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Abstract 

In order to meet food, fiber, and bio-fuel needs of a growing world population, crop-

breeding methods must be improved and new technologies must be developed. One area under 

focus is the decoding of the genetic basis of complex traits, such as yield and drought stress 

tolerance, and predicting these traits from genetic composition of lines or cultivars. In the last 

three decades, significant advances in genotyping methods have resulted in a wealth of genomic 

information; however, little improvement has occurred for methods of collecting corresponding 

plant trait data, especially for agronomic crops. This study developed a mobile, field-based, high-

throughput sensor platform for rapid and repeated measurement of plant characteristics. The 

platform consisted of three sets of sensors mounted on a high-clearance vehicle. Each set of 

sensors contained two infrared thermometers (IRT), one ultrasonic sensor, one Crop Circle, and 

one GreenSeeker. Each sensor set measured canopy temperature, crop height, and spectral 

reflectance. In addition to the sensors, the platform was equipped with an RTK-GPS system that 

provided precise, accurate position data for georeferencing sensor measurements. Software for 

collecting, georeferencing, and logging sensor data was developed using National Instruments 

LabVIEW and deployed on a laptop computer. Two verification tests were conducted to evaluate 

the phenotyping system. In the first test, data timestamps were analyzed to determine if the 

system could collect data at the required rate of 10 Hz and 5 Hz for sensor data and position data, 

respectively. The determination was made that, on average, IRT, ultrasonic, and Crop Circle data 

are received in intervals of 100 ms (SD = 10 ms), GreenSeeker data are received in intervals of 

122 ms(SD=10 ms), and position data are received in intervals of 200 ms (SD = 32 ms). The 

second test determined that a statistically significant relationship exists between sensor readings 

and ambient light intensity and ambient temperatures. Whether the relationship is significant 

from a practical stand point should be determined based on specific application of the sensors. 

 

 

 

  



iv 

 

Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables .................................................................................................................................. x 

Chapter 1 - Introduction .................................................................................................................. 1 

Chapter 2 - Research Objectives ..................................................................................................... 3 

Chapter 3 - Review of Literature .................................................................................................... 4 

Phenomics and Phenotyping ....................................................................................................... 4 

Phenotypic Traits ........................................................................................................................ 5 

Technologies for Phenotyping .................................................................................................... 6 

Spectral and Imaging Technologies ........................................................................................ 7 

Visible Light Imaging ......................................................................................................... 8 

Near Infrared ....................................................................................................................... 9 

Mid Infrared ...................................................................................................................... 10 

Hyperspectral Imaging ...................................................................................................... 11 

Distance Sensors ................................................................................................................... 13 

Satellite-Based Positioning Systems ......................................................................................... 14 

Mobile Field-Based Phenotyping Platforms ............................................................................. 15 

Chapter 4 - Materials and Methods ............................................................................................... 17 

System Design .......................................................................................................................... 17 

Software Development ............................................................................................................. 22 

Sensor Module Software Design........................................................................................... 25 

GreenSeeker ...................................................................................................................... 25 

Crop Circle ........................................................................................................................ 29 

2:1 and 15:1 IRT ............................................................................................................... 31 

Distance Sensors ............................................................................................................... 32 

Positioning System............................................................................................................ 34 

Main Program ....................................................................................................................... 35 

Verification Test ....................................................................................................................... 41 

System Timing and Position Errors ...................................................................................... 41 

Determining Effects of Ambient Light Intensity and Temperature ...................................... 43 



v 

 

Chapter 5 - Results and Discussion .............................................................................................. 45 

System Timing and Position Errors .......................................................................................... 45 

Position Errors .......................................................................................................................... 60 

Effects of Ambient Light Intensity and Ambient Temperature ................................................ 64 

GreenSeeker .......................................................................................................................... 64 

Crop Circle ............................................................................................................................ 67 

Ultrasonic Sensor .................................................................................................................. 72 

Laser Sensor .......................................................................................................................... 75 

IRT ........................................................................................................................................ 78 

Chapter 6 - Summary and Conclusions ........................................................................................ 83 

References ..................................................................................................................................... 85 

Appendix A - R Programs for Statistical Analysis ....................................................................... 88 

Appendix B - Statistical Analysis Results Not Included in Main Text ...................................... 117 

Appendix D - LabVIEW Code ................................................................................................... 123 

Appendix E - Sample Phenotyper Software Output File ............................................................ 136 

Appendix F - CR850 Program For Measuring Temperature ...................................................... 137 

 

  



vi 

 

List of Figures 

Figure 3.1 Electromagnetic spectrum comprised of all possible wavelengths and frequencies of 

electromagnetic radiation (http://withfriendship.com). .......................................................... 8 

Figure 3.2 Simplified diagram of a hyperspectral sensor 

(https://www.spacecomputer.com/hsi_technology.html) ..................................................... 12 

Figure 4.1 Phenotyping platform consisting of sensors, GNSS units, and data acquistion 

hardware mounted on a high clearance vehicle .................................................................... 17 

Figure 4.2 One sensor set composed of (left-to-right) two IRTs, one ultrasonic sensor, one Crop 

Circle, and one GreenSeeker ................................................................................................. 18 

Figure 4.3 A) Laser sensor mounted inline with the left wheel-track to sense boom height relative 

to the ground. B) IRTs mounted side-by-side so measurement areas would overlap. C) 

GNSS receivers mounted on each end of the sensor boom. ................................................. 20 

Figure 4.4 Three communication hubs and one analog data acquisition module routing signals 

from sixteen sensors and two GNSS receivers to a personal computer. ............................... 21 

Figure 4.5 The phenotyping sofware comprised of a total of 20 sensors and write-to-file loops; 

sensor loops place sensor data in queues write-to-file loops read data from the queues and 

write them to a file. ............................................................................................................... 24 

Figure 4.6 Real-time sensor readings displayed using custom gauges useful for monitoring 

purposes during phenotyping. ............................................................................................... 25 

Figure 4.7 Trimble RT200 interface module for the GreenSeeker sensor head ........................... 26 

Figure 4.8 If data arrives slower than the value wired to the wait function, the data rate controls 

the loop rate. .......................................................................................................................... 28 

Figure 4.9 The GreenSeeker subVI receives NDVI data sent by individual GreenSeeker sensors.

 ............................................................................................................................................... 28 

Figure 4.10 Five pieces of data, delimited by commas can be parsed from the Crop Circle data 

string. .................................................................................................................................... 30 

Figure 4.11 The Crop Circle subVI parses five tokens from the data string sent by the Crop 

Circle sensor. ......................................................................................................................... 30 

Figure 4.12 The IRT subVI commands the IRT sensor to send temperature data, parses the data 

string, and outputs the temperature. ...................................................................................... 32 



vii 

 

Figure 4.13 The NI DAQ Assistant was used to configure the NI 9207 data acquisition module.

 ............................................................................................................................................... 33 

Figure 4.14 The distance sensors are equipped with teach buttons for setting the lower and upper 

distance limits;. The corresponding sensor voltage outputs are 0 V and 9.9 V for the lower 

and upper limits, respectively. .............................................................................................. 34 

Figure 4.15 The GNSS loop contains the GPS subVI which receives and parses GGA strings 

from the FmX units; the GNSS loop repeats no faster than 10 Hz. ...................................... 35 

Figure 4.16 The button-servicing loop checks the value of several control buttons on the user-

interface. The Wait function within the loop controls the loop rate, which in this example is 

set to 1 Hz or a period of 1000 ms. ....................................................................................... 36 

Figure 4.17 GreenSeeker write-to-file loop. Four other write-to-file loops are similar. .............. 38 

Figure 4.18 The Setup tab of the phenotyping software contains the cotnrol buttons, distance 

sensor calibration settings, and the field and sensor offset settings. ..................................... 39 

Figure 4.19 The Monitor tab contains custom gauges for real-time monitoring of the sensor 

readings. ................................................................................................................................ 39 

Figure 4.20 The GPS tab plottings the position data from the GNSS receivers. .......................... 40 

Figure 4.21 The raw data tab contains tables that contain the five most recent data points from all 

the sensors. ............................................................................................................................ 40 

Figure 4.22 A) Sensors positioned 100 cm above a green colored carpet for the second 

verification test B) Thermcouples connected to a Cambell Scientific CR850 datalogger used 

to measure ambient and carpet surface temperatures C) Sper Scientific light meter used to 

measure light intensity .......................................................................................................... 44 

Figure 5.1 Plot of read periods for left and right GNSS receivers during the third trial showing 

significant delays in service of the serial port occurring less than 5 times in over 6,000 

samples. ................................................................................................................................. 47 

Figure 5.2 For almost all GNSS samples, the difference between TDif and read periods is zero.48 

Figure 5.3 Wait function inside write-to-file loops set to 10 ms (100 Hz) ................................... 49 

Figure 5.4 Plots of read periods for GreenSeekers during the third trial showing significant 

delays in service of the serial port occurring less than 10 times in over 10,000 samples ..... 52 

Figure 5.5 Plots of read periods for Crop Circles during the third trial showing significant delays 

in service of the serial port occurring less than 10 times in over 10,000 samples ................ 54 



viii 

 

Figure 5.6 Plots of read periods for 15:1 IRTS during the third trial showing significant delays in 

service of the serial port occurring less than 10 times in over 10,000 samples .................... 58 

Figure 5.7 Plots of read periods for 2:1 IRTS during the third trial showing significant delays in 

service of the serial port occurring less than 10 times in over 10,000 samples .................... 59 

Figure 5.8 Plot of distance sensor read periods for the third trial showing that most read periods 

were between 90 ms and 110 ms and very few were over 120 ms ....................................... 60 

Figure 5.9 Fitted and residual plots of GreenSeeker data vs. ambient light intensity .................. 65 

Figure 5.10 Fitted and residual plots of GreenSeeker NDVI data with respect to ambient 

temperature ........................................................................................................................... 67 

Figure 5.11 Fitted and residual plots of Crop Circle Channel 1 reflectance (670 nm) vs. light 

intensity ................................................................................................................................. 68 

Figure 5.12 Fitted and residual plots of Crop Circle Channel 1 reflectance (670 nm) vs. ambient 

temperature ........................................................................................................................... 69 

Figure 5.13 Fitted and residual plots of Crop Circle NDVI (670 nm, 760 nm) vs. light intensity 71 

Figure 5.14 Fitted and residual plots of Crop Circle NDVI (670 nm, 760 nm) vs. ambient 

temperature ........................................................................................................................... 72 

Figure 5.15 Fitted and residual plots of ultrasonic sensor data with respect to ambient light 

intensity ................................................................................................................................. 73 

Figure 5.16 Fitted and residual plots of ultrasonic sensor data with respect to ambient 

temperature ........................................................................................................................... 74 

Figure 5.17 Plots of raw laser sensor data vs. light intensity and ambient temperature ............... 76 

Figure 5.18 Fitted and residual plots of laser sensor data vs. ambient light intensity .................. 77 

Figure 5.19 Fitted and residual plots of laser sensor data with respect to ambient temperature .. 78 

Figure 5.20 Fitted and residual plots of 15:1 IRT sensor data vs. ambient light intensity ........... 79 

Figure 5.21 Plot of 2:1 and 15:1 IRT with respect to ambient temperature ................................. 80 

Figure 5.22 Fitted and residual plots of 2:1 IRT sensor data vs. ambient light intensity ............. 81 

Figure 5.23 Comparison of 2:1 and 15:1 IRT temperature measurements with respect to ambient 

light intensity ........................................................................................................................ 82 

Figure B.1 Fitted and residual plots of Crop Circle Channel 2 reflectance (760 nm) vs. ambient 

light intensity ...................................................................................................................... 118 



ix 

 

Figure B.2 Fitted and residual plots of Crop Circle Channel 2 reflectance (760 nm) vs. ambient 

temperature ......................................................................................................................... 119 

Figure B.3 Fitted and residual plots of Crop Circle Channel 3 reflectance (550 nm) vs. ambient 

light intensity ...................................................................................................................... 121 

Figure B.4 Fitted and residual plots of Crop Circle Channel 3 reflectance (550 nm) vs. ambient 

temperature ......................................................................................................................... 122 

Figure D.1 GNSS LabVIEW module connector pane ................................................................ 123 

Figure D.2 GNSS LabVIEW module front panel ....................................................................... 123 

Figure D.3 GNSS LabVIEW module block diagram ................................................................. 124 

Figure D.4 GreenSeeker module connector pane ....................................................................... 125 

Figure D.5 GreenSeeker module font panel ............................................................................... 125 

Figure D.6 GreenSeeker module block diagram......................................................................... 126 

Figure D.7 15:1 IRT module connector pane ............................................................................. 127 

Figure D.8 15:1 IRT module front panel .................................................................................... 127 

Figure D.9 15:1 IRT module block diagram ............................................................................... 128 

Figure D.10 2:1 IRT module connector pane ............................................................................. 129 

Figure D.11 2:1 IRT module front panel .................................................................................... 129 

Figure D.12 2:1 IRT module block diagram ............................................................................... 130 

Figure D.13 Crop Circle module connector pane ....................................................................... 131 

Figure D.14 Crop Circle module connector pane ....................................................................... 131 

Figure D.15 Crop Circle module connector pane ....................................................................... 132 

Figure D.16 Distance sensor module connector pane ................................................................. 133 

Figure D.17 Distance sensor module front panel........................................................................ 133 

Figure D.18 Distance sensor module block diagram .................................................................. 134 

Figure D.19 Main program block diagram ................................................................................. 135 

 

  



x 

 

 List of Tables 

Table 4.1 Summary of sensor power requirements and output signals. ....................................... 22 

Table 5.1 System timing results for the average, standard deviation, and range of the ready-to-

read times (TI or Time In), read times (TS or Timestamp), and waiting-to-read times (TDif) 

of the left and right GNSS receivers. .................................................................................... 46 

Table 5.2 System timing results for write-to-file times for GNSS receivers for Trials 1, 2, and 3

 ............................................................................................................................................... 49 

Table 5.3 Summary of system timing results for all three trials for the average, standard 

deviation, and range of the read times (TS), write-to-file times (WT), data send times 

(GSTS), and waiting-to-read times (TDif) of GreenSeeker sensors in all three rows .......... 51 

Table 5.4 Summary of the average, standard deviation, and range of the read times (TS), write-

to-file times (WT), and waiting-to-read times (TDif) of Crop Circle sensors in all three rows 

and for all three trials ............................................................................................................ 53 

Table 5.5 Summary of the average, standard deviation, and range of the read times (TS) and 

write-to-file times (WT) of IRT sensors in all three rows and for all three trials ................. 56 

Table 5.6 Summary of the average, standard deviation, and range of command send-to-read 

times (TDif) of IRT sensors in all three rows and for all three trials .................................... 57 

Table 5.7 Summary of the average, standard deviation, and range of the read times (TS), write-

to-file times (WT), and waiting-to-read times (TDif) of distance sensors in all three rows 

and for all three trials ............................................................................................................ 57 

Table 5.8 Summary statistics for sensor data time delays relative to position data ...................... 63 

Table 5.9 Summary statistics of GreenSeeker data vs. light intensity linear regression model ... 66 

Table 5.10 Summary statistics of Greenseeker NDVI vs. ambient temperature linear regression 

model ..................................................................................................................................... 66 

Table 5.11 Summary statistics of Crop Circle Channel 1 reflectance vs. light intensity linear 

regression model ................................................................................................................... 69 

Table 5.12 Summary statistics of Crop Circle Channel 1 reflectance vs. ambient temperature 

linear regression model ......................................................................................................... 70 

Table 5.13 Summary statistics of Crop Circle NDVI (670 nm, 760 nm) vs. light intensity linear 

regression model ................................................................................................................... 70 



xi 

 

Table 5.14 Summary statistics of Crop Circle NDVI (670 nm, 760 nm) vs. ambient temperature 

linear regression model ......................................................................................................... 71 

Table 5.15 Summary statistics of ultrasonic sensor distance vs. light intensity linear regression 

model ..................................................................................................................................... 73 

Table 5.16 Summary statistics of ultrasonic distance sensor vs. ambient temperature linear 

regression model ................................................................................................................... 74 

Table 5.17 Summary statistics of laser sensor distance vs. light intensity linear regression model

 ............................................................................................................................................... 76 

Table 5.18 Summary statistics of laser sensor distance vs. light intensity linear regression model

 ............................................................................................................................................... 77 

Table 5.19 Summary statistics of 15:1 IRT ΔT vs. light intensity linear regression model ......... 80 

Table 5.20 Summary statistics of 2:1 IRT ΔT vs. light intensity linear regression model ........... 82 

Table B.1 Summary statistics of Crop Circle Channel 2 reflectance vs. light intensity linear 

regression model ................................................................................................................. 117 

Table B.2 Summary statistics of Crop Circle Channel 2 reflectance vs. ambient temperature 

linear regression model ....................................................................................................... 117 

Table B.3 Summary statistics of Crop Circle Channel 3 reflectance vs. light intensity linear 

regression model ................................................................................................................. 120 

Table B.4 Summary statistics of Crop Circle Channel 3 reflectance vs. ambient temperature 

linear regression model ....................................................................................................... 120 

Table E.1 Columns from the GreenSeeker output data file ........................................................ 136 

 

  



1 

 

Chapter 1 - Introduction 

Twenty-first century plant science and crop improvement is faced with the challenge of 

meeting worldwide food, fiber, and bio-fuel needs of an increasing population expected to 

exceed 9 billion by 2050 (http://www.un.org/en/development/desa/population/). Improvements 

in annual crop yields through traditional breeding programs cannot meet the projected demand of 

three major cereal crops: rice, maize, and wheat. New plant genotypes with intrinsic high yields 

and yield stability under drought and salinity stress, adaptable to future climate conditions must 

be developed (Furbank and Tester 2011).  In order to quickly and efficiently achieve this, the 

genetic basis of complex plant traits, such as yield and drought stress tolerance, must be 

understood and methods for predicting these traits from genetic composition of lines or cultivars 

must be improved (Cobb et al. 2013; White et al. 2012).  Understanding the genetic basis of 

complex plant traits requires linking genetic information with correspondingly observed 

phenotypic data (Montes, Melchinger, and Reif 2007b).  

The genomics revolution and advances in gene technology have resulted in a wealth of 

genomic information (Furbank and Tester 2011).  Genotyping methods have become highly 

mechanized, uniform across organisms, and relatively low in cost, with costs decreasing every 

year (Cobb et al. 2013). However, little improvement of methods for collecting plaint trait data 

or phenotyping have occurred in the last 30 years, especially for collecting data for single plots 

or plants in field-based situations (White et al. 2012). Availability of high-quality phenotypic and 

corresponding environmental data is becoming essential to understand the genotype-to-

phenotype relationship; due to lack of phenotypic data, phenotyping is currently considered the 

major operational bottleneck of genetic analysis (Cobb et al. 2013; Furbank and Tester 2011).  

To improve complex traits through genomic selection, phenotypic data from thousands of plant 

varieties grown in replications under various environmental conditions is necessary, and 

measurements must be repeatedly taken throughout plant development in order to observe the 

interaction between the expression of plant traits and the environment (Cabrera Bosquet et al. 

2012; Montes, Melchinger, and Reif 2007b). 

Current methods for collecting phenotypic data on field-based plots require a researcher 

to visit each plot and manually measure specific parameters such as canopy temperature or plant 

height. For less than a hundred plots, manual phenotyping is feasible, but for hundreds and 
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thousands of plots, it is too laborious, time consuming, and costly. Consequently, many breeding 

programs only collect yield data taken only at the end of the growing season (Furbank and Tester 

2011).  

Therefore, a need exists for a flexible, robust, mobile, multi-sensor platform, capable of 

quickly and efficiently collecting data, from hundred to thousands of plant plots, that can be used 

to reliably estimate phenotypic traits. The platform should be capable of handling a variety of 

sensors that can collect different types of data, such as plant height, canopy temperature, and 

various spectral readings. The platform should also be equipped with high accuracy and 

precisions positioning systems, such as RTK-GPS, for georeferencing, which is necessary to 

correctly link data to specific plots or plants. 
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Chapter 2 - Research Objectives 

The overall objective of this work was to advance phenomics through the development of 

a mobile sensor platform for field-based high-throughput phenotyping. It was envisioned that the 

developed platform would serve as a model and resource for future phenotyping platform 

designs. 

 

The specific objectives were as follows: 

1. Assemble a sensor system composed of GreenSeekers, CropCircles, infrared thermometers, 

distance sensors, and GPS on a high-clearance field vehicle. 

2. Develop software for interfacing with various types of sensors, in addition to collecting, geo-

referencing, formatting, and saving data from the sensors into a convenient format for further 

processing and analysis. 

3. Test and verify that the developed platform timely collects, geo-references, formats, and 

saves data from the sensors and GPS. 

4. Determine if light intensity and ambient temperature affect sensor readings.  
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Chapter 3 - Review of Literature 

 Phenomics and Phenotyping 

Phenomics is the study of phenomes, or complete phenotypes, and how phenomes change 

over time (Mogel 2013). A phenome can be defined as the combination of all phenotypes of an 

individual organism. Phenotype can be broadly defined as the combination of all morphological, 

physiological, anatomical, chemical, developmental, and behavioral characteristics that comprise 

an individual organism (Pieruschka and Poorter 2012). A more specific, applicable definition for 

this study describes phenotype as the observable physical characteristics or traits of an organism, 

such as plant height, color, and yield (Fiorani and Schurr 2013; Mogel 2013). The expressed set 

or specific values of these observable characteristics, which are a subset of all possible values 

that comprise the phenome, is a result of the interaction between genetic information or genotype 

of the organism and the environment (Fiorani and Schurr 2013). Therefore, under different 

environmental conditions, organisms with identical genetic make up will have different 

expressed characteristics. For example, two genetically identical wheat crops will have 

significantly different yields if one crop experiences drought stress while the other is well 

watered, assuming all other environmental conditions remain equal. This interaction between 

genotype and the environment is complex and dynamic, and the phenotypic response of 

quantitative traits, such as yield, is characterized by response curves, which are continuous and 

typically non-linear (Fiorani and Schurr 2013). 

Phenotyping is broadly defined as the set of all methods and protocols for measuring 

phenotypes (Fiorani and Schurr 2013). Phenotyping methods can be manual in which a person 

utilizes a ruler or highly-mechanized, automated ultrasonic sensors mounted to a tractor to 

measure plant height in a field.  

Development of modern phenotyping methods clearly lags behind that of modern 

genotyping. Developments in next-generation sequencing methods for DNA have significantly 

reduced the time and cost required for genotyping, and these advances have significantly 

increased genotypic data.  Continued development promises to make feasible the 

sequencing/resequencing of model plant and major crop species and parental and progeny lines 

of mapping populations, allowing plant breeders to link fragments of chromosome in the progeny 

line to the parent (Varshney et al. 2009). These genomic advancements will improve the 
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precision and efficiency of phenotype predictions from genotypes, consequently accelerating the 

development and improvement of modern crop cultivars (Cobb et al. 2013). 

In order to capitalize on genomic advances, high quality phenotypic data is necessary to 

complete the “genotype + environment = phenotype” equation. In molecular breeding strategies 

such as genomic selection and marker-assisted recurrent selection, phenotypic data is used to 

train prediction models and identify markers for subsequent selection through generations. In 

transgenic studies, phenotypic data is used to identify promising events (Araus and Cairns 2013). 

Phenotyping is as important as genotyping for linking genes to traits; however, in contrast to 

genotyping, phenotyping has remained relatively primitive at the macroscopic level, especially 

for field-based, agronomic crops which still rely on manual measurement and assessment 

(Pieruschka and Poorter 2012). For example, (Yang et al. 2013) described current methods for 

phenotyping rice as manual, subjective, inefficient, destructive, and error-prone. Consequently, 

(Yang et al. 2013) suggested that in order for rice phenomics to match the level of rice genomics, 

reliable, automatic, multifunctional, and high-throughput phenotyping platforms must be 

developed. This observation is also true for other agronomic crops. 

Development of field-based, high-throughput phenotyping platforms is the key to 

addressing the phenotyping bottleneck. Indoor or controlled environment phenotyping systems 

are continually being developed, but well-defined, controlled conditions within greenhouses are 

a stark contrast to the dynamic, outdoor environment in which agronomic crop production 

actually occurs (Pieruschka and Poorter 2012). Field-based platforms must be robust, non-

invasive, and capable of covering hundreds and thousands of research plots in a short amount of 

time. Successful deployment requires the integration of automated cultivation systems, novel 

sensing technologies for rapid measurement and data collection, precise environmental 

monitoring, and a robust, well thought-out system for data management (Fiorani and Schurr 

2013).  

 Phenotypic Traits  

In addition to the development of a phenotyping platform, another key factor  in solving 

the phenotyping bottleneck is a clear understanding of physiological plant traits that are 

indicative of the target performance for crop improvement. The measurement of a large number 

of data points which could be highly correlated or not indicative of the target performance would 
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be a waste of time and resources (Fiorani and Schurr 2013). A few examples of physiological 

traits that are highly heritable, able to be non-destructively measured, or positively associated 

with crop performance and yield include plant canopy evaporative cooling; vegetative, pigment, 

and water indices; canopy size; and morphological traits such as plant height.  

Evaporative cooling from the canopy surface can be estimated by measuring plant canopy 

temperature (CT). CT is widely used in crop breeding because it takes into account the effects of 

many plants within a crop canopy, thus reducing errors associated with plant-to-plant and leaf-to-

leaf variation. CT is also linked to many physiological factors such as stomatal conductance, 

plant water status, root/vascular capacity, and yield performance under different environments. 

Yield under heat and drought stress has been shown to be positively associated with cooler CT 

(“Physiological Breeding II: a Field Guide to Wheat Phenotyping” 2012). 

Many vegetative, pigment, and water indices can be calculated from spectral reflectance 

measurements for crop characteristics. Water indices and vegetative indices have been shown to 

be reliably associated with crop performance. These indices can be used to estimate green 

biomass, leaf area index, photosynthetic potential, and plant water status. An example of a 

widely used index is the Normalized Difference Vegetative Index (NDVI), used to estimate early 

cover, pre-anthesis biomass, nitrogen content, and post-anthesis stay-green (“Physiological 

Breeding II: a Field Guide to Wheat Phenotyping” 2012). Stay-green is a term that refers to 

delayed senescence of plant foliage (Thomas and Ougham 2014). 

Plant height is a highly heritable trait, showing minimial rank order changes across 

enviroments. It is strongly associated with carbohydrate storage capacity and harvest index, 

which is the ratio of yield to total plant weight. Plant height is also important for ease of 

mechanical harvesting. A longer stem has a higher carbohydrate storage capacity and is easier to 

harvest but increases lodging and reduces the harvest index. A shorter stem has a lower 

carbohydrate storage capacity and may be more difficult to harvest (“Physiological Breeding II: 

a Field Guide to Wheat Phenotyping” 2012).  

  Technologies for Phenotyping 

Although development of phenotyping methods and protocols may have been stagnant, 

sensor, computer, communications, and software technology has continued to improve. A variety 

of tools, sensors, and devices useful for phenotyping have been and are continuously being 
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developed, such as ultrasonic and laser sensors, infrared thermometers, digital cameras, spectral 

reflectance sensors, positioning systems, data acquisitions systems, personal computers, and 

programming and software development tools. A key characteristic of sensor technologies is the 

capability for non-destructive, proximal, and high-throughput sensing of plant specimens in 

outdoor, field-based conditions. Developments in computers, communications, and software 

systems allow interfacing of a variety of sensors to a single computer for data collection, 

monitoring, and control. The combination of these technologies into a single system for 

phenotyping has great potential for screening a wide variety of characteristics relevant to crop 

improvement, such as growth rate, yield potential, adaptation to abiotic and biotic stress, and 

quality traits (Araus and Cairns 2013). 

 Spectral and Imaging Technologies 

Spectral and imaging technologies measure emitted or reflected electromagnetic waves. 

The electromagnetic spectrum consists of all possible wavelengths of electromagnetic radiation, 

from radio waves to gamma rays (Figure 3.1). Most spectral and imaging technologies currently 

used for phenotyping utilize electromagnetic radiation within visible and infrared bands 

transmitted or reflected from the crop (Araus and Cairns 2013). Incoming electromagnetic 

radiation in the visible range, between 400-700 nm, is absorbed by crop leaves and wavelengths 

between 700-1100 nm, referred to as near infrared, and wavelengths up to 2500 nm, referred to 

as shortwave infrared, are strongly reflected (Cabrera Bosquet et al. 2012; Furbank and Tester 

2011). Spectral and imaging techniques feasible for phenotyping can be grouped into three 

categories: visible to near infrared spectroradiometry, infrared thermometry and thermal 

imaging, and conventional digital photography (Araus and Cairns 2013). These techniques allow 

measurement of physical and chemical characteristics from plots such as canopy architecture, 

canopy temperature, water status, and nitrogen concentration (Montes, Melchinger, and Reif 

2007a). Furthermore, measured spectral information, used to create vegetation indices (VIs) 

which are ratios or differences between spectral reflectance data of specific wavelengths, are 

related to different plant characteristics (Cabrera Bosquet et al. 2012).  

Two general types of reflectance sensors exist: active and passive. Active sensors are 

equipped with a radiation source, thereby increasing their consistency and reliability even in 

dynamic ambient lighting conditions. This makes them suitable for phenotyping in field trials 



8 

 

with multiple locations that may have different lighting and weather conditions. However, active 

sensors typically measure fewer wavelengths and therefore have a lower spectral resolution, 

thereby limiting their use in predicting complex traits such as nitrogen-use efficiency (Montes, 

Melchinger, and Reif 2007a). Passive sensors do not have a built-in source of radiation, so they 

rely on ambient light conditions, thus limiting their use in dynamic lighting conditions. The 

advantage of passive sensors is their wide spectral range and high spectral resolution (Montes, 

Melchinger, and Reif 2007a). 

 

Figure 3.1 Electromagnetic spectrum comprised of all possible wavelengths and 

frequencies of electromagnetic radiation (http://withfriendship.com). 

 Visible Light Imaging 

Visible light imaging technology captures wavelengths between 400-700 nm (Yang et al. 

2013) and typically utilizes conventional digital photography technology, such as DSLRs, for 

image acquisition. Results are analyzed as two-dimensional (2D) images or as three-dimensional 

(3D) models from multiple 2D images combined using software. 2D photography has been used 

to measure plant size and leaf color to analyze growth rates and plant morphology and to 

quantify greenness parameters (Berger, de Regt, and Tester 2013; Fiorani and Schurr 2013; Yang 

et al. 2013).  Color information values for red, green, and blue can be extracted from digital 

images which can be analyzed to provide a measure of greenness and estimate chlorophyll and 

nitrogen content (Berger, de Regt, and Tester 2013). (Kipp et al. 2013) used images from a 

consumer-grade digital SLR and correlated the proportion of green pixels to early plant vigor in 
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winter wheat. Results showed that using such a system would be beneficial to plant breeding 

because of its effectiveness and rapidity in screening large field trials.  

Drawbacks of visible light imaging and imaging technologies are due to potentially 

difficult post-processing requirements, which may include image alignment, geometric and 

radiometric calibrations, atmospheric corrections, automatic mosaicking, and algorithms for 

automatic image segmentation (Araus and Cairns 2013). Other problems are due to physical 

issues with the image subject, such as overlapping leaves and background soil noise (Fiorani and 

Schurr 2013).  

 Near Infrared 

Emitted infrared radiation is due to molecular movements in all objects. Near infrared 

radiation (NIR) refers to electromagnetic radiation with wavelengths ranging from 700-1000 nm 

up to 5000 nm, measured by devices known as near infrared spectrometers (NIRS). 

Spectrometers are instruments that measure properties of light, such as intensity and wavelength, 

over a certain range of the electromagnetic spectrum.  

NIRS has been used in laboratory settings to analyze grains and fodder quality and to 

assess plant traits such as nitrogen content, moisture, fiber, carbohydrates, amino acids, minerals, 

and other compounds. Field use of NIRS has potential for rapid, non-destructive evaluation of 

biomass accumulation, radiation use efficiency, drought and nutrient use efficiency screening, 

and assessment of yield performance under stress conditions (Araus and Cairns 2013; Cabrera 

Bosquet et al. 2012). The advantages of NIRS include low cost, rapidity, high precision, and 

repeatability (Cabrera Bosquet et al. 2012). 

NIR emitted by healthy green plants typically ranges between 800 to 1400 nm, while soil 

emits relatively small amounts of NIR. Soil and unhealthy plants reflect more red light compared 

to healthy plants (Yang et al. 2013). The difference in reflected red light is the basis for the 

Normalized Difference Vegetation Index (NDVI) (Equation 3.1).  Thus, the more red light that is 

reflected, the smaller the NDVI value, indicating the presence of bare soil and unhealthy plants, 

prompting use of NDVI as a metric for crop health (Lan 2009). NDVI is also used to detect tiller 

density and soil coverage or leaf area index (Kipp et al. 2013). Examples of commercially 

available devices (Figure 4.2) that measure NIR include the GreenSeeker (Trimble, Westminster, 

Col., USA) and the Crop Circle ACS-470 (Holland Scientific, Inc., Lincoln, Neb., USA).  
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Equation 3.1 

     
                           

                           
 

 Mid Infrared 

Mid infrared or thermal infrared devices, typically used for non-contact temperature 

measurement, measure electromagnetic radiation from 7500 to 13,500 nm (Yang et al. 2013). 

These devices focus electromagnetic radiation emitted from an object through a lens onto a 

detector that outputs an electrical signal proportional to the radiation. This signal is processed 

and transformed to obtain a temperature measurement (MICRO-EPSILON 2013).  Advantages 

of non-contact, non-destructive temperature measurement include the ability to measure 

temperatures of moving objects, overheated objects, or objects in environments hazardous to 

humans; fast response and exposure time; no physical interaction or influence on measured 

objects; and no mechanical wear on the measurement device (MICRO-EPSILON 2013). Infrared 

detectors can be classified into two categories: thermal detectors and quantum detectors. 

Examples of thermal detectors include thermopiles, pyro-electric detectors, and bolometers. In 

thermal detectors, absorbed electromagnetic radiation changes the temperature of the sensing 

element. The change in temperature modifies properties of the sensing element. The properties 

can then be electrically analyzed. Similar to thermocouples used for temperature measurement 

through contact, thermopile detectors are composed of two different metallic materials, such as 

bismuth and antimony. The two materials are arranged around a radiation-absorbing element, the 

temperature of which changes based on absorbed radiation. Temperature change is proportional 

to a change in voltage across the detector. In pyro-electrical detectors, absorbed radiation on the 

sensitive element changes the surface temperature, which consequently changes the surface 

loading due to the pyro-electric effect. Bolometers, used in focal plane arrays of infrared 

imagers, utilize the change in resistance of a heat sensitive element to measure temperatue. Heat-

sensitive element temperature change due to absorbed radiation changes the resistance of the 

heat sensitive element. The change in resistance can be detected as a change in voltage. The 

change in voltage can then be related to temperature. Another category of infrared detectors, 

quantum detectors, is not based on change in temperature of a sensing element. In quantum 

detectors, infrared radiation raises the electrons of the semiconductor-sensing element to a higher 
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energy state. When the electrons return to a lower energy state, an electrical signal is generated 

which can determine the temperature of the object emitting infrared radiation. Quantum detectors 

react much faster to changes in temperature, compared to thermal detectors. Time constants of 

quantum detectors are in the order of nanoseconds and microseconds, while thermal detectors 

have time constants in the order of milliseconds (MICRO-EPSILON 2013). 

Many applications are available for thermal imaging devices and infrared thermometers 

(IRTs). For phenotyping, these devices have been deployed as handheld infrared guns, 

thermopile detectors mounted on tractor booms, and micro-bolometer-based thermal imaging 

sensors mounted on mobile platforms above the crop, on model aircraft, and on manned aircraft 

(Furbank and Tester 2011). Thermal imaging and IRTs are commonly used to measure leaf and 

canopy temperature to evaluate leaf water status, quantify salinity and drought stress response in 

cereal crops, infer photosynthesis rates, and predict yield (Fiorani and Schurr 2013; Furbank and 

Tester 2011; Ingvarsson and Street 2011). Canopy temperature depression, the temperature 

difference between the canopy and surrounding air, is used as a selection trait for drought 

resistance in cereals, thus contributing to yield gains (Fiorani and Schurr 2013). 

There are issues with field use of IRTs and thermal imaging, such as the need for soil 

background corrections and the impact of wind and transient cloudiness (Fiorani and Schurr 

2013). Interpretation of crop performance and selection of breeding lines based on canopy 

temperature must consider plant height, soil covering, emerged spikes, leaf angle and size, and 

other factors related to canopy architecture. Dynamic environmental variables such as light 

intensity, temperature, relative humidity, wind speed, and time of measurement also affect the 

accuracy of thermal measurements and must be considered before using IRTs (Araus et al. 

2008). 

 Hyperspectral Imaging 

Hyperspectral images produced by imaging spectrometers are composed of data from 

hundreds of narrow, adjacent spectral bands. These bands have wavelengths ranging from 400 to 

900 nm or 1000 to 2500 nm (Araus and Cairns 2013), depending on the configuration. They can 

be as narrow as 0.01 micrometers, but are typically between 0.4 to 2.4 micrometers (Randall 

Smith, MicroImages, Inc. 2001). Imaging spectrometers simultaneously capture these bands by 

passing reflected light through an optical dispersing element, such as a prism, which splits the 



12 

 

light into narrow, adjacent wavelengths (Figure 3.2). Separate detectors then measure the energy 

in each band; the larger the number of detectors utilized, the higher the spectral resolution 

(Randall Smith, MicroImages, Inc. 2001).  

 

Figure 3.2 Simplified diagram of a hyperspectral sensor 

(https://www.spacecomputer.com/hsi_technology.html) 

 

Hyperspectral images contain a larger portion of the electromagnetic spectrum compared 

to RGB imaging and infrared imaging, thereby containing more information.  Hyperspectral 

images of crops may contain information pertaining to plant architecture, composition, and 

health conditions, which can be used to evaluate plant growth and development (Fiorani and 

Schurr 2013; Yang et al. 2013) and assess complex traits such canopy photosynthesis and 

fluorescence (Araus and Cairns 2013). 

Disadvantages of hyperspectral imaging for field-based phenotyping include the high cost 

of imaging spectrometers, large data sizes, complex data analysis, and the passive characteristic 

of the sensors (Fiorani and Schurr 2013). However, solutions to these problems are under 
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investigation and field-based mobile phenotyping platforms with imaging spectrometers have 

been developed (Busemeyer et al. 2013). 

 Distance Sensors 

Two common types of non-contact sensors for distance measurement are ultrasonic and 

laser sensors. The two sensors have a similar operating principle based on the time interval 

between transmission of a signal and receiving the echo or reflection of the signal from a target 

surface (Banner Engineering 2005). 

Ultrasonic sensors use a ceramic transducer which vibrates when electrical energy is 

applied. The vibration produces ultrasonic sound waves greater than 20 KHz, above the human 

range of hearing. These waves move through the air from the transducer to the target object. To 

measure the distance between the sensor and target object, a short burst of ultrasonic waves is 

generated and then the transducer “listens” for a set period of time for the echo of transmitted 

waves. The speed of sound and time interval between transmitting the waves and receiving the 

echo are used by a micro-controller in the ultrasonic sensor to calculate distance from the sensor 

to the target object. The speed of sound in air at standard atmospheric conditions is 

approximately 769 mph (Benson 2014). 

Laser distance sensors pass light emitted from a semiconductor laser diode through a lens 

to produce a narrow laser beam. The light is pulse modulated by an oscillator at a specific 

frequency. Modulation is the turning on and off of the light source, allowing the receiver to 

differentiate between emitted light and ambient light. The receiver consists of a photodiode or a 

phototransistor that detects emitted light and converts it into a voltage signal. This signal is then 

amplified and demodulated. Distance to an object is measured by sending a short pulse of light to 

the object. Some of this light is reflected back and detected by the receiver. The time required for 

the pulsed light to be emitted and then detected by the receiver is multiplied by the speed of light 

to calculate the distance from the sensor to the target object (Banner Engineering 2005).  The 

speed of ligh in air is approximately 299,792, 458 m/s (Mendelson 2006). 

Although ultrasonic and laser sensors both measure distance, they each have distinct 

advantages, disadvantages and suitable application areas. Unlike laser sensors, ultrasonic sensors 

are not affected by ambient light and light reflectance characteristics of target objects, making 

them more suitable for clear or translucent objects, such as clear packaging. Ultrasonic sensors 
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are also more suitable for wet environments since liquids can refract light. In addition, wind and 

air temperature changes can affect ultrasonic sensor measurements. Wind may deflect or disrupt 

the path of ultrasonic waves (Daigle, Piercy, and Embleton 1978); therefore, windy field 

conditions may affect measurement accuracy. The speed of sound through a medium, such as air, 

is dependent on the specific heat and temperature of the medium (Benson 2014). The speed of 

sound increases with temperature (Wong 1986). Expensive commercial ultrasonic sensors 

typically feature temperature compensation to account for temperature fluctuations.   

Conversely, laser sensors are not affected by wind and temperature changes and, since 

the speed of light is faster than the speed of sound, laser sensors can measure distance more 

quickly than ultrasonic sensors. Laser sensors also have a much narrower beam compared to 

ultrasonic sensors for the same distance, making them useful for measuring smaller targets, such 

as distance-to-ground measurements along the wheel track. However, the wider target area of 

ultrasonic sensors is useful for measuring distance-to-plant canopy, especially for sparse plant 

plots through which the narrow laser beam can easily pass.  

 

 Satellite-Based Positioning Systems 

Initially developed for military use, satellite-based navigation systems have found 

widespread use in civilian areas of application such as surveying and mapping, agriculture, 

transportation, machine control, and marine navigation (NovAtel 2014). Currently, the Global 

Navigation Satellite System (GNSS) is comprised of three independent systems: the Global 

Positioning System (GPS), developed and operated by the United States; the Russian-based 

Global Navigation Satellite System (GLONASS); and the Galileo system, developed by the 

European Union. GPS and GLONASS are fully operational and transmit signals for civilian use. 

Location is determined by GNSS through triangulation calculations based on signals 

received by a GNSS receiver from GNSS satellites. Satellites send radio signals at specific times 

and wavelengths containing information such as date and time, satellite location and status, and 

information on other satellites (NovAtel 2014). Receivers must track at least four satellites in 

order to calculate the receivers location. Location accuracy is affected by factors such as the 

number of satellites in view, satellite geometry or dilution of precision (DOP), ionospheric 

conditions, and receiver quality (Kaplan and Hegarty 2005). Without corrections, stand-alone or 
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autonomous receivers can expect accuracies of approximately 13 m or smaller in the horizontal 

plane and approximately 22 m or smaller in the vertical plane. For precision agriculture and 

many other applications, more accurate position information, than what stand-alone or 

autonomous recievers provide, is required. Differential GNSS, developed to increase position 

accuracies obtained from GNSS satellites, uses a fixed base station with known and accurate 

position in order to calculate errors associated with satellites tracked by the base station and 

mobile receivers. The base station sends out a reference signal to mobile receivers; that signal is 

used by the receivers to correct the signal from the satellites. 

Several differential-based correction systems with varying costs and accuracy are 

currently available. The Wide Area Augmentation System (WAAS) operated by the US Federal 

Aviation Administration provides 1 to 3 meter accuracy, with a total system cost ranging from 

$100-$500. Wide area coverage is achieved using geosynchronous satellites which transmit 

GNSS corrections to mobile receivers. WAAS enabled systems are useful for mapping and yield 

monitoring.  Sub-meter accuracy can be attained with paid, subscription-based differential 

services such as OmniStar VBS and StarFire 1, with system costs ranging from $500-$2,500 and 

subscription periods ranging from several months to a year (Stephens and Rasmussen). These 

systems can be used for mapping, yield monitoring, applications using variable rate technology 

(VRT), and limited guidance. Sub-decimeter accuracy can be obtained with services such as 

OmniStart HP and StarFire II. These systems require additional equipment and cost, 

approximately $2,500-$7,500, and can be used for guidance and VRT (Stephens and 

Rasmussen).  For accuracies of 2 to 3 centimeters, real-time kinematic (RTK) systems have been 

developed. RTK systems utilize a fixed, ground base station that must be within 6 to 10 miles of 

the receiver. These systems use complex methods to determine and calculate position errors used 

for calculating position corrections; corrections are sent over a radio link in real-time to a mobile 

receiver (“AgGPS® 432/442 GPS Receivers” 2008). RTK enabled systems, used for precision 

guidance, elevation mapping, and survey-grade mapping, provide the highest accuracy and 

repeatability of any publicly available positioning system, but at a high cost of $15,000-$50,000. 
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 Mobile Field-Based Phenotyping Platforms 

Several mobile, field-based, experimental phenotyping platforms have been developed 

since 2009. These platforms feature various types of sensors mounted on a mobile frame to 

simultaneously measure multiple types of data in a single pass. (White and Conley 2013) 

developed a proximal sensing pushcart consisting of a rectangular frame mounted on two bicycle 

frames. The cart was equipped with monochrome cameras, ultrasonic proximity sensors, infrared 

thermometers, radiometers, and a global positioning receiver connected to CR1000 and CR3000 

data loggers (Campbell Scientific, Inc., Logan, Utah, USA) for collecting data at 1 Hz and 5 Hz, 

respectively (White and Conley 2013). Another platform for phenotyping small grain cereals up 

to a plant height of 1.6 m was developed by Busemeyer et. Al (2013) (Busemeyer et al. 2013). 

The platforms consisted of a variety of sensing technologies, such as 3D Time-of-Flight cameras, 

color cameras, laser distance sensors, hyperspectral imaging systems, light curtain imaging 

systems, and a GPS receiver, all mounted on a tractor-pulled trailer with a track width of 1.25 m. 

The system used an industrial PC with a MySQL database server for data storage (Busemeyer et 

al. 2013). Some platforms were equipped with more than one set of sensors for simultaneously 

measurement of multiple rows of plants or plots, thereby significantly increasing throughput.  

The system developed by Andrade-Sanchez et. al. (2013) contained four sets of sensors mounted 

on an open rider sprayer, capable of measuring four rows of plants simultaneously. Each sensor 

set included an ultrasonic sensor, two infrared thermometers (one pointing at nadir, one pointing 

30° from the vertical axis), and a Crop Circle ACS-470 multi-spectral crop canopy sensor. Three 

data loggers were used for data collection and storage: a Holland Scientific GLS-420 for the 

Crop Circle ACS-470, a Campbell Scientific CR3000 for the infrared thermometers, and a 

Campbell Scientific CR1000 for the ultrasonic sensors. The system collected data at 1Hz 

(Andrade-Sanchez et al. 2013). 
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Chapter 4 - Materials and Methods 

 System Design 

Basic requirements for the phenotyper included assembly of a mobile sensor platform of 

three sets of sensors and two GPS units, collection of data from the sensors, data georeferencing, 

and saving as a text file. The system must be able to measure plant canopy temperature, plant 

height, and canopy reflections at various spectral wavelengths at a rate of 10 samples per second.  

The system consists of sensors, GPS units, and data acquisition hardware mounted on a 

Bowman Mudmaster sprayer (Bowman Manufacturing Co., Inc., Newport, Ariz., USA) (Figure 

4.1). The spraying boom was replaced with a sensor bar. The phenotyper had a clearance of 1.6 

meters, allowing it to pass over a variety of field crops, such as wheat and soybean. The sensor 

bar could be raised up and down while maintaining level status, thus maintaining sensor 

orientation relative to the ground. 

 

 

Figure 4.1 Phenotyping platform consisting of sensors, GNSS units, and data acquistion 

hardware mounted on a high clearance vehicle 

Three sets of sensors were mounted on the sensor bar for simultaneous data collection 

from up to three rows of plants or plots. The spacing between each sensor set was adjustable. 
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Each sensor set (Figure 4.2) contained one GreenSeeker (Trimble, Westminster, Colo., USA), 

one Crop Circle ACS-470 (Holland Scientific, Inc., Lincoln, Neb., USA), one Banner U-GAGE 

Q45U Ultrasonic Sensor (Banner Engineering Corp., Minneapolis, Minn,, USA), one Micro 

Epsilon 15:1 CX-SF15-C8 IRT (MICRO-EPSILON, Raleigh, N.C., USA), and one Micro 

Epsilon 2:1 CTH-SF02 IRT (MICRO-EPSILON, Raleigh, N.C., USA). Differences in the two 

IRTs’ differed in field-of-view related to ratios in their model names (Figure 4.3B). The first 

number in the ratio is the distance of the measured object from the sensor, and the second 

number is the diameter of the measured circular spot. Thus, for the 15:1 IRT, if the object is 15 

centimeters away from the sensor, the diameter of the circular spot is 1 cm. Increasing the 

distance increases the area of the spot. Within each set, the sensors were spaced to minimize or 

prevent interference with each other.  The two IRT sensors were placed side-by-side so that the 

area measured by each sensor would overlap (Figure 4.3B). 

 

Figure 4.2 One sensor set composed of (left-to-right) two IRTs, one ultrasonic sensor, one 

Crop Circle, and one GreenSeeker  
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In addition to the sensors, a Trimble AG 25 GNSS antenna was mounted on each 

end of the sensor bar (Figure 4.3C) and a Banner LT3NUQ  laser distance sensor (Banner 

Engineering Corp., Minneapolis, Minn., USA)was mounted on the sensor bar in front of the left 

wheel track (Figure 4.3A). GNSS antennas were connected to two Trimble FmX integrated 

displays which process GNSS signals and receive RTK corrections from the Trimble AgGPS 

542 RTK base station (Trimble, Westminster, Colo., USA).  

Several types of hubs were mounted inside a protective box. The hubs extended the 

number of ports of the laptop computer that runs software to collect sensor and GPS data. Figure 

4.4 illustrates the connections between the sensors, hubs, and laptop. A summary of outputs from 

all sensors is listed in Table 4.1. One hub was a B&B Electronics UHR307 7-port USB 2.0 hub 

(B&B Electronics, Ottawa, Ill., USA) which extended one USB port on the laptop. All six IRTs, 

two in each sensor set, were connected to this hub. The other two hubs were B&B Electronics 

USR604 USB to serial converters with four RS-232 ports. Three GreenSeekers were connected 

to the one of the serial converters and the Crop Circles were connected to the other. The 

remaining port on each hub was connected to a Trimble FmX unit which sends GPS data to the 

laptop. All B&B Electronics hubs were industrial grade with optical isolation on each port which 

protects the laptop, hubs, and sensors from electrical damage in case of hub or sensor 

malfunction.  

A National Instruments 9207 analog input module (National Instruments, Austin, Texas, 

USA) was used to interface analog voltage signals of the three ultrasonic sensors with the laptop 

through a USB port. The NI 9207 module had 16 channels, 8 of which were used to measure 

signals between ±10 V, and the remaining channels measured current signals between ±20 mA 

(“NI-Datasheet-Ds-187” 2013). This added flexibility to the phenotyper by allowing it to handle 

analog voltage and analog current signals. 

The entire system was powered by three 12 V batteries connected in parallel. A 12 V to 

110 V inverter provided power to the laptop. The laptop was placed on a platform mounted to the 

right side of the driver’s seat. The two Trimble FMX units were located next to the laptop, each 

connected to one GPS antenna. A Planar PCT2265 22" Touch Screen Monitor (Planar Systems, 

Inc., Beaverton, Ore., USA) was mounted on a swivel arm. The touch screen monitor equipped 

the system with a large display for system control and monitoring, allowing the user to quickly 

and easily navigate the phenotyping software. 
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Figure 4.3 A) Laser sensor mounted inline with the left wheel-track to sense boom height 

relative to the ground. B) IRTs mounted side-by-side so measurement areas would overlap. 

C) GNSS receivers mounted on each end of the sensor boom. 
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Figure 4.4 Three communication hubs and one analog data acquisition module routing 

signals from sixteen sensors and two GNSS receivers to a personal computer. 
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Table 4.1 Summary of sensor power requirements and output signals. 

Sensor Measurement Power Input Output Signal 

Banner U-Gage 

Q45U Ultrasonic 

Sensor 

0.25–3 m 15-24 V DC 0-10 V DC 

Micro Epsilon CX-

SF15-C8 15:1 IRT 
-30–150 °C 5-28 V DC 

With USB Kit – RS232, 

9600 baud, 8-n-1 

Micro Epsilon 2:1 

CTH-SF02 IRT 
-40–975°C 8-36 V DC 

With USB Kit – RS232, 

9600 baud, 8-n-1 

Holland Scientific 

ACS 470 Crop Circle 

Multiple Spectral 

Wavelengths 

11-17 V DC, 

350 mA 

RS-232, Auto Send Mode,  

76800 baud, 8-n-1 

Trimble 

GreenSeeker 500 

with RT200 

Spectral 

Wavelengths: 

770nm, 656 nm 

12 V DC, 300 

mA 

RS-232, 38400 baud, 

8-n-1 

Banner LT3NUQ 

Laser Distance 

Sensor 

0.3-5 m 
12-24 V DC, 

108 mA 
0-10 V DC 

 

 Software Development 

Prior to the development of software for collecting, georeferencing, and saving sensor 

data, consideration of the software deployment platform was essential. Two options were 

considered: a Campbell Scientific C3000 data loggers and a laptop computer. Due to the number 

of serial/communication ports required to interface with sensors, the laptop computer with 

extensible communication ports was preferred over the data loggers, which contain a large 

number of analog input ports but only four RS-232 ports. The laptop does not have any analog 

input ports required to collect data from ultrasonic sensors and future analog sensors, but this 

deficiency was solved using the NI 9207 analog input module which connects to the laptop 

through USB. In addition to extensibility, the laptop also allows a user interface for system 

control and display of real-time sensor readings using custom gauges and indicators. 
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The phenotyper software, developed using National Instrument’s 2012 LabVIEW 

Professional software package (National Instruments, Austin, Texas, USA), consists of separate 

modules or sub-programs, referred to as virtual instruments, which are combined into the main 

program. Each type of module is responsible for interfacing with and collecting data from a 

specific type of sensor. A separate module exists for the GreenSeekers, Crop Circles, 15:1 IRTs, 

2:1 IRTs, distance sensors, and GPS units. With the exception of the distance sensor module, 

each module communicates with only one sensor; therefore, within the main program, three 

instances of the GreenSeeker module occur since there are three GreenSeeker sensors, and three 

instances of the 15:1 IRT module occur since there are three 15:1 IRTs, etc. For each instance of 

a module, a unique communication port must be specified. 

The main program is a collection of continuous loops, each containing one instance of a 

sensor module (Figure 4.5) which receives data from a specific sensor, displays the data in 

custom gauges and indicators (Figure 4.6), and saves the data into a formatted text file. The 

program saves a text file for each type of sensor. 
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Figure 4.5 The phenotyping sofware comprised of a total of 20 sensors and write-to-file 

loops; sensor loops place sensor data in queues write-to-file loops read data from the 

queues and write them to a file. 
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Figure 4.6 Real-time sensor readings displayed using custom gauges useful for monitoring 

purposes during phenotyping. 

 Sensor Module Software Design 

The different sensor modules perform the same tasks of interfacing and receiving data 

from a specific sensor, but they differ in the specifics of communication with their respective 

sensors due to differences in baud rate and data strings. This section discusses how each module 

type was developed. 

 GreenSeeker 

Each GreenSeeker sensor package consists of four pieces of hardware: the GreenSeeker 

sensor head, RT200 control box, a proprietary cable for connecting the sensor head to the 

RT200, and a propriety cable for connecting the RT200 to the laptop. The sensor head contains 

hardware to collect raw NDVI data. The RT200 provides power to the sensor head and processes 
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data which is sent to the computer through an RS-232 serial connection running at 38400 baud. 

The RT200 (Figure 4.7) can collect and process data from multiple GreenSeeker sensors; 

however, only the average of NDVI values from all sensors is sent to the computer. In this study, 

NDVI values of each GreenSeeker sensor were required; therefore, three RT200s were used, one 

for each GreenSeeker sensor. The sampling rate of the GreenSeeker can be set to several values 

using RT Commander software (Trimble, Westminster, Colo., USA). Each GreenSeeker sensor 

was set to continuously sample every 100 ms (10 Hz).  

 

 

Figure 4.7 Trimble RT200 interface module for the GreenSeeker sensor head 

 

Within LabVIEW, a new virtual instrument was created specifically for the GreenSeeker. 

LabVIEW’s Instrument I/O Assistant (IA) was used to setup the connection with a specific 

communication port (COM port) to which the GreenSeeker was connected. Prior to using the IA, 

the COM port had to be configured to the required settings for the GreenSeeker (Table 4.1). 

Once the connection was established within the IA, the data string received from the 

GreenSeeker was parsed for NDVI data and saved as a token (Figure 4.10). The IA then 

automatically generated LabVIEW code (Figure D.6) to open a connection with a GreenSeeker 

on the specified COM port, parse GreenSeeker data for the NDVI, and save the data into a 

variable. This virtual instrument (VI) was added into the main program. 

Within the main program, the GreenSeeker subVI is placed into a loop (Figure 4.9) which 

repeats no faster than 20 times a second, or 20Hz. When this loop begins to run, it enters the 

GreenSeeker subVI and waits for data from the GreenSeeker sensor to arrive at the serial port. It 
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waits until data arrives or until the timeout value of 3 seconds. Once the data is received, it is 

parsed, the loop then exits the GreenSeeker subVI, passes the parsed data to the front panel for 

display, and places it into a queue. A write-to-file loop (discussed later) accesses data in the 

queue and writes it to a text file. Then the loop is ready to repeat. Maximum loop rate is 

controlled by the wait function inside the loop which is wired with a value of 50 milliseconds. 

The wait function does not cause the loop to wait 50 milliseconds, instead it prevents the loop 

from repeating until the value of the system clock reaches a value that is a multiple of 50 

milliseconds. For example, if the loop starts at time 100 ms and finishes at time 120 ms, it cannot 

start again until time 150 ms. If the loop starts at time 100 and finishes at time 170, it can restart 

immediately without waiting until time 200.   

Consider a second example (Figure 4.8) in which data arrives in intervals of 100 ms and 

on average it takes 20 ms to parse the data. If the loop starts at 0 ms and the first data point 

arrives at 0 ms, the loop will finish at 20 ms. It will then wait until the clock is at 50 ms to repeat 

therefore, the period of the first loop is 50 ms. At 50 ms, it will run again; however, since there is 

no data until time 100 ms, the loop must wait inside the GreenSeeker subVI. At time 100 ms, the 

data will arrive and the loop will finish at time 120 ms; therefore, the period of the second loop is 

70 ms. As soon as the loop finishes, it will repeat and wait for data to arrive. The loop does not 

have to wait until time 150 ms. The third data point will arrive at 200 ms and the third loop will 

finish at time 220 ms. The period of the third loop is 100 ms, equal to the period of the data; 

therefore, after the second loop, if the data arrives slower than 50 ms or slower than the value 

wired to the wait function, the loop rate is controlled by the data rate. The only time constraints 

imposed by the wait function come in to play is when multiple data points are buffered at the 

serial port and the sensor subVI does not have to wait for data to arrive. 
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Figure 4.8 If data arrives slower than the value wired to the wait function, the data rate 

controls the loop rate. 

 

 

 

Figure 4.9 The GreenSeeker subVI receives NDVI data sent by individual GreenSeeker 

sensors. 

 

Three instances of the GreenSeeker loop (Figure 4.9) were created, one for each 

GreenSeeker sensor. This loop rate is important and must be faster than the sampling rate of the 
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GreenSeeker, which was set to 10Hz. If it is slower, incoming data will accumulate in the buffer, 

will not be read in real-time, resulting in incorrect georeferencing. The buffer will continue to 

fill, eventually resulting in data loss. This also applies for the Crop Circle ACS-470 and the 

distance sensors.  

 Crop Circle 

The Holland Scientific Crop Circle ACS-470 (Holland Scientific, Inc., Lincoln, Neb., 

USA) is equipped with RS-232 serial communication when configured in auto-send mode, but is 

only for sensor output (ACS-470 Spec Sheet) and not for sending commands to the sensor. It 

operates using a non-standard baud rate of 76800, which may not work with certain serial 

communication hardware on desktop computers. A proprietary cable, which can be ordered from 

Holland Scientific, is required. This cable has a Eurofast type, O-ring sealed connector on one 

end, which connects to the ACS-470, and a DB-9 connector and two power terminals on the 

other end. A similar, user-made cable can be assembled, but doing so may void the ACS-470 

warranty. The ACS-470 was set to auto-send mode using the FieldCAL SC-1 calibrator (Holland 

Scientific, Inc., Lincoln, Neb., USA) and ACS-470 Configuration Software. The FieldCAL SC-1 

was also used to calibrate and set the sampling rate of the ACS-470 to 10 samples per second or 

10Hz.  

Similar to the GreenSeeker module, the LabVIEW Instrument I/O Assistant (IA) was 

used to connect to the ACS-470 and parse the data string, containing five pieces of data (Figure 

4.10). The first two pieces of data, calculated indices set using the ACS-470 Configuration 

Software, are automatically calculated by the ACS-470 from the last three pieces of data which 

were the reflectance readings from the three measurement channels. Resulting LabVIEW code 

from the IA was then saved as a VI and placed in a loop in the main program (Figure 4.11). 

Three instances of the VI were added to the main program, one for each ACS-470 sensor. 

Similar to the GreenSeeker module, the Crop Cirlce ACS-470 module loops no faster than 20 Hz 

but faster than the 10 Hz sampling rate. 
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Figure 4.10 Five pieces of data, delimited by commas can be parsed from the Crop Circle 

data string. 

 

Figure 4.11 The Crop Circle subVI parses five tokens from the data string sent by the Crop 

Circle sensor. 
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 2:1 and 15:1 IRT 

The CX-SF15-C8 and CTH-SF02 (Figure 4.3B) IRTs (MICRO-EPSILON, Raleigh, 

N.C., USA) are equipped with digital USB communication when configured with their USB kits, 

the TM-USBK-CX and TM-USBK-CT. Both models were directly connected to the USB ports 

of the laptop computer through the USB kits. The IRTs can be configured using Micro-Epsilon 

CompactConnect software. The sensors offer two options for digital communication: 

bidirectional and unidirectional or burst mode. When set to bidirectional communication, data 

can be sent to and received from the IRT which is useful for sending specific hex commands 

listed in IRTs manuals. In burst mode, thermometers constantly send temperature data. Initially, 

the thermometers were set to burst mode, but parsing the data string in LabVIEW was difficult 

and unreliable due to non-standard delimiters in the data string and lack of a terminating 

character. Therefore, the IRTs were set to bidirectional mode. To obtain object temperature, the 

hex command 0x01 was sent and the IRT replied with a number that could be converted to the 

object’s temperature in degrees Celsius. The conversion formula differed slightly between the 

two IRT models, so a separate software module was written for each. The LabVIEW Instrument 

I/O Assistant was used again to generate the code to connect to the IRT, sending the 0x01 

command, and reading and parsing temperature data received. A 10 ms time delay between 

sending the 0x01 command and reading the reply was added to the generated code to give the 

IRT time to process the command and send the temperature data before the module attempted to 

parse it.  This avoided any timeout errors and ensured that the complete data string from the IRT 

was received before being parsed. Resulting LabVIEW code from the IA was then saved as a 

virtual instrument and three instances of each module were placed in the main program (Figure 

4.12), one for each model of IRT sensor. IRT modules loop no faster than 10Hz.  
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Figure 4.12 The IRT subVI commands the IRT sensor to send temperature data, parses the 

data string, and outputs the temperature. 

 

 Distance Sensors 

The Banner U-GAGE Q45U ultrasonic sensor has a selectable analog output, either 0-

10V dc or 4-20 mA. The Banner LT3NUQ laser sensor has an output of 0-10V dc. All three 

ultrasonic sensors were set to output 0-10V. The ultrasonic sensors and laser sensor were 

connected to the NI 9207 analog input module. Four DIP switches on the ultrasonic sensors set 

various settings on the sensors, such as output type, output slope, and loss of echo settings. The 

output slope was set to positive, meaning voltage output increases as distance increases. Loss of 

echo setting was set to hold the previous reading instead of reverting to a minimum or maximum 

value. The sensor response speed adjustment was set to 80 milliseconds, which is the fastest. The 

response speed of the laser sensor was set to MED (analog frequency response (-3dB) of 10 ms). 

Using the DAQ Assistant in LabVIEW (Figure 4.13), the NI 9207 module was configured to 
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continuously read one sample, at a rate of 10 Hz, from voltage Channels 0, 1, 2, and 3 with 

Channels 0, 1, and 2 connected to one ultrasonic sensor and Channel 3 connected to the laser 

sensor. The resulting code was then saved as a virtual instrument and placed into the main 

program. Unlike the other sensor modules which have one instance of the module per sensor, 

there is only one instance of the distance sensor module in the main program. Within the main 

program, sampled voltage signals from each sensor were converted to distance measurements in 

centimeters using a simple straight-line calibration curve defined by two calibration points 

(Figure 4.14). These points were the upper and lower distance limits, set to 150 cm (9.9 V) and 

30 cm (0 V), respectively. Upper and lower limits can easily be reset using the teach button on 

the sensors. 

 

  

Figure 4.13 The NI DAQ Assistant was used to configure the NI 9207 data acquisition 

module. 
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Figure 4.14 The distance sensors are equipped with teach buttons for setting the lower and 

upper distance limits;. The corresponding sensor voltage outputs are 0 V and 9.9 V for the 

lower and upper limits, respectively. 

  

 Positioning System 

The source of GNSS data was the two Trimble FMX units. The FMX units were 

configured to output RTK corrected global positioning system fix data (GGA) strings at 5 Hz or 

five samples per second, which was the maximum that it could do. Data from all sensors were 

collected at a rate of 10 Hz, twice as fast as incoming GPS data. Therefore, more than one sensor 

data point could be georeferenced to a single position data point.  

The FMX units were connected to the RS-232 hubs via DB-9 connectors, and the hubs 

were connected to the laptop computer via USB. Similar to the other sensors, the LabVIEW 

Instrument I/O assistant was used to generate the code to connect to the FMX units and parse 

GGA data strings. Four pieces of data were extracted: UTC, elevation, latitude, and longitude. A 

virtual instrument was created from the generated code and two instances of it were added to the 

main program, one for each FMX unit (Figure 4.15). 
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Figure 4.15 The GNSS loop contains the GPS subVI which receives and parses GGA 

strings from the FmX units; the GNSS loop repeats no faster than 10 Hz. 

 

 Main Program 

The main program is composed of multiple loops that can be timed and run 

independently and simultaneously on multi-processor computers (Figure 4.5).  The loops can be 

divided into categories such as button-servicing loops, sensor loops, and write-to-file loops. Only 

one button-servicing loop is present (Figure 4.16) for the primary purpose of checking the value 

of user-interface control buttons such as the main On/Off button and buttons for turning on/off 

individual types of sensors. The timing of this loop is not critical because, in most situations, 

delays in servicing the buttons will not lead to loss of sensor data. The other two categories, 

sensor loops and write-to-file loops, are critical; therefore, the loop rate of the button-servicing 
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loop can be slower than the other loops. A wait function was placed inside the loop (Figure 4.16) 

to control its rate or frequency. The wait function causes the loop to wait until the next 

millisecond multiple of the value wired to it, thereby limiting how fast the loop can run. The 

button-servicing loop rate was set to 1 Hz or a period of 1000 ms. 

 

 

 

Figure 4.16 The button-servicing loop checks the value of several control buttons on the 

user-interface. The Wait function within the loop controls the loop rate, which in this 

example is set to 1 Hz or a period of 1000 ms. 

 

There is one sensor loop for every sensor and GNSS receiver (Figure 4.5), with the 

exception of distance/height sensors which only have one loop that services the NI 9207 module 

to which these sensors are connected. Sensor loops contain the modules or sub-programs 

responsible for obtaining data from the sensors and GNSS receivers. Sensor loop timing is 

critical because if it is consistently slower than the rate at which data is sent from the sensors, 

data will be buffered and eventually lost. The term buffered in this text refers to a situation in 

which more than one data point is stored in a communication port buffer because the port is not 

serviced frequently enough. Another problem is that buffered data are no longer real-time and 

will not be correctly georeferenced. However, this does not apply to the IRTs since during each 
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sampling period the phenotyping software commands these sensors to send data. In this case, the 

loop rate for IRTs should be no faster than their sampling rate, otherwise the sensors would not 

be able to keep up with the software’s requests. Therefore, sensor loop rates must be faster than 

the rate at which the sensors send data, except for IRTs. The sensors and GNSS receivers were 

set to send data at 10 Hz and 5 Hz, respectively. The GreenSeeker loops, Crop Circle loops, and 

distance sensor loop were set to a maximum of 20 Hz by wiring a value of 50 ms to the wait 

function. IRT loops were set to poll IRT sensors at 10 Hz. 

There are a total of five write-to-file loops (Figure 4.17), one for each type of sensor and 

one for GNSS receivers. These loops are responsible for writing the sensor and position data to 

text files. After the sensor loops receive data, the data is placed in a queue. Write-to-file loops 

extract data from the queue and write it to a file. If the queues always contain data, the wait 

function controls the loop rate, which was set to 10 ms or 100 Hz for all write-to-file loops. 

Thus, if the write-to-file loop rate is significantly less than the sensor loop rate, the queue will 

eventually fill up and data will be lost. If no data is in the queue, the write-to-file loop will wait 

until data is present, resulting in the queue controlling the loop rate. This occurs if the sensor 

loop rate is slower than the write-to-file loop rate, resulting in data being extracted from the 

queue faster than it is filled, eventually becoming empty. 

 The front panel of the main program is divided into four sections or tabs: Setup, Monitor, 

GPS, and Raw Data. The Setup tab (Figure 4.18) contains the control buttons, distance sensor 

calibration settings, and the field and sensor row spacing settings. The Monitor tab (Figure 4.19) 

contains the custom gauges for graphically viewing incoming sensor data. The GPS tab (Figure 

4.20) shows a graph of position data points from the left and right GNSS receivers. The Raw 

Data (Figure 4.21) tab contains tables, one for each type of sensor that displays the five most 

recent data points. 
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Figure 4.17 GreenSeeker write-to-file loop. Four other write-to-file loops are similar.
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Figure 4.18 The Setup tab of the phenotyping software contains the cotnrol buttons, 

distance sensor calibration settings, and the field and sensor offset settings. 

 

 

 

Figure 4.19 The Monitor tab contains custom gauges for real-time monitoring of the sensor 

readings. 
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Figure 4.20 The GPS tab plottings the position data from the GNSS receivers. 

 

 

 

Figure 4.21 The raw data tab contains tables that contain the five most recent data points 

from all the sensors. 
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 Verification Test 

A variety of in-depth tests, both system-wide and component specific, could be 

conducted to assess and optimize the performance, reliability, robustness, accuracy, and 

operational limits of the phenotyping system. With the technology and requirements for 

phenotyping evolving it would be impractical to conduct all of these tests, many of which would 

be unnecessary in verifying the key objectives of this study: timely collection of sensor and 

position data and assessment of the effects of ambient light intensity and temperature on sensor 

readings. Two tests were performed to verify and accomplish these objectives.   

 System Timing and Position Errors 

The objective of the first test was to determine the timeliness of the sensor and position 

data in order to determine position error of the sensor data in relation to GNSS position 

coordinates.  Delays in reading-in sensor and GNSS data, output rate of the sensors and GNSS 

receivers, and ground speed of the phenotyper all affect accuracy of location data that is logged 

with each sensor data point. Sensor data and position data are not received simultaneously since, 

with the exception of polled sensors (distance sensors and IRTs), the phenotyping software has 

no control over when sensors send data and any delays that exist in the communication hardware. 

The sensors were configured to send data at a rate of 10 Hz, and the FmX units were configured 

to send position data at a rate of 5 Hz, which is the maximum. Furthermore, since sensor data is 

received twice as often as position data, two sensor data points are assigned identical position 

coordinates.  Since the phenotyper moves forward during data collection, the position error due 

to differences in sampling time and throughput rates are proportional to phenotyper speed. 

Since time differences in receiving sensor and positions data are independent of 

phenotyper speed, this test was performed while the phenotyper was stationary. Three 20-minute 

trials were conducted. For each trial, the phenotyping software logged the sensor and position 

data along with several timestamps for each sampling period. These timestamps were the time 

when the software was ready to read the data, the time when it read or received the data, and the 

time when it wrote the data to the text file. These timestamps, based on the computer system’s 

millisecond clock available throughout the operating system, provides a reliable, consistent, and 

millisecond-resolution synchronization solution for the timing operations of the phenotyping 

software. 
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Raw test data were saved into five files, one for each sensor type and one for position 

data. An R (http://www.R-project.org) program was written for each raw data file (Appendix A - 

R Programs for Statistical Analysis) to calculate the average, standard deviation, and range of 

periods and time delays for each sensor and to georeference each sensor data point. The program 

outputs were saved into several text files. The R programs were similar to one another, but the 

program for processing GNSS position data must first be run before running any programs for 

processing sensor data since these require the position data that is loaded into R by the GNSS 

program.  

To determine the time delay and to georeference the sensor data, the shortest time delay 

relative to position data from both the left and right GNSS receivers is first calculated. Thus, two 

time delays are calculated, but only one is linked to the data. The time delays are equal to the 

absolute value of the difference between the sensor data read-time and the position data read-

time. This position data read-time is not the UTC, it is the time in milliseconds, based on the 

computer millisecond clock, when the phenotyping software received that specific position data. 

The second step is to compare the UTC associated with the position coordinates used in 

calculating each time delay.  

There are two scenarios, the first is if the UTCs of the left-position data and right-position 

data are equal, then the time delay that is chosen is the one associated with the position data with 

the earliest read-time - the one the phenotyping software first received.  Since the UTC times are 

identical, it can be assumed that both the left and the right GNSS receivers “generated” the 

position data simultaneously, but due to system delays in sending and receiving the data, the 

phenotyping software did not receive these at exactly the same moment. Both position data 

points (left and right) are used to georeference the sensor data. The second scenario is when the 

UTCs are not equal. In this situation, the program chooses the shortest time delay and the sensor 

data is georeferenced with the position data associated with this time delay. At this point, 

georeferencing is incomplete since the sensor data is referenced to only one position data point, 

but two points are required: one from the left GNSS receiver and one from the right GNSS 

receiver. The second data point is obtained by searching for the position data point with the 

identical UTC, or the nearest, to the UTC of the currently referenced position data point.  

http://www.r-project.org/
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 Determining Effects of Ambient Light Intensity and Temperature 

Throughout the phentoyping season and during a single phenotyping session, sensors are 

subjected to varying ambient light intensities and ambient air temperatures due to weather, time 

of day, duration of phenotyping, direction of travel, and sensor position. The objective of this 

second test was to determine the effects of changes in ambient light intensity and ambient 

temperature on sensor readings. 

The second test was performed outdoors, with the phenotyper parked facing south to 

avoid self-shadowing. The sensor boom was raised to 100 cm above the ground and supported by 

two 2 inch by 4 inch boards to maintain constant height. A 6 ft by 8 ft piece of green rug was 

placed on the ground, centered underneath the left set of sensors (Figure 4.22A). A tarp and 

canvas sheet was placed underneath the rug to keep it dry. A T-type thermocouple was taped on 

the rug’s surface to measure rug temperature and another T-type thermocouple was used to 

measure ambient air temperature (Figure 4.22B). Both thermocouples were connected to a 

Campbell Scientific CR850 datalogger (Campbell Scientific, Inc., Logan, Utah, USA) which was 

programmed (Appendix F - CR850 Program For Measuring Temperature) to send temperature 

measurements through the serial port at a rate of 1 Hz. A Sper Scientific 850007 (Sper Scientific, 

Scottsdale, Ariz., USA) visible light logger for measuring light intensity was placed on the carpet 

(Figure 4.22C). This light meter can send light intensity measurements in lux at a rate of 1 Hz 

through its RS-232 port. All sensor data was logged on a laptop computer through a LabVIEW 

program. Data was initially logged once every minute, but was increased to once every ten 

seconds after the first 2 hours. No averaging of the logged data occurred. The test, conducted on 

a clear, sunny day with no wind, began at approximately 10:30 AM and finished at 

approximately 8:45 PM. Test data was analyzed to determine any significant relationships 

between sensor readings and ambient light intensity and ambient temperature.  
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Figure 4.22 A) Sensors positioned 100 cm above a green colored carpet for the second 

verification test B) Thermcouples connected to a Cambell Scientific CR850 datalogger used 

to measure ambient and carpet surface temperatures C) Sper Scientific light meter used to 

measure light intensity  
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Chapter 5 - Results and Discussion 

 System Timing and Position Errors 

Results of the system timing verification test show that the phenotyping software and 

system of hubs that connect sensors to the computer can service the sensors and GNSS receivers 

at the required rates of 10 Hz and 5 Hz, respectively. On average, for all three trials (Table 5.1), 

the phenotyping software received position data from the left GNSS receiver at a rate of 5 Hz or 

every 200 ms. Standard deviation for each read period was 39.5 ms, 32.6 ms, and 32.9 ms for 

Trials 1, 2, and 3, respectively. A greater variation of maximum and minimum read periods 

existed between the three trials. In the first trial, the maximum read period was 1507 ms, but only 

1087 ms and 926 ms for the second and third trials, respectively. All these are much larger than 

the expected 200 ms periods based on the 5 Hz setting of the GNSS receivers and they are 

significant because they result in an accumulation of data in the buffer. More than one data point 

in the buffer indicates a significant delay. Figure 5.1 indicates that these long delays do not occur 

very often. Minimum read periods were 8 ms, 0 ms, and 0 ms for Trials 1, 2, and 3, respectively. 

In some instances, a large delay occurred in servicing the serial port, resulting in the long period 

and allowing GNSS data to accumulate in the buffer. When the serial port was serviced again, 

consecutive data points were quickly read (because the sensor loop did not have to wait for data), 

resulting in a very short period. Results for the right GNSS receiver are similar (Table 5.1) to the 

left GNSS receiver. 

The “TDif” columns in Table 5.1 are the statistics for the time difference between the 

ready-to-read time (TI or Time In) and the read time (TS or Timestamp). This difference 

represents the amount of time the sensor modules wait for the serial data to arrive at the serial 

port. On average, GNSS modules wait for 200 ms; therefore, the GNSS loop rate is typically 

limited by the rate at which GNSS receivers send data, not limits imposed by the wait function. 

When GNSS data is buffered at the serial port, the wait function becomes the limiting factor. 

Figure 5.2 shows that TDif is usually the same length as the read period because the difference 

between the two typically is zero. Therefore, as soon as the GNSS loop reads the position data, it 

immediately returns to the beginning of the loop and waits for the next position data point. 
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Table 5.1 System timing results for the average, standard deviation, and range of the 

ready-to-read times (TI or Time In), read times (TS or Timestamp), and waiting-to-read 

times (TDif) of the left and right GNSS receivers. 

  Left GNSS Right GNSS 

 TI TS TDif TI TS TDif 

Intended Period (ms) 200 200 200 200 200 200 

Intended Frequency (Hz) 5 5 5 5 5 5 

Trial 1 

Ave. Period (ms) 200.001 199.991 199.831 200.031 200.034 199.968 

Ave. Freq (Hz) 5.000 5.000 5.004 4.999 4.999 5.001 

SD Period (ms) 38.621 39.490 39.724 34.912 35.244 35.544 

Min (ms) 21 8 0 89 32 0 

Max (ms) 1432 1507 1432 1207 1264 1207 

Trial 2 

Ave. Period (ms) 199.973 199.984 199.802 199.976 199.973 199.917 

Ave. Freq (Hz) 5.001 5.000 5.005 5.001 5.001 5.002 

SD Period (ms) 32.527 32.612 33.003 32.072 32.077 32.074 

Min (ms) 13.000 0.000 0.000 93.000 93.000 93.000 

Max (ms) 1087.00 1087.00 1087.00 320.000 320.000 320.000 

Trial 3 

Ave. Period (ms) 199.930 199.920 199.776 199.953 199.954 199.830 

Ave. Freq (Hz) 5.002 5.002 5.006 5.001 5.001 5.004 

SD Period (ms) 32.843 32.949 33.256 33.529 33.734 33.787 

Min (ms) 13.000 0.000 0.000 10.000 0.000 0.000 

Max (ms) 925.000 926.000 925.000 495.000 495.000 495.000 



47 

 

 

Figure 5.1 Plot of read periods for left and right GNSS receivers during the third trial 

showing significant delays in service of the serial port occurring less than 5 times in over 

6,000 samples.   
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Figure 5.2 For almost all GNSS samples, the difference between TDif and read periods is 

zero. 

 

Statistics for the write-to-file periods (Table 5.2) indicate that at least 95% of the time, 

the GNSS sensor loop limits the rate of GNSS write-to-file loop (Figure 5.3) since the average 

frequency is 5 Hz and not the 100 Hz it was set to. It is working the way it was designed to. The 

rate at which GNSS receivers send data (5 Hz) controls the rate of the sensor loop. The wait 

function within the write-to-file loop was set to 10 ms (100 Hz) because, in instances such as at 

startup when the user inputs file names and file paths for output data files, the sensor loops have 
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already begun to run and place data into queues. Write-to-file loops cannot begin until the 

filenames and paths are specified; therefore, data in the queues must be written out. Setting the 

write-to-file loop to 100 Hz allows the loop to quickly clear the queues and catch up to the sensor 

loop.  

The wait function inside the write-to-file loop is necessary for situations in which the 

write-to-file loop must clear accumulated data in the queue.  Removing the wait function 

essentially gives the write-to-file loop the highest priority among all the loops, allowing it to 

repeat as quickly as possible and potentially “steal” run time from the other loops. Adding the 

wait-function ensures that this does not occur. However, exact timing of the loops is difficult to 

analyze because LabVIEW automatically handles system scheduling. 

 

Table 5.2 System timing results for write-to-file times for GNSS receivers for Trials 1, 2, 

and 3 

 Trial 1 Trial 2 Trial 3 

Ave. Period (ms) 199.769 199.409 199.322 

Ave. Freq (Hz) 5.006 5.015 5.017 

SD Period (ms) 35.838 32.582 35.715 

Min (ms) 8.000 1.000 2.000 

Max (ms) 509.000 516.000 562.000 

 

 

Figure 5.3 Wait function inside write-to-file loops set to 10 ms (100 Hz) 
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Results for all three GreenSeeker sensor loops in Trials 1, 2, and 3 indicate that the 

average period of reading-in data was approximately 122 ms, or a frequency of 8.15 Hz (Table 

5.3). The GreenSeekers were configured using RTCommander software to sample at 100 ms. 

The GreenSeekers were expected to send data every 100 ms, or at 10 Hz. However, this is not a 

problem with the phenotyping software because internal data timestamps of the GreenSeekers, 

columns “R1GSTS,” “R2GSTS,” and “R3GSTS,” have an average period of approximately 122 

ms. However, brief instances occur in the raw data in which the period decreases to 100 ms, or a 

sampling frequency of 10 Hz. When this decrease occurs, the read time period also decreases to 

approximately 100 ms; therefore, the phenotyping software can keep up with the GreenSeekers. 

Average waiting-to-read times (TDif columns) are similar to read times, indicating that, 

on average, as soon as a GreenSeeker data point is read from the serial port, the GreenSeeker 

sensor loop immediately returns to the beginning of the loop and waits for the next data point. 

Because the sensor loop must wait, consecutive data points are not frequently buffered in the 

serial port. 

Maximum read periods for three tests of all three GreenSeekers occurred during the third 

trial. The maximum periods were 1061 ms, 913 ms, and 937 ms for rows 1, 2, and 3, 

respectively. These periods represent significant delays in servicing serial ports connected to the 

GreenSeekers, and these delays result in buffered data that cannot be accurately georeferenced. 

Depending on when and where these delays occur during phenotyping, the data could still be 

assigned to the correct field plot, as when the delay in servicing the serial port occurs when the 

sensor is at the beginning of the plot but resumes when the sensor is in the middle of the plot. 

Frequent occurrence of these delays would be a problem, but the graph of the periods of more 

than 10,000 samples (Figure 5.4) indicatse less than ten instances that are significantly delayed, 

causing other data points to accumulate in the buffer. 
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Table 5.3 Summary of system timing results for all three trials for the average, standard 

deviation, and range of the read times (TS), write-to-file times (WT), data send times 

(GSTS), and waiting-to-read times (TDif) of GreenSeeker sensors in all three rows 

 

GreenSeeker 

Ave. 

Period 

(ms) 

Ave. Freq 

(Hz) 

SD 

Period 

(ms) 

Min (ms) Max (ms) 

Intended Period (ms) 100 100 100 100 100 

Intended Frequency (Hz) 10 10 10 10 10 

Trial 1 

R1 122.7 8.1 9.8 81.0 145.0 

R2 123.7 8.1 9.4 81.0 144.0 

R3 122.7 8.1 9.6 85.0 144.0 

WT 123.7 8.1 9.4 81.0 144.0 

R1GSTS 122.0 8.2 6.8 99.0 124.0 

R2GSTS 122.9 8.1 6.8 99.0 125.0 

R3GSTS 122.0 8.2 6.8 99.0 124.0 

R1TDif 122.7 8.2 9.8 81.0 145.0 

R2TDif 123.7 8.1 9.4 81.0 144.0 

R3TDif 122.7 8.2 9.6 85.0 144.0 

Trial 2 

R1 122.7 8.1 10.0 1.0 313.0 

R2 123.0 8.1 10.3 0.0 342.0 

R3 122.7 8.1 10.4 0.0 395.0 

WT 123.0 8.1 10.2 3.0 343.0 

R1GSTS 122.0 8.2 6.8 99.0 124.0 

R2GSTS 122.3 8.2 6.9 99.0 125.0 

R3GSTS 122.0 8.2 6.8 99.0 124.0 

R1TDif 122.7 8.2 10.1 0.0 313.0 

R2TDif 123.0 8.1 10.3 0.0 341.0 

R3TDif 122.7 8.2 10.5 0.0 395.0 

Trial 3 

R1 122.6 8.2 13.9 0.0 1061.0 

R2 122.6 8.2 13.1 0.0 913.0 

R3 122.6 8.2 13.7 0.0 937.0 

WT 122.6 8.2 13.3 1.0 914.0 

R1GSTS 121.9 8.2 6.9 99.0 124.0 

R2GSTS 121.9 8.2 6.9 99.0 125.0 

R3GSTS 121.9 8.2 6.9 99.0 124.0 

R1TDif 122.5 8.2 14.2 0.0 1061.0 

R2TDif 122.5 8.2 13.4 0.0 912.0 

R3TDif 122.5 8.2 14.1 0.0 937.0 
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Figure 5.4 Plots of read periods for GreenSeekers during the third trial showing significant 

delays in service of the serial port occurring less than 10 times in over 10,000 samples   
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 The average read, write, and wait periods for the Crop Circle sensors for all three trials 

were approximately 101 ms (~10 Hz) (Table 5.4). Maximum and minimum periods were 

identical for all Crop Circle sensors, with no significant delays and therefore no data buffering. 

When data was not buffered (Trial 1), the minimum delay was similar to the average value, and 

not zero. Maximum read periods in Trials 2 and 3 indicate significant delays for all Crop Circle 

sensors, with the exception of Row 1 during the second trial. Minimum read periods were zero, 

confirming that data was buffered, but Figure 5.5 suggests that this does not frequently occur. 

 

Table 5.4 Summary of the average, standard deviation, and range of the read times (TS), 

write-to-file times (WT), and waiting-to-read times (TDif) of Crop Circle sensors in all 

three rows and for all three trials 

 
Crop Circle 

Ave. 

Period 

(ms) 

Ave. Freq 

(Hz) 

SD Period 

(ms) 

Min (ms) Max (ms) 

Intended Period (ms) 100 100 100 100 100 

Intended Frequency (Hz) 10 10 10 10 10 

Trial 1 

R1 101.5 9.9 8.1 80.0 127.0 

R2 101.0 9.9 8.0 80.0 127.0 

R3 101.0 9.9 7.9 80.0 128.0 

WT 101.5 9.9 8.1 80.0 127.0 

R1TDif 101.4 9.9 8.1 80.0 127.0 

R2TDif 100.9 9.9 8.0 80.0 127.0 

R3TDif 101.0 9.9 7.9 80.0 128.0 

Trial 2 

R1 101.5 9.9 7.9 39.0 127.0 

R2 101.0 9.9 8.4 0.0 436.0 

R3 101.0 9.9 8.8 0.0 436.0 

WT 101.5 9.9 7.9 39.0 127.0 

R1TDif 101.4 9.9 7.9 39.0 127.0 

R2TDif 100.9 9.9 8.6 0.0 435.0 

R3TDif 100.9 9.9 9.0 0.0 435.0 

Trial 3 

R1 101.4 9.9 9.3 0.0 396.0 

R2 101.0 9.9 9.2 0.0 464.0 

R3 101.0 9.9 11.1 0.0 911.0 

WT 101.4 9.9 9.3 10.0 396.0 

R1TDif 101.4 9.9 9.5 0.0 396.0 

R2TDif 100.9 9.9 9.5 0.0 464.0 

R3TDif 100.9 9.9 11.5 0.0 911.0 
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Figure 5.5 Plots of read periods for Crop Circles during the third trial showing significant 

delays in service of the serial port occurring less than 10 times in over 10,000 samples 
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The 15:1 and 2:1 set of IRT sensors were polled, meaning that, in order to receive 

temperature measurements, a command or request must first be sent to the IRTs for each 

temperature measurement. Polling provides increased control over the rate at which 

measurements are sent and received. The disadvantage is the added time overhead of sending a 

command. 

Every 100 ms, a command is sent to the six IRTs (two in each sensor set). Data (Table 

5.5) from all three trials show that, on average, data is received from the IRTs every 100 ms, or 

at rate of 10 Hz. Data in Table 5.6 indicates that, on average, temperature readings are received 

approximately 15 ms after the command is sent. This estimates delays involved in sending data 

from the sensors to the computer. Typical maximum and minimum differences between times 

when the command was sent and the data was received for the first and second trials were 

approximately 31 ms and 10 ms, respectively. For the third trial, the maximum delay was 

significantly greater at approximately 138 ms. This does not mean that consecutive temperature 

data was buffered because the IRTs were polled. However, it does suggest that either the sent 

command was delayed on the way to the sensor, or reading of the data from the sensor was 

delayed, or the data was wating to be sent at the serial port but IRT modules were delayed in 

reading it. Exactly which situation occurred or if another situation occurred, cannot be 

determined with certainty, but the minimum wait time was 10 ms, equal to the delay added 

between the send and receive commands inside the IRT module (Figure D.9 and Figure D.12). 

This delay was added to give sensors time to respond before the module expected a response. 

Data suggests that this delay can be shortened or removed. 

The distance sensor module was initially designed to be polled, similar to the IRT. Four 

distance sensors, three ultrasonic sensors and one laser sensor, all output analog voltages which 

were measured using the NI 9207 DAQ. The DAQ was initially configured using the NI DAQ 

Assistant to take only one sample on demand. Initial testing revealed that when samples were 

requested every 100 ms (10 Hz), the average period of reading in data was approximately 125 ms 

(8 Hz), indicating a significant time overhead from continuously starting, stopping, and restarting 

data acquisition. To avoid this, the DAQ was reconfigured to continuously take samples at a rate 

of 10 Hz, thereby avoiding delays involved with starting and stopping data acquisition. This 

change made it similar to other non-polled sensors which continuously send data. If voltage data 
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are read less frequently from the DAQ than the rate at which the DAQ samples the sensor 

voltages, the sampled voltages will be buffered. 

 

Table 5.5 Summary of the average, standard deviation, and range of the read times (TS) 

and write-to-file times (WT) of IRT sensors in all three rows and for all three trials 

 

All distance sensors share the same timestamp since only one instance of the distance 

sensor module occurs in the phenotyping software. Data in Table 5.7 shows that the average read 

period is approximately 100 ms (10 Hz), with a standard deviation of approximately 8 ms. 

Maximum read time period for all test trials was 145 ms, less than twice the sample period, 

therefore, consecutive distance sensor data were not buffered in any of the trials. As shown in 

Figure 5.8, the plot of read periods for the third trial shows that a majority of read periods are 

 
IRT Sensor 

Ave. Period 

(ms) 

Ave. Freq 

(Hz) 

SD Period 

(ms) 

Min (ms) Max (ms) 

Intended Period (ms) 100 100 100 100 100 

Intended Frequency (Hz) 10 10 10 10 10 

Trial 1 

R1 15:1 100.0 10.0 12.8 42.0 156.0 

R2 15:1 100.0 10.0 12.9 43.0 157.0 

R3 15:1 100.0 10.0 12.6 41.0 159.0 

R1 2:1 100.0 10.0 13.0 43.0 163.0 

R2 2:1 100.0 10.0 13.1 43.0 161.0 

R3 2:1 100.0 10.0 12.9 45.0 157.0 

WT 100.0 10.0 13.1 43.0 161.0 

Trial 2 

R1 15:1 100.0 10.0 13.0 40.0 157.0 

R2 15:1 100.0 10.0 13.0 44.0 164.0 

R3 15:1 100.0 10.0 13.0 21.0 159.0 

R1 2:1 100.0 10.0 12.9 37.0 156.0 

R2 2:1 100.0 10.0 12.8 43.0 164.0 

R3 2:1 100.0 10.0 13.1 29.0 162.0 

WT 100.0 10.0 12.0 55.0 158.0 

Trial 3 

R1 15:1 100.0 10.0 12.9 42.0 201.0 

R2 15:1 100.0 10.0 13.1 34.0 201.0 

R3 15:1 100.0 10.0 13.3 18.0 201.0 

R1 2:1 100.0 10.0 13.1 45.0 211.0 

R2 2:1 100.0 10.0 13.0 31.0 201.0 

R3 2:1 100.0 10.0 13.1 26.0 201.0 

WT 100.0 10.0 12.2 22.0 204.0 
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between 90 ms and 110 ms, indicating that phenotyping software is capable of timely collecting 

distance sensor data. 

 

Table 5.6 Summary of the average, standard deviation, and range of command send-to-

read times (TDif) of IRT sensors in all three rows and for all three trials 

 

Table 5.7 Summary of the average, standard deviation, and range of the read times (TS), 

write-to-file times (WT), and waiting-to-read times (TDif) of distance sensors in all three 

rows and for all three trials 

 
IRT 

Ave. Period 

(ms) 

Ave. Freq 

(Hz) 

SD Period 

(ms) 

Min (ms) Max (ms) 

Trial 1 

R1 15:1 TDif 14.9 67.0 3.4 10.0 32.0 

R2 15:1 TDif 15.0 66.8 3.0 10.0 28.0 

R3 15:1 TDif 15.0 66.8 3.0 10.0 31.0 

R1 2:1 TDif 14.9 67.1 3.0 10.0 31.0 

R2 2:1 TDif 15.0 66.8 3.0 10.0 26.0 

R3 2:1 TDif 15.0 66.7 3.0 10.0 31.0 

Trial 2 

R1 15:1 TDif 15.0 66.6 3.1 10.0 31.0 

R2 15:1 TDif 15.2 65.9 2.6 10.0 28.0 

R3 15:1 TDif 15.1 66.1 2.6 10.0 31.0 

R1 2:1 TDif 15.1 66.2 2.7 10.0 26.0 

R2 2:1 TDif 15.1 66.2 2.6 10.0 28.0 

R3 2:1 TDif 15.2 65.9 2.6 10.0 32.0 

Trial 3 

R1 15:1 TDif 15.0 66.6 3.6 10.0 138.0 

R2 15:1 TDif 15.0 66.5 3.1 10.0 138.0 

R3 15:1 TDif 15.1 66.3 3.1 10.0 138.0 

R1 2:1 TDif 15.0 66.7 2.9 10.0 63.0 

R2 2:1 TDif 15.0 66.6 3.1 10.0 138.0 

R3 2:1 TDif 15.0 66.5 3.1 10.0 138.0 

Distance Sensors 
Ave. Period 

(ms) 

Ave. Freq 

(Hz) 

SD Period 

(ms) 

Min (ms) Max (ms) 

Trial 1 
All Rows 100.0 10.0 7.4 47.0 145.0 

WT 100.0 10.0 7.4 13.0 179.0 

RTDif 0.8 1228.1 1.0 0.0 3.0 

Trial 2 
All Rows 100.0 10.0 7.4 47.0 145.0 

WT 100.0 10.0 7.4 13.0 179.0 

RTDif 0.8 1228.1 1.0 0.0 3.0 

Trial 3 
All Rows 100.0 10.0 7.4 11.0 142.0 

WT 100.0 10.0 7.5 7.0 227.0 

RTDif 1.1 892.1 1.0 0.0 3.0 
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Figure 5.6 Plots of read periods for 15:1 IRTS during the third trial showing significant 

delays in service of the serial port occurring less than 10 times in over 10,000 samples 
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Figure 5.7 Plots of read periods for 2:1 IRTS during the third trial showing significant 

delays in service of the serial port occurring less than 10 times in over 10,000 samples 
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Figure 5.8 Plot of distance sensor read periods for the third trial showing that most read 

periods were between 90 ms and 110 ms and very few were over 120 ms 

 

In Figure 5.8, many points have read periods of 110 ms or 90 ms. The DAQ was 

configured to consistently send data every 100 ms. A read period of 110 ms indicates a delay of 

10 ms, assuming that the DAQ consistently sends data every 100 ms. If the distance sensor loop 

begins waiting at time 0 and reads the first data point generated at 100 ms, at 110 ms, the read 

period for that data point is 110 ms. Immediately after reading this point (at time ~110 ms), the 

distance sensor loop begins to wait for the next data point. This data point will be generated at 

time 200 ms. If no delays occur, the distance sensor loop will read this at time 200 ms, and the 

read period will be 90 ms. 

 Position Errors 

Phenotyping software has no control of the timing of when data is generated and sent 

from the sensors and GNSS receivers and when this data arrives at the communication ports. 
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Data can arrive and be read in any order and at any time in regular intervals. Position data is used 

to georeference the sensor data, but this position is not the exact position of the sensor data. 

Position error is a result of the phenotyper moving forward and the time difference between 

when sensor data is generated and when position data is generated. If the phenotyper is not 

moving, no position error occurs except for the inherent error of RTK-corrected GNSS data 

(approximately 2-3 cm). The exact moment when sensor data is generated is unknown. An 

approximation of when the position data is generated is the associated UTC, with a resolution of 

200 ms, but this is useless without a corresponding sensor UTC. The best approximation for the 

time difference between when data are generated is the time difference between when the 

phenotyper software receives sensor data and when it receives position data. 

Results of all three tests indicate that the average time difference between sensor data and 

position data was approximately 50 ms (Table 5.8), with a standard deviation of approximately 

30 ms. If the phenotyper is moving at 2 mph, the position error is approximately 4.5 cm. An 

average of 50 ms is to be expected since sensor data is received at 10 Hz and position data at 5 

Hz. If the sensor data and position data were perfectly synchronized, the time differences for 

consecutive samples would be 0 ms, 100 ms, 0 ms, 100ms, and so on. The average of this would 

be 50 ms. The minimum time difference in Table 5.8 is 0 ms, indicating that instances occurred 

when sensor data and position data were received at the same time. This also confirms that on the 

specific laptop used for the tests, multiple loops were running simultaneously. Maximum time 

difference varies between sensors and trials, but it was typically less than 200 ms. However, 

maximum time difference increased to approximately 1,300 ms for all three Crop Circle sensors 

during Trial 2, resulting in a position error of 116 cm (at 2 mph). The large delays for all sensors 

occurred at approximately 6,000 samples, indicating a systemwide delay. This roughly 

corresponds to the 10-minute mark during the test due to the power settings on the laptop which 

change the laptop display state after being idle for approximately 10 minutes.  

The position error of each sensor data point can be calculated and then used to correct its 

position and ensure that each data point is assigned to the correct field plot. The disadvantage is 

that it adds an additional step to the data post-processing pipeline. The alternative, also 

implemented by phenotyping software, is to tag each data point with the most recent position 

data. The phenotyping software saves five text files, each containing data collected from one 

type of sensor (one file for GreenSeekers, one for IRTs, etc.). Each row of sensor data also 
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contains the most recent position data points. Assuming no delays in generating and receiving 

sensor data or position data and assuming that position data and sensor data are not 

synchronized, the time difference between position data and sensor data ranges from 0 to 

approximately 200 ms.  Assuming a phenotyping speed of 2 mph, the position error would be 

17.9 cm. To reduce this error, the phenotyping speed can be decreased, resulting in more data per 

plot but reducing phenotyping throughput, or the number of plots able to be covered in a 

phenotyping run. Another solution would be to use a GNSS system that provides position data at 

a rate of 10 Hz, instead of 5 Hz, thus reducing the error to 9 cm since this reduces the time 

difference to 100 ms, assuming no delays. 
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Table 5.8 Summary statistics for sensor data time delays relative to position data 

Trial Sensor Average (ms) 
Standard 

Deviation (ms) 

Minimum 

(ms) 

Maximum 

(ms) 

Trial 1 

 GreenSeeker 1 49.2 30.3 0.0 179.0 

GreenSeeker 2 49.3 30.3 0.0 421.0 

GreenSeeker 3 49.2 30.1 0.0 186.0 

Crop Circle 1 49.3 29.7 0.0 173.0 

Crop Circle 2 49.4 29.6 0.0 154.0 

Crop Circle 3 49.4 29.7 0.0 179.0 

Height Sensors 49.8 19.5 0.0 177.0 

IRT 15:1 1 48.2 36.5 0.0 333.0 

IRT 15:1 2 48.9 29.1 0.0 162.0 

IRT 15:1 3 48.9 29.3 0.0 179.0 

IRT 2:1 1 49.0 29.2 0.0 165.0 

IRT 2:1 2 48.9 30.0 0.0 154.0 

IRT 2:1 3 49.0 29.3 0.0 165.0 

Trial 2 

GreenSeeker 1 49.2 30.0 0.0 138.0 

GreenSeeker 2 49.5 30.0 0.0 156.0 

GreenSeeker 3 49.3 30.1 0.0 134.0 

Crop Circle 1 49.9 39.1 0.0 1295.0 

Crop Circle 2 49.8 37.9 0.0 1295.0 

Crop Circle 3 49.9 37.4 0.0 1253.0 

Height Sensors 49.5 31.3 0.0 150.0 

IRT 15:1 1 48.5 28.0 0.0 136.0 

IRT 15:1 2 48.8 28.5 0.0 136.0 

IRT 15:1 3 48.9 28.4 0.0 136.0 

IRT 2:1 1 48.9 27.9 0.0 156.0 

IRT 2:1 2 49.1 28.4 0.0 136.0 

IRT 2:1 3 48.7 28.2 0.0 136.0 

Trial 3 

GreenSeeker 1 49.2 29.7 0.0 236.0 

GreenSeeker 2 49.4 30.2 0.0 235.0 

GreenSeeker 3 49.3 30.1 0.0 232.0 

Crop Circle 1 49.5 29.8 0.0 147.0 

Crop Circle 2 49.3 29.7 0.0 256.0 

Crop Circle 3 49.2 30.0 0.0 254.0 

Height Sensors 49.3 29.4 0.0 215.0 

IRT 15:1 1 48.6 27.2 0.0 245.0 

IRT 15:1 2 48.7 30.8 0.0 244.0 

IRT 15:1 3 48.8 30.7 0.0 244.0 

IRT 2:1 1 48.7 31.0 0.0 256.0 

IRT 2:1 2 48.7 30.7 0.0 245.0 

IRT 2:1 3 48.8 30.9 0.0 245.0 
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 Effects of Ambient Light Intensity and Ambient Temperature 

 

If changes in ambient light intensity and ambient temperature significantly affect sensor 

readings, then phenotyping data will be unreliable because differences between plant varieties 

and cultivars may be undetected or exaggerated.  The effect can be considered significant if it 

alters phenotypic trait conclusions. For example, consider a hypothetical situation where 

measured NDVI increases by 0.1 due to a change in light intensity from x1 to x2, and two 

varieties are present, v1 and v2, with a measured NDVI of 0.65 and 0.6, respectively, at x1. If v1 is 

measured at x1, but v2 is measured at x2, measured NDVIs will be 0.65 and 0.7 for v1 and v2, 

respectively. Therefore, the influence of changes in light intensity on NDVI readings would be 

significant because it changes the conclusion. Now v2 is “greener” than v1. Consider a similar 

scenario where NDVI only increases by 0.01. Therefore, NDVI readings would be 0.65 and 0.61 

for v1 and v2, respectively and the influence of changes in light intensity on NDVI readings may 

not be considered significant. Thus, determination of the relationship between sensor readings 

and influencing environmental factors is essential. 

 GreenSeeker 

As shown in Figure 5.9 and Table 5.9, results for the second verification test indicate that 

statistically ambient light intensity significantly affects GreenSeeker NDVI readings, but 

whether it is significant from an engineering or scientific perspective depends on the specific 

application. (Kim et al. 2010) found no significant change in NDVI response due to changes in 

artificial illumination, but did observe that as solar radiation increased, NDVI response was 

reduced, with a maximum deflection of 0.08 due to a change in light intensity of approximately 

150,000 lux. This finding is consistent with observed data in this study. Figure 5.9 was generated 

using R. The top graph is a plot of NDVI data with respect to light intensity and the fitted line. 

The bottom left graph is the standard residuals vs fitted plot, indicating whether a simple linear 

regression model is appropriate. If the data is randomly scattered about the fitted line and the 

data forms a horizontal band around the fitted line, a simple linear regression model is 

appropriate. The bottom right graph is a standard normal quantile-quantile (Q-Q plot) used to 

check whether the assumption that data is normally distributed is true. If data in the Q-Q plot 

forms a straight line, then the data is normally distributed.  The fitted line in Figure 5.9 indicates 
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an inversely proportional relationship between NDVI with a slope of -4.58e-07 NDVI·lux
-1

 and 

an R
2
 of 0.4372. Since the p-value is less than an alpha of 0.05, the slope is statistically 

significant at 95% confidence. Residual plots in Figure 5.9 indicate that this conclusion is 

reliable. Therefore, if phenotyping is conducted during the brightest part of the day (100,000 lux) 

and at night (0 lux), the difference between the data, as a result of the difference in light 

intensity, will be approximately 0.046. Typically, phenotyping is conducted between 9 AM and 3 

PM and the light intensity may vary by 40,000 lux. Therefore, GreenSeeker NDVI measurements 

will vary by 0.018. Whether these differences of 0.046 or 0.018  are significant depends on the 

level of precision required for the specific application.  

 

 

 

Figure 5.9 Fitted and residual plots of GreenSeeker data vs. ambient light intensity 
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Table 5.9 Summary statistics of GreenSeeker data vs. light intensity linear regression 

model 

 Dependent variable: GreenSeeker NDVI 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept)  0.6940  0.0006  1217.45  <2e-16  

LI  -4.581e-07   8.646e-09   -52.99  <2e-16 

Observations 3,614 

R
2
 0.4373545 

Adjusted R
2
 0.4371987 

Residual Std. Error 0.020093170000 (df = 3612) 

F Statistic 2,807.673
***

 (df = 1; 3612) (p = 0.00) 

Note: 
*
p

**
p

***
p<0.01 

 

 

Statistically, the relationship between ambient temperature and GreenSeeker NDVI 

readings is also significant (Figure 5.10 and Table 5.10), but the R
2
 value is 0.0097. Therefore, 

less than 1% of the variability in NDVI readings is explained by ambient temperature. The slope 

is approximately -0.00089 NDVI·°C
-1

, so if the temperature varied by 20°C, the NDVI reading 

would only change by 0.0179. 

 

Table 5.10 Summary statistics of Greenseeker NDVI vs. ambient temperature linear 

regression model 

 Dependent variable: GreenSeeker NDVI 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  0.6826677 0.0022229 307.102 <2e-16  

AmbTemp  -0.0008957 0.0001484 -6.037 1.73e-09 

Observations 3,614 

R
2
 0.010 

Adjusted R
2
 0.010 

Residual Std. Error 0.027 (df = 3612) 

F Statistic 36.447
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 
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Figure 5.10 Fitted and residual plots of GreenSeeker NDVI data with respect to ambient 

temperature 

 Crop Circle 

The Crop Circle data string contained five pieces of information: a user selectable 
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-1

, meaning that even if phenotyping was conducted 
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changed by 20°C during a phenotyping run, change in reflectance would only be 0.0008. Results 

are similar for Channels 2 and 3 (Appendix B - ). 

 

 

Figure 5.11 Fitted and residual plots of Crop Circle Channel 1 reflectance (670 nm) vs. 

light intensity 
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Table 5.11 Summary statistics of Crop Circle Channel 1 reflectance vs. light intensity 

linear regression model 

 Dependent variable: Crop Circle Channel 1 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  6.990e-02 3.338e-05 2094.3 <2e-16  

LI  -1.351e-08 5.062e-10 -26.7 <2e-16  

Observations 3,614 

R
2
 0.165 

Adjusted R
2
 0.165 

Residual Std. Error 0.001 (df = 3612) 

F Statistic 712.667
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 
Figure 5.12 Fitted and residual plots of Crop Circle Channel 1 reflectance (670 nm) vs. 

ambient temperature 
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Table 5.12 Summary statistics of Crop Circle Channel 1 reflectance vs. ambient 

temperature linear regression model 

 Dependent variable: Crop Circle Channel 1 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  6.857e-02 1.069e-04 641.660 <2e-16  

AmbTemp  4.167e-05 7.132e-06 5.843 5.59e-09 

Observations 3,614 

R
2
 0.009 

Adjusted R
2
 0.009 

Residual Std. Error 0.001 (df = 3612) 

F Statistic 34.139
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 

The first VI, or the NDVI calculated using the reflectance of the 670 nm (red) and the 

760 nm (near infrared) wavelengths, is not affected by ambient light intensity (Figure 5.13 and 

Table 5.13). Statistically, it is affected, however, by ambient temperature (Figure 5.14 and Table 

5.14), with a slope of 0.000455 NDVI·°C
-1

. Even if the temperature changes by 20°C, the NDVI 

would only change by 0.009, which is insignificant from a practical standpoint. Crop Circle 

NDVI readings cannot be directly compared to GreenSeeker NDVI (656 nm, 774 nm) because 

different wavelengths were used. The second Crop Circle VI was not analyzed. 

 

Table 5.13 Summary statistics of Crop Circle NDVI (670 nm, 760 nm) vs. light intensity 

linear regression model 

 Dependent variable: Crop Circle NDVI 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  4.863e-01 2.541e-04 1914.069 <2e-16  

LI  -7.065e-09 3.854e-09 -1.833 0.0669 

Observations 3,614 

R
2
 0.001 

Adjusted R
2
 0.001 

Residual Std. Error 0.009 (df = 3612) 

F Statistic 3.360
*
 (df = 1; 3612) (p = 0.067) 

Note: 
*
p

**
p

***
p<0.01 
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Figure 5.13 Fitted and residual plots of Crop Circle NDVI (670 nm, 760 nm) vs. light 

intensity 

Table 5.14 Summary statistics of Crop Circle NDVI (670 nm, 760 nm) vs. ambient 

temperature linear regression model 
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Note: 
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Figure 5.14 Fitted and residual plots of Crop Circle NDVI (670 nm, 760 nm) vs. ambient 

temperature 
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Table 5.15 Summary statistics of ultrasonic sensor distance vs. light intensity linear 

regression model 

 Dependent variable: Ultrasonic Distance 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  1.034e+02 3.496e-02 2956.62 <2e-16  

LI  7.242e-06 5.303e-07 13.65 <2e-16  

Observations 3,614 

R
2
 0.049 

Adjusted R
2
 0.049 

Residual Std. Error 1.232 (df = 3612) 

F Statistic 186.469
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 
Figure 5.15 Fitted and residual plots of ultrasonic sensor data with respect to ambient light 

intensity 
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Table 5.16 Summary statistics of ultrasonic distance sensor vs. ambient temperature linear 

regression model 

 Dependent variable: Ultrasonic Distance 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  1.028e+02 1.042e-01 986.58 <2e-16  

AmbTemp  6.275e-02 6.957e-03 9.02 <2e-16  

Observations 3,614 

R
2
 0.022 

Adjusted R
2
 0.022 

Residual Std. Error 1.250 (df = 3612) 

F Statistic 81.364
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 
Figure 5.16 Fitted and residual plots of ultrasonic sensor data with respect to ambient 

temperature 
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 Laser Sensor 

Figure 5.17 indicates that ambient light intensity affects laser sensor readings. Above 

20,000 lux, the laser sensor cannot consistently detect the reflected laser beam required to 

determine the distance. When this occurs, it defaults to the maximum distance limit set at 150 

cm. A group of points with a distance of approximately 80 cm occurs at approximately 70,000 

lux. These points can be ignored and are most likely a result of shadowing on just the spot where 

the laser was pointed. Shadowing could have occurred because the laser sensor was mounted 

directly on the toolbar, unlike the other sensors which were mounted away from the toolbar. The 

distance of this set of point is shorter than the other points, most likely because a brick was 

placed under the laser sensor during the first few hours of the experiment and then was later 

replaced with soil, the surface of which was farther from the sensor. 

Linear regression with respect to ambient light intensity (Figure 5.17) and ambient 

temperature (Figure 5.18) was done on a subset of the laser sensor data. Distance data over 100 

cm and below 80 cm were removed. Regression results (Table 5.17) indicate that no statistically 

significant relationship exists between the measured distance and light intensity since the p-value 

(0.673) is greater than 0.05. Similar to readings from the other sensors, a statistically significant 

relationship exists between the measured distance and ambient temperature (Table 5.18). The 

slope is 0.05327 cm·°C
-1

. A change of 20°C would result in a change in the distance 

measurement of approximately 1 cm. For phenotyping, this is insignificant because even a small 

dip or a clumped piece of soil along the wheel track will introduce a larger error. 
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Figure 5.17 Plots of raw laser sensor data vs. light intensity and ambient temperature 
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Figure 5.18 Fitted and residual plots of laser sensor data vs. ambient light intensity 
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Figure 5.19 Fitted and residual plots of laser sensor data with respect to ambient 

temperature 

 IRT 
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in ΔT can be explained by changes in light intensity. The slope of the relationship is 9.453e-05 

°C·lux
-1

; therefore, a change in light intensity of 100,000 lux will result in a ΔT of 9.4°C. 

Figure 5.21 indicates no linear trend between IRT ΔTs and ambient temperature; 

however, this does not mean that ambient temperature has no effect on IRT measurements. 

Based on this data, it is difficult to conclude what the effect is.  

 

 

 
Figure 5.20 Fitted and residual plots of 15:1 IRT sensor data vs. ambient light intensity 
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Table 5.19 Summary statistics of 15:1 IRT ΔT vs. light intensity linear regression model 

15:1 IRT Dependent variable: 15:1 IRT ΔT 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  -2.860 1.027e-01 -27.85 <2e-16  

LI  9.543e-05 1.558e-06 61.27 <2e-16  

Observations 3,614 

R
2
 0.510 

Adjusted R
2
 0.509 

Residual Std. Error 3.620 (df = 3612) 

F Statistic 3,753.743
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 

 
Figure 5.21 Plot of 2:1 and 15:1 IRT with respect to ambient temperature 
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Results for the 2:1 IRT (Figure 5.22 and Table 5.20) indicate that light intensity has a 

greater effect on it compared to 15:1 IRT. The slope of the fitted linear curve is larger (1.630e-04 

°C·lux-1), resulting in 16.3°C change in the reading for a 100,000 lux change in light intensity. 

This also indicates that 2:1 IRT has larger temperature readings as light intensity increases 

(Figure 5.23). The relationship of 2:1 IRT with respect to ambient temperature is similar to the 

relationship of 15:1 IRT with respect to ambient temperature. 

 

Figure 5.22 Fitted and residual plots of 2:1 IRT sensor data vs. ambient light intensity 
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Table 5.20 Summary statistics of 2:1 IRT ΔT vs. light intensity linear regression model 

2:1 IRT Dependent variable: 2:1 IRT ΔT 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  -8.567e-01 7.125e-02 -12.02 <2e-16  

LI  1.630e-04 1.081e-06 150.86 <2e-16  

Observations 3,614 

R
2
 0.863 

Adjusted R
2
 0.863 

Residual Std. Error 2.512 (df = 3612) 

F Statistic 22,759.690
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 

 

 
Figure 5.23 Comparison of 2:1 and 15:1 IRT temperature measurements with respect to 

ambient light intensity 
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Chapter 6 - Summary and Conclusions 

A mobile field-based, high-throughput phenotyping platform was developed. A sensor 

platform consisting of three sensor sets was assembled and mounted on a high-clearance vehicle. 

Each sensor set was composed of two infrared thermometers with different field of views, one 

ultrasonic sensor, one ACS-470 Crop Circle, and one GreenSeeker. Two GNSS receivers and a 

laser sensor were also installed. The sensor sets were connected to a laptop computer through a 

set of hubs. This accomplished the first object of assembling the phenotyping platform. 

Software to interface with the sensors, collect sensor and position data, and to 

georeference sensor data was developed using National Instruments LabVIEW. The main 

program was composed of several subVIs or modules developed to interface with each type of 

sensor. This accomplished the second objective. 

A system verification test was conducted to ensure that the developed phenotyping 

platform was capable of timely collecting sensor and position data. This test logged data 

timestamps for each sensor and position data point. The timestamps were used to determine the 

average, minimum, and maximum periods of incoming position data. The determination was 

made that, on average, phenotyping software is able to receive sensor and position data at the 

rate it is generated. Maximum and minimum periods indicated that, on occasion, system delays 

occur that result in consecutive data points being buffered, but this does not occur frequently and 

should not significantly affect system performance. This accomplished the third objective. 

A second test was conducted to determine the effects of ambient light intensity and 

ambient temperature on sensor readings. Test results indicated a statistically significant 

relationship between sensor readings from GreenSeekers, Crop Circles, and ultrasonic sensors 

and ambient light intensity and ambient temperature. Whether or not the relationship is 

significant from an engineering or a scientific perspective should be evaluated based on the 

specific application of the sensors. For the laser sensors, results indicated that when the sensor is 

aimed at bare soil, it cannot consistently measure distance at light intensities above 20,000 lux. 

The 2:1 and 15:1 IRT have statistically significant relationships with ambient light intensity.  A 

100,00 lux difference in light intensity results in a change of 9.4°C and 16.3°C for the 15:1 and 

2:1 IRTs, respectively. The surface temperature measurement error, relative to measurements 

from a thermocouple, increases with increasing light intensity. The rate of increase is greater for 
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the 2:1 IRT; therefore, as light intensity increases, the difference between readings from the 2:1 

IRT and 15:1 IRT increases. From the data collected, no conclusions could be made regarding 

the relationship between ambient temperature and IRT readings. Future studies should conduct a 

controlled test in which surface temperature and environmental factors, with the exception of 

ambient temperature, remain constant. The light intensity and ambient temperature test 

accomplished the fourth and last objective. 

 

 

 



85 

 

References 

Andrade-Sanchez, Pedro, Michael A Gore, John T Heun, Kelly R Thorp, A Elizabete Carmo-

Silva, Andrew N French, Michael E Salvucci, and Jeffrey W White. 2013. “Development 

and Evaluation of a Field-Based High-Throughput Phenotyping Platform.” Functional 

Plant Biology 41 (1). CSIRO PUBLISHING: 68–79. doi:10.1071/FP13126. 

Araus, José Luis, and Jill E Cairns. 2013. “Field High-Throughput Phenotyping: the New Crop 

Breeding Frontier.” Trends in Plant Science. doi:10.1016/j.tplants.2013.09.008. 

Araus, José Luis, Gustavo A Slafer, Conxita Royo, and M Dolores Serret. 2008. “Breeding for 

Yield Potential and Stress Adaptation in Cereals.” Dx.Doi.org 27 (6).  Taylor & Francis 

Group: 377–412. doi:10.1080/07352680802467736. 

Banner Engineering. 2005. “LT3 Long-Range Time-of-Flight Sensor.” Minneapolis, MN U.S.A. 

Benson, Tom, ed. 2014. “Speed of Sound.” Nasa. Accessed January 29. 

https://www.grc.nasa.gov/www/k-12/airplane/sound.html. 

Berger, Bettina, Bas de Regt, and Mark Tester. 2013. “Applications of High-Throughput Plant 

Phenotyping to Study Nutrient Use Efficiency.” Plant Mineral Nutrients (Chapter 18). 

Totowa, NJ: Humana Press: 277–90. doi:10.1007/978-1-62703-152-3_18. 

Busemeyer, L, D Mentrup, K Möller, E Wunder, and K Alheit. 2013. “BreedVision—a Multi-

Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding.” 

Sensors. 

Cabrera Bosquet, Llorenç, José Crossa, Jarislav von Zitzewitz, María Dolors Serret, and José 

Luis Araus. 2012. “High‐ Throughput Phenotyping and Genomic Selection: the Frontiers 

of Crop Breeding ConvergeF.” Journal of Integrative Plant Biology 54 (5). Blackwell 

Publishing Asia: 312–20. doi:10.1111/j.1744-7909.2012.01116.x. 

Cobb, Joshua N, Genevieve DeClerck, Anthony Greenberg, Randy Clark, and Susan McCouch. 

2013. “Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our 

Understanding of Genotype–Phenotype Relationships and Its Relevance to Crop 

Improvement.” Theoretical and Applied Genetics 126 (4). Springer-Verlag: 867–87. 

doi:10.1007/s00122-013-2066-0. 

Daigle, G A, J E Piercy, and T F W Embleton. 1978. “Effects of Atmospheric Turbulence on the 

Interference of Sound Waves Near a Hard Boundary.” The Journal of the Acoustical 

Society of America 64 (2). Acoustical Society of America: 622–30. 

doi:10.1121/1.381998. 

Fiorani, Fabio, and Ulrich Schurr. 2013. “Future Scenarios for Plant Phenotyping.” Dx.Doi.org.  

Annual Reviews. doi:10.1146/annurev-arplant-050312-120137. 



86 

 

Furbank, Robert T, and Mark Tester. 2011. “Phenomics--Technologies to Relieve the 

Phenotyping Bottleneck..” Trends in Plant Science 16 (12): 635–44. 

doi:10.1016/j.tplants.2011.09.005. 

Ingvarsson, Pär K, and Nathaniel R Street. 2011. “Association Genetics of Complex Traits in 

Plants.” New Phytologist 189 (4). Blackwell Publishing Ltd: 909–22. doi:10.1111/j.1469-

8137.2010.03593.x. 

Kaplan, Elliott D, and Christopher J Hegarty. 2005. Understanding GPS. Artech House. 

Kim, Y, D M Glenn, J Park, H K Ngugi, and B L LEHMAN. 2010. “Active Spectral Sensor 

Evaluation Under Varying Condition.” ASABE Paper. 

Kipp, S, B Mistele, P Baresel, and U Schmidhalter. 2013. “High-Throughput Phenotyping Early 

Plant Vigour of Winter Wheat.” European Journal of …. 

Lan, Yubin. 2009. “Development of an Integration Sensor and Instrumentation System for 

Measuring Crop Conditions.” Agricultural Engineering International: CIGR Journal 0 

(0). 

Mendelson, Kenneth S. 2006. “The Story of C.” American Journal of Physics 74 (11): 995. 

doi:10.1119/1.2238887. 

MICRO-EPSILON. 2013. Basics of Non Contact Temperature Measurement. 

Mogel, von, K H. 2013. “Phenomics Revolution.” 

Montes, J M, A E Melchinger, and J C Reif. 2007a. “Novel Throughput Phenotyping Platforms 

in Plant Genetic Studies.” Trends in Plant Science. 

Montes, Juan M, Albrecht E Melchinger, and Jochen C Reif. 2007b. “Novel Throughput 

Phenotyping Platforms in Plant Genetic Studies.” Trends in Plant Science 12 (10): 433–

36. doi:10.1016/j.tplants.2007.08.006. 

NovAtel. 2014. “An Introduction to GNSS | Chapter 1 - GNSS Overview | NovAtel.” NovAtel. 

Accessed March 4. http://www.novatel.com/an-introduction-to-gnss/chapter-1-gnss-

overview/. 

Pieruschka, R, and H Poorter. 2012. “Phenotyping Plants: Genes, Phenes and Machines.” 

Functional Plant Biology. 

Randall Smith, MicroImages, Inc. 2001. “Hyperspectral Imaging”: 1–24. 

Stephens, S Chod, and V Philip Rasmussen. “High-End DGPS and RTK Systems.” 

Thomas, Howard, and Helen Ougham. 2014. “The Stay-Green Trait..” Journal of Experimental 

Botany. Oxford University Press: eru037. doi:10.1093/jxb/eru037. 



87 

 

Varshney, Rajeev K, Spurthi N Nayak, Gregory D May, and Scott A Jackson. 2009. “Next-

Generation Sequencing Technologies and Their Implications for Crop Genetics and 

Breeding.” Trends in Biotechnology 27 (9): 522–30. doi:10.1016/j.tibtech.2009.05.006. 

White, Jeffrey W, and Matthew M Conley. 2013. “A Flexible, Low-Cost Cart for Proximal 

Sensing.” Crop Science 53 (4). The Crop Science Society of America, Inc.: 1646–49. 

doi:10.2135/cropsci2013.01.0054. 

White, Jeffrey W, Pedro Andrade-Sanchez, Michael A Gore, Kevin F Bronson, Terry A Coffelt, 

Matthew M Conley, Kenneth A Feldmann, et al. 2012. “Field-Based Phenomics for Plant 

Genetics Research.” Field Crops Research 133: 101–12. doi:10.1016/j.fcr.2012.04.003. 

Wong, George S K. 1986. “Speed of Sound in Standard Air.” The Journal of the Acoustical 

Society of America 79 (5). Acoustical Society of America: 1359–66. 

doi:10.1121/1.393664. 

Yang, Wanneng, Lingfeng Duan, Guoxing Chen, Lizhong Xiong, and Qian Liu. 2013. “Plant 

Phenomics and High-Throughput Phenotyping: Accelerating Rice Functional Genomics 

Using Multidisciplinary Technologies.” Current Opinion in Plant Biology 16 (2): 180–

87. doi:10.1016/j.pbi.2013.03.005. 

2008. “AgGPS® 432/442 GPS Receivers.” Trimble Navigation Limited. 

2012. “Physiological Breeding II: a Field Guide to Wheat Phenotyping.” 

2013. “NI-Datasheet-Ds-187”: 1–7. 

 

  



88 

 

Appendix A - R Programs for Statistical Analysis 

 GreenSeeker 

#This program processes the GreenSeeker Data 
# 
#sensorData - table where the raw sensor data is stored 
#  the GNSS/GPS coordinates are not included in this table 
#sensorReadPeriods - data frame where the calculated time periods are stored 
#  Column Names: R1, R2, R3, WT, R1GSTS, R2GSTS, R3GSTS 
#  ... R1 is the column name for the read/timestamp periods of the row 1 
GreenSeeker 
#summaryTable - summary of the period statiscs for each sensor 
#  Column Names Ave. Period, Ave. Freq, SD Period, Min, Max 
 
 
#set working directory 
setwd("directory")  
filename = '2014-03-21_1240_GreenSeekerData.txt' 
sensorData = read.table(file=filename, header=T, sep = '\t', row.names = "Index", 
skip = 2) 
 
#Clean up the data in sensorData - remove extra columns 
colsToDelete = c('Left_UTCTime','Left_Elevation', 
'Left_Latitude','Left_Longitude','Right_UTCTime','Right_Elevation', 
'Right_Latitude', 'Right_Longitude') 
colsToDelete = !(names(sensorData) %in% colsToDelete) 
sensorData = sensorData[,colsToDelete]  #columns to delete 
 
 
######################################### 
########## Calculate Periods ############ 
######################################### 
 
#column names for sensorReadPeriods 
columnNames = c('R1','R2','R3','WT','R1GSTS', 'R2GSTS', 'R3GSTS', 
'R1TDif','R2TDif','R3TDif') 
#create sensorReadPeriods data frame 
sensorReadPeriods = data.frame(matrix(nrow=nrow(sensorData)-1, 
ncol=length(columnNames))) 
#sensorReadPeriods[1,]=c(sensorData$Row1TS[1],sensorData$Row2TS[1],sensorData$Row3TS[
1]) #assign values for Row1 
colnames(sensorReadPeriods) = columnNames 
 
#Calculate periods from the timestamp data 
for(i in 1:nrow(sensorReadPeriods)){ 
 sensorReadPeriods$R1[i] = sensorData$Row1TS[i+1]-sensorData$Row1TS[i] 
 sensorReadPeriods$R2[i] = sensorData$Row2TS[i+1]-sensorData$Row2TS[i] 
 sensorReadPeriods$R3[i] = sensorData$Row3TS[i+1]-sensorData$Row3TS[i] 
 sensorReadPeriods$WT[i] = sensorData$Write_TS[i+1]-sensorData$Write_TS[i] 
 sensorReadPeriods$R1GSTS[i] = sensorData$Row1GSTS[i+1]-sensorData$Row1GSTS[i] 
 sensorReadPeriods$R2GSTS[i] = sensorData$Row2GSTS[i+1]-sensorData$Row2GSTS[i] 
 sensorReadPeriods$R3GSTS[i] = sensorData$Row3GSTS[i+1]-sensorData$Row3GSTS[i] 
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 sensorReadPeriods$R1TDif[i] = sensorData$Row1TS[i]-sensorData$Row1TI[i] 
 sensorReadPeriods$R2TDif[i] = sensorData$Row2TS[i]-sensorData$Row2TI[i] 
 sensorReadPeriods$R3TDif[i] = sensorData$Row3TS[i]-sensorData$Row3TI[i] 
} 
 
#print(summary(sensorReadPeriods[-(1:20),]),) 
 
##### Period Statistics Calculations ##### 
# Average, Standard Deviation, and Range 
#avePeriod = c(mean(sensorReadPeriods$R1),mean(sensorReadPeriods$R2), 
mean(sensorReadPeriods$R3)) 
avePeriod = apply(sensorReadPeriods[-(1:100),], 2, mean) #shorter method 
aveFrequency = 1/avePeriod*1000 
stdevPeriod = apply(sensorReadPeriods[-(1:100),], 2, sd) 
rangePeriod = apply(sensorReadPeriods[-(1:100),], 2, range) 
 
rowNames = c("Ave. Period (ms)", "Ave. Freq (Hz)", "SD Period (ms)", "Min (ms)", "Max 
(ms)") 
 
#join the above vectors into a table 
summaryTable = rbind(avePeriod,aveFrequency,stdevPeriod,rangePeriod) 
rownames(summaryTable) = rowNames  #assign rownames 
print(summaryTable) 
 
 
########################################################### 
########## Link GreenSeeker Data With GPS Data ############ 
########################################################### 
 
#calculate the average time delay, the min and maximum time delay 
#final output table of linked data 
 
columnNames = c('SIndex','LGPSIndex','RGPSIndex','TimeDelay', 'WhichGPS') 
#GreenSeeker Row 1 
 
S1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S2 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S3 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
 
Slist = list(S1=S1, S2=S2, S3=S3) 
TSlist = list(sensorData$Row1TS,sensorData$Row2TS, sensorData$Row3TS) 
 
for(L in 1:length(Slist)) { 
 names(Slist[[L]]) = columnNames  
} 
 
#colnames(S1) = columnNames 
 
for(L in 1:length(Slist)) { 
 LstartingIndex = 1 
 LGPSIndex = 1 
 RstartingIndex = 1 
 RGPSIndex = 1 
 for (i in 1:nrow(Slist[[L]])){ 
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  #sensorTS = sensorData$Row1TS[i] 
  sensorTS = TSlist[[L]][i] 
  LcurDiff = abs(sensorTS - LeftGPSData$TS[LstartingIndex]) 
  RcurDiff = abs(sensorTS - RightGPSData$TS[RstartingIndex]) 
  LprevDiff = LcurDiff 
  RprevDiff = RcurDiff 
  #print(i) 
   
  #Left GPS Loop 
  for (j in LstartingIndex:nrow(LeftGPSData)){ 
   LcurDiff = abs(sensorTS - LeftGPSData$TS[j]) 
   if (LcurDiff < LprevDiff) { 
    LprevDiff = LcurDiff 
    LGPSIndex = j 
    print(j) 
   } 
   else if(LcurDiff >LprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  #Right GPS Loop 
  for (k in RstartingIndex:nrow(RightGPSData)){ 
   RcurDiff = abs(sensorTS - RightGPSData$TS[k]) 
   if (RcurDiff < RprevDiff) { 
    RprevDiff = RcurDiff 
    RGPSIndex = k 
    print(k) 
   } 
   else if(RcurDiff >RprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  saveLGPSIndex = LGPSIndex # for use later in updating the starting index used 
above 
  saveRGPSIndex = RGPSIndex # for use later in updating the starting index used 
above 
   
  #compare time delay(RprevDiff and LprevDiff) values 
  #first - check if UTC of GPS's are the same 
  if(LeftGPSData$UTC[LGPSIndex] == RightGPSData$UTC[RGPSIndex]){ 
   #choose the time delay based on the GPS with the earliest time stamp 
   if(LeftGPSData$TS[LGPSIndex]<=RightGPSData$TS[RGPSIndex]){ 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
   } 
   else { 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
   }  
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   Slist[[L]]$LGPSIndex[i] = LGPSIndex 
   Slist[[L]]$RGPSIndex[i] = RGPSIndex 
  } 
  else { #if the UTC's are not equal 
   #Go with the GPS associated with the shortest delay 
   if(LprevDiff<=RprevDiff){ #choose Left GPS 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
    Slist[[L]]$LGPSIndex[i] = LGPSIndex 
     
    #search for the Right Side GPS with equal or nearest UTC 
    UTCDiff = LeftGPSData$UTC[LGPSIndex] - RightGPSData$UTC[RGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     RGPSIndex = RGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(RightGPSData)) {RGPSIndex = 1} 
    else { 
     RGPSIndex = RGPSIndex + IndexAdjust -5 
    } 
    if (RGPSIndex < 1) RGPSIndex = 1 
    else if(RGPSIndex >= nrow(RightGPSData)) RGPSIndex = 
nrow(RightGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[RGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = RGPSIndex 
    for (t in RGPSIndex:nrow(RightGPSData)){ 
     UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) {  
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the S1 data frame 
    Slist[[L]]$RGPSIndex[i] = Index 
   } #end of If statement 
   else{ #choose Right GPS 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
    Slist[[L]]$RGPSIndex[i] = RGPSIndex 
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    #search fo the Left Side GPS with equal or nearest UTC 
    UTCDiff = RightGPSData$UTC[RGPSIndex] - LeftGPSData$UTC[LGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     LGPSIndex = LGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(LeftGPSData)) {LGPSIndex = 1} 
    else { 
     LGPSIndex = LGPSIndex + IndexAdjust -5 
    } 
    if (LGPSIndex < 1) LGPSIndex = 1 
    else if(LGPSIndex >= nrow(LeftGPSData)) LGPSIndex = 
nrow(LeftGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[LGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = LGPSIndex 
    for (t in LGPSIndex:nrow(LeftGPSData)){ 
     UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) { 
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the S1 data frame 
    Slist[[L]]$LGPSIndex[i] = Index 
   } #end of else statement 
  }#end of else statement - UTC are not equal statement 
   
  Slist[[L]]$SIndex[i] = i 
  LstartingIndex = saveLGPSIndex 
  RstartingIndex = saveRGPSIndex 
  #if(startingIndex < 1) startingIndex = 1 
 }  
} #end of for loop 
 
 
############################################## 
########## Save GS Data in a Table  ########## 
############################################### 
 
columnNames = c('NDVI', 'Index2', 'TimeDelay', 'WhichGPS', 
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'L_UTC','L_Lat','L_Lon','L_Elev','R_UTC','R_Lat','R_Lon','R_Elev') 
S1Filled = data.frame(matrix(nrow = nrow(S1), ncol = length(columnNames))) 
S2Filled = data.frame(matrix(nrow = nrow(S2), ncol = length(columnNames))) 
S3Filled = data.frame(matrix(nrow = nrow(S3), ncol = length(columnNames))) 
 
SFlist = list(S1Filled = S1Filled, S2Filled = S2Filled, S3Filled = S3Filled) 
 
for(L in 1:length(SFlist)) { 
 colnames(SFlist[[L]]) = columnNames 
} 
 
for(L in 1:length(SFlist)){ 
 if(L == 1){ 
  SFlist[[L]]$NDVI = sensorData$Row1NDVI 
  SFlist[[L]]$Index2 = sensorData$Row1ExtraVI 
 } 
 else if(L == 2){ 
  SFlist[[L]]$NDVI = sensorData$Row2NDVI 
  SFlist[[L]]$Index2 = sensorData$Row2ExtraVI 
 } 
 else if(L == 3){ 
  SFlist[[L]]$NDVI = sensorData$Row3NDVI 
  SFlist[[L]]$Index2 = sensorData$Row3ExtraVI 
 } 
 SFlist[[L]]$TimeDelay = Slist[[L]]$TimeDelay 
 SFlist[[L]]$WhichGPS = Slist[[L]]$WhichGPS 
 SFlist[[L]][,(length(columnNames)-8):length(columnNames)]= 
LeftGPSData[Slist[[L]]$LGPSIndex,1:4] 
 SFlist[[L]][,(length(columnNames)-
4):length(columnNames)]=RightGPSData[Slist[[L]]$RGPSIndex, 1:4] 
  
 ############################################ 
 #########  Write GS Data to a File ######### 
 ############################################# 
 filedate = substring(filename,1,16) 
 filename = paste0(filedate,'GreenSeeker') 
 filename = paste0(filename,names(SFlist[L])) 
 filename = paste0(filename,'.txt') 
 write.table(SFlist[[L]], file = filename, append = FALSE, quote = TRUE, sep = "\t", 
             eol = "\n", na = "NA", dec = ".", row.names = FALSE, 
             col.names = TRUE, qmethod = c("escape", "double"), 
             fileEncoding = "") 
} 
 
 
############################################## 
########## Analyze Time Delays ############## 
############################################## 
AveTimeDelay = c(mean(Slist$S1$TimeDelay),mean(Slist$S2$TimeDelay), 
mean(Slist$S3$TimeDelay) ) 
SDTimeDelay = c(sd(Slist$S1$TimeDelay),sd(Slist$S2$TimeDelay), sd(Slist$S3$TimeDelay) 
) 
MinTimeDelay = c(min(Slist$S1$TimeDelay), min(Slist$S2$TimeDelay), 
min(Slist$S3$TimeDelay) ) 
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MaxTimeDelay = c(max(Slist$S1$TimeDelay), max(Slist$S2$TimeDelay), 
max(Slist$S3$TimeDelay) ) 
 
TimeDelayTable = rbind(AveTimeDelay,SDTimeDelay,MinTimeDelay, MaxTimeDelay) 
colnames(TimeDelayTable) = c("GreenSeeker 1", "GreenSeeker 2", "GreenSeeker 3") 
rownames(TimeDelayTable) = c("Average (ms)", "Standard Deviation (ms)","Minimum 
(ms)", "Maximum (ms)") 
 
############################################## 
######## Write Summary Results To File ######## 
############################################## 
 filename = paste0(filedate,'GreenSeekerStatSummary') 
 filename = paste0(filename,'.txt') 
write.table(summaryTable, file = filename, append = FALSE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
             
write.table(TimeDelayTable, file = filename, append = TRUE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
 
 
############################################## 
######## Print Plots and Graphs ######## 
############################################## 
dev.new(width = 8, height = 10) 
op=par(mfrow=c(2,2)) 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R1, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 1 GreenSeeker Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R2, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 2 GreenSeeker Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R3, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 3 GreenSeeker Read Periods") 
par(op) 
 
dev.new(width = 8, height = 8) 

plot(1:length(Slist[[1]]$TimeDelay), Slist[[1]]$TimeDelay, xlab = "Sample 

Number", ylab = "Time Difference (ms)", main="GreenSeeker") 
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 Crop Circle 

#This program processes the Crop Circle Data 
# 
#sensorData - table where the raw sensor data is stored 
#  the GNSS/GPS coordinates are not included in this table 
#sensorReadPeriods - data frame where the calculated time periods are stored 
#  Column Names: R1, R2, R3, WT, R1TDif, R2TDif, R3TDif 
#  ... R1 is the column name for the read/timestamp periods of the row 1 
Crop Circle 
#  ... R1TDif is the column name for the difference in TS - TI for Row 1, 
#  ... Technically, R1TDif, R2TDif, and R3TDif and not periods, they are 
wait times 
#summaryTable - summary of the period statiscs for each sensor 
#  Column Names Ave. Period, Ave. Freq, SD Period, Min, Max 
 
 
#set working directory 
setwd("directory")  
filename = '2014-03-21_1240_CropCircleData.txt' 
sensorData = read.table(file=filename, header=T, sep = '\t', row.names = "Index", 
skip = 2) 
 
 
#Clean up the data in sensorData - remove extra columns 
colsToDelete = c('Left_UTCTime','Left_Elevation', 
'Left_Latitude','Left_Longitude','Right_UTCTime','Right_Elevation', 
'Right_Latitude', 'Right_Longitude') 
colsToDelete = !(names(sensorData) %in% colsToDelete) 
sensorData = sensorData[,colsToDelete]  #columns to delete 
 
 
######################################### 
########## Calculate Periods ############ 
######################################### 
 
#column names for sensorReadPeriods 
columnNames = c('R1','R2','R3','WT','R1TDif','R2TDif','R3TDif') 
#create sensorReadPeriods data frame 
sensorReadPeriods = data.frame(matrix(nrow=nrow(sensorData)-1, 
ncol=length(columnNames))) 
#sensorReadPeriods[1,]=c(sensorData$Row1TS[1],sensorData$Row2TS[1],sensorData$Row3TS[
1]) #assign values for Row1 
colnames(sensorReadPeriods) = columnNames 
 
#Calculate periods from the timestamp data 
for(i in 1:nrow(sensorReadPeriods)){ 
 sensorReadPeriods$R1[i] = sensorData$Row1TS[i+1]-sensorData$Row1TS[i] 
 sensorReadPeriods$R2[i] = sensorData$Row2TS[i+1]-sensorData$Row2TS[i] 
 sensorReadPeriods$R3[i] = sensorData$Row3TS[i+1]-sensorData$Row3TS[i] 
 sensorReadPeriods$WT[i] = sensorData$Write_TS[i+1]-sensorData$Write_TS[i] 
 sensorReadPeriods$R1TDif[i] = sensorData$Row1TS[i]-sensorData$Row1TI[i] 
 sensorReadPeriods$R2TDif[i] = sensorData$Row2TS[i]-sensorData$Row2TI[i] 
 sensorReadPeriods$R3TDif[i] = sensorData$Row3TS[i]-sensorData$Row3TI[i] 
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} 
 
#print(summary(sensorReadPeriods[-(1:20),]),) 
 
##### Period Statistics Calculations ##### 
# Average, Standard Deviation, and Range 
#avePeriod = c(mean(sensorReadPeriods$R1),mean(sensorReadPeriods$R2), 
mean(sensorReadPeriods$R3)) 
avePeriod = apply(sensorReadPeriods[-(1:100),], 2, mean) #shorter method 
aveFrequency = 1/avePeriod*1000 
stdevPeriod = apply(sensorReadPeriods[-(1:100),], 2, sd) 
rangePeriod = apply(sensorReadPeriods[-(1:100),], 2, range) 
 
rowNames = c("Ave. Period (ms)", "Ave. Freq (Hz)", "SD Period (ms)", "Min (ms)", "Max 
(ms)") 
 
#join the above vectors into a table 
summaryTable = rbind(avePeriod,aveFrequency,stdevPeriod,rangePeriod) 
rownames(summaryTable) = rowNames  #assign rownames 
print(summaryTable) 
 
 
 
########################################################### 
########## Link Crop Circle Data With GPS Data ############ 
########################################################### 
 
#calculate the average time delay, the min and maximum time delay 
#final output table of linked data 
 
columnNames = c('SIndex','LGPSIndex','RGPSIndex','TimeDelay', 'WhichGPS') 
#GreenSeeker Row 1 
 
S1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S2 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S3 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
 
Slist = list(S1=S1, S2=S2, S3=S3) 
TSlist = list(sensorData$Row1TS,sensorData$Row2TS, sensorData$Row3TS) 
 
for(L in 1:length(Slist)) { 
 names(Slist[[L]]) = columnNames  
} 
 
 
 
for(L in 1:length(Slist)) { 
 LstartingIndex = 1 
 LGPSIndex = 1 
 RstartingIndex = 1 
 RGPSIndex = 1 
 for (i in 1:nrow(Slist[[L]])){ 
   
  #sensorTS = sensorData$Row1TS[i] 
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  sensorTS = TSlist[[L]][i] 
  LcurDiff = abs(sensorTS - LeftGPSData$TS[LstartingIndex]) 
  RcurDiff = abs(sensorTS - RightGPSData$TS[RstartingIndex]) 
  LprevDiff = LcurDiff 
  RprevDiff = RcurDiff 
  #print(i) 
   
  #Left GPS Loop 
  for (j in LstartingIndex:nrow(LeftGPSData)){ 
   LcurDiff = abs(sensorTS - LeftGPSData$TS[j]) 
   if (LcurDiff < LprevDiff) { 
    LprevDiff = LcurDiff 
    LGPSIndex = j 
    print(j) 
   } 
   else if(LcurDiff >LprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  #Right GPS Loop 
  for (k in RstartingIndex:nrow(RightGPSData)){ 
   RcurDiff = abs(sensorTS - RightGPSData$TS[k]) 
   if (RcurDiff < RprevDiff) { 
    RprevDiff = RcurDiff 
    RGPSIndex = k 
    print(k) 
   } 
   else if(RcurDiff >RprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  saveLGPSIndex = LGPSIndex # for use later in updating the starting index used 
above 
  saveRGPSIndex = RGPSIndex # for use later in updating the starting index used 
above 
   
  #compare time delay(RprevDiff and LprevDiff) values 
  #first - check if UTC of GPS's are the same 
  if(LeftGPSData$UTC[LGPSIndex] == RightGPSData$UTC[RGPSIndex]){ 
   #choose the time delay based on the GPS with the earliest time stamp 
   if(LeftGPSData$TS[LGPSIndex]<=RightGPSData$TS[RGPSIndex]){ 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
   } 
   else { 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
   }  
   Slist[[L]]$LGPSIndex[i] = LGPSIndex 
   Slist[[L]]$RGPSIndex[i] = RGPSIndex 



98 

 

  } 
  else { #if the UTC's are not equal 
   #Go with the GPS associated with the shortest delay 
   if(LprevDiff<=RprevDiff){ #choose Left GPS 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
    Slist[[L]]$LGPSIndex[i] = LGPSIndex 
     
    #search for the Right Side GPS with equal or nearest UTC 
    UTCDiff = LeftGPSData$UTC[LGPSIndex] - RightGPSData$UTC[RGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     RGPSIndex = RGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(RightGPSData)) {RGPSIndex = 1} 
    else { 
     RGPSIndex = RGPSIndex + IndexAdjust -5 
    } 
    if (RGPSIndex < 1) RGPSIndex = 1 
    else if(RGPSIndex >= nrow(RightGPSData)) RGPSIndex = 
nrow(RightGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[RGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = RGPSIndex 
    for (t in RGPSIndex:nrow(RightGPSData)){ 
     UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) {  
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$RGPSIndex[i] = Index 
   } #end of If statement 
   else{ #choose Right GPS 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
    Slist[[L]]$RGPSIndex[i] = RGPSIndex 
     
    #search fo the Left Side GPS with equal or nearest UTC 
    UTCDiff = RightGPSData$UTC[RGPSIndex] - LeftGPSData$UTC[LGPSIndex] 
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    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     LGPSIndex = LGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(LeftGPSData)) {LGPSIndex = 1} 
    else { 
     LGPSIndex = LGPSIndex + IndexAdjust -5 
    } 
    if (LGPSIndex < 1) LGPSIndex = 1 
    else if(LGPSIndex >= nrow(LeftGPSData)) LGPSIndex = 
nrow(LeftGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[LGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = LGPSIndex 
    for (t in LGPSIndex:nrow(LeftGPSData)){ 
     UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) { 
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$LGPSIndex[i] = Index 
   } #end of else statement 
  }#end of else statement - UTC are not equal statement 
   
  Slist[[L]]$SIndex[i] = i 
  LstartingIndex = saveLGPSIndex 
  RstartingIndex = saveRGPSIndex 
  #if(startingIndex < 1) startingIndex = 1 
 }  
} #end of for loop 
 
 
 
############################################## 
########## Save GS Data in a Table  ########## 
############################################### 
 
columnNames = c('CalcOut1', 'CalcOut2','Chan1','Chan2','Chan3', 'TimeDelay', 
'WhichGPS', 'L_UTC','L_Lat','L_Lon','L_Elev','R_UTC','R_Lat','R_Lon','R_Elev') 
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S1Filled = data.frame(matrix(nrow = nrow(S1), ncol = length(columnNames))) 
S2Filled = data.frame(matrix(nrow = nrow(S2), ncol = length(columnNames))) 
S3Filled = data.frame(matrix(nrow = nrow(S3), ncol = length(columnNames))) 
 
SFlist = list(S1Filled = S1Filled, S2Filled = S2Filled, S3Filled = S3Filled) 
 
for(L in 1:length(SFlist)) { 
 colnames(SFlist[[L]]) = columnNames 
} 
 
for(L in 1:length(SFlist)){ 
 if(L==1){ 
  SFlist[[L]]$CalcOut1 = sensorData$Row1CalcOutput1 
  SFlist[[L]]$CalcOut2 = sensorData$Row1CalcOutput2 
  SFlist[[L]]$Chan1 = sensorData$Row1Channel1 
  SFlist[[L]]$Chan2 = sensorData$Row1Channel2 
  SFlist[[L]]$Chan3 = sensorData$Row1Channel3 
 } 
 else if(L==2){ 
  SFlist[[L]]$CalcOut1 = sensorData$Row2CalcOutput1 
  SFlist[[L]]$CalcOut2 = sensorData$Row2CalcOutput2 
  SFlist[[L]]$Chan1 = sensorData$Row2Channel1 
  SFlist[[L]]$Chan2 = sensorData$Row2Channel2 
  SFlist[[L]]$Chan3 = sensorData$Row2Channel3 
 } 
 else if(L==3){ 
  SFlist[[L]]$CalcOut1 = sensorData$Row3CalcOutput1 
  SFlist[[L]]$CalcOut2 = sensorData$Row3CalcOutput2 
  SFlist[[L]]$Chan1 = sensorData$Row3Channel1 
  SFlist[[L]]$Chan2 = sensorData$Row3Channel2 
  SFlist[[L]]$Chan3 = sensorData$Row3Channel3 
 } 
 
 SFlist[[L]]$TimeDelay = Slist[[L]]$TimeDelay 
 SFlist[[L]]$WhichGPS = Slist[[L]]$WhichGPS 
 SFlist[[L]][,(length(columnNames)-8):length(columnNames)]= 
LeftGPSData[Slist[[L]]$LGPSIndex,1:4] 
 SFlist[[L]][,(length(columnNames)-
4):length(columnNames)]=RightGPSData[Slist[[L]]$RGPSIndex, 1:4] 
  
 
 ############################################ 
 #########  Write GS Data to a File ######### 
 ############################################# 
 filedate = substring(filename,1,16) #grab the date 
 filename = paste0(filedate,'CropCircle') 
 filename = paste0(filename,names(SFlist[L])) 
 filename = paste0(filename,'.txt') 
 write.table(SFlist[[L]], file = filename, append = FALSE, quote = TRUE, sep = "\t", 
             eol = "\n", na = "NA", dec = ".", row.names = FALSE, 
             col.names = TRUE, qmethod = c("escape", "double"), 
             fileEncoding = "") 
} 
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############################################## 
########## Analyze Time Delays ############## 
############################################## 
AveTimeDelay = c(mean(Slist$S1$TimeDelay),mean(Slist$S2$TimeDelay), 
mean(Slist$S3$TimeDelay) ) 
SDTimeDelay = c(sd(Slist$S1$TimeDelay),sd(Slist$S2$TimeDelay), sd(Slist$S3$TimeDelay) 
) 
MinTimeDelay = c(min(Slist$S1$TimeDelay), min(Slist$S2$TimeDelay), 
min(Slist$S3$TimeDelay) ) 
MaxTimeDelay = c(max(Slist$S1$TimeDelay), max(Slist$S2$TimeDelay), 
max(Slist$S3$TimeDelay) ) 
 
TimeDelayTable = rbind(AveTimeDelay,SDTimeDelay,MinTimeDelay, MaxTimeDelay) 
colnames(TimeDelayTable) = c("CropCircle 1", "CropCircle 2", "CropCircle 3") 
rownames(TimeDelayTable) = c("Average (ms)", "Standard Deviation (ms)","Minimum 
(ms)", "Maximum (ms)") 
 
############################################## 
######## Write Summary Results To File ######## 
############################################## 
 filename = paste0(filedate,'CropCircleStatSummary') 
 filename = paste0(filename,'.txt') 
write.table(summaryTable, file = filename, append = FALSE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
             
write.table(TimeDelayTable, file = filename, append = TRUE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
 
 
 
############################################## 
######## Print Plots and Graphs ######## 
############################################## 
dev.new(width = 8, height = 10) 
op=par(mfrow=c(2,2)) 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R1, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 1 Crop Circle Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R2, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 2 Crop Circle Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R3, xlab = "Sample Number", ylab 
= "Read Period (ms)", main="Row 3 Crop Circle Read Periods") 
par(op) 
 
dev.new(width = 8, height = 8) 
plot(1:length(Slist[[1]]$TimeDelay), Slist[[1]]$TimeDelay, xlab = "Sample Number", 
ylab = "Time Difference (ms)", main="Crop Circle") 
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 Distance Sensor 

#This program processes the Distance Data From the Ultrasonic and Laser Sensors 
# 
#sensorData - table where the raw sensor data is stored 
#  the GNSS/GPS coordinates are not included in this table 
#sensorReadPeriods - data frame where the calculated time periods are stored 
#  Column Names: R123, WT, RTDif 
#  ... R123 is the column name for the read/timestamp periods of all the 
Distance Data 
#  ... RTDif is the column name for the difference in TS - TI 
#  ... Technically RTDif is not a period,but a wait times 
#summaryTable - summary of the period statiscs for each sensor 
#  Column Names Ave. Period, Ave. Freq, SD Period, Min, Max 
 
#set working directory 
setwd("Directory")  
filename = '2014-03-21_1240_HeightSensorData.txt' 
sensorData = read.table(file=filename, header=T, sep = '\t', row.names = "Index", 
skip = 2) 
 
 
#Clean up the data in sensorData - remove extra columns 
colsToDelete = c('Left_UTCTime','Left_Elevation', 
'Left_Latitude','Left_Longitude','Right_UTCTime','Right_Elevation', 
'Right_Latitude', 'Right_Longitude') 
colsToDelete = !(names(sensorData) %in% colsToDelete) 
sensorData = sensorData[,colsToDelete]  #columns to delete 
 
 
######################################### 
########## Calculate Periods ############ 
######################################### 
 
#column names for sensorReadPeriods 
columnNames = c('R123','WT','RTDif') 
#create sensorReadPeriods data frame 
sensorReadPeriods = data.frame(matrix(nrow=nrow(sensorData)-1, 
ncol=length(columnNames))) 
#sensorReadPeriods[1,]=c(sensorData$Row1TS[1],sensorData$Row2TS[1],sensorData$Row3TS[
1]) #assign values for Row1 
colnames(sensorReadPeriods) = columnNames 
 
#Calculate periods from the timestamp data 
for(i in 1:nrow(sensorReadPeriods)){ 
 sensorReadPeriods$R123[i] = sensorData$TS[i+1]-sensorData$TS[i] 
 sensorReadPeriods$WT[i] = sensorData$Write_TS[i+1]-sensorData$Write_TS[i] 
 sensorReadPeriods$RTDif[i] = sensorData$TS[i]-sensorData$WT[i] 
} 
 
#print(summary(sensorReadPeriods[-(1:20),]),) 
 
##### Period Statistics Calculations ##### 
# Average, Standard Deviation, and Range 
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#avePeriod = c(mean(sensorReadPeriods$R1),mean(sensorReadPeriods$R2), 
mean(sensorReadPeriods$R3)) 
avePeriod = apply(sensorReadPeriods[-(1:100),], 2, mean) #shorter method 
aveFrequency = 1/avePeriod*1000 
stdevPeriod = apply(sensorReadPeriods[-(1:100),], 2, sd) 
rangePeriod = apply(sensorReadPeriods[-(1:100),], 2, range) 
 
rowNames = c("Ave. Period (ms)", "Ave. Freq (Hz)", "SD Period (ms)", "Min (ms)", "Max 
(ms)") 
 
#join the above vectors into a table 
summaryTable = rbind(avePeriod,aveFrequency,stdevPeriod,rangePeriod) 
rownames(summaryTable) = rowNames  #assign rownames 
print(summaryTable) 
 
 
########################################################### 
########## Link Distance Data With GPS Data ############ 
########################################################### 
 
#calculate the average time delay, the min and maximum time delay 
#final output table of linked data 
 
columnNames = c('SIndex','LGPSIndex','RGPSIndex','TimeDelay', 'WhichGPS') 
#GreenSeeker Row 1 
 
S1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
 
Slist = list(S1=S1) 
TSlist = list(sensorData$TS) 
 
for(L in 1:length(Slist)) { 
 names(Slist[[L]]) = columnNames  
} 
 
for(L in 1:length(Slist)) { 
 LstartingIndex = 1 
 LGPSIndex = 1 
 RstartingIndex = 1 
 RGPSIndex = 1 
 for (i in 1:nrow(Slist[[L]])){ 
   
  #sensorTS = sensorData$Row1TS[i] 
  sensorTS = TSlist[[L]][i] 
  LcurDiff = abs(sensorTS - LeftGPSData$TS[LstartingIndex]) 
  RcurDiff = abs(sensorTS - RightGPSData$TS[RstartingIndex]) 
  LprevDiff = LcurDiff 
  RprevDiff = RcurDiff 
  #print(i) 
   
  #Left GPS Loop 
  for (j in LstartingIndex:nrow(LeftGPSData)){ 
   LcurDiff = abs(sensorTS - LeftGPSData$TS[j]) 
   if (LcurDiff < LprevDiff) { 
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    LprevDiff = LcurDiff 
    LGPSIndex = j 
    print(j) 
   } 
   else if(LcurDiff >LprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  #Right GPS Loop 
  for (k in RstartingIndex:nrow(RightGPSData)){ 
   RcurDiff = abs(sensorTS - RightGPSData$TS[k]) 
   if (RcurDiff < RprevDiff) { 
    RprevDiff = RcurDiff 
    RGPSIndex = k 
    print(k) 
   } 
   else if(RcurDiff >RprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  saveLGPSIndex = LGPSIndex # for use later in updating the starting index used 
above 
  saveRGPSIndex = RGPSIndex # for use later in updating the starting index used 
above 
   
  #compare time delay(RprevDiff and LprevDiff) values 
  #first - check if UTC of GPS's are the same 
  if(LeftGPSData$UTC[LGPSIndex] == RightGPSData$UTC[RGPSIndex]){ 
   #choose the time delay based on the GPS with the earliest time stamp 
   if(LeftGPSData$TS[LGPSIndex]<=RightGPSData$TS[RGPSIndex]){ 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
   } 
   else { 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
   }  
   Slist[[L]]$LGPSIndex[i] = LGPSIndex 
   Slist[[L]]$RGPSIndex[i] = RGPSIndex 
  } 
  else { #if the UTC's are not equal 
   #Go with the GPS associated with the shortest delay 
   if(LprevDiff<=RprevDiff){ #choose Left GPS 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
    Slist[[L]]$LGPSIndex[i] = LGPSIndex 
     
    #search for the Right Side GPS with equal or nearest UTC 
    UTCDiff = LeftGPSData$UTC[LGPSIndex] - RightGPSData$UTC[RGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
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efficient starting point to search 
     
    if(UTCDiff < 1) { 
     RGPSIndex = RGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(RightGPSData)) {RGPSIndex = 1} 
    else { 
     RGPSIndex = RGPSIndex + IndexAdjust -5 
    } 
    if (RGPSIndex < 1) RGPSIndex = 1 
    else if(RGPSIndex >= nrow(RightGPSData)) RGPSIndex = 
nrow(RightGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[RGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = RGPSIndex 
    for (t in RGPSIndex:nrow(RightGPSData)){ 
     UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) {  
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$RGPSIndex[i] = Index 
   } #end of If statement 
   else{ #choose Right GPS 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
    Slist[[L]]$RGPSIndex[i] = RGPSIndex 
     
    #search fo the Left Side GPS with equal or nearest UTC 
    UTCDiff = RightGPSData$UTC[RGPSIndex] - LeftGPSData$UTC[LGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     LGPSIndex = LGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(LeftGPSData)) {LGPSIndex = 1} 
    else { 
     LGPSIndex = LGPSIndex + IndexAdjust -5 
    } 
    if (LGPSIndex < 1) LGPSIndex = 1 
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    else if(LGPSIndex >= nrow(LeftGPSData)) LGPSIndex = 
nrow(LeftGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[LGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = LGPSIndex 
    for (t in LGPSIndex:nrow(LeftGPSData)){ 
     UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) { 
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$LGPSIndex[i] = Index 
   } #end of else statement 
  }#end of else statement - UTC are not equal statement 
   
  Slist[[L]]$SIndex[i] = i 
  LstartingIndex = saveLGPSIndex 
  RstartingIndex = saveRGPSIndex 
  #if(startingIndex < 1) startingIndex = 1 
 }  
} #end of for loop 
 
 
 
########################################################### 
########## Save Distance Sensor Data in a Table  ########## 
########################################################### 
 
columnNames = c('R1H', 'R2H','R3H','LSH','TimeDelay', 'WhichGPS', 
'L_UTC','L_Lat','L_Lon','L_Elev','R_UTC','R_Lat','R_Lon','R_Elev') 
S1Filled = data.frame(matrix(nrow = nrow(S1), ncol = length(columnNames))) 
 
SFlist = list(S1Filled = S1Filled) 
 
for(L in 1:length(SFlist)) { 
 colnames(SFlist[[L]]) = columnNames 
} 
 
for(L in 1:length(SFlist)){ 
  
 SFlist[[L]]$R1H = sensorData$Row1Height 
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 SFlist[[L]]$R2H = sensorData$Row2Height 
 SFlist[[L]]$R3H = sensorData$Row3Height 
 SFlist[[L]]$LSH = sensorData$LSHeight 
 SFlist[[L]]$TimeDelay = Slist[[L]]$TimeDelay 
 SFlist[[L]]$WhichGPS = Slist[[L]]$WhichGPS 
 SFlist[[L]][,(length(columnNames)-8):length(columnNames)]= 
LeftGPSData[Slist[[L]]$LGPSIndex,1:4] 
 SFlist[[L]][,(length(columnNames)-
4):length(columnNames)]=RightGPSData[Slist[[L]]$RGPSIndex, 1:4] 
  
 ############################################ 
 #########  Write Height Data to a File ######### 
 ############################################# 
 filedate = substring(filename,1,16) #grab the date 
 filename = paste0(filedate,'HeightSensor') 
 filename = paste0(filename,'.txt') 
 write.table(SFlist[[L]], file = filename, append = FALSE, quote = TRUE, sep = "\t", 
             eol = "\n", na = "NA", dec = ".", row.names = FALSE, 
             col.names = TRUE, qmethod = c("escape", "double"), 
             fileEncoding = "") 
} 
 
 
############################################## 
########## Analyze Time Delays ############## 
############################################## 
AveTimeDelay = mean(Slist$S1$TimeDelay) 
SDTimeDelay = sd(Slist$S1$TimeDelay) 
MinTimeDelay = min(Slist$S1$TimeDelay) 
MaxTimeDelay = max(Slist$S1$TimeDelay) 
 
TimeDelayTable = rbind(AveTimeDelay,SDTimeDelay,MinTimeDelay, MaxTimeDelay) 
colnames(TimeDelayTable) = "HeightSensors" 
rownames(TimeDelayTable) = c("Average (ms)", "Standard Deviation (ms)","Minimum 
(ms)", "Maximum (ms)") 
 
 
############################################## 
######## Write Summary Results To File ######## 
############################################## 
 filename = paste0(filedate,'HeightSensorStatSummary') 
 filename = paste0(filename,'.txt') 
write.table(summaryTable, file = filename, append = FALSE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
             
write.table(TimeDelayTable, file = filename, append = TRUE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
 
 
############################################## 
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######## Print Plots and Graphs ######## 
############################################## 
dev.new(width = 8, height = 8) 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R123, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Distance Sensor Read Periods") 
 
dev.new(width = 8, height = 8) 

plot(1:length(Slist[[1]]$TimeDelay), Slist[[1]]$TimeDelay, xlab = "Sample 

Number", ylab = "Time Difference (ms)", main="Distance Sensors") 
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 IRT 

#This program processes the IRT Data 
# 
#sensorData - table where the raw sensor data is stored 
#  the GNSS/GPS coordinates are not included in this table 
#sensorReadPeriods - data frame where the calculated time periods are stored 
#  Column Names: R1.15.1, R2.15.1, R3.15.1, WT, R1.15.1TDif, R2.15.1TDif, 
R3.15.1TDif 
#  ... R1.15.1 is the column name for the read/timestamp periods of the row 
1 15:1 IRT 
#  ... R1TDif is the column name for the difference in TS - TI for Row 1, 
#  ... Technically, R1TDif, R2TDif, and R3TDif and not periods, they are 
wait times 
#summaryTable - summary of the period statiscs for each sensor 
#  Column Names Ave. Period, Ave. Freq, SD Period, Min, Max 
 
 
#set working directory 
setwd("Directory")  
filename = '2014-03-21_1240_IRTData.txt' 
sensorData = read.table(file=filename, header=T, sep = '\t', row.names = "Index", 
skip = 2) 
 
 
#Clean up the data in sensorData - remove extra columns 
colsToDelete = c('Left_UTCTime','Left_Elevation', 
'Left_Latitude','Left_Longitude','Right_UTCTime','Right_Elevation', 
'Right_Latitude', 'Right_Longitude') 
colsToDelete = !(names(sensorData) %in% colsToDelete) 
sensorData = sensorData[,colsToDelete]  #columns to delete 
 
 
######################################### 
########## Calculate Periods ############ 
######################################### 
 
#column names for sensorReadPeriods 
columnNames = 
c('R1.15.1','R2.15.1','R3.15.1','R1.2.1','R2.2.1','R3.2.1','WT','R1.15.1TDif','R2.15
.1TDif','R3.15.1TDif','R1.2.1TDif','R2.2.1TDif','R3.2.1TDif') 
#create sensorReadPeriods data frame 
sensorReadPeriods = data.frame(matrix(nrow=nrow(sensorData)-1, 
ncol=length(columnNames))) 
#sensorReadPeriods[1,]=c(sensorData$Row1TS[1],sensorData$Row2TS[1],sensorData$Row3TS[
1]) #assign values for Row1 
colnames(sensorReadPeriods) = columnNames 
 
#Calculate periods from the timestamp data 
for(i in 1:nrow(sensorReadPeriods)){ 
 sensorReadPeriods$R1.15.1[i] = sensorData$Row1TS15.1[i+1]-sensorData$Row1TS15.1[i] 
 sensorReadPeriods$R2.15.1[i] = sensorData$Row2TS15.1[i+1]-sensorData$Row2TS15.1[i] 
 sensorReadPeriods$R3.15.1[i] = sensorData$Row3TS15.1[i+1]-sensorData$Row3TS15.1[i] 
 sensorReadPeriods$R1.2.1[i] = sensorData$Row1TS2.1[i+1]-sensorData$Row1TS2.1[i] 
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 sensorReadPeriods$R2.2.1[i] = sensorData$Row2TS2.1[i+1]-sensorData$Row2TS2.1[i] 
 sensorReadPeriods$R3.2.1[i] = sensorData$Row3TS2.1[i+1]-sensorData$Row3TS2.1[i] 
 sensorReadPeriods$WT[i] = sensorData$Write_TS[i+1]-sensorData$Write_TS[i] 
 sensorReadPeriods$R1.15.1TDif[i] = sensorData$Row1TS15.1[i]-sensorData$Row1WT15.1[i] 
 sensorReadPeriods$R2.15.1TDif[i] = sensorData$Row2TS15.1[i]-sensorData$Row2WT15.1[i] 
 sensorReadPeriods$R3.15.1TDif[i] = sensorData$Row3TS15.1[i]-sensorData$Row3WT15.1[i] 
 sensorReadPeriods$R1.2.1TDif[i] = sensorData$Row1TS2.1[i]-sensorData$Row1WT2.1[i] 
 sensorReadPeriods$R2.2.1TDif[i] = sensorData$Row2TS2.1[i]-sensorData$Row2WT2.1[i] 
 sensorReadPeriods$R3.2.1TDif[i] = sensorData$Row3TS2.1[i]-sensorData$Row3WT2.1[i] 
} 
 
#print(summary(sensorReadPeriods[-(1:20),]),) 
 
##### Period Statistics Calculations ##### 
# Average, Standard Deviation, and Range 
#avePeriod = c(mean(sensorReadPeriods$R1),mean(sensorReadPeriods$R2), 
mean(sensorReadPeriods$R3)) 
avePeriod = apply(sensorReadPeriods[-(1:100),], 2, mean) #shorter method 
aveFrequency = 1/avePeriod*1000 
stdevPeriod = apply(sensorReadPeriods[-(1:100),], 2, sd) 
rangePeriod = apply(sensorReadPeriods[-(1:100),], 2, range) 
 
rowNames = c("Ave. Period (ms)", "Ave. Freq (Hz)", "SD Period (ms)", "Min (ms)", "Max 
(ms)") 
 
#join the above vectors into a table 
summaryTable = rbind(avePeriod,aveFrequency,stdevPeriod,rangePeriod) 
rownames(summaryTable) = rowNames  #assign rownames 
print(summaryTable) 
 
 
 
 
########################################################### 
########## Link IRT Data With GPS Data ############ 
########################################################### 
 
#calculate the average time delay, the min and maximum time delay 
#final output table of linked data 
 
columnNames = c('SIndex','LGPSIndex','RGPSIndex','TimeDelay', 'WhichGPS') 
#GreenSeeker Row 1 
 
S1.15.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S2.15.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S3.15.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S1.2.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S2.2.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
S3.2.1 = data.frame(matrix(nrow = nrow(sensorData), ncol=5)) 
 
Slist = list(S1.15.1=S1.15.1, S2.15.1=S2.15.1, S3.15.1=S3.15.1, S1.2.1=S1.2.1, 
S2.2.1=S2.2.1, S3.2.1=S3.2.1) 
TSlist = list(sensorData$Row1TS15.1,sensorData$Row2TS15.1, sensorData$Row3TS15.1, 
sensorData$Row1TS2.1,sensorData$Row2TS2.1, sensorData$Row3TS2.1) 
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for(L in 1:length(Slist)) { 
 names(Slist[[L]]) = columnNames  
} 
 
for(L in 1:length(Slist)) { 
 LstartingIndex = 1 
 LGPSIndex = 1 
 RstartingIndex = 1 
 RGPSIndex = 1 
 for (i in 1:nrow(Slist[[L]])){ 
   
  #sensorTS = sensorData$Row1TS[i] 
  sensorTS = TSlist[[L]][i] 
  LcurDiff = abs(sensorTS - LeftGPSData$TS[LstartingIndex]) 
  RcurDiff = abs(sensorTS - RightGPSData$TS[RstartingIndex]) 
  LprevDiff = LcurDiff 
  RprevDiff = RcurDiff 
  #print(i) 
   
  #Left GPS Loop 
  for (j in LstartingIndex:nrow(LeftGPSData)){ 
   LcurDiff = abs(sensorTS - LeftGPSData$TS[j]) 
   if (LcurDiff < LprevDiff) { 
    LprevDiff = LcurDiff 
    LGPSIndex = j 
    print(j) 
   } 
   else if(LcurDiff >LprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  #Right GPS Loop 
  for (k in RstartingIndex:nrow(RightGPSData)){ 
   RcurDiff = abs(sensorTS - RightGPSData$TS[k]) 
   if (RcurDiff < RprevDiff) { 
    RprevDiff = RcurDiff 
    RGPSIndex = k 
    print(k) 
   } 
   else if(RcurDiff >RprevDiff) { 
    print("stop") 
    break 
   } 
  } 
   
  saveLGPSIndex = LGPSIndex # for use later in updating the starting index used 
above 
  saveRGPSIndex = RGPSIndex # for use later in updating the starting index used 
above 
   
  #compare time delay(RprevDiff and LprevDiff) values 
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  #first - check if UTC of GPS's are the same 
  if(LeftGPSData$UTC[LGPSIndex] == RightGPSData$UTC[RGPSIndex]){ 
   #choose the time delay based on the GPS with the earliest time stamp 
   if(LeftGPSData$TS[LGPSIndex]<=RightGPSData$TS[RGPSIndex]){ 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
   } 
   else { 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
   }  
   Slist[[L]]$LGPSIndex[i] = LGPSIndex 
   Slist[[L]]$RGPSIndex[i] = RGPSIndex 
  } 
  else { #if the UTC's are not equal 
   #Go with the GPS associated with the shortest delay 
   if(LprevDiff<=RprevDiff){ #choose Left GPS 
    Slist[[L]]$TimeDelay[i] = LprevDiff 
    Slist[[L]]$WhichGPS[i] = 'L' 
    Slist[[L]]$LGPSIndex[i] = LGPSIndex 
     
    #search for the Right Side GPS with equal or nearest UTC 
    UTCDiff = LeftGPSData$UTC[LGPSIndex] - RightGPSData$UTC[RGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     RGPSIndex = RGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(RightGPSData)) {RGPSIndex = 1} 
    else { 
     RGPSIndex = RGPSIndex + IndexAdjust -5 
    } 
    if (RGPSIndex < 1) RGPSIndex = 1 
    else if(RGPSIndex >= nrow(RightGPSData)) RGPSIndex = 
nrow(RightGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[RGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = RGPSIndex 
    for (t in RGPSIndex:nrow(RightGPSData)){ 
     UTCDiff = abs(LeftGPSData$UTC[LGPSIndex] - 
RightGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) {  
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
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     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$RGPSIndex[i] = Index 
   } #end of If statement 
   else{ #choose Right GPS 
    Slist[[L]]$TimeDelay[i] = RprevDiff 
    Slist[[L]]$WhichGPS[i] = 'R' 
    Slist[[L]]$RGPSIndex[i] = RGPSIndex 
     
    #search fo the Left Side GPS with equal or nearest UTC 
    UTCDiff = RightGPSData$UTC[RGPSIndex] - LeftGPSData$UTC[LGPSIndex] 
    IndexAdjust = abs(UTCDiff/0.2) #use an adjusted index for an 
efficient starting point to search 
     
    if(UTCDiff < 1) { 
     LGPSIndex = LGPSIndex - IndexAdjust - 5 
    }  
    else if(UTCDiff > nrow(LeftGPSData)) {LGPSIndex = 1} 
    else { 
     LGPSIndex = LGPSIndex + IndexAdjust -5 
    } 
    if (LGPSIndex < 1) LGPSIndex = 1 
    else if(LGPSIndex >= nrow(LeftGPSData)) LGPSIndex = 
nrow(LeftGPSData)-10 #the -10 probably isn't necessary 
     
     
    #do the search 
    UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[LGPSIndex]) 
    prevUTCDiff = UTCDiff 
    Index = LGPSIndex 
    for (t in LGPSIndex:nrow(LeftGPSData)){ 
     UTCDiff = abs(RightGPSData$UTC[RGPSIndex] - 
LeftGPSData$UTC[t]) 
     if (UTCDiff == 0) { 
      Index = t 
      break 
     } 
     else if(UTCDiff < prevUTCDiff) { 
      prevUTCDiff = UTCDiff 
      Index = t 
     } 
     else if(UTCDiff > prevUTCDiff) break 
    } 
     
    #assign the index to the GS1 data frame 
    Slist[[L]]$LGPSIndex[i] = Index 
   } #end of else statement 
  }#end of else statement - UTC are not equal statement 
   
  Slist[[L]]$SIndex[i] = i 
  LstartingIndex = saveLGPSIndex 
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  RstartingIndex = saveRGPSIndex 
  #if(startingIndex < 1) startingIndex = 1 
 }  
} #end of for loop 
 
 
 
 
############################################## 
########## Save IRT Data To a Table  ########## 
############################################### 
 
columnNames = c('Temp','TimeDelay', 'WhichGPS', 
'L_UTC','L_Lat','L_Lon','L_Elev','R_UTC','R_Lat','R_Lon','R_Elev') 
S1.15.1Filled = data.frame(matrix(nrow = nrow(S1.15.1), ncol = length(columnNames))) 
S2.15.1Filled = data.frame(matrix(nrow = nrow(S2.15.1), ncol = length(columnNames))) 
S3.15.1Filled = data.frame(matrix(nrow = nrow(S3.15.1), ncol = length(columnNames))) 
S1.2.1Filled = data.frame(matrix(nrow = nrow(S1.2.1), ncol = length(columnNames))) 
S2.2.1Filled = data.frame(matrix(nrow = nrow(S2.2.1), ncol = length(columnNames))) 
S3.2.1Filled = data.frame(matrix(nrow = nrow(S3.2.1), ncol = length(columnNames))) 
 
SFlist = list(S1.15.1Filled=S1.15.1Filled, S2.15.1Filled=S2.15.1Filled, 
S3.15.1Filled=S3.15.1Filled, S1.2.1Filled=S1.2.1Filled, S2.2.1Filled=S2.2.1Filled, 
S3.2.1Filled=S3.2.1Filled) 
 
for(L in 1:length(SFlist)) { 
 colnames(SFlist[[L]]) = columnNames 
} 
 
for(L in 1:length(SFlist)){ 
 if(L==1){ 
  SFlist[[L]]$Temp = sensorData$Row1IRT15.1 
 
 } 
 else if(L==2){ 
  SFlist[[L]]$Temp = sensorData$Row2IRT15.1 
 } 
 else if(L==3){ 
  SFlist[[L]]$Temp = sensorData$Row3IRT15.1 
 } 
 else if(L==4){ 
  SFlist[[L]]$Temp = sensorData$Row1IRT2.1 
 } 
 else if(L==5){ 
  SFlist[[L]]$Temp = sensorData$Row2IRT2.1 
 } 
 else if(L==6){ 
  SFlist[[L]]$Temp = sensorData$Row3IRT2.1 
 } 
 
 
 SFlist[[L]]$TimeDelay = Slist[[L]]$TimeDelay 
 SFlist[[L]]$WhichGPS = Slist[[L]]$WhichGPS 
 SFlist[[L]][,(length(columnNames)-8):length(columnNames)]= 
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LeftGPSData[Slist[[L]]$LGPSIndex,1:4] 
 SFlist[[L]][,(length(columnNames)-
4):length(columnNames)]=RightGPSData[Slist[[L]]$RGPSIndex, 1:4] 
  
 ############################################ 
 #########  Write GS Data to a File ######### 
 ############################################# 
 filedate = substring(filename,1,16) #grab the date 
 filename = paste0(filedate,'IRT') 
 filename = paste0(filename,names(SFlist[L])) 
 filename = paste0(filename,'.txt') 
 write.table(SFlist[[L]], file = filename, append = FALSE, quote = TRUE, sep = "\t", 
             eol = "\n", na = "NA", dec = ".", row.names = FALSE, 
             col.names = TRUE, qmethod = c("escape", "double"), 
             fileEncoding = "") 
} 
 
 
 
############################################## 
########## Analyze Time Delays ############## 
############################################## 
AveTimeDelay = c(mean(Slist$S1.15.1$TimeDelay),mean(Slist$S2.15.1$TimeDelay), 
mean(Slist$S3.15.1$TimeDelay), 
mean(Slist$S1.2.1$TimeDelay),mean(Slist$S2.2.1$TimeDelay), 
mean(Slist$S3.2.1$TimeDelay) ) 
SDTimeDelay = c(sd(Slist$S1.15.1$TimeDelay),sd(Slist$S2.15.1$TimeDelay), 
sd(Slist$S3.15.1$TimeDelay), sd(Slist$S1.2.1$TimeDelay),sd(Slist$S2.2.1$TimeDelay), 
sd(Slist$S3.2.1$TimeDelay) ) 
MinTimeDelay = c(min(Slist$S1.15.1$TimeDelay), min(Slist$S2.15.1$TimeDelay), 
min(Slist$S3.15.1$TimeDelay), min(Slist$S1.2.1$TimeDelay), 
min(Slist$S2.2.1$TimeDelay), min(Slist$S3.2.1$TimeDelay) ) 
MaxTimeDelay = c(max(Slist$S1.15.1$TimeDelay), max(Slist$S2.15.1$TimeDelay), 
max(Slist$S3.15.1$TimeDelay), max(Slist$S1.2.1$TimeDelay), 
max(Slist$S2.2.1$TimeDelay), max(Slist$S3.2.1$TimeDelay) ) 
 
TimeDelayTable = rbind(AveTimeDelay,SDTimeDelay,MinTimeDelay, MaxTimeDelay) 
colnames(TimeDelayTable) = c("IRT15:1 1", "IRT15:1 2", "IRT15:1 3","IRT2:1 1", 
"IRT2:1 2", "IRT2:1 3") 
rownames(TimeDelayTable) = c("Average (ms)", "Standard Deviation (ms)","Minimum 
(ms)", "Maximum (ms)") 
 
############################################## 
######## Write Summary Results To File ######## 
############################################## 
 filename = paste0(filedate,'IRTStatSummary') 
 filename = paste0(filename,'.txt') 
write.table(summaryTable, file = filename, append = FALSE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
             
write.table(TimeDelayTable, file = filename, append = TRUE, quote = TRUE, sep = "\t", 
            eol = "\n", na = "NA", dec = ".", row.names = TRUE, 
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            col.names = TRUE, qmethod = c("escape", "double"), 
            fileEncoding = "") 
 
 
 
############################################## 
######## Print Plots and Graphs ######## 
############################################## 
dev.new(width = 8, height = 10) 
op=par(mfrow=c(2,2)) 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R1.15.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 1 15:1 IRT Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R2.15.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 2 15:1 IRT Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R3.15.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 3 15:1 IRT Read Periods") 
par(op) 
 
dev.new(width = 8, height = 10) 
op=par(mfrow=c(2,2)) 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R1.2.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 1 2:1 IRT Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R2.2.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 2 2:1 IRT Read Periods") 
plot(rownames(sensorReadPeriods), sensorReadPeriods$R3.2.1, xlab = "Sample Number", 
ylab = "Read Period (ms)", main="Row 3 2:1 IRT Read Periods") 
par(op) 
 
dev.new(width = 8, height = 8) 
plot(1:length(Slist[[1]]$TimeDelay), Slist[[2]]$TimeDelay, xlab = "Sample Number", 
ylab = "Time Difference (ms)", main="IRT") 
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Appendix B - Statistical Analysis Results Not Included in Main Text 

Table B.1 Summary statistics of Crop Circle Channel 2 reflectance vs. light intensity linear 

regression model 

 Dependent variable: Crop Circle Channel 2 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  2.023e-01 1.195e-04 1692.65 <2e-16  

LI  -4.199e-08 1.812e-09 -23.17 <2e-16  

Observations 3,614 

R
2
 0.129 

Adjusted R
2
 0.129 

Residual Std. Error 0.004 (df = 3612) 

F Statistic 536.823
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 

Table B.2 Summary statistics of Crop Circle Channel 2 reflectance vs. ambient 

temperature linear regression model 

 Dependent variable: Crop Circle Channel 2 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  1.947e-01 3.657e-04 532.57 <2e-16  

AmbTemp  3.596e-04 2.441e-05 14.73 <2e-16  

Observations 3,614 

R
2
 0.057 

Adjusted R
2
 0.056 

Residual Std. Error 0.004 (df = 3612) 

F Statistic 217.082
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 
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Figure B.1 Fitted and residual plots of Crop Circle Channel 2 reflectance (760 nm) vs. 

ambient light intensity 
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Figure B.2 Fitted and residual plots of Crop Circle Channel 2 reflectance (760 nm) vs. 

ambient temperature 
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Table B.3 Summary statistics of Crop Circle Channel 3 reflectance vs. light intensity linear 

regression model 

 Dependent variable: Crop Circle Channel 3 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  1.372e-01 1.476e-04 929.72 <2e-16  

LI  -2.952e-08 2.239e-09 -13.19 <2e-16  

Observations 3,614 

R
2
 0.046 

Adjusted R
2
 0.046 

Residual Std. Error 0.005 (df = 3612) 

F Statistic 173.858
***

 (df = 1; 3612) (p = 0.000) 

Note: 
*
p

**
p

***
p<0.01 

 

 

Table B.4 Summary statistics of Crop Circle Channel 3 reflectance vs. ambient 

temperature linear regression model 

 Dependent variable: Crop Circle Channel 3 

 Estimate  Std. Error  t value  Pr(>|t|)  

(Intercept)  1.377e-01 4.428e-04 311.098 <2e-16  

AmbTemp  -1.432e-04 2.955e-05 -4.846 1.31e-06 

Observations 3,614 

R
2
 0.006 

Adjusted R
2
 0.006 

Residual Std. Error 0.005 (df = 3612) 

F Statistic 23.486
***

 (df = 1; 3612) (p = 0.00001) 

Note: 
*
p

**
p

***
p<0.01 
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Figure B.3 Fitted and residual plots of Crop Circle Channel 3 reflectance (550 nm) vs. 

ambient light intensity 
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Figure B.4 Fitted and residual plots of Crop Circle Channel 3 reflectance (550 nm) vs. 

ambient temperature 
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Appendix D - LabVIEW Code 

 GPSRead_v3_TimeStamp.vi 

Reads and parses the GNSS data strings from the FmX units. It returns the UTC Time, Latitude, 

Longitude, Elevetion, Time In (time when VI began waiting for data), Time Read (time VI 

received the data). 

 

Connector Pane 

 

Figure D.1 GNSS LabVIEW module connector pane 

 

Front Panel 

 

Figure D.2 GNSS LabVIEW module front panel 
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GPSRead_v3_TimeStamp.vi 

Block Diagram 

 

Figure D.3 GNSS LabVIEW module block diagram 
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 GreeSeekerRead_ReturnAll_v1.vi 

Receives and parses the data string from the GreenSeeker sensor. It outputs the GreenSeeker data 

timestampe, the Trigger Count, the Sample Count, the NDVI, and a VI. 

 

Connector Pane 

 

Figure D.4 GreenSeeker module connector pane 

 

Front Panel 

 

Figure D.5 GreenSeeker module font panel  
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Block Diagram 

 

Figure D.6 GreenSeeker module block diagram



127 

 

 IRT.vi 

Sends the read command (0x01) to the Micro Epsilon 15:1 IRT, parses the IRTs response, and 

converts it to the temperature in degrees C. 

 

Connector Pane 

 

Figure D.7 15:1 IRT module connector pane 

 

Front Panel 

 

Figure D.8 15:1 IRT module front panel 
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Block Diagram 

 

 

Figure D.9 15:1 IRT module block diagram
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 IRT_2-1_v2.vi 

Sends the read command (0x01) to the Micro Epsilon 2:1 IRT, parses the IRTs response, and 

converts it to the temperature in degrees C. 

 

Connector Pane 

 

Figure D.10 2:1 IRT module connector pane 

 

Front Panel 

 

Figure D.11 2:1 IRT module front panel 
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IRT_2-1_v2.vi 

Block Diagram 

 

 

Figure D.12 2:1 IRT module block diagram
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 CropCircleRead_v3.vi 

Receives data from a Crop Circle sensor, parses it, and returns the first calculated index, the 

second calculated index, the raw value from Channel 1, the raw value from Channel 2, and the 

raw value from Channel 3. 

 

Connector Pane 

 

Figure D.13 Crop Circle module connector pane 

 

Front Panel 

 

Figure D.14 Crop Circle module connector pane
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CropCircleRead_v3.vi 

Block Diagram 

 

Figure D.15 Crop Circle module connector pane 
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 DistanceSensorRead_v2_ReplacedwithDAQAssistant.vi 

Connects to the NI 9207 DAQ and outputs the voltages from the three ultrasonic sensors and the 

laser sensor. 

 

Connector Pane 

 

Figure D.16 Distance sensor module connector pane 

 

 

Figure D.17 Distance sensor module front panel 



134 

 

DistanceSensorRead_v2_ReplacedwithDAQAssistant.vi:1 

Block Diagram 

 

 

Figure D.18 Distance sensor module block diagram 
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 Main Program 

 

Figure D.19 Main program block diagram
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Appendix E - Sample Phenotyper Software Output File 

Table E.1 Columns from the GreenSeeker output data file containing a sample of data from the GreenSeeker data file created 

by phenotyping software. More columns exist than can be displayed on a single sheet of paper. The first two rows contain sensor set 

locations on the sensor tool bar. The OffsetFromBar is the position of the sensor perpendicular to the toolbar. The remaining rows 

contain the sensor, position, and timestamp data. 

 

Table E.1 Columns from the GreenSeeker output data file 

Row1 Row2 Row3 OffsetFromBar       

0 0 0 0        

Index Left_UTCTime  Left_Elevation Left_Latitude Left_Longitude Row1NDVI Row1ExtraVI Row1GSTS Row1TI Row1TS Row2NDVI 

1 164953.6 326.16 3911.411526 9634.989255 0.116 0.116 1714810 1998153 1998154 -0.013 

2 164953.6 326.16 3911.411526 9634.989255 0.11 0.11 1714934 1998154 1998154 -0.013 

3 164953.6 326.16 3911.411526 9634.989255 0.113 0.113 1715058 1998298 1998299 -0.013 

4 164953.6 326.16 3911.411526 9634.989255 0.114 0.114 1715182 1998300 1998300 -0.013 

5 164953.6 326.16 3911.411526 9634.989255 0.113 0.113 1715306 1998442 1998442 -0.014 

6 164953.6 326.16 3911.411526 9634.989255 0.114 0.114 1715430 1998586 1998586 -0.012 

7 164953.8 326.16 3911.411526 9634.989255 0.112 0.112 1715554 1998586 1998587 -0.014 

8 164953.8 326.16 3911.411526 9634.989255 0.109 0.109 1715678 1998600 1998737 -0.013 

9 164953.8 326.16 3911.411526 9634.989255 0.113 0.113 1715802 1998737 1998889 -0.013 

10 164953.8 326.16 3911.411526 9634.989255 0.113 0.113 1715926 1998890 1998966 -0.013 
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Appendix F - CR850 Program For Measuring Temperature 

This program was written to measure temperature with thermcouples connected to a 

Campbell Scientific CR850 data logger. The program reads temperature data once every second 

and transmits it via the serial port. 

 

Public PTemp 

Public SurfaceTemp 

Public AmbientTemp 

 

Const TERMCHAR = 35 

'Main Program 

BeginProg 

  SerialOpen(ComRS232,9600,0,0,500) 

 Scan (1,Sec,0,0) 

    PanelTemp(PTemp,_60Hz) 

    TCDiff(SurfaceTemp,1,mV7_5,1,TypeT,PTemp,1,0,_60Hz,1.0,0) 

    TCDiff(AmbientTemp,1,mV7_5,2,TypeT,PTemp,1,0,_60Hz,1.0,0) 

SerialOut (COMRS232,SurfaceTemp,"",0,0) 

   SerialOut (COMRS232,",","",0,0) 

    SerialOut (COMRS232,AmbientTemp,"",0,0) 

   SerialOut (COMRS232,CHR(10)+CHR(13),"",0,0) 

 NextScan 

EndProg 

 

 


