesis. Note that this is the code when the σε is unknown and estimated, but we also

did simulations when σε is known.

library(VGAM)

set.seed(987654)

table1=matrix(c(1:25),nrow=5,ncol=5)

colnames(table1)<-c("n=100","n=300","n=500","n=800","n=1000")

rownames(table1)<-c("m0=0","m1=0.1","m2=0.2","m3=0.3","m4=0.5")

m<-c(100,300,500,800,1000)

r<-c(0,0.1,0.2,0.3,0.5)

for (j in 1:length(m)){

for (k in 1:length(r)){

freq=0;

for(i in seq(1000))

{

# Generating Data

n=m[j]

sx=1
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se=1

a=1

b=1

x=rnorm(n,0,sx)

e=rnorm(n,0,se)

ystar=a+b*x+r[k]*x^2+e

y=pmax(ystar,0)

# Estimation of regression parameters

fit=vglm(y~x, tobit(Lower=0, Upper=Inf))

a=fit@coefficients[1]

b=fit@coefficients[3]

sig=exp(fit@coefficients[2])

# Test Statistics

res=y-((a+b*x)*pnorm((a+b*x)/sig)+dnorm((a+b*x)/sig)*sig)

res2=res^2

res4=res^4

h=n^(-1/5)

K=function(u){dnorm(u)}

xdif=kronecker(x,x,"-")

A1=matrix(K(xdif/h)/h,nrow=n)

A2=matrix((K(xdif/h))^2/h,nrow=n)

Vn=(t(res)%*%A1%*%res-sum(diag(A1)*res2))/(n*(n-1))

Sn=2*(t(res2)%*%A2%*%res2-sum(diag(A2)*res4))/(n*(n-1))

Tn=n*sqrt(h)*Vn/sqrt(Sn)

freq=freq+(abs(Tn)>=1.96)
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}

table1[k,j]=freq/1000

}

}

table1

The second part of our simulation is on Tobit linear regression with two predictors. Note

that this is the code when the two predictors are independent. We also did simulations when

the two predictors are not independent.

library(VGAM)

library(maxLik)

library(miscTools)

library(censReg)

library(mvtnorm)

set.seed(98765432)

table1=matrix(c(1:25),nrow=5,ncol=5)

colnames(table1)<-c("n=100","n=300","n=500","n=800","n=1000")

rownames(table1)<-c("m0=0","m1=0.1","m2=0.2","m3=0.3","m4=0.5")

m<-c(100,300,500,800,1000)

r<-c(0,0.1,0.2,0.3,0.5)

for (j in 1:length(m)){

for (k in 1:length(r)){

freq=0;

for(i in seq(1000))

{

#Generating Data

40



n=m[j]

sx=matrix(c(1,0,0,1),2)

se=1

a=1

b1=1

b2=1

xno=rmvnorm(n,mean=c(0,0),sx)

x1=xno[ ,1]

x2=xno[ ,2]

e=rnorm(n,0,se)

ystar=a+b1*x1+b2*x2+r[k]*(x1^2+x2^2)+e

y=pmax(ystar,0)

data=data.frame(cbind(y,x1,x2))

#Estimation of regression parameters

estimation <- censReg( y ~ x1 + x2, data = data )

a=summary(estimation)$estimate[1]

b1=summary(estimation)$estimate[2]

b2=summary(estimation)$estimate[3]

sigma=exp(summary(estimation)$estimate[4])

#Test Statistics

res=y-((a+b1*x1+b2*x2)*pnorm((a+b1*x1+b2*x2)/sigma)+dnorm((a+b1*x1+b2*x2)/sigma)*sigma)

res2=res^2

res4=res^4

h=n^(-1/7)

K=function(u,v){dnorm(u)*dnorm(v)}
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x1dif=kronecker(x1,rep(1,n))-kronecker(rep(1,n),x1)

x2dif=kronecker(x2,rep(1,n))-kronecker(rep(1,n),x2)

A1=matrix(K(x1dif/h,x2dif/h)/h^2,nrow=n)

A2=matrix((K(x1dif/h,x2dif/h))^2/h^2,nrow=n)

Vn=(t(res)%*%A1%*%res-sum(diag(A1)*res2))/(n*(n-1))

Sn=2*(t(res2)%*%A2%*%res2-sum(diag(A2)*res4))/(n*(n-1))

Tn=n*h*Vn/sqrt(Sn)

freq=freq+(abs(Tn)>=1.96)

}

table1[k,j]=freq/1000

}

}

table1

The last part of our simulations is Tobit linear regression, simple hypotheses. The codes

below are the one predictor case and the two predictor case.

(a) One Predictor Case:

library(VGAM)

set.seed(987654)

table1=matrix(c(1:25),nrow=5,ncol=5)

colnames(table1)<-c("n=100","n=300","n=500","n=800","n=1000")

rownames(table1)<-c("m0=0","m1=0.1","m2=0.2","m3=0.3","m4=0.5")

m<-c(100,300,500,800,1000)

r<-c(0,0.1,0.2,0.3,0.5)

for (j in 1:length(m)){

for (k in 1:length(r)){

freq=0;
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for(i in seq(1000))

{

# Generating Data

n=m[j]

sx=1

se=1

a=1

b=1

x=rnorm(n,0,sx)

e=rnorm(n,0,se)

ystar=a+b*x+r[k]*x^2+e

y=pmax(ystar,0)

# Test Statistics

res=y-((a+b*x)*pnorm((a+b*x)/se)+dnorm((a+b*x)/se)*se)

res2=res^2

res4=res^4

h=n^(-1/5)

K=function(u){dnorm(u)}

xdif=kronecker(x,x,"-")

A1=matrix(K(xdif/h)/h,nrow=n)

A2=matrix((K(xdif/h))^2/h,nrow=n)

Vn=(t(res)%*%A1%*%res-sum(diag(A1)*res2))/(n*(n-1))

Sn=2*(t(res2)%*%A2%*%res2-sum(diag(A2)*res4))/(n*(n-1))

Tn=n*sqrt(h)*Vn/sqrt(Sn)

freq=freq+(abs(Tn)>=1.96)
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}

table1[k,j]=freq/1000

}

}

table1

(b)Two Predictor Case:

library(VGAM)

library(maxLik)

library(miscTools)

library(censReg)

library(mvtnorm)

set.seed(987654)

table1=matrix(c(1:25),nrow=5,ncol=5)

colnames(table1)<-c("n=100","n=300","n=500","n=800","n=1000")

rownames(table1)<-c("m0=0","m1=0.1","m2=0.2","m3=0.3","m4=0.5")

m<-c(100,300,500,800,1000)

r<-c(0,0.1,0.2,0.3,0.5)

for (j in 1:length(m)){

for (k in 1:length(r)){

freq=0;

for(i in seq(1000))

{

# Generating Data

n=m[j]

sx=matrix(c(1,0,0,1),2)

se=1
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a=1

b1=1

b2=1

xno=rmvnorm(n,mean=c(0,0),sx)

x1=xno[ ,1]

x2=xno[ ,2]

e=rnorm(n,0,se)

ystar=a+b1*x1+b2*x2+r[k]*(x1^2+x2^2)+e

y=pmax(ystar,0)

#Test Statistics

res=y-((a+b1*x1+b2*x2)*pnorm((a+b1*x1+b2*x2)/se)+dnorm((a+b1*x1+b2*x2)/se)*se)

res2=res^2

res4=res^4

h=n^(-1/7)

K=function(u,v){dnorm(u)*dnorm(v)}

x1dif=kronecker(x1,rep(1,n))-kronecker(rep(1,n),x1)

x2dif=kronecker(x2,rep(1,n))-kronecker(rep(1,n),x2)

A1=matrix(K(x1dif/h,x2dif/h)/h^2,nrow=n)

A2=matrix((K(x1dif/h,x2dif/h))^2/h^2,nrow=n)

Vn=(t(res)%*%A1%*%res-sum(diag(A1)*res2))/(n*(n-1))

Sn=2*(t(res2)%*%A2%*%res2-sum(diag(A2)*res4))/(n*(n-1))

Tn=n*h*Vn/sqrt(Sn)

freq=freq+(abs(Tn)>=1.96)

}

table1[k,j]=freq/1000

}
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}

table1
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