
IMBIBITIONAL AND TEXTURAL CHARACTERISTICS

OF AGED BLACK BEANS

(P. VULGARIS) AS RELATED TO COOKING FUNCTIONALITY

by

G. MICHAEL JACKSON

B.S., IOWA STATE UNIVERSITY, 1977

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF GRAIN SCIENCE AND INDUSTRY

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1979

A.pproved by:

WVUA4Lb~

Major Professor

7^^



fye. tell.

LD

I f 7? TABLE OF CONTENTS

J3/0

Introduction 1

Review of Literature 2

Seed coat factors 2

Cotyledonary factors 6

Materials and Methods 12

Black bean samples 12

Accelerated aging 12

Moisture analysis 12

Cooking method 13

Imbibition 16

Autoradiography 17

Electrolyte leakage 18

Cellular structure IS

Texture measurements 18

Results and Discussion 20

Effect of storage on cooking time 20

Variability in water absorption among seeds 25

Water absorption and solids loss 28

Mode of water penetration into beans 40

Effect of moisture contnent on cooking time 50

Effects of storage on texture 55

Summary and Conclusions 64

Acknowledgements 66

References 67



INTRODUCTION

The natural aging processes which occur during post-harvest storage

of all seeds are especially detrimental to utilization of seed legumes.

Cooking quality decreases rapidly in response to poor storage conditions

resulting in functional and nutritive losses.

A widely accepted theory on cooking quality losses in stored legumes

centers on water impermeability ("hardshell") which is thought to be a

manifestation of hilar dysfunction (Quilivan, 1966 and Hyd^. , 1954). However,

the work of Parrish and Leopold (1978) would tend to disprove age related

impermeability in cotyledons. They showed that after four hours of soaking,

all aged samples of soybean cotyledon, which had been stored at 41 C and

100% relative humidity for up to 7 days, achieved identical levels of absorp-

tivity, (1.30 g. HO per g. dry cotyledon). Therefore, the imbibitional

characteristics of stored legumes may not be related to their cooking quality.

Hardshell and "hard-to-cook" phenomena must be differentiated if, indeed,

they are separate problems.

Cotyledon cellular structure and testa layer play a role in water

penetration and cooking time. Unfortunately, few reports have recognized the

individual contributions of these structural entities to the cooking quality

of legumes. The following study was undertaken to clearly delineate the

roles of the testa and cotyledon in hardshell and to investigate the cellular

mechanisms involved in creating losses in cooking quality of aged beans.



REVIEW OF LITERATURE

The hardshell problems characteristic of all Leguminosae have plagued

their efficient utilization since the ancients. Hence, a great number of

observations have been made on two utilization problems often encountered:

germinability losses and decreased cooking quality. In some cases they

seem to be related. The following review will concentrate on possible seed

coat and cotyledonary factors responsible for hardshell and/or the "hard-to-

cook" phenomenon in legumes.

Seed Coat Factors

Effects on seed vigor . The relationship between seed coat structure and

seed vigor has centered on discussions of hilar dysfunction. Hamly (1932),

working with osmic acid stains, was the first to show that the strophiolar

fissure was responsible for regulating flow of moisture to and from the

cotyledon and embryo. Sulfuric acid treatment removed the palisade cap and

exposed the underlying lumen area on the outer testa but the treatment did

not reduce impermeability. However, hard seeds could be softened by percussion,

scarification of the testa, or moderate heating which ruptured the metastable

double layer of palisade cells at the hilum. Hyde (1954) reported that the

valve-like action of the hilum in regulating water flow was responsive to

differences in environmental humidity and equilibrium humidity of the coty-

ledons. He postulated that the counter-palisade layer (double palisade layer)

expanded in response to high humidity, closing the strophiolar fissure which

restricts moisture flow to the cotyledons and embryo. At dessicating humidit-

ies, the palisade layer dries and contracts, opening the strophiole and

allowing dessication of the cotyledons.
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Figure 1. Modification of the device proposed by Mattson to generate

continuous cooking curves for legumes.





Later work by Hagon and Ballard (1969) also showed that the strophiolar

fissure was capable of re-sealing upon exposure to very low humidities.

Scanning electron micrographs of the hilum and micropyle of hard and sound

soybeans have confirmed this hypothesis, (Saio, 1976). Saio showed that hard

seeds had closed hilar fissures and micropyle, while soft seed had large gaps

at the same sites.

Some have suggested that the light line of the palisade layer is the

anatomical feature which limits water movement into seeds (Esau, 1962).

Recently, McKee et al . , (1977) showed that impermeability could be eliminated

by puncturing seeds to a depth of 99 um. This falls into the range of the

aleurone and epidermal cells for their Crownvetch seeds and its well below

the seed coat osteo and macrosclereid cells.

Whether seed vigor is solely related to water impermeability due to the

seed coat is doubtful. However, some types of dormancy do appear to be

controlled by seed coat permeability, (Edwards, 1968). In other cases, the

seed coat impermeability seems to result in a deteriorative effect on seed

vigor. A report by Ballard (1973) indicates that the seed coat acts not only

to restrict water via the strophiole, but also interferes with the passage of

oxygen and carbon dioxide to the respiration cycle of the cotyledon. In 1961,

Belderok indicated that loss of vigor appeared to be related to biochemical

alterations in seeds. The relationship between the loss of vigor from

hardshell and the loss of cookability from the "hard-to-cook" phenomena

remains unclear.

Effects on cookability . Studies on the "hard-to-cook" phenomenon in

legumes have also emphasized the role of the seed coat in preventing water

penetration into the seed. Several authors have used blanching, steam or

retort treatments to reduce cooking times for stored legumes (Morris, 1950;



Burr et al . , 1968; Molina et al . , 1976). Those authors provided no expla-

nation for the success of their heat treatments. It is possible that

alterations in the seed coat facilitated maximum moisture absorption rates

so that cooking was not delayed by water absorption and equilibrium processes.

On the other hand, alterations in the cotyledon, particularly at the middle

lamella, may have shortened cooking time.

Morris (1963) examined the relative contributions of the seed coat and

cotyledon to loss of cookability in pinto beans stored at high temperature

and humidity. He established that there was only a minor seed coat contri-

bution to the longer cooking times compared to that of the cotyledons.

Cotyledonary Factors

Studies on seed vigor . Burr et al . , (1968) was the first to note that

aged samples imbibed water at the same rate as did fresh samples when the

hilum was fissured. Although this result was contradictory to hardshell

theory, no conclusive work was done to corroborate Burr's work until recently

when Parrish and Leopold (1978) found that aged and fresh samples of soybean

cotyledons imbibed identical amounts of water on a dry basis when water

absorption was corrected for solids lost during the soak. After a four hour

period of soaking, they found that the apparent fresh weight gains decreased

with increased accelerated aging treatment up to 7 days while the absolute

amount of water imbibed by the cotyledon cells remained independant of aging.

Specific conductivities of soak media indicated that solid loss during soaking

increased with increased aging.

Ching and Schoolcraft (1968) confirmed that the conductivity of seed

leachate was a good index of seed deterioration. Observed increases in

leakage of metabolites in the seeds of weak, deteriorating and dead seeds was



thought to be related to degradation of cellular membranes with subsequent

loss of permeability. Their study also showed that seed moisture was a major

factor in membrane degradation.

A mechanism for plasmalemma hydration response was established by 1972

through a series of experiments by Simon and Harun (1972) in which pea embryos

which had imbibed a small amount of water prior to soaking showed lower leakage

rates during imbibition than those which had been initially drier. The same

low rate of leakage was observed for fresh, succulent peas in which the initial

extent of hydration was high. They concluded that the cell membranes lose

their integrity with respect to permeability when the seed dries out and

proposed that during imbibition there was a short period in which membrane

integrity was being re-established when cellular leakage is very high followed

by a rapid decline upon return of membrane function.
*

Villiers (1972) proposed that membrane integrity cannot be re-established

in aged seeds because of the extensive peroxidation of phospholipids which can

occur even in the dry conditions of storage. However, biochemical observations

of membrane integrity and function during hydration are confounded by a lack

of clear structural evidence. Membrane structure itself is not well understood,

but in addition, observations on membrane integrity are difficult to resolve

experimentally due to inherent staining problems. Osmium vapor treatment of

dry cotyledon sections are too poorly stained to resolve membrane structure

(Simon, 1974). Aqueous stains do not allow observations of the dry state

where changes presumably occur, (Swift and O'Brien, 1972).

Simon (1974) has suggested that the dry membrane may be in a porous,

disconnected geometry, but at moistures greater than 20% transforms into the

lamenar bi-layer necessary for permeability. Since this molecular change would
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be difficult or impossible to resolve by transmission electron microscopy,

the hypothesis remains unproven.

Studies related to cooking time . Gloyer (1921) was the first to suggest

that changes in bean cotyledons during growth or storage resulted in decreased

cookability. He indicated that some beans did not cook even after the seed

coat was removed. Gloyer postulated that the changes responsible for this

"hard-to-cook" phenomena were biochemical in nature.

Later, Mattson (1946, 1951) asserted that since cell walls and cellular

contents remained intact in individual cells after cooking, the middle lamella

and its breakdown processes were responsible for cookability. He suggested

that an ion-exchange transport of magnesium and calcium from the pectin

acidoids of the middle lamella to the phytate was the controlling factor in

producing cookability. He further postulated the existance of a biochemical

factor, phytase, as being responsible for inducing the "hard-to-cook"

condition in stored peas through hydrolytic cleavage of the chelating phytate.

Ginzburg (1961) established the structure of the middle lamella as a gel

containing an intermolecular chelate which is stabilized by various additional

bonding. He proposed that the chelation was between specific protein sites in

the middle lamella and an optimum ratio of mono and divalent cations. The

primary chelate bonding and stability of the gel were conditional upon the

presence of the metal cations and was enhanced by the hydrogen and disulfide

bonding of the proteins.

No mechanism for the involvement of the pectins present in the middle

lamella was offered, but later work (Letham, 1962) suggested that both the

protein and pectins contribute to the chelation and stabilization of the gel.

Recently, Varriano-Marston and de Omana (1979) confirmed that ion-exchange



mechanisms and chelation processes were operative in the dissolution of the

intercellular cement and subsequent cell separation in black beans.

With the development of electron microscopy, changes in cellular structure

during soaking, cooking and storage have drawn some experimental attention.

Rockland and Jones (1974) used the scanning electron microscope to demonstrate

a breakdown of the middle lamella of the cell walls during cooking. No dif-

ferences in structure were observed between beans soaked in water and beans

soaked in aqueous salt solutions. They attributed the cooking time differences

to differential rates at which cell separation occurs.

Sefa-Dedeh (1978) also reported the breakdown of the middle lamella in

beans heated at 100 C as the major change in cellular structure. Their micro-

structural evidence indicated that the middle lamella in cowpeas stored at 29 C

and 85% relative humidity did not breakdown during cooking at 100 C. Sefa-Dedeh

observed no changes in the microstructure of the dry aged cotyledons which

would explain the textural differences observed in cooking; however, closer

examination of the published scanning electron micrographs, especially at the

cytoplasmic matrix, indicates that changes may, in fact, have occured.

The important question of how the middle lamella is affected by storage

time and temperature remains unanswered, but the deteriorative effect of

storage conditions on cooking quality is well documented. Morris and Wood

(1956) related storage temperature and humidity to decreases in organoleptic

quality and Muneta (1964) correlated increases in moisture content during

storage. As cited above, Morris later demonstrated that it is the deterio-

rative effect of the cotyledon which controls cooking time in beans.

Of the many systems designed to deal with the "hard-to-cook" problem,

none have addressed the basic causal factor but instead have circumvented

the problem by introducing empirical quick-cooking treatments. Steinkraus



10

etal . , (1945), developed a technique of producing a quick-cooking product by

soaking in water, pre-steaming at 212 F for 15 minutes, pre-cooking in water

for 90 minutes at 212°F, coating with sugar solutions and dehydrating. This

method appears to pre-soften the cotyledons which reduces cooking times.

Rockland and Metzler (1967) proposed a quick-cooking treatment consisting

of vacuum treatment, hydration in an aqueous solution of 2.5% NaCl, 1.0% Na

tripolyphosphate, 0.25% NaHC0„ and 0.25% Na
2
C03> at pH 9.0 for 6 hours, rinsing

and drying. The intended effect of the hydration media was to disperse or

solubilize proteinaceous material as well as dissociating metal salt-protein

complexes. Cooking times for lima beans were decreased from 65 to 25 min.

,

but longer cooking times could be reproduced in processed beans by storage

treatments at high temperature and moisture contents. The effect of the

quick-cooking treatment on the cooking times of aged beans was not reported.

Recently, Bongirwar and Sreenivan (1977) combined the pre-cook method of

Steinkraus and the salt treatment of Rockland to produce a product which

hydrates in boiling water in 5 to 6 minutes. Storage stability of this product

was good at low temperature and humidity, but again, longer cooking times are

produced in quick-cooking beans by storage treatments at elevated temperatures

and humidities.

Conclusion

Overall, seed coat contributions to impermeability are well defined.

More work should be done to clearly define the relation of seed coat texture

changes to changes in cookability. Further, an important relation between

seed vigor and cooking quality has yet to be fully resolved.

No attempt has been made to answer the question of how the middle lamella

stabilizing mechanisms are effected by storage conditions. In fact, a closer
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examination of the biochemistry of the middle lamella is in order to further

resolve the roles of the pectins and proteins in the three dimensional binding

network.

Future research in this field should be directed toward the ultimate goal

of understanding the textural hardening mechanisms of the middle lamella and

cellular contents and their relative contributions to the "hard-to-cook"

phenomenon in aged legumes.
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MATERIALS AND METHODS

Black Bean Samples

Bean seed was purchased from the Vermont Bean Seed Company, Bomoseen,

Vermont, and planted at the K.S.U. Ashland Research Farm on May 5th, 1978.

Beans were harvested during August after drying on the plant. All beans were

harvested, shelled and cleaned by hand to eliminate scarification artifacts

and insure good quality. Cleaned seeds were stored in double-layer plastic

at 4 C and 13% moisture content.

Accelerated Aging

For the accelerated storage studies, the technique of Parrish and Leopold

(1978) was used to age the beans. Refrigerated samples were placed in a single

layer in petri dishes and floated in a water bath at 41 C and 100% relative .

humidity for 7 and 14 days. Seeds were than removed and allowed to air-dry to

approximately 8-9% moisture content.

Other samples were aged for 55 days by placing them over a wire mesh in

a dessicator at 41 C and 75% relative humidity. Humidity was maintained by

an aqueous solution of 60% ethylene glycol. Samples were removed after 55 days

and air-dried to 16% moisture content. Further dessication to the 9% value of

the other samples was achieved by vacuum oven drying at 50 C for 4 hr. followed

by storaged in a dessicator over CaSO,

.

Fresh samples were removed from refrigerated storage, air-dried to 9%

moisture and used as is.

Moisture Analysis

Moisture of samples was determined by the American Association of Cereal

Chemists (AACC) Method 44-15 (AACC Approved Methods 1969) of oven drying at

130°C for 1 hour.
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Cooking Method

Cooking time was measured by the use of the Mattson cooking device,

(Mattson 1946), shown in Figure 1. The 100 tube capacity device of Mattson

and Burr was scaled down to hold a 25 bean sample and fit into a 2 liter

beaker for convenience. Dimensions for the cylindrical cell are as in

Figure 2

.

To determine the cooking time, beans were positioned in each of the 25

cylindrical holes of the cooker so that the piercing tip of the 82.00 gram

rod was in contact with the surface of the bean. A "cooked" condition was

measured when the tip passed through the bean. The cooking time was taken

as the time required to cook 50% of the sample.

Sample preparation prior to cooking

In all experiments, beans were sized to maintain uniformity and

repeatability by selecting for weights between 200 to 300 mg.

Seed coat intact . Samples of 25 beans were placed in a 150 ml. beaker

with 100 ml. of deionized water. The beans were allowed to soak for 18 hours

in a water bath maintained at 25 C. At the end of the soaking period the

beans were removed and placed into the cooker which was, in turn, placed into

1400 ml. of boiling water in a two liter beaker. Time was measured from the

point of contact between cooker and boiling water.

Decorticated beans . Decortication was achieved manually by removing

the testa layer with a razor blade followed by scraping to remove the paren-

chymous layer adhering to the cotyledon surface. Decorticated samples were

cooked in an identical manner. Cotyledon halves were held together by the

pressure of the piercing rod until they were cooked.

Variable initial moisture . Beans were prepared by first fissuring the

hilum to allow for uniform and homogenous moisture penetration and equilibrium
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Figure 2. Dimensions for rack and plungers of Mattson device. Bottom

plate contains depressions to hold bean stable. Holes to

accomodate plunger tip are at the bottom of each depression,

(not shown).
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throughout the entire 25 bean sample lot. Fissured seeds were placed in

deionized water at 25 C for variable time periods to produce a series of

samples with moisture contents ranging from the initial 9% of air-dried seeds

to the final free water equilibrium value of approximately 120% (dry basis)

.

After soaking, the samples were removed from the water, sealed in a small

beaker with parafilm, and allowed to equilibrate internal moisture gradients

for 18 hours at 4 C. After equilibrium, samples were cooked as described

above.

Imbibition

Weight uptake . Two experiments on gravimetric uptake were performed.

Samples with and without seed coats were evaluated for fresh weight uptake

verses time over various aging periods.

Fresh weight uptake . Fresh weight uptake patterns were measured by

soaking 20 beans in deionized water at 25 C. Samples were removed and

blotted dry then weighed. Samples with seed coats intact were measured for

uptake at hourly intervals over a 24 hour soaking period. Water uptake by

decorticated samples was measured in one and two minute intervals for the

first ten minutes and then every hour for a total soaking period of 6 hours.

In each case uptake was expressed as percent of fresh weight gained; two

replicates were done.

Absolute uptake . Initial moisture content of seed coat and non-seed

coat samples was determined as described above. Duplicate 10 bean samples

were soaked in deionized water at 25 C for 4 hours. Seeds were then removed

from soak water, washed with deionized water, blotted dry and weighed. Solids

in the leachate plus wash water were determined by drying over a steam table

followed by vacuum dessication at 60 C for 4 hours. Absolute uptake was

calculated as follows:
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Weight after soaking - (dry weight at 0% m.c. - solids)
(dry weight at 0% m.c. - solids)

The absolute uptake is the grams of water that the cotyledon cells are capable

of binding after soaking, (Parrish and Leopold, 1978).

Autoradiography

A modification of the methods of Butcher and Stenvert (1973) and Rogers

(1973) was used in the autoradiographic studies. Samples for autoradiography

were maintained at 9% moisture content. Subsamples of ten beans (with or

without seed coats) were placed in 10.0 ml. of tritiated water (ICN Chemical

and Radioisotope Division, Irvine, California) at a concentration of 0.33 mCi./

ml. Beans with seed coats intact were soaked for 1, 2, 4, 8, and 12 hours;

decorticated beans were soaked for 1 or 2 hours. After the soaking period,

beans were removed from the tritiated water, washed with deionized water,

blotted dry, and then cut with a razor blade at the hilum and perpendicular

to the plane of the intercotyledon face. The cut surface was again washed

with deionized water, blotted dry, quick-frozen in liquid mitrogen cooled

isopentane, and stored in liquid nitrogen. The frozen bean halves were then

transferred to a dark room where the cotyledons were removed from the liquid

nitrogen and cut surfaces placed in contact with precooled (-78 C) 1" x 2"

strips of Kodak NMB film (Eastman Kodak, Rochester, New York) which had been

mounted on a glass slide with rubber bands. Beans were firmly anchored to

the slide mount by wrapping with tape. The taped samples were then quickly

transferred to a light tight insulated box filled with dry ice and exposed

for 48 hours. Rapid transfer of bean halves from liquid nitrogen to film

surfaces and exposure box was essential in order to avoid thawing or conden-

sation artifacts on the final autoradiograms.
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The film was removed from the mount after the exposure period and

developed as follows: 5 minutes in Kodak D-19 developer, 2 minutes in 1%

acetic acid stop bath, 10 minutes in Kodak hardening-fixer , and 20 minutes

washing in tap water. Film strips were treated with Photo-flow 200 and dried.

Autoradiograms were selected from an average of 30 replicate treatments.

Electrolyte Leakage

Leakage of metabolic electrolytes was measured on 10 whole beans for

samples with seed coats or an equivalent 20 cotyledons for decorticated

samples. Beans or cotyledons were placed in a florentine flask with 20 ml.

of water and held at 25 C with gentle mechanical stirring. Specific conduc-

tivity was determined using a Beckman conductivity bridge, model RC16B2

(Beckman Instruments Inc., Cedar Grove, New Jersey). The micromho values

were multiplied by a 0.1 cell constant; units of specific conductivity were

reported as micromho x cm. verses soaking time.

Cellular Structure

Scanning electron microscopy . Decorticated beans were soaked for 0, 1,

and 2 hour intervals at 25 C, quick-frozen, freeze-dried in an Edwards freeze-

drier at -60 C for 48 hours, fractured with a razor blade, mounted on stubs,

and coated with gold-palladium alloy. Duplicate samples were examined at

each time interval. Scanning electron micorgraphs of the cotyledon cellular

structure were taken on an Etec U-l Autoscan Electron Microscope at an

accelerating voltage of 10 to 20 kv.

Texture Measurements

Texture of aged and fresh dry beans (with and without seed coats) was

measured on a Lee-Kramer shear press model SP-12 IMP., (Lee-Kramer,
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Washington, D.C.) with a 500 pound load cell using an eleven bar extrusion

grid. Twenty measurements were made on each sample. Individual beans were

placed perpendicular to the slots of the extrusion grid, one per test, so

that the cutting plates sheared a radial slice from the middle of the seed.

Measurements of shearing force were divided by the weight of each seed to

give a texture value in units of force per gram of seed tissue. Data produced

was statistically analyzed for significant differences at the P<0.01 level of

probability.



20

RESULTS AND DISCUSSION

Effect of Storage on Cooking Time

Accelerated storage conditions had not previously been employed to study

the "hard-to-cook" phenomenon in beans. Therefore, a test of the effects of

high temperature and humidity on cooking time was run using the modified

Mattson bean cooker.

The cooking rates of fresh and 14 day aged samples (seed coat en) are

shown in Figure 3. Cooking times for fresh beans varied from approximately

17 minutes to 37 minutes, with a cooking half-time (Morris, 1950) of 31 minutes,

The relationship between number of fresh beans cooked and cooking time was

fairly linear. Conversely, the range of cooking times for 14 day stored

samples was 24 minutes to 63 minutes, with a cooking half-time of 45 minutes.

Much larger deviations from linearity were observed with aged beans probably

because individual beans age at different rates.

The data indicate that the effects of accelerated storage on cooking time

parallel the "hard-to-cook" phenomenon reported for long term storage of seed

legumes. Therefore, accelerated storage conditions are applicable to studies

on hardshell and bean cookability.

One critical question that must be addressed deals with the relative

contribution of the testa and cotyledon to cooking time. A significant

reduction in cooking time was observed for decorticated samples (Figure 4)

.

The cooking half-time shifted downward to 12 minutes for the fresh samples

and 17 minutes for 14 day aged samples. The 5 minute difference between fresh

and aged samples was maintained throughout the course of the experiment. The

uncookable 55 day intact beans were altered by decortication to a half-time

cooking value of over 120 minutes, however an exact value was difficult to

obtain due to variability.
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Figure 3. Plot of the number of beans cooked vs. time for fresh and 14

day aged intact samples of black beans. Half cooked line

indicated at 12.5 beans.
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Figure 4. Plot of the number of beans cooked vs. time for decorticated

fresh and 14 day aged black beans.
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These data indicate that biophysical and/or biochemical changes occured

in both seed coat and cotyledon during storage. In addition, a comparison of

cooking times for intact beans and decorticated samples suggests that the

seed coat is the major barrier to the softening of beans during cooking.

However, changes in the cotyledon during storage cannot be considered insignif-

icant since about 39% of the total cooking time for intact aged beans was

associated with the softening of the cotyledon.

The cooking process for beans involves two steps: water absorption to

an equilibrium condition with free water followed by softening of the texture

by heat. From the cooking data presented in Figures 1 and 2, it is impossible

to distinguish whether the cooking problem is solely due to impaired water

absorption rates or a manifestation of physicochemical changes in the bean

components; both factors could increase cooking times. In order to shed some

light on factors contributing to the reduction in bean cookability with storage,

a series of experiments were conducted to determine: (1) the variability in

water absorption among seeds, (2) the relationship between water uptake and

solids lost, (3) mode of water penetration over time, and (4) the effect of

seed moisture content (after soaking) on cooking time.

Variability in Water Absorption Among Seeds

Water imbibition patterns for some individual seeds are shown in Figure 5;

each curve represents a single fresh bean with intact testa. The sigmoidal

curves indicate that for every sample there is an initial lag time prior to

rapid water uptake and eventual equilibrium at 100% fresh weight. Lag periods

varied from a few minutes for quickly imbibing beans to 24 hours for more

impermeable samples, indicating increasing levels of hilar dysfunction.

Apparently, the counter-palisade layer in individual seeds, as described by
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Figure 5. Water uptake patterns of individual black (intact) beans.

Moisture content (% fresh weight) vs. time.
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Hyde (1954), is in various stages of sensitivity with respect to the surrounding

free water.

Not only does the level of water imbibed vary among seeds, but the rate of

uptake also varies. The rate of water imbibition of fresh beans as affected by

soaking time is plotted in Figure 6. High maximum rates of imbibition were

observed for beans with short lag periods. Conversely, low maximum imbibition

rates were observed for beans with longer lag periods, suggesting, again, that

hilar dysfunction was greatest for these latter seeds. However, each individual

bean, regardless of rate of uptake, eventually attains the 100% fresh weight

equilibrium value.

Water Absorption and Solids Loss

Recognizing that the seed coat limits water uptake and causes a wide

variability in the rate of water imbibition, future studies were directed at

evaluating hydration processes of decorticated seeds only.

The water absorption patterns of fresh and aged decorticated beans (as

% dry basis vs. time) are presented in Figure 7. Values recorded in this

figure were corrected for solids lost during soaking. The results indicate

that if corrections for solids are considered, fresh and aged water absorption

patterns were essentially identical. In all cases, water imbibition was rapid

within the first 1.5 hour, followed by an equilibrium value of 100% to 110% in

2.0 to 2.5 hours.

Most of the literature reports that stored legumes imbibe less water than

fresh samples. However, data misinterpretation has apparently resulted because

those authors recorded water absorption as a percentage of the fresh weight.

To further illustrate this point, and to compare our data to that reported by

other authors, water absorbed by decorticated beans after 4 hours of soaking
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Figure 6. Rate of water imbibition of individual fresh intact seeds,
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Figure 7. Water absorption patterns for fresh, 7, 14, and 55 day aged

decorticated black beans.
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was calculated on a fresh weight basis and then corrected for solids lost.

These data are presented in Table 1. The amount of water absorbed, when

calculated as a percentage of the fresh weight, decreased with increasing

storage time; 90.05% for fresh samples and 60.87% for 55 day aged beans. On

the other hand, when water absorption was calculated as grams of water bound

to 100 gram dry matter after soaking, the decline was from 119.23% for fresh

beans to 116.86% for day samples. The difference in values for fresh and

aged samples falls within experimental error. Therefore, our water absorption

data corraborates Burr's (1968) work in concluding that there are no differ-

ences in imbibition characteristics of fresh and stored beans.

It should be noted that, although moisture imbibition rates and capacity

were not affected by aging, the 55 day samples demonstrated a higher affinity

for water when air dried. When to 14 day aged samples were air dried, they

attained an equilibrium moisture content of 8 to 9%. Conversely, 55 day

samples that were vacuum dried to 8 to 9% moisture followed by re-equilibration

in air, attained a moisture content of 16%. It is possible that aging affects

certain ultrastructural characteristics of the bean which in turn, changes the

effective surface area and increases the sorption sites for water vapor without

changing the maximum hydration capacity of the cells. Water activity studies

as well as structural studies would be useful to confirm this hypothesis.

It is apparent from the studies above that aged black beans lost more

solids during soaking than their fresh counterparts. We also wanted to deter-

mine if the rate of leakage was affected by storage. Therefore, conductance

measurements were made on the leachate from fresh and aged samples.

The specific conductance of intact black beans during soaking is shown in

Figure 8. The rate of leakage from intact 55 day aged beans was very rapid in

the first 4 hours of soaking. In fact, after 4 hours the specific conductance
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Table 1. Absolute water absorption by black beans soak-

ed 4 hours.

Water Absorption
(gHO/g Dry Seed)*X100

119.23

121.02

118.27

116.86

Absorbed Weight - (CALC'D DRY WEIGHT - DRY SOLIDS LOSS)

(CALD'D DRY WEIGHT - DRY SOLIDS LOSS)

Storage Time
(days)

Fresh Weight
%

90.05

7 91.83

14 86.42

55 60.67
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Figure 8. Specific conductance of the leachate from intact fresh, 7, 14,

and 55 day aged black beans.
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Figure* 9. Specific conductance of the leachate from decorticated fresh,

7, 14, and 55 day aged black beans.



38

16

20

24

28

min.

)

O

°\ ^

1

i

8

12

Time

(

T3"0

Li. h- r^LO
-*

• 0*0
1 T

"t CM
1" T-

1

O
1

00

1

(0

1 1

CM

s-OI -( k
-"JO -oqiurl) eouejonpuoo oupeds



39

of the leachate from 55 day samples was more than 2x greater than that of the

24 hour leachate from fresh or 14 day beans.

Conductance studies were also done on the leachate from decorticated

beans, but only the first 30 minutes of soaking was monitored. As can be seen

in Figure 9, the shapes of the specific conductance curves for aged and fresh

samples are nearly identical. The rate of electrolyte leakage, however, was

considerably greater for the 55 day samples than for the fresh or 14 day beans.

After a 30 minute soaking period, electrolyte leakage from 55 day beans was

2.5x greater than that from the fresh samples. Furthermore, the specific

conductance of decorticated samples was higher than that observed for intact

beans after 30 minutes of soaking. The testa and structures at the hilum can,

therefore, be considered as restrictive barriers to electrolyte leakage.

Leakage of electrolytes from black beans during soaking appears to be

related to the accelerated storage conditions employed in this study. Others

have also shown that specific conductance is related to aging phenomenon in

seeds (Parrish and Leopold, 1977; Ching and Schoolcraft, 1968). If hilar

permeability was decreased during bean storage, it was not manifested by

reduced electrolyte leakage during soaking.

Simon (1974) and others have suggested that loss of plasmallema integrity

is responsible for the increased leaching observed in aged seeds. All low

molecular weight soluble metabolites would leach from the seeds in direct

proportion to their cytoplasmic concentrations (Simon and Harun, 1972). How-

ever, we observed that the leachate from fresh beans was more turbid than that

from 55 day stored samples. This could suggest that a decrease in protein or

carbohydrate leakage occurred with aging. If selective leaching did occur in

the 55 day samples, this would cast doubt on the theory of plasmallema
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malfunction. Quantification of the chemical components of the leachate from

fresh and aged samples could shed light on this controversy.

Mode of Water Penetration into Beans

Although gravimetric studies on water absorption furnish information on

the amount of water absorbed, they do not provide data concerning the

structural regulators of imbibition or possible water concentration gradients

in soaked beans. Such information would be important to obtain if, as part

of a quick-cooking regiment, recommendations are made to reduce soaking time.

Therefore, two physical methods were employed to study the mode of water

penetration in black beans: autoradiography and scanning electron microscopy.

Autoradiography. Micrographs in Figure 10 are presented to familiarize

the reader with the structural features that will be discussed in this section.

When fresh intact seeds are analyzed via autoradiography, the images in

Figure 11 were obtained. A darkening appears at the hilum area after 2 hours

of soaking, indicating penetration at the strophiole. After 4 hours, the

entire periphery of the bean becomes darkened. Apparently, water which has

entered the strophiole redistributes itself in the layer of parenchyma cells

under the testa. The darkening of the cotyledon near the hilum is no greater

than that at the periphery. Therefore, no water concentration gradient

exists between the place of entry and the imbibed areas.

Water penetration increased uniformly from the periphery to the center of

each cotyledon after 8 and 12 hours of soaking. Water entering the strophiole,

therefore, is continuously transported to the sub-testa parenchyma throughout

the entire imbibition period. Water does not penetrate the cotyledon at the

hilar area any more rapidly than at the cotyledonary cells adjacent to the

strophiole. After 18 hours, the seed is fully penetrated although the maximum
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Figure 10. Structure of hilar area in black beans, a. Micropyle, b, and

cross section of metastable double-palisade layer, c and d.
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level of water imbibition has not been attained (see Figure 11) . Water

absorption continues after 18 hours, producing progressively darker autoadio-

grams. It should be emphasized that at no point in the water imbibition

process do water concentration gradients exist across the cotyledon.

Water uptake by beans appears to be a continuous process which is

regulated by structural features at the hilum. The regulatory mechanism,

however, remains unclear. It is possible that the hilum opens when the

external free water concentration is high relative to the water concentration

in the interior of the bean. Conversely, the hilum would close when the water

concentration in the seed interior was too high. However, this type of

metering action has never been reported. Alternately, the transport of

water across the hilum may be slower than the rate of diffusion through the

seeds in which case this would be the rate limiting factor in hydration.

The latter hypothesis is supported by a comparison of the rates of hydration

when seed coats are intact versus when they are removed (Figures 5 and 7).

The conclusion is that the hilum is a passive anatomical bottle-neck which

is the rate limiting factor in imbibition.

Autoradiograms were also done on decorticated beans in order to observe

their responses to water uptake without the metering action of the hilum

(Figure 12). A uniform darkening around the entire cotyledon periphery

resulted after soaking fresh or aged beans for 1 hour. After 2 hours of

soaking, the water had penetrated the center of the cotyledons; fresh and

aged samples showed identical responses. These data corraborate the equilib-

rium condition that was reported earlier for gravimetric studies on water

absorption (see Figure 7). However, the autoradiographic technique has one

advantage over gravimetric analysis: it is completely free of artifacts due

I
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Figure 11. Autoradiograms of fresh and 7 day aged intact beans soaked

2, 8, and 14 hr.
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Figure 12. Autoradiograms of fresh, 7, 14, and 55 day decorticated beans

soaked 1 and 2 hr.
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to solids loss. Again, an important conclusion that can be drawn from this

study is that fresh and aged beans show identical water imbibition rates

which confirm the earlier work of Burr et al.(1968) and Parrish and Leapold

(1978).

Scanning electron microscopy (SEM) . To confirm the results obtained

with the autoradiographic technique, water penetration in decorticated beans

was also studied using the SEM.

Water penetration fronts were observed in fresh and aged cotyledons after

1 hour of soaking at 25 C (Figure 13). A clear demarcation between hydrated

and dry cells is evident. Cytoplasmic structures of dry cells of fresh beans

(Figure 13a and b) are densely packed and protein bodies are barely discernable.

Conversely, spherical protein bodies were clearly visible in hydrated cells

(Figure 13b). On fracturing, the shear stress planes in the dry cells were

generally at the interface between the starch granules and the protein matrix.

After hydration and freeze-drying, the shear plane occurred between the

protein bodies and the cytoplasmic matrix. A softening of the intercellular

contents is implied by these observations on fresh hydrated beans.

Unlike fresh beans, the cytoplasmic structures of hydrated 55 day beans

were not visible (Figure 13c and d) . Instead, all cells pulled away from

the intercellular interface when beans were fractured. A weakening of the

attachments between cell walls and intercellular cement must have occurred

as a result of storage conditions. However, the intercellular cement still

formed a rigid, three-dimensional honeycomb network that was not distrubed

by the soaking treatment.

In general, the SEM data is in agreement with autoradiographic studies

on the extent of water penetration in decorticated beans after soaking for

1 hour. However, more samples must be examined in order to obtain the same
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Figure 13. Water penetration front associated with fresh beans, a and b,

and 55d beans, c. Micrograph d shows the degenerated cell

wall-middle lamella binding in 55d beans.
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degree of confidence as that obtained with autoradiography. More than 60

seeds per treatment were studied using the latter technique. Conversely,

the small capacity of the tissue freeze-drier employed for preparation of

samples for SEM did not facilitate studies on large numbers of seeds.

Effect of Moisture Content on Cooking Time

Although the data above indicates that bean storage did not appreciably

affect water imbibition rates, information concerning the effect of bean

moisture content (after soaking) on cooking time was lacking. A series of

experiments were, therefore, conducted to clarify the role of seed moisture

content in bean cookability. In these experiments, the hilum was fissured

to facilitate water uptake but the seed coat remained attached to the beans.

Cooking experiments were done using seeds at moisture contents ranging

from about 8% (air dry seeds) to over 110% (fully equilibrated samples)

.

The results presented in Figure 14 demonstrate the linear relationship that

was observed between cooking time and initial moisture content of intact fresh

and 14 day samples. The 55 day aged beans were not softened even after

cooking periods of over 6 hours.

The cooking time of intact beans was shown to be inversely proportional

to moisture content, producing a series of parallel lines for each storage

period. These plots demonstrate that there is no moisture content that will

give identical cooking times for fresh and aged samples. Therefore, differ-

ences in cooking times for intact beans are not a result of the impairment of

imbibition by the hilum.

Parallel patterns for cooking times were also observed for decorticated

samples (Figure 15). However, there appears to be an approach to an asymptotic

cooking time at the higher moisture contents for both fresh and aged samples.
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Figure 14. Cooking times of fresh and 14 day aged intact black beans as

affected by moisture content.
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Figure 15. Cooking times of fresh and 14 day aged decorticated black beans

as affected by moisture content.
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The 14 day beans approach a 13 minute cooking value at moisture contents above

130% dry weight. Fresh seeds approach a value of 9 to 10 minutes for the

same moisture content.

The asymptotic behavior exhibited in the cooking experiments with

decorticated beans may emphasize that a relationship exists between the

energy requirements necessary to breakdown cellular structures and the level

of free water present in the beans. At some optimum cotyledonary moisture

content, the energy requirement is at its minimum.

A minimum energy requirement may also exist for intact seeds, but it

is probably at a considerably higher moisture content. The seed coat appar-

ently has a separate cooking time requirement. Nevertheless, the data in

Figure 15 indicates that at equal moisture contents, real differences in

cooking times exist between fresh and aged samples , and that aged beans

require more energy to break down cellular structures. These data were

confirmed by SEM's of fresh and 55 day aged beans cooked for some time period.

Effects of Storage on Texture

It seems readily apparent from the water absorption data presented above

that the "hard-to-cook" phenomenon observed for stored beans has very little

to do with imbibition rates or capacity. The causal factor responsible for

the increased cooking time, therefore, must be related to textural changes in

aged beans. If the aging process results in increased binding forces in the

testa and cotyledon, these changes should be obvious in physical measurements

of the force required to shear through fresh and aged samples. The Kramer

Shear Press was, therefore, used to determine the hardness of dry beans.

The texture measurements presented in Table 2 were obtained by dividing

the weight of the seed which was tested into the force required to shear
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Table 2. Hardness of fresh and aged dry black beans as deter-
mined by the Kramer shear press.

Crushing Force (Kg/g)

Storage
Time at

41°C
(days)

Relative
Humidity
During
Storage

Seed Coat
Intact

Testa Decorticated
Cotyledons

•

— 74.3 24.2 50.1

7 100 % 60.1 10.3 49.8

14 100 % 70.2 25.5 44.7

55 75 % 101.9 41.5 60.4

LSD = 4.0 at P< 0.01
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through that seed. The use of the extrusion grid for textural measurements

results in values for crushing force as opposed to the cutting force measure-

ment used by Sefa-Dedeh (1978). Statistical analysis of the data from 20

replicates showed that the 55-day intact seeds required a significantly (P <

0.01) greater crushing force than any of the other samples. It can be con-

cluded that, in this instance, storage conditions did cause a physical hard-

ening of the dry beans.

The relationship between hardness of dry beans and cookability, however,

may only pertain to samples stored for long periods of time. Hardness

measurements were not related to the cookability of beans stored for short

periods of time at 41 C, 100% R.H. Intact fresh and 14 day aged beans required

essentially the same crushing force while 7 day aged samples required less

force to crush than did the fresh samples. However, these aged beans required

longer cooking times than the fresh counterparts (Figure 3).

Crushing force measurements on the decorticated beans showed the same

trends as described above. The 55 day samples required a significantly

greater crushing force than all other treatments.

Subtracting the decorticated value from the total force gives the hardness

contribution due to the testa, which show an increase in the 55 day samples

compared to that for 0, 7, and 14 days (Table 2). Thus, the seed coat not

only adds significantly to the force required to crush the bean, but this

contribution increases with storage time. Similar increases were noted for

the cotyledon.

Increased binding forces in the cytoplasm or middle lamella and in seed

coat structures may explain the increases in shear force observed for 55 day

aged samples. Further work must be done on the correlation between these
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textural properties and the biochemical and biophysical modifications in

both testa and cotyledon during aging.

Ultrastructural studies . Ideally, to differentiate between the hardening

contributions to texture due to cytoplasmic and cell wall contributions, a

method should be found which could evaluate the textural strength of each

component independently. Alternately, information on the relative binding

strength of cellular components can be gathered indirectly from observations

on structural responses to shearing forces under various conditions (Hoseney

and Seib, 1976).

Scanning electron micrographs of fresh, 14 day, and 55 day aged beans

are displayed in Figures 16 and 17. The structure of fresh samples (Fig. 16a)

is very similar to the structure of 14 day beans (Fig. 16d) at low magnifi-

cations. However, 55 day beans (Fig. 17g) showed evidence of alterations in

their response to the shearing action of the blade during fracturing (See

upper right corner of Fig. 17g). The shear planes that were produced suggest

that a weakening of the attachments between the cell wall and the middle

lamella occurred during storage.

Changes in the interior of the cells during storage were also observed.

Higher magnifications of the cytoplasmic matrix of fresh, 14 day, and 55 day

samples (Figs. 16b and f; and 17h and i, respectively) revealed that the

granular structure observed in fresh beans decreased during storage. It

should be noted, however, that the granularity of the matrix of 55 day seeds

is somewhat greater than for 14 day seeds. Differences may be a result of

the much higher relative humidity used in storing the latter samples (100% vs.

75%, respectively).

A reduction in adhesion between cell walls and middle lamella was

observed when 55 day samples were soaked (Fig. 13d). However, the middle
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Figure 16. Scanning electron micrographs of dry sections of fresh, a, b,

c, and 14 day, d, e, f, aged beans. Note lack of granularity

at higher magnifications in 14d beans.
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Figure 17. Scanning electron micrographs of dry section of 55d bean.

Granularity of h intermediate to fresh and 14d, (16b and c)

Greater shearing at cell wall-middle lamella interface, g,

than fresh and 14d, (16e and d)

.
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lamella remained as a rigic, three-dimensional, honeycomb structure, with

free-floating cells positioned within the matrix. These structural observa-

tions indicate that the major contributor to cotyledonary hardness in aged

beans, as measured by the shear press, was due to the middle lamella.

Since 55 day beans take 2 to 3 times longer to cook than the 14 day

samples, the changes in intracellular order of the cotyledonary cells may

be irrelevant to the increased hardness observed between these two samples.

On the other hand, alterations in the chelating components of the cellular

interior (e.g. phytate) may have an indirect effect on intercellular

binding. Mattson (1946) suggested that phytate in peas played a key role in

preventing "hard-to-cook" phenomena by chelating the ions responsible for

crosslinking of pectic substances .
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SUMMARY AND CONCLUSIONS

Cooking studies on black beans stored at 41 C and 100% or 75% relative

humidity indicated that the "hard-to-cook" phenomenon involved age-related

changes in both seed coat and cotyledon. Data on intact and decorticated

beans showed that the seed coat contribution to cooking time was greater than

that of the cotyledon.

Shear press data indicated that hardening occurred in both testa and

cotyledon of 55 day aged samples. However, the relative contribution of the

testa to the total hardness was greater than that of the cotyledon.

Gravimetric and autoradiographic studies showed that there were no

differences between fresh and aged samples with respect to water binding

capacity (when values were corrected for solids loss) and water penetration

rates. Increased electrolyte leakage from aged samples was, however,

correlated to storage time.

Adjusting fresh and aged beans to identical moisture contents (from 8%

to 120%) prior to cooking, did not alleviate the effects of storage on cooking

time. In other words, differences in cooking times between fresh and aged

samples persisted regardless of bean moisture content.

These data, along with that from water absorption studies, suggest that

biophysical or biochemical changes, which are unrelated to water absorption,

must be responsible for the increased cooking time requirements for aged beans.

Therefore, the deteriorative changes occurring in "hard-to-cook" beans are not

necessarily related to "hardshell". These two processes must be clearly

differentiated in any future studies on bean cookability.

Possible biophysical alterations in stored beans were investigated by

scanning electron microscopy. Ultrastructural changes in 55 day beans occurred
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at the middle lamella - cell wall interface creating a rigid 3-dimensional

network of intercellular cement. This network may be the major anatomical

structure influencing hardness.

Future studies should concentrate on determining biophysical and

biochemical changes in seed coat and middle lamella during storage. For

example quantitation of lignin formation, browning reaction polymers, protein

polymerization and denaturation reactions during storage may prove useful

in evaluating the causes of the increased textural binding in old seeds. A

better understanding of the structure of the middle lamella and its relation-

ship to cooking functionality is needed before observations on changes are

meaningful. The physicochemical changes in the seed coat have never been

studied, but are certainly important in a comprehensive analysis of deterior-

ation of cookability.
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Cooking studies on black beans stored at 41 C and 100% or 75% relative

humidity indicated that the "hard-to-cook" phenomenon involved age-related

changes in both seed coat and cotyledon. Data on intact and decorticated

beans showed that the seed coat contribution to cooking time was greater

than that of the cotyledon.

Shear press data indicated that hardening occurred in both testa and

cotyledon of 55 day aged samples. However, the relative contribution of the

testa to the total hardness was greater than that of the cotyledon.

Gravimetric and autoradiographic studies showed that there were no

differences between fresh and aged samples with respect to water binding

capacity (when values were corrected for solids loss) and water penetration

rates. Increased electrolyte leakage and aged samples was, however, corre-

lated to storage time.

Adjusting fresh and aged beans to identical moisture contents (from 8%

to 120%) prior to cooking, did not alleviate the effects of storage on

cooking time. In other words, differences in cooking times between fresh

and aged samples persisted regardless of bean moisture content.

These data, along with that from water absorption studies, suggest that

biophysical or biochemical changes, which are unrelated to water absorption,

must be responsible for the increased cooking time requirements for aged

beans. Therefore, the deteriorative changes occurring in "hard-to-cook"

beans are not necessarily related to "hardshell". These two processes must

be clearly differentiated in any future studies on bean cookability.

Possible biophysical alterations in stored beans were investigated by

scanning electron microscopy. Ultrastructural changes in 55 day beans oc-

curred at the middle lamella - cell wall interface creating a rigid



3-dimensional network of intercellular cement. This network may be the major

anatomical structure influencing hardness.


