HORMONES AND HOMEOSTASIS: AN EDUCATIONAL COMPUTER PROGRAM IN PHYSIOLOGY

by .

JACQUES FREDERICK RUPP

B. A., University of Washington, 1978

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Biology

KANSAS STATE UNIVERSITY Manhattan, Kansas

1985

Approved by:

Major Professor

Table of Contents A11202 964683 R86 Page 1 Introduction The Role of Computers in the Biology Curriculum 2 4 Objectives and Specifications Description of the Program 5 10 A Brief Description of Hormones Used in This Program 14 Conclusion Bibliography 15 Appendix 16 Program Printout

Abstract

THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM CUSTOMER.

ILLEGIBLE DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN
THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

List of Figures

	Page
Fig. l - Photograph of the computer screen at the beginning of a simulation.	6
Fig. 2 - Photograph of the computer screen several seconds after the beginning of a simulation.	7
Fig. 3 - Photograph of the computer screen at the end of a simulation in which the student gave an incorrect answer or no answer.	8
Fig. 4 - Photograph of the computer screen at the end of a simulation in which the student gave a correct answer.	8

I. Introduction

Computer assisted instruction, or CAI, is a rapidly growing field. Since the first primitive CAI systems in the late 1950's and 1960's, CAI has developed to the point where it is found in 50% or more of the U.S. educational systems, with its heaviest use in higher education. Two important breakthroughs in CAI are primarily responsible for this growth. The first is the development of BASIC, a simplified computer language developed in 1959 by John Kennedy. BASIC is now the most widely used language for writing CAI. The second important development was the commercial introduction of microcomputers in 1977. Essentially all CAI is currently designed for the microcomputer, due to its relatively low cost and ease of handling.

Among the most commonly used microcomputers in CAI are the Apple, Radio Shack's TRS-80, and the Commodore. Of these three, the most popular microcomputer for CAI is the Apple.

The major problem in setting up a good CAI system is obtaining good software, or computer programs. Although there is an abundance of CAI software, very little of it is of sufficient quality to be of much use in education. Much of it consists of simple drill and practice routines or of written material. These programs make little or no use of the computer's greatest educational asset - the ability to allow the student to participate actively, or interact, in the educational process. Another powerful educational aspect of computers is their ability to simulate real life situations in such a way that the student can "experiment" with them; this is especially true in the sciences. For these reasons, then, I have designed "Hormones and Homeostasis" as an interactive program involving physiological simulations.

II. The Role of Computers in the Biology Curriculum

In recent years biology has become an increasing quantitative science. This trend has caused biology to become an increasingly computerized science. Computers are now used in the biochemistry and the ecology lab alike. The computer will likely surpass the microscope as a generally applicable tool of the research biologist.

One important function of computers in the biology curriculum, then, would be to familiarize students with an important tool of biological research. In particular, students could become familiar with the various computer applications found in the biological sciences. These would include data storage and manipulation, direct data collection from instrumentation, complex statistical analysis, and biological modeling and simulation.

With the proper equipment, microcomputers can record everything from the locations most frequently occupied by a fish in a fish tank to the heart rate of a turtle. These data can be stored, manipulated and printed out at the student's discretion.

Although the simpler statistical techniques utilized in biology can be performed on a calculator, many complex or repetitive biological calculations (for example, predator-prey interactions over time) are best performed on a computer. Also, computers have the additional benefit of being able to display the results in graphical form.

A major use of computers in biology education is CAI, especially simulations. Simulations are frequently used as adjuncts to laboratory experiments. These biological simulations can provide students with "experiments" that would be too expensive or time consuming to conduct

in an undergraduate or high school biology laboratory. An example of such a simulation is "Protein Mastermind" in which the computer generates a random polypeptide sequence and the students have to determine the sequence of its amino acids by the use of various protein sequencing reagents. Another simulation designed along these same lines is "Maxam-Gilbert", which allows the student to determine the length of a short segment of DNA through the Maxam-Gilbert DNA sequencing techniques.

An example of a biological simulation involving a bit more creativity is "Alien", 6 a simulation of cardiopulmonary physiology. The user must answer a series of physiological questions by performing a series of experiments such as administering exercise, increased or decreased oxygen and ${\rm CO}_2$, injection of epinephrine or tranquilizers and so on. The student can experiment on either a human or five ficticious extraterrestrials.

It is clear that a wide range of applications exist for the computer in the biology curriculum. It is our responsibility to see that we make the most of this powerful and versatile educational resource.

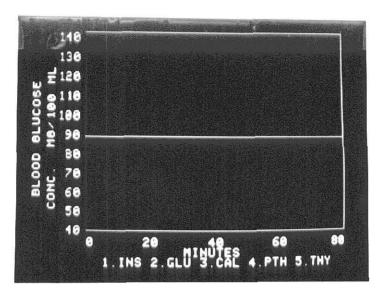
III. Objectives and Specifications

"Hormones and Homeostasis" has two main educational objectives. The first is to give students a working understanding of homeostasis, which is often a difficult concept for beginning biology students. The second is to teach students the function of five hormones important in homeostasis - insulin, glucagen, parathyroid hormone, thyroxine and anti-diuretic hormone.

This program is designed for a college freshman biology course, although it could also be used in a beginning physiology course or an advanced high school biology course.

Students using the program should have some familiarity with the concept of hormones. Also, the student should know some basic physiology in order to use the program effectively. For example, the student should understand the concepts of chemical concentration, metabolism, and the function of blood. The student should also be able to read graphs.

"Hormones and Homeostasis" is designed for students with little or no computer background. Students need only know how to turn on the computer.


This program will run on an Apple II E computer or an Apple II + with an expanded memory (64 K). The program is designed to be displayed on a color screen, although it runs perfectly well on a monochrome screen.

IV. Description of Program

"Hormones and Homeostasis" has two major divisions - a test section and a simulation section. The first part of the program, the test portion, consists of instructions on how to use the program and two tests - one on hormones and the other on homeostasis. Each test consists of four multiple choice questions. If the students answer all of the test questions correctly, they have adequate knowledge to understand the simulation portion of the program and go straight to the simulations. If the students miss any of the questions on either of the tests, they are shown the question they missed and then are shown a review containing the answers to the questions they missed. After having a chance to reanswer those questions, they are referred to the simulation portion of the program.

Because of the limitations of computer memory, the simulation section of the program is stored in a separate section of the computer disc than the test section. The student is given simple instructions at the end of the test section on how to access the simulation section.

The simulation section consists of a list describing the functions of the five hormones and five simulations. These simulations are shown in a different order each time the program is run. Each simulation is designed to display the action of a particular hormone. Fig. 1 shows the beginning of the insulin simulation.

 $\qquad \qquad \text{Fig. 1} \\ \text{Computer screen at the beginning of a simulation.}$

The y axis is labeled with physiological concentrations of blood glucose and the x axis is labeled with time units corresponding to the rate of action of insulin under physiological conditions. The horizontal line running through the middle of the graph is the set level, or optimal physiological level, for blood glucose concentration in humans.

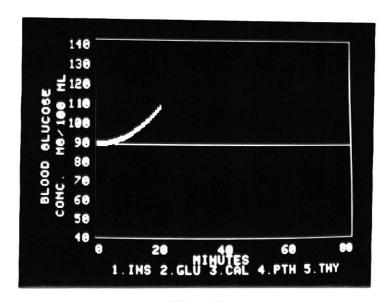
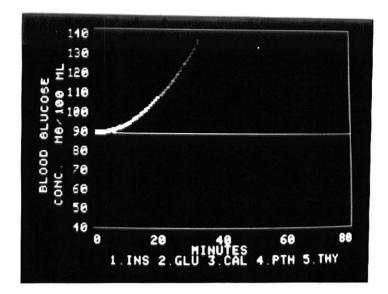



Fig. 2 Computer screen several seconds after the beginning of a simulation.

The student then sees a rising green line which respresents a rising blood glucose concentration (Fig. 2). The student has been instructed to press the number of the hormone (from the list on the bottom of the program) that will return blood glucose concentration to its set level. If he or she gives an incorrect answer or takes too long to give the correct answer, the blood glucose concentration will exceed its normal physiological limits. The line will then turn orange (Fig. 3) and the computer will beep.

 $$\operatorname{Fig.}\ 3$$ Computer screen at the end of a simulation in which the student gave an incorrect answer or no answer.

If the student chooses the correct answer, the curve will return to the set level, as is seen in Figure 4.

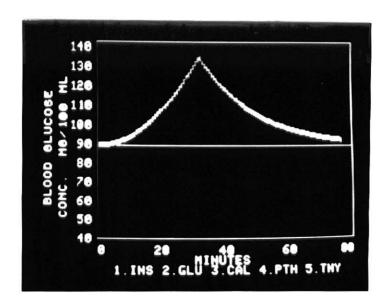


Fig. 4
Computer screen at the end of a simulation in which the student gave a correct answer.

After each simulation the student has the option of reviewing the hormone list before the next simulation. After viewing all five simulations, the student can view the simulations again by pressing the "l" key or end the program by pressing the "RETURN" key.

V. A Brief Description of Hormones Used in This Program

I selected the five hormones insulin, glucagon, parathyroid hormone, thyroxine and antidiuretic hormone for two reasons. First, they all play prominent roles in homeostasis. Second, their effects are relatively simple and clear-cut, as opposed to hormones such as epinephrine and growth hormone which have many interrelated functions.

My goal was to make the rate of action of each hormone correspond as closely as possible to its rate of action in the normal physiological state. There are several factors that must be taken into consideration when the rate of hormone action is determined. The amount of hormone secreted, the rate of secretion, the effects of antagonistic hormones that oppose a given hormone's activity, the age, sex and health of the subject, as well as various other physiological factors all affect the rate of the expression of a given hormone's activity. Where possible, I tried to use data that related to the hormone's activity in actual physiological conditions, such as a glucose tolerance curve for insulin. For several hormones, though, I was forced to use data which mimicked the normal physiological state.

Insulin

The action of insulin with respect to glucose is threefold: 1) An enhanced rate of glucose metabolism, 2) an increased storage of glucose as glycogen and 3) an increased rate of conversion of glucose to fat. All lead to a decreased blood glucose concentration. Insulin secretion is stimulated by a high blood glucose concentration.

The basis of the insulin curve is the glucose tolerance test, in which a patient drinks a measured amount of glucose (50-100 g) and the

blood glucose level is measured over a three hour period. For normal patients, it takes about an hour for the blood glucose level to fall from an elevated level (140 mg/100 ml) to the set level (85 mg/100 ml). 7 Glucagon

The effect of glucagon is opposite that of insulin. Glucagon acts to increase the rate of liver glycogenolysis and gluconeogenesis. The ultimate action of glucagen is thus to raise the blood glucose concentration. Glucagon secretion is stimulated by a low blood glucose concentration.

Physiological but high levels of glucagon caused by glucagon infusion cause an extremely rapid release of glucose from the liver (an increase of 100mg/min. over the first ten minutes of infusion). For a person with an average blood volume (5 liters) this amounts to a rate of change of 2 mg glucose/100 ml/min. This value would only be realistic for a glucose concentration below the set level, where the antagonistic actions of insulin are negligible.

Parathyroid Hormone

Parathyroid hormone, or PTH, has the effect of raising the blood calcium concentration. This rise in blood calcium concentration stems from three effects of PTH: 1) immediate activation of already formed osteoclasts and formation of new osteoclasts. 2) increased reabsorption of calcium from the urine. 3) increased formation of 1,25-dihydroxycholecalceterol from vitamin D, which in turn promotes intestinal absorption of calcium. Another effect of PTH, not seen in this program, is to lower the blood phosphate concentration.

PTH secretion is stimulated by a low blood calcium concentration.

High, but physiological levels of PTH (caused by the infusion of 50 units/day of PTH) cause an increase in blood calcium concentration of 1

mg/100 ml over an eight hour period. 10

Thyroxine

Thyroxine (T_4) , along with triiodothyronine (T_3) , increases the metabolic rate. The two hormones increase rates of catabolism, glycolysis, gluconeogenesis, and oxygen uptake, and they cause other physiological effects associated with an increased metabolic rate. Thyroxine also acts in conjuction with growth hormone to promote body growth in young people.

I used the basal metabolic rate instead of just the metabolic rate in the thyroxine graph because the metabolic rate constantly changes with activity, emotional state, etc.; the basal metabolic rate more accurately expresses the activity of thyroxine. I chose thyroxine over triiodothyronine because thyroxine supplies roughly two thirds of the total effect of the thyroid hormones on the tissues. 11

Injection of 720 g of thyroxine into patients deficient in thyroid hormones causes an increase of the basal metabolic rate of about 2 ${\rm Kcal/m}^2/{\rm hour}$ over a two day period. 12

Antidiuretic Hormone

The main action of antidiuretic hormone, or ADH, is to render the collecting ducts of the kidney more permeable to water. This causes more water to leave the collecting ducts for the hypertonic tissue of the inner kidney, causing the kidneys to produce a more concentrated urine at a slower rate. Since ADH retards water loss from the body through the urine, ADH has the effect of lowering the plasma osmolality. ADH secretion is stimulated by a high plasma osmolality.

High but physiological levels of ADH cause a decreased urine output of about 21 ml/hour and an increased osmolality of about 1200 millios-

moles/liter. This means that when ADH concentration is high, the body loses about 63 ml of water/hour (including evaporation, sweat, etc.) and electrolytes are lost at about 30 milliosmoles/hour. Using an average water input (including metabolic water) of about 100 ml/hour, these factors give a drop in plasma osmolality of about 8 milliosmoles/hour over one hour. 13,14

VI. Conclusion

The final goal of any educational software is to promote learning. The usefulness of any software is thus determined by how much students learn from it and whether or not the material could be better presented through lecturing or textbook assignments. The best way to obtain this information about effectiveness is to test software in the classroom. Although such testing is not included in this report, it will be essential to the application and further development of "Hormones and Homeostasis".

Although the simulations in "Hormones and Homeostasis" require student input, the input is limited to only one interaction. An improved simulation would allow more student interaction or control over the program. For example, the student could determine the effects of varying amounts of one hormone on another hormone's activity.

Another improvement in the program would be to allow the student to choose the level of difficulty of the simulation. For example, the student could choose the number of different hormones in the simulation and the number of hormones interacting in each part of the simulation. A further refinement of the program would be to allow students to manipulate such factors as evironmental temperature and water availability.

Sophisticated simulations such as I have just described would be quite time consuming to produce, yet they make effective and versatile teaching tools. The ability of CAI to simulate real life situations and its capacity to modify its response according to the input from individual students allows CAI to fulfill educational functions which can't be met by the lecturer, the textbook, or the laboratory alone.

"Hormones and Homeostasis" is available on a diskette in the Biology Reading Room, which is located in room 324 of Ackert Hall, Kansas State University.

Bibliography

- 1. Frost and Sullivan, Inc. "The market for CAI in U.S. education" Prentice-Hall, 1983
- 2. Chambers, J. "Computer Assisted Instruction" Prentice-Hall, 1983 p. 18
- 3. McMillen, J. and Esch, H. Microcomputers for laboratory data collection American Biology Teacher 46(3) p. 157-161
- 4. Jungck, J. Genetic engineering software: sequencing and cloning American Biology Teacher 46(8) p. 464-467
- 5. Jungck, J. Genetic engineering software: sequencing and cloning American Biology Teacher 46(8) p. 464-467
- 6. Kosinski, R. Producing computer assisted instruction for biology laboratories American Biology Teacher 46(3) p. 162-167
- 7. Ganong, W. "Review of Medical Physiology" 8th Edition Lange Medical Publications, 1977 p. 268
- 8. Unger, R. and Orci, L., Editors "Glucagon Physiology, Pathophysiology, and Morphology of the Pancreatic A-Cells" Elsevier/North Holland Biomedical Press, 1981 p. 223
- 9. Horie, H., Matsuyama, T., Namba, M., Itoh, H., Nonaka, K., Tarui, S., Yamatedani, A. and Wada, H. Responses of catecholamines and other counterregulatory hormones to insulin induced hypoglycemia in totally pancreatectomized patients J. Clin. Endocrinal. Metab. 59(6) p. 193-6
- 10. Ruch, T. and Patten, H., Editors "Physiology and Biophysics" 19th Edition W.B. Saunders Co., 1965 p. 1170
- 11. Guyton, A. "Basic Human Physiology" 2nd Edition W.B. Saunders Co., 1977 p. 782
- 12. Ruch, T. and Patten, H., Editors "Physiology and Biophysics" 19th Edition W.B. Saunders Co., 1965 p. 1164
- 13. Shepard, R. "Human Physiology" J.B. Lipincott Company, 1971 p. 390-391
- 14. Pruszczynski, W., Vahanian, A., Ardaillou, R. and Acar, J. Role of antidiuretic hormone in impaired water excretion of patients with congestive heart failure J. Clin. Endocrinol. Metab. 58(4) p. 599-605

HORMONES AND HOMEOSTASIS: AN EDUCATIONAL COMPUTER PROGRAM IN PHYSIOLOGY

by

JACQUES FREDERICK RUPP

B. A., University of Washington, 1978

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Biology

KANSAS STATE UNIVERSITY Manhattan, Kansas

Abstract

This report describes an educational computer program entitled "Hormones and Homeostasis." "Hormones and Homeostasis" has two main educational objectives. The first is to teach the concept of homeostasis. The second is to familiarize the student with the functions of five hormones important in homeostasis: insulin, glucagon, parathyroid hormone, thyroxine and antidiuretic hormone. The program is designed for a freshman biology course, but it can be used in an introductory physiology course or an advanced high school biology course.

"Hormones and Homeostasis" consists of a preliminary testing and review section followed by five computer simulations. The simulations consist of graphs showing various physiological factors, such as blood glucose concentration, departing from their set level, or optimum physiological level. If the student chooses the correct hormone, the physiological factor returns to its set level. If the student chooses the wrong hormone, he or she receives an error message. The simulation may be viewed as many times as the student desires.

This report includes a printout of the program itself and specifications for its usage. A brief description of the program is also included along with a description of the data used to design the simulations.

THIS BOOK WAS BOUND WITHOUT PAGE 18.

THIS IS AS RECEIVED FROM CUSTOMER.

- 4 REM ***HELLO***
- 5 FLASH
- 10 HTAB 13: FRINT "LOADING PROGR AM"
- 15 NORMAL
- 30 PRINT CHR# (4); "RUN HDRMONE"

```
1000 REM ***HORMONE***
1005 HOME
1010 REM TITLE
1020 VTAB 6: PRINT "_____
1030 YTAB 8: HTAB 8
1040 PRINT "HORMONES AND HOMEOST
    ASIS:"
1050 HTAB 5: PRINT "AN EDUCATION
    AL COMPUTER PROGRAM"
1060 HTAB 14: PRINT "IN PHYSIQLO
    \Theta Y^{\mu}
1070 VTAB 12: FRINT "_____
    11
1080 VTAB 23: HTAB 25: PRINT "by
     JACQUES RUPP"
1900 GOSUB 30130
1910 GOSUB 30130
1920 GOSUB 30130
2000 REM PRELIMINARY INSTRUCTIO
    MS
2001 X$ = "0"
2003 REM PRIC INSTRUCTIONS
2004 HOME
2005 HTAB 11: PRINT "***INSTRUCT
    IONS***"
2010 VTAB 5
2015 PRINT " YOU are in contro
    I of this program. "
2017 PRINT
2020 FRINT "When you see the sta
    tement PRESS RETURN"
2022 PRINT
2025 PRINT "TO CONTINUE you can
    tell the computer "
2027 PRINT
2030 PRINT "when to go on to the
     next part of the "
2032
    PRINT
2035 PRINT "program by pressing
    the RETURN key. "
2037 PRINT
2040 PRINT "This key is located
    on the far right of"
2042 PRINT
2045 PRINT "the keyboard in the
     second or third row"
2047 PRINT
2050 PRINT "from the top. Try p
    ressing this key"
```

```
2052 PRINT
2054 PRINT "now."
2055 GET EX#
2058 REM ACESS TO SIMULATION
2060 IF EX# = "99" THEN GOTO 50
     000
2065 \text{ K} = ASC (EX$)
     IF K = 13 THEN GOTO 2195
2070
2073 HDME
2074 VTAB 6
2075 PRINT " Sorry, that wasn'
    t the RETURN key."
2077 PRINT
2080 PRINT "The RETURN key is th
     e key with RETURN"
2082 PRINT
2085 PRINT "written on it two or
      three keys down"
2087 PRINT
2090 PRINT "from the top of the
     keyboard; it is"
2092 PRINT
2100 PRINT "on the far right sid
     e of the keyboard."
2103 PRINT
2105 PRINT "Why don't you try ag
     ain?"
2106 GET EX#
2107 K = ASC (EX#)
2110 IF K = 13 THEN GOTO 2195
2113 HOME
2114
     VTAB 6
2015 PRINT " No, that wasn't t
     he RETURN key."
2117 PRINT
2120 PRINT "Why don't you find a
     n instructor to"
2122
     PRINT
2125 PRINT "help you? Press the
      RETURN key to go"
2127
      PRINT
2330 PRINT "on with the program,
      or press any key"
2132
      PRINT
2135
      PRINT "on the keyboard stop
      the program."
2140 GET EX$
2145 \text{ K} = ASC (EX#)
     IF K = 13 THEN GOTO 2195
2150
2155 HOME
2160
      END
2195 HOME
2200 VIAB 9: HTAB 17: PRINT "PER
     FECT!"
```

- 2202 PRINT : PRINT
- 2203 HTAB 4: PRINT "Now press the RETURN key again."
- 2210 GOSUB 30000
- 2305 VTAB 2: PRINT " HORMONES AND HOMEOSTASIS contains"
- 2307 PRINT: PRINT "two sections. The first section"
- 2310 PRINT : PRINT "consists of two tests- one on hormones"
- 2312 PRINT: PRINT "and the other on homeostasis. In the"
- 2315 PRINT: PRINT "last section you use the knowledge you"
- 2317 PRINT: PRINT "were tested on in a series of"
- 2320 PRINT: PRINT "biological computer simulations."
- 2322 FRINT: PRINT " Each test consists of four multiple"
- 2325 PRINT: PRINT "choice quest ions."
- 2348 GDSUP 30000
- 2349 VTAB 2
- 2350 PRINT " Choose the best a newer to each"
- 2352 PRINT
- 2355 PRINT "question. Then pres s the key in the"
- 2357 PRINT
- 2360 PRINT "top row of the keybo ard which has the"
- 2362 PRINT
- 2365 PRINT "number of the answer you chose on it."
- 2367 PRINT : PRINT "Do not press the number of your answer"
- 2368 PRINT : PRINT "more than on ce because it will be"
- 2369 PRINT: PRINT "counted as t he answer to the following"
- 2370 PRINT: PRINT "question."
- 2375 GDSUB 30000
- 2380 VTAB 6
- 2385 PRINT " Following the previously described"
- 2390 PRINT "procedure, try anser ing this practice"
- 2395 PRINT "question:"
- 2400 FRINT : PRINT : PRINT
- 2405 PRINT "The fluid which carries oxygen and"
- 2407 PRINT "nutrients to the bod y is called:"

2409 PRINT : PRINT 2411 HTAB 10: PRINT "1. Lymph" 2413 HTAB 10: PRINT "2. Bile" HTAB 10: PRINT "3. Blood" 2415 HTAB 10: FRINT "4. Gastric 2417 juice" 2420 GET SA# HOME 2422 2424 GOSUB 40000 2450 REM INTRO TO TESTS 2455 VTAB 2 FRINT " 2460 If you answer all the questions" 2465 PRINT 2470 PRINT "correctly on these t wo tests, you will" 2475 FRINT 2480 PRINT "immediately go on to the biological" 2482 PRINT 2485 PRINT "simulations. It you miss any of the" 2488 PRINT 2490 PRINT "questions on one or both of the tests" 2495 PRIME 2500 PRINT "you will be given a short review on the" 2505 PRINT 2510 FRINT "topic of that test a nd you will be" 2515 PRINT PRINT "given another chance 2520 to answer the" 2525 PRINT PRINT "questions you missed 2530 correctly. You" 2535 PRINT 2540 PRINT "can then proceed to the next part of " 2545 PRINT 2550 PRINT "the program." 2555 REM PRIC 2560 GUSUB 30000 2565 REM HORMONE TEST 2570 VTAB 7: HTAB 14 2575 PRINT "HORMONE TEST" 2580 VTAB 6: HTAB 14: PRINT "*** 有老女女女女女女女¹¹ 2585 VTAB 8: HTAB 14: FRINT "*** 老长长老长长长老女¹¹ 2590 GOSUB 30130 2595 HOME

2597 REM READ DATA INTO ARRAY

```
2598 GOSUB 30200
2599 GDSUB 32500
2600 HOME
    1F W > 0 THEN GOTO 2650
2601
2605 VTAB 6: PRINT " Great!
     ou scored 4 out of 4 on the"
2606 PRINT "first try! Now try
     the homeostasis"
2607 PRINT "test."
2610 GOSUB 30000
2615 GOTO 4000
2650 IF W > 2 THEN GOTO 2800
2652 REM 1 OR 2 MISSED
2655 REM PRINT QUESTIONS MISSED
2660 HOME
2662 GUSUB 42000
2664 VTAB 2
2665 PRINT " You will now see
     a brief review on"
2666 PRINT
2667 PRINT "hormones. The answe
    rs to all of the"
2668 PRINT
2669 PRINT "test questions will
     be highlighted in"
2670 PRINT
2671 PRINT "the following fash:o
    n: ";
2672 INVERSE
2673 PRINT "HORMONE":
2674 NORMAL
2675 PRINT ". Read": PRINT "": PRINT
     "over the review, paying pat
     icular
     PRINT "": PRINT "attention
2676
     to the answers to the"
2677 PRINT "": PRINT "questions
     you missed. You will then b
     e": PRINT "": PRINT "tested
     again on those questions."
2678 GOSUB 30000
2679 GOTO 3000
2800 REM 3 OR 4 MISSED
      REM PRINT QUESTIONS MISSED
2805
2816 GDSUB 42000
     VTAB 6
2813
     PRINT "
2815
              You may wish to s
     top the program and"
2817 PRINT "": PRINT "review hor
     mones in your textbook at"
```

2819 PRINT "": PRINT "this point

```
    If so, press the key"

     PRINT "": PRINT "marked 1.
      If you wish to continue,"
2823
      PRINT "": PRINT "press RETU
    RN. "
2825
     GET X4
2835
     HOME
     JF X$ < > "1" THEN
2836
                          GOTO 2
     664
2840
     END
3000 GDSUB 33000
3200
      REM REANSWER QUESTIONS MIS
     SED, EVALUATE, STORE
3205
      GUSUB 42100
3207
     HOME
3210
      REM BRANCH TO POS FEEDBACK
      IF W = 0 THEN GOTO 3900
3215
3220
      REM PRINT QUESTIONS MISSED
      AND ANSWERS
3225
      GOSUB 42500
3226
      VTAR 6
3228
      PRINT "
               Now press the REI
     URN key to take the"
3229  PRINT "": PRINT "homeostasi
     s test."
3230
     REM PRIC
      G05UH 30000
3235
3240 GOTO 4000
3900
     REM ALL CORRECT
     VTAE 6: PRINT "
3905
                       Good! Yo
     u answered all the"
3907
     PRINT "": PRINT "questions -
               Now take the "
     correctly.
     PRINT "": PRINT "homeostasi
3909
     s test."
3910
     REM PRIC
3915
      GOSUB 30000
4000
     REM HOMEOSTASIS TEST
4005
      REM
           TITLE
4007
      HOME
4010
     VTAB 6: HTAB 12: PRINT "***
     4015
     VTAB 7: HTAB 12: PRINT "HOM
     EOSTASIS TEST"
      VTAB B: HTAB 12: FRINT "***
4020
     安安安安安安安安安安安安 <sup>13</sup>
4025
      REM FRID
4030
      GOSUB 30130
4035
      REM TEST
4036
      REM
          LOAD DATA
4037
      GDSUB 30200
4039 REM RESET W
4040 W = 0
```

```
4045 BDSUB 32500
4050 IF W > 0 GDTO 4105
4052 HOME
4055 VTAB 6: PRINT " Fantastic
     ! You scored 4 out of 4!"
4060 FRINT "": PRINT "Now go on
    to the final part of this"
4065 PRINT "": FRINT "program."
4067 REM PRIC
4069 GDSUB 30000
4070 G010 50000
4105 REM 1 DR 2 MISSED
4110 REM PRINT QUESTIONS MISSED
4115 HOME
4117 GOSUB 42000
4119 VTAB 2
4120 PRINT " You will now see
    a brief review on"
4125 PRINT "": PRINT "homeostasi
    s. The answers to all the"
4130 FRINT "": PRINT "questions
    will be highlighted in the "
4132 PRINT
4135 FRINT "following (ashion: "
;
4140 INVERSE
4145 PRINT "HOMEOSTASIS";
4150 NORMAL
4155 PRINT ". Read"
4160 FRINT "": PRINT "over the r
    eview, paying paticular"
4165 PRINT "": PRINT "attention
     to the answers to the"
4170 PRINT "": PRINT "questions
     you missed. You will then b
     e^{\pi i}
4175 PRINT "": PRINT "tested aga
     in on those questions."
4200 GDSUB 30000
4210 GOTG 5000
5000 REM HOMEOSTABJE REVIEW
5005 GDSUB 34000
5210 REM REANSWER QUESTIONS MIS
     SED
5215 GOSUB 42100
5218 HOME
5220 REM POS FEEDBACK
5225 	ext{ IF } W = 0 	ext{ THEN GOTO } 49900
5230 REM PRINT QUESTIONS MISSED
5235 GOSUB 42500
```

5240 PRINT

```
5241 PRINT
5242 PRINT " Now press the RET
    URN key to go on to"
5245 PRINT "the final portion of
     this program."
5250 REM FRIC
5252 GOSUB 30000
5260 GDTD 50000
30000 REM PRESS RETURN TO CONTI
    NUE
30005 VTAE 24: HTAE 8
30010 INVERSE
30015 PRINT "PRESS RETURN TO CON
    TINUE"
30020 NORMAL
30025 GET DD4
30026 \text{ Ki} = ASC (DD#)
30027 IF K1 = 13 THEN 6070 3003
    0
30028 GOTO 30025
30030 HOME
30035 RETURN
30130 REM 5 SECOND PAUSE
30135 FOR T = 1 TO 3000
30140 NEXT T
30145 RETURNS
30200 REM READ DATA INTO ARRAY
30205 FOR I = 1 TO 4
30210 FDR J = 1 TD 6
30215 READ D$(I,J)
30220 NEXT 3
30225 NEXT 1
30230 RETURN
30235 REM DATA
30240 DATA "Typically, a hormon
     e is an organic
                        molecul
     e that is secreted from a ti
     ssue of an organism and that
30245 DATA "Regulates the tissu
     e from which it was secrete
     d."
30250 DATA "Regulates similar t
     issues or
                  organs of othe
     r organisms."
30255 DATA "Regulates all tissu
     es of an
                  organism."
30260 DATA "Regulates some othe
     r tissues or organs of the
     organism."
30265 DATA 4
30270 DATA "Hormones are transp
     orted by the:"
30275 DATA "Lymphatic system."
```

- 30280 DATA "Nervous system.","R espiratory system.","Circula tory system.",4
- 30285 DATA "The action of hormones is best described by which of the following sets of terms:"
- 30290 DATA "Non-specific, all t issues", "Highly specific, ta rget tissues"
- 30295 DATA "Non-specific, targe t tissues", "Highly specific, all tissues"
- 3029B DATA 2
- 30300 DATA "Compared to the ner vous system, hormone s act at:"
- 30305 DATA "A much more rapid rate.", "A slower rate.", "About the same rate.", "A more rapid rate."
- 30307 DATA 2
- 30310 REM HOMEOSTASIS TEST
- 30315 DATA "Homeostasis is:"
- 30320 DATA "Maintenance of relatively constant conditions within the body."
- 30325 DATA "Periodic fluctuation of conditions with him the body."
- 30330 DATA "Random fluctuation of conditions within the bod y."
- 30335 DATA "Rapid deterioration of conditions within the bo
- 30340 DATA 1,"The molecular structures and chemical react ions of the human body function effectively:"
- 30345 DATA "In a wide range of temperature, pH, and chemic al concentrations."
- 30350 DATA "Only within a name wrange of temperature, but in a wide range of pH and chemical concentrations."
- 30355 DATA "Only within a narro w range of pH.but in a wide range of temperature and an d chemical concentrations."
- 30360 DATA "Only within a narro w range of temperature, p H, and chemical concentratio

ns.",4

30365 DATA "Which of the follow ing sets would make the best model to illustrate homeostasis?"

30370 DATA "Faucet, water pipes , water flow."

30375 DATA "Light switch, light bulb, light."

30377 DATA "Thermostat, furnace, noom temperature."

30380 DATA "Dial, radio, statio n selection.", 3

30385 DATA "When the blood gluc ose concentration falls below a specific set level, the hormone glucagon is released. Which of the following would most likely be the effect of glucagon?"

30390 DATA "All available gluco se in the liver is relea sed into the blood."

30395 DATA "Glucose is released from the liver into the blood glucose concentration returns to its setleyel."

30400 DATA "Glucose is released from the liver into the blood until the blood is sa turated with glucose."

30405 DATA "Insignificant amounts of glucose are released into the blood.".2

32500 REM TEST

32515 FOR I = 1 TO 4

32520 HOME

32525 VTAB 6

32530 REM PRINT QUESTION

32535 PRINT O#(1,1)

32540 PRINT : PRINT

32545 REM PRINT NUMBERED CHOICE S

32550 FOR J = 2 10 5

32555 HTAB 5

32560 PRINT 0 - 1". ";: PRINT 0: (1,3)

32562 PRINT

32565 NEXT J

32570 PRINT

32575 REM INPUT STUDENT ANSWER

32580 GET SA#

32585 REM EVALUATE TEST, STORE

```
DUESTIONS MISSED
32590 GOSUB 40200
32595 NEXT I
32598 RETURN
33000 REM HORMONE
33005 VTAB 3
33010 HTAB 10: PRINT "***HORMONE
     REVIEW***
33015 PRINT : PRINT : PRINT
33020 FRINT "
                A hormone is an
    organic molecule"
33022 PRINT
33025 PRINT "that is secreted. u
     sually in minute"
33027 PRINT
33030 PRINT "amounts, from one t
    issue of an organism"
33035 PRINT
33040 PRINT "and that ":
33048 INVERSE
33049 PRINT "REGULATES";
33050 NORMAL
33055 PRINT " the function of";
33057 FRINT " ";
33060 INVERSE
33045 PRINT "OTHER"
33070 PRINT "TISSUES OR ORGANS":
33075 NORMAL
33080 PRINT " ";
33090 PRINT "of the organism."
33100 PRINT
33105 PRINT "Hormones are secret
     ed by glands into"
33110 PRINT
33112 PRINT "the";
33113 PRINT " ";
33114 INVERSE
33116 PRINT "CIRCULATORY SYSTEM"
33117 NORMAL
33118 PRINT " and are carried"
33120 PRINT
33125 PRINT "by the blood throug
     hous the body.
33130 PRINT
33132 GOSUE 30000
33140 VTAL 2
33145 PR1NT "
                Hormones exert o
     ne or more";
33148 PRINT " ":
33150 INVERSE
33155 PRINT "HIGHLY"
33157 PRINT
```

```
33160 PRINT "SPECIFIC EFFECTS":
33165 NORMAL
33170 PRINT " on their ";
      INVERSE
33175
33180 PRINT "TARGET TISSUE":
33185 NORMAL
33190
      PRINT
33195 PRINT
33200 PRINT "or tissues. For ex
     ample, prolactin, a "
33205
      PRINT
      PRINT "hormone secreted by
33210
     the anterior"
33212 PRINT
33215 PRINT "pituitary, stimulat
     es milk secretion"
33217 PRINT
33220 PRINT "in breast tissues.
     These effects,"
33222
      PRINT
33225 PRINT "however, occur ";
      INVERSE
33230
33235 PRINT "MORE SLOWLY":
33240 NORMAL
      PRINT " ":
33242
33245 PRINT "than those";
33248 PRINT
33250 PRINT
33255 PRINT "elicited by the ";
33260 INVERSE
33265 PRINT "NERVOUS SYSTEM";
33270 NORMAL
33275 PRINT " ."
33280 PRINT
33282 GOSUB 30000
33283
      VTAB 2
33285 PRINT "
                Some hormones ar
     e concerned with"
33287
      PRINT
33290 PRINT "change- either the
     changes associated"
33295 PRINT
33300 PRINT "with maturation or
     in response to"
33302 PRINT
33305 PRINT "external events. H
     ormones are also"
33310 PRINT
33315 PRINT "involved in homeost
     atic regulation.
33317 PRINT
33320 PRINT "The latter hormones
      are the subject of"
33322 PRINT
```

```
33325 PRINT "this program."
33500 GDSUB 30000
33505 RETURN
34000 VTAB 3
34005 HTAR 8: PRINT "***HOMEOSTA
    SIS REVIEW***"
34010 PRINT : PRINT : PRINT
34015 PRINT "
               Homeostasis is "
      INVERSE
34020
34025 PRINT "MAINTENANCE OF"
34030 PRINT
34035 PRINT "RELATIVELY CONSTANT
     CONDITIONS":
34040 NORMAL
34042 PRINT " ";
34045 PRINT "within"
34050 PRINT
34055 PRINT "the body. The mole
    cular structures and"
34060 PRINT
34065 PRINT "chemical reactions
     of the human body"
34067 PRINT
34070 PRINT "function well only
    within ";
34075 INVERSE
34080 PRINT "NARROW LIMITS"
34085 PRINT
34090 PRINT "OF TEMPERATURE AND
    F'H":
34095 NORMAL
34100 PRINT ", and ";
34101 INVERSE
34102 PRINT "CHEMICALS"
34103 NORMAL
34105 PRINT
34110 PRINT "needed by the body
     can be lethal except"
34115 PRINT
      INVERSE
34117
34120 PRINT "WITHIN NARROW LIMIT
    S OF CONCENTRATION, "
34122 NORMAL
34125 GBSUB 30000
34127 VTAB 2
34130 PRINT "Thus the tissues an
    d organs of the body"
34135 PRINT
34140 PRINT "are continually act
     ing to keep"
34145 PRINT
34150 PRINT "properties of the b
     ody's internal"
```

```
34152 PRINT
34155 PRINT "environment such as
     temperature and"
34160 PRINT
34165 PRINT "the concentration o
     f nutrients, gases,"
34170 PRINT
34175 PRINT "jons, and water at
     a set level which is"
34180 PRINT
34185 PRINT "favorable to the fu
    nctioning of the"
34190 PRINT
34195 PRINT "cells."
34200 GOSUB 30000
34202 VTAB 2
34205 PRINT "
                The process of h
     omeostasis can be"
34210 PRINT
34215 PRINT "compared to the act
     ion of a ";
34216 INVERSE
34217 FRINT "THERMOSTAT"
34220 PRINT
34225 PRINT "AND FURNACE CONTROL
     LING ROOM"
34230 PRINT
34235 PRINT "TEMPERATURE";
34236 NORMAL
34237 PRINT ". The set level fo
    r the"
S4240 PRINT
34245 PRINT "temperature of the
    room is determined"
34250 PRINT
34255 PRINT "by the position at
     which the thermostat"
34257 PRINT
34260 PRINT "is set. If the tem
     perature falls below"
34265 FRINT
34270 PRINT "the set level the t
     hermostat senses"
34275 PRINT
34280 FRINT "this and sends a si
     gnal (electrical"
34285 PRINT
34290 PRINT "current) to a furna
    ce which raises the"
34295 PEINT
34300 PRINT "room temperature."
       G0SUB 30000
34305
34307 VTAB 2
34310 PRINT "
                When the tempera
```

ture reaches the set" 34315 PRINT 34320 PRINT "level, the heat tur ns off the control" 34325 PRINT 34330 PRINT "signal from the the rmostat and the" 34335 PRINT 34340 PRINT "furnace turns off. Thus the room " 34342 PRINT 34345 PRINT "temperature is main tained at the set" 34347 PRINT 34350 PRINT "level." 34355 PRINT 34360 PRINT " In a similar fas hion, the body " 34365 PRINT 34370 PRINT "maintains relativel y constant" 34375 PRINT 34380 PRINT "internal conditions by continually" 34385 PRINT 34390 FRINT "monitoring the inte rnal environment and" 34395 PRINT 34400 PRINT "comparing it to set values." 34405 BOSUB 30000 34407 VTAB 2 34410 PRINT " If any characteri stic of the internal" 34412 PRINT 34415 PRINT "environment deviate s from its set level" 34420 PRINT 34425 PRINT "certain organs or t issues of the body" 34427 PRINT 34430 PRINT "produce a specific signal, which can be" 34435 PRINT 34440 PRINT "either hormonal or nervous. This" 34445 PRINT 34450 PRINT "signal causes the a ppropriate" 34455 FRINT 34460 FRINT "mechanisms of the b edy to work hard to" 34465 PRINT 34470 PRINT "return the internal

```
environment to its"
34472 PRINT
34475 PRINT "set level."
34480 GDSUH 30000
34485 VTAB 2
34490 PRINT " The regulation o
    f blood glucose"
34495 PRINT
34500 FRINT "concentration is an
     example of"
34505 PRINT
34510 PRINT "homeostasis. If bl
    ood plucose levels"
34515 PRINT
34520 PRINT "rise above the set
     level, specialized"
34525 PRINT
34530 PRINT "cells in the pancre
    as sense this and"
34532 PRINT
34535 PRINT "produce the hormone
     insulin. Insulin "
34540 PRINT
34545 FRINT "acts on the cells o
    f the body, causing"
34550 FT:INT
34555 FRINT "an accelerated tran
     sport of glucose"
34560 PRINT
34565 PRINT "from the blood into
     cells until the "
34570 PRIMI
34575 PRINT "concentration of ol
     ucose falls to the"
34580 PRINT
34585 PRINT "set level."
34590 BOSUR 30000
34595 VTAB 2
34600 PRINT" If the glucose c
    oncentration ";
34605 INVERSE
34610 PRINT "FALLS"
34615 FRINT
34620 PRINT "BELOW THE SET LEVEL
34625 NORMAL
34630 FRINT ", the body produces
34632 PRINT
34635 PRINT "the hormone ";
34640 INVERSE
34645 FRINT "GLUCAGON":
34650 NORMAL
34655 PRINT ", which causes"
```

```
34657 PRINT
34660 PRINT "the ":
34665 INVERSE
34670 PRINT "RELEASE OF GLUCOSE
    FROM THE LIVER";
34675 NORMAL
34680 PRINT "."
34685 PRINT
34690 PRINT "The glucose concent
    ration";
34692 FRINT " ":
34700 INVERSE
34705 PRINT "RISES URTIL IT";
34710 PRINT
34715 PRINT "REACHES THE SET LEV
    EL";
34720 NORMAL
34725 PRINT "."
34730 FRINT
34735 PRINT " The final portio
    in of this program"
54740 PRINT
34745 PRINT "demonstrates how fi
    ve hormones,"
34747 PRINT
34750 PRINT "including insulin a
    nd glucagon,"
34752 FRINT
34755 PRINT "function in homeost
    asis."
34760 BOSUB 30000
34765 RETURN
35000 STOP
40000 REM FRACTICE TEST EVALUAT
     ION
40010 IF SA# < > "3" THEN COTO
     40100
40015 VTAB 6
40016 PRINT " Excellent! You d
     id that perfectly."
40017 PRINT "Now go on to the ho
     rmone and homeostasistests."
40090 G08UB 30000
40095 RETURN
40100 VTAB 6
40105 PRINT " The correct answ
     er is 3; blood"
40107 PRINT
40110 PRINT "carries oxygen and
    nutrients to the"
40112 PRINT
40115 FRINT "tissues of the body
     You may wish to"
```

```
40117 PRINT
40120 PRINT "stop the program an
     d review physiology"
40125 PRINT
40130 PRINT "in your textbook at
      this point. If so,"
40135 PRINT
40140 PRINT "press the key in to
     p row of the"
40145 PRINT
40147 PRINT "keyboard marked i.
      If you wish to take"
40149 PRINT
40150 FRINT "the hormone test pr
     ess the RETURN key."
40155 GET X#
40157 HOME
40160 IF X* = "1" THEN END
40165 RETURN
40170 HOME
40175 END
40200 REM TEST EVALUATION, STOR
     E QUESTIONS MISSED
40205 IF 5A4 = 0*(1.6) THEN GOTO
     40400
40210 W = W + 1
40215 \text{ R}*(W,1) = 0*(I,1)
40220 \text{ R} \pm (W, 2) = D \pm (I, 2)
40225 \text{ R}*(W,3) = Q*(1,3)
40230 \text{ R} \pm (W,4) = Q \pm (1,4)
40235 \text{ R} = (W,5) = 0 = (I,5)
40240 \text{ R} \pm (W, 6) = 0 \pm (T, 6)
40400 RETURN
42000 REM PRINT QUESTIONS MISSE
     D
42004 VTAB 6
42005 FRINT "You missed the foll
     owing question(s):"
42006 GOSUB 30130
42007 HOME
42010 PRINT : PRINT : PRINT
42015 FOR K = 1 TO W
42017 VTAB &
42020 PRINT R#(K,1): PRINT: PRINT
42022 GOSUB 30000
42025 NEXT K
42035
       RETURN
42100 REM REANSWER QUESTIONS MI
     SSED
42102
       HOME
42103 VTAB 6
42105 PRINT "Now try the questio
     n(s) you missed"
```

```
42107 PRINT "again:"
42110 REM PAUSE
42115 GOSUB 30130
42120 HOME *
42125 REM PRINT DUESTIONS
42126 W) = W
42128 W = 0
42130 \text{ FDR I} = 1 \text{ TO W1}
42135 HOME
42140 VTAB 6
42145 REM PRINT QUESTION
42150 PRINT R# (I,1)
42155 PRINT : PRINT
42160 REM PRINT NUMBERED CHOICE
42165 FOR J = 2 TO 5
42170 HTAR 5
42175 PRINT J - 1:". ":: PRINT R
    *(I,J)
42178 NEXT 0
42180 PRINT
42185 REM INPUT ANSWER
42190 GET SA#
42195 REM EVALUATE ANSWER. FLAG
      QUESTIONS MISSED
42190 IF SA# = R4(1,6) THEN GOTO
     42205
42200 \text{ R} * (1,7) = "WR"
42202 W = W + 1
42205
      NEXT 1
42210 RETURN
42500 FEM FRINT QUESTIONS MISSE
     D AND THEIR ANSWERS
42504 VTAB 2
42505 PRINT "Here are the questi
     on(s) you missed and"
42506 PRINT "their answers:"
42510 PRINT : PRINT
42515 FOR I = 1 70 Wi
42517 IF R#(I,7) < > "WR" GOTO
     42545
42518 VTAB 6
42520 PRINT R#(1,1)
42530 R = VAL (Rx(1,6)) + 1
42532 PRINT : PRINT
42535 PRINT "ANSWER: ":R#(I,R)
42540 GCSUB 30000
42545
      NEXT I
42550 RETURN
49900 REM ALL CORRECT
49905 VTAB 6: PRINT " Great!
     You have correctly answered
49906 PRINT "": PRINT "all the q
```

uestions. Now press RETURN

49908 PRINT "": PRINT "the final part of the program."

49910 REM PRIC

49915 GOSUB 30000

49920 GOTO 50000

50000 REM INTRO SIMULATION

50005 VTAB 2

50010 HTAB 5: PRINT "***SIMULATI
ON INSTRUCTION5***"

50020 VTAB 6: PRINT " In the f cllowing simulations, you"

50030 PRINT: PRINT "will see so me physiological factor in "

50040 PRINT: PRINT "a certain patient X depart from its set

50050 FRINT: PRINT "level. For example, his blood glucose"

50060 PRINT : PRINT "concentrati on could rise abnormally"

50070 FRINT: PRINT "high, as oc curs in untreated diabetes."

50075 GDBUB 30000

50080 PRINT: PRINT "Your jo b, as patient X's hormonal"

50090 PRINT : PRINT "system, is to secrete the correct"

50100 PRINT: PRINT "hormone to bring the physiological"

50110 PRINT: PRINT "factor back to its set level. This "

50120 FRINT: PRINT "process of maintaining physiological"

50130 PRINT : FRINT "conditions at their set levels is"

50140 PRINT : PRINT "homeostasis

50150 BOSUB 30000

50160 FRINT: PRINT" Each simulation consists of a graph"

50170 PRINT : PRINT "whose verticle axis is labeled with the

50180 PRINT: PRINT "physiologic al condition being affected-

50190 PRINT : PRINT "for example , blood glucose"

50200 PRINT: PRINT "concentration on while the horizontal"

50210 PRINT : PRINT "exis is lab elec with the time over"

50220 PRINT: PRINT "which the c hange occurs. A horizontal"

50230 PRINT: PRINT "line running through the center of the

50240 PRINT: PRINT "graph represents the set level for"

50250 PRINT : PRINT "that condition."

50260 GDSUB 30000

50270 PRINT: PRINT "You will see a line curving either"

50280 PRINT : PRINT "up or down.
This represents the"

50290 PRINT: PRINT "physiologic al factor departing from the

50300 PRINT: PRINT "set level. If the physiological factor

50310 PRINT: PRINT "exceeds its normal biological range,"

50320 PRINT: PRINT "the line wi ll turn brange (if you have"

50330 PRINT: PRINT "a color scr een) and the computer will"

50340 PRINT : PRINT "beep."

50350 GOSUR 30000

50360 PRINT: PRINT" At the b eginning of the simulations"

50365 PRINT

50370 PRINT "you will see a list of five hormones"

E0375 PRINT

50380 PRINT "and their actions. Familiarize"

50385 PRINT

50390 PRINT "yourself with this list. At the bottom"

50395 FRINT

50400 FRINT "of each simulation you will see three "

50405 PRINT

50410 PRINT "letter abbreviation s of the hormones on"

50420 PRINT: PRINT "the list nu mbered one through five."

50430 GDSUB 30000

50435 VTAB 2

50440 PRINT " Press the key of the number of the "

50450 PRINT: PRINT "hormone who se action will return the"

50460 PRINT: PRINT "physiologic al factor to its set level."

50470 PRINT : PRINT "You will on ly have one chance, so chose

50480 PRINT: PRINT "the correct hormone the first time!"

50490 GOSUB 30000

50500 PRINT " To begin the simulations you must"

50510 PRINT: PRINT "follow thes e steps. If there is a key"

50515 PRINT

50520 PRINT "marked 'CAPS LOCK' in the lower left"

50525 PRINT

50530 PRINT "hand corner of the keyboard, make sure"

50535 PRINT

50540 PRINT "it is in the depres sed position. Then"

50545 FRINT

50550 PRINT "type the following words just as they"

50555 PRINT

50560 PRINT "they are written and then press the "

50565 PRINT

50570 PRINT "RETURN key:"

50575 PRINT

50580 PRINT "RUN PHYSIM"

50590 PRINT: PRINT " If you g et an error message, check"

50600 PRINT: PRINT "the CAPS LO CK key and try again."

50620 END

THE FOLLOWING PAGE IS CUT OFF

THIS IS AS RECEIVED FROM THE CUSTOMER

```
5 REN ***PHYS]M***

10 PUKL 103,1

20 PUKE 104,64

30 PUKE 16384.0

35 PRINT CHF# (4)"BLOAD ALPHA"

A0 PRINT CHF# (4); "RUN LINEGRAP

H 2"
```

```
6 REM ***LINEGRAPH 2***
8 HOME
9 GOSUB 17000
10 J = 0
15 \text{ RH} = 0
20 \text{ FOR } J = 1 \text{ TO } 5
30 \text{ C(J)} = 1\text{NT } (5 * \text{RND } (1)) + 1
40
    IF J < 2 THEN GOTO 90
50
    FOR A1 = J = 10 = 1 STEP - 1
60
    IF C(J) = C(A1 - 1) THEN GOTO
     30
70
    NEXT A1
    FOR AZ = 1 TO C(J)
90
    READ Z14, Z2$, VT, I, D, E, L
100
    NEXT A2
110
115
    RESTORE
     DATA "BLOOD GLUCOSE"."CONC
120
        MG/100 ML",140,10,108,.97
                   30
130
              "BLOOD GLUCOSE", "CON
     DATA
     D. MG/100 ML",140,10, -10
     8
     4.30
140
    DATA "BLOOD OSMOLALITY", "MI
     LL10SMOLS/LITER", 325,5,108,
     .97.30
              "BLOOD CALCIUM", "CON
150
     DATA
     C. ME/100 ML",15,1,-108,.94
                   15
             "BASAL METABOLIC RATE
     DATA
160
                   ,"KCALS/M SQUAR
     ED/HR",51,2,-108,:99,20
    DATA "BLOOD OSMOLALITY", "MI
170
     LL1MOLS/LITER",325,5,108,.94
      ,30
175 \text{ AN} = 0
177 \text{ RH} = 0
180 GOSUE 2000
200
     NEXT J
210
     HOME
     VTAB B: FRINT " If you wis
220
     h to see the simulations a
      gain, press 1. If you wish
     to end the program, press RE
     TURN."
240
     GET TA$
250 \text{ TA} = VAL (TA$)
255
     HOME.
     IF TA = 1 THEN GOTO 4
260
265
     VTAB 8
     PRINT "
                I hope you enjoyed
270
      HORMONES AND
                          HOMEOSTAS
```

```
18. Please turn off the
        computer's power switch b
                 leave."
     efore you
280 END
2000 PRINT CHR# (4) "BLDAD ALPHA
2020 HGR : HCDLOR= 6
2030 HPLOT 48,0 TO 48,154 TO 278
     ,154 TO 278,0 TO 48,0
2040 HFLOT 48,80 TO 278,80
2220 DZ$ = "U"
2230 RZ = 48
2240 \ ZZ4 = Z14
2250 LZ = LEN (ZZ$)
2260 \text{ ZX} = 3
2270 \text{ ZY} = 7 * \text{LZ} + .5 * (159 - 7 *
     LZ)
2280 GOSUB 6000
2290 ZZ# = Z2#
2300 L2 = LEN (224)
2310 \text{ ZX} = 17
2320 ZY = 7 * L2 + .5 * (159 - 7 *
     LZ)
2330 BDSUB 6000
2340 RZ = 0
2345 DZ# = "R"
2350 FOR A3 = 0 TO 10
2360 ZZ = VT - A3 * I
2370 ZZ = STR (ZZ)
2380 LZ = LEN (ZZ$)
2390 ZX = 47 - 7 * LZ
2400 \text{ ZY} = 15 * 43 + 4
2410 GOSUE 6000
2420 NEXT A3
2430 \text{ CH} = 0
2450 GDSUB 13000
2510 HCOLOR= 1
2520 FOR X = 50 TO 277
2540 GOSUB 7000
2542 IF RH = 0 THEN GOTO 2545
2543 RETURN
2545 IF AN = 1 THEN GOTO 11070
2550 Y = 82 - ((X - 50) \land 2 / D)
2560 IF Y < 82 - L OR Y > 82 + L
      THEN GOSUB 8000
2570 HPLOT X,Y TO X,Y - 3
2580 IF Y < 5 OR Y > 149 THEN GOTO
     10000
2590 NEXT X
2600 \text{ XR} = \text{X}
2620 \text{ YR} = \text{Y}
2630 \text{ FOR } X = XE \text{ TO } 275
2640 Y = 82 - ((82 - YR) * E \circ ().
      - XR))
```

```
2650 IF Y < B2 - L OR Y > B2 + L
     THEN 60TO 2680
2660
     HCOLOR= 1
2670 GDTO 2690
2680 GDSUB 8000
2690 HPLOT X,Y TO X,Y - 3
2700 NEXT X
2710 \text{ AN} = 1
2720 60TD 10000
6000 REM DRAW CHARACTERS- MODIF
     IED FROM A PROGRAM BY M.L. M
     ITCHELL
6020 PDKE 232,5000 - INT (5000 /
     256) * 256
6025 PDKE 233, INT (5000 / 256)
6030 HODLOR= 3
6035 RDT= RZ
6040 IF DZ$ = "R" THEN 19 = 7
6050 IF DZ = "U" THEN 19 = -7
6060 XZ = ZX:YZ = ZY
6070 SCALE= i
6080 FOR A = 1 TO LZ
6090 \text{ Z94} = \text{MID$ (ZZ$,} A, 1)
6100 ZN = ASC (Z9#) - 31
6110 XDRAW ZN AT XZ.YZ
6120 IF 19 = 7 THEN XZ = XZ + I9
     : GOTO 6140
6130 YZ = YZ + I9
6140 NEXT A
6150 RETURN
7000 P = PEEK (49152)
7020 IF P < 128 THEN GOTO 7070
7030 \text{ CH} = \text{CH} + 1
7040 P# = CHR# (P - 128): PDKE 4
     9168,0
7050 PA = VAL (P#)
     IF PA = C(J) AND CH = I THEN
7060
      GOTO 2600
7070 RETURN
8000 REM ABOVE LEVEL
8010 HOOLDR= 5
8020 B = B + 1
8030 IF B < > 5 THEN 6010 8050
8035 VIAB 10: PRINT CHR# (7)
8040 E = 0
8050 RETURN
10000 TEXT
10005 HOME
10010
      VTAB B: HTAB 17
      IF AN = 0 THEN PRINT "WRO
     NG!"
10030
      IF AN = 1 THEN PRINT "RIG
```

```
HT!"
11000 VTAR 14
11010 IF C(J) = 1 THEN PRINT "
       Insulin lowers the blood o
               concentration."
11020
      IF C(J) = 2 THEN PRINT "
      Glucagon raises the blood
              concentration."
11030 IF C(J) = 3 THEN PRINT "
      Antidiuretic hormone lower
               blood osmolality
     by inhibiting urine
                           forma:
    tion."
11040 JF C(J) = 4 THEN PRINT "
      Parathyroid hormone (FTH)
    raises the blood calcium con
     centration."
11050 IF C(J) = 5 THEN PRINT "
      Thyroxine increases the ba
               metabolic rate (B
     MR) to the set level."
11070 VTAB 20: PRINT "If you wis
     h to review the hormone list
      press 1. If not, press RE
     TURN to
                  continue."
11080 GET RH#
11085 HOME
15090 RH = ASD (RH#)
11100 IF RH = 49 THEN GOSUB 170
     00
11110 RETURN
13000
      REM HOR AXIS
      IF C(J) = 1 OR C(J) = 2 THEN
13010
      GOTO 13020
13015
       GOTO 13500
13020
      HTAB 8: VTAB 21
13030
       PRINT "O
                             40
         60
                80"
13040
      VTAB 22: HTAB 20
13050 PRINT "MINUTES"
13060 GOTU 13600
13500
      VTAB 21: HTAB 8
       PRINT "O
13510
                             2
                     1
                4.11
        3
13520
       VTAB 22: HTAB 21
13530
      PRINT "HOURS"
13600
       VTAB 23: HTAP 10
13610 PRINT "1.INS 2.GLU 3.ADH 4
     .FTH 5.THY"
13620 RETURN
17000
      REM HORMONE LIST
17010 VTAB 2: HTAB 11
17020 FRINT "***HORMONE LIST***"
```

17030 Vink 4: PRINT "1. INSULINlowers the blood glucose concentration."

17040 PRINT: PRINT "2. GLUCAGON - raises the blood glucose concentration."

17050 PRINT: PRINT "3. ANTIDIUM ETIC HORMONE (ADH) decreases the blood osmolal ity by inhibiting urin e formation."

17060 PRINT: PRINT "4. PARATHYR OID HORMONE (PTH) - raises the blood calcium concentration."

17090 PRINT: PRINT "5. THYRDXIN E- increases the basal metabolic rate."

17083 VTAB 21: HTAB 2

17085 PRINT "*PRESS RETURN FOR E XPLANATORY NOTES*"

17090 GDSUB 20000

17095 VTAB 6

17100 PRINT: PRINT: PRINT "NOT
ES: The basal metabolic rat
e is the metabolic rate of a
person who is conscio
us and at rest. The blood
osmolality is a measure
of the concentrati
on of solutes dissolved in
the blood."

17i10 GOSUB 20000

19950 RETURN

20000 VIAB 23: HTAB 8

20010 INVERSE

20020 PRINT "PRESS RETURN TO CONTINUE"

20030 NORMAL

20040 GET RR\$

20050 RR = ASC (RR*)

20060 IF RR < > 13 GDT0 20040

20070 HOME

20080 RETURN

1430-60 48th