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Abstract
This dissertation consists of three parts that are related to semiparametric mixture

models.

In Part I, we construct the minimum profile Hellinger distance (MPHD) estimator for a

class of semiparametric mixture models where one component has known distribution with

possibly unknown parameters while the other component density and the mixing proportion

are unknown. Such semiparametric mixture models have been often used in biology and the

sequential clustering algorithm.

In Part II, we propose a new class of semiparametric mixture of regression models, where

the mixing proportions and variances are constants, but the component regression functions

are smooth functions of a covariate. A one-step backfitting estimate and two EM-type

algorithms have been proposed to achieve the optimal convergence rate for both the global

parameters and nonparametric regression functions. We derive the asymptotic property

of the proposed estimates and show that both proposed EM-type algorithms preserve the

asymptotic ascent property.

In Part III, we apply the idea of single-index model to the mixture of regression models

and propose three new classes of models: the mixture of single-index models (MSIM), the

mixture of regression models with varying single-index proportions (MRSIP), and the mix-

ture of regression models with varying single-index proportions and variances (MRSIPV).

Backfitting estimates and the corresponding algorithms have been proposed for the new

models to achieve the optimal convergence rate for both the parameters and the nonpara-

metric functions. We show that the nonparametric functions can be estimated as if the

parameters were known and the parameters can be estimated with the same rate of conver-

gence, n−1/2, that is achieved in a parametric model.
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Chapter 1

Minimum Profile Hellinger Distance

Estimation For A Semiparametric

Mixture Model

Abstract

In this chapter, we propose a new effective estimator for a class of semiparametric mixture

models where one component has known distribution with possibly unknown parameters

while the other component density and the mixing proportion are unknown. Such semi-

parametric mixture models have been often used in multiple hypothesis testing and the

sequential clustering algorithm. The proposed estimator is based on the minimum profile

Hellinger distance (MPHD), and its theoretical properties are investigated. In addition, we

use simulation studies to illustrate the finite sample performance of the MPHD estimator

and compare it with some other existing approaches. The empirical studies demonstrate

that the new method outperforms existing estimators when data are generated under con-

tamination and works comparably to existing estimators when data are not contaminated.

Applications to two real data sets are also provided to illustrate the effectiveness of the new

methodology.
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1.1 Introduction

The two-component mixture model considered in this chapter is defined by

h(x) = πf0(x; ξ) + (1− π)f(x− µ), x ∈ R, (1.1)

where f0(x; ξ) is a known probability density function (pdf) with possibly unknown param-

eter ξ, f is an unknown pdf with non-null location parameter µ ∈ R, and π is the unknown

mixing proportion.

Bordes et al. (2006) studied a special case when ξ is assumed to be known, i.e., the first

component density is completely known and model (1.1) becomes

h(x) = πf0(x) + (1− π)f(x− µ), x ∈ R. (1.2)

Model (1.2) is motivated by multiple hypothesis testing to detect differentially expressed

genes under two or more conditions in microarray data. Please see Bordes et al. (2006)

for more detail about the application of model (1.2) to microarray data analysis. For this

purpose, we build a test statistic for each gene. The test statistics can be considered as

coming from a mixture of two distributions: the known distribution f0 under null hypothesis,

and the other distribution f(·−µ), the unknown distribution of the test statistics under the

alternative hypothesis. Please see Section 1.5 for such an application on multiple hypothesis

testing.

Song et al. (2010) studied another special case of model (1.1),

h(x) = πφσ(x) + (1− π)f(x), x ∈ R, (1.3)

where φσ is a normal density with mean 0 and unknown standard deviation σ and f(x)

is an unknown density. Model (1.3) was motivated by a sequential clustering algorithm

(Song and Nicolae, 2009), which works by finding a local center of a cluster first, and then

2



identifying whether an object belongs to that cluster or not. If we assume that the objects

belonging to the cluster come from a normal distribution with known mean (such as zero)

and unknown variance σ2 and that the objects not belonging to the cluster come from an

unknown distribution f , then identifying the points in the cluster is equivalent to estimating

the mixing proportion in model (1.3).

Note that the semiparametric mixture model (1.1) is not generally identifiable without

any assumption for f . Specifically, Bordes et al. (2006) showed that the model (1.2) is not

generally identifiable if we do not put any restriction on the unknown density f , but iden-

tifiability can be achieved under some sufficient conditions. One of these conditions is that

f(·) is symmetric about 0. Under these conditions, Bordes et al. (2006) proposed an elegant

estimation procedure based on the symmetry of f . Song et al. (2010) also addressed the

unidentifiability problem and noticed that model (1.3) is not generally identifiable. Howev-

er, due to the additional unknown parameter σ in the first component, Song et al. (2010)

mentioned that it is hard to find the conditions to avoid unidentifiability of model (1.3)

and proposed to use simulation studies to check the performance of proposed estimators.

Please refer to Bordes et al. (2006) and Song et al. (2010) for detailed discussions on the

identifiability of model (1.1).

Bordes et al. (2006) proposed to estimate model (1.2) based on symmetrization of the

unknown distribution f and proved the consistency of their estimator. However, the asymp-

totic distribution of their estimator has not been provided. Song et al. (2010) also proposed

an EM-type estimator and a maximizing π−type estimator (inspired by the constraints

imposed to achieve identifiability of the parameters and Swanepoel’s approach (Swanepoel,

1999)) to estimate model (1.3) without providing any asymptotic properties.

In this chapter, we propose a new estimation procedure for the unified model (1.1) based

on minimum profile Hellinger distance (MPHD) (Wu et al., 2011). We will investigate the

theoretical properties of the proposed MPHD estimator for the semiparametric mixture

model, such as existence, consistency, and asymptotic normality. A simple and effective

3



algorithm is also given to compute the proposed estimator. Using simulation studies, we

illustrate the effectiveness of the MPHD estimator and compare it with the estimators

suggested by Bordes et al. (2006) and Song et al. (2010). Compared to the existing

methods (Bordes et al., 2006; Song et al. 2010), the new method can be applied to the

more general model (1.1). In addition, the MPHD estimator works competitively under

semiparametric model assumptions, while it is more robust than the existing methods when

data are contaminated.

Donoho and Liu (1988) have shown that the class of minimum distance estimators has

automatic robustness properties over neighborhoods of the true model based on the distance

functional defining the estimator. However, minimum distance estimators typically obtain

this robustness at the expense of not being optimal at the true model. Beran (1977) has

suggested the use of the minimum Hellinger distance (MHD) estimator which has certain

robustness properties and is asymptotically efficient at the true model. For a comparison

between MHD estimators, MLEs, and other minimum distance type estimators, and the

balance between robustness and efficiency of estimators, see Lindsay (1994).

There are other well-known robust approaches within the mixture model-based clustering

literature. Garćıa-Escudero et al. (2003) proposed exploratory graphical tools based on

trimming for detecting main clusters in a given dataset, where the trimming is obtained

by resorting to trimmed k-means methodology. Garćıa-Escudero et al. (2008) introduced a

new method for performing clustering with the aim of fitting clusters with different scatters

and weights. Garćıa-Escudero et al. (2010) reviewed different robust clustering approaches

in the literature, emphasizing on methods based on trimming which try to discard most

outlying data when carrying out the clustering process. A more recent work by Punzo and

McNicholas (2013) introduced a family of fourteen parsimonious mixtures of contaminated

Gaussian distributions models within the general model-based classification framework.

The rest of the chapter is organized as follows. In Section 1.2, we review models (1.2)

and (1.3) and the existing estimation methods suggested by Bordes et al. (2006) and Song

4



et al. (2010), respectively. In Section 1.3, we introduce the proposed MPHD estimator

and discuss its asymptotic properties. Section 1.4 presents simulation results for comparing

the new estimation with some existing methods. Applications to two real data sets are

also provided in Section 1.5 to illustrate the effectiveness of the proposed methodology. A

discussion section ends the chapter.

1.2 Review of Some Existing Methods

1.2.1 Estimation by symmetrization

Bordes et al. (2006) proposed an inference procedure based on the symmetry of the unknown

component of model (1.2). Let X1, ..., Xn be random variables from model (1.2) and H be

the cumulative distribution function (cdf) of model (1.2), i.e.

H(x) = πF0(x) + (1− π)F (x− µ), x ∈ R, (1.4)

where H, F0 and F are the corresponding cdf’s of h, f0 and f . Assume that H in (1.4) is

identifiable, then

F (x) =
1

1− π
[H(x+ µ)− πF0(x+ µ)] , x ∈ R.

Let

D1(x; π, µ,H) =
1

1− π
H(x+ µ) + (1− 1

1− π
)F0(x+ µ),

D2(x; π, µ,H) = 1− 1

1− π
H(µ− x) + (

1

1− π
− 1)F0(µ− x).

Since f is assumed to be symmetric, F (x) = 1−F (−x) for all x ∈ R. Thus D1(·; π0, µ0, H) =

D2(·; π0, µ0, H), where π0 and µ0 are the unknown true values of π and µ. Consequently,

5



with d a distance measure, say, L2-norm, we have d(D1(·; π0, µ0, H), D2(·; π0, µ0, H)) = 0,

where

d(π, µ) = ‖D1 −D2‖2 =

(∫
|D1(x; π, µ,H)−D2(x; π, µ,H)|2dx

)1/2

.

Since H is unknown, it can be estimated by

Hn(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ∈ R,

where I(·) is the indicator function. With H replaced by Hn, we get an empirical version dn

of d defined by dn(π, µ) = d(D1(·; π, µ,Hn), D2(·; π, µ,Hn)). Bordes et al. (2006) proposed

to estimate π and µ in model (1.2) by minimizing dn(π, µ).

1.2.2 EM-type estimator

Let

Zi =

 1, if Xi is from the first component;

0, otherwise.
.

Song et al. (2010) proposed the following EM-type estimator for model (1.3).

E-step: In the (k + 1)th iteration, compute the conditional expectation of Zi, given the

data and the parameters from the kth iteration, as

Z
(k+1)
i = E(Zi|π(k), σ(k), Xi) =

π(k)φσ(k)(Xi)

ĥ(Xi)
,

where

ĥ(x) =
1

nc

n∑
i=1

K

(
x−Xi

c

)
with K being a kernel function, such as Gaussian kernel, and c the bandwidth.

6



M-step: The values of the parameters are updated as follows:

π(k+1) =

∑n
i=1 Z

(k+1)
i

n
,

σ(k+1) =

√√√√∑n
i=1 Z

(k+1)
i X2

i∑n
i=1 Z

(k+1)
i

.

In addition, Song et al. (2010) recommended, in the E-step, to use

Z
(k+1)
i =

2π(k)φσ(k)(Xi)

π(k)φσ(k)(Xi) + ĥ(Xi)

truncated to 1 when it is greater than 1 to stabilize the Zi values.

1.2.3 Maximizing π-type estimator

Song et al. (2010) demonstrated that, based on their simulation studies, the EM-type

estimator introduced in Section 1.2.2 is biased when the two component densities overlap

significantly. Therefore, they proposed an alternative estimator, by finding the maximum

mixing proportion π that satisfies

πφσ(Xi) ≤ ĥ(Xi), i = 1, ..., n.

Therefore, we can estimate π by

π̂ = max
σ

min
Xi

ĥ(Xi)

φσ(Xi)

with ĥ(Xi) defined in (1.2.2), and estimate σ by

σ̂ = arg max
σ

min
Xi

ĥ(Xi)

φσ(Xi)
.

7



More detailed explanation of this estimator is presented in Song et al. (2010) and therefore

omitted here.

1.3 MPHD Estimation

1.3.1 Introduction of MPHD estimator

In this section, we develop a MPHD estimator for model (1.1). Let

H = {hθ,f (x) = πf0(x; ξ) + (1− π)f(x− µ) : θ ∈ Θ, f ∈ F},

where

Θ = {θ = (π, ξ, µ) : π ∈ (0, 1), ξ ∈ R, µ ∈ R} ,

F = {f : f ≥ 0,

∫
f(x)dx = 1}

be the functional space for the semiparametric model (1.1). In practice, the parameter space

of ξ depends on its interpretation. For example, if ξ is the standard deviation of f0, then

the parameter space of ξ will be R+. For model (1.2), ξ is known and thus the parameter

space of ξ is a singleton and, as a result, θ = (π, µ).

Let ‖·‖ denote the L2(v)-norm. For any g1, g2 ∈ L2(v), the Hellinger distance between

them is defined as

dH(g1, g2) =
∥∥∥g1/2

1 − g1/2
2

∥∥∥ .
Suppose a sample X1, X2, ..., Xn is from a population with density function hθ,f ∈H . We

propose to estimate θ and f by minimizing the Hellinger distance

∥∥∥h1/2
t,l − ĥ

1/2
n

∥∥∥ (1.5)

8



over all t ∈ Θ and l ∈ F , where ĥn is an appropriate nonparametric density estimator of

hθ,f . Note that the above objective function (1.5) contains both the parametric component

t and the nonparametric component l. Here, we propose to use the profile idea to implement

the calculation.

For any density function g and t, define functional f(t, g) as

f(t, g) = arg minl∈F

∥∥∥h1/2
t,l − g

1/2
∥∥∥

and then define the profile Hellinger distance as

dPH(t, g) = ‖h1/2
t,f(t,g) − g

1/2‖.

Now the MPHD functional T (g) is defined as

T (g) = arg mint∈ΘdPH(t, g) = arg mint∈Θ

∥∥∥h1/2
t,f(t,g) − g

1/2
∥∥∥ . (1.6)

Given the sample X1, X2, ..., Xn, one can construct an appropriate nonparametric density

estimator of hθ,f , say ĥn, and then the proposed MPHD estimator of θ is given by T (ĥn).

In the examples of Section 1.4 and Section 1.5, we use kernel density estimator for ĥn and

the bandwidth h is chosen based on Botev et al.(2010).

1.3.2 Algorithm

In this section, we propose the following two-step algorithm to calculate the proposed MPHD

estimator. Suppose the initial estimates of θ = (π, ξ, µ) and f are θ(0) = (π(0), ξ(0), µ(0)) and

f (0).

Step 1: Given π(k), ξ(k) and µ(k), find f (k+1) which minimizes

∥∥∥[π(k)f0(·; ξ(k)) + (1− π(k))f (k+1)(· − µ(k))]1/2 − ĥ1/2
n (·)

∥∥∥ .
9



Similar to Wu et al. (2011), we obtain that

f (k+1)(x− µ(k)) =


α

1− π(k)
ĥn(x)− π(k)

1− π(k)
f0(x; ξ(k)), if x ∈M ,

0, if x ∈MC ,

where M = {x : αĥn(x) ≥ π(k)f0(x; ξ(k))} and α = sup
0<α≤1

{π(k)
∫
M
f0(x; ξ(k))dx+

(1− π(k)) ≥ α
∫
M
ĥn(x)dx}.

Step 2: Given fixed f (k+1), find π(k+1), ξ(k+1), and µ(k+1) which minimize

∥∥∥[π(k+1)f0(·; ξ(k+1)) + (1− π(k+1))f (k+1)(· − µ(k+1))]1/2 − ĥ1/2
n (·)

∥∥∥ (1.7)

Then go back to Step 1.

Each of the above two steps monotonically decreases the objective function (1.5) until

convergence. In Step 1, if f(·) is assumed to be symmetric, then we can further symmetrize

f (k+1)(·) as

f̃ (k+1)(x) =
f (k+1)(x) + f (k+1)(−x)

2
.

Note that there is no closed form for (1.7) in Step 2 and thus some numerical algorithms,

such as Newton-Raphson algorithm, is needed to mimimize (1.7). In our examples, we

used the “fminsearch” function in matlab to find the minimizer numerically. “fminsearch”

function uses the Nelder-Mead simplex algorithm as described in Lagarias et al. (1998).

1.3.3 Asymptotic results

Note that θ and f in the semiparametric mixture model (1.1) are not generally identifiable

without any assumptions for f . Bordes et al. (2006) showed that model (1.2) is not generally

identifiable if we do not put any restrictions on the unknown density f , but identifiability

10



can be achieved under some sufficient conditions. One of these conditions is that f(·)

is symmetric about 0. Under these conditions, Bordes et al. (2006) proposed an elegant

estimation procedure based on the symmetry of f . Song et al. (2010) also addressed the non-

identifiability problem and noticed that model (1.3) is not generally identifiable. However,

due to the additional unknown parameter σ in the first component, Song et al. (2010)

mentioned that it is hard to find the conditions to avoid unidentifiability of model (1.3)

and proposed using simulation studies to check the performance of the proposed estimators.

Please refer to Bordes et al. (2006) and Song et al. (2010) for detailed discussions on the

identifiability of model (1.1).

Next, we discuss some asymptotic properties of the proposed MPHD estimator. Here, for

simplicity of explanation, we will only consider model (1.2) for which Bordes et al. (2006)

proved identifiability. However, we conjecture that all the results presented in this section

also apply to the unified model (1.1) when it is identifiable. But this is beyond the scope

of the article and requires more research to find the identifiable conditions for the general

model (1.1).

The next theorem gives results on the existence and uniqueness of the proposed estima-

tor, and the continuity of the functional defined in (1.6), which is in line with Theorem 1 of

Beran (1977).

Theorem 1.3.1. With T defined by (1.6), if model (1.2) is identifiable, then we have

(i) For every hθ,f ∈H , there exists T (hθ,f ) ∈ Θ satisfying (1.6);

(ii) T (hθ,f ) = θ uniquely for any θ ∈ Θ;

(iii) T (hn)→ T (hθ,f ) for any sequences {hn}n∈N such that
∥∥∥h1/2

n − h1/2

θ,f

∥∥∥→ 0 and

sup
t∈Θ

∥∥∥ht,f(t,hn) − ht,f(t,hθ,f
)

∥∥∥→ 0

as n→∞.
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Remark. Bordes et al. (2006) provided sufficient conditions for the identifiability of model

(1.2). For example, model (1.2) is identifiable if f > 0 has a first-order moment, and there

exists a real number a > 0 such that for all |x| > a we have f0(x) = 0 and f(x) = f(−x).

Readers are referred to Bordes et al. (2006) for a detailed discussion of the identifiability of

model (1.2) and other sufficient conditions for identifiability. Without the global identifia-

bility of model (1.2), the local identifiability of model (1.2) proved by Bordes et al. (2006)

tells that there exists one solution that has the asymptotic properties presented in Theorem

1.3.1.

Define a kernel density estimator based on X1, X2, ..., Xn as:

ĥn(x) =
1

ncnsn

n∑
i=1

K

(
x−Xi

cnsn

)
, (1.8)

where {cn} is a sequence of constants (bandwidths) converging to zero at an appropriate

rate, and sn is a robust scale parameter.

Under further conditions on the kernel density estimator defined in (1.8), the consistency

of the MPHD estimator is established in the next theorem.

Theorem 1.3.2. Suppose that

(i) The kernel function K(·) is absolutely continuous and bounded with compact support.

(ii) limn→∞ cn = 0, limn→∞ n
1/2cn =∞.

(iii) The model (1.2) is identifiable and hθ,f is uniformly continuous.

Then ‖ĥ1/2
n − h1/2

θ,f
‖ p→ 0 as n→∞, and therefore T (ĥn)

p→ T (hθ,f ) as n→∞.

Define the map θ 7→ sθ,g as sθ,g = h
1/2

θ,f(θ,g)
, and suppose that for θ ∈ Θ, there exists

a 2× 1 vector ṡθ(x) with components in L2 and a 2× 2 matrix s̈θ with components in L2

such that for every 2× 1 real vector e of unit Euclidean length and for every scalar α in a

12



neighborhood of zero,

sθ+αe
(x) = sθ(x) + αeT ṡθ(x) + αeTuα(x), (1.9)

ṡθ+αe
(x) = ṡθ(x) + αs̈θ(x)e+ αvα(x)e, (1.10)

where uα(x) is 2× 1, vα(x) is 2× 2, and the components of uα and vα tend to zero in L2 as

α→ 0.

The next theorem shows that the MPHD estimator has an asymptotic normal distribu-

tion.

Theorem 1.3.3. Suppose that

(i) Model (1.2) is identifiable.

(ii) The conditions in Theorem 1.3.2 hold.

(iii) The map θ 7→ sθ,g satisfies (1.9) and (1.10) with continuous gradient vector ṡθ,g and

continuous Hessian matrix s̈θ,g in the sense that ‖ṡθn,gn
− ṡθ,g‖ → 0 and ‖s̈θn,gn

−

s̈θ,g‖ → 0 whenever θn → θ and ‖g1/2
n − g1/2‖ → 0 as n→∞.

(iv) < s̈θ,hθ,f

, h
1/2

θ,f
> is invertible.

Then, with T defined in (1.6) for model (1.2), the asymptotic distribution of n1/2(T (ĥn) −

T (hθ,f )) is N(0,Σ) with variance matrix Σ defined by

Σ =< s̈θ,hθ,f

, h
1/2

θ,f
>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2

θ,f
>−1 .
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1.4 Simulation Studies

In this section, we investigate the finite sample performance of the proposed MPHD estima-

tor and compare it to Maximizing-π type estimator (Song et al., 2010), EM-type estimator

(Song et al., 2010), and the Symmetrization estimator (Bordes et al., 2006) under both

model (1.2) and model (1.3).

Model (1.3) that Song et al. (2010) considered does not have a location parameter in the

second component. However, we can equivalently replace f(x) with f(x− µ), where µ ∈ R

is a location parameter. Throughout this section, we will consider this equivalent form of

(1.3). Under this model, after we have π̂ and σ̂, we can simply estimate µ by

µ̂ =

∑n
i=1 (1− Ẑi)Xi∑n
i=1 (1− Ẑi)

,

where Ẑi is

Ẑi =
2π̂φσ̂(Xi)

π̂φσ̂(Xi) + ĥ(Xi)
.

We first compare the performance of different estimators under model (1.2). Suppose

(X1, . . . , Xn) are generated from one of the following five cases:

Case I: X ∼ 0.3N(0, 1) + 0.7N(1.5, 1)⇒ (π, µ) = (0.3, 1.5),

Case II: X ∼ 0.3N(0, 1) + 0.7N(3, 1)⇒ (π, µ) = (0.3, 3),

Case III: X ∼ 0.3N(0, 1) + 0.7U(2, 4)⇒ (π, µ) = (0.3, 3),

Case IV: X ∼ 0.7N(0, 4) + 0.3N(3, 1)⇒ (π, µ) = (0.7, 3),

Case V: X ∼ 0.85N(0, 4) + 0.15N(3, 1)⇒ (π, µ) = (0.85, 3).

Figure 1.1 shows the density plots of the five cases. Cases I, II, and III are the models

used by Song et al. (2010) to show the performance of their Maximizing-π type and EM-

type estimators. Case I represents the situation when two components are close and Case
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Figure 1.1: Density plots of: (a) Case I; (b) Case II; (c) Case III; (d) Case IV and (e)
Case V.

II represents the situation when two components are apart. Cases IV and V are suggested

by Bordes et al. (2006) to show the performance of their semiparametric EM algorithm. In

addition, we also consider the corresponding contaminated models by adding 2% outliers

from U(10, 20) to the above five models.

Tables 1.1, 1.2 and 1.3 report the bias and MSE of the parameter estimates of (π, µ)

for the four methods when n = 100, n = 250 and n = 1000, respectively, based on 200

repetitions. Tables 1.4, 1.5 and 1.6 report the respective results for n = 100, n = 250 and

for n = 1000 when the data are under 2% contamination from U(10, 20). The best values are

highlighted in bold. From the six tables, we can see that the MPHD estimator has better

overall performance than the Maximizing-π type, the EM-type, and the Symmetrization

estimators, especially when sample size is large. When the sample is not contaminated

by outliers, the MPHD estimator and the Symmetrization estimator are very competitive
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and perform better than other estimators. When the sample is contaminated by outliers,

the MPHD estimator performs much better and therefore is more robust than the other

three methods. We also observe that when the sample is contaminated by outliers, among

the Maximizing-π type, the EM-type, and the Symmetrization estimators, the EM-type

estimator tends to give better mixing proportion estimates than the other two.

Table 1.1: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 100

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.092(0.030) 0.057(0.011) 0.271(0.078) 0.003(0.009)

µ : 1.5 -0.113(0.118) 0.196(0.070) 0.465(0.239) 0.020(0.026)

II π : 0.3 -0.014(0.003) -0.052(0.005) 0.027(0.003) -0.002(0.003)

µ : 3 -0.000(0.021) -0.123(0.038) 0.020(0.017) -0.009(0.025)

III π : 0.3 -0.046(0.005) -0.108(0.014) -0.045(0.005) 0.001(0.003)

µ : 3 -0.008(0.004) -0.341(0.138) -0.212(0.058) -0.002(0.006)

IV π : 0.7 -0.044(0.015) -0.131(0.025) 0.086(0.010) -0.089(0.028)

µ : 3 0.173(0.247) -0.697(0.659) -0.053(0.177) -0.326(0.465)

V π : 0.85 -0.094(0.041) -0.147(0.030) 0.039(0.003) -0.106(0.024)

µ : 3 0.109(1.145) -1.375(2.298) -0.697(1.136) -0.742(1.184)

Next, we also evaluate how the MPHD estimator performs under model (1.3), where

the variance σ2 is assumed to be unknown, and compare it with other methods using the

same five cases as in Tables 1.1-1.6. Tables 1.7, 1.8, and 1.9 report the bias and MSE of

the parameter estimates for n = 100, n = 250 and n = 1000, respectively, when there

are no contaminations. Based on these three tables, we can see that when there are no

contaminations, the MPHD estimator and the Symmetrization estimator perform better

than the Maximizing-π type estimator and the EM-type estimator. Tables 1.10, 1.11, and

1.12 report the results when models are under 2% contamination from U(10, 20) for n = 100,

n = 250, and n = 1000, respectively. From these three tables, we can see that the MPHD

estimator performs much better again than the other three methods.
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Table 1.2: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 250

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.090(0.028) 0.028(0.005) 0.269(0.074) -0.080(0.021)

µ : 1.5 -0.110(0.084) 0.162(0.041) 0.472(0.231) -0.107(0.060)

II π : 0.3 -0.009(0.001) -0.058(0.005) 0.034(0.002) -0.001(0.001)

µ : 3 0.007(0.007) -0.118(0.027) 0.057(0.009) -0.004(0.009)

III π : 0.3 -0.041(0.003) -0.071(0.006) -0.016(0.001) -0.001(0.001)

µ : 3 -0.001(0.001) -0.188(0.043) -0.082(0.010) -0.001(0.002)

IV π : 0.7 -0.009(0.003) -0.108(0.018) 0.102(0.012) -0.017(0.009)

µ : 3 0.131(0.067) -0.618(0.501) 0.063(0.069) -0.095(0.159)

V π : 0.85 -0.040(0.014) -0.121(0.021) 0.052(0.003) -0.041(0.011)

µ : 3 0.217(0.444) -1.134(1.503) -0.323(0.349) -0.345(0.625)

To see the comparison and difference better, we also plot in Figures 1.2-1.4 the results

reported in Tables 1.6 and 1.9. Figure 1.2 contains the MSE of point estimates of µ that

are presented in Table 1.9 for model (1.3) (σ unknown), and Figures 1.3 and 1.4 contain the

MSEs of point estimates of µ and π, respectively, that are presented in Table 1.6 for model

(1.2) (σ known) under 2% contamination from U(10, 20). From the plots, we can see that

all four estimators perform well in cases II and III. The EM-type estimator performs poorly

in case I, and is the worst estimate of µ in cases IV and V when data are contaminated. The

Symmetrization estimator is sensitive to contamination, especially in cases IV and V, no

matter σ is known or not. Comparatively, the Maximizing-π type estimator is more robust,

but it doesn’t perform well in cases IV and V when data are not under contamination.

However, the MPHD estimator performs well in all cases.
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Table 1.3: Bias (MSE) of point estimates for model (1.2) over 200 repetitions with n = 1000

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.009(0.005) -0.020(0.003) 0.263(0.069) -0.024(0.005)

µ : 1.5 0.003(0.016) 0.083(0.017) 0.459(0.213) -0.031(0.015)

II π : 0.3 -0.006(0.001) -0.055(0.004) 0.039(0.002) -0.003(0.001)

µ : 3 0.006(0.002) -0.083(0.016) 0.093(0.010) -0.002(0.002)

III π : 0.3 -0.028(0.001) -0.061(0.005) -0.004(0.001) 0.000(0.001)

µ : 3 -0.003(0.001) -0.153(0.029) -0.044(0.002) -0.002(0.001)

IV π : 0.7 -0.008(0.001) -0.115(0.020) 0.104(0.011) -0.007(0.001)

µ : 3 0.045(0.013) -0.554(0.400) 0.174(0.039) -0.030(0.017)

V π : 0.85 -0.007(0.001) -0.101(0.016) 0.061(0.004) -0.007(0.002)

µ : 3 0.172(0.063) -0.929(1.043) 0.019(0.067) -0.066(0.104)

1.5 Real Data Application

Example 1(Iris data). We illustrate the application of the new estimation procedure to the

sequential clustering algorithm using the Iris data, which is perhaps one of the best known

data sets in pattern recognition literature. Iris data was first introduced by Fisher (1936)

and is referenced frequently to this day. This data contains four attributes: sepal length

(in cm), sepal width (in cm), petal length (in cm), and petal width (in cm), and there are

3 classes of 50 instances each, where each class refers to a type of Iris plant. One class is

linearly separable from the other two and the latter are not linearly separable from each

other.

Assuming the class indicators are unknown, we want to recover the three clusters in the

data. After applying the search algorithm for centers of clusters by Song et al. (2010),

observation 8 is selected as the center of the first cluster. We adjust all observations by

subtracting observation 8 from each observation. As discussed by Song et al. (2010),

the proportion of observations that belong to a cluster can be considered as the mixing

proportion in the two-component semiparametric mixture model (1.3).
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Table 1.4: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 100

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.124(0.036) 0.060(0.010) 0.267(0.075) -0.063(0.014)

µ : 1.5 -0.163(0.128) 0.692(0.629) 1.079(1.348) -0.031(0.015)

II π : 0.3 -0.029(0.005) -0.055(0.006) 0.018(0.004) -0.300(0.090)

µ : 3 -0.011(0.046) 0.252(0.136) 0.398(0.228) -3.000(9.000)

III π : 0.3 -0.034(0.003) -0.108(0.015) -0.048(0.005) -0.032(0.004)

µ : 3 -0.011(0.004) -0.034(0.080) 0.104(0.091) -0.014(0.009)

IV π : 0.7 -0.054(0.020) -0.133(0.027) 0.081(0.009) -0.200(0.083)

µ : 3 0.152(0.389) 0.172(0.668) 1.141(2.123) -0.582(0.867)

V π : 0.85 -0.125(0.071) -0.158(0.033) 0.024(0.002) -0.217(0.080)

µ : 3 0.048(1.364) -0.007(1.314) 1.373(4.337) -0.910(1.444)

Principal component analysis shows that the first principal component accounts for

92.46% of the total variability, so it would seem that the Iris data tend to fall within a

one-dimensional subspace of the 4-dimensional sample space. Figure 1.5 is a histogram

of the first principal component. From the histogram, we can see that the first cluster

is separated from the rest of the data, with observation 8 (first principal component s-

core equals -2.63) being the center of it. The first principal component loading vector is

(0.36,−0.08, 0.86, 0.35), which implies that the petal length contains most of the informa-

tion. We apply each of the four estimation methods discussed above to the first principal

component. Note however that the leading principal components are not necessary to have

better clustering information than other components. Some cautious are needed when using

principal components in clustering applications.

Similar to Song et al. (2010), in Table 1.13, we report the estimates of proportion based

on the first principal component. Noting that the true proportion is 1/3, we can see that the

MPHD and the Symmetrization estimators perform better than the other two estimators.

Example 2 (Breast cancer data). Next, we illustrate the application of the new estima-

19



Table 1.5: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 250

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.090(0.026) 0.032(0.006) 0.263(0.071) -0.180(0.043)

µ : 1.5 -0.102(0.085) 0.613(0.434) 1.043(1.146) -0.224(0.081)

II π : 0.3 -0.019(0.001) -0.065(0.006) 0.027(0.002) -0.044(0.003)

µ : 3 -0.009(0.007) 0.213(0.076) 0.415(0.202) -0.044(0.012)

III π : 0.3 -0.021(0.001) -0.073(0.007) -0.015(0.001) -0.028(0.002)

µ : 3 -0.004(0.001) 0.119(0.043) 0.245(0.086) -0.011(0.003)

IV π : 0.7 -0.020(0.005) -0.122(0.021) 0.086(0.009) -0.302(0.164)

µ : 3 0.149(0.096) 0.162(0.296) 1.149(1.594) -0.746(1.137)

V π : 0.85 -0.053(0.025) -0.131(0.023) 0.034(0.002) -0.311(0.140)

µ : 3 0.220(0.513) 0.358(1.000) 1.859(4.597) -1.093(1.785)

tion procedure to multiple hypothesis testing using the breast cancer data from Hedenfalk

et al. (2001), who examined gene expressions in breast cancer tissues from women who were

carriers of the hereditary BRCA1 or BRCA2 gene mutations, predisposing to breast cancer.

The breast cancer data was downloaded from

“http://research.nhgri.nih.gov/microarray/NEJM Supplement/” and contains gene expres-

sion ratios derived from the fluorescent intensity (proportional to the gene expression level)

from a tumor sample divided by the fluorescent intensity from a common reference sample

(MCF-10A cell line). The ratios were normalized (or calibrated) such that the majority of

the gene expression ratios from a pre-selected internal control gene set was around 1.0, but

no log-transformation was used. The data set consists of 3,226 genes on n1 = 7 BRCA1

arrays and n2 = 8 BRCA2 arrays. If any gene had one or more measurement exceeding 20,

then this gene was eliminated (Storey and Tibshirani, 2003). This left 3,170 genes. The

p-values were calculated based on permutation tests (Storey and Tibshirani, 2003). We then

transform the p-values via the probit transformation to z-score, given by zi = Φ−1(1 − pi)

(McLachlan and Wockner, 2010). Figure 1.6 displays the fitted densities, and Table 1.14
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Table 1.6: Bias (MSE) of point estimates for model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.460(0.007) -0.024(0.003) 0.255(0.065) -0.240(0.059)

µ : 1.5 -0.056(0.019) 0.509(0.284) 1.048(1.119) -0.313(0.103)

II π : 0.3 -0.014(0.001) -0.057(0.004) 0.032(0.001) -0.043(0.002)

µ : 3 0.001(0.002) 0.257(0.081) 0.444(0.204) -0.034(0.005)

III π : 0.3 -0.019(0.001) -0.066(0.005) -0.011(0.001) -0.035(0.002)

µ : 3 -0.001(0.001) 0.179(0.044) 0.299(0.096) -0.011(0.001)

IV π : 0.7 -0.019(0.001) -0.128(0.023) 0.089(0.008) -0.311(0.149)

µ : 3 0.067(0.013) 0.203(0.257) 1.252(1.628) -0.829(1.165)

V π : 0.85 -0.019(0.001) -0.112(0.018) 0.045(0.002) -0.347(0.134)

µ : 3 0.177(0.067) 0.574(0.836) 2.275(5.478) -1.466(2.329)

lists the parameter estimates of the four methods discussed in the article. MPHD estimator

shows that among the 3170 genes examined, around 29% genes are differentially expressed

between those tumour types, which is close to the 33% from Storey and Tibshirani (2003)

and 32.5% from Langaas et al. (2005).

Let

τ̂0(zi) = π̂φσ̂(zi)/[π̂φσ̂(zi) + (1− π̂)f̂(zi − µ̂)]

be the classification probability that the ith gene is not differentially expressed. Then we

select all genes with τ̂0(zi) ≤ c to be differentially expressed. The threshold c can be selected

by controlling the false discovery rate (FDR, Benjamini and Hochberg, 1995). Based on

McLachlan et al. (2006), the FDR can be estimated by

F̂DR =
1

Nr

∑
i

τ̂0(zi)I[0,c0](τ̂0(zi)),

where Nr =
∑

i I[0,c0](τ̂0(zi)) is the total number of found differentially expressed genes
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Table 1.7: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.058(0.021) 0.110(0.021) 0.302(0.097) -0.047(0.015)

σ : 1 0.052(0.045) 0.758(2.207) 0.143(0.042) -0.047(0.071)

µ : 1.5 -0.057(0.082) 0.098(0.095) 0.463(0.242) -0.055(0.061)

II π : 0.3 -0.008(0.004) 0.062(0.017) 0.082(0.014) -0.006(0.004)

σ : 1 0.095(0.041) 1.821(5.180) 0.331(0.252) 0.012(0.056)

µ : 3 -0.014(0.025) -0.341(0.216) 0.081(0.031) -0.032(0.030)

III π : 0.3 -0.051(0.005) 0.024(0.011) -0.042(0.006) -0.009(0.003)

σ : 1 -0.101(0.030) 2.258(6.708) -0.028(0.105) -0.031(0.045)

µ : 3 -0.021(0.005) -0.436(0.223) -0.187(0.049) -0.008(0.008)

IV π : 0.7 -0.014(0.011) -0.060(0.012) 0.114(0.016) -0.054(0.018)

σ : 2 0.101(0.047) 0.195(0.161) 0.120(0.034) 0.039(0.065)

µ : 3 0.100(0.201) -0.537(0.504) 0.019(0.175) -0.320(0.511)

V π : 0.85 -0.028(0.009) -0.076(0.014) 0.042(0.003) -0.159(0.078)

σ : 2 0.098(0.043) 0.179(0.100) -0.006(0.021) -0.118(0.247)

µ : 3 0.275(0.432) -1.080(1.719) -0.622(1.088) -0.845(1.717)

and IA(x) is the indicator function, which is one if x ∈ A and is zero otherwise. Table

1.15 reports the number of selected differentially expressed genes (Nr) and the estimated

false discovery rate (FDR) for different threshold c values based on MPHD estimate. For

comparison, we also include the results of McLachlan and Wockner (2010), which assumes

a two-component mixture of heterogeneous normals (MLE) for zis.

1.6 Summary and Future Work

In this chapter, we proposed a minimum profile Hellinger distance estimator for a class of

semiparametric mixture models and investigated its existence, consistency, and asymptotic

normality. Simulation study shows that the MPHD estimator outperforms existing estima-
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Table 1.8: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.043(0.014) 0.064(0.006) 0.302(0.093) -0.048(0.015)

σ : 1 0.058(0.021) -0.101(0.075) 0.157(0.032) 0.020(0.033)

µ : 1.5 -0.064(0.051) 0.220(0.059) 0.421(0.186) -0.079(0.049)

II π : 0.3 -0.005(0.001) -0.028(0.003) 0.093(0.011) -0.002(0.001)

σ : 1 0.046(0.013) 0.330(0.912) 0.377(0.191) -0.001(0.021)

µ : 3 -0.005(0.010) -0.129(0.054) 0.121(0.022) -0.017(0.011)

III π : 0.3 -0.037(0.002) -0.043(0.004) 0.005(0.002) 0.002(0.001)

σ : 1 -0.061(0.013) 0.609(1.741) 0.163(0.100) 0.013(0.022)

µ : 3 -0.006(0.001) -0.233(0.085) -0.069(0.009) 0.001(0.002)

IV π : 0.7 -0.008(0.003) -0.068(0.009) 0.121(0.016) -0.014(0.007)

σ : 2 0.036(0.023) 0.023(0.035) 0.142(0.028) 0.009(0.032)

µ : 3 0.108(0.054) -0.437(0.269) 0.153(0.067) -0.070(0.140)

V π : 0.85 -0.014(0.003) -0.076(0.010) 0.060(0.004) -0.076(0.028)

σ : 2 0.093(0.027) 0.069(0.035) 0.046(0.011) 0.027(0.048)

µ : 3 0.115(0.205) -0.912(1.024) -0.222(0.266) -0.573(0.981)

tors when data are under contamination, while performs competitively to other estimators

when there is no contamination.

We indicate two fields of application of the model. The first is microarray data analysis,

which is the initial motivation of introducing model (1.2) (see Bordes et al., 2006). The

second is sequential clustering algorithm, which is the initial motivation of introducing

model (1.3) (see Song et al., 2010). A real data application involving sequential clustering

algorithm is also provided to illustrate the effectiveness of the proposed methodology.

In this chapter, we only considered the asymptotic results for model (1.2), since its iden-

tifiability property has been established by Bordes et al. (2006). When the first component

of the general model (1.1) has normal distribution, the empirical studies demonstrated the

success of proposed MPHD estimator. We conjecture that the asymptotic results of MPHD
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Table 1.9: Bias (MSE) of point estimates for model (1.3) over 200 repetitions with n =
1000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.019(0.005) 0.053(0.004) 0.301(0.091) -0.020(0.005)

σ : 1 0.040(0.008) -0.147(0.028) 0.177(0.034) 0.025(0.011)

µ : 1.5 -0.019(0.017) 0.236(0.059) 0.423(0.181) -0.024(0.018)

II π : 0.3 -0.001(0.001) -0.037(0.002) 0.099(0.010) 0.000(0.001)

σ : 1 0.017(0.003) -0.044(0.007) 0.407(0.176) -0.002(0.005)

µ : 3 0.009(0.002) -0.042(0.005) 0.151(0.025) 0.003(0.002)

III π : 0.3 -0.029(0.001) -0.047(0.003) 0.011(0.001) 0.001(0.001)

σ : 1 -0.051(0.005) -0.029(0.007) 0.177(0.044) 0.005(0.004)

µ : 3 -0.003(0.001) -0.122(0.017) -0.031(0.002) -0.001(0.001)

IV π : 0.7 -0.008(0.001) -0.069(0.006) 0.125(0.016) -0.004(0.001)

σ : 2 0.002(0.006) -0.051(0.013) 0.172(0.032) -0.001(0.006)

µ : 3 0.058(0.017) -0.346(0.153) 0.161(0.035) -0.018(0.015)

V π : 0.85 -0.003(0.001) -0.067(0.006) 0.072(0.005) -0.025(0.010)

σ : 2 0.053(0.009) -0.005(0.008) 0.087(0.010) 0.008(0.031)

µ : 3 0.099(0.042) -0.745(0.633) 0.135(0.060) -0.180(0.293)

also apply to the more general model (1.1) when it is identifiable. However, it requires fur-

ther research to find sufficient conditions for the identifiability of model (1.1). In addition,

more work remains to be done on the application of MPHD estimator to the regression

setting such as mixture of regression models.

1.7 Proofs

The proofs of Theorems 1.3.1, 1.3.2, and 1.3.3 are presented in this section.

Proof of Theorem 1.3.1.

The method of proof is similar to that of Theorem 2.1 of Beran (1977).
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Table 1.10: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 100.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.104(0.025) 0.102(0.018) 0.295(0.093) -0.132(0.031)

σ : 1 0.132(0.090) 0.680(1.919) 0.133(0.046) -0.213(0.150)

µ : 1.5 -0.148(0.088) 0.591(0.560) 1.115(1.507) -0.137(0.068)

II π : 0.3 -0.022(0.005) 0.051(0.016) 0.067(0.011) -0.062(0.010)

σ : 1 0.081(0.034) 1.755(5.036) 0.301(0.235) -0.244(0.121)

µ : 3 -0.025(0.036) 0.053(0.180) 0.467(0.323) -0.079(0.051)

III π : 0.3 -0.036(0.003) 0.019(0.012) -0.036(0.005) -0.046(0.006)

σ : 1 -0.061(0.019) 2.229(6.635) 0.025(0.102) -0.201(0.076)

µ : 3 -0.022(0.004) -0.116(0.114) 0.144(0.085) -0.034(0.009)

IV π : 0.7 -0.033(0.017) -0.066(0.013) 0.099(0.013) -0.110(0.033)

σ : 2 0.088(0.058) 0.184(0.147) 0.104(0.032) -0.152(0.110)

µ : 3 0.103(0.262) 0.449(0.928) 1.209(2.263) -0.226(0.354)

V π : 0.85 -0.045(0.023) -0.084(0.014) 0.024(0.002) -0.198(0.106)

σ : 2 0.145(0.082) 0.222(0.135) -0.013(0.027) -0.172(0.199)

µ : 3 0.379(2.637) 0.646(2.505) 1.235(3.351) -0.501(1.258)

(i) Let d(t) =

∥∥∥∥h1/2
t,f(t,hθ,f

) − h
1/2

θ,f

∥∥∥∥. For any sequence {tn : tn ∈ Θ, tn → t as n→∞},

|d2(tn)− d2(t)| = |
∫

(h
1/2
tn,f(tn,hθ,f

)(x)− h1/2

θ,f
(x))2dx−

∫
(h

1/2
t,f(t,hθ,f

)(x)− h1/2

θ,f
(x))2dx|

= 2|
∫

(h
1/2
tn,f(tn,hθ,f

)(x)− h1/2
t,f(t,hθ,f

)(x))h
1/2

θ,f
(x)dx|

≤ 2‖h1/2
tn,f(tn,hθ,f

) − h
1/2
t,f(t,hθ,f

)‖
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Table 1.11: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 250.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.108(0.024) 0.060(0.006) 0.292(0.087) -0.164(0.038)

σ : 1 0.103(0.056) -0.015(0.184) 0.155(0.031) -0.216(0.116)

µ : 1.5 -0.145(0.070) 1.697(0.550) 1.085(1.277) -0.177(0.067)

II π : 0.3 -0.011(0.001) -0.033(0.003) 0.087(0.009) -0.049(0.005)

σ : 1 0.056(0.014) 0.306(0.843) 0.400(0.204) -0.195(0.062)

µ : 3 -0.011(0.012) 0.245(0.115) 0.525(0.316) -0.047(0.016)

III π : 0.3 -0.025(0.001) -0.073(0.008) -0.723(0.002) -0.042(0.003)

σ : 1 -0.057(0.012) 1.125(3.379) 0.081(0.055) -0.203(0.056)

µ : 3 -0.008(0.001) -0.068(0.060) 0.207(0.073) -0.029(0.004)

IV π : 0.7 -0.024(0.004) -0.089(0.012) 0.102(0.011) -0.077(0.013)

σ : 2 0.010(0.018) 0.035(0.041) 0.138(0.028) -0.213(0.078)

µ : 3 0.118(0.064) 0.406(0.435) 1.339(2.125) -0.032(0.084)

V π : 0.85 -0.027(0.006) -0.098(0.014) 0.037(0.002) -0.114(0.038)

σ : 2 0.052(0.029) 0.069(0.034) 0.041(0.010) -0.193(0.099)

µ : 3 0.215(0.228) 0.715(1.406) 1.963(4.889) -0.130(0.460)

Since
∫
htn,f(tn,hθ,f

)(x)dx =
∫
ht,f(t,hθ,f

)(x)dx = 1,

‖h1/2
tn,f(tn,hθ,f

) − h
1/2
t,f(t,hθ,f

)‖
2 =

∫
(h

1/2
tn,f(tn,hθ,f

)(x)− h1/2
t,f(t,hθ,f

)(x))2dx

≤
∫

(htn,f(tn,hθ,f
)(x)− ht,f(t,hθ,f

)(x))dx = 2

∫
[htn,f(tn,hθ,f

)(x)− ht,f(t,hθ,f
)(x)]+dx

Also, [htn,f(tn,hθ,f
)(x)−ht,f(t,hθ,f

)(x)]+ ≤ ht,f(t,hθ,f
)(x), and for every x, ht,f(t,hθ,f

)(x) is con-

tinuous at t. Thus, by the Dominated Convergence Theorem, ‖h1/2
tn,f(tn,hθ,f

)−h
1/2
t,f(t,hθ,f

)‖ → 0

as n→∞. So, d(tn)→ d(t) as n→∞, i.e., d is continuous on Θ and achieves a minimum

for t ∈ Θ.

(ii) By assumption, hθ,f is identifiable. Immediately, we have T (hθ,f ) = θ uniquely.
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Table 1.12: Bias (MSE) of point estimates for model (1.3), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.

Case TRUE MPHD Maximizing π-type EM-type Symmetrization

I π : 0.3 -0.083(0.015) 0.049(0.003) 0.291(0.085) -0.211(0.051)

σ : 1 0.099(0.026) -0.128(0.022) 0.178(0.033) -0.096(0.050)

µ : 1.5 -0.116(0.039) 0.706(0.515) 1.068(1.162) -0.258(0.085)

II π : 0.3 -0.012(0.001) -0.042(0.002) 0.092(0.009) -0.05(0.003)

σ : 1 0.025(0.003) -0.031(0.007) 0.422(0.189) -0.199(0.045)

µ : 3 -0.008(0.002) 0.299(0.099) 0.537(0.297) -0.047(0.005)

III π : 0.3 -0.021(0.001) -0.053(0.003) 0.004(0.001) -0.042(0.002)

σ : 1 -0.040(0.004) -0.033(0.006) 0.185(0.050) -0.194(0.042)

µ : 3 -0.004(0.001) 0.208(0.049) 0.302(0.099) -0.02(0.001)

IV π : 0.7 -0.017(0.001) -0.079(0.008) 0.110(0.012) -0.059(0.004)

σ : 2 -0.019(0.004) -0.045(0.013) 0.178(0.034) -0.187(0.042)

µ : 3 0.094(0.020) 0.493(0.324) 1.386(2.005) 0.024(0.012)

V π : 0.85 -0.019(0.001) -0.081(0.008) 0.053(0.003) -0.070(0.008)

σ : 2 0.013(0.004) -0.008(0.007) 0.083(0.009) -0.167(0.034)

µ : 3 0.193(0.064) 0.909(1.093) 2.559(6.866) 0.038(0.068)

(iii) Let dn(t) = ‖h1/2
t,f(t,hn) − h

1/2
n ‖ and d(t) = ‖h1/2

t,f(t,hθ,f
) − h

1/2

θ,f
‖. By Minkowski’s

inequality,

|dn(t)− d(t)| = |[
∫

(h
1/2
t,f(t,hn)(x)− h1/2

n (x))2dx]1/2 − [

∫
(h

1/2
t,f(t,hθ,f

)(x)− h1/2

θ,f
(x))2dx]1/2|

≤ {
∫

(h
1/2
t,f(t,hn)(x)− h1/2

n (x)− h1/2
t,f(t,hθ,f

)(x) + h
1/2

θ,f
(x))2dx}1/2

≤ {2
∫

[h
1/2
t,f(t,hn)(x)− h1/2

t,f(t,hθ,f
)(x)]2dx+ 2

∫
[h1/2
n (x)− h1/2

θ,f
(x)]2dx}1/2
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Figure 1.2: MSE of point estimates of µ of model (1.3) over 200 repetitions with n = 1000.

Table 1.13: Estimates of first principal component in Iris data.

Variable True Value MPHD Maximizing π-type EM-type Symmetrization

π 0.3000 0.3195 0.3986 0.2896 0.3266

σ 0.2208 0.2457 4.0000 0.1629 0.2055

µ 3.9469 3.9526 2.6240 3.6979 3.9077

Consequently,

sup
t∈Θ
|dn(t)−d(t)| ≤ {2 sup

t∈Θ

∫
[h

1/2
t,f(t,hn)(x)−h1/2

t,f(t,hθ,f
)(x)]2dx+2

∫
[h1/2
n (x)−h1/2

θ,f
(x)]2dx}1/2,

(1.11)

and the right hand side of (1.11) goes to zero as n→∞ by assumptions. Write θ0 = T (hθ,f )

and θn = T (hn), then we have, as n→∞, dn(θ0)→ d(θ0) and dn(θn)→ d(θn).

If θn 9 θ0, then there exists a subsequence {θm} ⊆ {θn} such that θm → θ′ 6= θ0,
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Figure 1.3: MSE of point estimates of µ of model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.

Table 1.14: Parameter estimates for the Breast Cancer data.

Variable MPHD Maximizing π-type EM-type Symmetrization

π 0.7109 0.6456 0.8365 0.5027

σ 1.0272 1 1.1441 1.0773

µ 1.8027 1.6756 1.9366 1.0765

implying that θ′ ∈ Θ and d(θm) → d(θ′) by the continuity of d. From the above result,

we have dm(θm)− dm(θ0)→ d(θ′)− d(θ0). By the definition of θm, dm(θm)− dm(θ0) ≤ 0,

and therefore, d(θ′)− d(θ0) ≤ 0. However, by the definition of θ0 and the uniqueness of it,

d(θ′) > d(θ0). This is a contradiction, and therefore, θn → θ0.

Proof of Theorem 1.3.2.

Let Hn denote the empirical cdf of X1, X2, ..., Xn, which are assumed i.i.d. with density
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Figure 1.4: MSE of point estimates of π of model (1.2), under 2% contamination from
U(10, 20), over 200 repetitions with n = 1000.

hθ,f and cdf H. Let

h̃n(x) = (cnsn)−1

∫
K((cnsn)−1(x− y))dH(y). (1.12)

Let Bn(x) = n1/2[Hn(x)−H(x)], then

sup
x
|ĥn(x)− h̃n(x)| = sup

x
n−1/2(cnsn)−1

∫
K((cnsn)−1(x− y))dBn(y)

≤ n−1/2(cnsn)−1 sup
x
Bn(x)

∫
|K ′(x)|dx p→ 0. (1.13)
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Figure 1.5: Histogram of the first principal component in the Iris data.

Suppose [a, b] is an interval that contains the support of K(·), then

sup
x
|h̃n(x)− hθ,f (x)| = sup

x
|
∫
K(t)hθ,f (x− cnsnt)dt− hθ,f (x)|

= sup
x
|hθ,f (x− cnsnξ)

∫
K(t)dt− hθ,f (x)|, with ξ ∈ [a, b]

≤ sup
x

sup
t∈[a,b]

|hθ,f (x− cnsnt)− hθ,f (x)| p→ 0 (1.14)

From (1.13) and (1.14), we have

sup
x
|ĥn(x)− hθ,f (x)| p→ 0.

From an argument similar to the proof of Theorem 1.3.1, ‖ĥ1/2
n (x) − h1/2

θ,f
(x)‖ p→ 0 as

n→∞. By Theorem 1.3.1, T (ĥn)
p→ T (hθ,f ) as n→∞.
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Figure 1.6: Breast cancer data: plot of fitted two-component mixture model with theoretical
N(0, 1) null and non-null component (weighted respectively by π̂ and (1 − π̂)) imposed on
histogram of z-score.

Table 1.15: Estimated FDR for various levels of the threshold c applied to the posterior
probability of nondifferentially expression for the breast cancer data.

MLE MPHD

c Nr F̂DR Nr F̂DR

0.1 143 0.06 179 0.052

0.2 338 0.11 320 0.093

0.3 539 0.16 477 0.144

0.4 743 0.21 624 0.193

0.5 976 0.27 780 0.244

Proof of Theorem 1.3.3.

Let

D(θ, g) =

∫
ṡθ,g(x)g1/2(x)dx =< ṡθ,g, g

1/2 >, (1.15)
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and it follows that D(T (hθ,f ), hθ,f ) = 0, D(T (ĥn), ĥn) = 0, and therefore

0 = D(T (ĥn), ĥn)−D(T (hθ,f ), hθ,f )

= [D(T (ĥn), ĥn)−D(T (hθ,f ), ĥn)] + [D(T (hθ,f ), ĥn)−D(T (hθ,f ), hθ,f )].

Since the map θ 7→ sθ,g satisfies (1.9) and (1.10), D(θ, g) is differentiable in θ with derivative

Ḋ(θ, g) =< s̈θ,g, g
1/2 >

that is continuous in θ. Then,

D(T (ĥn), ĥn)−D(T (hθ,f ), ĥn) = (T (ĥn)− T (hθ,f ))Ḋ(T (hθ,f ), ĥn) + op(T (ĥn)− T (hθ,f )).

With θ = T (hθ,f ),

D(T (hθ,f ), ĥn)−D(T (hθ,f ), hθ,f ) =< ṡθ,ĥn , ĥ
1/2
n > − < ṡθ,hθ,f

, h
1/2

θ,f
>

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> + < ṡθ,ĥn − ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> + < ṡθ,ĥn , h

1/2

θ,f
> − < ĥ1/2

n , ṡθ,hθ,f

>

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> +[< ṡθ,ĥn , h

1/2

θ,f
> − < ĥ1/2

n , ṡθ,hθ,f

>]

+O(‖ṡθ,ĥn − ṡθ,hθ,f

‖ · ‖ĥ1/2
n − h

1/2

θ,f
‖)

=2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> +op(‖ĥ1/2

n − h
1/2

θ,f
‖). (1.16)

Applying the algebraic identity

b1/2 − a1/2 = (b− a)/(2a1/2)− (b− a)2/[2a1/2(b1/2 + a1/2)2],
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we have that

n1/2 < ṡθ,hθ,f

, ĥ1/2
n − h

1/2

θ,f
> = n1/2

∫
ṡθ,hθ,f

(x)
ĥn(x)− hθ,f (x)

2h
1/2

θ,f
(x)

dx+Rn

= n1/2

∫
ṡθ,hθ,f

(x)
ĥn(x)

2h
1/2

θ,f
(x)

dx+Rn

= n1/2 · 1

n

n∑
i=1

ṡθ,hθ,f

(Xi)

2h
1/2

θ,f
(Xi)

+ op(1) +Rn

with |Rn| ≤ n1/2
∫ |ṡθ,h

θ,f

(x)|

2h
3/2

θ,f
(x)

[ĥn(x) − hθ,f (x)]2dx
p→ 0. Since < s̈θ,hθ,f

, h
1/2

θ,f
> is assumed

to be invertible, then

T (ĥn)− T (hθ,f ) = −
[
< s̈θ,hθ,f

, h
1/2

θ,f
>−1 +op(1)

] 1

n

n∑
i=1

ṡθ,hθ,f

(Xi)

h
1/2

θ,f
(Xi)

+ op(n
−1/2)

and therefore, the asymptotic distribution of n1/2(T (ĥn)−T (hθ,f )) is N(0,Σ) with variance

matrix Σ defined by

Σ =< s̈θ,hθ,f

, h
1/2

θ,f
>−1< ṡθ,hθ,f

, ṡTθ,hθ,f

>< s̈θ,hθ,f

, h
1/2

θ,f
>−1 .
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Chapter 2

Mixtures of Nonparametric

Regression Models

Abstract

In this chapter, we propose and study a new class of semiparametric mixture of regression

models, where the mixing proportions and variances are constants, but the component

regression functions are smooth functions of a covariate. A one-step backfitting estimate

and two EM-type algorithms have been proposed to achieve the optimal convergence rate

for both the global parameters and the nonparametric regression functions. We derive

the asymptotic property of the proposed estimates and show that both proposed EM-type

algorithms preserve the asymptotic ascent property. A generalized likelihood ratio test is

proposed for semiparametric inferences. We prove that the test follows an asymptotic χ2-

distribution under the null hypothesis, which is independent of the nuisance parameters. A

simulation study and two real data examples have been conducted to demonstrate the finite

sample performance of the proposed model.
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2.1 Introduction

Finite mixture of regression models, also known as switching regression models in economet-

rics, has been widely applied in various fields, see, for example, in econometrics (Wedel and

DeSarbo, 1993; Frühwirth-Schnatter, 2001), and in epidemiology (Green and Richardson,

2002). Since Goldfeld and Quandt (1973) first introduced the mixture regression model,

many efforts have been made to extend the traditional parametric mixture of linear regres-

sion models. For example, Young and Hunter (2010), and Huang and Yao (2012) studied

models which allow the mixing proportions to depend on the covariates nonparametrical-

ly; Huang et al. (2013) proposed a fully nonparametric mixture of regression models by

assuming the mixing proportions, the regression functions, and the variance functions to

be nonparametric functions of a covariate; Cao and Yao (2012) suggested a semiparametric

mixture of binomial regression models for binary data.

In this article, we propose a new semiparametric mixture of regression models, where

the mixing proportions and variances are constants, but the component regression functions

are nonparametric functions of a covariate. Compared to traditional finite mixture of linear

regression models, the newly proposed model relaxes the parametric assumption on the

regression functions, and allows the regression function in each component to be an unknown

but smooth function of covariates.

Our new model is motivated by a US house price index data. The data set contains

the monthly change of S&P/Case-Shiller House Price Index (HPI) and monthly growth

rate of United States Gross Domestic Product (GDP) from January 1990 to December

2002, see Figure 2.3(a) for a scatter plot. Based on the plot, it can be seen that there

are two homogeneous groups and the relationship between HPI and GDP are different in

different groups. In addition, it can be seen that the relationship in each group is not linear.

Therefore, the traditional mixture of linear regression models can not be applied. In Figure

2.3(b), we added the two fitted component regression curves based on our new model, and

it is clear that the new model successfully recovered the two component regression curves.
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In addition, the observations were classified into two groups corresponding to two different

macroeconomic cycles, which possibly explains that the impact of GDP growth rate on HPI

change may be different in different macroeconomic cycles.

We will show the identifiability of the proposed model under some regularity conditions.

To estimate the unknown smoothing functions, we propose both a regression spline based

estimator and a local likelihood estimator using the kernel regression technique. In order

to achieve the optimal convergence rate for both the global parameters and the nonpara-

metric functions, we propose a one-step backfitting estimation procedure. The asymptotic

properties of the one-step backfitting estimate are investigated. In addition, we propose two

EM-type algorithms to compute the proposed estimates and prove their asymptotic ascent

properties. A generalized likelihood ratio test is proposed for testing whether the mixing

proportions and variances are indeed constants. We investigate the asymptotic behavior of

the test and prove that its limiting null distribution follows a χ2-distribution independent

of the nuisance parameters. A simulation study and two real data applications are used to

demonstrate the effectiveness of the new model.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the new

semiparametric mixture of regression models and the estimation procedure. In particular,

we propose a regression spline estimate and a one-step backfitting estimate. A generalized

likelihood ratio test is also introduced for some semiparametric inferences. In Section 2.3,

we use a Monte Carlo study and two real data examples to demonstrate the finite sample

performance of the proposed model and estimates. We conclude the chapter with a brief

discussion in Section 2.4 and defer the proofs to Section 2.5.
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2.2 Estimation Procedure and Asymptotic Properties

2.2.1 The semiparametric mixture of regression models

Assume {(Xi, Yi), i = 1, ..., n} are a random sample from the population (X, Y ). Let Z be

a latent variable with P (Z = j) = πj for j = 1, ..., k. Suppose E(Y |X = x, Z = j) = mj(x)

and conditioning on Z = j and X = x, Y follows a normal distribution with mean mj(x)

and variance σ2
j . Then, without observing Z, the conditional distribution of Y given X = x

can be written as

Y |X=x ∼
k∑
j=1

πjφ(Y |mj(x), σ2
j ), (2.1)

where φ(y|µ, σ2) is the normal density with mean µ and variance σ2. In this chapter, we

only considered the case when X is univariate. The estimation methodology and theoret-

ical results discussed can be readily extended to multivariate X, but due to the “curse of

dimensionality”, the extension is less applicable and thus omitted here. Throughout the

chapter, we assume that k is fixed, and therefore, refer to (2.1) as a finite semiparametric

mixture of regression models, since mj(x) is a nonparametric function of x, while πj and σj

are global parameters. If mj(x) is indeed linear in x, model (2.1) boils down to a regular

finite mixture of linear regression models. When k = 1, then model (2.1) is a nonparametric

regression model. Therefore, model (2.1) is a natural extension of the finite mixture of linear

regression models and the nonparametric regression model.

Huang et al. (2013) studied a nonparametric mixture of regression models (NMR),

Y |X=x ∼
k∑
j=1

πj(x)φ(Y |mj(x), σ2
j (x)), (2.2)

where πj(·), mj(·), and σ2
j (·) are unknown but smooth functions. Compared to model

(2.2), model (2.1) improves the efficiency of the estimates of πj, σj and mj(x) by assuming

the mixing proportions and variances to be constants, which are also presumed by the
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traditional mixture of linear regressions. We will demonstrate such improvement in Section

2.3. However, the new model (2.1) is more challenging to estimate than model (2.2) due to

the existence of both global parameters and local parameters. In fact, we will demonstrate

later that the model estimate of (2.2) is an intermediate result of the proposed one-step

backfitting estimate. In this chapter, we will also develop a generalized likelihood ratio test

to compare the proposed model with model (2.2) and illustrate its use in Section 2.3.

Identifiability is a critical issue in many mixture models. Some well known results of

identifiability of finite mixture models include: mixture of univariate normals is identifiable

(Titterington et al., 1985), and finite mixture of linear regression models is identifiable

provided that covariates have a certain level of variability (Hennig, 2000). The following

theorem gives a result on the identifiability of model (2.1) and its proof is given in Section

2.5.

Theorem 2.2.1. Assume that

(1) mj(x) are differentiable functions, j = 1, ..., k.

(2) One of the following conditions holds:

(a) For any i 6= j, σi 6= σj;

(b) If there exists i 6= j such that σi = σj, then ‖mi(x)−mj(x)‖+‖m′i(x)−m′j(x)‖ 6= 0

for any x.

(3) The domain X of x is an interval in R.

Then, model (2.1) is identifiable.

2.2.2 Estimation procedure and asymptotic properties

Regression spline based estimator

We first introduce a regression spline based estimator, which uses the regression spline

(Hastie, et al., 2003; de Boor, 2001) to transfer the semiparametric mixture model to a
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parametric mixture model. A cubic spline approximation for mj(x) can be expressed as

mj(x) ≈
Q+4∑
q=1

βjqBq(x), j = 1, ..., k, (2.3)

where B1(x), ..., BQ+4(x) is a cubic spline basis and Q is the number of internal knots. Many

spline bases can be used here, such as a truncated power spline basis or a B-spline basis. In

this chapter, we mainly focus on the B-spline basis.

Based on the approximation (2.3), model (2.1) becomes

Y |X=x ∼
k∑
j=1

πjφ(Y
∣∣Q+4∑
q=1

βjqBq(x), σ2
j ).

The log likelihood of the collected data {(Xi, Yi), i = 1, .., n} is

`(π,β,σ2) =
n∑
i=1

log

{
k∑
j=1

πjφ(Yi|
Q+4∑
q=1

βjqBq(Xi), σ
2
j )

}
,

where π = {π1, . . . , πk−1}T , β = {β1, . . . ,βk}T , βj = (βj1, . . . , βj,Q+4)T , and σ2 = {σ2
1, . . . , σ

2
k}T .

The parameters (π,β,σ2) can be estimated by the traditional EM algorithm for mixtures

of linear regression models.

The estimation method based on the regression spline approximation is easy to imple-

ment, and therefore will be used as an initial value for our other estimation procedures.

One-step backfitting estimation procedure

In this section, we propose a one-step backfitting estimation procedure to achieve the op-

timal convergence rates for both the global parameters and the nonparametric component

regression functions.

Let `∗(π,m(·),σ2) be the log-likelihood of the collected data {(Xi, Yi), i = 1, .., n}. That
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is,

`∗(π,m,σ2) =
n∑
i=1

log{
k∑
j=1

πjφ(Yi|mj(Xi), σ
2
j )}, (2.4)

where π = {π1, ..., πk−1}T , m(·) = {m1(·), ...,mk(·)}T , and σ2 = {σ2
1, ..., σ

2
k}T . Since m(·)

consists of nonparametric functions, (2.4) is not ready for maximization. Next, we propose

a one-step backfitting procedure. First, we estimate π, m and σ2 locally by maximizing

the following local log-likelihood function:

`1(π,m,σ2) =
n∑
i=1

log{
k∑
j=1

πjφ(Yi|mj, σ
2
j )}Kh(Xi − x), (2.5)

where Kh(t) = h−1K(t/h), K(·) is a kernel density function, and h is a tuning parameter.

Let π̃(x), m̃(x), and σ̃2(x) be the maximizer of (2.5), which are in fact the model

estimates of (2.2) proposed by Huang et al. (2013). Note that, in (2.5), the global parameters

π and σ2 are estimated locally. To improve the efficiency, we propose to update the estimates

of π and σ2 by maximizing the following log-likelihood function:

`2(π,σ2) =
n∑
i=1

log{
k∑
j=1

πjφ(Yi|m̃j(Xi), σ
2
j )}, (2.6)

which, compared to (2.4), replaces mj(·) by m̃j(·).

Denote by π̂ and σ̂2 the solution of maximizing (2.6). We can then further improve the

estimate of m(·) by maximizing the following local log-likelihood function:

`3(m) =
n∑
i=1

log{
k∑
j=1

π̂jφ(Yi|mj, σ̂
2
j )}Kh(Xi − x). (2.7)

which, compared to (2.5), replaces πj and σ2
j by π̂j and σ̂2

j , respectively.

Let m̂(x) be the solution of (2.7), and we refer to π̂, m̂(x), and σ̂2 as the one-step

backfitting estimates. In Section 2.2.2, we show that the one-step backfitting estimates
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achieve the optimal convergence rate for both the global parameters, and the nonparametric

mean functions. In (2.7), since π̂j and σ̂2
j have root n convergence rate, unlike m̃(x), m̂(x)

does not need to adjust the uncertainty of estimating πj and σ2
j . Therefore, m̂(x) can have

better estimation accuracy than m̃(x) proposed by Huang et al. (2013).

Computing algorithms

In this section, we propose a local EM-type algorithm (LEM) and a global EM-type algo-

rithm (GEM) to perform the one-step backfitting.

Local EM-type algorithm (LEM)

In practice, we usually want to evaluate unknown functions at a set of grid points, which in

this case, requires us to maximize local log-likelihood functions at a set of grid points. If we

simply employ an EM algorithm separately for different grid points, the labels in the found

estimators may change at different grid points, and we may not be able to get smoothed

estimated curves (Huang and Yao, 2012). Next, we propose a modified EM-type algorithm,

which estimates the nonparametric functions simultaneously at a set of grid points. Let

{ut, t = 1, ..., N} be a set of grid points where some unknown functions are evaluated, and

N be the number of grid points.

Step 1: Modified EM-type algorithm to maximize `1 in (2.5)

In Step 1, we propose a modified EM-type algorithm to maximize `1 and obtain the estimates

π̃(·), m̃(·), and σ̃2(·). At the (l + 1)th iteration,

E-step: Calculate the expectations of component labels based on estimates from the lth

iteration:

p
(l+1)
ij =

π
(l)
j (Xi)φ(Yi|m(l)

j (Xi), σ
2(l)
j (Xi))∑k

j=1 π
(l)
j (Xi)φ(Yi|m(l)

j (Xi), σ
2(l)
j (Xi))

, i = 1, . . . , n, j = 1, . . . , k.
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M-step: Update the estimates

π
(l+1)
j (x) =

∑n
i=1 p

(l+1)
ij Kh(Xi − x)∑n

i=1Kh(Xi − x)
, (2.8)

m
(l+1)
j (x) =

∑n
i=1 p

(l+1)
ij YiKh(Xi − x)∑n

i=1 p
(l+1)
ij Kh(Xi − x)

, (2.9)

σ
2(l+1)
j (x) =

∑n
i=1 p

(l+1)
ij (Yi −m(l+1)

j (x))2Kh(Xi − x)∑n
i=1 p

(l+1)
ij Kh(Xi − x)

, (2.10)

for x ∈ {ut, t = 1, ..., N}. We then update π
(l+1)
j (Xi), m

(l+1)
j (Xi), and σ

2(l+1)
j (Xi), i = 1, ..., n,

by linear interpolating π
(l+1)
j (ut), m

(l+1)
j (ut), and σ

2(l+1)
j (ut), t = 1, ..., N , respectively.

Note that in the M-step, the nonparametric functions are estimated simultaneously at

a set of grid points, and therefore, the classification probabilities in the the E-step can be

estimated globally to avoid the label switching problem (Yao and Lindsay, 2009).

Step 2: EM algorithm to maximize `2 in (2.6)

In Step 2, given m̃j(x) from Step 1, a regular EM algorithm can be used to maximize `2

and update the estimates of π and σ2 as π̂ and σ̂2. At the (l + 1)th iteration,

E-step: Calculate the expectations of component labels based on the estimates from the lth

iteration:

p
(l+1)
ij =

π
(l)
j φ(Yi|m̃j(Xi), σ

2(l)
j )∑k

j=1 π
(l)
j φ(Yi|m̃j(Xi), σ

2(l)
j )

, i = 1, . . . , n, j = 1, . . . , k.

M-step: Update the estimates

π
(l+1)
j =

∑n
i=1 p

(l+1)
ij

n
,

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
ij (Yi − m̃j(Xi))

2∑n
i=1 p

(l+1)
ij

.

The ascent property of the above algorithm follows from the theory of the ordinary EM

algorithm.
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Step 3: Modified EM-type algorithm to maximize `3 in (2.7)

In Step 3, given π̂ and σ̂2 from Step 2, we would then maximize `3 to find the estimates

m̂(x). At the (l + 1)th iteration,

E-step: Calculate the expectations of component labels based on estimates from the lth

iteration:

p
(l+1)
ij =

π̂jφ(Yi|m(l)
j (Xi), σ̂

2
j )∑k

j=1 π̂jφ(Yi|m(l)
j (Xi), σ̂2

j )
, i = 1, . . . , n, j = 1, . . . , k. (2.11)

M-step: Update the estimate

m
(l+1)
j (x) =

∑n
i=1 p

(l+1)
ij YiKh(Xi − x)∑n

i=1 p
(l+1)
ij Kh(Xi − x)

,

for x ∈ {ut, t = 1, ..., N}. Similar to Step 1, we update the estimates at a set of grid points

first, and then update m
(l+1)
j (Xi), i = 1, ..., n, by linear interpolating m

(l+1)
j (ut), t = 1, ..., N .

Global EM-type algorithm (GEM)

To improve the estimation efficiency, one might further iterate Step 1 to Step 3 until conver-

gence. Next, we propose a global EM-type algorithm (GEM) to approximate such iteration,

but with much less computation. At the (l + 1)th iteration,

E-step: Calculate the expectations of component labels based on estimates from the lth

iteration:

p
(l+1)
ij =

π
(l)
j φ(Yi|m(l)

j (Xi), σ
2(l)
j )∑k

j=1 π
(l)
j φ(Yi|m(l)

j (Xi), σ
2(l)
j )

, i = 1, . . . , n, j = 1, . . . , k.

M-step: Simultaneously update the estimates

π
(l+1)
j =

∑n
i=1 p

(l+1)
ij

n
,

m
(l+1)
j (x) =

∑n
i=1 p

(l+1)
ij YiKh(Xi − x)∑n

i=1 p
(l+1)
ij Kh(Xi − x)

,

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
ij (Yi −m(l+1)

j (Xi))
2∑n

i=1 p
(l+1)
ij

,
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for x ∈ {ut, j = 1, ..., N}. We then update m
(l+1)
j (Xi), i = 1, ..., n by linear interpolating

m
(l+1)
j (ut), t = 1, ..., N .

Asymptotic properties

Next, we investigate the asymptotic properties of the proposed one-step backfitting estimates

and the asymptotic ascent properties of the two proposed EM type algorithms.

Let θ = (mT ,πT , (σ2)T )T , β = (πT , (σ2)T )T , then θ = (mT ,βT )T . Define

`(θ, y) = log
k∑
j=1

πjφ(y|mj, σ
2
j ), (2.12)

and let

Iθ(x) = −E[
∂2`(θ, y)

∂θ∂θT
|X = x], Iβ(x) = −E[

∂2`(θ, y)

∂β∂βT
|X = x], Im(x) = −E[

∂2`(θ, y)

∂m∂mT
|X = x],

Iβm(x) = −E[
∂2`(θ, y)

∂β∂mT
|X = x],Λ(u|x) = E[

∂`(θ(x), y)

∂m
|X = u].

Define

κl =

∫
tlK(t)dt, νl =

∫
tlK2(t)dt.

Under further conditions defined in Section 2.5, the consistency and asymptotic normal-

ity of π̂ and σ̂2 are established in the next theorem.

Theorem 2.2.2. Suppose that conditions (C1) and (C3)—(C10) in Section 2.5 are satisfied,

then
√
n(β̂ − β)

D→ N(0, B−1ΣB−1),

where B = E{Iβ(X)}, Σ = V ar{∂`(θ(X), Y )/∂β − $(X, Y )}, $(x, y) = Iβmϕ(x, y), and

ϕ(x, y) is a k × 1 vector consisting of the first k elements of I−1
θ (x)∂`(θ(x), y)/∂θ.
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Based on the above theorem, we can see that the proposed one-step backfitting estimator

of the global parameters have achieved the optimal root n convergence rate.

The next theorem gives the asymptotic property of m̂(·).

Theorem 2.2.3. Suppose that conditions (C2)—(C10) in Section 2.5 are satisfied, then

√
nh(m̂(x)−m(x)−∆m(x) + op(h

2))
D→ N(0, f−1(x)I−1

m (x)ν0),

where f(·) is the density of X, ∆m(x) is a k × 1 vector consisting of the first k elements of

∆(x) with

∆(x) = I−1
m (x){1

2
Λ′′(x|x) + f−1(x)f ′(x)Λ′(x|x)}κ2h

2.

Based on the above theorem, we can see that m̂(x) has the same asymptotic properties

as if β were known, since β̂ has faster convergence rate than m̂(x).

The asymptotic ascent properties of proposed EM-type algorithms are provided in the

following theorem.

Theorem 2.2.4. (i) For the modified EM-type algorithm (Step 1) to maximize `1, given

condition (C2),

lim inf
n→∞

n−1[`1(θ(l+1)(x))− `1(θ(l)(x))] ≥ 0

in probability, for any given point x ∈X , where `1(·) is defined in (2.5).

(ii) For the modified EM-type algorithm (Step 3) to maximize `3, given condition (C2),

lim inf
n→∞

n−1[`3(m(l+1)(x))− `3(m(l)(x))] ≥ 0

in probability, for any given point x ∈X , where `3(·) is defined in (2.7).

(iii) For the GEM algorithm, we have

lim inf
n→∞

n−1[`∗(m(l+1)(·),π(l+1),σ2(l+1))− `∗(m(l)(·),π(l),σ2(l))] ≥ 0
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in probability, for any given point x ∈X , where `∗(·) is defined in (2.4).

2.2.3 Hypothesis testing

Huang et al. (2013) proposed a nonparametric mixture of regression models where mixing

proportions, means, and variances are all unknown but smooth functions of a covariate.

Compared to Huang et al. (2013), our model can be more efficient by assuming the mixing

proportions and variances to be constants. Then, a natural question to ask is whether or

not the mixing proportions and variances indeed depend on the covariate. This amounts to

testing the following hypothesis:

H0 :πj(x) ≡ πj, j = 1, ..., k − 1;

σ2
j (x) ≡ σ2

j , j = 1, ..., k.

Next, we propose to use the idea of the generalized likelihood ratio test (Fan et al., 2001)

to compare model (2.1) with model (2.2).

Let `n(H0) and `n(H1) be the log-likelihood functions computed under the null and

alternative hypothesis, respectively. Then, we can construct a likelihood ratio test statistic

T = `n(H1)− `n(H0). (2.13)

Note that this likelihood ratio statistic is different from the parametric likelihood ratio

statistics, since the null and alternative are both semiparametric models, and the number

of parameters under H0 or H1 are undefined. The following theorem establishes the Wilks

types of results for (2.13), that is, the asymptotic null distribution is independent of the

nuisance parameters π and σ, and the nuisance nonparametric mean functions m(x).

Theorem 2.2.5. Suppose that conditions (C9)-(C13) in Section 2.5 hold and that nh9/2 → 0
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and nh2 log(1/h)→∞, then

rKT
a∼ χ2

δ ,

where rK = [K(0) − 0.5
∫
K2(t)dt]/

∫
[K(t) − 0.5K ∗K(t)]2dt, δ = rK(2k − 1)|X |[K(0) −

0.5
∫
K2(t)dt]/h, |X | denotes the length of the support of X, and K∗K is the 2nd convolution

of K(·).

Theorem 2.2.5 unveils a new Wilks type of phenomenon, and provides a simple and

useful method for semiparametric inferences. We will demonstrate its application in Section

2.3.

2.3 Examples

2.3.1 Simulation study

In this section, we use a simulation study to investigate the finite sample performance of the

proposed regression spline estimate (Spline), the one-step backfitting estimate using local

EM-type algorithm (LEM), and the global EM-type algorithm (GEM), and compare them

with the traditional mixture of linear regressionss estimate (MLR), and the nonparametric

mixture of regression models (NMR, Huang et al., 2013). For the regression spline, we use

Q = 5, where Q is the number of internal knots. For LEM, GEM and NMR, we use both

the true value and the regression spline estimate as initial values, denoted by (T) and (S),

respectively.

We conduct a simulation study for a two-component semiparametric mixture of regres-

sion models:

π1 = 0.5 or π1 = 0.7,

m1(x) = 4− sin(2πx) and m2(x) = 1.5 + cos(3πx),

σ2
1 = 0.09 and σ2

2 = 0.16.
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The covariate X is generated from the one-dimensional uniform distribution in [0, 1], and

the Gaussian kernel is used in the simulation. The sample sizes n = 200 and n = 400 are

conducted over 500 repetitions.

The performance of the estimates of the mean functions m(x) is measured by the square

root of the average squared errors (RASE),

RASE2
m = N−1

2∑
j=1

N∑
t=1

[m̂j(ut)−mj(ut)]
2,

where {ut, t = 1, ..., N} are a set of grid points at which the unknown functions are evaluated.

In our simulation, we set N = 100. In order to compare between model (2.1) and the

nonparametric mixture of regression models proposed by Huang et al. (2013), we also

report the RASE of π and σ2, denoted by RASEπ and RASEσ2 , respectively.

Bandwidth plays an important role in the estimation ofm(·). There are ways to calculate

the theoretical optimal bandwidth, but in practice, data driven methods, such as cross-

validation (CV), are popularly used. Let D be the full data set, and divide D into a

training set Rl and a test set Tl. That is, Rl ∪Tl = D for l = 1, ..., L. We use the training

set Rl to obtain the estimates {π̂, m̂(·), σ̂2}, then consider a likelihood version CV , which

is defined by

CV (h) =
L∑
l=1

∑
t∈Tl

log{
k∑
j=1

π̂jφ(yt|m̂j(xt), σ̂
2
j )}.

In the simulation, we set L = 10 and randomly partition the data. We repeat the proce-

dure 30 times, and take the average of the selected bandwidths as the optimal bandwidth,

denoted by ĥ. In the simulation, we consider three different bandwidths, ĥ × n−2/15, ĥ,

and 1.5ĥ, which correspond to under-smoothing (US), appropriate smoothing (AS), and

over-smoothing (OS), respectively.

Table 2.1 and Table 2.2 report the average of RASEπ, RASEm, and RASEσ2 , for π1 = 0.5

and π1 = 0.7, respectively. All the values are multiplied by 100. From Table 2.1 and Table

2.2, we can see that LEM, GEM, and the regression spline estimates give better results
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than the mixture of linear regressions estimate. Compared to NMR, model (2.1) improves

the efficiency of the estimation of mixing proportions and variances, and provides slightly

better estimates for the mean functions. In addition, both LEM and GEM provide better

results for the mean functions than the regression spline estimate when the sample size is

small. We further notice that LEM(S) and GEM(S) provide similar results to LEM(T) and

GEM(T). Therefore, the spline estimate provides good initial values for other estimates.

Table 2.1: The average of RASEπ, RASEσ2 & RASEm when π1 = 0.5 (true values times
100)

n h LEM(T) GEM(T) LEM(S) GEM(S) Spline MLR NMR(T) NMR(S)

RASEπ 2.82 2.84 2.83 2.84 2.85 4.40 13.38 13.37

US RASEσ2 4.34 4.39 4.35 4.40 2.72 65.62 9.88 9.94

RASEm 20.81 20.84 20.98 21.02 39.98 87.32 20.48 21.35

RASEπ 2.83 2.81 2.84 2.81 2.83 4.37 9.55 9.53

200 AS RASEσ2 2.69 2.73 2.70 2.73 2.78 63.29 12.62 12.66

RASEm 17.72 17.67 17.73 17.67 45.60 87.13 18.77 19.52

RASEπ 2.79 2.69 2.78 2.69 2.76 4.57 8.39 8.38

OS RASEσ2 2.73 2.42 2.73 2.42 2.74 64.52 20.77 20.81

RASEm 23.12 22.99 23.14 22.99 32.33 87.48 25.30 25.39

RASEπ 2.02 2.00 2.03 2.00 1.98 3.39 10.56 10.54

US RASEσ2 2.88 2.91 2.89 2.91 1.80 66.15 7.99 7.98

RASEm 15.76 15.78 15.77 15.78 15.10 85.88 15.82 15.85

RASEπ 2.03 2.02 2.04 2.02 2.03 3.41 7.35 7.35

400 AS RASEσ2 1.87 1.88 1.87 1.88 1.77 65.54 9.87 9.89

RASEm 13.20 13.19 13.20 13.19 17.65 85.77 14.11 14.15

RASEπ 2.19 2.15 2.20 2.15 2.14 3.38 6.54 6.54

OS RASEσ2 1.92 1.76 1.92 1.76 1.85 65.46 16.21 16.22

RASEm 16.86 16.78 16.86 16.78 15.85 85.73 18.56 18.56

Next, we test the accuracy of the standard error estimation and the confidence inter-
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Table 2.2: The average of RASEπ, RASEσ2 & RASEm when π1 = 0.7 (true values times
100)

n h LEM(T) GEM(T) LEM(S) GEM(S) Spline MLR NMR(T) NMR(S)

RASEπ 2.66 2.68 2.66 2.68 2.66 4.07 11.54 11.53

US RASEσ2 5.45 5.58 5.48 5.58 3.50 62.56 11.25 11.33

RASEm 23.57 23.63 23.75 24.43 48.12 90.04 23.09 23.49

RASEπ 2.56 2.54 2.55 2.54 2.58 4.21 8.35 8.36

200 AS RASEσ2 3.27 3.35 3.29 3.35 3.84 64.35 14.40 14.53

RASEm 20.10 20.09 20.11 20.09 47.52 90.16 21.38 21.41

RASEπ 2.74 2.64 2.88 2.77 2.73 4.18 7.30 7.42

OS RASEσ2 3.10 2.81 3.13 2.83 3.60 64.13 22.09 22.19

RASEm 26.18 25.99 27.02 26.80 48.17 90.15 28.82 29.74

RASEπ 1.79 1.80 1.80 1.80 1.78 3.16 9.24 9.24

US RASEσ2 3.74 3.81 3.74 3.81 2.16 66.98 9.23 9.24

RASEm 18.00 18.03 18.00 18.03 18.91 87.49 17.93 17.99

RASEπ 1.87 1.86 1.87 1.86 1.89 3.20 6.45 6.45

400 AS RASEσ2 2.26 2.27 2.26 2.27 2.14 65.31 11.29 11.32

RASEm 14.92 14.90 14.92 14.90 19.67 87.57 16.02 16.00

RASEπ 1.94 1.89 1.94 1.89 1.87 2.95 5.59 5.59

OS RASEσ2 2.27 2.09 2.27 2.09 2.21 65.44 18.02 18.03

RASEm 19.48 19.41 19.48 19.41 19.79 87.12 21.59 21.63

val construction for π1, σ1 and σ2 via a conditional bootstrap procedure. Given the covariate

X = x, the response Y ∗ can be generated from the estimated distribution
∑k

j=1 π̂jφ(Y |m̂j(x), σ̂2
j ).

For the simplicity of presentation, we only report the results for GEM(T). We apply the

proposed estimation procedure to each of the 200 bootstrap samples, and further obtain the

confidence intervals.

Table 2.3 reports the results from the bootstrap procedure. SD contains the standard

deviation of 500 replicates, and can be considered as true standard errors. SE and STD

51



contain the mean and standard deviation of the 500 estimated standard errors based on the

conditional bootstrap procedure. In addition, the coverage probability of the 95% confidence

intervals based on the estimated standard errors are also reported. From Table 2.3 we can

see that the bootstrap procedure estimates the true standard error quite well, since all the

differences between the true value and the estimates are less than two standard errors of

the estimates. The coverage probabilities are satisfactory for π1, but a bit low for σ1 and

σ2, especially for over-smoothing bandwidth.

Table 2.3: Standard errors and coverage probabilities

h SD SE(STD) 95% SD SE(STD) 95% SD SE(STD) 95%

π1 σ1 σ2

n = 200 US 0.037 0.036(0.002) 94.11 0.014 0.013(0.003) 88.82 0.024 0.023(0.004) 91.09

(0.5, 0.5) AS 0.037 0.036(0.002) 93.40 0.014 0.013(0.002) 94.00 0.029 0.022(0.004) 91.20

OS 0.038 0.035(0.002) 90.60 0.014 0.015(0.002) 96.20 0.022 0.025(0.004) 97.20

n = 400 US 0.027 0.025(0.001) 94.40 0.010 0.009(0.001) 94.80 0.018 0.017(0.003) 96.20

(0.5, 0.5) AS 0.026 0.025(0.001) 93.80 0.009 0.009(0.001) 94.00 0.016 0.016(0.002) 96.40

OS 0.026 0.025(0.001) 93.20 0.009 0.010(0.001) 93.80 0.016 0.018(0.002) 94.80

n = 200 US 0.031 0.032(0.002) 94.80 0.011 0.011(0.002) 90.20 0.035 0.029(0.009) 83.20

(0.7, 0.3) AS 0.033 0.032(0.002) 94.60 0.011 0.011(0.001) 96.40 0.028 0.027(0.006) 85.60

OS 0.033 0.032(0.002) 93.20 0.013 0.013(0.002) 89.60 0.032 0.033(0.008) 97.00

n = 400 US 0.023 0.023(0.001) 94.80 0.008 0.008(0.001) 94.20 0.023 0.023(0.004) 92.20

(0.7, 0.3) AS 0.025 0.023(0.001) 93.40 0.008 0.008(0.001) 95.00 0.021 0.021(0.003) 93.40

OS 0.023 0.023(0.001) 94.60 0.009 0.009(0.001) 83.20 0.021 0.023(0.004) 96.20

We also apply the bootstrap procedure to investigate the point-wise coverage probability

of the mean functions, at a set of evenly distributed grid points. Table 2.4 shows the results

of the 95% confidence interval for the two component mean functions. From the table, we can

see that the mean function of the first component tends to have higher coverage probability

than the second component, especially for over-smoothing bandwidth. In addition, the

coverage probability is generally lower than the nominal level for over-smoothing bandwidth.
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Next, we assess the performance of the testing procedure proposed in Section 2.2.3.

Under the null hypothesis, the mixing proportion π1 and variances σ2
1 and σ2

2 are constants.

We compute the distribution of T with n = 200 and n = 400 via 500 repetitions, and

compare it with the χ2-approximation. The histogram of the null distribution is shown in

Figure 2.1, where the solid line corresponds to a density of the χ2-distribution with degrees

of freedom δ defined in Theorem 2.2.5. Figure 2.2 shows the Q-Q plot for the two cases.

From Figure 2.1 and 2.2, the finite sample null distribution is quite close to a χ2-distribution

with degrees of freedom δ, especially for the case of n = 400.
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Figure 2.1: Histogram of Tn and χ2-approximation of Tn: (a) n = 200, (b) n = 400.

2.3.2 Real data applications

Example 1 (The US house price index data). In this section, we illustrate the proposed

methodologies with an empirical analysis of US house price index data that are introduced

in Section 2.1. GDP is a well known measure of the size of a nation’s economy, as it

recognizes the total goods and services produced within a nation in a given period, and HPI

is known as a measure of a nation’s average housing price in repeat sales. It is believed that
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Figure 2.2: Q-Q plot: (a) n = 200, (b) n = 400.

the housing price and GDP are correlated, and so it is of interest to study how GDP growth

rate helps to predict HPI change.

First, a two-component mixture of nonparametric regression models is fitted to the data.

Figure 2.3(b) contains the estimated mean functions and their 95% point-wise confidence

intervals through the conditional bootstrap procedure, and the 95% confidence interval

for π1, σ1 and σ2 are (0.343, 0.522), (0.090, 0.147) and (0.061, 0.093), respectively. Figure

2.3(b) also reports the hard-clustering results, denoted by dots and squares, respectively, for

the two components. The hard-clustering results are obtained by maximizing classification

probabilities {pi1, pi2} for all i = 1, . . . , n. It can be checked that the dots in the lower

cluster are mainly from Jan 1990 to Sep 1997, while the squares in the upper cluster are

mainly from Oct 1997 to Dec 2002, when the economy experienced an internet boom and

bust. In addition, it can be seen that in the first cycle of lower component, GDP growth

has an overall positive impact on HPI change. However, in the second cycle of the upper

component, GDP growth has a negative impact on HPI change, if GDP growth is smaller

than 0.3; when GDP growth is larger than 0.3, it then has a similar positive impact on HPI

change as the first cycle.
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Figure 2.3: (a) Scatterplot of US house price index data; (b) Estimated mean functions
with 95% confidence intervals and a clustering result.

To examine whether the mixing proportions and variances are indeed constant, we apply

the generalized likelihood ratio test developed in Section 2.2.3. The p-value is 0.089, and

shows that model (2.1) is more appropriate for the data. To evaluate the prediction perfor-

mance of the proposed model and compared it to the NMR model proposed by Huang et al.

(2013), we use d-fold cross-validation with d=5 & 10, and also Monte-Carlo cross-validation

(MCCV) (Shao, 1993). In MCCV, the data were partitioned 500 times into disjoint training

subsets (with size n − s) and test subsets (with size s). Table 2.5 reports the average of

the mean squared prediction error (MSPE) evaluated at the testing sets, and shows that

the prediction performance of model (2.1) is slightly better than that of the NMR model

(Huang et al., 2013).

Example 2 (NO data). This data set gives the equivalence ratio, a measure of the richness

of the air-ethanol mix in an engine, and peak nitrogen oxide emissions in a study using

pure ethanol as a spark-ignition engine fuel. A two-component mixture of nonparametric

regression models is fitted to the data, and Figure 2.4(b) contains the estimated mean

functions and their 95% point-wise confidence intervals through the bootstrap procedure.
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The p-value of the generalized likelihood ratio test is 0.219, indicating that model (2.1) is

the preferred model. The result of cross validation in Table 2.5 also shows that the new

model predicts the data better than the NMR model.
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Figure 2.4: (a) Scatterplot of NO data; (b) Estimated mean functions with 95% confidence
intervals and a clustering result.

2.4 Summary and Future Work

Motivated by a US house index data, in this chapter, we proposed a new class of semipara-

metric mixture of regression models, where mixing proportions and variances are constants,

but the component regression functions are smooth functions of a covariate. The identifia-

bility of the proposed model is established and a one-step backfitting estimation procedure

is proposed to achieve the optimal convergence rate for both the global parameters and

the nonparametric regression functions. The proposed regression spline estimate is simple

to calculate and can be easily extended to some other semiparametric and nonparametric

mixture of regression models (Young and Hunter, 2010; Huang et al., 2013; Huang and Yao,

2012). But it requires more research to derive the asymptotic results for such regression
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spline based estimators for mixture models. A generalized likelihood ratio test has been

proposed for semiparametric inferences.

When the dimension of the predictors is high, due to the curse of dimensionality, it is

unpractical to estimate the component regression functions fully nonparametrically. There-

fore, it is our interest to further extend the proposed mixture of nonparametric regression

models to some other nonparametric or semiparametric models, such as mixture of par-

tial linear regression models, mixture of additive models, and mixture of varying coefficient

partial linear models.

In this chapter, we assume that the number of components is known. However, in some

applications, it might be infeasible to assume a known number of components in advance.

Therefore, more research are needed to select the number of components for the proposed

semiparametric mixture model. It will also be interesting to know whether any selection

methods for parametric mixture models can be used for the proposed semiparametric mix-

ture model. For example, for information criteria based methods such as AIC and BIC

methods (Leroux, 1992), it is not clear how to define the degree of freedom for a semipara-

metric mixture model.

2.5 Proofs

In this section, the conditions required by Theorems 2.2.2, 2.2.3, 2.2.4 and 2.2.5 are listed.

They are not the weakest sufficient conditions, but could easily facilitate the proofs. The

proofs of Theorems 2.2.1, 2.2.2, 2.2.3, 2.2.4 and 2.2.5 are also presented in this section.

Technical Conditions:

(C1) nh4 → 0 and nh2 log(1/h)→∞ as n→∞ and h→ 0.

(C2) nh→∞ as n→∞ and h→ 0.

(C3) The sample {(Xi, Yi), i = 1, ..., n} are independently and identically distributed from
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f(x, y) with finite sixth moments. The support for x, denoted by X ∈ R, is bounded

and closed.

(C4) f(x, y) > 0 in its support and has continuous first derivative.

(C5) |∂3`(θ, x, y)/∂θi∂θj∂θk| ≤Mijk(x, y), where E(Mijk(x, y)) is bounded for all i, j, k and

all X, Y .

(C6) The unknown functions mj(x), j = 1, ..., k, have continuous second derivative.

(C7) σ2
j > 0 and πj > 0 for j = 1, ..., k and

∑k
j=1 πj = 1.

(C8) E(X2r) <∞ for some ε < 1− r−1, n2ε−1h→∞.

(C9) Iθ(x) and Im(x) are positive definite.

(C10) The kernel function K(·) is symmetric, continuous with compact support.

(C11) The marginal density f(x) of X is Lipschitz continuous and bounded away from 0. X

has a bounded support X .

(C12) t3K(t) and t3K ′(t) are bounded and
∫
t4K(t)dt <∞.

(C13) E|qθ|4 <∞, E|qm|4 <∞.

The following lemma is from Titterington el al. (1985) and will be used in the proof of

Theorem 2.2.1.

Lemma 1. The finite mixture of normal distributions is identifiable. More precisely, if

k∑
j=1

πjN(µj, σ
2
j ) =

p∑
t=1

λtN(νt, δ
2
t ),

where the parameters satisfy πj > 0, j = 1, ..., k, σ2
1 ≤ · · · ≤ σ2

k, and if σ2
c = σ2

d and c < d,

then µc < µd; similarly λt > 0, t = 1, ..., p, δ2
1 ≤ · · · ≤ δ2

p, and if δ2
c = δ2

d and c < d, then

νc < νd. Then, k = p and (πj, µj, σ
2
j ) = (λj, νj, σ

2
j ), j = 1, ..., k.
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Proof of Theorem 2.2.1.

It is easy to see that when (1), (2a), and (3) hold, model (2.1) is identifiable. Let

T = {x : mi(x) = mj(x), σ2
i = σ2

j , i 6= j}.

By (1), (2b) and (3), for any x ∈ T , m′i(x) 6= m′j(x), then any x ∈ T must be an isolated

point, and therefore, T has no limit point, and contains at most countably infinite points.

Assume x1, x2, ..., are the points in T , and xs < xs+1, (xs, xs+1)
⋂
T = Ø.

Assume that model (2.1) has another representation

Y |X=x ∼
p∑
t=1

λtφ(Yi|νt(x), δ2
t ).

Then, by Lemma 1, model (2.1) is identifiable for x /∈ T . Thus, k = p, and there exists a

permutation ωx = {ωx(1), ..., ωx(k)} of {1, ..., k} such that

λωx(j) = πj, νωx(j)(x) = mj(x), δ2
ωx(j) = σ2

j , j = 1, ..., k. (2.14)

Since all mj(x) are differentiable, and for any point xs ∈ T , the two curves do not interact

in the interval (xs, xs+1), therefore, the permutation ωx stay the same on (xs, xs+1).

Next, consider a small neighborhood (xs − ε, xs + ε) for any xs ∈ T , such that (xs −

ε, xs + ε) ⊂ (xs−1, xs+1). Since xs ∈ T , mi(xs) = mj(xs), σ
2
i = σ2

j , for some i 6= j, but

m′i(xs) 6= m′j(xs). Equation (2.14) implies the identity of derivatives of the curves on either

side of xs, and so the permutation must stay constant on the neighborhood (xs − ε, xs + ε).

Thus, there exists a permutation ω = {ω(1), ..., ω(k)} of {1, ..., k}, which is free of x, such

that

λω(j) = πj, νω(j)(x) = mj(x), δ2
ω(j) = σ2

j , j = 1, ..., k.

Therefore, model (2.1) is identifiable.
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The next lemma is from Fan and Huang (2005), and will be used throughout the rest of

the proofs.

Lemma 2. Let {(Xi, Yi), i = 1, ..., n} be i.i.d random vectors from (X, Y ), where X is a

random vector and Y is a scalar random variable. Let f be the joint density of (X, Y ),

and further assume that E|Y |r <∞ and supx
∫
|y|rf(x, y)dy <∞. Let K(·) be a bounded

positive function with bounded support, satisfying a Lipschitz condition. Then,

sup
x∈X

∣∣∣∣∣ 1n
n∑
i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

∣∣∣∣∣ = Op(γn log1/2(1/h)),

given n2ε−1h→∞, for some ε < 1− 1/r, where γn = (nh)−1/2.

In order to prove the asymptotic properties of {π̂, m̂, σ̂2}, we first need to study the

asymptotic property of {π̃, m̃, σ̃2}, which is the maximum local log-likelihood estimator of

(2.5).

Define

π̃∗j =
√
nh{π̃j − πj}, m̃∗j =

√
nh{m̃j −mj}, σ̃2∗

j =
√
nh{σ̃2

j − σ2
j}.

Let π̃∗ = (π̃∗1, ..., π̃
∗
k−1)T , m̃∗ = (m̃∗1, ..., m̃

∗
k)
T , and σ̃2∗ = (σ̃2∗

1 , ..., σ̃
2∗
k )T . Furthermore, define

θ̃
∗

= ((m̃∗)T , (π̃∗)T , (σ̃2∗)T )T , β = ((π̃)T , (σ̃2∗)T )T .

Lemma 3. Suppose that conditions (C2)-(C10) are satisfied, then,

sup
x∈X

∣∣∣θ̃∗ − f−1(x)I−1
θ (x)Sn

∣∣∣ = Op(h
2 + γn log1/2(1/h)),

where Sn is defined in (2.17).

Proof of Lemma 3.

Since {π̃, m̃, σ̃2} maximizes `1(π,m,σ2) defined in (2.5), it is easy to see that θ̃
∗

maximizes

`∗n(θ∗) = h

n∑
i=1

{`(θ(x) + γnθ
∗, Yi)− `(θ(x), Yi)}Kh(Xi − x), (2.15)
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where `(·) is defined in (2.12). Apply a Taylor’s expansion to `(θ(x) + γnθ
∗, Yi) at θ(x), we

have

`∗n(θ∗) = Snθ
∗ +

1

2
θ∗TWnθ

∗ + op(‖θ∗‖2), (2.16)

where

Sn =

√
h

n

n∑
i=1

∂`(θ(x), Yi)

∂θ
Kh(Xi − x), (2.17)

Wn =
1

n

n∑
i=1

∂2`(θ(x), Yi)

∂θ∂θT
Kh(Xi − x).

Noting that E(Wn) = −f(x)Iθ(x) + op(1), by the weak law of large numbers, Wn =

−f(x)Iθ(x) + op(1), and therefore,

`∗n(θ∗) = Snθ
∗ − 1

2
f(x)θ∗T Iθ(x)θ∗ + op(‖θ∗‖2). (2.18)

By definition, each element of Wn is the sum of i.i.d. random variables, by Lemma 2

and assumption (C9), it can be shown that for all x ∈ X , Wn converges to −f(x)Iθ(x)

uniformly. From (2.18) and assumption (C7) and (C9), we know that −`∗n(θ∗) is convex

function defined on a convex open set, when n is large enough. Therefore, by the convexity

lemma (Pollard, 1991),

sup
x∈X

∣∣∣∣(Snθ∗ +
1

2
θ∗TWnθ

∗)− [Snθ
∗ − 1

2
f(x)θ∗T Iθ(x)θ∗]

∣∣∣∣ P→ 0

holds uniformly for all x ∈X and θ∗ in any compact set. We know that −f−1(x)I−1
θ (x)Sn

is a unique maximizer of (2.18), and by definition, θ̃
∗

is a maximizer of (2.16), then, by

Lemma A.1 of Carroll et al. (1997),

sup
x∈X

∣∣∣θ̃∗ − f−1(x)I−1
θ (x)Sn

∣∣∣ P→ 0,
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which also implies that

θ̃
∗

= f−1(x)I−1
θ (x)Sn + op(1). (2.19)

Since θ̃
∗

maximizes (2.15), then

∂`∗n(θ∗)

∂θ∗
|
θ∗= ˜θ

∗ = hγn

n∑
i=1

∂`(θ(x) + γnθ̃
∗
, Yi)

∂θ
Kh(Xi − x) = 0. (2.20)

Apply a Taylor’s expansion to (2.20) at θ(x),

0 = hγn

n∑
i=1

∂`(θ(x), Yi)

∂θ
Kh(Xi − x) + hγ2

nθ̃
∗

n∑
i=1

∂2`(θ(x), Yi)

∂θ∂θT
Kh(Xi − x) +Op(γn‖θ̃

∗‖2),

that is, Wnθ̃
∗

+Op(γn‖θ̃
∗‖2) = −Sn. Therefore,

{Wn − E(Wn)}θ̃∗ +Op(γn‖θ̃
∗‖2) = −Sn − E(Wn)θ̃

∗
= −Sn + f(x)Iθ(x)θ̃

∗
, (2.21)

where the last equality is deduced by the fact that E(Wn) = −f(x)Iθ(x) +op(1). Notice the

structure of Wn, from Lemma 2, we know that

sup
x∈X
|Wn − E(Wn)| = Op{h2 + γn log1/2(1/h)}.

From (2.19), (2.27) and (2.28), it is easy to show that supx∈X |θ̃
∗| = Op(1), and thus

{Wn − E(Wn)}θ̃∗ +Op(γn‖θ̃
∗‖2) = Op{h2 + γn log1/2(1/h)}.

Combined with (2.21), we have

sup
x∈X

∣∣∣−Sn + f(x)Iθ(x)θ̃
∗
∣∣∣ = Op{h2 + γn log1/2(1/h)}.

Since f(x) and Iθ(x) are bounded and continuous functions in a closed set of X and Iθ(x)
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is positive definite,

sup
x∈X

∣∣∣θ̃∗ − f−1(x)I−1
θ Sn

∣∣∣ = Op{h2 + γn log1/2(1/h)}.

Proof of Theorem 2.2.2.

Define β̂
∗

=
√
n(β̂−β), where β̂ maximizes `2(β) in (2.6) and β = (πT , (σ2)T )T is the true

value. Let

`(m̃(Xi),β, Yi) = log{
k∑
j=1

πjφ(Yi|m̃j(Xi), σ
2
j},

`(m̃(Xi),β + β∗/
√
n, Yi) = log{

k∑
j=1

(πj + π∗j/
√
n)φ(Yi|m̃j(Xi), σ

2
j + σ2∗

j /
√
n}.

Since β̂ maximizes `2, it is easy to see that β̂
∗

maximizes

`n(β∗) =
n∑
i=1

{`(m̃(Xi),β + β∗/
√
n, Yi)− `(m̃(Xi),β, Yi}.

Similar to the proof of Lemma 2, apply a Taylor’s expansion to `(m̃(Xi),β+β∗/
√
n, Yi) at

β and after some calculation,

`n(β∗) = Anβ
∗ +

1

2
β∗TBnβ

∗ + op(‖β∗‖2),

where

An =

√
1

n

n∑
i=1

∂`(m̃(Xi),β, Yi)

∂β
,

Bn =
1

n

n∑
i=1

∂2`(m̃(Xi),β, Yi)

∂β∂βT
.

Similar to the proof of Lemma 3, it is not difficult to show that Bn = −B + op(1), where
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B = E{Iβ(X)}, and then

`n(β∗) = Anβ
∗ − 1

2
β∗TBβ∗ + op(1). (2.22)

By (2.22) and the quadratic approximation lemma,

β̂
∗

= B−1An + op(1). (2.23)

Next, apply a Taylor’s expansion to An at m(Xi),

An =

√
1

n

n∑
i=1

∂`(m̃(Xi),β, Yi)

∂β

=

√
1

n

n∑
i=1

∂`(m(Xi),β, Yi)

∂β
+R1n +Op(

√
1

n
‖m̃−m‖2

∞),

where

R1n =

√
1

n

n∑
i=1

∂2`(m(Xi),β, Yi)

∂β∂mT
(m̃(Xi)−m(Xi)).

From Lemma 3,

θ̃
∗
(Xi) = f−1(Xi)I

−1
θ (Xi)

√
h

n

n∑
t=1

∂`(θ(Xi), Yt)

∂θ
Kh(Xt −Xi) +Op{h2 + γn log1/2(1/h)}.

Since θ̃
∗
(Xi) =

√
nh(θ̃(Xi)− θ(Xi)),

θ̃(Xi)−θ(Xi) =
1

n
f−1(Xi)I

−1
θ (Xi)

n∑
t=1

∂`(θ(Xi), Yt)

∂θ
Kh(Xt−Xi)+Op{γnh2+γ2

n log1/2(1/h)}

(2.24)

Let ϕ(Xt, Yt) be a k×1 vector whose elements are the first k entries of I−1
θ (Xt)

∂`(θ(Xt),Yt)

∂θ
.

From assumption (C1), we know that Op{n1/2[γnh
2 + γ2

n log1/2(1/h)]} = op(1). It can be
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shown that m(Xi)−m(Xt) = O(Xi −Xt) and K(·) is symmetric about 0, then by (2.24),

R1n = n−3/2

n∑
t=1

n∑
i=1

∂2`(m(Xi),β, Yi)

∂β∂mT
f−1(Xi)ϕ(Xt, Yt)Kh(Xi −Xt) +Op(n

1/2h2)

= R2n +Op(n
1/2h2).

It can be shown that

E[
1

n

n∑
i=1

∂2`(m(Xi),β, Yi)

∂β∂mT
f−1(Xi)Kh(Xi −Xt)] = Iβm(Xt).

Let $(Xt, Yt) = Iβm(Xt)ϕ(Xt, Yt), and Rn3 = −n−1/2
∑n

j=1 $(Xt, Yt), then

Rn2 −Rn3
P→ 0,

and therefore

An =

√
1

n

n∑
i=1

{∂`(m(Xi),β, Yi)

∂β
−$(Xi, Yi)}+ op(1),

given nh4 → 0.

To complete the proof, we need to find the mean and variance of An. Let

Σ = V ar{∂`(θ(X), Y )

∂β
−$(X, Y )},

then V ar(An) = Σ. It can be easily seen that the elements of E{∂`(θ(X),Y )

∂β
} all equal to 0,

and E{$(X, Y )} = 0, and thus, E(An) = 0. Therefore by (2.23),

√
n(β̂ − β)

D→ N(0, B−1ΣB−1).

Proof of Theorem 2.2.3.

Define m̂∗ =
√
nh(m̂(x)−m(x)), where m̂(x) maximizes (2.7) and m(x) is the true value.
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Apply similar arguments as in the proof of Lemma 3, it is easy to see

m̂∗(x) = f(x)−1Im(x)−1Ŝn + op(1), (2.25)

where

Ŝn =

√
h

n

n∑
i=1

∂`(m(x), β̂, Yi)

∂m
Kh(Xi − x). (2.26)

Apply a Taylor’s expansion to (2.26) at β, we have

Ŝn =

√
h

n

n∑
i=1

∂`(m(x),β, Yi)

∂m
Kh(Xi − x) +

√
h

n
(β̂ − β)

n∑
i=1

∂2`(m(x),β, Yi)

∂m∂βT
Kh(Xi − x) + op(1)

≡Sn +Dn + op(1).

where Sn is defined in (2.17).

Notice that
√
n(β̂ − β) = Op(1) and

1

n

n∑
i=1

∂2`(m(x),β, Yi)

∂m∂βT
Kh(Xi − x) = −f(x)ITβm(x) + op(1),

then

Dn =
√
n(β̂ − β)

√
h

1

n

n∑
i=1

∂2`(m(x),β, Yi)

∂m∂βT
Kh(Xi − x)

= −
√
hf(x)ITβm(x) + op(1).

Thus, from (2.25)

m̂∗(x) = f(x)−1Im(x)−1Sn + op(1).

To complete the proof, we need to calculate the expectation and variance of Sn. Let Λ(u|x) =
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E[
∂`(m(x),β,Y )

∂m |X = u], then

E{∂`(m(x),β, Y )

∂m
Kh(X − x)} = E{E[

∂`(m(x),β, Y )

∂m
Kh(X − x)|X = x0]}

= [
1

2
f(x)Λ′′(x|x) + f ′(x)Λ′(x|x)]κ2h

2,

and so

E(Sn) =
√
nh[

1

2
f(x)Λ′′(x|x) + f ′(x)Λ′(x|x)]κ2h

2. (2.27)

Since

E{∂`(m(x),β, Y )

∂m
Kh(X − x)}2 = E{E[(

∂`(m(x),β, Y )

∂m
Kh(X − x))2|X = x0]}

=
1

h
Im(x)ν0 + op(1),

then

V ar(Sn) = f(x)Im(x)ν0. (2.28)

To complete the proof, let

∆(x) = I−1
m (x)[

1

2
Λ′′(x|x) + f−1(x)f ′(x)Λ′(x|x)]κ2h

2,

and ∆m(x) be a k × 1 vector whose elements are the first k entries of ∆(x), then

√
nh(m̂(x)−m(x)−∆m(x) + op(h

2))
D→ N(0, f−1(x)I−1

m (x)ν0).

Proof of Theorem 2.2.4.

(i) Assume the latent variables {Zi, i = 1, ..., n} be a random sample from population Z,
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then the conditional distribution of Z given Y and θ is

P (Zi = j|Y,θ) =
πjφ(Y |mj, σ

2
j )∑k

j=1 πjφ(Y |mj, σ2
j )
. (2.29)

Given θ(l)(Xi) = (m(l)(Xi),π
(l)(Xi),σ

2(l)(Xi)), for any i = 1, ..., n, P (Zi = j|Yi,θ(l)(Xi)) =

p
(l+1)
ij and

∑k
j=1 p

(l+1)
ij = 1, i = 1, ..., n. Therefore,

`1(θ) =
n∑
i=1

log{
k∑
j=1

πjφ(Yi|mj, σ
2
j )}(

k∑
j=1

p
(l+1)
ij )Kh(Xi − x)

=
n∑
i=1

{
k∑
j=1

log{
k∑
j=1

πjφ(Yi|mj, σ
2
j )}p

(l+1)
ij }Kh(Xi − x). (2.30)

From (2.29), it is easy to show that

log{
k∑
j=1

πjφ(Yi|mj, σ
2
j )} = log{πjφ(Yi|mj, σ

2
j )} − log{P (Zi = j|Y,θ)}. (2.31)

Combing (2.30) and (2.31),

`1(θ) =
n∑
i=1

{
k∑
j=1

log{πjφ(Yi|mj, σ
2
j )}p

(l+1)
ij }Kh(Xi − x)

−
n∑
i=1

{
k∑
j=1

log{P (Zi = j|Y,θ)}p(l+1)
ij }Kh(Xi − x). (2.32)

Based on the M-step of (2.8), (2.9) and (2.10), we have

n−1

n∑
i=1

{
k∑
j=1

log{π(l+1)
j (x)φ(Yi|m(l+1)

j (x), σ
2(l+1)
j (x))}p(l+1)

ij }Kh(Xi − x)

≥n−1

n∑
i=1

{
k∑
j=1

log{π(l)
j (x)φ(Yi|m(l)

j (x), σ
2(l)
j (x))}p(l+1)

ij }Kh(Xi − x).
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To complete the proof, based on (2.32), we only need to show

lim sup
n→∞

n−1

n∑
i=1

{
k∑
j=1

log{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x) ≤ 0

in probability. Define

L = n−1

n∑
i=1

{
k∑
j=1

log{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x),

U = n−1

n∑
i=1

log{
k∑
j=1

{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x),

then, by Jensen’s inequality, L ≤ U . We complete the proof by showing that U
P→ 0.

Without loss of generality, assume that P (Zi = j|Y,θ(l)(x)) ≥ δ > 0 for some small value δ.

Since

E(U) = E{log[
k∑
j=1

P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
P (Zi = j|Yi,θ(l)(Xi))]Kh(Xi − x)}

= E{E[log
k∑
j=1

P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
P (Zi = j|Yi,θ(l)(Xi))]Kh(Xi − x)|Y ]},

by similar argument as in the proof of Theorem 2.2.2 and Theorem 2.2.3, it can be shown

that E(U)→ 0. Notice that the leading term of V ar(U) is

n−1E{log[
k∑
j=1

P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
P (Zi = j|Yi,θ(l)(Xi))]Kh(Xi − x)}2,

which can be shown to have a order of Op((nh)−1). Therefore, by Chebyshv’s inequality,

U = op(1), and thus completes the proof.
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(ii) The conditional distribution of Z given Y and m is

P (Zi = j|Y,m, β̂) =
π̂jφ(Y |mj, σ̂

2
j )∑k

j=1 π̂jφ(Y |mj, σ̂2
j )
,

and P (Zi = j|Yi,m(l)(Xi), β̂) = p
(l+1)
ij and

∑k
j=1 p

(l+1)
ij = 1, where p

(l+1)
ij is defined in (2.11).

The rest of the proof is in line with part (i), and thus is omitted here.

(iii) Notice that by fixing m̃(·) = m(l)(·), `∗(π,m(l)(·),σ2) = `2(π,σ2). Therefore, by

the ascent property of the ordinary EM algorithm,

`∗(π(l+1),m(l)(·),σ2(l+1)) = `2(π(l+1),σ2(l+1)) ≥ `2(π(l),σ2(l)) = `∗(π(l),m(l)(·),σ2(l))

Thus, to complete the proof, we only need to show

lim inf
n→∞

n−1[`∗(π(l+1),m(l+1)(·),σ2(l+1))− `∗(π(l+1),m(l)(·),σ2(l+1))] ≥ 0

If we fix π̂ = π(l+1) and σ̂2 = σ2(l+1), then by part (ii),

lim inf
n→∞

n−1[`3(m(l+1)(x))− `3(m(l)(x))] ≥ 0

in probability for any x ∈ {Xt, t = 1, ..., n}. Therefore,

lim inf
n→∞

n−2

n∑
t=1

f(Xt)
−1[`3(m(l+1)(Xt))− `3(m(l)(Xt))]

≥ lim inf
n→∞

n−1

n∑
t=1

lim inf
n→∞

n−1f(Xt)
−1[`3(m(l+1)(Xt))− `3(m(l)(Xt))] ≥ 0.
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Since K(·) is symmetric about 0, Kh(Xi −Xt) = Kh(Xt −Xi), and therefore,

n−2

n∑
t=1

f(Xt)
−1`3(m(l)(Xt)) = n−2

n∑
t=1

f(Xt)
−1

n∑
i=1

log{
k∑
j=1

π̂jφ(Yi|m(l)
j (Xt), σ̂

2
j )}Kh(Xi −Xt)

=n−1

n∑
i=1

{n−1

n∑
t=1

f(Xt)
−1 log[

k∑
j=1

π̂jφ(Yi|m(l)
j (Xt), σ̂

2
j )]Kh(Xt −Xi)} = n−1

n∑
i=1

Γ
(l)
i ,

where

Γ
(l)
i = n−1

n∑
t=1

f(Xt)
−1 log[

k∑
j=1

π̂jφ(Yi|m(l)
j (Xt), σ̂

2
j )]Kh(Xt −Xi).

It can be shown that

E(Γ
(l)
i |Xi, Yi) = log[

k∑
j=1

π̂jφ(Yi|m(l)
j (Xi), σ̂

2
j )](1 + op(1))

and V ar(Γ
(l)
i |Xi, Yi) = Op((nh)−1). In addition, it is clear that

n∑
i=1

E(Γ
(l)
i |Xi, Yi) = `∗(π(l+1),m(l)(·),σ2(l+1)),

n∑
i=1

E(Γ
(l+1)
i |Xi, Yi) = `∗(π(l+1),m(l+1)(·),σ2(l+1)),

which completes the proof.

Proof of Theorem 2.2.5.

Since β̂ has faster convergence rate than m̂(·), m̂(·) has the same asymptotic properties as

if β were known. Therefore, in the following proof, we study the property of m̂(·) assuming

β to be known.

Define ∂`(θ(Xi),Yi)
∂θ

= qθi,
∂2`(θ(Xi),Yi)

∂θ∂θT
= qθθi and similarly, define qmi, qmmi and so on. Let θ̃

be the estimator under H1 (Huang et al., 2013), and m̂ be the estimator under H0 (model
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(2.1)). From previous proof, we have

θ̃(Xi)− θ(Xi) =
1

n
f−1(Xi)I

−1
θ (Xi)

n∑
t=1

qθiKh(Xt −Xi)(1 + op(1)) (2.33)

m̂(Xi)−m(Xi) =
1

n
f−1(Xi)I

−1
m (Xi)

n∑
t=1

qmiKh(Xt −Xi)(1 + op(1)) (2.34)

By (2.33) and (2.34), we can obtain that

n∑
i=1

`(θ̃(Xi), Yi)−
n∑
i=1

`(θ(Xi), Yi) = { 1

n

∑
i,l

qTθif
−1(Xl)I

−1
θ (Xl)qθlKh(Xi −Xl)

+
1

2n2

∑
i,j,l

qTθif
−2(Xl)I

−1
θ (Xl)qθθlI

−1
θ (Xl)qθjKh(Xi −Xl)Kh(Xj −Xl)}(1 + op(1)),

n∑
i=1

`(m̂(Xi), Yi)−
n∑
i=1

`(m(Xi), Yi) = { 1

n

∑
i,l

qTmif
−1(Xl)I

−1
m (Xl)qmlKh(Xi −Xl)

+
1

2n2

∑
i,j,l

qTmif
−2(Xl)I

−1
m (Xl)qmmlI

−1
m (Xl)qmjKh(Xi −Xl)Kh(Xj −Xl)}(1 + op(1)),

and so,

T =
1

n

∑
i,l

[qTθiI
−1
θ (Xl)qθl − qTmiI−1

m (Xl)qml]f
−1(Xl)Kh(Xi −Xl) +

1

2n2

∑
i,j,l

[qTθiI
−1
θ (Xl)qθθl

×I−1
θ (Xl)qθj − qTmiI−1

m (Xl)qmmlI
−1
m (Xl)qmj]f

−2(Xl)Kh(Xi −Xl)Kh(Xj −Xl)

≡Λn +
1

2
Γn.

By similar argument as Fan et al. (2001), it can be shown that under conditions (C9)-(C12),
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as h→ 0, nh3/2 →∞,

Λn =
2k − 1

h
K(0)Ef(X)−1 +

1

n

∑
l 6=i

[qTθiI
−1
θ (Xl)qθl − qTmiI−1

m (Xl)qml]f
−1(Xl)Kh(Xi −Xl) + op(h

−1/2),

Γn = −(2k − 1)

h
Ef(X)−1

∫
K2(t)dt− 2

n

∑
i<j

[qTθiI
−1
θ (Xi)qθθiqθj − qTmiI−1

m (Xi)qmmiqmj]f
−1(Xi)

×Kh ∗Kh(Xi −Xj) + op(h
−1/2).

Therefore,

T = µn +Wn/2
√
h+ op(h

−1/2),

where µn = (2k−1)|X |
h

[K(0)− 0.5
∫
K2(t)dt],

Wn =

√
h

n

∑
i 6=j

{qTθiI−1
θ (Xj)[2Kh(Xi −Xj)− qθθjKh ∗Kh(Xi −Xj)]f

−1(Xj)qθj

− qTmiI−1
m (Xj)[2Kh(Xi −Xj)− qmmjKh ∗Kh(Xi −Xj)]f

−1(Xj)qmj.

It can be shown that Var(Wn)→ ζ, where ζ = 2(2k−1)Ef−1(X)
∫

[2K(t)−K ∗K(t)]2dt.

Apply Proposition 3.2 in de Jong (1987), we obtain that

Wn
D→ N(0, ζ),

and completes the proof.
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Table 2.4: Pointwise coverage probabilities

h 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889

US m1 92.00 93.00 93.80 92.40 93.40 93.40 94.20 92.80

n = 200 m2 90.00 92.20 95.20 93.40 94.20 94.40 92.80 93.20

AS m1 92.20 91.40 90.80 87.60 90.00 91.40 93.00 90.40

(0.5, 0.5) m2 85.40 89.40 85.00 89.00 87.00 84.20 89.40 89.40

OS m1 92.00 77.00 80.80 83.00 87.00 80.80 79.60 89.80

m2 58.60 80.20 53.60 76.60 73.60 48.80 80.80 73.00

US m1 93.40 94.40 95.60 93.40 93.00 95.80 96.00 94.00

n = 400 m2 97.20 94.40 94.20 91.60 93.40 94.60 95.00 94.80

AS m1 91.40 93.00 93.60 91.80 90.60 92.40 92.00 91.60

(0.5, 0.5) m2 89.80 91.80 87.40 90.00 88.40 88.80 89.40 90.40

OS m1 88.80 76.60 81.60 89.00 86.00 80.80 79.60 88.80

m2 61.80 82.20 51.40 78.60 79.80 48.60 80.00 73.80

US m1 91.40 97.00 93.40 93.60 93.00 94.80 94.60 93.40

n = 200 m2 89.00 93.20 92.20 91.00 92.80 92.40 93.40 90.80

AS m1 92.40 88.60 91.40 90.20 86.40 89.60 89.60 89.20

(0.7, 0.3) m2 82.60 89.00 89.40 86.20 84.20 84.20 87.20 86.40

OS m1 91.40 62.20 67.20 82.80 82.00 67.00 62.80 90.00

m2 60.60 83.80 63.80 81.60 76.00 57.20 78.20 76.00

US m1 92.40 94.20 93.60 94.60 93.40 96.80 94.00 95.40

n = 400 m2 93.40 95.60 93.00 94.00 93.60 93.60 93.80 93.00

AS m1 91.80 90.80 89.40 91.20 91.80 92.20 88.80 92.20

(0.7, 0.3) m2 83.60 89.00 87.20 89.20 88.60 85.80 88.20 88.60

OS m1 90.40 60.80 67.00 87.20 86.60 68.20 62.00 87.20

m2 56.40 81.00 60.40 78.60 79.60 56.80 81.00 74.00
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Table 2.5: Average of MSPE.

5-fold CV 10-fold CV MCCV s=10 MCCV s=20

US House Price Index Data

Model (2.1) 0.089 0.107 0.089 0.090

NMR (Huang et al., 2013) 0.109 0.124 0.090 0.091

NO data

Model (2.1) 0.987 0.940 1.038 1.033

NMR (Huang et al., 2013) 1.851 1.568 1.767 1.920
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Chapter 3

Mixture of Regression Models with

Single-Index

Abstract

In this chapter, we apply the idea of single-index to the mixture of regression models and

propose three new classes of models: mixture of single-index models (MSIM), mixture of re-

gression models with varying single-index proportions (MRSIP), and mixture of regression

models with varying single-index proportions and variances (MRSIPV). Backfitting esti-

mates and the corresponding algorithms have been proposed for the new models to achieve

the optimal convergence rates for both parameters and nonparametric functions. We show

that the nonparametric functions can be estimated as if the parameters were known and

the parameters can be estimated with the same rate of convergence, n−1/2, that is achieved

in a parametric model. Simulation studies and a real data example have been conducted to

demonstrate the finite sample performance of the proposed models.
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3.1 Introduction

The single-index model has received much attention in recent years due to its application

to a variety of fields, such as econometrics, biometrics, and so on. The single-index model

has the following form:

Y = g(αTx) + ε,

where Y ∈ R is a response variable, x ∈ Rp are covariates; g(·) is an unknown univariate

measurable function, α ∈ Rp is an unknown parametric vector; and ε is the random error

independent of x, with E(ε) = 0 and V ar(ε) = σ2. The appeal of the single-index model

is that by focusing on an index αTx, the so-called “curse of dimensionality” in fitting

multivariate nonparametric regression functions is avoided. It is of dimension-reduction

structure in the sense that, if we can estimate the index α efficiently, then we can use the

univariate α̂Tx as the covariate and Y to estimate the nonparametric link g(·), and thus

avoid the curse of dimensionality when nonparametric smoothing is employed. These models

are often used as a reasonable compromise between fully parametric and fully nonparametric

modeling.

The motivation, importance, and broad potential applications of single-index model are

widely discussed in the literature. Härdle and Stoker (1989) and Ichimura (1993) have given

examples of classical regression, discrete regression, and censored regression that can all be

classified as single-index models. Carroll et al. (1997) have summarized the remarks of Li

(1991):

1. As a practical matter, it is important to lower the dimensionality before fitting a data,

and single-index models provide a readily interpretable meanings of performing this

reduction.

2. If the link function is monotone, then α has the same general meaning as in ordinary

linear models.
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3. Given an estimated “direction”, the multivariate model fitting is reduced to a more

manageable low-dimensional modeling problem.

Because of its importance, much efforts have been devoted to studying its estimation

and other relevant inference problems. Härdle et al. (1993) employed the kernel smoothing

method to study the single-index model, and gave an empirical rule for bandwidth selec-

tion. Ichimura (1993) studied the properties of a semiparametric least-squares estimator in

a general single-index model. Zhang et al. (2010) extended the generalized likelihood ratio

test to the single-index models, basing on the estimates obtained by the local linear method.

Stute and Zhu (2005) studied the goodness-of-fit testing of single-index models. Carroll et

al. (1997) extended the idea and proposed generalized partially linear single-index models.

Using local linear methods, Carroll et al. (1997) proposed estimates of the unknown parame-

ters and the unknown link function, and showed that a semiparametric efficient estimator of

the direction can be obtained. Xia and Li (1999) extended the idea to the adaptive varying-

coefficient model. They proposed estimating coefficient functions with a given bandwidth

and a direction α, and then to choose the bandwidth and the direction by cross-validation.

Fan et al. (2003) also studied the adaptive varying-coefficient linear models, and proposed a

hybrid backfitting algorithm, alternating between estimating the index through a one-step

scheme and estimating coefficient functions through one-dimensional local linear smoothing.

In this chapter, we apply the idea of single-index to the mixture of regression models,

and propose a mixture of single-index models (MSIM), a mixture of regression models with

varying single-index proportions (MRSIP), and a mixture of regression models with vary-

ing single-index proportions and variances (MRSIPV). Huang et al. (2013) proposed the

nonparametric mixture of regression models Y |X=x ∼
∑k

j=1 πj(x)φ(Yi|mj(x), σ2
j (x)), and de-

veloped an estimation procedure by employing kernel regression. However, the above model

is not very applicable to multivariate predictors due to the so called “curse of dimensionali-

ty”. The proposed mixture of single-index models can naturally incorporate the multivariate

predictors and relax the traditional parametric assumption of mixture of regression models.
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In some cases, we might want to assume linearity in the mean functions. Therefore,

the proposed MRSIP and MRSIPV keep the easy interpretation of the linear component

regression functions while assuming that the mixing proportions (and variances) are smooth

functions of an index αTx.

We show the identifiability of each model under some regularity conditions. To achieve

the optimal convergence rate for the global parameters and nonparametric functions, we

propose backfitting estimates using the kernel regression technique. We have shown that

the nonparametric functions can be estimated with the same rate as if the parameters were

known, and the parameters can be estimated with the same rate of convergence, n−1/2,

that is achieved in a parametric model. Numerical studies are used to demonstrate the

effectiveness of the proposed new models. We discuss the selection of the three models in a

real data analysis.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the MSIM

and study its identifiability result. A one-step estimate and a fully-iterated backfitting

estimate have been proposed, and their asymptotic properties are studied. Section 3.3 and

3.4 discuss the MRSIP and the MRSIPV, respectively. Fully-iterated estimates and their

asymptotic properties are also studied. In Section 3.5, we use Monte Carlo studies and a

real data example to demonstrate the finite sample performance of the proposed estimates.

A discussion section ends the chapter.

3.2 Mixture of Single-index Models (MSIM)

3.2.1 Model Definition and Identifiability

Assume that {(xi, Yi), i = 1, ..., n} is a random sample from population (x, Y ). Throughout

this chapter, we assume that x is p-dimensional and Y is univariate. Let C be a latent

variable, and we assume that conditional on x, C has a discrete distribution P (C = j|x) =

πj(α
Tx) for j = 1, ..., k. Conditional on C = j and x, Y follows a normal distribution with
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mean mj(α
Tx) and variance σ2

j (α
Tx). We assume that πj(·), mj(·) and σ2

j (·) are unknown

but smooth functions, and therefore, without observing C, the conditional distribution of Y

given x can be written as:

Y |x ∼
k∑
j=1

πj(α
Tx)φ(Yi|mj(α

Tx), σ2
j (α

Tx)), (3.1)

where φ(y|µ, σ2) is the normal density with mean µ and variance σ2. Throughout the

chapter, we assume that k is fixed, and refer to model (3.1) as a finite semiparametric

mixture of regression models, since πj(·), mj(·), and σ2
j (·) are all nonparametric. When

k = 1, model (3.1) reduces to a single index model (Ichimura, 1993; Härdle et al., 1993). If

πj(·) and σ2
j (·) are constant, and mj(·) are identity functions, then model (3.1) reduces to

a finite mixture of linear regression models (Goldfeld and Quandt, 1973). If x is a scalar,

then the model (3.1) reduces to the nonparametric mixture of regression models proposed

by Huang et al. (2013). Therefore, the proposed model (3.1) is a natural generalization of

many existing popular models.

Identifiability is a major concern for most mixture models. Some well known results for

identifiability of finite mixture models include: mixture of univariate normals is identifiable

up to relabeling (Titterington et al. 1985) and finite mixture of regression models is identi-

fiable up to relabeling provided that covariates have a certain level of variability (Henning,

2000). The following theorem gives result on identifiability of model (3.1) and its proof is

given in Section 3.7.

Theorem 3.2.1. Assume that (i) πj(z), mj(z), and σ2
j (z) are differentiable and not constant

on the support of αTx, j = 1, ..., k; (ii) The component of x are continuously distributed

random variables that have a joint probability density function; (iii) The support of x is not

contained in any proper linear subspace of Rp; (iv) ‖α‖ = 1 and the first nonzero element of

α is positive; (v) Any two curves (mi(z), σ2
i (z)) and (mj(z), σ2

j (z)), i 6= j, are transversal.

Then, model (3.1) is identifiable.
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The transversality of two smooth curves (Huang et al., 2013) implies that the mean and

variance functions of any two components cannot be tangent to each other.

3.2.2 Estimation Procedure and Asymptotic Properties

In this subsection, we propose a one-step estimate and a fully iterative backfitting estimate

to achieve the optimal convergence rate for both the index parameter and nonparametric

functions.

Let `∗(1)(π,m,σ2,α) be the log-likelihood of the collected data {(xi, Yi), i = 1, ..., n}.

That is:

`∗(1)(π,m,σ2,α) =
n∑
i=1

log{
k∑
j=1

πj(α
Txi)φ(Yi|mj(α

Txi), σ
2
j (α

Txi))}, (3.2)

where π(·) = {π1(·), ..., πk−1(·)}T ,m(·) = {m1(·), ...,mk(·)}T , and σ2(·) = {σ2
1(·), ..., σ2

k(·)}T .

Since π(·), m(·) and σ2(·) consist of nonparametric functions, (3.2) is not ready for maxi-

mization.

If α̂ is an estimate of α, then π(·), m(·), and σ2(·) can be estimated locally by maxi-

mizing the following local log-likelihood function:

`
(1)
1 (π,m,σ2) =

n∑
i=1

log{
k∑
j=1

πj(α̂
Txi)φ(Yi|mj(α̂

Txi), σ
2
j (α̂

Txi))}Kh(α̂
Txi − z), (3.3)

where Kh(z) = h−1K(z/h) and K(·) is a kernel density function.

Let π̂(·), m̂(·), and σ̂2(·) be the result of maximizing (3.3). We can then further update

the estimate of α by maximizing

`
(1)
2 (α) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|m̂j(α

Txi), σ̂
2
j (α

Txi))}, (3.4)

with respect to α.
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Computing Algorithm

We now propose two effective algorithms to calculate the estimates.

One-step Estimator (OS)

Step 1: Obtain an estimate of the index parameter α.

Apply sliced inverse regression (Li, 1991) to obtain the estimate of α, denoted by α̂.

Step 2: Modified EM-type algorithm to maximize `
(1)
1 in (3.3).

In Step 2, we propose a modified EM-type algorithm to maximize `
(1)
1 and obtain the esti-

mators π̂(·), m̂(·) and σ̂2(·). In practice, we usually want to evaluate unknown functions at

a set of grid points, which in this case, requires us to maximize local log-likelihood functions

at a set of grid points. If we simply apply an EM algorithm, the labels in the EM algorithm

may change at different grid points, and we may not be able to get smoothed estimated

curves (Huang and Yao, 2012). Therefore, we propose the following modified EM-type al-

gorithm, which estimates the nonparametric functions simultaneously at a set of grid points

. Let {ut, t = 1, ..., N} be a set of grid points where some unknown functions are evaluated,

and N be the number of grid points.

E-step:

Calculate the expectations of component labels based on estimates from the lth iteration:

p
(l+1)
ij =

π
(l)
j (α̂Txi)φ(Yi|m(l)

j (α̂Txi), σ
2(l)
j (α̂Txi))∑k

j=1 π
(l)
j (α̂Txi)φ(Yi|m(l)

j (α̂Txi), σ
2(l)
j (α̂Txi))

, i = 1, ..., n, j = 1, ..., k.

M-step:
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Update the estimates

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)∑n
i=1Kh(α̂

Txi − z)
,

m
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij YiKh(α̂

Txi − z)∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)
,

σ
2(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij (Yi −m(l+1)

j (z))2Kh(α̂
Txi − z)∑n

i=1 p
(l+1)
ij Kh(α̂

Txi − z)
,

for z ∈ {ut, t = 1, ..., N}. We then update π
(l+1)
j (α̂Txi), m

(l+1)
j (α̂Txi) and σ

2(l+1)
j (α̂Txi), i =

1, ..., n by linear interpolating π
(l+1)
j (ut), m

(l+1)
j (ut) and σ

2(l+1)
j (ut), t = 1, ..., N , respectively.

Note that in the M-step, the nonparametric functions are estimated simultaneously at

a set of grid points, and therefore, the classification probabilities in the the E-step can be

estimated globally to avoid the label switching problem (Yao and Lindsay, 2009).

Fully Iterative Backfitting Estimator (FIB)

To improve the estimation efficiency, we propose the following fully iterative backfitting

estimator.

Step 1: Obtain an initial estimate of the index parameter α.

Apply sliced inverse regression to obtain an initial estimate of the index parameter α,

denoted by α̂.

Step 2: Modified EM-type algorithm to maximize `
(1)
1 in (3.3).

With α̂, apply the modified EM-algorithm proposed above to obtain the estimators π̂(·),

m̂(·), and σ̂2(·).

Step 3: Updating the estimate of α by maximizing `
(1)
2 in (3.4).

Given π̂(·), m̂(·), and σ̂2(·) from Step 2, update the estimate of α, denoted by α̂, which

maximizes `
(1)
2 defined in (3.4) using some numerical methods.

Step 4: Iterate Steps 2 - 3 until convergence.
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Asymptotic Properties

The asymptotic properties of the proposed estimates are investigated below.

Let θ(z) = (πT (z),mT (z), (σ2)T (z))T . Define `(θ(z), y) = log
∑k

j=1 πj(z)φ{y|mj(z), σ2
j (z)},

q1(z) = ∂`(θ(z),y)

∂θ
, q2(z) = ∂2`(θ(z),y)

∂θ∂θT and I(1)

θ
(z) = −E[q2(Z)|Z = z], Λ1(u|z) = E[q1(z)|Z =

u].

Under further conditions defined in Section 3.7, the properties of the one-step estimator,

when α is estimated at the order of Op(n
−1/2) (such as by sliced inverse regression), is

demonstrated in the following theorem.

Theorem 3.2.2. Assume that conditions (C1)-(C7) in Section 3.7 hold. Then, as n→∞,

h→ 0 and nh→∞, we have

√
nh{θ̂(z)− θ(z)− B1 + op(h

2)} D→ N{0, ν0f
−1(z)I(1)

θ
(z)},

where B1(z) = I(1)−1

θ

{
f ′(z)Λ

′
1(z|z)

f(z)
+ 1

2
Λ
′′
1(z|z)

}
κ2h

2, with f(·) the marginal density function

of αTx, κl =
∫
tlK(t)dt and νl =

∫
tlK2(t)dt.

Remark 1. The fully iterative backfitting estimator is at least as efficient as the one-

step estimator, but the one-step estimator achieves the same efficiency in some important

applications with added computational convenience (Carroll et al., 1997). This information

lower bound turns out to be the same as in Huang et al. (2013). Thus, the nonparametric

functions can be estimated with the same rate of convergence as it would have if the one-

dimension quantity αTx were observable.

The next theorem shows that under further conditions, α can be estimated at the usual

parametric rate using the fully iterated algorithm.

Theorem 3.2.3. Assume that conditions (C1)-(C8) in Section 3.7 hold. Then, as n→∞,

nh4 → 0, and nh2/ log(1/h)→∞,

√
n(α̂−α)

D→ N(0,Q−1
1 ),
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where Q1 = E
{

[xθ′(Z)]q2(Z)[xθ′(Z)]T
}
−E

[
xθ′(Z)q2(Z)I(1)−1

θ
(Z)E{q2(Z)[xθ′(Z)]T |Z}

]
.

3.3 Mixture of Regression Models with Varying Single-

Index Proportions (MRSIP)

3.3.1 Model Definition and Identifiability

In order to incorporate the predictor information to the component proportions, Huang and

Yao (2012) proposed a semiparametric mixture of linear regression models

Y |x ∼
k∑
j=1

πj(z)N(xTβj, σ
2
j ),

where z can be the same as or part of x and πj(·) is a smoothing function. Note, however,

the nonparametric function πj(z) is difficulty to estimate if the dimension of z is high, due

to the “curse of dimensionality”.

In this section, we propose a mixture of regression models with varying single-index

proportions (MRSIP). The MRSIP assumes that P (C = j|x) = πj(α
Tx) for j = 1, ..., k,

and conditional on C = j and x, Y follows a normal distribution with mean xTβj and

variance σ2
j . That is,

Y |x ∼
k∑
j=1

πj(α
Tx)N(xTβj, σ

2
j ). (3.5)

Since πj(·)s are nonparametric, model (3.5) is also a finite semiparametric mixture of re-

gression models.

Theorem 3.3.1. Assume that (i) πj(z) > 0 are differentiable and not constant on the

support of αTx, j = 1, ..., k; (ii) The component of x are continuously distributed random

variables that have a joint probability density function; (iii) The support of x contains an

open set in Rp and is not contained in any proper linear subspace of Rp; (iv) ‖α‖ = 1 and
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the first nonzero element of α is positive; (v) (βj, σ
2
j ), j = 1, ..., k, are distinct pairs. Then,

model (3.5) is identifiable.

3.3.2 Estimation Procedure and Asymptotic Properties

The log-likelihood of the collected data is:

`∗(2)(π,α,β,σ2) =
n∑
i=1

log{
k∑
j=1

πj(α
Txi)φ(Yi|xTi βj, σ2

j )}, (3.6)

where π(·) = {π1(·), ..., πk−1(·)}T , σ2 = {σ2
1, ..., σ

2
k}T , and β = {β1, ...,βk}T . Since π(·)

consists of nonparametric functions, (3.6) is not ready for maximization.

If (α̂, β̂, σ̂2) are estimates of (α,β,σ2), then π(·) can be estimated locally by maximizing

the following local log-likelihood function:

`
(2)
1 (π) =

n∑
i=1

log{
k∑
j=1

πj(α̂
Txi)φ(Yi|xTi β̂j, σ̂2

j )}Kh(α̂
Txi − z). (3.7)

Let π̂(·) be the result of maximizing (3.7). We can then further update the estimate of

(α,β,σ2) by maximizing

`
(2)
2 (α,β,σ2) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|xTi βj, σ2

j )}. (3.8)

Computing Algorithm

Step 1: Obtain an initial estimate of (α,β,σ2).

Step 2: Modified EM-type algorithm to maximize `
(2)
1 in (3.7).

E-step:
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Calculate the expectations of component labels based on estimates from the lth iteration:

p
(l+1)
ij =

π
(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ̂2

j )∑k
j=1 π

(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ̂2

j )
, i = 1, ..., n, j = 1, ..., k.

M-step:

Update the estimate

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)∑n
i=1Kh(α̂

Txi − z)

for z ∈ {ut, t = 1, ..., N}. We then update π
(l+1)
j (α̂Txi), i = 1, ..., n by linear interpolating

π
(l+1)
j (ut), t = 1, ..., N .

Step 3: Update (α̂, β̂, σ̂2) by maximizing (3.8).

Step 3.1: Given α̂, update (β,σ2).

E-step:

Calculate the expectations of component identities:

p
(l+1)
ij =

π̂j(α̂
Txi)φ(Yi|xTi β

(l)
j , σ

2(l)
j )∑k

j=1 π̂j(α̂
Txi)φ(Yi|xTi β

(l)
j , σ

2(l)
j )

, i = 1, ..., n, j = 1, ..., k.

M-step:

Update β and σ2:

β
(l+1)
j = (STR

(l+1)
j S)−1STR

(l+1)
j y,

σ
2(l+1)
j =

∑n
i=1 p

(l+1)
ij (Yi − xTi β

(l+1)
j )2∑n

i=1 p
(l+1)
ij

,

where j = 1, ..., k, R
(l+1)
j = diag{p(l+1)

ij , ..., p
(l+1)
nj }, S = (x1, ...,xn)T .

Step 3.2: Given (β̂, σ̂2), update α.

Given (β̂, σ̂2), maximize `
(2)
3 (α) =

∑n
i=1 log{

∑k
j=1 π̂j(α

Txi)φ(Yi|xTi β̂j, σ̂2
j )} to update the

estimate of α, using some numerical methods.
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Step 3.3: Iterate Steps 3.1-3.2 until convergence.

Step 4: Iterate Steps 2-3 until convergence.

Asymptotic Properties

Define η = (βT , (σ2)T )T , λ = (αT ,ηT )T , and `(π(z),λ,x, y) = log
∑k

j=1 πj(z)φ{y|xTβj, σ2
j}.

Let qπ(z) = ∂`(π(z),λ,x,y)
∂π , qππ(z) = ∂2`(π(z),λ,x,y)

∂π∂πT , and similarly, define qλ, qλλ, and qπη.

Denote I(2)
π (z) = −E[qππ(Z)|Z = z] and Λ2(u|z) = E[qπ(z)|Z = u].

Under further conditions, the properties of the estimator when λ is estimated to the order

of Op(n
−1/2) (i.e., at the usual parametric rate) is demonstrated in the following theorem.

Theorem 3.3.2. Assume that conditions (C1)-(C4) and (C9)-(C11) in Section 3.7 hold.

Then, as n→∞, h→ 0 and nh→∞, we have

√
nh{π̂(z)− π(z)− B2(z) + op(h

2)} D→ N{0, ν0f
−1(z)I(2)

π (z)},

where B2(z) = I(2)−1
π

{
f ′(z)Λ′2(z|z)

f(z)
+ 1

2
Λ′′2(z|z)

}
κ2h

2.

Theorem 3.3.3. Assume that conditions (C1)-(C4) and (C9)-(C12) in Section 3.7 hold.

Then, as n→∞, nh4 → 0, and nh2/ log(1/h)→∞,

√
n(λ̂− λ)

D→ N(0,Q−1
2 ),

where,

Q2 = E

qππ(Z)

xπ′(Z)

I



xπ′(Z)

I

−
I(2)−1
π (Z)E{qππ(Z)(xπ′(Z))T |Z}

I(2)−1
π (Z)E{qπη(Z)|Z}



T.
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3.4 Mixture of Regression Models with Varying Single-

Index Proportions and Variances (MRSIPV)

The MRSIPV assumes that P (C = j|x) = πj(α
Tx) for j = 1, ..., k, and conditional on C = j

and x, Y follows a normal distribution with mean xTβj and variance σ2
j (α

Tx). That is,

Y |x ∼
k∑
j=1

πj(α
Tx)N(xTβj, σ

2
j (α

Tx)). (3.9)

Compared to the model (3.5), model (3.9) relaxes the homogenous assumption of the

variance functions over the single-index and thus is more general. In addition, one might

also use different indexes for the variance function and the the component proportions but

with the cost of more complicated computations.

Theorem 3.4.1. Assume that (i) πj(z) > 0 and σj(z) > 0 are differentiable and not

constant on the support of αTx, j = 1, ..., k; (ii) The component of x are continuously

distributed random variables that have a joint probability density function; (iii) The support

of x contains an open set in Rp and is not contained in any proper linear subspace of Rp;

(iv) ‖α‖ = 1 and the first nonzero element of α is positive; (v) βj, j = 1, ..., k, are distinct.

Then, model (3.9) is identifiable.

3.4.1 Estimation Procedure and Asymptotic Properties

The log-likelihood of the collected data is:

`∗(3)(π,σ2,α,β) =
n∑
i=1

log{
k∑
j=1

πj(α
Txi)φ(Yi|xTi βj, σ2

j (α
Txi))}, (3.10)

where π(·) = {π1(·), ..., πk−1(·)}T , σ2(·) = {σ2
1(·), ..., σ2

k(·)}T , β = {β1, ...,βk}T . Since π(·)

and σ2(·) consist of nonparametric functions, (3.10) is not ready for maximization.
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If (α̂, β̂) are estimate of (α,β), then π(·) and σ2(·) can be estimated locally by maxi-

mizing the following local log-likelihood function:

`
(3)
1 (π,σ2) =

n∑
i=1

log{
k∑
j=1

πj(α̂
Txi)φ(Yi|xTi β̂j, σ2

j (α̂
Txi))}Kh(α̂

Txi − z). (3.11)

Let π̂(·) and σ̂2(·) be the result of maximizing (3.11). We can then further update the

estimate of (α,β) by maximizing

`
(3)
2 (α,β) =

n∑
i=1

log{
k∑
j=1

π̂j(α
Txi)φ(Yi|xTi βj, σ̂2

j (α
Txi))}. (3.12)

3.4.2 Computing Algorithm

Step 1: Obtain an initial estimate of (α,β).

Step 2: Modified EM-type algorithm to maximize `
(3)
1 in (3.11).

E-step:

Calculate the expectations of component labels based on estimates from the lth iteration:

p
(l+1)
ij =

π
(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ

2(l)
j (α̂Txi))∑k

j=1 π
(l)
j (α̂Txi)φ(Yi|xTi β̂j, σ

2(l)
j (α̂Txi))

, i = 1, ..., n, j = 1, ..., k.

M-step:

Update the estimate

π
(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)∑n
i=1 Kh(α̂

Txi − z)

σ
2(l+1)
j (z) =

∑n
i=1 p

(l+1)
ij (Yi − xTi β̂)2Kh(α̂

Txi − z)∑n
i=1 p

(l+1)
ij Kh(α̂

Txi − z)

for z ∈ {ut, t = 1, ..., N}. We then update π
(l+1)
j (α̂Txi) and σ

2(l+1)
j (α̂Txi), i = 1, ..., n by

linear interpolating π
(l+1)
j (ut) and σ

2(l+1)
j (ut), t = 1, ..., N .
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Step 3: Update (α̂, β̂) by maximizing (3.12).

Step 3.1: Given α̂, update β.

E-step:

Calculate the expectations of component identities:

p
(l+1)
ij =

π̂j(α̂
Txi)φ(Yi|xTi β

(l)
j , σ̂

2
j (α̂

Txi))∑k
j=1 π̂j(α̂

Txi)φ(Yi|xTi β
(l)
j , σ̂

2
j (α̂

Txi))
, i = 1, ..., n, j = 1, ..., k.

M-step:

Update β:

β
(l+1)
j = (STR

(l+1)
j S)−1STR

(l+1)
j y,

where j = 1, ..., k, R
(l+1)
j = diag{p(l+1)

ij , ..., p
(l+1)
nj }, S = (x1, ...,xn)T .

Step 3.2: Given β̂, update α.

Given β̂, maximize `
(3)
3 (α) =

∑n
i=1 log{

∑k
j=1 π̂j(α

TX i)φ(Yi|XT
i β̂j, σ̂

2
j (α

TX i))} to update

the estimate of α, using some numerical methods.

Step 3.3: Iterate Steps 3.1-3.2 until convergence.

Step 4: Iterate Steps 2-3 until convergence.

Asymptotic Properties

Define η = (πT , (σ2)T )T , θ = (αT ,βT )T , and `(η(z),θ,x, y) = log
∑k

j=1 πj(z)φ{y|xTβj, σ2
j (z)}.

Let qη(z) =
∂`(η(z),θ,x,y)

∂η , qηη(z) =
∂2`(η(z),θ,x,y)

∂η∂ηT , and similarly, define qθ, qθθ, and qηθ.

Denote I(3)
η (z) = −E[qηη(Z)|Z = z], Λ3(u|z) = E[qη(z)|Z = u]

Under further conditions defined in Section 3.7, the properties of the estimator when θ

is estimated to the order of Op(n
−1/2) (i.e., at the usual parametric rate) is demonstrated

in the following theorem.
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Theorem 3.4.2. Assume that conditions (C1)-(C4) and (C13)-(C15) in Section 3.7 hold.

Then as n→∞, h→ 0 and nh→∞, we have

√
nh{η̂(z)− η(z)− B3(z) + op(h

2)} D→ N{0, ν0f
−1(z)I(3)

η (z)},

where B3(z) = I(3)−1
η

{
f ′(z)Λ′3(z|z)

f(z)
+ 1

2
Λ′′3(z|z)

}
κ2h

2.

Theorem 3.4.3. Assume that conditions (C1)-(C4) and (C13)-(C16) in Section 3.7 hold.

Then, as n→∞, nh4 → 0, and nh2/ log(1/h)→∞,

√
n(θ̂ − θ)

D→ N(0,Q−1
3 ),

where,

Q3 = E

qηη(Z)

xη′(Z)

I



xη′(Z)

I

−
I(3)−1
η (Z)E{qηη(Z)(xη′(Z))T |Z}

I(3)−1
η (Z)E{qηη(Z)|Z}



T .

3.5 Numerical Studies

3.5.1 Simulation Study

In this section, we conduct simulation studies to test the performance of the proposed

methodologies.

The performance of the estimates of the mean functions mj(·)’s in model (3.1) is mea-

sured by the square root of the average square errors (RASE)

RASE2
m = N−1

k∑
j=1

N∑
t=1

[m̂j(ut)−mj(ut)]
2.

In this simulation, we set N = 100, and take equally spaced grid points on the range.

Similarly, we can define theRASE for the variance functions σ2
j (·)’s and proportion functions
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πj(·)’s, denoted by RASEσ2 and RASEπ, respectively.

To apply the proposed methodologies, we use cross-validation (CV) to select a proper

bandwidth for estimating the nonparametric functions.

Example 1. We conduct a simulation for a 2-component MSIM:

π1(z) = 0.5 + 0.3 sin(πz) and π2(z) = 1− π1(z),

m1(z) = 3− sin(2πz/
√

3) and m2(z) = cos(
√

3πz),

σ1(z) = 0.7 + sin(3πz)/15 and σ2(z) = 0.3 + cos(1.3πz)/10.

where zi = αTxi, xi are trivariate with independent uniform (0,1) components, and the

direction parameter is α = (1, 1, 1)/
√

3. The sample sizes n = 200, n = 400, and n = 800

are conducted over 500 repetitions. To estimate α, we use sliced inverse regression (SIR)

and the fully iterative backfitting estimate (FIB). To estimate the nonparametric functions,

we apply the one-step estimate (OS) and FIB. For FIB, we use both true value (T) and SIR

(S) as initial values.

We first select a proper bandwidth for estimating π(·), m(·), and σ2(·). There are ways

to calculate theoretical optimal bandwidth, but in practice, data driven methods, such as

cross-validation (CV), are popularly used. Let D be the full data set, and divide D into

a training set Rl and a test set Tl. That is, Rl ∪ Tl = D for l = 1, ..., L. We use the

training set Rl to obtain the estimates {π̂(·), m̂(·), σ̂2(·), α̂}. We then evaluate π(·), m(·),

and σ2(·) at the data in the corresponding training set. Then, for (xt, yt) ∈ Tl, we calculate

the classification probability as

p̂tj =
π̂j(α̂

Txt)φ(yt|m̂j(α̂
Txt), σ̂

2
j (α̂

Txt))∑k
j=1 π̂j(α̂

Txt)φ(yt|m̂j(α̂
Txt), σ̂2

j (α̂
Txt))

for j = 1, ..., k. We then consider the regular CV , which is defined by

CV (h) =
L∑
l=1

∑
t∈Tl

(yt − ŷt)2,
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where ŷt =
∑k

j=1 p̂tjm̂j(α̂
Txt).

We set L = 10 and randomly partition the data. We repeat the procedure 30 times, and

take the average of the selected bandwidths as the optimal bandwidth, denoted by ĥ. In the

simulation, we consider three different bandwidth, ĥ×n−2/15, ĥ, and 1.5ĥ, which correspond

to under-smoothing, appropriate smoothing and over-smoothing condition, respectively. We

also tried the likelihood based cross-validation, the results are similar.

Table 3.1 reports the MSEs of α̂ (value times 100). From Table 3.1, we can see that

the fully iterative estimates give better results than SIR. We further notice that FIB(S)

provides similar results to FIB(T), and therefore, SIR provides good initial values for other

estimates.

Table 3.2 contains the mean and standard deviation of RASEπ, RASEm, and RASEσ2 .

We see that the fully iterative estimates provide better results than one-step estimate under

appropriate-smoothing condition, and the fully iterative estimate is not sensitive to initial

values.

Table 3.1: MSE of α̂ (value times 100)

SIR FIB(T) FIB(S)

h = 0.054 h = 0.109 h = 0.164 h = 0.054 h = 0.109 h = 0.164

α1 0.881 0.099 0.126 0.128 0.287 0.130 0.147

n = 200 α2 0.829 0.113 0.144 0.124 0.324 0.144 0.137

α3 1.066 0.110 0.152 0.137 0.388 0.154 0.167

h = 0.045 h = 0.100 h = 0.149 h = 0.045 h = 0.100 h = 0.149

α1 0.435 0.066 0.046 0.046 0.125 0.050 0.045

n = 400 α2 0.447 0.063 0.054 0.051 0.121 0.055 0.052

α3 0.411 0.062 0.052 0.052 0.123 0.053 0.052

h = 0.037 h = 0.091 h = 0.137 h = 0.037 h = 0.091 h = 0.137

α1 0.215 0.047 0.022 0.029 0.063 0.035 0.024

n = 800 α2 0.256 0.034 0.035 0.040 0.044 0.029 0.027

α3 0.226 0.065 0.031 0.058 0.062 0.050 0.030
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Table 3.2: Mean and Standard Deviation of RASEs

n OS FIB(T) FIB(S)

h = 0.125 h = 0.054 h = 0.109 h = 0.164 h = 0.054 h = 0.109 h = 0.164

π 0.044(0.017) 0.057(0.015) 0.043(0.016) 0.049(0.017) 0.058(0.015) 0.043(0.016) 0.049(0.017)

200 m 0.227(0.063) 0.181(0.098) 0.176(0.046) 0.287(0.056) 0.178(0.086) 0.177(0.051) 0.288(0.059)

σ2 0.197(0.084) 0.175(0.169) 0.163(0.081) 0.246(0.071) 0.162(0.131) 0.164(0.095) 0.247(0.080)

h = 0.108 h = 0.045 h = 0.100 h = 0.149 h = 0.045 h = 0.100 h = 0.149

π 0.023(0.008) 0.032(0.008) 0.023(0.008) 0.027(0.009) 0.032(0.008) 0.023(0.008) 0.027(0.009)

400 m 0.118(0.022) 0.093(0.045) 0.100(0.022) 0.169(0.020) 0.094(0.046) 0.100(0.022) 0.169(0.020)

σ2 0.104(0.035) 0.089(0.077) 0.093(0.045) 0.143(0.028) 0.089(0.077) 0.093(0.045) 0.143(0.028)

h = 0.094 h = 0.037 h = 0.091 h = 0.137 h = 0.037 h = 0.091 h = 0.137

π 0.013(0.004) 0.017(0.003) 0.012(0.004) 0.016(0.004) 0.017(0.003) 0.012(0.004) 0.016(0.004)

800 m 0.062(0.010) 0.050(0.023) 0.056(0.010) 0.102(0.011) 0.050(0.023) 0.056(0.010) 0.101(0.010)

σ2 0.055(0.015) 0.049(0.046) 0.052(0.015) 0.086(0.010) 0.049(0.046) 0.051(0.012) 0.085(0.010)

Example 2. We conduct a simulation for a 2-component MRSIP:

π1(z) = 0.5− 0.35 sin(πz) and π2(z) = 1− π1(z),

m1(x) = 1 + 3x2 and m2(x) = −1 + 2x1 + 3x3,

σ2
1 = 0.7 and σ2

2 = 0.6,

where m1(x) and m2(x) are the regression functions for the first and second components,

respectively. Therefore, β1 = (1, 0, 3, 0) and β2 = (−1, 2, 0, 3). xi are trivariate with inde-

pendent uniform (0,1) components, and the direction parameter is α = (1, 1, 1)/
√

3. MRSIP

with true value (T) and SIR (S) as initial values are used to fit the data, and the results are

compared to a two-component mixture of linear regression models (MixLinReg).

Table 3.3 reports the MSEs of parameter estimates, and Table 3.4 contains the MSEs of

α̂ and the average of RASEπ. From both tables, we can see that MRSIP works comparable

to MixLinReg when the sample size is small, and outperforms MixLinReg when sample size

is big. We further notice that MRSIP(S) provides similar results to MRSIP(T), implying
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that SIR provides good initial values for MRSIP.

Table 3.3: The MSEs of parameters (the values are times 100)

β10 β11 β12 β13 β20 β21 β22 β23 σ2
1 σ2

2

n = 200 MRSIP(S) 46.37 32.78 34.73 37.61 11.19 16.55 15.05 16.36 4.649 1.754

MRSIP(T) 51.91 33.62 39.01 37.25 11.10 16.56 15.07 16.04 4.584 1.649

h = 0.131 MixLinReg 50.87 33.67 42.53 34.68 12.03 12.66 18.84 12.30 4.250 1.265

n = 400 MRSIP(S) 13.83 11.89 14.19 11.47 5.541 6.332 6.767 7.165 1.631 0.721

MRSIP(T) 14.79 12.49 14.84 11.59 5.513 6.254 6.632 6.926 1.672 0.675

h = 0.103 MixLinReg 29.03 14.97 29.46 15.72 8.045 5.967 12.46 6.269 1.864 0.626

n = 800 MRSIP(S) 6.324 4.491 6.150 4.736 2.365 2.973 2.773 3.584 0.669 0.334

MRSIP(T) 6.788 4.614 6.820 4.922 2.301 2.829 2.718 3.348 0.691 0.307

h = 0.080 MixLinReg 21.89 6.866 21.84 8.223 5.413 3.163 8.775 3.640 0.848 0.352

Example 3. We conduct a simulation for a 2-component MRSIPV:

π1(z) = 0.5− 0.35 sin(πz) and π2(z) = 1− π1(z),

m1(x) = 1 + 3x2 and m2(x) = −1 + 2x1 + 3x3,

σ1 = 0.6− sin(πz)/3 and σ2 = 0.6 + cos(πz)/3,

where m1(x) and m2(x) are the regression functions for the first and second components,

respectively. Therefore, β1 = (1, 0, 3, 0) and β2 = (−1, 2, 0, 3). xi are trivariate with in-

dependent uniform (0,1) components, and the direction parameter is α = (1, 1, 1)/
√

3.

MRSIPV with true value (T) and SIR (S) as initial values are used to fit the data, and the

results are compared to a two-component mixture of linear regression models (MixLinReg).

Table 3.5 reports the MSEs of β̂s, and Table 3.6 contains the MSEs of α̂, the average of

RASEπ, and RASEσ2 . From both tables, we can see that MRSIPV provides much better

estimates compared to MixLinReg, both in the estimation of global parameters and the

nonparametric functions.
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Table 3.4: The MSEs of direction parameter and the average of RASEπ (the values are
times 100)

α1 α2 α3 RASEπ

n = 200 MRSIP(S) 5.709 19.30 5.996 18.87

MRSIP(T) 4.984 9.449 4.896 17.86

h = 0.131 MixLinReg - - - 28.98

n = 400 MRSIP(S) 2.682 6.968 3.029 13.74

MRSIP(T) 2.113 3.019 1.902 12.98

h = 0.103 MixLinReg - - - 28.23

n = 800 MRSIP(S) 0.980 2.527 1.585 10.35

MRSIP(T) 0.892 0.979 0.969 9.960

h = 0.080 MixLinReg - - - 28.04

3.5.2 Real Data Example

We illustrate the proposed methodology by an analysis of “The effectiveness of National

Basketball Association guards”. There are many ways to measure the (statistical) perfor-

mance of guards in the National Basket Association (NBA). Of interest is how the height

of the player (Height), minutes per game (MPG) and free throw percentage (FTP) affects

PPM (Chatterjee et al., 1995).

The data set contains some descriptive statistics for all 105 guards for the 1992-1993

season. Since players playing very few minutes are quite different from those who play a

sizable part of the season, we only look at those players playing 10 or more minutes per

game and appearing in 10 or more games. We see that Michael Jordan is an outlier in terms

of PPM, so we will also omit him from the data (Chatterjee et al., 1995). These excludes 10

players. We divide each variable by its corresponding standard deviation, so that they have

comparable numerical scale. An optimal bandwidth is selected at 0.344 by CV procedure.

Figure 3.1 contains the estimated mean functions and hard-clustering results, denoted by

dots and squares, respectively. The 95% confidence interval for α̂ based on MSIM are
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Table 3.5: The MSEs of parameters (values times 100)

β10 β11 β12 β13 β20 β21 β22 β23

n = 200 MRSIPV(S) 20.65 13.56 18.56 15.77 5.473 4.128 7.664 4.243

MRSIPV(T) 17.65 12.83 18.24 14.19 5.093 3.956 6.640 3.792

h = 0.115 MixLinReg 31.54 15.38 20.87 20.12 9.134 4.710 7.652 4.641

n = 400 MRSIPV(S) 9.192 5.968 9.448 5.822 2.589 1.875 2.901 1.975

MRSIPV(T) 8.446 6.132 9.567 5.253 2.459 1.785 3.034 1.981

h = 0.085 MixLinReg 24.08 8.471 15.72 11.83 6.147 2.349 5.233 2.979

n = 800 MRSIPV(S) 3.004 2.287 3.781 2.338 1.303 0.987 0.954 1.007

MRSIPV(T) 3.166 2.206 4.436 2.380 1.259 0.915 0.966 0.945

h = 0.062 MixLinReg 19.01 4.567 12.46 8.242 5.637 1.992 4.203 2.168

(0.134,0.541), (0.715,0.949), and (0.202,0.679), indicating that MPG is the most influential

factor on PPM.

To evaluate the prediction performance of the proposed models and compared them with

some existing models, we used d-fold cross-validation with d = 5, 10, and also Monte-Carlo

cross-validation (MCCV) (Shao, 1993). In MCCV, the data were partitioned 500 times into

disjoint training subsets (with size n− s) and test subsets (with size s). The mean squared

prediction error evaluated at the test data sets over 500 replications are reported as boxplots

in Figure 3.2. Apparently, the three new models that we proposed have superior prediction

power than the linear regression model, the mixture of linear regression models, and the

single-index models. In addition, MSIM is more favorable than the MRSIP or MRSIPV for

this data set.

3.6 Summary and Future Work

In this chapter we proposed three finite semiparametric mixture of regression models and

the corresponding backfitting estimates. We showed that the nonparametric functions can
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Table 3.6: The MSEs of direction parameter and the average of RASEπ and RASEσ2 (values
times 100)

α1 α2 α3 RASEπ RASEσ2

n = 200 MRSIPV(S) 2.439 7.943 3.398 12.50 21.68

MRSIPV(T) 1.392 1.637 1.590 10.75 19.25

h = 0.115 MixLinReg - - - 22.01 30.78

n = 400 MRSIPV(S) 0.890 3.441 2.116 9.312 16.82

MRSIPV(T) 0.536 0.480 0.504 7.736 15.32

h = 0.085 MixLinReg - - - 21.80 30.93

n = 800 MRSIPV(S) 0.477 2.357 1.818 7.613 14.07

MRSIPV(T) 0.217 0.229 0.242 5.920 12.42

h = 0.062 MixLinReg - - - 21.62 30.87
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Figure 3.1: NBA data: Estimated mean functions and a hard-clustering result.

be estimated as if the parameters were known and the parameters can be estimated with

root-n convergence rate. In this chapter, we assume that the number of components is

known and fixed, but it requires more research to select the number of components for the

proposed semiparametric mixture models. It will be also interesting to build some formal

test to compare the three semiparametric mixture models. One way is to apply generalized

likelihood ratio statistic proposed by Fan, et al. (2001). In case of categorical covariates,

we can further explore mixture models with partial linear mean functions.
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Figure 3.2: Prediction accuracy: (a) 5-fold CV; (b) 10-fold CV;(c) MCCV s=10;(d) MCCV
s=20.

3.7 Proofs

. Technical Conditions:

(C1) The sample {(xi, Yi), i = 1, ..., n} are independent and identically distributed from its

population (x, Y ). The support for x, denoted by X , is a compact subset of Rp.

(C2) The marginal density of αTx, denoted by f(·), is twice continuously differentiable and

positive at the point z.

(C3) The kernel function K(·) has a bounded support, and satisfies that

∫
K(t)dt = 1,

∫
tK(t)dt = 0,

∫
t2K(t)dt <∞,

∫
K2(t)dt <∞,

∫
|K3(t)|dt <∞.

(C4) h→ 0, nh→ 0, and nh5 = O(1) as n→∞.

(C5) The third derivative |∂3`(θ, y)/∂θi∂θj∂θk| ≤M(y) for all y and all θ in a neighborhood

of θ(z), and E[M(y)] <∞.
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(C6) The unknown functions θ(z) have continuous second derivative. For j = 1, ..., k,

σ2
j (z) > 0, and πj(z) > 0 for all x ∈ X .

(C7) For all i and j, the following conditions hold:

E

[∣∣∣∣∂`(θ(z), Y )

∂θi

∣∣∣∣3
]
<∞ E

[(
∂2`(θ(z), Y )

∂θi∂θj

)2
]
<∞

(C8) θ′′(·) is continuous at the point z.

(C9) The third derivative |∂3`(π, y)/∂πi∂πj∂πk| ≤ M(y) for all y and all π in a neighbor-

hood of π(z), and E[M(y)] <∞.

(C10) The unknown functions π(z) have continuous second derivative. For j = 1, ..., k,

πj(z) > 0 for all x ∈ X .

(C11) For all i and j, the following conditions hold:

E

[∣∣∣∣∂`(π(z), Y )

∂πi

∣∣∣∣3
]
<∞ E

[(
∂2`(π(z), Y )

∂πi∂πj

)2
]
<∞

(C12) π′′(·) is continuous at the point z.

(C13) The third derivative |∂3`(η, y)/∂πi∂πj∂πk| ≤ M(y) for all y and all η in a neighbor-

hood of η(z), and E[M(y)] <∞.

(C14) The unknown functions η(z) have continuous second derivative. For j = 1, ..., k,

πj(z) > 0 and σj(z) > 0 for all x ∈ X .

(C15) For all i and j, the following conditions hold:

E

[∣∣∣∣∂`(η(z), Y )

∂ηi

∣∣∣∣3
]
<∞ E

[(
∂2`(η(z), Y )

∂ηi∂ηj

)2
]
<∞
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(C16) η′′(·) is continuous at the point z.

Proof of Theorem 3.2.1.

Ichimura (1993) have shown that under conditions (i)-(iv), α is identifiable. Further, Huang

et al. (2013) showed that with condition (v), the nonparametric functions are identifiable.

Thus completes the proof.

Proof of Theorem 3.2.2.

Let

π̂∗j =
√
nh{π̂j − πj(z)}, j = 1, ..., k − 1.

m̂∗j =
√
nh{m̂j −mj(z)}, j = 1, ..., k,

σ̂2∗
j =

√
nh{σ̂2

j − σ2
j (z)}, j = 1, ..., k.

Define π̂∗ = (π̂∗1, ..., π̂
∗
k−1)T , m̂∗ = (m̂∗1, ..., m̂

∗
k)
T , σ̂2∗ = (σ̂∗1, ..., σ̂

∗
k)
T and denote θ̂

∗
=

(π̂∗T , m̂∗T , (σ̂∗2)T )T . Let an = (nh)−1/2, and

`(θ(z), α̂,xi, Yi) = log

{
k∑
j=1

πj(α̂
Txi)φ(Yi|mj(α̂

Txi), σ
2
j (α̂

Txi))

}
Kh(α̂

Txi − z).

If (π̂, m̂, σ̂2)T maximizes (3.3), then θ̂
∗

maximizes

`∗n(θ∗) = h
n∑
i=1

[`(θ(z) + anθ
∗, α̂,xi, Yi)− `(θ(z), α̂,xi, Yi)]Kh(Ẑi − z)

with respect to θ∗. By a Taylor expansion,

`∗n(θ∗) = W T
1nθ

∗ +
1

2
θ∗TA1nθ

∗ + op(1),

where

W 1n =

√
h

n

n∑
i=1

∂`(θ(z), α̂,xi, Yi)

∂θ
Kh(Ẑi − z),
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and

A2n =
1

n

n∑
i=1

∂2`(θ(z), α̂,xi, Yi)

∂θ∂θT
Kh(Ẑi − z).

By WLLN, it can be shown that A1n = −f(z)I(1)

θ
(z) + op(1). Therefore,

`∗n(θ∗) = W T
1nθ

∗ − 1

2
f(z)θ∗TI(1)

θ
(z)θ∗ + op(1).

Using the quadratic approximation lemma (see, for example, Fan and Gijbels (1996)), we

have that

θ̂
∗

= f(z)−1I(1)
θ (z)−1W 1n + op(1).

Note that

W 1n =

√
h

n

n∑
i=1

∂`(θ(z),α,xi, Yi)

∂θ
Kh(Zi − z) +D1n +Op(

√
h

n
‖α̂−α‖2)

where

D1n =

√
h

n

n∑
i=1

{
∂2`(θ(z),α,xi, Yi)

∂θ∂θT
[xiθ

′(Zi)]
TKh(Zi − z)

}
(α̂−α).

Since
√
n(α̂−α) = Op(1), it can be shown thatD1n = −

√
hf(z)E[∂

2`(θ(z),α,x,Y )

∂θ∂θT [xθ′(Z)]T ] =

op(1), and Op(
√

h
n
‖α̂−α‖2) = op(1). Therefore,

W 1n =

√
h

n

n∑
i=1

∂`(θ,α,xi, Yi)

∂θ
Kh(Zi − z) + op(1).

To complete the proof, we now calculate the mean and variance of W n. Note that

E(W 1n) =
√
nhE

[
E[
∂`(θ,α,xi, Yi)

∂θ
Kh(Zi − z)|Z = z0]

]
=
√
nh[

1

2
f(z)Λ

′′

1(z|z) + f ′(z)Λ
′

1(z|z)]κ2h
2.
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Similarly, we can show that Cov(W 1n) = f(z)I(1)

θ
(z)ν0 + op(1), where κl =

∫
tlK(t)dt and

νl =
∫
tlK2(t)dt. The rest of the proof follows a standard argument.

Proof of Theorem 3.2.3.

Denote Z = αTx and Ẑ = α̂Tx. Let `(θ(z), X, Y ) = log
∑k

j=1 πj(z)φ(Y |mj(z), σ2
j (z)). If

θ̂(z0; α̂) maximizes (3.3), then it solves

0 = n−1

n∑
i=1

∂`(θ̂(z0; α̂), Xi, Yi)

∂θ
Kh(Ẑi − z0).

Apply a Taylor expansion and use the conditions on h, we obtain

0 = n−1

n∑
i=1

q1i(Zi)Kh(Zi − z0) + n−1

n∑
i=1

[q2i(Zi)Kh(Zi − z0)] (θ̂(z0; α̂)− θ(z0))

+ n−1

n∑
i=1

q2i(Zi)[xiθ
′(Zi)]

TKh(Zi − z0)(α̂−α) + op(n
−1/2) +Op(h

2).

By similar argument as in the previous proof,

θ̂(z0; α̂)− θ(z0) = n−1f−1(z0)I(1)−1
θ (z0)

n∑
i=1

q1i(Zi)Kh(Zi − z0)

− I(1)−1
θ (z0)E{q2(Z)[xθ′(Z)]T |Z = z0}(α̂−α) + op(n

−1/2). (3.13)

Note that

θ̂(α̂Txi; α̂)− θ(αTxi) = θ̂(α̂Txi; α̂)− θ̂(αTxi; α̂) + θ̂(αTxi; α̂)− θ(αTxi)

= (θ̂
′
(αTxi; α̂))T (α̂T −αT )xi + θ̂(αTxi; α̂)− θ(αT0 xi) + op(n

−1/2)

= (θ′(αTxi))
T (α̂T −αT )xi + θ̂(αTxi; α̂)− θ(αTxi) + op(n

−1/2), (3.14)

where the second part is handled by (3.13).
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Since α̂ maximizes (3.4), it is the solution to

0 = λα̂+ n−1/2

n∑
i=1

xiθ̂
′
(α̂Txi; α̂)

∂`(θ̂(α̂Txi; α̂), Xi, Yi)

∂θ
,

where λ is the Lagrange multiplier. By the Taylor expansion and using (3.14), we have that

0 = λα̂+ n−1/2

n∑
i=1

xiθ
′(Zi)q1i(Zi) + n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)[θ̂(α̂Txi)− θ(αTxi)] + op(1)

= λα̂+ n−1/2

n∑
i=1

xiθ
′(Zi)q1i(Zi) + n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)(xiθ

′(Zi))
T (α̂−α)

+ n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)[θ̂(Zi)− θ(Zi)]) + op(1).

Define

Aα = E{[xθ′(Z)]q2(Z)[xθ′(Z)]T},

and apply (3.13),

0 = λα̂+ n−1/2

n∑
i=1

xiθ
′(Zi)q1i(Zi) + n1/2Aα(α̂−α)

− n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)I−1

θ (Zi)E{q2(Z)[xθ′(Z)]T |Z = Zi}(α̂−α)

+ n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)n

−1f−1(Zi)I−1
θ (Zi)

n∑
t=1

q1t(Zt)Kh(Zt − Zi) + op(1)

= λα̂+ n−1/2

n∑
i=1

xiθ
′(Zi)q1i(Zi) +Q1n

1/2(α̂−α)

+ n−1/2

n∑
i=1

xiθ
′(Zi)q2i(Zi)n

−1f−1(Zi)I(1)−1
θ (Zi)

n∑
t=1

q1t(Zt)Kh(Zt − Zi) + op(1). (3.15)
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Interchanging the summations in the last term, we get

n−1/2

n∑
i=1

[
n−1

n∑
t=1

xtθ
′(Zt)q2t(Zt)Kh(Zt − Zi)f−1(Zt)I−1

θ (Zt)q1i(Zi)

]

= n−1/2

n∑
i=1

E[xθ′(Z)q2(Z)|Zi]I(1)−1
θ (Zi)q1i(Zi) + op(1). (3.16)

Let Γα = I −ααT + op(1). Combining (3.15) and (3.16), and multiply by Γα, we have

ΓαQ1n
1/2(α̂−α) = n−1/2

n∑
i=1

Γα{xiθ′(Zi) + E[xθ′(Z)q2(Z)|Zi]I(1)−1

θ
(Zi)}q1i(Zi) + op(1)

(3.17)

It can be shown that the right-hand side of (3.17) has the covariance matrix ΓαQ1Γα, and

therefore, completes the proof.

Proof of Theorem 3.3.1

Ichimura (1993) have shown that under conditions (i)-(iv), α is identifiable. Furthermore,

Huang and Yao (2012) showed that with condition (v), (π(·),β,σ2) are identifiable. Thus

completes the proof.

Proof of Theorem 3.3.2

This proof is similar to the proof of Theorem 3.2.2.

Let π̂∗j =
√
nh{π̂j − πj(z)}, j = 1, ..., k − 1, and π̂∗ = (π̂∗1, ..., π̂

∗
k−1)T . It can be shown

that

π̂∗ = f(z)−1I(2)−1
π (z)W 2n + op(1),

where

W 2n =

√
h

n

n∑
i=1

∂`(π(z), λ̂,xi, Yi)

∂π
Kh(Ẑi − z).
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To complete the proof, notice that

E(W 2n) =
√
nhE

{
E[
∂`(π,λ,xi, Yi)

∂π
Kh(Zi − z)|Z = z0]

}
=
√
nh[

1

2
f(z)Λ′′2(z|z) + f ′(z)Λ′2(z|z)]κ2h

2,

and Cov(W 2n) = f(z)I(2)
π (z)ν0 + op(1). The rest of the proof follows a standard argumen-

t.

Proof of Theorem 3.3.3

The proof is similar to the proof of Theorem 3.2.3. It can be shown that

π̂(z0; λ̂)− π(z0) = n−1f−1(z0)I(2)−1
π (z0)

n∑
i=1

qπi(Zi)Kh(Zi − z0)

−I(2)−1
π (z0)E{qππ(Z)[xπ′(Z)]T |Z = z0}(α̂−α)− I(2)−1

π (z0)E{qπη(Z)|Z = z0}(η̂ − η) + op(n
−1/2),

and therefore,

π̂(Ẑi; λ̂)− π(Zi) = {xiπ′(Zi)}T (α̂−α) + π̂(Zi; λ̂)− π(Zi) + op(n
− 1

2 ). (3.18)

Since λ̂ maximizes (3.8), it is the solution to

0 = γ

α̂
0

+ n−
1
2

n∑
i=1

xiπ̂′(Ẑi; λ̂)

I

 qπ(π̂(Ẑi; λ̂), λ̂),
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where γ is the Lagrange multiplier. By Taylor series and (3.18)

0 =γ

α̂
0

+ n−
1
2

n∑
i=1

Λ1iqπi(Zi) + n
1
2Q2

α̂−α
η̂ − η


+n−

1
2

n∑
i=1

Λ1iqππi(Zi)n
−1f−1(Zi)I(2)−1

π (Zi)
n∑
j=1

qπj(Zj)Kh(Zj − Zi) + op(1)

=γ

α̂
0

+ n−
1
2

n∑
i=1

Λ1iqπi(Zi) + n
1
2Q2

α̂−α
η̂ − η


+n−

1
2

n∑
i=1

E[Λ1iqππ(Zi)]I(2)−1
π (Zi)qπi(Zi) + op(1). (3.19)

where Λ1i =

xiπ′(Zi)
I

, and the last equation is the result of interchanging the summa-

tions. Let Γα =

I −ααT 0

0 I

+ op(1). By (3.19), and multiply by Γα, we have

n
1
2 ΓαQ2

α̂−α
η̂ − η

 = n−
1
2

n∑
i=1

Γα

{
Λ1i − I(2)−1

π (Zi)E[Λ1i(Zi)qππ(Zi)|Zi]
}
qπi(Zi) + op(1).

(3.20)

It can be shown that the right-hand side of (3.20) has the covariance matrix ΓαQ2Γα, and

thus, completes the proof.

Proof of Theorem 3.4.1

Ichimura (1993) have shown that under conditions (i)-(iv), α is identifiable. Furthermore,

with condition (v), (π(·),β,σ2(·)) are identifiable. Thus completes the proof.

Proof of Theorem 3.4.2

This proof is similar to the proof of Theorem 3.2.2
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Let π̂∗j =
√
nh{π̂j − πj(z)}, j = 1, ..., k − 1, and σ̂2∗

j =
√
nh{σ̂2

j − σ2
j (z)}, j = 1, ..., k.

Define π̂∗ = (π̂∗1, ..., π̂
∗
k−1)T , σ̂2∗ = (σ̂2∗

1 , ..., σ̂
2∗
k )T , and η̂∗ = (π̂∗T , (σ̂2∗)T )T . It can be shown

that

η̂∗ = f(z)−1I(3)−1
η (z)W 3n + op(1).

where

W 3n =

√
h

n

n∑
i=1

∂`(η(z), θ̂,xi, Yi)

∂η
Kh(Ẑi − z).

To complete the proof, notice that

E(W 3n) =
√
nhE

{
E[
∂`(η,θ,xi, Yi)

∂η
Kh(Zi − z)|Z = z0]

}
=
√
nh[

1

2
f(z)Λ′′3(z|z) + f ′(z)Λ′3(z|z)]κ2h

2.

and Cov(W 3n) = f(z)I(3)
η (z)ν0 + op(1). The rest of the proof follows a standard argumen-

t.

Proof of Theorem 3.4.3

The proof is similar to the proof of Theorem 3.2.3. It can be shown that

η̂(z0; θ̂)− η(z0) = n−1f−1(z0)I(3)−1
η (z0)

n∑
i=1

qηi(Zi)Kh(Zi − z0)

−I(3)−1
η (z0)E{qηη(Z)[xη′(Z)]T |Z = z0}(α̂−α)− I(3)−1

η (z0)E{qηβ(Z)|Z = z0}(β̂ − β) + op(n
−1/2),

and therefore,

η̂(Ẑi; θ̂)− η(Zi) = {xiη′(Zi)}T (α̂−α) + η̂(Zi; θ̂)− η(Zi) + op(n
− 1

2 ). (3.21)
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Since θ̂ maximizes (3.12), it is the solution to

0 = γ

α̂
0

+ n−
1
2

n∑
i=1

xiη̂′(Ẑi; θ̂)

I

 qη(η̂(Ẑi; θ̂), θ̂),

where γ is the Lagrange multiplier. By Taylor series and (3.21)

0 =γ

α̂
0

+ n−
1
2

n∑
i=1

Λ2iqηi(Zi) + n
1
2Q3

α̂−α
β̂ − β


+n−

1
2

n∑
i=1

Λ2iqηηi(Zi)n
−1f−1(Zi)I(3)−1

η (Zi)
n∑
j=1

qηj(Zj)Kh(Zj − Zi) + op(1)

=γ

α̂
0

+ n−
1
2

n∑
i=1

Λ2iqηi(Zi) + n
1
2Q3

α̂−α
β̂ − β


+n−

1
2

n∑
i=1

E[Λ2iqηη(Zi)]I(3)−1
η (Zi)qηi(Zi) + op(1). (3.22)

where Λ2i =

xiη′(Zi)
I

, and the last equation is the result of interchanging the summa-

tions.

Let Γα =

I −ααT 0

0 I

+ op(1). By (3.22), and multiply by Γα, we have

n
1
2 ΓαQ3

α̂−α
β̂ − β

 = n−
1
2

n∑
i=1

Γα

{
Λ2i − I(2)−1

η (Zi)E[Λ2i(Zi)qηη(Zi)|Zi]
}
qηi(Zi) + op(1).

(3.23)

It can be shown that the right-hand side of (3.23) has the covariance matrix ΓαQ3Γα, and

thus, completes the proof.
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