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0. INTRODUCTION

Frequ«ntly a need arises for a test to deteralne if a random variable

is distributed according to an hypothesized distribution function. Several

tests have been developed by which an hypothesized distribution can be

rejected if the probability of an observed random sample being drawn from

this distribution is low. These are called tests of goodness of fit. The

different tests of goodness of fit measure different aspects of the deviation

of the observed values from what would be expected if the hypothesized

distribution were correct.

Distribution free tests of goodness of fit are those which utilize

sample statistics which, if the hypothesized distribution is correct, are

independent of the distribution of the random variable involved. These

tests are valuable because they can be used no matter what the hypothesized

distribution may be.

The purpose of this report is to bring together in one place several

distribution free tests of goodness of fit. The same notation has been used

in presenting each test so that the reader may be able to more easily compare

the tests, and to have a basis for choosing among them when a goodness of fit

test is needed.

In this report the following conventions were adopted:

1. F(x} is the true distribution function of the random variable X.

2. X.,Z., ... ,X Is a random sample of size n from the rand(»

variable X.

3. H(x) is the hypothesized distribution function of X.



4« Pq(x) Is the empirical distribution function of X. That is,

1
°

^(x) - ~ I c (x - x^ where e (t) - 1, t >,F

"i-l

- 0, t <

5. H(x;8) is the hypothesized class of distribution ftmctions to which

F(x) belongs, where 6 is a sMmber of the set 3 of all paraneter

vectors with r elenents.

1. CHI SQUARE TEST

Pearson (1900) presented the chi square test of goodness of fit. In the

case of continuous one dimensional random variables the test statistic for

this test nay be written as:

(1,1) I*- I
—^I''(n J d(P„(x) - H(x)))*

1-1 ^*^i

n
c
J dH(x)

i-l

2where c^ < c^^ < c^ < ... < Cj^ and c^, c^ can be -^^ »• respectively. X is

written in this form to emphasize the type of deviations that the test is

able to detect. Ordinarily for actual use the X^ statistic is defined as:

(1.2) X^- I
^ ^ ^'

1-1 ^1

^1 *i

where 0^ - n J d3F^(x). \' ^i
Vi Vx

dH(x), and — <^ c^ < Cj^ < Cj < ... <

\<:< •,



0. is the number of observations In the sample which are in the Interval

(c. ,, c.) and B. « n(P(c. . < X j< c.)) on the assumption that the hypothesised

distribution function is correct. The exact distribution of tr is not

distribution free (Bimbaum, 1953). However, if H(x) - F(x), and E is

sufficiently large for every i, the limiting distribution of X^ as n increases

without bound is x^ vith k-1 degrees of freedom (Pearson, 1900).

In the case where the hypothesized distribution is of the form H(x; 6)

where 6 is not known the test can still be used. If d can be estimated from

the sample by certain methods we can let 6 be the estimate of the parameter

vector. Then, if F(x) is of the form H(x; 6), X^ is given by

, k
(n r*diF„(x)-H(xj"e^)])*

(1.3) X2- I
i=i

i-1 ^ i .

n / dH(x; e)
J n

'^i-l

2
where there are r elements of 6 to be estimated. X is distributed in the

limit as n increases without bound, as a x^ variable with k-r-1 degrees of

freedom. The estimate of must be by any best asymptotically normal

estimator based on {0.}. Chemoff and Lehman (1954) have studied the

distribution of T" when 6 is estimated by efficient estimators based on the

individual sample observations. These estimators based on the individual

observations are more efficient than any estimators based on the {0.}. If

these more efficient estimators are used, the distribution function of X^

is between the distribution functions of T" with parameters known and X^

with parameters estimated from the (0 }. The probability of rejecting

a true hypothesis is greater than the level of significance given by tables

for X* with k-r-1 degrees of freedom.
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Cochran (1952) gave guidelines as to the mlnlnioB values for E , such

that tabled chl square significance levels are "acceptably" close to the

true significance levels as calculated froo the exact distribution of x.

Significance levels were deemed "acceptably" close if when tabled significance

levels were 0.05 and 0.01 the true significance levels were in the intervals

(0.04, 0,06) and (0.007, 0.015) respectively. The choice of these criteria

was arbitrary. On the basis of available information, Cochran (1952)

concluded that for tests of goodness of fit of bell-shaped curves, such as

the normal distribution, there is little disturbance to the 0.05 level when

a single E. is as low as 0.5. This is also true of the 0.01 level if the

number of degrees of freedom Is greater than 6. In cases where all

expectations may be small it appears that tabled significance levels are

"acceptably" close to the correct values so long as every E. is at least 2.

TVo expectations as low as 1 may be allowed with negligible disturbance to

the 0.05 level. On the whole it seems that the restriction that all E. be

greater than 5 or 10 is more restrictive than necessary.

Two nximerical examples of the use of the x^ test of goodness of fit

will be given. To illustrate the use of this test against a completely

specified hypothesis it will be tested that the following set of values is

a random sample from a normal distribution with mean 30 and variance 100.



TABLE 1.1

Data from Tate and Clelland (1957)

16.7 18.8 24.0 35.1 39.8

17.4 19.3 24.7 35.8 42.1

18.1 22.4 25.9 36.5 43.2

18.2 22.5 27.0 37.6 46.2

Class Intervals were chosen so that the expectations, E. , of all classes

were equal, as recoBDtended by Mann and Wald (1942). In this case the

expectations will be chosen so that each is equal to 5. The classes are

then (— < X < 23.25), (23.25 < x < 30), (30 < x < 36.25), and

(36.25 < X < •) 0, 8, Oj - 4, Oj - 2, and 0^ - 6

. t.- 9 + 1 + 9 + 1
- 4 .

If the set of values were a random sample from a normal distribution with

mean 30 and variance 100, A would be approximately distributed as a x^

variable with 3 degrees of freedom. The probability of a value of x^

with 3 degrees of freedom being as large or larger than 4 is about .25 .

Therefore we have little Justification for concluding that these numbers are

not a sample from a normal distribution with mean 30 and variance 100.

To Illustrate the use of the x' test of goodness of fit in the case

where it is necessary to estimate some parameters, the hypothesis that the

following 55 observations are a random 8aBq[>lc from a normal distribution will

be tested.



TABLE 1.2

Data fron Tate and Clelland (1957)

12.4 15.3 17.2 17.9 19,1 20.4 23,1 26.3 28.5 33.1 38.8

13.1 15.6 17.5 18,1 19.2 20.8 23.2 27.2 28.7 33.7 38,9

13.6 16.2 17.5 18.3 19.2 21.0 23.9 27.4 29.2 33.9 43.0

15.0 16.5 17.6 18.5 19.4 22.0 25.2 28.2 31.0 36.2 66.2

15.2 17.0 17.8 18.8 20.1 22.5 25.4 28.4 32.4 37.4 73.4

*-
: ;?.

la problems of thla type, If one bases his choice of class intervals on

the sample observations he Influences the probability of rejection to a

certain degree. If one estimates the paroneters of the hypothesized

distribution from the individual sample observations the probability of

rejection is influenced by the effect mentioned above of altering the

distribution of x . It appears that in the usual uses of this test it would

be as good to underestimate the level of significance by estimating parameters

from individual sample observations as to influence the level of significance

by an unknown amount by an arbitrary choice of class intervals. Therefore,

even though it is recognised that the level of significance as given by

tables will be only approximate, the mean and variance of the normal

distribution will be estimated from the individual sample observations by the

minimum-variance unbiased estimators. According to Mood and Graybill (1963),

these are, respectively,

n n -

I \ I (\ - X)
i-1 2 i"l

X . i-i . 25.00 and a - ^-^
-. - 128.14.

n n**i
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Class Boundaries, chosen so that expectations %d.ll each be 5.5, are

10.49, 15.47, 19.04, 23.11, 25.00, 27.89, 30.96, 34.53, and 39.51.

Observed values are} 0, 6, 14, 11, 2, 5, 5, 5, 4, and 3 .

(1.4) x^ , (0 5.5)^ ^ <6 ~ 5,5)^ 4 ,.. -H (3 - 5.5)^ , ^^ 3^ ^

5.5

If A x^re distributed as a x^ variable with 7 degrees of freedom

P(X^> 18.475) would be 0.01. If X^ were distributed as a x^ variable

with 9 degrees of freedom P(3r _> 21.666) would be 0.01. Since the

distribution of X^ under the null hypothesis Is between these two distributions

It Is quite safe to conclude that this set of observations Is not a sample

from a normal distribution.

2. SMIRNOV'S W^ TESTS
n , ,../-;^

Smlmov (1936) studied the statistic >^'i

(2.1) W^ - n / (F^(x) - H(x))^ f (H(x)) dH(x)

where T (t) >, for j< t ^ 1 Is a given weight function chosen on the

basis of what types of deviations are considered Important. If T (t) 1

we have as a special case ->

(2.2) w* - n j" (F^(x) - H(x))^ dH(x) .

If the {X^} are considered ordered so that X. <_ X, for all 1 this Is

F^(x))'' dH(x)

I

"**'
.- «2

n+1
-n I

1-1 Vl
^"« Vi - + «, *o-

- ». -
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n+l r^i .
, ,

«2 -n J J (H(x) - ^r dH(x)

^1-1 1-1

2

-
I

[ J { (H(X^) - •i=i)3 - (H(X^) -y >+ <H(X^p - 1 )

- (H(X >)^]

Since H(X ^,) - 1 and H(X ) -
n+i o

«» -
f I « I (H^X,) - 3h2(X,)(^) + 3H(X,) -^ - -ii^f-

1

3 1-1

2 3

n n

' - f Ka^x,) -^ H(x,) + ^^^jUZ3 1

i-1 tt

II
21-1^2 . 1

I KH(X^) - igi)^ -K -4 1

1-1 * ^**
12n^

ik * J/»"i> - TT)' •

...•X.V



(1)^ was studied earlier by Cramer (1928) and von Mises (1931). If

^ 2
H(x) " F(x) and is continuous, then W is distribution free, as can be

-< n

seen from the fact that in this case

(2.3) wf - n [ [i
f c (x - X.) - F(x)] T (F(x))dF(x)

i J-1 ^

f . n 2

/ [^ I e (F(x) - F(X.)) - F(x)] ¥ (F(x))dF(x)

1 ° J-1
^

^"^

c (t - F(Xj)) - t ] T (t)dt.

Since {F(X.)} are independent and uniformly distributed on the interval

(0,1), the distribution of IT does not depend on F(x). The test is also

consistent, if f > 0, and reqtiires no arbitrary grouping of the data

(Darling, 1957).

For the case in which we desire to test that F(x) is of the form

F(x,e) where 6 is not known. Darling (1955) has studied the statistic

OB

2

(2.4) cj - n j" [f^(x) - H(x;e^)] dH(x;0^)

where 6^ is an estimator of 6, The characteristic function of the limiting

2 2
distribution of C^ was found. C is not distribution-free for all cases.

However, if the variance e^ approaches sero sufficiently rapidly, the

2
limiting distribution of C is the same as that of m^. Kac (1949) gave an n
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general method for finding the limiting dlstrlbutiona of statistics of the

form

(2.5) J V(P^(x) - F(x)) dP(x)

for quite general functions , V.

To Illustrate the use of the w^ test the hypothesis that the data in

Table 1*1 are a random sample from a normal distribution with mean 30 and

variance 100 will be tested again.

9fr

V *

.*•. >«-«»,

**:

-."•i I't-'



TABLE 2.1

Calculations involved in the uae of the u^ test.

U

H(x^)
21-1

2n
(H(x,) - ^)

1 16.7 0.092

2 17.4 0.104

3 18.1 0.117

4 18.2 0.119

5 18.8 0.131

6 19.3 0.142

7 22.4 0.224

8 22.5 0.227

9 24.0 0.274

10 24.7 0.298

11 25.9 0.341

12 27.0 0.382

13 35.1 0.695

14 35.8 0.719

15 36.5 0.742

16 37.6 0.776

17 39.8 0.386

18 42.1 0,887

19 43.2 0.907

20 46.2 0.947

0.025

0.075

0.125

0.175

0.225

0.275

0.325

0.375

0.425

0.475

0.525

0.575

0.625

0.675

0.725

0.775

0.825

0.875

0.925

0.975

'•* . vV. v.*

0.067

0.029

-0.008

-0.056

-0.094

-0.133

-0,101

-0.148

-0.151

-0.177

-0,184

-0.193

0.070

0.044

0.017

0.001

0.011

0.012

-0.018

-0.028
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«V-ik*Xwv-^>'

-^•^ 0.2009

- 0,205 -
'

Tram Ch« tabic of th« aaynptotic dlatrlbutlon of w^ (Anderson and Darling,

1952) tha probability of a value of u^ thla large or larger is approxlaately

0«2S« This doea not justify concluding that theae nuabars are not a randoM

•ample fre« a nonal distribution with mean 30 and variance 100.

3. EOLMOGOROV'S K TEST
n

Anderson and Darling (1952) proposed a test baaed on the statist Ic

(3.1) K - sup (^
I

F (x) - H(k) JY (I1(x)))

vhere T >_ is a preassigned weight function. A general taethod for

calculating the liaiting dlatribution of statistics of this for« was given.

Explicit lixltlns dlatrlbutlons were given for certain weight functions

including

J t(I^(3.2) f(t)

and ''^

(3.3) »(t) - 1

If T(t) - 1, !^ is the statistic given earlier by Koluiogorov (1933)

«• reported by Anderson and Darling (1952)

,

(3.4) K^ - sup (/T
I
F (X) - H(x) |)

"•.•<X<4-«»

<*?!-
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If H(x) l8 continuous and the sanple observations are ordered so that

X, < X- < ... < X then K - »^ (max^^ 2"" "" ° " 1-1.2,

max[(H(Xj) - ~),(f - H(xp)]) .

Extensive tabulation of the percentage points of the distribution of K are

available in Miller (1956). Darling (1957) reported that Smlmov (1939),

(1944) gave the limiting distribution of the statlslc

(3.5) K^ - sup ^'(F^(x) - H(x)) '

- • < X < + "

as n Increases without bound. Also, Darling (1957) reported that the

effect of grouping on the K and K tests have been considered by
n n

Illyasenko (1952), Glhraan (1952), and Gnedenko (1952). :

The use of the K test will be Illustrated by again testing that the

data In Table 1.1 are a random sample from a normal distribution with mean

30 and variance 100.

TABLE 3.1

Calculations Involved In the use of the K test.
n

H(xp H(x^)

1 16.7 0.05 0.092 11 25.9 0.55 0.341

2 17.4 0.10 0.104 U 27.0 0.60 0.382

3 18.1 0.15 0.117 IS 35.1 0.65 0.695

4 18.2 0.20 0.119 u 35.8 0.70 0,719

5 18.8 0.25 0.131 15 36.5 0,75 0.742

6 19.3 0.30 0.142 U 37,6 0,80 0.776

7 22.4 0.35 0.224 17 39.8 0,85 0.836

8 22.5 0.40 0.227 ^ 42.1 0,90 0.887

9 24.0 0.45 0,274 19 43.2 0,95 0.907

10_ 2*1

7

0.50 0.298 20 46.2 1.00 0.947
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K
-S. - «ax (i«ix[(H(X,) - —>). (7 - H(X,))])
/n 1"1, ••. , n

- 0.600 - 0.382

- 0.218.
K
n

From tables of the distribution of —• (Blrnbaum, 1952) the probability of

the value of K this large or larger is about 0.30. This does not Justify

rejection of the hypothesis.

Rosenblatt (1962a) pointed out that in nost cases it is well known

that the population from which a sample is drawn is not distributed exactly

according to any theoretical distribution proposed for it. As a result, the

only reason the hypothesized distribution is not rejected by fuiy test of

goodness of fit is that the sample size is not large enough. Instead of

trying to show that a population has a given distribution, he proposed that

tests be performed which could show if the true distribution is "close** to

some hypothesized distribution. A test based on Kolmogorov's statistics

was developed which has the desirable property mentioned above. In 1962(b)

Rosenblatt extended this idea to the case of composite hypotheses.

» -»-i .',•'- - • ' ' S »
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4, TESTS BASED OK SPACING OF SAMPLE VALUES

Sherman (1950) discussed statistics based on the spacing of sample

values. Klnball (1947) studied the statistic

n+l .2
(4.1) a - J (H(xp - H(X^^^) - ^)

1/2
where X -«, X

.
i * '^» and conjectured that o is asymptotically

o n+x

normally distributed. Also, Moran (1947) studied the statistic

n+1 2

(4.2) - I (H(X.) - H(X, ,))
1-1 ^

^"^

and proved that 3 is asymptotically normally distributed. It was noted by

Sherman (1950) that the Cramer-von Mlses u^ criterion is related to

deviations from expected spacing of sample values, since

(*•» "'-ik* j, WV-TJ^)'

where -"
' is the mid point of the interval (—--', —), Thus, if the interval

2n
"^

^ n ' n * •

(0(1) is partitioned Into n equal sub intervals then ot^ measures the

deviation of the values y. • H(x.) from the mid point of these intervals.

Sherman (1950) introduced the statistic -
;

'

n+1 , ^ U''--

(4.4) «^ - 1/2 l^ I
H(X,) - H(X,_,) -^ I

where H is the continuous distribution function of X. He showed that the

.(',
,

distribution function of «d is
n
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;U?*^

"
(4.5) F(u) - 1 + f (b «S < w <

k - ' - - - - n+1
k«l

u <

- 1 -TT* »
lH-1

and r is the non-negative Integer determined by

r ^ ^ r-1

In 1957 Sherman gave a table of the 99th, 95th
|»
and 90th percentiles

of the distribution of u for n - 1,2, ... , 20. Also, in this paper it

was shovn that

// c\ (2) e n / 1»
<*-^> % "2^ <"n-e>

is distributed in the liralt as n increases without bound as a standard

normal variable. He stated, however, that it appears that n would have to

be greater than 100 before the 99, 95, and 90th percentiles would be within

one per cent of the limiting normal values.

The use of Sherman's u test will be illustrated by again testing that

the data in Table 1.1 are a random sample from a normal distribution with

mean 30 and variance 100. Calculations are shown in Table 4.1. From the

tables of the u statistic given by Sherman (1957) the probability of a

value of w this large or larger is greater than 0.10. On the basis of

this test, there is no justification for concluding that the data are not

a sample from a normal distribution with mean 30 and variance 100.
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TABLE 4.1 -

Calculations Involved In the use of Sherman's u test.
n

•* 0.000

1 16.7 0,092 +0.044

2 17.4 0.104 -0.036

3 18.1 0.117 -0.035

4 . 18.2 0.119 -0.042

5 18.8 0.131 -0.036

6 / 19.3 0.142 -0.037

7 22.4 0.224 +0.034

8 . 22.5 0.227 -0.045

9 24.0 0.274 -0.001

10 24.7 0.298 -0.024

U 25.9 0.341 -0.005

12 ',. 27.0 0.382 -0.004

13 35.1 0.695 +0.265

14 35.8 , 0.719 -0.024

15 36.5 0.742 -0.005

16 37.6 0.776 -0.012

17 39.8 0.836 +0.012

18 42,1 0,887 +0.003

19 43.2 0.907 -0.028

20 46.2 0.947 -0.008

21 +- 1.000 +0.005

:t[f'
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n+1 -iC'-V''

w„- j(0.705)

- 0.353 .

>F''- 5. SMOOTH TEST FOR GOOMJESS OF FIT

This test which was presented by Neyman (1937) Is designed to test

hypotheses of specified continuous distribution functions against "smooth**

alternatives, as defined later. If F(x) •• H(x) then the distribution of

T - H(X) is uniform on the interval (0,1). If F(x) ^ H(x) then the range of

T is the interval (0,1) but the distribution is not uniform. If F(x) is

some **smooth** alternative to H(x) then the graph of the density function

of Y will be a smooth curve on the Interval (0,1). This smooth curve can

be represented in the following manner t Let ir , t , ••• , ir be a system

of polynomials in y, orthogonal and normal in the Interval (0,1), « being

of 1th order. That is,

(5.1) ir^ (y) - a^^ + a^^y + ... + a^^y^ 1 - 0,1,2 k

where i\s} 1 " 0,1, ... , k; J - 0,1,2, ... , 1 are constants and

•|^^ f* 0. By the statement that the polynomials are orthogonal on the

the interval (0,1) it is meant that ; *\ '; -

(5.2) f . (y) w (y) dy - 1 ^ j .

By the statement that the polynomials are normal on the Interval (0,1)

it is meant that
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(5.3) J »J
(y)dy - 1 .

The first five of these polynomials aret

(5.4) »^(y) - 1

(5.5) t^(y) - vH (y-1/2)

(5.6) t^iy) - /T (6(y-l/2)^ - 1/2)

(5.7) »3(y) - /7 (20(y-l/2)^ - 3(y-l/2))

(5.8) »^(y) - 210 (y-1/2)* - 45(y-l/2)^ +| .

Other polynomials of this set may be found by the recurrence formula

(David, 1939)

(5.9) -^—^ »^i(y) - 2(y-l/2) /55=r w (y) + -^ w (y) - 0.

Now the set Q. of smooth alternative density functions is that set which

can be represented by formulas of the form

k

(5.10) f (y) - c exp { J 8 « (y) } < y < 1
1-1 ^

• otherwise

where {6.} is a set of parameters and c is the function of {6.} such that

1...

(5.11) j f(y)dy - 1 .



The density of y under the null hypothesis is given in the case

e. •• 8„ • ..» 6. • 0. k will be called the order of the test. The

higher the order of the test which is used the more general will be the

set of alternatives against which the test is sensitive. A test of order

k-fl is sensitive to all alternatives to which a test of order k is sensitive*

However, a test of order k-fl is sensitive to some alternatives to which a

test of order k Is eoapletely insensitive. When applying this test the

order should be chosen large enough to include all alternatives to which

it is desired to have the test aost sensitive. A test of higher order than

necessary should not be used, because as the order increases the power of

the test against alternatives to which a low order test is sensitive

decreases. Neynan (1937) conjectured that in nost practical cases, there

is no need to use a test of order higher than 4. It has been shown by

David (1939) that Neynan* s ¥^ criterion, defined below, is distributed in

the linit as n increases without bound as a x^ variable with k degrees of

freedom.

The following steps should be used in the application of the "snooth

test" for goodness of fits

1* Obtain for each saaple value x. the value y . by neans of the

formula y - H(x.).

2. Choose the order, k, of test to be used.

3. Calculate for each y. the values of «. (y.) for i • 1,2, ... , k.

4. Calculate the quantities ^
:

n

"i " ^ 'i ^^1^
^ J-1

*• J
for 1 " 1,2, ... , k*

<•!
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5. Calculate

2

" 1-1
'

6* Reject the hypothesized distribution if

^i > ! (Jt)
k - e

1 f (i=2. _,uj

where = / u^ 2 ' e ^2' du - c

<2> k '£<^^ ., .

and e is the probability of rejecting the hypothesized distribution when

it is in fact true. Calculations can be somewhat sinpllfied by letting

«. " y,-l/2. If I z is denoted by [z 1 then
J J j.l J

(5.12) uj - 12 IsJ^ n"^

(5.13) u^ - 180([z2] --H-) n"*^

(5.14) U3 - 7(20 [z'l - 3 [z])^ n"^

(5.15) uj - (210 (z*l - 45 [z^] + i|)2 „-!
.

The following properties of the smooth test are given

t

1. If the hypothesized distribution is correct, the probability of

an unjust rejection of this hypothesis is the chosen level of significance c.
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2« If Che hypothesis tested is Incorrect, for small values of

k
X " ^ 0^ the power of the test is the same against all alternatives in

1-1
*

the set SL such that X is the sane constant.

3. If the hypothesis tested is false and one of the alternatives

is true, for which the resulting value of X is sioall, the chance of

detecting the falsehood of the h3rpothesi8 tested is greater than that

corresponding to any other sinilar test having the properties 1 and 2*

The lioiting power function is found and the statements made hers

concerning the power of the test are illustrated in the paper by Neyman

(1937). David (1939) examined the distributions of T^ gn^ r^ and

concluded that no great error will be made if it is assumed for samples

of eiae 20 and over that if H(>:) is correct, f? and t| are x^ variables

with one and two degrees of freedom, respectively. Tables of exact O.OS

and 0.01 percentage points of the distribution of Y^ were given by Barton

(1953). In this paper, Barton (1953) also discussed the power of the test

and gave uethods of determining the sample size necessary to give a specified

power against alternatives which deviate from the hypothesised distribution

by a given amount when a particular level of significance is desired. A

form of the smooth test which is applicable to grouped or discrete data was

developed and investigated by Barton (1955). The x^ goodness of fit test

was shown to be a special case of this test. The loss of power caused by

grouping was shown to be small and to be minimized by grouping so that all

classes have equal expected frequencies. In the case where some parameters

must be estimated from the sample. Barton (1956) found the large sample

distributions of f^ £„ ^joth the original form and the extended form for

grouped data. In this case f^ ^g ^Qt distribution-free.
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The snooth test was used by Neyman (1937) to test two hypotheses:

1. That the first 100 figures given In Mahalanobls' table of random

normal deviates (Mahalanobls et al. , 1933) were a random sample from the

standard normal distribution,

2* That the same 100 figures were a random sample from a distribution

with density function,

r(f)

'

(5.16) H(x) T"^
— with n - 20.

r(£fi) ^ /^
The necessary calculations are given in the tables belowt

TABLE 5.1

Powers of z corresponding to each x. for hypothesis 1.

"i «1 A <
4

'l

-0.54 -0.205 0.0420 -0.0086 0.0018

-0.21 : -0,083 0.0069 -0.0006 0.0000

. • - • •

. -" •' • • •

• • • • •

+2.02 40.478 0.2285 +0.1092 0.0522

-1.00 , -0.341 0.1163 -0.0397 0.0135

Total 40.623 7.867 +0.453 1.133
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TABLE 5.2

Povars of s corresponding to each x. for hypothasis 2,

-'
.

•

\ "2 -I A •J

-0.54 -0.49 0.2401 -0.1176 0.0376

-0.21 -0.31 0.0961 -0.0298 0.0092

.
• • • • •

• #'». ' ' • • • •

• : .. ' • • • •

42,02 +0.50 0.2500 +0.1250 0.0625

-1.00 -0.50 0.2500 -0,1250 0.0625

Toeal -2.45 19.903 -0,599 4.599

.

'

TABLE 5.3

.•'.":

Valtt«« of u^ and v|[ ealculatod for bypothaaas 1 and 2.

Ordar Hypothesla 1 Hypothaais 2

of tha < K
2

i ^5.05<'^> 'o.oi<^>

I 0.047 0.047 0.720 0. 720 3.8415 6.6349

2 0.391 0.438 240.957 241.677 5.9915 9.2103

S 3.624 4.062 1.494 243.171 7.8147 11.3449

4 0.129 4.191 333.426 574.597 9.4877 13.2767

AlthottRh taata of 4 ordara ara glvan hara, ordinarily only ona ordar

of tha taat should ba uaad. Tha ordar ahould ba choaan on tha basis of

tha typaa of altamativaa againat which It la daairad that the test be taoat

aenaitiva. Although, it appears intuitively that this test should ba quite

\ t

' ^^'^



powerful against the alternatives It la designed to detect, there are

difficulties which inpair its usefulness. It is necessary that the

hypothesized distribution be completely specified. Calculations of the

values, y and s, corresponding to each sample observation appear laborious

unless the hypothesised distribution is well tabled, but could be accomplished

by the use of digital computing equipment.

\;

-'.l:



26

ACKNOWLEDGMENTS

The author wishes to thank his Major Professor, Dr. W. J. Conover,

Assistant Professor of Statistics for his advice and encouragement

throughout the preparation of the nanuscrlpt. He also wishes to thank

Dr. H. C. Fryer, Professor and Head of Statistics, Dr. K. S. Banerjee,

Visiting Professor of Statistics, and Dr. L. E. Fuller, Professor of

Mathematics for reviewing the manuscript and serving on the committee.



27

REFERENCES

Anderson, T. W., and Darling, D. A. (1952). Aaymptotic theory of

certain "Goodness of fit" criteria based on stochastic processes.

Ann. Math. Statist. 23 193-212.

Barton, D. E. (1953). On Neyman's smooth test for goodness of fit and

its power with respect to a particular system of alternatives.

Skandinavisk Aktuarietidskrift 36 24-63,

Barton, D. B. (1955). A fona of Neyman's x^ test of goodness of fit

applicable to grouped and discrete data. Skandinavisk

Aktuarietidskrift 38 1-16.

Barton, D. E. (1956). Neyman's x^ t«8t of goodness of fit when the

null hypothesis is composite. Skandinavisk Akturietidskrift 39

216-245.

Bimbaum, Z. W, (1952). Numerical tabulation of the distribution of

Kolmogorov's statistic for finite sample size. J. Amer. Statist.

Assoc. 47 425-441.

Bimbaum, Z. W. (1953). Distribution-free tests of fit for continuous

distribution functions. Ann. Math. Statist. 24 1-8.

Chemoff, H. , and Lehmann, E. L. (1954). The use of maximum likelihood

estimates in x^ tests of goodness of fit. Ann. Math. Statist.

25 579-586.

Cochran, W. G. (1952). The x^ test of goodness of fit. Ann, Hath,

Statist. 23 315-345. -

Cramer, H. (1928). On the composition of elementary errors.

Skandinavisk Aktuarietidskrift 11 13-74, 141-180.

-^

S- *,^



28

Darling, D. A. (1955). The Cramer-Smlrnov test In the paranetrle case.

Ann. Math. Statist. 26 1-20.

Darling, D. A. (1957). The KolmogoroT-Snlmov, Cramer-von Mlses tests.

Ann. Math. Statist. 28 823-828.

David, F. N. (1939). On Neyman's "Smooth" test for goodness of fit,

I. Distribution of the criterion H^ when the hypothesis is true.

Bloastrika 31 191-199.w
Gihman, I. I. (1952). On a criterion of fit for discrete random variables.

Dopovidi Akademii Nauk Ukraine 'koi Kadyans*koi Socialisticnoi

Respubliki 7-9.

(^edenko, B. V. (1952). Some remarks on the papers of 0. A. Illyasenko

and I. I. Gihman. Dopovidi Akademii Nauk Ukraine 'koi Radyans'koi

Socialisticnoi Respubliki 10-12.

Illyasenko, 0. A. (1952). On the influence of grouping of empirical

data on A. N. Kolmogorov's criterion of fit. Dopovidi Akademii

Nauk Ukraine 'koi Radyans'koi Socialisticnoi Respubliki 3-6.

Kae, H. (1949). On deviations between theoretical and empirical

distributions. Proc. Nat. Acad. Sci. U.S.A. 35 252-257.

Kimball, B. F. (1947). Some basic theorems for developing tests of fit

for the case of the non-parametric probability distribution function.

I. Ann. Math. Statist. 18 540-548.

Kolmogorov, A. (1933). Sulla determinaxione emperica di una legge di

dlstribusione. Giom. 1st. Ital. Attuari 4 83-91.

Mahalanobis, P. C. , Bose, S. S., Ray, P. R., and Banerji, S. K. (1933).

Tables of random samples from a normal population. Sankhya 1 289-328.



29

Mann, H, B., and Wald, A. (1942). On the choice of the number of

class Intervals In the application of the chl square test.

Ann, Math. Statist. 13 306-317.

Miller, L. H. (1956). Table of percentage points of Koltnogorov

statistics. J. Aner. Statist. Assoc. 51 111-121.

Mood, A. M. , and Grayblll, F, A. (1963). Introduction to the Theory of

Statistics. McGraw-Hill, New York.

Koran, P. A. P. (1947). The random division of an Interval. J. Roy.

Statist. Soc. Suppl. ^ 92-98.

Neytnan, J. (1937). Smooth test for goodness of fit. Skandlnavlsk

Aktuarletldskrlft 20 150-199.

Pearson, K. (1900). On the criterion that a given system of deviations

from the probable In the case of a correlated system of variables

Is such that It can be reasonably supposed to have arisen from

random sampling. Phllos. Mag, and J. of Scl. Series 5 50^157-172.

Rosenblatt, J, (1962a), Some modified Kolmogorov-Smlmov tests of

approximate hypotheses and their properties, Ann, Math. Statist.

33^513-524.

Rosenblatt, J. (1962b). Testing approximate hypotheses In the composite

case. Ann. Math. Statist. 33 1256-1364.

Sherman, B. (1950). A random variable related to the spacing of sample

values. Ann. Math. Statist. 21 339-361.

Sherman, B. (1957). Percentiles of the w statistic, Ann. Math.

Statist. 28 259-261. ' ^

Sralmov, N, (1936). Sur la distribution de w^. C. R, Acad. Scl.

Paris. 202 449-452, -



30

Solmov, N* (1939). On the estimation of the discrepancy between

•plrlcal curves of distribution for two Independent saiaples*

Bull. Math. Univ. Moscow 2 No. 2 3-lA.

Salmov, N. (194A). Approximate laws of distribution of random variables

from empirical data. Uspehi Hatem. Nauk 10 179-206.

Tate, M. W., and Clelland, R. C. (1957). Nonparametric and Shortcut

Statistics. Interstate Printers and Publishers, Inc., Danville

Illinois,

von Mises, R. (1931). Uahrschelnlichkeitsrechnung. Leipzig u. wien.

*~ .

•



DISTRIBUTION-FREE TESTS OF GOODNESS OF FIT

by

JOHN mMlH ROGERS

B. S. in Ed., Marlon College, Marlon, Indiana, 1962

AN ABSTRACT OF A MASTER'S REPORT

subaltted In partial fulfillment of the

raquirenents for th« degree

MASTER OF SCIENCE

DepartiMnt of Statistics

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1966

i-'^ 5> i-. J- ^.,> i>

' '"
, ,

!'



Frequently there is a need for a test of whether a set of observations

Is a random sample from a population with a distribution of a given form.

Distrlbutlon-free tests of goodness of fit are among the most useful of

such tests* Their usefulness does not depend on the particular form of

the hypothesised distribution.

The x^ ^Ast of goodness of fit Is useful whether the hypothesized

distribution Is completely specified or of the parametric type. If some

parameters of the hypothesized distribution are estimated from the sample,

estimation of parameters must be by a specified type of estimators or

else the distribution of the T" statistic will be altered.

Smlmov's m^ and Kolaogorov's K tests are generally useful for

testing completely specified continuous hypothesized distributions.

Generalisations of these tests make possible tests for specialized uses.

In some cases these can be extended to the parametric hypothesised

distribution.

Neyman's ''smooth" test Is useful against "smooth" alternatives to a

completely specified, hypothesized continuous distribution. However,

calculations are quite difficult If the hypothesized distribution Is not

well tabled.

Tests based on spacing of sample observations were discussed. Examples

of the use of the various tests were presented.


