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ABSTRACT 

            Urban environmental pollution continues to be exacerbated by a number of factors 

relating to human population growth including sewage discharged directly into the urban rivers 

designed with concrete-sealed riverfronts.  This has left a number of rivers with deteriorated 

water quality.  Where a riverfront could be the highlight and magnet of the city, it may instead 

become a stain and waste place.   

             In 1969 American landscape planner McHarg proposed the landscape planning theory, 

“Design with Nature."   His primary argument was that natural processes provide self-regulatory 

functions that need to be reflected in our plans and designs.  Ecological design aims include 

restoring or promoting natural processes and automatic (bio-physical, regenerative, and 

adaptive) stabilizers.  

A wide range of scientific knowledge is available to help guide the designer, but 

designers usually have limited time to complete their designs. Unfortunately, much of this 

information is diffusely dispersed in research literature and not easily collected and synthesized 

by the design community. The purpose of this review is to help provide a synthesis of current 

thought and to help establish the basis for principles that can aid the designer, offering easy-to-

understand design guidelines related to the use of aquatic plants in ecological redevelopment 

along urban riverfronts.   

This report focuses on using aquatic plants as the main material to help solve two key 

problems along riverfront developments:  water pollution and flooding.   As such this report can 

serve as a guide for the designer helping them to select aquatic plants using an ecological 

design approach for the redevelopment of urban riverfronts.  It also addresses the essential 

need to adapt designs based on local site problems and requirements.   

Since this report provides a review and a basis for where to start in designing with 



aquatic plants in ecological redevelopment of urban waterfronts, it should not be considered as 

an exclusive source for the designer but rather a complement to local guidelines and 

information to derive design solutions. 
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Chapter I: Introduction 

Urban environmental pollution continues to be exacerbated. “Nearly 80% of the world's 

human population lives in areas where river waters are highly threatened, posing a major threat 

to human water security and resulting in aquatic environments where thousands of species of 

plants and animals are at risk of extinction” (Devitt, 2010).  Where a riverfront could have been 

an attractive and functional highlight of the city, often, due to pollution, it can instead become 

the stain of the city.  Also in many cases an entire urban waterfront may have been designed 

without regard to either aesthetics or regional ecology, so that a city loses its geographic 

character.  However, riverfronts can be elegantly designed to enhance the quality of life, to 

improve the environment, and to reduce the effects of pollution.  The three fundamental ways 

to purify water are through chemical, physical, or biological systems (Pennington and Cech, 

2010).  Since the 1970s, many scholars have called for applying the principles of ecological 

riverfront design (Sun and Huang, 2000).  Aquatic plants are one of the tools available in bio-

manipulation, or ecological remediation of urban riverfronts.  This report offers a review of 

literature in this field and focuses on the application of aquatic plants to urban riverfront 

projects.   

The challenge of designing for these situations may be considered in the context of a 

conceptual model based on artistic methods.  The model begins with a single point.  Everyone 

knows how to draw a point.  The point can become a line, and lines can make shapes. Point, 

line, shape are the base elements in art.  The secret of the artist is how to control those 

elements.  Using this model in riverfront design, the first step, the “point” becomes selecting 

aquatic plants. The second step, the “line” becomes the optimal allocation of aquatic plants. 
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And finally the third step, developing “shape” becomes the planning and design process to 

create a composition.  It could be considered ecological art that is not only aesthetically 

pleasing, but also functional and ameliorative to the environment. Of course, appropriately 

selecting and placing plants requires an understanding of dynamic bio-physical and socio-

economic conditions at the site scale as well as larger watershed and landscape scale conditions 

and factors. Knowing how much baseline watershed and relevant landscape scale information to 

gather is never easy, but enough must be collected and evaluated if our work on urban 

riverfronts is to hold up during periods of flood, drought, and upstream and surrounding land 

use changes. For more on the restoration, rehabilitation and/or repair of larger river and stream 

systems refer to Brierley and Fryirs (2009), Brierley and Fryirs (2008), Palmer, et al. (2007), 

Palmer, et.al. (2005), and Wohl, et al. (2005). 

In his review of the Brierley and Fryirs book, Chris Mainstone (Natural England) wrote, 

“Two messages distilled from the Brierley and Fryirs’ book are that: (1) it is necessary to 

understand the evolution of the river channel to understand how to fix it (i.e. it is important to 

look back to look forward); and (2) that we should adopt the ‘art of the possible’ in seeking to 

restore as much geomorphological and ecological functionality as we can, working within those 

societal constraints that cannot be removed.” 

1. Main manual – how to locate information in this report (Table 1) 
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Chapter II: The Urban Riverfront 
 

2.1 The urban riverfront  

Throughout human development history, the river has been an important and often vital 

part of urban environments. In addition to the basic natural functions of rivers, such as water 

purification, material transport, and providing habitat, in urban settings, they can provide 

leisure, entertainment, and education (Gao et al., 2009). This suggests that a good 

riverfront design not only can protect the natural environment, but can also 

improve the recreational and educational functions.  A riverfront is at the junction of upland 

and aquatic ecosystems, and is thus a very dynamic, interconnected, and inherently ecologically 

fragile zone (Mika et al. 2008).  It is where water and land together constitute the dominant 

element of the environment (Jin, 1994).  It is where the heterogeneity of some of the 

strongest and most complex ecosystems in the world exist (Jung et al., 2002). Urban 

riverfronts can enhance ecological functioning and the provision of essential biological services, 

control soil erosion, provide flood and spillway control, and help promote the creation of 

important environmental standards. They also can be unique and beautiful landscapes where 

people can be close to water.  

2.1.1 River ecological systems 

In ecological redevelopment of urban riverfronts, design is based on the ecological 

system of the river.  A riverfront area is typical of an ecotone – the zone where two different 

types of border areas of the natural environment abut (Ryn and Cowan, 1996).  Here the 

material energy flow and exchange processes are very frequent.  Therefore, waterfronts have 

high biological diversity and productivity.  Natural waterfronts allow a natural adjustment to 
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function, in part, due to the permeability of riverine soils which often create an interface having 

high porosity.  Porous riverine soils allow water from the river and groundwater to be 

exchanged and freely circulate. As such, groundwater can continuously supply water to a river 

or stream and thus achieve a dynamic water balance.  Compatible with the ecological river 

processes, the performance of waterfront vegetation hinges on species richness and the 

formation of complex natural communities.  In the past few hundred years of world 

urbanization, however, rivers and waterfront areas have often suffered from development, 

which interferes with natural forms.  The natural forms inevitably meet with varying degrees of 

damage depending on the intensity and sensitivity of urban developments. 

2.1.2 Common environmental pollution problems along urban riverfronts 

The riverfront area has always been a popular development focus for urban 

construction.  Riverfront green space suffers when natural stream and river corridors are 

replaced by concrete or other impermeable and impoverished riverfront space.  As a city’s 

population grows, riverfront pollution typically becomes a serious issue.  This is especially 

critical in rapidly urbanizing regions of the world, such as in China.  Ecological functions and 

riverfront performance is negatively affected by two primary concerns: pollution problems and 

flooding problems. 

(1) Pollution problems.  Domestic sewage is sometimes diverted and collected in rivers.  Human 

activities produce large quantities of pollutants that are often discharged into water bodies.  

These pollutants affect the water’s physical and chemical properties, and change the 

composition of biological communities, thereby reducing the value of water use.  When a 

large volume of ozone-depleting organic matter is discharged into water bodies a sharp decline 



6 
 

in dissolved oxygen in water occurs. The result is that water bodies appear green to black, 

develop odors, and algae growth typically increases. With depleted oxygen levels, aquatic life 

may die. Due to the flow of urban litter during rainfall events, rivers tend to accumulate a great 

deal of trash, further polluting and degrading these essential life-supporting features.   

 (2) Flooding problems: (A) Construction of flood control facilities and drainage works frequently 

destroy or otherwise undermine riverfront vegetation.  Concrete surfaces along riverfronts 

often prevent the effective movement of water (as vapor or via sub-surface migration) between 

the river and riverfront vegetation.  Not only are living spaces for terrestrial plants lost, but also 

some aquatic animals and aquatic plants are easily swept away along the smooth concrete 

surfaces (Sun and Huang, 2000).  (B) Changes in the natural river hydrology and riverbed 

topography.  Because straightening channels increases the quantity of flood flows over a 

shortened period of time, flow velocity and sediment movement are increased.  Downstream 

areas experience increased flood pressure.  Because of dam construction and rechanneling 

groundwater levels can change dramatically. With down cutting of urban streams and rivers 

water tables can be drawn down and the natural water-regulation function declines.  This 

results in destruction of natural riparian and hydraulic connections between the channel and 

the groundwater interface and speeds up the channel flow velocity and erosion. Channelization 

reduces the meandering of rivers and the degree of hardening reduces the embankment 

roughness, both of which weaken the ability to reduce natural river water energy and frequently 

cause serious erosion and sedimentation downstream (Tian, 2006). Reducing water pollution 

problems and flooding problems are thus two key components of successful urban riverfront 

design.   
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2.1.3 The urban waterfront as a design problem  

Because of pollution problems, more and more communities pay attention to urban 

waterfront redevelopment.  Evidence shows that often designers did not take into account the 

current riverfront ecosystem functions and structural peculiarities, and waterfronts may have a 

wide range of design problems.  Primary design problems are as follows.  (1) Pursuit of formal 

beauty and/or being confined to engineering requirements, such as simply using artificial green 

instead of the natural waterfront vegetation (Sun and Huang, 2000).  An example would be 

simply using artificial turf to cover a large area of the waterfront and a row of tall trees along 

the river.  The original diverse habitats are destroyed.  (2) Planting a large number of foreign 

species into the waterfront, which affects native riparian vegetation communities’ species and 

structural stability. The complete exclusion and/or ultimate destruction of the native waterfront 

vegetation can lead to the entire natural waterfront ecosystem collapse (Sun and Huang, 2000). 

(3) A concrete riverfront has a certain amount of useful life, but requires regular maintenance 

and constant repairs.  It often increases the financial burden and stresses the local economy.  (4) 

Designs employing in the above stereotyped forms do not regard geomorphological features, 

local habitats and ecosystems, nor ecological structure and functions. (Tian, 2006) 

2.1.4 An alternative ecological design approach for the redevelopment of urban riverfronts  

Designing urban waterfronts should be based on urban ecological design and planning 

principles.  Urban ecological design focuses primarily on a few basic principles: It (a) applies 

local design; (b) protects and saves natural resources; (c) lets nature thrive; and (d) shows off 

nature (Yu et al., 2001).  May in the “Urban Waterfront Manifesto” (1999) suggests that 

waterfront planning should be “long-range……a system of sustainable growth and operation.”  
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For each riverfront development, “the tendency to clean up waterfronts should be approached 

carefully so that rich underlying values are not unnecessarily sacrificed.” New developments 

“should flow from the nature.”  Communities apply for aid to clean the riverfront environment 

of canals, lakes and rivers as well as coasts.  Using ecological redevelopment concepts to design 

the urban riverfront could greatly benefit urban riverfront design. 

2.2 Aquatic plants 

Aquatic plants are the main material which should be used in urban riverfront design.  

The term “aquatic plant” refers to the part of plants or the entire plants that can live only in the 

aquatic environment (Deng, 2007).  Aquatic plant has both narrow and broad definitions.  The 

narrow definition of aquatic plant is that for the aquatic plant the whole lifecycle must occur in 

the water environment. The generalized definition of aquatic plants includes wetland plants that 

have a period of growth in water or are grown in the soil with saturated water content. This 

report focuses on the more generalized interpretation of aquatic plants.  About one thousand 

kinds of aquatic plants exist in the world.   

2.2.1 Classification of aquatic plants 

Aquatic plants adapt to live in aquatic environments. They can grow directly in standing 

or open water or in soil that is saturated with water (and thus can complete their life cycle in 

water or saturated soils).  There are many different ways to classify aquatic plants. For the 

purposes of urban riverfront design, this report will classify aquatic plants according to five 

broad types adapted from Arber (1920) (refer to Table 2.2.1).  Other authors have elaborated 

on Arber’s classification with specific ecological functions and design considerations (Taiwan 

River Restoration Network, 2010). 
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Table 2.2.1 Classification of aquatic plants (adapted from Arber, 1920) 

Type image Feature Ecological functions Design Considerations 

Fr
ee

 f
lo

at
in

g 

 

Whole plant’s body 
floating on the water. 

1) Manufacturer of large 
quantities of oxygen. 
2) Provide aquatic animal food. 
3) Have fruit and flowers. 

1) Growth in the quiet waters environment, 
usually not growth in the flow of waters. 
2) Asexual reproduction mechanism allows 
plants to rapidly cover the entire surface of the 
water. 
3) If the density is too high, it will affect other 
aquatic plants’ photosynthesis. 
4) Growth at least water 20-30 cm deep. 

To
ta

lly
 

su
b

m
er

se
d

 

 

1) Whole plant 
immersed in water. 
2) Root fixed at the 
bottom. 

1) Provide aquatic animal food. 
2) Provide nesting and habitat to 
other organisms. 

1) Growth in water 30-100 cm deep.  
2) Create oxygen underwater, curb the growth 
of algae in water pollution, and improve water 
quality and efficient viewing.   

B
o

tt
o

m
 

ro
o

te
d

 a
n

d
 

fl
o

at
in

g 

 

1) Leaf is supported by 
petiole to affix on the 
surface float of water.  
2) Root or underground 
stem fixation in the 
bottom of water.  

1) Manufacture of large 
quantities of oxygen. 
2) Provide aquatic animal food. 
3) Provide nesting and habitat to 
other organisms. 
4) Have fruit and flowers. 

1) Growth in water 30-100 cm deep. 

Em
er

ge
n

t 

an
d

 r
o

o
te

d
 

 

Part of the roots and 
stems growth in the 
water, most of the stems 
and leaves come out of 
the water. 

1) Provide nesting and habitat to 
other organisms. 
2) Have fruit and flowers. 

1) Growth in water 100-150 cm deep.  

W
et

la
n

d
 

ve
ge

ta
ti

o
n

 in
 

u
p

la
n

d
 a

re
as

 

 

Growing in wet areas. 
 

1) Provide nesting and habitat to 
other organisms. 
2) Have fruit and flowers. 

1) Pay attention to plant height and rooting 
characteristics.                          
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2.2.2 Structure of aquatic plants in river ecosystems 

The main features of the water environment are low light, hypoxia, high density, high 

viscosity, smooth temperature changes and that they can dissolve a variety of inorganic salts. 

Aquatic plants are an important part of aquatic ecosystems and the main primary producers.  

The role of aquatic plants in the ecosystem is cycling and transmission of material and energy. 

Aquatic plants have well-developed aerenchyma cells to ensure the supply of oxygen.  Leaves 

of aquatic plants underwater multi-split into a ribbon, wire, and thin, to increase the absorption 

of sunlight, inorganic salts, and CO2, so that the potentially increased surface area can absorb 

more water (Li, 2000).   An aquatic plant not only has ornamental value, it also has several 

ecological functions. 

Some of aquatic plants can improve the efficiency of water purification. Aquatic plants 

typically absorb oxygen, carbon dioxide, and other nutrients in water.  They absorb pollutants 

and harmful substances, providing filtering, decomposition and transformation of such 

substances in order to achieve removal of pollutants in water and achieve the purpose of the 

water body restoration.  Another role of wetland plants is to consolidate the soil to stabilize 

banks, an important role in rainy seasons.  Through a variety of design strategies for plant 

optimization to exert different strengths, the designer can improve the self-purification capacity 

of water.  At the same time it helps create a rich urban waterfront landscape (Liu, 2003). 

Many functions of aquatic plants are common knowledge, however in 2012 Taiwan 

Endemic Species Research Institute noted other specific functions as described below.  
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2.2.3 Functions of aquatic plants in river ecosystems 

1) Adjust the water flow 

Aquatic plants, as a group, have a natural ability, for example, during rainstorms to 

absorb and store rainwater.  They can also reduce silt.   

2) Protect slope  

The roots of aquatic plants can reinforce soil; increase penetration; improve soil to 

prevent soil erosion and prevent revetment collapse. 

3) Intercept sediment  

Aquatic plants, which comprise a buffer zone of revetment, can provide surface 

infiltration. When runoff occurs, it can increase the infiltration capacity, reduce the 

surface flow velocity and flow rate, so that it can capture precipitation and provide 

filtration of silt. 

4) Improve polluted conditions 

Aquatic plants can absorb nitrogen and phosphorus directly from rivers and sediment. 

5) Producer 

Aquatic plants can provide food for humans or other animals.  

6) Ecological asylum 

Most of the aquatic plants have photosynthesis.  They can absorb CO2 and release O2, 

which can support fish respiration.  The foliage of aquatic plants can be used by fish and 

other aquatic animals such as waterfowl as a refuge places. 

7) Adjust climate 

Aquatic plants can reduce the local temperature and local reflective radiation.   
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8) Landscaping 

Throughout history aquatic plants have been used as garden ornamentals. 

2.2.4 Aquatic plants as water cleansing agent  

Human activities have the potential to discharge a large amount of industrial, 

agricultural and domestic wastes into water so that contamination of water occurs.  Water 

pollution can be attributed to the contamination of impurities that are divided into the three 

categories of chemical , physical and biological pollution.  Of these, chemical is the primary 

pollution. For the removal of these pollutants, the plant plays a very important role.  Its rapid 

growth enables it to absorb large amounts of pollutants, and has the advantage of easy post-

processing, providing an economically viable method for sewage treatment (Qian, 2008).   

1) Aquatic plants in the removal nitrogen and phosphorus 

Aquatic plants can adjust the nutrient concentration of water in shallow lakes (Brenner et 

al., 1999). Biological debris settles nitrogen and phosphorus to the bottom of soil.  Submerged 

aquatic plants absorb nitrogen and phosphorus through their roots, which has more than any 

other water plant category in ability to absorb nitrogen and phosphorus.  In the distribution 

area of the submerged aquatic plants, chemical oxygen demand (COD), biochemical oxygen 

demand (BOD), phosphorus, ammonium nitrogen content are generally far lower than areas 

without distribution of submerged aquatic plants (Wang and Xu, 1994).  Freshwater submerged 

aquatic plant systems are very good in their role in the removal of nutrients.   They remove 

nitrogen mainly through denitrification and they remove phosphorus by biological uptake 

(Gumbricht, 1993). 
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2) Aquatic plant removal of heavy metals 

Aquatic plants have strong absorption ability for Zn, Cr, Pb, Cd, Co, Ni and Cu. Metals are 

different from organic matter and cannot be degraded by microbial activity.  They can be 

removed only by biological absorption from the environment.  Submerged plants and floating 

aquatic plants can absorb many different kinds of heavy metals, but as this absorption is 

increasing it leads to the loss of nutrient elements and can lead to plant death. Submerged 

aquatic plants and floating aquatic plants are suitable for absorbing heavy metals in low-

pollution areas. They may also be used as monitors of the metal content in the water (Wang et 

al., 2002).  Aquatic plants control the distribution of heavy metals within themselves, generally 

having more heavy metal accumulation in the roots. The roots of aquatic plants carry heavy 

metal contents generally higher than stems and leaves. 

3) Aquatic plant removal of toxic organic pollutants 

Aquatic plants can degrade organic pollutants from water, because they can promote the 

precipitation of substances and promote the role of microbial decomposition. They play a role in 

the absorption and accumulation of DDT, PCB and other residues.  Aquatic plant fruits have 

been documented to absorb more than other plant parts; leaves absorb more than roots 

(Vaquer, 1973).  

4) Aquatic plants assist in biological removal of algae 

 Aquatic plants can inhibit the growth of phytoplankton, so thereby algae are reduced in 

water. Because aquatic plants are typically the dominant plants, they compete with algae 

nutrition, light and living space.  Also, aquatic plants play a role with micro-organisms in 

producing allelopathic secretions that remove algae, which is important in the prevention and 
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treatment of eutrophic water pollution (Qian, 2008).     

2.2.5 Some negative aspects of aquatic plants 

Aquatic plants have many positive characteristics, but they also possess some negative 

aspects.  Some aquatic plants can be used for human and animal nutrition; however, some 

aquatic plants are poisonous.  Although aquatic plant growth can promote water purification, 

some aquatic plants may need to be removed from a site because of a reduction in dissolved 

oxygen, which causes secondary pollution.  Also some aquatic plants become invasive species, 

such as Common Water Hyacinth (Eichhornia crassipes Mart. Solms), which is an invasive 

species in China, and Purple Loosestrife (Lythrum salicaria L.), one of a number of common 

invasive wetland plants in North America.  Obviously, designers should avoid specifying invasive 

species when choosing aquatic, wetland and/or other plants for riverfront settings. 

2.3 Landscape ecology 

Ecological principles are at the core of landscape architecture and ecological planning 

and design.  In fact, Lyle argues that landscape architecture revolves around the “human 

ecosystem” (Lyle, 1985). “Landscape ecology" first was described in 1939 by German 

biogeographer Carl Troll.  He defined landscape as “the total spatial and visual entity” of human 

living space, integrating the biosphere and human activities.  In the 1990s, landscape ecology 

has been generally accepted and applied by international urban design and landscape design 

(Yu and Li, 2003).  According to the United States Environmental Protection Agency (US-EPA), 

landscape ecology is “an interdisciplinary science framework that studies the relationship 

between spatial patterns of landscape characteristics and conditions of and risks to ecological 

resources, including forests, rangelands, wetlands, rivers, streams, lakes, and urban 

http://www.eoearth.org/article/Biosphere
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environmental settings. Local, regional, national, and global economies depend upon both 

goods and services resulting from ecological resources.” Landscape ecology encourages 

minimum or targeted design using the maximum forces of nature.  It is a system based on 

natural regeneration and the self-renewal capacities of organic design (Lyle, 1994). 

Urban waterfront landscape ecology should: use plants which are locally and/or 

regionally adapted as the primary materials; plants should be specified in a scientific and 

rational way (recognizing for example, the appropriately-sized boulders and rocks often need to 

be combined with vegetation to effectively stabilize streams and/or river banks); design should 

include aesthetic considerations; and should include intent to be achievable at lower 

development cost and maintenance requirements.  

2.3.1 Benefits of ecological in urban riverfront  

Ecological riverfront regulation plays a large role in protection of the urban environment.  

The riverfront can be restored with a natural river or in some cases a permeable artificial 

revetment.  This can improve the water exchange and regulatory function between the riverside 

and river water, improving management of flood episodes, and improve the functionality of the 

river hydrological and biological processes (Sun and Huang, 2000). 

Ecological urban riverfronts use natural materials to form a permeable interface.  In wet 

periods, river water can infiltrate to the groundwater aquifers, aiding flood mitigation; in dry 

seasons, groundwater will infiltrate to the river, thus regulating the water level.  Aquatic 

plantings in ecological waterfronts also can provide some water storage.  They improve the 

porosity of the interface, providing more potential for biological growth with more velocity 

change for fish and other aquatic animals and amphibians habitat, breeding grounds and 
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shelter.  One of the most important aspects of the ecological remediation approach is that 

aquatic plants create ecological niches and restore natural processes. 

2.3.2 Aquatic planting design in ecological remediation of urban riverfronts 

Aquatic plants can improve the efficiency of water purification, create an ecological 

revetment, and improve the environmental quality of urban waterfronts as well as the aesthetic 

landscape.  Ecologists believe aquatic restoration is a low-energy and eco-friendly system (An 

2008).  Different types of aquatic plants in the water ecosystem occupy different ecological 

niches and they have different roles in the urban waterfront.  Through selection of different 

plant types, vegetation structure can be optimized to speed up the recovery process and 

optimize the community structure (Ma, 1997; An 2008). 
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Chapter III: Selecting aquatic plants 

 
3.1 Factors affecting aquatic plant selection for ecological redevelopment 

The living environment of aquatic plants is a complex, sometimes volatile and unique 

ecosystem.  Many factors influence the ecological role and growth of aquatic plants. 

Understanding those factors is crucial to selecting and designing with aquatic plants.  Following 

is a brief description of the many factors that affect the selection and successful use of aquatic 

plants for specific purposes.    

3.1.1 Temperature 

Temperature extremes certainly affect the range and distribution of aquatic plants, but 

temperature also influences their physiology in situ. Water temperature affects bottom-rooted,  

floating-emergent and rooted aquatic plants.  Generally, floating-emergent and rooted aquatic 

plants become dormant following exposure to 0° C, and their optimal temperature range for 

growth is 25 - 28 °C.  Growth ceases at temperatures above 35°C.  The ability of aquatic plants 

to absorb and process pollutants is, in part, constrained by temperature.  Within the optimal 

temperature range for plant growth, increased temperature increases plant growth and 

metabolism, which also accelerates nitrogen, phosphorus and other nutrient removal from a 

river (An, 2008).   

3.1.2 Depth of water 

Both water depth and water quality affect aquatic plants.  Turbid water reduces sunlight 

penetration, which limits growth of some species.  Where water clarity and light penetration are 

better, totally submersed aquatic plants are better able to thrive.  Depth of adaptability for 

emergent and rooted aquatic plants is generally 10-60 cm, for those in the bottom rooted and 
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floating category optimal depths are generally 80-120 cm. 

3.1.3 Water Quality -Differences in plant species absorption of pollutants 

Aquatic plants have varying growth rates, demands for nutrients and absorptive capacity, 

and they vary in the role of promoting the growth of microorganisms.  As a result their abilities 

to purify bodies of water also vary.  Water purification efficiency in many cases results from 

plant growth characteristics that differ from characteristics that promote plant cultivation (An, 

2008).   Due to differences in aquatic plants’ metabolism, they range in their documented ability 

to absorb toxins and purify water (see table 3.1.3).  Also, because of these differences among 

species, combinations of aquatic plants in a composition are often more effective in purifying 

bodies of water than a single species would be (An, 2008).  

   Table 3.1.3 Chemicals and portions removed from water by selected species.  (Zhu et al., 2005)     
Aquatic Species COD* 

(%) 
NH4 
(%) 

NO3-N 
(%) 

NO2-N 
(%) 

P 
(%) 

N 
(%) 

Elodea spiralis 
 伊乐藻 

53.93 65.38 97.59 96.89 89.91 62.57 

 Alternanthera 
philoxeroides 水生花 

40.77 86.92 95.49 98.98 94.79 63.57 

Zizania caduciflora  
茭草 

38.20 96.15 82.40 91.30 89.91 85.57 

 Vallisneria spiralis 
 苦草 

34.19 65.00 96.14 71.25 13.19 72.82 

 Lemna paucicostata  
浮萍 

33.36 97.51 98.08 91.30 95.05 80.00 

 Hydrilla verticillate 
轮叶黑藻 

27.26 69.23 89.11 88.46 06.23 44.39 

 Pistia stratiotes 
 水浮莲 

26.32 96.77 98.30 69.16 98.95 74.27 

 Myriophyllum spicatum  
聚草 

21.03 73.10 98.63 70.02 76.04 85.29 

*COD = Chemical Oxygen Demand  

3.2 Aquatic plant selection principles 

Aquatic plant selection is a foundation step in designing the riverfront.  The designer 

must generally pay attention to four aspects in the choice of aquatic plants (Bentrup, 2008).  

http://www.shenmeshi.com/Science/Science_20070118235444.html
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Selected plants should be:  (1) fast growing, easy to maintain, and perennial; (2) available 

locally; (3) ecological suitable; and (4) potentially economically beneficial (have a utilization 

value ) and be reflective of cultural values and/or regional landscape conditions.  

3.2.1 Classification of aquatic plants in water purification  

Before choosing specific aquatic plants, the on-site water pollution conditions must be 

identified. Plant selection for this function may then be prescribed, based on plant category, 

documented evidence as a toxin remover (see Table 3.2.1), availability, growth characteristics 

and/or aesthetics.   

Table 3.2.1-1Relative pollutant removal ability of aquatic plant types (Li, 2007). 
 

*Ranking, where 1 is highest removal ability and 4 is lowest.   
 
After selecting the type of aquatic plants based on site pollution characteristics, the next step is 

to choose the specific aquatic plants within each plant type category.  Following are specific 

examples of aquatic plants in each type category based on pollutant removal performance (see 

Table 3.2.1-2). 

Type – and relative  
removal ranking of: 

Nitrogen and 
Phosphorus 

 
Heavy Metals 

Toxic Organic 
Pollutants 

 
Algae 

Free floating 4* 3 3 1 

Totally submersed 1 1 1 1 

Bottom rooted and floating 2 2 2 1 

Emergent and rooted 3 4 4 1 
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Table 3.2.1-2.   Examples of aquatic plant species of each type and pollutant removal function 
(Gu et al., 1994; Liu, 2002; Jiang et al., 2000; Rai et al., 1995).    

Aquatic 
Plant Type  

Known Pollutants Removed 

 N and P 
Heavy Metals (Zn, 
Cr, Pb, Cd, Co, Ni, 
Cu) 

Toxic Organic 
Pollutants*  

Algae 

Free 
floating 

Eichhornia crassipes 
(Mart.) 
Solms Laub. 

Eichhornia 
crassipes (Mart.) 
Solms Laub. 

Azolla imbricata 
(Roxb.) Nakai 
 

Eichhornia 
crassipes 
(Mart.) Solms 
Laub. 

Spirodela polyrrhiza 
(L.) Schleid. 

Spirodela polyrrhiza
 (L.) Schleid. 

Spirodela polyrrhiza
  (L.) Schleid. 

Pistia stratiotes 
L. 

Totally 
submersed 

Elodea canadensis  
 

Vallisneria natans 
(Oour) Hara 

Ceratophyllum  
demersum L. 
 

Vallisneria 
natans (Oour) 
Hara 

Bottom 
rooted and 
floating 

Ludwigia peploides 
(Kunth) Kaven 
subsp. Stipulacea 
(Ohwi) Raven 

Trapa japonnica 
Fler. 
 

Brasenia schreberi  
 

Potamogeton 
malaianus 
 

Emergent 
and rooted 

Acorus calamus L. 
 

Typhax orientalis 
Presl. 

Sagittaria 
sagittifolia L. 

Phragmites 
australis  

 
*Example toxic organic pollutants include DDT, etc.       
 
3.2.2  Aquatic plant selection principles in the consolidating of embankment stability 

From a plant structural standpoint in embankment consolidation, designers should 

generally consider plant establishment, growth habit, and rooting characteristics.  Moreover, 

preferred plant selections for bank stabilization should be based on the following five 

characteristics.  Plants should (1) possess deep and spreading root systems to help stabilize 

slopes; (2) include low, spreading shrub species; (3) be relatively fast growing; (4) be tolerant of 

inundation and flexible have flexible stems; and (5) be perennial.  Section 4.1 of this document 

provides more information about the selection process.  

3.2.3 An additional plant type for applications in embankment consolidation (sediment 

control) 
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In sites where additional consolidation of the embankment extends further inland, a 

fifth plant type (upland species) should be considered.  Examples of upland plants based on 

growth habit are included in Table 3.2.3 (next page), which provides other useful fundamental 

plant characteristics for the designer.  While some species are invasive in some parts of the 

world, they are not invasive in their native environments, such as the following examples from 

China.   
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Table 3.2.3.  Planting design details of selected example species.   

 Species 
Chinese 
Name 

Flower 
Color 

Flower 
Season 

Fruit 
High 
(cm) 

Fr
ee

 f
lo

at
in

g 

Spirodela polyrrhiza (L.) 
Schleid. 

浮萍 N N N 1 

Eichhornia crassipes 
(Mart.) Solms Laub. 

凤眼莲  Summer N 30-50 

Azolla imbricata (Roxb.) 
Nakai 
 

满江红 N N N 1 

Pistia stratiotes L. 大薸  
Summer, 
fall 

Y 20 

To
ta

lly
 

su
b

m
er

se
d

 
 

Elodea canadensis 伊乐藻 N N N 30－60 

Vallisneria natans (Oour) 
Hara 

苦草  Summer N 20-30 

Ceratophyllum 
demersum L. 

金鱼藻  Summer N 40-150 

B
o

tt
o

m
 r

o
o

te
d

 a
n

d
 f

lo
at

in
g 

 

Ludwigia peploides 
(Kunth)  

黄花水龙  Summer N 
30 500 
Spread 

Trapa japonnica Fler 
 

菱 
 

Fall Y 60 
 

Brasenia Schreb 
schreberi J.F. Cmel. 

莼菜  summer N 
600-1000 
Spread 

Potamogeton malaianus 
马来眼子

菜 
 

Summer, 
fall 

Y Spread-ing 

Acorus calamus L. 菖蒲  Summer Y 60-140 

Typha orientalis Presl 
 

香蒲  Summer Y 120-200 

Sagittaria sagittifolia L. 慈姑  7-9 Y 120 

Phragmites australis 芦苇  7-11 N 100-300 

W
et

la
n

d
 

ve
ge

ta
ti

o
n

 
in

 u
p

la
n

d
 

Ligustrum lucidum 
 女贞  6-7 Y 450 

Salix integra 杞柳  4 Y 300 

Cynodon dactylon (L.) 
Pers 

百慕大  N N 5 
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Chapter IV: Optimal allocation of aquatic plants 

Natural riverfronts are comprised of plant communities.  Observationally selecting 

aquatic plants for disturbed riverfronts can accelerate redevelopment of vegetation processes 

that increase river self-purification (Liu 2003) and reduce flood zone problems. Determining the 

selection of aquatic plants as a thickened “line” in riverfront design, with more structural and 

species diversity is the second step in our conceptual model of riverfront design and 

redevelopment (see Figure 4.1).   

Figure 4.1 Conceptual model of the “line” in riverfront planting design. 

4.1 Optimizing the allocation of aquatic plants for water purification  

Designers can achieve an optimal allocation of aquatic plants along the “line” to improve 

the potential for decontamination or self-purification of a waterway, as follows.    

4.1.1 Decontamination of river pollution  

Free floating, totally submersed, bottom rooted-floating and emergent-rooted aquatic 

plants can decontaminate water pollution.  Selecting all four of the above aquatic plant types 
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provides more decontamination than selecting only one or two types. The optimal allocation 

order is shown in the figure below (see figure 4.1.1).   

Figure 4.1.1 Decontamination of river pollution  

4.1.2 Decontamination of pollution in surface runoff from adjacent areas 

Upland aquatic plants are buffers which can decontaminate rain water as it drains from 

uplands toward rivers.  These plantings can reduce non-point pollution removing total nitrogen 

(TN) and total phosphorous (TP).  Deep-rooted and densely integrated grasses (forming a 

consistent soil covering) are the best upland plants to remove TN and TP, followed secondarily 

by forbs and shrubs, and then by trees.  Where enough space exists for the optimal allocation of 

these plantings, grasses, shrubs and trees are the best allocation to move TN and TP; grasses 

with forbs and shrubs are next best choice, and a composition of grasses with trees are the third 

choice.  These plantings should be designed to have trees near the river, and then shrubs, with 

grasses nearer the non-point pollution (Wu et al., 2008). (See figure 4.1.2).  This illustration 
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suggests an effective horizontal distance for effective buffering.     

Figure 4.1.2 Decontamination of pollution in surface runoff  

4.1.3 Decontamination of pollution in shallow groundwater 

Upland buffers may contact shallow groundwater. Selecting upland plants with 

adequate rooting (0.6-0.9m) depth allows these plants to intercept the groundwater flow in 

order to remove some pollutant transported in it.  Most nitrate reduction in shallow 

groundwater occurs within 9m to 100 feet of entering a buffer (Bentrup 2008) (see figure4.1.3).  
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Figure 4.1.3 Decontamination of pollution in shallow groundwater.   

4.2 Optimizing aquatic plant allocation to reduce flooding 

Bentrup (2008) notes: “Herbaceous plants with fibrous root systems are better for 

protecting banks from surface erosion. Woody species with deeper roots will be better at 

increasing soil cohesion and reducing mass slope failure. Select woody species that re-sprout 

from roots or from broken branches. The best approach is often a combination of plant types.”  

Sun and Huang (2000) classify four different kind of ecological embankments. These four 

zones of embankment are:  (1) the bottom area is the part below the normal water level; (2) 

water and bank mix area is the part between the flood level and the normal water level; (3) 

bank mix area is between flood level and top part of the shore; and (4) the top area is 

embankment above the bank (see Figure 4.2). 

 

Figure 4.2 Optimizing aquatic plant allocations to reduce flooding 

4.2.1 Natural soft embankment 

Natural soft embankment mainly uses aquatic vegetation protection of the 

embankment. This system uses plant roots, stems, leaves and the combined plant configuration 

consolidates the embankment.  To create this system, the goal generally is to select emergent-

rooted and totally emergent aquatic plants with developed roots.  Natural soft embankment is 
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suitable for use where the bank slope is minimal, the bank has enough space; and river erosion 

of the bank is not serious.  The natural soft embankment design is illustrated below in Table 

4.2.1 (Changsha City ecology embankment design guide, 2009).    

Type Method Zone Illustration 

Planting tree method Cultivar tree in a square or 
triangle. 

water 
and bank 
mix area 

 

Planting tree 
stump method 

Select the live and easy-to-
root species of trees to cut 
branches, put directly into 
in the soil. 

water 
and bank 
mix area 
and bank 
mix area 

 

Table 4.2.1.  Natural soft embankment. 
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4.2.2 Natural semi-soft embankment  

Natural semi-soft embankment design uses aquatic vegetation, natural stone and wood to 

protect the bottom of bank and to enhance capacity to withstand flooding.  One example of this 

system uses wooden stakes and/or stones as fish habitat/nesting in the bottom of the 

embankment. Construction of the embankment slopes incorporates vegetation.  Generally, this 

plant composition would include trees, shrubs, forbs and grasses (the emergent and rooted and 

upland aquatic plan) to steady embankment. This natural semi-soft embankment approach is 

mainly used for steeper slopes or a more serious erosion section.  The natural semi-soft 

embankment is illustrated below in Table 4.2.2 (Changsha City ecology embankment design 

guide 2009). 

Type Method Zone Illustration 

Wooden 
cage wall  
method 

Place the wood interlock with 
box-shaped, filling soil and plant 
aquatic plant. 

Bottom 
area 
 
 
 

 

Trees pave
-ment 
method 

The rope will complete a series 
of the withered tree together in 
a bundle, and rivet into the 
embankment. 
 

Bottom 
area 
 

 

Vegetation
 grid 
method 

Aquatic plants will be live in 
between the layers of the soil in 
natural or synthetic fabrics, 
package materials used in 
conjunction with the container 
bars. 

Bottom 
area and 
water and 
bank mix 
area 
 

 

Wood and 
roots fill    
surfacing 
method 

With the wood filler compacted 
into the embankment.  The 
rivets provide habitats for 
biodiversity. 

Bottom 
area and 
water and 
bank mix 
area 
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Palm fiber 
 volume  
method 

Using rope to roll brown fibers as 
a cylindrical structure. Put it in 
the foot of the slope.  

Bottom 
area and 
water and 
bank mix 
area. 

 

Land 
Branches  
method 

Branches with all branches of in 
vivo-slope direction, forming a 
sunken bed, all branches are cut 
into the foot of the slope 
protection structure. 

Water and 
bank mix 
area 
 
 

 

Branches 
criss-cross 
and 
overlap 
method 

All branches will be live in a 
criss-cross and overlap of the 
insert in the soil layers in the 
water, and suitable for cross-
strait and embankment with 
staggered. 

water and 
bank mix 
area and 
bank mix 
area 
 

 

Drape the 
container 
method 

Drape the container, wood piles 
and pinched back fill with water, 
suitable for cutting and 
embankment. 

Water and 
bank mix 
area and 
bank mix 
area 
  

Cylindrical
-shaped 
pieces of 
wood 
method 

All will live in cylindrical-shaped 
pieces of wood tied and placed 
in contour orientation on the 
slope of the shallow strait 
drainage, suitable for bulkhead. 

Bank mix 
area 
 
 

 

Table 4.2.2. Natural semi-soft embankment 

4.2.3 Natural hard embankment 

Natural hard embankment is based on natural semi-soft embankment methods plus 

hard materials such as reinforced concrete to increase the flood control capacity.  It primarily 

uses reinforced concrete columns or timbers to create frames fill within large stones or 

reinforced concrete columns and aquatic plants to promote fish habitat.  Natural hard 

embankment is a dry ecological embankment with natural rigid material or brick.  It can resist 
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strong water flows, but the decision to apply this technique would generally be based on 

Geographical Information Systems (GIS) and would involve experts from disciplines including 

civil engineers, hydrologists, geomorphologists, biologists and/or ecologists.   Examples of this 

type of system are shown in Table 4.2.3 (Changsha City ecology embankment design guide 

2009). 

Type Method Illustration 

Rock fill  
method 

Using stone or brick dry pile 
up without mortar. Planting 
aquatic plants.   

Vegetation 
and 
concrete 
cover 
method 

Land out porous concrete and 
put water conservation 
materials and 
insoluble fertilizer as topsoil. 
Planting aquatic plants. 
 

 

Step 
method 

Transformed embankment 
into stepped terrain, stepped 
can grow plants or as a rest 
venue. 
 

 

Skeleton 
within 
grass 
method 

The concrete frame divided 
embankment into a number 
of block structure, in each 
block structure planting 
aquatic plants.  

Jack-style  
Concrete 
block  
method 

Precast concrete blocks 
Chain placed the bottom of 
embankment, plant aquatic 
plants between the concrete 
blocks and use soil 
compaction. 
  

 

Table 4.2.3 Natural hard embankment. 
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4.2.4. Comparing natural embankment types  

Classification Material Hardness Ecologic-
al effect 

Economy Scope of 
application 

Revetment 
space 

Illustration 
 

Plant optimal 
allocation 

Natural soft 
embankment 

Vegetatio
n 

soft  good smallest 
and  
cheapest 

Slope is rel-
atively shal-
low, gentle 
flow. 

large 

 

Based on highly 
integrated with 
aquatic plants.  
Selected emergent 
and rooted + totally 
emergent (tree)  

Natural semi 
soft 
embankment 

Vegetatio
n + rock 
and wood 

semi soft medial Moderate  
quantities,  
short con-
struction 
period 

For variety 
of slopes,   
flow gentle 
or medium;  
em-
bankment 
< 3m. 

medial 

 

Based on highly 
integrated with 
aquatic plants. 
Selected roots 
developed 
emergent and 
rooted + totally 
emergent (shrub)   

Natural hard 
embankment 

vegetatio
n+ rock 
and wood 
+ Precast 
reinforced 
concrete 
frame 

hard range Larger 
investment 

Currents,  
steep revet-
ment (3-
5m above) 

structure  

 

Based on highly 
integrated with 
aquatic plants. 
Selected roots 
developed 
emergent and 
rooted + totally 
emergent (shrub, 
liana)   

Table 4.2.4. Comparing natural embankment types.  
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 4.2.5 Concrete embankment transformation  

In transforming concrete embankment to more natural embankment, the key is to not affect the 

river’s function and the adjacent road embankment’s stability.   Protection of the embankment 

slope must be maintained while stepping back the levee.  Obviously, some sites lack enough 

space to build the natural embankment; such sites can be transformed only in the original 

vertical concrete embankment. 

A vertical concrete embankment can be divided into three zones for restoration, which 

are the vertical zone, the slope zone, and transition slope zone, as shown in Figure 4.2.5 

(Changsha City ecology embankment design guide 2009). 

 
Figure 4.2.5 Concrete embankment transformation.  

The vertical zone uses vegetation concrete, which is mix dry powder, humus soil, 

concrete, concrete additives, vegetation, water, and the slow-release fertilizer as planting 

material (Changsha City ecology embankment design guide 2009). Vegetation concrete should 

have good anti-erosion ability and have a good bond with the original slope. Often grasses and 

forbs are planted by hydro-mulching systems in these circumstances.  

In the case of the slope zone, stability of the embankment can be improved by punching 

openings through the concrete reaching the embankment soil.  This allows exchange of water 

and nutrients between soil and vegetation concrete (Changsha City ecology embankment  
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design guide 2009). 

The technique in the transition slope zone (width 1.5-2m) uses porous concrete components 

and reserves holes to fill in with base planting.  Aquatic plants are then planted into the gaps.  
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Chapter V: The planning and design process for urban riverfront improvement 

After the previous two steps which are selecting and setting aquatic plants (“Point” and 

“Line” in the conceptual model), the third step is to design based on site characteristics that 

may include pollution problems or flooding zone problems or both.  Using the analogy that art is 

composed of points and lines, the last step for the designer is to create an environmental work 

of art.  In other words, just as the artist moves from gaining the skill of drawing a point, to skill 

with the line and finally to creating a composition, the designer composes with plants and other 

materials.   

5.1 Methods of aquatic planting design in water self-purification  

Larger urban areas can have more water pollution pressure because of more 

concentrated population and more land covered by concrete.  In urban areas this pollution is 

characterized as point-source and nonpoint-source pollution.  Generally, designers create buffer 

zones to ameliorate point- and non-point source pollution, with the following principles in mind.   

5.1.1 Buffer size considerations for decontamination of pollution in surface runoff  

The plant community buffer size is calculated after choosing the optimal allocation of 

plant types. There are several important elements for buffer size design. 

(1) Effective buffer zone (B) may be smaller than the gross area buffer.  It depends on the 

upslope runoff area (A) (see figure 5.1.1-1).   
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Figure 5.1.1-1.  Relative buffer zone sizes (Bentrup, 2008). 

(2) Buffer zone widths should be based on runoff loads and site conditions. In the 

following two figures, illustration D depicts a preferable design for this site (see figure 5.1.1-2 ). 

 

Figure 5.1.1-2.  Buffer zone widths based on runoff loads and site conditions (Bentrup, 2008). 

(3) A rule of thumb is that the steeper the slope, the wider the buffer zone should be 

(see figure 5.1.1-3). 

 
 
 
 
 
 
 
Figure 5.1.1-3.  Buffer zone width should increase with increased slope (Bentrup, 2008). 

(4) Using the Riparian Ecosystem Management Model (REMM) a designer can calculate 

how long the buffer should be, and estimate the expected erosion rate (see figure 5.1.1-4). 

 
 

Figure 5.1.1-4. Riparian Ecosystem Management Model (REMM) (Bentrup, 2008). 

5.1.2 Nonpoint-source water self-purification 
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Nonpoint-source pollution occurs as pollutants migrate from off site into waterways 

primarily through runoff.   In these cases aquatic plants are specified based on the principles in 

Chapters 2 and 3 in this report. 

5.1.3 Point-source water self-purification 

Throughout much of the world, much of the point-source water pollution comes from 

raw sewage and wastewater.  Ideally, the design and construction includes forcing this waste 

stream through water treatment/sewage treatment plants before release into waterways.  In 

areas where this is not economically feasible, the goal becomes diverting it through wetlands 

before it is gradually released to the waterway (see figure 5.1.3).  This slower form of water self-

purification system can also be applied to nonpoint-source pollution situations.   

 
Figure 5.1.3 Point-source water self-purification (Bentrup, 2008) 

Gowanus Sponge Park is good design example of using wetland vegetation in nonpoint-

source pollution situations. 

5.1.4 Case study- Gowanus Sponge Park (USA) 

Gowanus Sponge Park is in Kings County (Brooklyn), New York. The idea of this project is 

to let the storm water go through wetland before it reaches the river (see figure 5.1.4).    The 

wetland was designed on the top of the bank and around the Gowanus Canal.  All stormwater is 

collected and diverted to the wetland water self-purification zone, and then to the river. 
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Figure 5.1.4 Gowanus Sponge Park, N.Y. (Drake, www.asla.org) 
 
5.2 Methods of aquatic planting design in flood zone areas 

The two main causes of flooding problems in urban areas are that formerly naturally 

curving canals are redesigned as straight lines to conserve much needed space coupled with the 

fact that population tends to concentrate in urban centers, resulting in buildings being 

constructed in flood zones.   After the flooding episodes, people know it is not safe to build in 

these flood zones, so these areas are renovated in such a way that flood zone land becomes 

elevated and buildings are then constructed at increased elevations.  As the city grows, more 

and more buildings are built in flood zone.  One of the common solutions becomes construction 

of concrete banks along these canals, which only exacerbates problems with increased water 

flow.  As the city eventually needs even more space, rivers are sometimes partially covered with 

more buildings and/or roads.  Ultimately, this leads to poor water quality and increased 

potential for flood damage.  This is an all too common scenario for urban river development.  

This also is the development history of ChonGae Canal in South Korea. 

5.2.1 Straight canal  

Rivers through erosion, transport and accumulation of the three hydraulic way interactions 

forming a rich fluvial geomorphology: meander, wetland, lake and so on.  These geomorphic 

features provide great contributions to natural rivers in the water regulation function.   It is able 
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to weaken flood pressure by consumption of the momentum of the flood, thus ensuring the 

stability of the riverbed morphology.  This weakens the pressure on the lower reaches of the 

flood.  Renovating the straight-line canal back to the more natural sweeping curved canal is the 

best way to control fooling with relatively low investment and maintenance costs.  Designers 

need to understand ideas from landscape ecology and use Geographic Information Systems 

(GIS) as an analytical tool to set the stage for selecting embankments types. to calculate and 

estimate what the river form will be in the future-- meander, wetland or lake.  An ultimate goal 

for designers and planners in designing the riverfront would be to protect space for it. Designers 

need to be involved in the process as well as civil engineers, hydrologists, geomorphologists, 

biologists/ecologists. 

When designing the meandering river, the designer should identify stable parts and 

unstable parts of the river.  The natural soft embankment or natural semi soft embankment 

approach would be applied in areas of more gentle water flow, which usually is the inside bend 

of river.  The natural hard embankment system would likewise be used in areas of more 

turbulent water flow, which is typically the outside bends of river (see figure 5.2.1).   The choice 

of embankment is based on location and space allowed.      

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.2.1  
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For renovated concrete embankments designers should consider how to create space 

both to allow people to interact with the river and to not affect the flood control system in city.  

ChonGae Canal Source Point Park is a good example that solved this problem.   

5.2.2 Case study- ChonGae Canal Source Point Park (Korea) 

ChonGae Canal Source Point Park is located in Seoul, Korea.  ChonGae Canal had been 

polluted and covered with roadways. It has very high concrete banks because it needs to 

withstand 100-year storm events.  The design created a new space on the bottom of the bank, 

which not allowed access for people to be close to the water, but also did not affect the flood 

control system in city.  It is designed so that when the flooding does occur, it will cover this 

space and public access will close; however, after the flood water recedes, people can once 

again gain access to enjoy this space again.  This project was inspired and can succeed, not only 

because it is a redeveloped waterway attempting to solve the pollution problems, but also 

because the design can connect with local culture and create its own environmental art.  

     

5.2.3 An alternative view of stream evolution and the floodplain interface  

Rosgen (1997), in his studies of stream evolution, modeled the meandering stream in 

plan and elevation views over time.  Figure 5.2.3 shows the contrasts between stream types C4 

through G4 and how adjustments in the flood plain affect them in both plan and elevation.  

Ideally, the design team would assess and appropriately account for geomorphic processes to 

determine the ultimate width of the stream/river and keep that space open as landscape space 

with no permanent buildings as an ecological and maintainable way to promote public safety.   
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Figure 5.2.3 Rosgen’s classic stream types (Rosgen 1997).   
(Add U.S. EPA http://water.epa.gov/scitech/datait/tools/warsss/successn.cfm  ) 
 
5.2.4 Case study-Port Lands Estuary: Reinventing the Don River as an agent of urbanism 

(Canada) 

Port Lands Estuary project, in Toronto, Ontario, Canada, is a good example of relocating 

the river to where it wants to be.  The goal of this project once again is to solve flooding 

problems.  The previously designed, man-made straight canal, caused flooding in the city.  This 

plan includes expansion of open landscape space and actual relocation of the Don River.  The 

project is estimated to be completed by 2030 to reduce effects of flooding on the city and 

enhance the local ecosystem.   
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Conclusions 

This report, based on the “Designing with Nature” approach, reviews problems, state of 

the art solutions, and provides general guidelines for using aquatic plants for the ecological 

redevelopment of urban waterfronts.   It attempts to simplify the complex task of renovating 

urban riparian ecosystems using a conceptual model that employs a three-step method of plant 

selection:  1) Selecting specific plants for specific functions (the “point”) in the conceptual 

model.  This would be based on the existing type(s) of pollution and relevant plant/rooting 

characteristics. 2) Optimal allocation of aquatic plants (the “line”). This depends on where the 

pollution originates and helps to determine which type of embankment system to apply. 3) 

Determining placement in relation to the waterway (the “shape”) in the conceptual model. This 

would depend on topography and evolution of the river channel and watershed. And finally 4) 

creating a design solution using aquatic plants (the “art” or the “composition”) in the 

conceptual model.  Ultimately, this would be based on location, culture and financial 

commitments to create and maintain the special riverfront landscape.  Again, in a rapidly 

industrializing and urbanizing nation such as China, this model becomes even more useful.  The 

goal is to solve typical riverfront problems such as pollution, flooding, erosion and runoff, 

aesthetics and providing pedestrian access for recreation and education.   

Although aquatic plants possess many beneficial characteristics for such applications, 

they also have potential drawbacks.  For example, some aquatic plant species, especially some 

of the free floating types, grow at fast enough rates that their proliferation may produce the 

deleterious side effect of creating a water pollution problem.  Also for some aquatic plants, after 
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they collect the heavy metals in plant parts, they cannot transform these elements to non-toxic 

forms in the water.  Thus,   designers need to consider habitat functions and values, uptake of 

heavy metals and the need to harvest and collect certain plant materials so that the heavy 

metals will not be re-released into the environment. Therefore, the wise selection of plant 

materials is vital to the design in our attempts to ecologically renovate urban riverfronts. 

Some aquatic plants work well in water purification in some situations, a number of 

well-adapted species may be considered as invasive species.  Plant materials specification is 

regionally (and in some cases locally) based, which suggests a need for more regionally based 

aquatic plant handbooks and guidelines.   
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