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Abstract 

 Heat and drought are the major abiotic factors that limit wheat production worldwide. Wheat is 

one of the important staple crops, so, the production decline due to these factors faces a major 

challenge in addressing food security. Grain filling in wheat occurs when the temperature is 

rising, and soil moisture is declining in most wheat growing environment, so there is high 

demand in breeding wheat for post anthesis heat and drought stress tolerance. However, limited 

genetic variability in wheat cultivars possess a challenge. The objective of the first study was to 

screen wild emmer wheat (Triticum dicoccoides) for post anthesis heat tolerance and measure 

physiological traits and yield trait associated with the tolerance. Twenty-one accessions of 

Triticum dicoccoides and four check varieties were screened at optimum temperature (25/19 oC 

day/night) and high temperature (35/29 oC day/night). High temperature decreased flag leaf 

survival duration, chlorophyll content, and chlorophyll fluorescence more in the wild accessions 

than in the checks. A few wild accessions were found to be heat tolerant based on the lower heat 

susceptibility index (HSI) value in seed weight. Therefore, there is a potential for utilizing this 

genetic variability from the accessions to improve post anthesis heat tolerance in wheat. The 

maintenance in seed weight might be coming from the mobilization of stored reserve in the stem. 

The stem reserves are commonly called water-soluble carbohydrates (WSC). WSC accumulated 

during the vegetative stage, pre-flowering, or right after flowering can be mobilized to assist 

grain filling when assimilate supply is limited under stress. The second chapter is about the 

physiological and genetic basis of water-soluble carbohydrates (WSC) concentration during mid-

grainfilling stage in wheat. We evaluated 400 diverse winter wheat breeding lines and 30 

released varieties in different environments ranging from irrigated to rainfed for WSC 

concentration. WSC concentration was significantly and positively correlated with the seed 



  

weight, whereas the height was mostly negatively correlated, and we didn’t see any relation with 

heading date. Less decline in grain yield under simulated terminal drought stress was observed in 

varieties with high WSC content. Further, we identified six significant SNP markers in 7D region 

significantly associated with the WSC concentration, and each marker explained 4-5% of the 

variation. On running several genomic selection prediction models on WSC using ridge 

regression, partial least squares, elastic net, and random forest models and different training 

population sizes (20%, 40%, 60%, and 80%), the prediction accuracy increased from 0.2 to 0.6. 

The accuracy increased as a large amount of data was available to train the model, and overall 

the highest accuracy was observed with the random forest and average of all four models. The 

accuracy can be further increased with the inclusion of a large number of samples, and multi-

year and location testing on WSC. Higher genetic variation, high heritability, and significant 

positive relation with seed weight make WSC an important trait for selection under post anthesis 

drought. 

In the third study, aerial phenotyping using UAV with a multispectral camera was used to 

capture the images in three different wave bands: red, green, and near infrared. Normalized 

Difference Vegetative Index (NDVI) was calculated from red and near infrared bands. NDVI 

calculated from the aerial imaging during reproductive stages were more correlated with the 

grain yield than a visual screening of percentage greenness. NDVI measurement during grain 

filling had the highest significant correlation and explained more than 50% variation in the yield. 

Lodging was another factor impacting yield explaining about 60% variability in yield. With its 

wide applicability, aerial phenotyping has the potential for assisting breeders in selecting diverse 

genotypes and can outperform visual selection.   
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Abstract 

Heat and drought are the major abiotic factors that limit wheat production worldwide. Wheat is 

one of the important staple crops, so, the production decline due to these factors faces a major 

challenge in addressing food security. Grain filling in wheat occurs when the temperature is 

rising, and soil moisture is declining in most wheat growing environment, so there is high 

demand in breeding wheat for post anthesis heat and drought stress tolerance. However, limited 

genetic variability in wheat cultivars possess a challenge. The objective of the first study was to 

screen wild emmer wheat (Triticum dicoccoides) for post anthesis heat tolerance and measure 

physiological traits and yield trait associated with the tolerance. Twenty-one accessions of 

Triticum dicoccoides and four check varieties were screened at optimum temperature (25/19 oC 

day/night) and high temperature (35/29 oC day/night). High temperature decreased flag leaf 

survival duration, chlorophyll content, and chlorophyll fluorescence more in the wild accessions 

than in the checks. A few wild accessions were found to be heat tolerant based on the lower heat 

susceptibility index (HSI) value in seed weight. Therefore, there is a potential for utilizing this 

genetic variability from the accessions to improve post anthesis heat tolerance in wheat. The 

maintenance in seed weight might be coming from the mobilization of stored reserve in the stem. 

The stem reserves are commonly called water-soluble carbohydrates (WSC). WSC accumulated 

during the vegetative stage, pre-flowering, or right after flowering can be mobilized to assist 

grain filling when assimilate supply is limited under stress. The second chapter is about the 

physiological and genetic basis of water-soluble carbohydrates (WSC) concentration during mid-

grainfilling stage in wheat. We evaluated 400 diverse winter wheat breeding lines and 30 

released varieties in different environments ranging from irrigated to rainfed for WSC 

concentration. WSC concentration was significantly and positively correlated with the seed 



  

weight, whereas the height was mostly negatively correlated, and we didn’t see any relation with 

heading date. Less decline in grain yield under simulated terminal drought stress was observed in 

varieties with high WSC content. Further, we identified six significant SNP markers in 7D region 

significantly associated with the WSC concentration, and each marker explained 4-5% of the 

variation. On running several genomic selection prediction models on WSC using ridge 

regression, partial least squares, elastic net, and random forest models and different training 

population sizes (20%, 40%, 60%, and 80%), the prediction accuracy increased from 0.2 to 0.6. 

The accuracy increased as a large amount of data was available to train the model, and overall 

the highest accuracy was observed with the random forest and average of all four models. The 

accuracy can be further increased with the inclusion of a large number of samples, and multi-

year and location testing on WSC. Higher genetic variation, high heritability, and significant 

positive relation with seed weight make WSC an important trait for selection under post anthesis 

drought. 

In the third study, aerial phenotyping using UAV with a multispectral camera was used to 

capture the images in three different wave bands: red, green, and near infrared. Normalized 

Difference Vegetative Index (NDVI) was calculated from red and near infrared bands. NDVI 

calculated from the aerial imaging during reproductive stages were more correlated with the 

grain yield than a visual screening of percentage greenness. NDVI measurement during grain 

filling had the highest significant correlation and explained more than 50% variation in the yield. 

Lodging was another factor impacting yield explaining about 60% variability in yield. With its 

wide applicability, aerial phenotyping has the potential for assisting breeders in selecting diverse 

genotypes and can outperform visual selection.  
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Chapter 1 - Introduction 

Origin of Wheat 

Modern wheat is an allohexaploid species originating from two independent 

hybridization events. The first event is thought to have happened 300,000-500,000 years ago 

between Triticum uratu Thumanjan ex Gandilyan (A genome donor) and a relative of Aegilops 

speltoides Tausch (B genome donor) producing a stable and fertile tetraploid species known as 

Triticum turgidum L. (AABB; 2n = 4x = 28) or Emmer wheat. The second hybridization event 

happened around 9,000 years ago between tetraploid T. turgidum and diploid Aegilops tauschii 

Coss. (DD; 2n = 2x = 14) or Goat grass, resulting in modern hexaploid wheat (Triticum aestivum 

L. (AABBDD)) (Curtis et al., 2002; Dvorak et al., 1998; Marcussen et al., 2014). Due to its wide 

adaptation, higher yield, ease of growing, harvesting and storage, wheat is popular and grown 

worldwide. 

Importance of Wheat 

Wheat is the third largest cereal crop after maize and rice in global cereal production 

(USDA, 2017). With the highest acreage planted in the world, global wheat production was 

projected to be at 740 million metric tons in 2017 (USDA, 2017). It can be used as a primary 

food and feed for both human and animal consumption. Wheat is a staple diet for 35% of the 

population and is a major source of carbohydrate, provides more protein than any other 

companion crops, and is also an important source of minerals and vitamins. Global wheat 

consumption per capita is 65 kg/year, supplying nearly 20% of calories and protein (FAOSTAT).  

World population is expected to reach 9 billion by 2050 (Gerland et al., 2014). World 

food production has to be doubled, including cereals, as cereal demand is predicted to increase 

by 50%. With the current available technologies, the demand is more likely to exceed the 
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production (FAO, 2002). The two main ways to meet the demand is to expand the area under 

production or increase production per unit area (Curtis et al., 2002). Most of the world’s 

cultivable land is already in production, the current estimate shows that the 85% increase should 

be from the land already in cultivation (Borlaug and Dowswell, 2003).  

It’s clear from past that the increase in production comes from advances in breeding 

(Curtis et al., 2002). Some of these have already been demonstrated during the green revolution, 

such as a reduced height, which significantly improved production (Gale et al., 1985). There is a 

possibility of increasing yield potential, however, it comes as a trade off with tolerance to biotic 

or abiotic stress (Tack et al., 2014). In most wheat growing areas, grain filling happens around 

the time the temperature in the atmosphere is rising, and moisture in the soils are declining, 

therefore, production is impacted mainly by these two abiotic stresses. The effect of heat and 

drought stress is further exacerbated by the disease pressure during or after flowering, however 

biotic stresses are beyond the scope of this dissertation. Therefore, we will focus mainly on two 

abiotic stress after during grain filling, terminal heat, and terminal drought.  

Heat and Drought Stress in Wheat 

High temperature and low moisture affect wheat in all growing stages, but the effect is 

more severe and irreversible during reproductive stages, resulting in a large decline in yield 

(Prasad et al., 2008). Kernel abortion or reduction in kernel growth are the two main reasons for 

yield decline under stress, as wheat yield is dependent on the number of plants per meter square, 

seed number per plant, and individual seed weight.  

Boyer (1982) analyzed crop insurance usage for several reasons of crop loss and found 

that there was an 87% decline in US grown wheat, where 94% was due to abiotic stress, mainly 

heat and drought. In a recent modeling study, Tack et al. (2014) showed a 22% yield reduction 
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by drought and 11% by warming. Heat and drought stress are hard to distinguish as a stress 

signal because these are typically confounded, and defense mechanism are very closely related 

(Reynolds et al., 2007). Heat stress is accompanied by drought stress, and vice versa, in most 

field environments. The effect of one is usually exacerbated by the other, impacting growth, 

development, and ultimately yield.  

Heat stress and drought stress during mid-grain filling is likely to decrease the seed 

weight by decreasing grain filling duration, whereas the stress during pollination or fertilization 

causes abortion of recently fertilized embryos resulting in a decline in seed number (Pradhan et 

al., 2012; Prasad et al., 2008). The decrease in grain filling duration lowers starch accumulation 

in grains, reducing the seed size, as starch is the main component in the grain. Though the 

decreased grain filling duration under stress is generally accompanied by an increase in the rate 

of grain filling, it cannot compensate for the loss in grain yield (Prasad et al., 2008; Streck, 2005; 

Yin et al., 2009). In a controlled chamber study by Yin et al. (2009), grain filling duration 

decreased more than 30%, whereas, the rate increased only 20%, and was therefore unable to 

ameliorate the loss. Adverse effects of high temperature on grain filling duration have also been 

reported by Streck (2005), where he showed that even 1oC rise in temperature above 20oC 

decreases grain filling by more than three days. This leads to the expectation that the average life 

cycle of the crop could decrease as a result of rising temperatures predicted by IPCC (Allen et 

al., 2014). 

Outline of the Dissertation 

Plant breeding over the years has focused on selecting for yield. As a result, modern 

varieties are high yielding but are less tolerant to heat and drought stress (Tack et al., 2014). 

Some effects can be partially mitigated by environmental manipulation like irrigation and 



4 

fertilizer application. However, these are not practical and possess several economic and 

ecological limitations, therefore, the genetic resistance/tolerance needs to be identified (Curtis et 

al., 2002).  

The narrow genetic base in modern cultivated wheat is due to an evolutionary bottleneck 

followed by extensive selection and breeding. Only a few individuals of the donor species are 

involved in the evolution of modern wheat. Most of the genetic variation in the tetraploid emmer 

wheat and diploid Aegilops is not present in hexaploid wheat. This bottleneck likely resulted in 

alleles for tolerance being excluded from the common wheat gene pool and variation has likely 

been further reduced through targeted selection (Haudry et al., 2007). The second chapter of this 

dissertation highlights the importance of widening genetic diversity. It’s is focused on the 

identification of novel sources of heat stress tolerance from the tetraploid progenitor of wheat. 

The chapter discusses how these genetic resources could be used to deepen the gene pool of 

cultivated wheats for greater tolerance to heat stress. This chapter discusses on the source of heat 

tolerance as well as a physiological mechanism to target for selection. 

The third chapter focuses on stem reserves as a potential contributor to grain fill under 

drought stress. Stem reserves were measured as water-soluble carbohydrates (WSC), and their 

potential contribution to yield and seed weight under diverse environments are discussed. A 

simple method of using near infrared spectroscopy, as opposed to the lab analysis of mass 

samples is presented. Along with the relation of WSC with yield and yield components in diverse 

varieties, the genetic basis of its accumulation is studied in a set of 400 winter wheat breeding 

lines. The QTLs significantly associated with the WSC accumulation are identified using 

association mapping. The pros and cons of genome wide association studies on a trait like WSC 
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are discussed along with the application of modern plant breeding tool genomic selection to 

predict WSC based on the genomic data only.  

The fourth chapter studies the applicability of aerial phenotyping in the breeding 

program. The aerial phenotyping platform using a UAV connected with multispectral cameras is 

presented as an important tool in assisting plant breeders in making selections and predicting 

yield. The analysis is based on image captured at various growth stages. The appropriate stage(s) 

that can explain most of the variability in yield are discussed. Along with yield, the study 

attempts to predict lodging and studies its relation to yield. Superiority of imaging to capture 

minute variation, as opposed to visual assessment, is discussed in the context of an irrigated 

environment.  

Overall, this dissertation provides the basis for improving wheat for heat and drought 

stress tolerance. With the need for increasing productivity per unit area of land, this study 

identified some physiological traits that can be targeted for selection within the ecological and 

economical limitations. Wheat being a C3 crop, efficient water use should be one of the major 

targets to address in the future wheat breeding for drought tolerance, and some additional 

research in increasing canopy productivity on a large-scale need to be addressed in the future.  
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Chapter 2 - Heat Tolerance Screening of Wild Tetraploid Wheat 

Triticum dicoccoides 

Introduction 

High temperature is one of the main abiotic stresses limiting wheat production 

worldwide. Wheat is a temperate cereal, so the rise in temperature affects wheat negatively 

during all growth stages, impacting yield and yield components (Ferris et al., 1998; Pimentel et 

al., 2015; Pradhan et al., 2012; Slafer and Rawson, 1994). Porter and Gawith (1999) reviewed 65 

articles on the mean minimum, maximum lethal temperatures, base and optimal temperatures for 

both vegetative and reproductive growth and development and they acknowledged that the 

temperature range depend on cultivar sensitivity, heat/cold hardening, and other environmental 

condition. The set of cardinal temperature is different at all growth stages, but the overall 

growing season cardinal temperature is considered 0oC as minimum temperature, 20-25oC 

optimum temperature, and 37oC as maximum temperature, beyond which growth ceases (Farooq 

et al., 2014; Porter and Gawith, 1999 and reference therein). Temperatures above 32oC are likely 

to cause heat shock at any growth stage, resulting in a severe decline in yield (Cossani and 

Reynolds, 2012; Djanaguiraman and Prasad, 2014; Tack et al., 2014).  

Yield loss during heat stress mainly happens due to decline in seed number by abortion of 

recently fertilized embryos or reduced seed weight from lower starch accumulation in grain. Heat 

stress during mid-grain filling is likely to decrease the seed weight by decreasing grain filling 

duration, whereas the stress during early grain filling (during lag phase) and pollination results in 

a decline in seed number (Djanaguiraman and Prasad, 2014; Mohammadi, 2012; Pradhan et al., 

2012; Prasad et al., 2008a; Stratonovitch and Semenov, 2015). The decreased duration of grain 

fill under stress is also accompanied by an increase in the rate of grain filling. However, in most 
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cases, it cannot compensate for the loss (Streck, 2005; Yin et al., 2009). With a 1oC increase in 

mean temperature, maturity shortens by seven days, grain filling rate increases from 0.9 to 1 mg 

per day, leading to 15% or more decline in seed weight (Mohammadi, 2012). In a controlled 

chamber study by Yin et al. (2009), grain filling duration decreased by more than 30%, where 

the increase in the rate of grain fill was only 20%. The adverse effect of high temperature on 

grain filling duration has also been reported Streck (2005), where he showed that even 1oC rise 

in temperature above 20oC decreases grain filling by more than three days. Although, the rise in 

temperature in the Great Plains might have reduced the risk of late spring freeze damage, the 

overall effect of warming is negative with an 11% reduction in yield (Tack et al., 2014). With the 

projected increase in temperature by IPCC (Allen et al., 2014), the average life cycle of the crop 

could decrease in the future. 

Early leaf senescence (mainly flag leaf) is the first sign of damage under terminal heat 

stress. The flag leaf is an important source for maximum light reception and can contribute 30-

50% of the assimilate used for grain fill (Al-Tahir, 2014). Leaf senescence is first initiated by 

structural change, followed by loss of chlorophyll. Because the chlorophylls are housed in 

thylakoids, the damage to the thylakoid membrane leads to the decline in chlorophyll pigments 

(Prasad et al., 2008b; Ristic et al., 2007; Schreiber and Berry, 1977; Talukder, 2013). Since 

chlorophyll pigments are the main light receptor for assimilation, damage negatively affects light 

interception. The injury to these receptors can be assessed by the fluorescence emitted by these 

pigments. When the leaf is exposed to a saturating flash of light, it increases the fluorescence 

from a ground state (Fo) to a maximum value (Fm). During this period, it completely shuts down 

the electron accepting mechanism of photosystem II (PSII). The difference in Fm and Fo is 

known as variable fluorescence (Fv), and the ratio between Fv and Fm can be used to assess the 
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status of PSII. A lower value of Fv/Fm indicates the damage to the PSII reaction centers (Moffatt 

et al., 1990). 

Plants with the ability to stay green have lower expression of senescence related genes 

and are more likely to maintain yield under heat stress (Cossani and Reynolds, 2012; Reynolds et 

al., 2007; Ristic et al., 2007). Chlorophyll content and fluorescence are found to be highly 

associated, so they can be used for assessing thermotolerance (Djanaguiraman et al., 2010; Ristic 

et al., 2007). There is a significant body of research in this area targeting wheat cultivars, but 

only a few studies have focused on wild accessions (Bergkamp, 2016; Green, 2016; McGowan, 

2016; Pradhan et al., 2012). 

The narrow genetic base in modern cultivated wheat is due to an evolutionary bottleneck. 

This bottleneck likely resulted in alleles for tolerance being excluded from the common wheat 

gene pool and variation has likely been further reduced through targeted and controlled breeding 

(Waines, 1994). Tack et al. (2014) also suggested a tradeoff between high temperature tolerance 

and yield potential that could negatively affect the level of high temperature tolerance of wheat 

cultivars in the Great Plains. Additionally, heat tolerance appears to be governed by several 

genes of small effect, which complicates marker assisted selection (Mason et al., 2011; Talukder 

et al., 2014; Vijayalakshmi et al., 2010). Lower genetic diversity, coupled with the quantitative 

nature of this trait, poses a great challenge for wheat improvement for heat stress tolerance.  

Genetic diversity can be broadened by exploiting naturally existing variation in wild 

species (Tanksley and McCouch, 1997). Wild emmer wheat, Triticum dicoccoides (2n=4x=28, 

genome AABB) is the progenitor of both common bread wheat and durum wheat. It has the same 

genome formula as durum wheat and carries two of the three genomes of modern bread wheat 

(2n=6x=42, genome AABBDD). It, therefore, serves a central role in wheat evolution and 
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domestication (Dvorak et al., 1998; Peng et al., 2011). Favorable genetic resources for variety 

improvement in emmer wheat have been documented in some earlier studies (Çakmak et al., 

2004; Khan et al., 2000; Nevo, 2001; Nevo et al., 2013; Xie and Nevo, 2008). It possesses 

several beneficial traits to humans like high protein content and superior baking quality, disease 

resistance (yellow stripe rust, stem rust, powdery mildew), abiotic stress tolerance (salinity and 

drought), nutrient content, herbicide tolerance, wider adaptation, and higher yield (Çakmak et al., 

2004; Ji et al., 2008; Marais et al., 2005; Nevo, 2001; Uauy et al., 2005, 2006). Peng et al. (2003) 

mapped 70 QTLs for 11 domestication traits in a mapping population developed from a cross 

between T. dicoccoides and T. durum and found that 18 (24%) of the QTLs were agriculturally 

beneficial. These favorable alleles, along with other resistance genes in emmer wheat, could 

make an important contribution to modern wheat improvement. 

The wild accessions collected from areas that are prone to high temperature may possess 

the natural ability to withstand heat stress. Plants adapted to the Mediterranean type of climate 

are more likely to have tolerance to terminal heat stress (Asseng et al., 2015), which can be 

exploited in breeding wheat for high-temperature tolerance. Some studies have been carried out 

in the Aegilops species for their ability to tolerate heat stress during reproductive stages (Green, 

2016; Pradhan et al., 2012). Pradhan et al. (2012) screened accessions of five different species of 

Aegilops and found some heat tolerant accessions among Aegilops speltoids and Aegilops 

geniculata. Green (2016) screened accessions of Aegilops kotschyi and Aegilops peregrina and 

identified some accessions that could carry useful genetic variation of high temperature 

tolerance. However, very few studies have been conducted in emmer wheat to evaluate post 

anthesis heat stress tolerance (Nevo, 2001; Waines, 1994). In this study, we evaluated heat 

tolerance of 21 wild emmer wheats of diverse origin and four common wheat varieties for post 
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anthesis heat tolerance. Chlorophyll content, the efficiency of photosystem II, flag leaf duration, 

and individual kernel weight were measured for all entries under both stress and optimal 

conditions. Tolerance was evaluated based on the ability to retain chlorophyll content, stability 

of photosystem II, and heat susceptibility index for individual grain weight.  

Materials and Methods 

 Plant materials and experimental condition 

Twenty-one accessions of Triticum dicoccoides chosen based on diverse geographic 

origin and four check varieties were used in the study (Table 2-1). The seeds of T. dicoccoides 

were obtained from National Plant Germplasm Collection. Among the four check varieties used 

in the experiment, Ventnor and Jefimija were considered to be highly tolerant (Narayanan et al., 

2015; Ristic et al., 2007; Yang et al., 2002a) and U1275 and Jagger were intermediate (Talukder 

et al., 2014). The pedigree for U1275, Jagger, and Jefimija are TAM-107 *3/TA 2460 (Aegilops 

tauschii), KS82W418/Stephens and Sremka-1/Proteinka[4361]; NS-63-25/NS-3722[3578] 

respectively. The pedigree of Ventnor is not known. These four checks were also included in the 

study by Green (2016).   

Seeds were sown in 4-cm-deep trays containing Sunshine Metro Mix 360 potting soil 

(Hummert International, Topeka, KS) and placed on a greenhouse bench maintained at 21/15°C 

(day/night). After two weeks, the seedlings were moved to a chamber maintained at 4°C and 8 h 

photoperiod and vernalized for 6 weeks. Following vernalization, two seedlings of each genotype 

were transplanted into twelve 24cm long, 10cm wide, 1.6-L volume pots (Stuewe and Sons, 

Corvallis, OR) using commercial growing mix Sunshine Metro Mix 360 potting soil (Hummert 

International, Topeka, KS). After seedling establishment, seedlings were thinned to one plant per 

pot, and each pot was treated with Marathon systemic granular insecticide (1% imidacloprid, 1–
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[(6–Chloro– 3–pyridinyl)methyl]–N–nitro–2–imidazolidinimine)] (Hummert International, 

Topeka, KS) at a rate of 1.2 g per pot to control sucking insect infestation. After 25 days, each 

pot was fertilized with 100ml of Peters professional plant starter 9:45:15 (Hummert 

International, Earth City, MO) diluted at the rate of 1 tablespoon per gallon. Two weeks after 

first application, plants were supplemented with fertilizer solution containing a mixture of Peters 

professional mix 20:20:20 (Hummert International, Earth city, MO) and urea to maintain 250 

ppm of N, 200 ppm P, and 200 ppm K. Two subsequent applications of this solution were 

applied at two weeks’ interval after the first application. Ambient light in the green house was 

supplemented with artificial lights that is approximately 200 μM m-2s-1. Pots were arranged in 

completely randomized design and rotated every two weeks to minimize positional effects. 

Plants were well-watered to avoid water-stress and supported by a bamboo stake to avoid 

lodging at jointing stage (Feekes 6) (Large, 1954). Anthesis date was determined when the anther 

extrudes from the ear in the main tiller. The main tiller was tagged for all physiological 

measurements.  

Ten days after anthesis (DAA), three pots of each genotype were randomly transferred to 

two sets of growth chambers (Conviron PGR15 chambers with CMP 6050 controllers) 

maintained at high temperature (HT) 35/29 °C (day/night) or optimum temperature (OT) 25/19 

°C (day/night). The temperature treatment was similar to the treatment adopted in Green (2016) 

and Pradhan et al (2012). The photoperiod was 16 h, and photon flux density (400 to 700 nm) 

provided by cool fluorescent lamps was around 600 µmol m-2s-1 at the top of the plant canopy in 

both chambers. The light and temperature were increased in a sinusoidal fashion with the 

maximum lasting for six hours during the treatment period. The lights were turned on at 6 am in 

the morning to 12.5% of the maximum for two hours and hourly increased to 25%, 50%, 75% 
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and finally to 100% of the full photon flux density by 12 pm until 6pm, after which it was 

reduced to 75% and decreased in the same fashion. Plants were grown in condition mentioned 

above for 15 days and moved back to the greenhouse on the 16th day. All heads of T. 

dicoccoides were covered with lightweight waxy crossing bag (Hummert International, Topeka, 

KS) during mid grain fill to prevent loss of spikelet due to shattering.  

 Chlorophyll content and chlorophyll fluorescence 

Chlorophyll content and chlorophyll fluorescence were measured on the same recently 

fully expanded flag leaf of the main tiller between 11:00 and 16:00 h. Measurements were taken 

before transferring them to the temperature treatment and continued every alternate day until the 

death of flag leaf. Chlorophyll content was measured using a self-calibrating chlorophyll meter 

SPAD (Soil Plant Analytical Device) (Konica-Minolta SPAD 502 Plus) in three different parts of 

the leaves: base, midpoint, and tip of the adaxial surface of the flag leaf and the values were 

averaged together. The average value was used for further comparison and slope was calculated 

every alternate day measurement using the value. The days to minimum slope was expressed as 

senescence. Chlorophyll fluorescence parameters were measured at the base of the same leaf, 

near the culm, using a hand-held fluorimeter (Optisciences OS-30P, Hudson, New Hampshire, 

USA). The minimum fluorescence (Fo) and maximum fluorescence (Fm) were measured after 15-

20 minutes of dark adaptation by placing insulated clips on the base of the leaf. The maximum 

quantum yield of PSII was calculated as the photochemical efficiency of photosystem II given by 

the ratio of variable fluorescence, Fv (the difference between Fm and Fo) to maximum 

fluorescence, Fm. 
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 Flag leaf duration under heat stress (FLD) 

The flag leaf of wheat is the main source of assimilates, contributing 30-50% of 

photosynthesis. Therefore, flag leaf survival is important to produce enough assimilate to support 

grain filling. Days of flag leaf survival under heat stress was calculated as the total number of 

days from the temperature treatment (10 DAA) to flag leaf death (the point at which no 

physiological measurement can be taken). The flag leaf death was determined from the visual 

observation further confirmed with the SPAD reading less than 20.  

 Heat susceptibility index (HSI) on individual kernel weight 

Individual Kernel weight (IKW) was calculated by dividing the total kernel weight by the 

number of kernels in each plant. Heat Susceptibility Index for IKW was calculated using the 

formula by Fischer and Maurer (1978): 

𝐻𝑆𝐼 =
(1 −

𝑌ℎ
𝑌𝑜

)

(1 −
𝑋ℎ
𝑋𝑜

)
 

Where,  

𝑌ℎ = average kernel weight of each genotype under heat stress  

𝑌𝑜 = average kernel weight of each genotype under optimum temperature  

𝑋ℎ = average kernel weight of all genotypes under heat stress  

𝑋𝑜 = average kernel weight of all genotypes under optimum temperature 

 Statistical analysis 

The experimental design was a completely randomized split-plot design, where the 

temperature was the main plot factor and genotype was the subplot factor. The growth chambers 

were the experimental unit for temperature treatment with two replicates of each temperature 

treatment. Each chamber had three replicate plants per genotype. Genotype, temperature 
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treatment, and their interaction were analyzed as fixed effects. All analysis was performed in 

SAS 9.4 (SAS Institute) using proc mixed and significance at 0.05 level of probability. 

Results and Discussion 

 Flag leaf survival under heat stress: Flag leaf duration (FLD) 

The flag leaf duration is the number of days the flag leaf of the main tiller survived after 

the onset of treatment at 10 DAA. The flag leaf of all the wild accessions died before the 

completion of treatment, even in optimum temperature, which could be related to the shorter life 

cycle of these accessions. The short life cycle at the reproductive stage may be due to hot and dry 

weather that characterizes the native habitat of these accessions. Overall, the survival duration 

ranged from 12-24 days after anthesis. It is possible these genotypes had already assimilated the 

carbohydrate required by leaf at that time. The excess of carbohydrates synthesized in the leaves 

are stored various plant parts, but mainly on the stem, collectively known as stem reserve or 

water-soluble carbohydrates (Blum, 1998). Further studies to evaluate water-soluble 

carbohydrate concentrations would be required to address this question.  

The ANOVA result showed significant interaction between genotype and treatment on 

FLD (Table 2-2). The significant interaction suggests a differential response of genotypes to the 

temperature treatment, i.e., the effect of temperature on FLD depends on the genotypes and vice 

versa. Only four genotypes, PI 467005, 470978, 479777, and 466962 were able to maintain 

similar FLD under heat stress relative to their companion control plants (Table 2-3). In addition, 

PI 470978 and 479777 had the highest duration of flag leaf survival among wild accessions at 

approximately 24 days after anthesis. The flag leaves of PI 538699 and PI 466953 also survived 

for 24 days after anthesis in control but died significantly earlier under stress conditions. Only 
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the flag leaf of two tolerant checks, Ventnor and Jefimija, survived the entire duration of 

treatment and showed no significant difference between the two treatments.  

 Chlorophyll content and chlorophyll fluorescence (Fv/Fm) 

The fluorescence (Fv/Fm) and chlorophyll content were used as an indirect measure of 

photosynthetic efficiency in wheat. These two measurements were found to be highly and 

significantly correlated in wheat with the highest correlation after four days of heat stress (Table 

2-4 and Figure 2-1). High significant correlation between fluorescence and chlorophyll content 

means that SPAD measurement can be an effective surrogate for variable fluorescence. SPAD 

measurements are quick and easy compared to the fluorescence measurement that requires 

application of clip to the leaf to provide dark adaptation of leaf for 20 minutes, which limits the 

number of plants screened in the given duration. SPAD can, therefore, be used for screening 

large sets of material evaluated in a breeding program. Similar results were also observed in 

wheat cultivars by Ristic et al. (2007), but has not been reported in wild genotypes. One 

important consideration when working with wild genotypes is that they often have much smaller 

leaves. This trait makes more difficult to use the clips for variable fluorescence measurements 

and results in SPAD measurement being of greater practical value (Green, 2016; Pradhan et al., 

2012). The high correlation between SPAD and Fv/Fm suggests similar genetic and physiological 

control for both of these traits (Ristic et al., 2007; Talukder et al., 2014). 

 Heat stress resulted in a decline in both chlorophyll content and chlorophyll 

fluorescence, however, the decline was greater on wild accessions compared to the checks 

(Figure 2-2). The checks were able to maintain chlorophyll for a longer duration compared to the 

wild accessions in both treatments. The result on the check varieties is presented separately in 

Figure 2-3. Both the chlorophyll content and chlorophyll fluorescence were significantly lower 
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in Jagger compared to the other three checks in the study. Jagger was found to be more heat 

susceptible than the variety Ventnor also in reported in Green (2016) and Talukder (2014). 

Since the flag leaf of more than 30% of the wild accessions died before ten days of heat 

stress, the effect was analyzed for five days after heat stress (Table 2-5). The wild accessions 

behaved differently than the selected varieties, so the results were analyzed for wild accessions 

only. Most of the accessions were able to maintain leaf chlorophyll content as high as optimum 

condition after five days of heat stress except for three accessions PI 470978, PI 538656, and PI 

538719. However, the fluorescence significantly declined in eight accessions under heat stress. 

The flag leaf of accession number 470986 died after two to four days of transferring to the 

chamber in both treatments, so it was eliminated from the analysis. 

The differential response of genotypes suggests the presence of genetic variation for 

tolerance to heat stress among these genotypes. The genotypes able to retain chlorophyll content 

for longer duration were the same genotypes with longer duration of flag leaf survival under heat 

stress. The Chlorophyll content reached maximal decline at or around the time of flag leaf death, 

as shown in the higher and significant positive correlation between the maximum negative slope 

and the time of the death of flag leaf in Figure 2-4. None of the wild accessions were superior to 

heat tolerant checks for green leaf characteristics such as flag leaf survival duration, chlorophyll 

content and fluorescence measurement under heat stress and control. This suggests the wild 

genotypes are programmed for earlier senescence. Some accessions retained green leaf area 

under stress for nearly as long as under optimal conditions. It is likely the short grain fill period 

of these materials is an evolutionary adaptation to their native environment. They might have a 

shorter life cycle to avoid or escape the heat stress later in the growing season as heat escape is 

one way to avoid post anthesis heat tolerance in plants in Mediterranean environments 
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(Shavrukov et al., 2017). It is unclear how well any green leaf duration traits from T. dicoccoides 

will function when transferred to T. aestivum. This would largely depend on whether the genes 

responsible for maintaining a full grain fill cycle under heat stress also influence phenology. It is 

speculative, but it seems likely that accessions of T. dicoccoides that retain photosynthetic 

capacity under heat stress conditions could be useful genetic resources for germplasm 

development in T. aestivum.  

 Individual kernel weight (IKW) and heat susceptibility index (HSI) 

Kernel weight was used to calculate HSI as a measure of heat tolerance. The genotypes 

with HSI less than 1 were considered heat tolerant, where the genotypes with HSI<0.5 were 

highly tolerant and 0.5-1 were considered moderately tolerant. HSI not only accounts for the 

variation of genotypes in the trait measured, it also indicates the performance of genotypes under 

heat stress. It represents a relative decline in seed weight under post anthesis high temperature 

(Cao et al., 2015). Therefore, it can be used to measure relative stress injury between genotypes. 

HSI is widely used to assess heat tolerance screening in wheat cultivars as well as wild 

accessions (Cao et al., 2015; Pradhan et al., 2012; Viswanathan and Khanna‐Chopra, 2001; Yang 

et al., 2002b). 

Along with FLD, we observed a significant interaction of genotypes and treatment for 

IKW (Table 2-2). Further slicing the temperature effect by genotype, only six genotypes (PI 

466977, PI 466953, PI 467024, PI 538699, PI 554584 and PI 538719) were able to maintain 

kernel weight under heat stress with no significant difference between two treatments (Table 2-

3). These six genotypes were also considered to be relatively heat tolerant based on the lower 

HSI values as presented in the same table, for this set of germplasm.   
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HSI ranged from 0.018 to 1.744. The low and high HSI values were observed for PI 

466977 and PI 466998, respectively (Table 2-6 and Figure 2-5). Interestingly, both of these 

genotypes were collected from the same geographical location (Table 2-1). Overall, the 

correlation between HSI and altitude at which the accession was collected was not significant. 

We had hypothesized that accessions collected at lower altitude may be more likely to be heat 

tolerant as these environments should be relatively warmer. It is possible that the failure to 

identify a correlation between heat tolerance and altitude of origin is due to the relatively few 

genotypes used in the study. We do note that all tolerant and moderately tolerant genotypes, 

based on HSI values, were collected below 74m altitude, with the exception of PI 470978 (HSI 

of 0.99).  

Three genotypes PI 466977, PI 466953, PI 467024, were found to be highly heat tolerant 

based on their HSI values of less than 0.5. These genotypes also had no significant difference in 

IKW between heat stress and control treatments. Similarly, nine genotypes PI 538699, PI 

466962, PI 538681, PI 467005, PI 554584, PI 479781, PI 538719, PI 466969, and PI 470978 

were found to be moderately tolerant with HSI values ranging from 0.5 to 1. Among these 

moderately tolerant genotypes, only three genotypes PI 554584, PI 538699 and PI 538719 didn’t 

have significant differences in IKW between the two treatments. The kernel weights for all three 

of these accessions were very low (less than 20mg) (Table 2-6). The kernel weight significantly 

declined in all four checks used in the experiment with HSI values close to 1 or higher than 1.  

HSI of individual kernel weight was used to compare genotypic differences as well as the 

stability of the genotypic performance under heat stress. While HSI is an important tool to screen 

heat tolerance among similar kinds of species but care must be used in the interpretation of HSI. 

HSI only accounts for the performance under heat stress, but it doesn’t account for the relative 
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kernel size of the genotypes. The IKW for T. dicoccoides accessions ranged from 0.015 to 

0.044g under control condition. The three control checks Jefimija, U1275, and Ventnor, had 

similar kernel weights of 0.044, 0.044 and 0.046 grams, respectively. Their HSI values also fell 

in a close range at 1.180, 1.113 and 1.077, respectively. On the other hand, Jagger had a lower 

kernel size at 0.036 g and a relatively lower HSI 0.975 compared to three other checks. The 

genotypes with smaller seeds will have less to lose under heat stress compared to the genotypes 

with larger seed. Also, the smaller seeded genotypes require less assimilates to fill small seeds so 

lower impact from heat might have been observed in these genotypes. Therefore, HSI can be 

used as a tool but should also be interpreted in the context of the experiment. In the context of 

this experiment, larger kernels are generally preferred to smaller ones. Among the three highly 

tolerant genotypes, based on the kernel size PI 467024 may be of more value for heat tolerance 

compared to PI466977 or PI466953, even though they have a comparatively lower HSI value. 

 Heat tolerance as an integrated measure  

Generally, the genotypes able to maintain chlorophyll content under longer duration are 

expected to maintain higher yield under heat stress as discussed in Reynolds et al. (2007). 

However, in our study, the genotypes able to maintain flag leaf characteristic of the main tiller 

and those with favorable HSI for kernel weight were mostly mutually exclusive except for three 

genotypes (PI466962, PI467005, and PI470978). These three genotypes were moderately 

tolerant based on the HSI value of 0.5-1, and were able to maintain FLD, Fv/Fm, and/or 

chlorophyll content. However, the highly tolerant genotypes were not able to maintain the flag 

leaf characteristics, therefore, greater focus on stay green may cause one to dismiss genotypes 

that maintain higher yield due to stem reserve translocation. Reserve translocation process 

depends on the complex relation between carbohydrate synthesized by green leaves (source 
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strength) vs the grain filling requirement (sink strength) (Shi et al., 2016). Blum (1998) showed 

that the reserves in the stem could contribute up to 60% of the grainfill under the stressful 

condition and 20% under normal condition. Therefore, plants with longer duration of green leaf 

may not always lead to higher grain weight. Grain fill is a complex process. Maintenance of the 

ability to photosynthesize is important, but it is also known that starch synthesis in wheat is 

temperature sensitive (Keeling et al., 1993; Prakash et al., 2009; Tian et al., 2018). These traits 

should, therefore, be viewed as important components of heat tolerance and should not be 

thought of in isolation from the entire grain fill process. It may be those lines with superior HSI 

for kernel weight are better as translocation and deposition of resources in the grain. These lines 

may be candidates for having more heat stable forms of soluble starch synthase. Stay green has 

been the primary focal point of most published reports on heat tolerance of wheat and its 

relatives but reliance solely on green leaf traits may not provide a comprehensive understanding 

of the mechanisms necessary to develop wheat varieties with robust tolerance to heat stress. In 

the context of this experiment, further research with a large number of genotypes and more 

replicates is required before reaching a definitive conclusion.  

Lower survival of flag leaf and higher maintenance of kernel characteristics in most of 

these wild accessions suggests that these wild genotypes are putting more effort in seed fill than 

the green leaf duration or green leaf characteristics. The higher fluorescence and chlorophyll 

measurements are often not resulting in stable seed weight means that some other mechanisms 

are at play beyond simple maintenance of chlorophyll content. These accessions are wild species 

and were not exposed to artificial selection. Therefore, they are likely well adapted to produce 

viable seed rather than maximize production of grain. These genotypes, when exposed to high 

temperature, might have genetic ability to utilize stored reserves that might lead to more stable 
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kernel weight, leading to lower heat susceptibility index values. This is more relevant when we 

are looking at the post-anthesis heat tolerance since most wheat growing areas are likely to 

experience post anthesis heat stress. The stem reserve accumulation is mostly a genetic 

characteristic. Most accumulation occurs before anthesis and can buffer grain filling under stress 

(Rebetzke et al., 2008; Ruuska et al., 2006). Our results also showed that some wild accessions 

might have the good buffering capacity. However, more research is required to understand the 

storage and translocation of water-soluble carbohydrates in these materials before reaching a 

solid conclusion. Testing the more promising materials under field conditions is warranted as 

direct translation from growth chamber to field results is not guaranteed. 

High temperature stress negatively impacted flag leaf characteristics and yield 

components. Both the day and night temperature in our high temperature treatment are higher 

than the optimum temperature. Therefore, the effect could be due to high day time temperature, 

night time temperature or both. Along with day time temperature, night time temperatures are 

projected to increase in the future. Further, the minimum night temperature is likely to increase 

much faster than the maximum day time temperature (Alexander et al., 2006; Sillmann et al., 

2013). Both high day and night temperature produce the similar effect on yield and physiological 

traits, but the effects could be more pronounced and detrimental under high day and night 

temperature. The higher rate of reduction in photosynthesis, increase in respiration rate and 

carbon loss has been reported in wheat and other species (Giri et al., 2017; Heckathorn et al., 

2013; Impa et al., 2018). Therefore, its crucial to take an account of both high day and night 

temperature for breeding for high temperature tolerance.  
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Summary and Conclusions 

Assessment of post-anthesis heat tolerance was carried out in 21 wild accessions of 

emmer wheat. Post-anthesis heat stress, also known as terminal heat stress is more likely to 

happen in wheat growing areas in the world and it’s one of the main limiting factors in wheat 

production. Incorporation of wild accessions will contribute to breeding for terminal heat stress 

tolerance and also contribute towards widening the genetic diversity in the crossing material.  

Triticum dicoccoides shares the A and B genomes with modern cultivated common 

wheat, so high-temperature tolerance characteristics identified in this study could be utilized in 

the wheat breeding program to develop high yielding cultivars with improved heat tolerance. 

Three accessions (PI 466977, PI 466953, PI 467024) were identified as highly tolerant based on 

HSI values of less than 0.5 for kernel weight. Three moderately tolerant genotypes (PI466962, 

PI467005, and PI470978) were also able to maintain flag leaf under heat stress. The lines 

satisfying the criteria are check marked in the Table 2-7. The highly tolerant genotypes will be 

used in a germplasm development program to assess the value of these materials to contribute to 

greater heat tolerance in elite wheat varieties. Further research with a large number of genotypes 

is also warranted to determine if there are accessions more tolerant than the accessions used in 

this study. 
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Figure 2-1 Relationship between average chlorophyll content and Fv/Fm expressed as 

percentage of day 0 for all genotypes under heat stress treatment. 

 

  



31 

Figure 2-2 (a) Chlorophyll content and (b) chlorophyll fluorescence presented as % of day 

0 (before the stress is applied) after 2, 4, 6, 8, 10, 12, 14, and 16 days of high temperature 

treatment (35/29 oC (day/night)).  
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Figure 2-3 (a) Chlorophyll content and (b) chlorophyll fluorescence presented as % of day 

0 (before the stress is applied) after 2, 4, 6, 8, 10, and 12 days of high temperature 

treatment (35/29 oC (day/night)). Error bars are ± 1 Standard error from the mean of two 

chamber treatments.  
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Figure 2-4. Relationship between senescence (expressed as days to minimum slope in 

chlorophyll values (more negative value) at two days interval measurement) and duration 

of flag leaf survival under heat stress treatment. 
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Figure 2-5 Heat Susceptibility Index (HSI) calculated from the Individual Kernel Weight 

(IKW) measurement under high temperature and optimum temperature for all genotypes. 
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Table 2-1 Species, accession number, country of origin, and altitude for genotypes used for 

identifying source of post anthesis heat tolerance.  

 

Entry 

No. 

Genus Species subsp Common 

name/Cultivar 

Accession No. Country of 

origin 

Altitude 

(m) 

1 Triticum turgidum dicoccoides Emmer wheat PI466953 ISRAEL 44 

2 Triticum turgidum dicoccoides Emmer wheat PI466962 ISRAEL 74 

3 Triticum turgidum dicoccoides Emmer wheat PI466963 ISRAEL 74 

4 Triticum turgidum dicoccoides Emmer wheat PI466969 ISRAEL 74 

5 Triticum turgidum dicoccoides Emmer wheat PI466977 ISRAEL 74 

6 Triticum turgidum dicoccoides Emmer wheat PI466998 ISRAEL 75 

7 Triticum turgidum dicoccoides Emmer wheat PI467005 ISRAEL -202 

8 Triticum turgidum dicoccoides Emmer wheat PI467014 ISRAEL -202 

9 Triticum turgidum dicoccoides Emmer wheat PI467024 ISRAEL -202 

10 Triticum turgidum dicoccoides Emmer wheat PI470959 ISRAEL 44 

11 Triticum turgidum dicoccoides Emmer wheat PI470978 LEBANON 2655 

12 Triticum turgidum dicoccoides Emmer wheat PI470982 LEBANON 2655 

13 Triticum turgidum dicoccoides Emmer wheat PI479781 ISRAEL 12 

14 Triticum turgidum dicoccoides Emmer wheat PI470986 LEBANON 2655 

15 Triticum turgidum dicoccoides Emmer wheat PI471073 ISRAEL -202 

16 Triticum turgidum dicoccoides Emmer wheat PI479777 ISRAEL 44 

17 Triticum turgidum dicoccoides Emmer wheat PI538656 TURKEY 1560 

18 Triticum turgidum dicoccoides Emmer wheat PI538681 ISRAEL -31 

19 Triticum turgidum dicoccoides Emmer wheat PI538699 ISRAEL -249 

20 Triticum turgidum dicoccoides Emmer wheat PI538719 ISRAEL -178 

21 Triticum turgidum dicoccoides Emmer wheat PI554584 TURKEY 30 

22 Triticum aestivum 
 

Jagger 
 

USA 
 

23 Triticum aestivum 
 

U1275 
 

USA 
 

24 Triticum aestivum 
 

Ventnor 
 

AUSTRALIA 
 

25 Triticum aestivum 
 

Jefimija 
 

SERBIA 
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Table 2-2 F-values for Individual Kernel Weight (IKW) and Flag leaf duration (FLD) 

under two treatments. Single (*), double (**), or Triple asterisks (***) indicates the 

significance at 0.05, 0.01, or <0.001 level of probability. 

 

Source of Variation  DF IKW FLD 

Genotype 24 101*** 42.37*** 

Treatment 1 299.87** 112.26** 

Genotype*Treatment 24 3.53*** 3.65*** 

Treatment 

(Chamber) 

2 NS NS 
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Table 2-3 Mean Flag leaf duration (FLD) of genotypes at Optimum temperature (OT) and 

High Temperature (HT) treatment. Individual datum is the mean of six plants from two 

replicate growth chamber. Single (*), double (**), or Triple asterisks (***) indicates the 

significance at 0.05, 0.01, or <0.001 level of probability. 

 

Genotype FLD OT FLD HT 

PI467005 8.7 8.7 

PI470978 13.3 13.3 

PI479777 14.0 13.7 

Jefimija 15.7 15.3 

Ventnor 16.0 15.5 

U1275 15.7 14* 

PI466963 11.7 10.3** 

PI467024 15.3 13.3* 

PI471073 12.3 10.7* 

PI467014 13.3 11** 

Jagger 14.7 11.5*** 

PI554584 12.3 9.7** 

PI538681 12.0 9.3*** 

PI466962 8.7 6.7 

PI470982 13.0 10*** 

PI538699 14.0 10.7** 

PI470959 13.0 9.7*** 

PI466953 14.0 10.3*** 

PI538656 11.0 8*** 

PI466977 13.0 9.3*** 

PI538719 10.3 7** 

PI479781 13.0 8.3** 

PI466998 13.7 8.3*** 

PI466969 13.7 8.3*** 

PI470986 4.0 2*** 
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Table 2-4 Correlation between chlorophyll content and chlorophyll fluorescence at 

different duration (days) of heat stress treatment. Double (**), or Triple asterisks (***) 

indicates that the correlation is significantly different from zero at 0.05, 0.01, or <0.001 

level of probability. 

Days 2 4 6 8 10 12 14 16 

r 0.41*** 0.73*** 0.84*** 0.85*** 0.85*** 0.86*** 0.85*** 0.83** 

 

Table 2-5 Effect of high temperature stress on chlorophyll fluorescence expressed as Fv/Fm 

and chlorophyll content of individual genotype (genotype by treatment interaction sliced by 

genotype) after 5 days of heat stress. Single (*), double (**), or Triple asterisks (***) 

indicates that the measurement at high temperature is significantly lower at 0.05, 0.01, or 

<0.001 level of probability. 

 

  

Genotypes 

  

Fv/Fm 

  

Chlorophyll 

  

OT HT OT HT 

PI466953 0.78 0.74* 45.6 42.9 

PI466962 0.77 0.72** 41.0 38.1 

PI466963 0.75 0.73 45.1 39.7 

PI466969 0.79 0.75* 40.5 37.0 

PI466977 0.80 0.78 40.4 41.9 

PI466998 0.76 0.71** 41.9 39.2 

PI467005 0.74 0.76 29.0 31.3 

PI467014 0.76 0.76 40.8 37.3 

PI467024 0.79 0.78 43.8 44.2 

PI470959 0.76 0.76 40.9 38.4 

PI470978 0.74 0.77 44.6 34.4*** 

PI470982 0.78 0.74** 42.5 39.4 

PI470986 NA NA NA NA 

PI471073 0.77 0.74 44.1 39.8 

PI479777 0.78 0.75 45.0 49.4 

PI479781 0.77 0.78 41.1 38.9 

PI538656 0.73 0.72 38.1 31.5* 

PI538681 0.79 0.77 43.3 39.5 

PI538699 0.78 0.73** 48.6 45.7 

PI538719 0.74 0.63*** 41.2 28** 

PI554584 0.77 0.73* 37.6 39.7 
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Table 2-6 Mean Individual Kernel Weight (IKW) of genotypes at Optimum temperature 

(OT), High Temperature (HT) treatment, and Heat Susceptibility Index (HSI) calculated 

from IKW. Individual datum is the mean of six plants from two replicate growth chamber. 

Single (*), double (**), or Triple asterisks (***) indicates the significance at 0.05, 0.01, or 

<0.001 level of probability. 

Genotype IKW OT (g) IKW HT (g) HSI 

PI466977 0.031 0.031 0.018 

PI466953 0.034 0.032 0.366 

PI467024 0.037 0.034 0.472 

PI538699 0.022 0.020 0.556 

PI466962 0.035 0.032* 0.711 

PI538681 0.034 0.030* 0.739 

PI467005 0.035 0.031* 0.739 

PI554584 0.023 0.020 0.832 

PI479781 0.043 0.037*** 0.913 

PI538719 0.015 0.012 0.941 

Jagger 0.036 0.031*** 0.975 

PI466969 0.034 0.029** 0.981 

PI470978 0.044 0.037*** 0.999 

PI479777 0.043 0.036*** 1.029 

Ventnor 0.046 0.037*** 1.077 

PI466963 0.041 0.034*** 1.094 

U1275 0.044 0.037*** 1.113 

PI467014 0.044 0.036*** 1.156 

Jefimija 0.044 0.035*** 1.180 

PI470982 0.028 0.023** 1.210 

PI470986 0.030 0.024*** 1.334 

PI470959 0.037 0.029*** 1.494 

PI538656 0.029 0.022*** 1.544 

PI471073 0.028 0.021*** 1.624 

PI466998 0.032 0.020*** 1.744 
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Table 2-7 Summary table of heat tolerance based on no significant difference between FLD, 

Fv/Fm, Chlorophyll content, Individual Kernel Weight (IKW) under high temperature 

treatment (HT) and optimum temperature treatment (OT) and HSI <1. Significance was 

assessed at 0.05 level of probability. 

 

  

FLD Fv/Fm Chlorophyll IKW HSI<1

PI466953 ✔ ✔ ✔

PI466962 ✔ ✔ ✔

PI466963 ✔ ✔

PI466969 ✔ ✔

PI466977 ✔ ✔ ✔ ✔

PI466998 ✔

PI467005 ✔ ✔ ✔ ✔

PI467014 ✔ ✔

PI467024 ✔ ✔ ✔ ✔

PI470959 ✔ ✔

PI470978 ✔ ✔ ✔

PI470982 ✔

PI470986

PI471073 ✔ ✔

PI479777 ✔ ✔ ✔

PI479781 ✔ ✔ ✔

PI538656 ✔

PI538681 ✔ ✔ ✔

PI538699 ✔ ✔ ✔

PI538719 ✔ ✔

PI554584 ✔ ✔ ✔
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Chapter 3 - Physiological and Genetic Analysis of Water-soluble 

Carbohydrates Accumulation in Wheat Stems 

Introduction 

Abiotic stresses, such as drought and heat, greatly reduce productivity in wheat and many 

other crops. While analyzing insurance usage for crop loss, Boyer (1982) found that the 94% 

decline from record to average production in US grown wheat was due to abiotic stress, mainly 

drought. Yield loss due to drought has been reported in several studies (Boyer, 1982; Musick et 

al., 1994; Tack et al., 2014), and it affects both developed and developing countries (Trethowan 

and Pfeiffer, 2000). A recent modelling study by Tack (2014), reported that 22% of the yield 

reduction in US Great Plains wheat is due to drought.  

Drought can be defined in several forms, but the agricultural drought is the condition 

when the water available in the soil is not enough for normal growth and development at a 

particular time (Hayes, 2010). It can happen during any growth stage, but drought during 

reproductive stage can be more damaging to the developing floret, hence to final yield (Ahmadi 

and Baker, 2001; Prasad et al., 2008). Drought 15 days after flowering can decrease grain weight 

by as much as 40% (Ahmadi and Baker, 2001; Wardlaw and Willenbrink, 2000). The wheat 

growing areas of the US Great Plains are drought prone and often experience terminal drought, 

which decreases yield by decreasing grain number or grain weight. The stress during early grain 

filling stage is more likely to lower the grain number by limiting the supply of photoassimilates 

to the developing grain, causing the abortion of recently fertilized ovaries (Ji et al., 2010). Stress 

during mid/late grain filling stages negatively impact on the kernel weight by decreasing the 

grain fill duration (Ji et al., 2010). 
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Plants deal with drought mainly by two primary mechanisms: avoidance or escape and 

tolerance (Blum, 2011a). Avoidance is common in areas that are likely to experience terminal 

drought stress and mediated by the hormone abscisic acid (ABA). ABA is primarily responsible 

for triggering drought responsive traits in plants like stomatal closure, leaf retardation, promotion 

of root growth and so on. Early maturation takes advantage of avoidance or escape from terminal 

drought stress, however, longer grain fill duration is beneficial for maintaining yield potential 

(Blum, 1998). Grain yield is a function of the biomass and harvest index. Biomass depends on a 

series of factors impacting ongoing photosynthesis like light interception, radiation or water use 

efficiency and involves several enzymatic activities in the process (Reynolds et al., 2009). 

Drought stress negatively impacts these processes, increases respiration and senescence, 

ultimately decreasing yield.  

Grain filling in wheat relies on post anthesis assimilates mobilized directly to the grain or 

the remobilization of earlier synthesized assimilate stored in the stems and mobilized into the 

maturing grain. Under favorable conditions, up to 80% of the grain weight is contributed by post 

anthesis assimilate, but terminal drought stress limits this production resulting in a severe decline 

in yield (Blum, 1998; van Herwaarden et al., 2003). The assimilation rate alone cannot support 

the sink demand and respiration rate; therefore, mobilization of the stored reserves is crucial in 

maintaining yield under stress when photosynthesis is compromised (e.g., terminal heat and 

drought stress, diseases after flowering). These stored reserves are referred to as water-soluble 

carbohydrates (WSC) to distinguish them from structural cell wall carbohydrates. Studies have 

shown that mobilization of WSC can contribute up to 60% of the resources for yield under stress 

(Blum, 1998; Ehdaie et al., 2008; Plaut et al., 2004; Rattey et al., 2009; Rebetzke et al., 2008; 

Yang et al., 2007). Therefore, WSC is an important adaptive trait for terminal drought stress. 
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WSC accumulation occurs when excess assimilates are synthetized before, during, or 

right after anthesis. It can constitute more than 40% of stem dry weight, depending on genotype 

(Rebetzke et al., 2008; Ruuska et al., 2006; Schnyder, 1993). WSC can be stored in the form of 

hexose and sucrose but is predominantly present as fructans in wheat (Wardlaw and Willenbrink, 

1994). Two main enzymes predominantly involved in fructan synthesis are sucrose sucrose 

fructosyl transferase (SST) and fructan fructan fructosyl transferase (FFT), and the activity of 

these enzymes are found to be positively correlated with the WSC accumulation (Blum, 1998; 

Housley et al., 1989; Xue et al., 2008). Glucose is a product of fructan synthesis, converted to 

sucrose, and stored as fructan by the activity of SST, but the enzymes sucrose synthatase and 

sucrose phosphatase are also believed to play a role during the conversion (Wardlaw and 

Willenbrink, 1994). Pre-anthesis drought stress decreases WSC accumulation, and this decrease 

has been linked to the decreased activity of these enzymes (Ji et al., 2010; Xue et al., 2008). 

Unlike accumulation, remobilization is dependent on demand, enzymatic activity and source 

availability (Blum, 1998; Plaut et al., 2004, Shi et al., 2016). The driving factor for 

remobilization is the rate of starch deposition in the grain, which is mainly regulated by soluble 

starch synthase (SSS). Given the highly thermosensitive nature of SSS enzyme in wheat (Keeling 

et al., 1993; Prakash et al., 2009; Tian et al., 2018), mobilization is largely dependent on the 

external environmental conditions.  

Although there is parsimonious literature showing that the use of WSC promises 

increased drought tolerance, WSC is not used as a selection in the United States wheat breeding 

programs. The two main reasons are (i) the lack of research in diverse genotypes to understand 

the role of WSC, and (ii) the analysis method. The conventional method for analyzing this trait is 

labor intensive and time consuming, limiting its application to the large number of samples 
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required in breeding. Many studies in the past were based on the tedious lab method but, in 

recent years, the use of near infrared spectroscopy (NIRS) has also been widely adopted 

(Piaskowski et al., 2016; Rebetzke et al., 2008; Ruuska et al., 2006; Wang et al., 2011). NIRS is 

based on the measurement of the absorption of specific frequencies of light by the molecules 

present in the sample, therefore it needs to be calibrated to a set of laboratory-analyzed samples. 

NIRS is rapid, non-destructive, cost effective, and has been widely applied in predicting several 

compounds in agriculture research (Roberts et al., 2004). Very few studies using NIRS for 

predicting WSC have addressed accumulation in diverse genotypes or assessed accumulation in 

different parts of the plant (Piaskowski et al., 2016; Ruuska et al., 2006; Wang et al., 2011). The 

inclusion of data from diverse genotypes and various plant parts in the model will help widen the 

applicability of the model in predicting diverse genotypes in multiple environments.  

Leaf desiccants like sodium or magnesium chlorate or potassium iodide have been used 

to simulate terminal drought stress and study the mobilization of stem reserves for grain fill 

(Blum, 1998). Nicholas and Turner (1993) confirmed that the desiccant application is positively 

and significantly correlated with terminal drought stress under field conditions. Desiccants have 

also been evaluated for early generation selection for drought tolerance in the breeding program 

(Haley and Quick, 1993). In their study, the two cycle of selection produced bulks more tolerant 

genotypes to desiccant application. The application of desiccant to simulate terminal drought 

stress is potentially a powerful tool for selection, especially when the genotype is also evaluated 

under sufficient moisture to more accurately assess the yield potential of that genotype.  

 Genomic analysis of water-soluble carbohydrates 

Genomic analysis provides significant promise for the understanding and improvement of 

drought tolerance traits. Genome wide association studies (GWAS) uses recombination from 
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diverse genotypes to identify the genetic regions associated with the trait, therefore it has higher 

resolution compared to biparental mapping population. Also, there is no additional time, cost, 

and effort for population development (Bernardo, 2016). Population structure, relatedness, and 

covariates can also be taken in to account in the analysis (Korte and Farlow, 2013).  

Marker availability and cost for genotyping used to be the major constraints for GWAS 

studies. Limited studies were done with SSR markers to identify genomic regions associated 

with WSC concentration, mainly in biparental mapping populations (McIntyre et al., 2012; 

Rebetzke et al., 2008; Snape et al., 2007; Yang et al., 2007). Genotyping using fixed arrays has 

been applied for other traits like diseases and yield but has not been used for WSC in the context 

of a breeding program. Genotyping by sequencing (GBS) has an unprecedented capacity to 

discover and utilize genome-wide SNP markers at a relatively low cost and has been widely 

adapted in wheat research (Poland and Rife, 2012; Thomson, 2014).  

Although GWAS can be a very important tool to detect variants associated with the traits, 

it fails to detect rare variants and care must be taken to avoid false positives that may arise from 

performing a significance test at every single locus (Bernardo, 2016). Another approach, 

genomic selection (GS), might be more appropriate to accomplish breeding objectives 

(Meuwissen et al., 2001). GS is also a form of marker assisted selection but, unlike GWAS, GS 

uses genome wide molecular markers, to calculate genomic estimated breeding values (GEBVs), 

that can be used to predict the performance of another set of genotypes that have been genotyped 

but not phenotyped (Heffner et al., 2009). GS has been tested in wheat for several other traits 

such as disease resistance (Poland and Rutkoski, 2016; Rutkoski et al., 2012, 2014), yield and 

end use quality (Battenfield et al., 2016; Guzman et al., 2016), however, to the best of our 
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knowledge, there has not been any attempt to evaluate the applicability of GS using WSC as the 

target trait. 

With the use of the GS model, superior candidates can be selected prior to phenotyping 

based on the GEBVs estimated from the genotypic data. GS can accelerate genetic gain through 

the shorter breeding cycle (Heffner et al., 2009). The gain per year from the GS breeding 

program is higher, even at moderate GEBV accuracy, but can increase to several fold with an 

increase in GEBV accuracy. GS is more important in a commercial crop with a large and 

complex genome and traits  with moderate heritability (Jarquín et al., 2017; Poland and Rife, 

2012).  

Genomic selection has two primary components: training population (TP) and unknown 

population (UP). The training population has genotypes that have been both phenotyped and 

genotyped, and the unknown/target population has been genotyped, and the phenotypic value is 

estimated based on the GEBVs derived from the genotypic data (Heffner et al., 2009). The 

optimum size of the training population is always a question, as smaller TPs will have lower 

prediction accuracy, but the size of the TP must be balanced with the ability to obtain phenotypic 

data and the costs associated with data acquisition (Hayes et al., 2009).  

In this experiment, we performed GWAS and GS with different training population sizes 

on WSC concentration using an association mapping panel of winter wheat. Given the 

applicability of near-infrared spectroscopy and the importance of water-soluble carbohydrate in 

maintaining grain yield under stress, we aimed to develop an NIRS calibration curve for rapid 

and accurate determination of WSC in the top and bottom part of stem in genotypes from the 

Kansas State wheat breeding program and the most broadly adopted varieties in the region. 

Predicted WSC was analyzed in relation to seed weight, grain yield, and other physiological 
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traits. Also, we tested a broad set of genotypes under several different environments, including 

control and simulated terminal drought stress conditions in each environment and analyzed the 

effect on yield, yield components, and quality. 

Materials and Methods 

 Experimental details 

Kansas State University maintains breeding programs based in Manhattan, KS and Hays, 

KS. The programs have different objectives, based on their target environments. The Manhattan 

program focuses primarily on central Kansas where its humid and fungal diseases are of primary 

importance and the Hays program is primarily focused on western Kansas where drought 

tolerance and resistance to viral disease are emphasized. A diverse panel of 400 winter wheat 

breeding lines consisting of 200 lines each from both the Manhattan and Hays programs, and 30 

released varieties for Great Plains were used in the study (Table 3-1).  

The experimental lines were planted in type II modified augmented design in Colby, 

Kansas under two environments, irrigated and limited irrigation, in 2016 and 2017. A detailed 

description of this type of augmented design is presented in chapter 4. In 2016, the replicates of 

varieties were embedded in the augmented design, allowing the varieties to be analyzed as a 

randomized complete block design (RCBD). In 2017, the thirty varieties were planted in a stand-

alone RCBD experiment in the same environments, along with one additional rainfed location at 

Hays, Kansas. The soil type at both locations was silty clay loam. The planting locations for 

varieties in 2018 increased to five sites in Kansas. Planting and harvesting information are 

provided in Table 3-2.  
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 Irrigation 

No supplemental irrigation was supplied at Hays in 2017 or 2018. Pre-germination 

irrigation was supplied to ensure uniform seedling establishment for all experiments in Colby. 

The Colby Irrigated environment (COI) received supplemental irrigation in all three years. The 

timing and irrigation amount are presented in Table 3-2. Colby dry environment (COD) relied on 

the rainfall except for the pre-germination irrigation. Weather data, including monthly 

precipitation and maximum and minimum temperatures, as well as normal precipitation during 

the wheat growing season in Colby (2015/2016, 2016/2017, 2017/2018) and Hays (2016/2017, 

2017/2018) are presented in Figure 3-3.  

 Phenotyping for water-soluble carbohydrates 

 Sample preparation 

Twenty stems from each genotype were harvested 15 days after mid-flowering 

(Flowering in 50% genotypes in plot) as determined on an experiment-wide basis. Flowering 

date was determined to be five days after 50% of the samples headed out in plot. Immediately 

(within 1 hour) after sampling, stem tissue was dried in an oven set at temperature 60 oC until 

samples reached a constant weight. Head and leaf sheath were removed, and the stems were 

separated into ‘top’ and ‘bottom’ sections. The top part included the stem above an upper node 

(first internode) and rest were stored as the bottom part. All samples were stored in air-tight zip 

lock bags. The stem samples were then ground to a fine powder (<0.2 mm) using Cyclone 

Sample Mill (UDY Corporation, Fort Collins, CO) and stored in the same bags at room 

temperature.  

 Laboratory analysis 
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Approximately 10% of ground stem samples from both top and bottom sections were 

randomly selected each year for direct analysis of WSC. Soluble carbohydrates were extracted 

using a modified method by Xue et al. (2008) and glucose was used as a standard. 50-100 mg of 

tissue was weighed in a microfuge tube and placed in a water bath set at 80 oC with 2ml of 80% 

ethanol for 15 minutes. The procedure was repeated one time with ethanol and two times with 

water. After each extraction, the samples were cooled to room temperature and centrifuged at 

10,000 rpm for 8 minutes. Supernatants from each extract were combined and distilled water was 

added to reach a volume of 50 ml. Two technical replications were independently performed on 

the first 10 samples to assess the within-sample variation. Two aliquots were removed from each 

extraction and the concentration of soluble carbohydrates was determined using the anthrone 

method with glucose as a standard (Yemm and Willis, 1954). Briefly, one part of the sample or 

standard solution of glucose at different concentrations was allowed to react with three parts of 

anthrone reagents at 100 oC for 12 minutes, and the reaction was stopped by holding at 4° C. 

Sugar concentration was determined by reading the absorbance at 630nm in a microplate reader 

and Gen5 2.0 software (Synergy H1 Hybrid Microplate Reader, BioTek, Winooski, VT). 

Samples from each assay were read in two wells of a microplate, and the results were averaged 

together to determine concentration per sample. 

 Near-infrared spectral calibration and validation 

Near infrared spectra were taken using a high intensity contact probe (model number 

A122317) with a bifurcated cable (ASD-135680) that has 78,200-micron fibers from Analytical 

Spectral Devices (ASD Inc., Boulder, CO). The probe was held 1.5 mm above the ground 

sample. The same amount of sample was used in each scan by cutting and leveling along the 

edges in a black dish. Twenty scans were integrated per recorded spectra at wavelengths in the 
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350-2500 nm range at a spectral resolution of 3 nm up to 700 nm and 10nm above 700nm using 

LabSpec 4 Std-res spectrophotometer (ASD Inc., Boulder, CO) with RS3 software. White 

reference was taken every hour from the same height using a spectralon.  

The lab analyzed samples were used for spectral calibration and validation using leave 

out one (LOO) method in partial least square (PLS) regression, a spectral decomposition 

technique similar to principal component regression. The PLS regression uses concentration data 

during the decomposition process and includes as much information as possible on the first few 

loading vectors (Dowell et al., 1999). The spectra from each sample were monitored before 

analyzing in GRAMS/32 software (Galactic Industries Corp., Salem NH) and ‘pls’ package in R 

(R core team). The data were mean-centered before analysis. The number of components in the 

calibration curve were chosen to yield a maximum coefficient of determination (R2) and 

minimum RMSEP. The same calibration curve was developed for both the top and bottom 

samples to predict the remaining samples in the population. A paired t-test was conducted 

between actual lab measured concentration and model predicted concentration to test if the 

predicted values were significantly different from lab measured values.  

 Simulating terminal drought stress by desiccant spraying 

The varieties were planted in paired plots, where one companion plot of the pair received 

desiccant spray 15 days after mid-flowering, immediately after the sample collection for water-

soluble carbohydrates. A commercially available desiccant, defol5 (Drexel Chemical Co, 

Memphis, TN), was diluted to maintain 6% sodium chlorate (% by volume) in 2018 and sprayed 

at the rate of 187 liters hectare-1 using a MudMaster spray unit (Bowman Manufacturing, 

Newport, AR). Bidirectional application was made to maximize canopy coverage. The sprayer 

was equipped with a hood so as not to spread the solution onto adjacent plots. In 2017, the same 
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chemical was diluted, as suggested on the label, to a final concentration of 12-15% sodium 

chlorate. 

 Heading date and plant height measurements 

Heading and plant height data were recorded in Hays location only (2017 and 2018). Plot 

heading date was determined when 50% of the fully emerged heads in the plot (Zadoks et al., 

1974). Experiment-wide heading dates in Colby were estimated from general observation in the 

plot. Plant height was measured from the ground to the peduncle, excluding awns. At maturity, 

grain yield from the varieties was harvested using a combine harvester to obtain the grain yield 

plot-1 and moisture content. Moisture contents are harvest ranged from 9-12%.  

Grain harvested from each plot was measured for test weight and protein using Perten IM 

9500 Protein/oil Analyzer (Perten Instruments, PerkinElmer Company). Kernel weight 

measurements were performed on samples of 200 seeds counted using an automatic seed counter 

(The Old Mill Co, Savage, MD), and the weight was used to calculate thousand kernel weight 

(TKW) in kilogram (kg).  

 Genotyping 

Leaf tissue from 3-5 two-weeks old seedlings was bulked together for DNA extraction by 

a modified CTAB protocol. The genotyping-by-sequencing (GBS) method was used for reduced 

representation library preparation and DNA sequencing, where the DNA samples were 

quantified, normalized, digested with two enzymes (rare cutter and common cutter), barcoded, 

amplified and sequenced using Illumina HiSeq equipment (Poland and Rife, 2012; Poland et al., 

2012). 

The Trait Analysis by Association, Evolution, and Linkage (TASSEL 5.0) software was 

used to call and filter single nucleotide polymorphisms (SNPs). The SNPs were aligned with the 
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IWGSC draft reference genome 161010_Chinese_Spring_v1.0 pseudomolecule reference 

(IWGSC, 2018) and ordered from the short arm to long arm of each chromosome using Bowtie 2 

(Langmead and Salzberg, 2012). SNPs with more than 25% missing data across all genotypes 

and genotypes with more than 50% missing data across all markers were removed from the 

resultant SNP call because a large number of missing SNPs can hamper association analysis with 

an unacceptable degree producing unreliable results. Additionally, SNPs that yielded multi-

allelic calls, heterozygosity higher than 10%, and minor allele frequency (MAF) of less than 1% 

were omitted from the analysis. The unanchored SNPs were retained in the genotypic data and 

assigned to an unknown chromosome, labelled as “UN” in the analysis. All bioinformatics 

analysis was performed on the Beocat Research Cluster at Kansas State University.  

 Genome-wide association analysis 

Genome wide association studies (GWAS) were performed in Genome Association and 

Prediction Integrated Tool (GAPIT) package using enhanced mixed linear model in R (Tang et 

al., 2016). The threshold for significance in GAPIT is based on the Bonferroni correction. This 

method is highly conservative, limiting the identification of significant marker-trait associations, 

therefore a less stringent false discovery rate (FDR) of 10% and P-value of 0.0004 was adopted 

in our study. The R package ‘CMplot’ was used to reconstruct Manhattan plots from GWAS 

results. 

 Genomic selection  

The hapmap format for SNPs was converted to numeric format as 1, -1, 0, and NA for 

more frequent (major) allele, less frequent (minor) allele, heterozygotes, and missing data, 

respectively. Loci with missing data were EM imputed with A. mat function in the rrBLUP 

package in R (Endelman, 2011; Rutkoski et al., 2013). Four genomic selection models, 1) ridge 
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regression best linear unbiased predictor (rrBLUP), 2) partial least square regression (PLSR), 3) 

elastic net (ELNET), and 4) random forest (RF) and an average of all four models (AVE) were 

tested using ‘GSwGBS’ package in R (Gaynor, 2015). The four models rrBLUP, PLSR, ELNET, 

and RF) were obtained using R packages ‘rrBLUP’, ‘pls’ (Wehrens and Mevik, 2007), ‘glmnet’ 

(Friedman et al., 2009), and ‘randomForest’ (Liaw and Wiener, 2002) respectively. The average 

prediction (AVE) was calculated using standardized values as described by (Battenfield et al., 

2016) avoiding overly weighting the average towards any single model.  

Among the models used in the study, rrBLUP uses a mixed linear model to solve for 

individual random marker effects (Endelman, 2011). These effects are then multiplied by the 

marker matrix to predict the line performance in the unknown population. PLSR is similar to 

regression based on principal components (Wehrens and Mevik, 2007). ELNET fits a 

generalized linear model with a penalized maximum likelihood (Friedman et al., 2009) and RF is 

based on the decision tree method (Breiman, 2001).  

Cross validation prediction was conducted using four training population sizes (20%, 

40%, 60%, and 80% of total population) to predict the remaining population, and the average 

value was obtained after running a 100-fold analysis. The accuracies were obtained by dividing 

the correlation coefficient by the average square root of broad sense heritability from the average 

of 100 replications (Poland and Rutkoski, 2016). 

 Heritability calculation 

Heritability is the ratio of genetic variance to the total variance for a given trait (Acquaah, 

2009). 
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Where, 𝜎 2
g is genotypic variance; 𝜎 2

ge is genotype by environment interaction; 𝜎 2 
error is 

the residual error variance; e is the number of environments, and r is a number of replications in 

each environment.  

Broad sense heritability was calculated using ‘Sommer’ package in R (Covarrubias-

Pazaran, 2016). Heritability was calculated using a linear mixed model by likelihood methods 

(REML) solving mixed model equations in R using both genotype and environment as a random 

effect. Since the experimental lines were not replicated across different environments, only the 

30 varieties replicated in randomized complete block design were used in heritability 

calculations from seven different site year combinations. The variance effects were calculated as:  

Yijk =  + gi +ej + (ge)ij +bjk +eijk 

Where,  

Yijk = yield of the ith genotype in the jth environment and kth replicate  

 = overall mean  

gi = main effect of the ith genotype; ~ N(0, g
2) 

ej = main effect of the jth environment 

(ge)ij = ijth genotype  environment interaction effect; ~ N(0, g
2) 

bjk = kth replicate/block effect in jth environment  

eijk = residual comprising both genotypes  location  year interaction as well as the error 

of a mean; ~ N(0, e
2) 

Results and Discussions 

 Near-infrared spectroscopy (NIRS) calibration, validation, and data prediction 

To develop the NIRS calibration curve, approximately 10% of the sample were analyzed 

in the lab each year for WSC concentration using glucose as a standard. We adopted the 
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microplate method for high throughput analysis in the lab, where 96 wells can be read at once, as 

opposed to single sample reading in a conventional spectrophotometer. The standard curve of 

glucose was prepared in every microplate to account for plate variation, but the microplate 

variation was very low, as shown in Figure 3-2. The coefficient of determination, R2 in all plates 

was higher than 0.98. In 2016, the calibration equation involved both experimental lines and 

varieties from two environments whereas the calibration curves in 2017 and 2018 involved only 

released varieties from all available environments. With the diverse samples being analyzed in 

the same calibration in 2016, the minimum and maximum range of lab measured WSC in the 

calibration equation was 79 to 546 mg/g, whereas for the 2018 samples, the range was between 

78 and 258 mg/g. R square of calibration and validation was more than 0.81 for all years, and 

RMSE was 35, 20, and 19 mg/g, respectively, for 2016, 2017, and 2018. The higher RMSE in 

2016 compared to 2017 and 2018 could be due to the inclusion of diverse experimental lines in 

the calibration equation. The calibration equation thus developed was used to predict unknown 

samples in the population for that given year.  

Paired t-test results showed that there is no significant difference between the lab-

measured and model-predicted values of WSC concentration with a P-value of 0.9 (Table 3-4). 

The predicted and observed values were evenly distributed around the 1:1 regression line with a 

R2 of 86.1% (Figure 3-3), therefore the model is not under or over predicting the concentration. 

Notably, the inclusion of both top and bottom plant parts, diverse genotypes with a wide range of 

WSC concentrations, and representative genotypes from different environments should made the 

calibration model suitable for predicting WSC across the wider range of genotypes in the study. 

 Variation in WSC concentration across plant parts, genotypes and environments 

 Variation across plant parts  
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Overall, a higher concentration was observed in the bottom portion of the stem compared 

to the top (part above top node), as presented in Figure 3-4 (a). Similar to the present study, a 

higher WSC concentration in the basal internode was also observed in winter barley (Bonnett 

and Incoll, 1992). In contrast, Wardlaw and Willebrink (1994) and Daniels et al. (1982) observed 

a higher concentration in the peduncle and penultimate internode of wheat and barley, 

respectively. Gebbing (2003) observed significantly higher fructan concentration in the peduncle 

enclosed in leaf sheath compared to the exposed, photosynthetic part of peduncle. These 

differences could be due to (i) differences in genetic material used in the study, as WSC is a 

genetically-influenced trait (Ruuska et al., 2006; Schnyder, 1993), (ii) environmental conditions, 

as they can affect the activity of enzymes involved in the accumulation of WSC (Xue et al., 

2008), or (iii) the stage of stem harvesting, which can be influenced by differing rates of 

remobilization of WSC to the grain (Wardlaw and Willenbrink, 1994). Xue et al. (2008) 

mentioned that differential WSC partitioning is one of the important mechanisms for genotypic 

variation in WSC accumulation. Earlier mobilization could have lowered the concentration in the 

upper stem portion, as the peduncle (carbon source) is closer to the head (sink), however we do 

not have enough evidence to support this hypothesis.  

Though the concentration was significantly higher in the bottom of the stem, with a mean 

of 300 mg/g, compared to 172 mg/g in the top part of the stem (Figure 3-4 (a)). We observed a 

significant, positive correlation between top and bottom concentration in the stem using all 1500 

plots in 2016 with the R2 of 0.37 (Figure 3-4 (b)). From this result, it appears top (above top-

node) or bottom (below top-node) sections of the sem can be used for the analysis of WSC 

concentration. 

 Variation across genotypes and environments 
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Similar to the lab analysis of a smaller number of genotypes, overall range of predicted 

WSC was higher in diverse experimental lines (Tables 3-5 and 3-6) compared to the 30 released 

varieties presented in Table 3-1. The average WSC concentration ranged from 51 to 417 mg/g in 

experimental lines, whereas the range was 124 (18 COI) to 360 mg/g (17 Hays) for varieties 

planted across locations for three years. The wider range could also be due to greater variation 

present in the larger set of experimental lines from the two K-State wheat breeding programs. 

Though these programs collaborate closely to breed varieties for the same state, the Hays 

program focuses on Western Kansas, which is relatively drier; and the Manhattan program 

focuses on central Kansas, which is relatively humid and less prone to drought. Therefore, these 

genotypes might have varying levels of drought tolerances, and phenological traits- the two 

major factors influencing WSC accumulation (Blum, 1998; Wardlaw and Willenbrink, 1994). 

Wardlaw and Willenbrink (1994), found that WSC accumulation peaks from 10 - 35 days after 

anthesis. We attempted to maximize the number of genotypes within this frame, however, these 

genotypes were not individually assigned a heading date. Therefore, some genotypes might have 

been beyond the period of highest accumulating, or yet to be on the peak. This may also have 

contributed some to a wider range observed. Nonetheless, we were still in the linear growth 

phase of kernel development, and previous literature also suggest the phenological differences 

were not likely a major factor in phenotypic variation (Ovenden et al., 2017; Salem et al., 2007).  

Significant positive correlation of WSC accumulation was observed over environments in 

both experimental lines and varieties (Figure 3-5 and 3-6). There was not much variation in the 

experimental lines planted in water-limited or irrigated environments in 2016, which can be seen 

in the even distribution around the regression line in Figure 3-6. These lines are grown in the 

same location where environmental variation was primarily based on moisture regime. Higher 
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than normal rainfall occurred during the 2016 wheat growing season, with more than half of in-

season precipitation occurring after April. The result was the materials in the field did not 

experience any moisture deficit from shortly after jointing through physiological maturity 

(Figure 3-1). In 2018, the WSC concentration levels were highest at Hays (rainfed), followed by 

Colby (dry) and Colby (irrigated). The two experiments at Colby were very similar in WSC 

concentration, suggesting moisture regime was not the most important factor influencing WSC. 

However, the general trend of higher WSC in drier environments in the same year, was 

consistent with the results of Ehdaie et al. (2008 and 2006), Rattey et al. (2009), Rebetzke et al. 

(2008), and Ruuska et al., (2006). 

Data was generated for two environments from one year for the experimental lines and 

seven environments over three years for the released varieties. A strong trend of positive and 

significant correlation of WSC among all environments was observed in varieties. Correlations 

between the varieties in different environments ranged from 0.55 to 0.85 (Figure 3-5). The 

highest correlation was observed between the two Colby environments (COD and COI) in both 

2016 and 2018, whereas the lowest correlation was observed between 18 COI and 16 COI. As 

noted for the experimental lines, high correlations were found between COD and COI in 2016. 

Anomalous rainfall patterns in both years complicate interpretation of the results but the fact that 

moisture regime resulted in very little relative change in WSC suggests that environmental 

factors, other than precipitation play a key role in determining WSC concentration. Correlations 

between environments within the same year were higher than year-to-year correlations, where 

correlations of WSC accumulation were stronger between 2016 and 2017 or 2017 and 2018 than 

between 2016 and 2018. The Spearman rank correlation also followed the same trend, with a 
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similar range of 0.53 to 0.88. Overall, we can conclude that the rank among varieties does not 

change greatly across environment and years.  

Drought tolerant cultivars are expected to have a higher capacity to store and mobilize 

WSC and may be expected to be less productive under favorable conditions. Yield decline under 

terminal drought stress was found to be greater for varieties with lower WSC concentration 

(Blum, 1998; Dreccer et al., 2012). This could lead to the conclusion that high WSC is desirable 

in environments prone to terminal drought stress, even though it may compromise yield 

potential. Genotypes were separated into the top- and bottom-ten accumulating in each 

environment. Eight lines were common across the locations for each category. The eight 

varieties that were consistently the highest accumulating genotypes across all locations were 

Clara CL, Larry, SY Wolf, Gallagher, KanMark, Tiger, SY Sunrise, and Zenda. Most of these 

lines are considered to be at least somewhat drought tolerant, except SY Sunrise, which is 

marketed specifically for irrigated environments, and Zenda, which is classified as moderately 

susceptible to drought (Wolf et al., 2018). Similarly, eight varieties consistently among the ten 

varieties with the least WSC accumulation were: Brawl CL, LCS Chrome, LCS Wizard, WB 

Grainfield, Fuller, Iba, TAM 111, and TAM 114. TAM 111 and TAM 114. Most of these 

varieties are well adapted to the western part of the state and have performed well in dry 

environment. Cooler canopy temperatures, related to rooting depth, has been explored in some of 

these lines (Pradhan et al., 2014). This result suggests there may be two different drought 

tolerance mechanisms, reduced canopy temperature and high WSC accumulation, present in 

successful commercial varieties adapted to the western Great Plains. It is not clear whether both 

mechanisms can be effectively utilized in a single genotype.  
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Three varieties (Tatanka, T158, and SY Flint) had higher WSC concentration in 2016 but 

accumulated relatively less in 2018. This could be due to the influence of diverse years. The 

growing season prior to anthesis was much drier in 2018 and these genotypes may not have 

maintained the water status to accumulate WSC reserves. We observed significant genotype by 

year interaction, but the genotype by environment effect was not significant within year except 

for upper stem WSC accumulation in 2016 (Table 3-7). Heritability for WSC concentration in 

the stem was very high owing to low genotype by environment interaction. The broad sense 

heritability of average whole stem WSC concentration was 0.88 while heritability for the bottom 

portion of the stem (below the first node) was even higher at 0.9 and heritability for the top 

portion (first internode and peduncle) was slightly lower, at 0.78. The high heritability in our 

experiment is in agreement with past studies on the genotypic variation of WSC (Ruuska et al., 

2006). Selection of genotypes under drought is confounded with the low heritability of drought 

tolerance traits. Higher heritability, significant genotypic variation, and high correlation between 

environments mean that selection for WSC concentration should be possible and effective.  

 Relationship of WSC with seed weight: 

There was a consistent, albeit non-significant, relationship between WSC and yield in all 

environments where yield data were available (Table 3-1). WSC was positively related to yield 

and yield components (grain yield, seed weight, and test weight (TW)). However the relationship 

was significant only for seed weight. Seed weight, expressed as thousand kernel weight (TKW), 

was positively and significantly associated with the WSC concentration in the stem though the 

level of significance was different across the environments (Figure 3-7). Overall, the relationship 

was stronger in 2017, compared to all three locations in 2018. In 2017 at Hays, the R2 was 0.56 

and highly significant. However, in 2018, it was only marginally significant with an R2 of 0.16 
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after excluding two genotypes Brawl CL and Iba. These two varieties were two of the lowest 

accumulating varieties in 2018 but had higher TKW, 27.7 and 27.5 g, respectively.  The average 

range of TKW was also higher in 2017 (27-34.5g) compared to 2018 (23-28g). The two highest 

and lowest seed weight varieties in both years were Gallagher and LCS Chrome, respectively 

(Figure 3-9). The highest WSC accumulating variety, Clara CL, had a thousand kernel weight of 

25.3g, which was toward the low end of the range for that trait. It seems likely there is interplay 

between the various yield components. Clara CL was one of the highest tillering varieties in all 

three locations. T158 had the highest seed weight but moderately high WSC content. There is a 

natural tradeoff between tillering capacity and seed size as presented in the consistent negative 

correlation between stems/m2 and thousand kernel weight across all locations in 2018 (Table 3-8 

(a)). The highest correlation of WSC with seed weight in 2018 was observed in the Colby 

irrigated environment. Among the three highest WSC accumulating varieties, SY Wolf, Clara 

CL, and Larry, Clara CL and Larry maintained higher grain weight under irrigation at Colby, but 

SY Wolf was moderate in all three environments. T158, TAM 111 and TAM 114 had moderate 

or low WSC concentration, but the kernel weight was comparable to, or even higher than, high 

accumulating lines. As discussed earlier, other mechanisms to maintain seed weight and tolerate 

drought could be in play, aside from WSC.  

The lower correlation in 2018, compared to 2017, for the same varieties would indicate 

the genotypes were translocating less photoassimilate to the grain to maintain grain weight. 

Weather is the main factor impacting yield in these areas (Barkley et al., 2014). The weather in 

2018 was dry and cool through early May. The plants might not have met the required growing 

degree days for assimilate production and storage, and moisture deprivation might have 

aggravated the stress, further decreasing the assimilate production (Figure 3-1). The crop 
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progressed rapidly through its phenological stages after mid-May (heading, flowering, and grain 

filling stage), when the temperature and moisture increased greatly. This may have increased the 

demand for more carbohydrate consumption rather than supporting accumulation. Carbohydrate 

storage happens only when the assimilate is produced beyond the need and assimilate production 

and storage is higher only when the inputs availability (such as temperature, moisture, fertilizer, 

etc.) are optimum. WSC accumulation in wheat was reduced to half under moisture deprivation 

and was also favored by increasing carbon dioxide in earlier studies (Blum, 1998). In contrast to 

the expectation of terminal drought stress in this region, more stress occurred during vegetative 

growth in 2018 when the plant is actively involved in assimilation and storage. This could also 

be the reason for lower accumulation in 2018, compared to 2017 and 2016. Along with 

accumulation, translocation might also have been impacted due to the abnormal trend of drought 

this year.  

In contrast to positive relation with seed weight, we didn’t observe clear relation of WSC 

on overall yield or grain number m-2 area. Grain number m-2 were calculated from number of 

stems m-2, seed weight, and overall yield data. WSC was positively related to grain yield in 

rainfed environment in Hays, no clear relation in Colby water-limited environment, whereas it 

was slightly negative in Colby irrigated environments (Table 3-8 (b)). We couldn’t make year to 

year comparison because the yield data and stem data was available only for 2018 due to weather 

related damage to plots in 2016 and 2017. 

 Grain yield and quality under desiccation treatment 

The direct effect of WSC on grain weight can be hard to determine and is best evaluated 

through the use of the desiccation treatment where all the yield components should be held 

constant for the treated and untreated plots. To explore the effect of terminal drought stress on 
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yield and quality, we applied a desiccation treatment during mid-grain filling and measured plot 

weight, test weight (TW), thousand kernel weight (TKW), and percent protein from plots with 

and without desiccation. Application of desiccant simulates drought by reducing the 

photosynthetic area, so the grain fill is mainly supported by mobilization of WSC reserves to the 

grain (Blum, 1998; Nicolas and Turner, 1993). The reduction of photosynthesis is not 

proportionate with the reduction in grain weight, as a result of the mobilization. The 

recommended rate for the desiccation treatment in 2017 had a greater than desired effect as 

tissue damage was also seen on spikes and yield was reduced by nearly 50%.  The decline in 

yield was also potentially confounded by hailstorm that occurred a week before harvest. The hail 

appeared to have a greater impact on the desiccant-treated plots as they were more advanced in 

maturity compared to the control plots. Therefore, the effect of desiccation treatment is discussed 

using only data from 2018 at three different locations.  

Overall, the effect of desiccation was more pronounced in relatively drier environments 

(Colby water-limited [18COD] and Hays rainfed [18Hays]) compared to Colby irrigated 

(18COI), as presented in the result Figures 3-8 (grain yield), 3-9 (test weight), 3-10 (thousand 

kernel weight), and 3-11 (grain protein %). Interestingly, the decline, as well overall yield level, 

was higher in the Colby dry environment compared to the two other environments. The most 

likely explanation is due to spatial variability in the field as the rainfed plots did not experience 

visual symptoms of stress at any point in the season and adequate precipitation later in the season 

might have favored this environment. We observed a significant decline in TKW and TW in 

most of the varieties, however the overall yield declined for less than half of the varieties, and 

protein showed mixed results. The change in protein content was inconsistent in COI but 

declined for all desiccant treated varieties in COD and Hays. The varieties with significantly 
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higher protein content under stress at COI either had slightly decreased protein or remained 

unchanged in the rest of the environments. The protein content was significantly lower in twelve 

varieties in COD, five varieties in Hays, and two varieties in COI. The average overall decline in 

protein concentration from the average of all varieties was 0.04 % in COI, 3% in COD, and 5% 

in Hays. Terminal drought stress, in conjunction with in season moisture stress, had a negative 

effect on protein, in spite of the overall negative relationship of protein with the overall yield 

related traits. The stress-related decline in yield was also not correlated with quality in the study 

by Stone and Nicholas (1994). 

Grain yield was significantly lower in 4, 12, and 15 varieties in COI, COD, and Hays 

respectively. The TAM lines reputed to be drought tolerant, TAM 112 and TAM 114, were able 

to tolerate terminal drought only in environments where pre-flowering moisture was sufficient. 

They have been found to be drought tolerant based on the rooting characteristics, which might 

require some moisture during the growing season to become tolerant later (Pradhan et al., 2014). 

The desiccation treatment either marginally or significantly reduced yield of TAM 111, TAM 

112 and TAM 114 in drier environments (COD and Hays) and lowered TKW and TW in all 

three environments. 

Similar results were observed for TKW as it decreased in 64%, 80%, and 90% of the 

varieties in COI, COD, and Hays, respectively. However, the extent of decline was similar, 

ranging from 3-20% on an average. The range of decline was 5-20% in COI, 3-17% Hays, 4-

20% in COI. TKW is an important component of grain yield along with grain number and the 

number of fertile tillers. Tatanka had high yield in all environments but had low TKW, whereas 

Gallagher and T158 had higher yield as well as higher TKW. Naturally, Tatanka had higher 
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tillers compared to these varieties. The decline in TKW was one of the reasons for lower yield 

under desiccation treatment in these varieties.  

Test weight was also lower in all the locations under desiccation treatment, but 

significantly lower in all genotypes in COD, and in more than 90% of the genotypes in COI and 

Hays. Overall, COD had higher test weight compared to two other locations. In our study, test 

weight was more correlated with yield than TKW in all locations.  

 Role of WSC in maintaining yield under desiccation treatment 

Desiccation treatment, applied as a surrogate measure of terminal drought stress causes a 

significant decline in yield as discussed in the last section. The decline was higher in genotypes 

with lower water-soluble carbohydrates, as seen in the negative correlation presented in Figure 3-

12. The decline in yield with desiccant was higher in two relatively dry environments (Figure 3-

12 (b) and (c)) compared to the irrigated environment (Figure 3-12 (a)). The overall yield decline 

under desiccant treatment was 200, 486, and 598 kg ha-1 in Colby Irrigated, Colby water-limited, 

and Hays rainfed. Past selection under terminal drought stress might have been, in part, favored 

indirect selection for WSC concentration due to its role in tolerance (Blum, 1998; McIntyre et 

al., 2012; Rebetzke et al., 2008). WSC, along with the contribution to grain filing can also serve 

as an important osmolytes in regulating cell turgor under drought stress in wheat (Yang et al., 

2007).  

Selection for high kernel weight via high WSC would be expected to decrease grain 

number spike-1 or spikes unit area-1, as these two yield-related traits are at least partially under 

the control of different genetic loci (Ji et al., 2010). We didn’t observe a clear relationship 

between WSC with grains m-2 in our study. The correlation was slightly positive in Hays, 

ambiguous in COD, and slightly negative in COI. Although, the overall decline in yield under 
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desiccant treatment was lower in genotypes with higher WSC, the relationship of WSC with 

yield was dependent on environment.  

 Relationship between stem weight, stem number, and WSC 

Stem biomass was measured on 20 individual stems, without leaves, leaf sheath, and 

head. Tiller numbers were counted using an 11 X 12 inch quadrats in two replicate plots and 

stem m-2 area was extrapolated. Stem weight (g) and stem number m-2 are negatively related in 

all three locations except in Hays at stem densities between 8000-10,000 stems m-2, where 

average stem weight increased with increasing stem number (Figure 3-13, Table 3-9, Table 3-

10). It could be due to more resource utilization in lower plant population, but the relationship 

became negative once the population was higher than 10,000 stems m-2, indicating a negative 

effect of competition in high tillering varieties. Stem weight was slightly positively correlated to 

WSC concentration, however, the relationship was not significant, except in COI. Stems m-2 was 

significantly negatively correlated with WSC in the top part of the stem in COI, similar to results 

obtained by Dreccer et al. (2012), where the genotypes that accumulated more WSC had fewer 

stems. However, the relationship was not consistent across the environments in our study.  

 Effect of plant height and heading date on yield and WSC 

 Plant height 

Plant height was measured only in Hays and it ranged from 92-105 cm in 2017, whereas 

the plants were shorter, and the range was wider 69-87 cm in 2018. This difference can be partly 

explained by contrasting weather (Figure 3-1) in the two different years. Rainfall is the main 

determinant in yield and plant phenotypes in plants growing in the rainfed environment. The 

growing season in 2017 was relatively moist with widespread rainfall throughout the growing 

season, mostly during the vegetative growth phase, whereas in 2018 the rainfall actually started 
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in May and generally coincided with spike emergence. Less than average precipitation occurred 

throughout the vegetative growth phase in 2018. Total rainfall was 388 and 318 mm in 2017 and 

2018 from October to June (planting to harvesting). Even with atypical weather, plant height 

from the two years were significantly correlated.  

Plant height was slightly negatively related to WSC concentration (Figure 3-14 and Table 

3-10). The level of significance was evaluated in different scenarios, as presented in Figure 3-14. 

Yield, as well as WSC concentration, was negatively correlated with plant height, yet the 

relationship wasn’t strong. Overall, there was no relationship between WSC and height in 2017 

(Figure 3-14 (c)). Plant height was slightly negatively related with WSC accumualtion in the 

taller group ( R2 of 0.13) when varieties were separated into two categories of height: less than 

98cm and more than 98cm, (20 genotypes).  

Similar to the results in 2017, WSC accumulation varied with plant height except for two 

varieties, SY Wolf and Everest, in 2018. The average height of Everest was only 69cm in 2018, 

but it had moderate WSC accumulation, whereas, SY Wolf was one of the highest WSC 

accumulating lines, but was 81cm tall. Except in these two varieties, the plant height was 

significantly and negatively related to WSC as presented in Figure 3-14 (a). Short plants may 

have a comparative advantage in transferring a resource to the grains as opposed to tall height 

plants. Also, shorter genotypes had slightly better stand rating (scored shortly after germination), 

as opposed to taller plants (Table 3-10 and Figure 3-14 (b)). 

The general convention is taller cultivars are more capable of storing large amount of 

reserves, but research has found mixed results (Borrell et al., 1993; Dreccer et al., 2012; Rawson 

and Evans, 1971). No association of WSC with plant height was observed by Rawson and Evans 

(1971) but the positive association with the presence of reduced plant height and dwarfing genes 
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was observed by Borrell et al (1993). The presence of dwarfing gene Rht1 and Rht2 gene 

reduced the height by 21% and WSC storage by 35% and 39%, respectively, in their study. 

Mathews et al. (2006) found that shorter plants have comparative yield advantage as compared to 

taller plants, except in some low yielding environments. Drought has caused significant yield 

losses at the locations used in this study in the past. The three years in this study were, however, 

higher rainfall years and yield was higher than historical levels. 

 Heading date  

The range of heading was just four days in 2018, whereas it was eight days in 2017. It 

remained cold until late April and started to warm quickly in early May in 2018, as opposed to 

relatively uniform conditions in 2017. Considering these two contrasting weather patterns 

(Figure 3-1), we saw consistent, albeit non-significant, positive correlation of height and heading 

date in both years, meaning that taller varieties headed slightly later than shorter varieties. 

However, the relationship with WSC was not consistent, as well as non-significant, in both years 

(Table 3-10). An important implication for this study, and similar future efforts, is that as long as 

sampling occurs during the linear growth phase of grain fill (5-25 days after flowering), the WSC 

concentration values should not vary significantly. Therefore, the variation we observed is more 

likely to have come from the genotypic variation, as opposed to differences in phenology. 

Some studies have reported a negative relationship between flowering and WSC 

concentration, linked to tillering opportunity (van Herwaarden et al., 2003). Late flowering 

provides more opportunities for vegetative growth, increases tillering and reduces WSC 

concentration. A large number of initiated tillers are rendered unproductive in most 

environments, especially those that are moisture limited (Dreccer et al., 2012). High WSC in 

genotypes has been reported to be associated with lower tillers m-2, lower grain number m-2, and 
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higher grain weight spike-1 leading to higher yield (Dreccer et al., 2012, 2008). These three 

components are the determinants of yield. The genetic gain in yield of wheat in UK has been 

attributed to the combination of increased grain number, supported by improved pre-anthesis 

crop growth, and an increase in grain fill capacity due to an increase in stem reserves (Shearman 

et al., 2005). However, we do acknowledge that the environment in UK is totally different than 

the environment in this study.  

Deposition of photosynthetic assimilate as WSC in the stem coincides with the final stem 

elongation stage, so high WSC genotypes might be shorter and lower yielding under favorable 

environment (Dreccer et al., 2012). However, high WSC is desired in terminal drought prone 

environment even it compromises yield potential in favorable environments (Blum, 2011a). 

Although WSC was positively related with seed weight, it was negatively related with the seed 

number, and slightly negatively related to the overall yield in one irrigated environment in our 

study. 

 Genotyping results 

 Distribution of SNPs 

After filtering the dataset at MAF of 1% and Heterozygosity of 10%, we retained 34,003 

SNP markers on 409 genotypes. The marker polymorphism was highest on the B genome 

(45.2%) followed by the A (35.6%), and D (16.4%) genomes. Unanchored SNPS accounted for 

2.8% of the total and were separated as ‘UN’. The sparsest coverage was found on chromosomes 

4B and 4D (Figure 3-15). The D genome was found to be less diverse. This is explained by the 

evolutionary bottleneck that occurred with the hybridization of tetraploid wheat with Aegilops 

tauschii only 8,000 years ago. Missing SNPs per genotype ranged from 1.5 to 50% and the 

marker coverage was dense in the telomeric regions of the genome (Figure 3-16). This 
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discrimination is likely due to the lower diversity in the centromeric region and/or methylation of 

heterochromatic region as one of the enzymes used in the GBS protocol is methylation sensitive 

(Poland and Rife, 2012). 

 Population structure analysis 

A clear grouping of population structure was not observed from Bayesian Information 

criteria (BIC) analysis in GAPIT package (R environment), but PCA analysis separated the 

genotypes into two groups as presented in Figure 3-17, with some mixture. The genotypes are 

color coded as red, black or green for Hays breeding experimental lines, Manhattan experimental 

lines and released varieties, respectively. The first PC explained only about 6% of the variation 

while the second PC explained 3.3% of the variation. Even though the genotypes are from two 

different breeding programs, germplasm exchange amongst breeding programs in the Great 

Plains in general, and between the K-State programs in particular, is common. This is likely a 

major factor, leading to a lack of structure in the analysis. The kinship matrix also stratified two 

populations, but few genotypes showed mixed results. Some Hays genotypes were found in 

among the Manhattan genotypes, and some Manhattan genotypes were found with the Hays 

genotypes. 

 Genome wide association studies (GWAS) 

To identify genomic regions associated with the accumulation of WSC, we conducted 

association mapping based on mixed linear model (MLM) with and without covariates. The use 

of covariate did not affect the number or position of QTLs identified. Even though a less 

stringent FDR of 10% was chosen, we found only two QTLs, on 1B and 7D, associated with 

WSC accumulation in the top and bottom part of the stem (Figure 3-18 and 3-19). Six SNPs were 

detected on 7D in a 12mb region. Only one SNP was found on 1B. Each of these SNP markers 
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explained around 4-5% of the variation in accumulation in WSC concentration (Table 3-11). The 

QTL in the same region 7D explained about 10% of the variation in Zhang et al., (2014). The 7D 

region has also been identified in several past studies (Salem et al, 2007; Rebetzke et al, 2008; 

Yang et al, 2007, McIntyre et al, 2012). Along with WSC accumulation, QTLs for WSC 

translocation have been reported in 7D, as well as 2D and 5D (Salem et al., 2007). A sucrose 

synthetase gene was also mapped in 7D and 7B by McIntyre et al. (2012). Dong et al, (2016) 

isolated and cloned a wheat 1-SST gene (TaSST) in chromosome 7D. The gene was validated 

with highly significant association with WSC content in stem among 149 Chinese wheat 

cultivars. The expression QTLs are co-located with the WSC accumulation QTL, and overall, 

more genes related to WSC synthesis are expressed and upregulated in high WSC lines 

compared to low WSC lines (McIntyre et al., 2012, 2012b; Ruuska et al., 2006).  

Along with 7D, significant QTLs for WSC concentration have been reported in 1A, 1B, 

1D, 2D, and 4A by Ovenden et al. (2007); 1A, 2D, 4A, 4B, 5D, 6B, and 7B by Salem et. al. 

(2007); 1B, 2B, 3D, 5B, 6B, and 7B by Rebetzke et al. (2008); 1A, 1D, 2D, 4A, 4B, and 7B by 

Yang et al. (2007); 1B, 2B, 3D, 4B, and 7A by Snape et al. (2007); 1D, 4A, 6B, and 7A by 

McIntyre et al. (2012); and 4 BS, 7AS, and 7D by Dong et al. (2015). The QTL reported on 1B 

was associated with 1B.1R rye translocation (Yang et al., 2007), but the SNP marker detected in 

our study was pericentric. Also, the lack of recombination in the translocated region should have 

led to the identification of markers along the entirety of 1BS if the effect were due to the 1B.1R 

translocation. It is likely the QTL identified here is not associated with the 1B.1R translocation 

and the fact that a single SNP was significant means the result may be spurious and should be 

interpreted with caution. The 1RS wheat rye translocation has been found to have positive effect 

on grain size, mostly in water-limited environments (Rattey et al., 2009; Villareal et al., 1998, 
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1995). One similarity among all these QTLs identified is the low genetic variation (less than 

20%) explained by each of the QTL, which indicates that WSC is a quantative trait, governed by 

many genes of small effect. This presents a challenge for implementation of marker assisted 

selection in the breeding program.  

We didn’t observe clear relationship of heading and WSC accumulation on varieties in 

our study. Similar to our result, no correspondence of stem WSC with flowering time or maturity 

was oberved by Ovenden et al. (2017) and Salem et al. (2007), however, Rebetzke et al. (2008) 

saw a major flowering gene Ppd1 co-locate with WSC accumulation and explain 28-30% 

variation in WSC content. QTLS for stem WSC concentration co-located with loci for tiller 

number, grain weight, and nitrogen use (Dreccer et al., 2012; Rebetzke et al., 2008). Also, many 

of the grain weight loci have been localized with WSC accumulation (Salem et al., 2007; Yang et 

al., 2007). 

In some cases, the growing environment might also affect the accumulation of WSC 

(Yang et al., 2007). The WSC data for experimental lines were available from two environments 

in one year (Colby irrigated and rainfed in 2016). However, we observed highly significantly 

correlation in WSC accumulation across the varieties in seven different environments. The 

experiments with released varieties suggest that a greater spread in WSC occurred 2016 

compared to the other years, which should have favored detection of QTL. A relaxed P-value of 

0.0004, which was used in other studies (Gao et al., 2016), allowed detection of additional 

putative QTLs on 4B, 5A, and 6A; the QTL in 4B was identified in other studies (Salem et al., 

2007; Snape et al., 2007; Yang et al., 2007). 

Lines advanced in the breeding program are not directly selected for WSC concentration 

in the stem but some favorable alleles might have accumulated, as indirect selection for seed 
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weight under drought would have occurred. Such phenotypic selection would be based on the 

genetic variation present in specific crosses. These favorable alleles in specific crosses would be 

difficult to detect in a GWAS analysis if they were rare in the breeding program(s). Due to 

quantitative nature of this trait, even if some SNPs are modestly associated in WSC 

accumulation, their effect may not be strong enough to cross the –log10p value threshold to be 

significant. 

 Haplotype Analysis of QTL 7DS 

Haplotype analysis provide more evidence for association than a single SNP analysis 

from the GWAS (Barendse, 2011). 6 SNPs were significant at the 7D region were used for the 

haplotype analysis. Out of 412 genotypes total used in GWAS, only 171 genotypes had all six 

SNPs at the region of significance. The haplotype group in the region are ACCCCG, ATCTGC, 

GCTCCG, GTCTGC, GTTTGC (figure 3-20). Among these five groups, the most common 

group is GCTCCG with 112 genotypes, followed by the group ACCCCG with 41 genotypes 

(figure 3-20 (a)). The haplotype GCTCCG favored significant high WSC concentration and the 

group ACCCCG favored significantly lower WSC accumulation. On an average, there was 17% 

and 10% increase in top and bottom WSC concentration for GCTCCG over ACCCCG 

irrespective of the environment. 78% of the genotypes were from Manhattan and 17% of the 

genotypes were from Hays in ACCCCG haplotype, whereas, 45% of the genotypes were from 

Manhattan and 55% were from Hays in GCTCCG haplotype, and rest were the released varieties 

used in the study. The Hays genotypes are targeted for western Kansas where its relatively drier; 

and the Manhattan genotypes are mostly for central Kansas where it’s relatively a humid and less 

prone to drought. Therefore, the genotypes in Hays breeding program might be indirectly 

selected for higher WSC haplotype group GCTCCG. Indirect selection has been already 
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occurring in many environments. Rebetzke et al., 2009 reviewed the increasing trend of WSC 

with the year of variety release in western Australian cultivars and CIMMYT genotypes. 

Shearman et al., 2005 also reported higher WSC in UK cultivars with the progressive year of 

release.  

 Genomic selection 

The genomic prediction accuracies ranged from 0.17 to 0.6 depending on the model and 

training population used. The accuracy of prediction increased with increasing size of the 

training population (Figure 3-21). Overall, an average of the models (AVE) and Random Forest 

(RF) had higher accuracies compared to other models tested (rrBLUP, ELNET, and PLSR). 

Similar to our results, machine learning RF was superior for predicting rust response (González-

Camacho et al., 2018). In contrast to our study, RF performed poorly for quality traits in 

Battenfield et al. (2016). Higher prediction accuracy was observed with rrBLUP and AVE in the 

K-State wheat breeding program for grain yield (Gaynor, 2015), and end use quality (Battenfield 

et al., 2016). Both of these traits are highly quantitative controlled by many genes of small 

effects.  

RF regression has the capacity of capturing both marker with smaller effect and markers 

with larger effect, it’s likely that both exists for WSC. The prediction accuracy was not greatly 

improved with incremental increases in the size of the training population. RF has performed 

better for traits that are governed by few major genes than the traits like yield, which is governed 

by genes with small effect. The efficacy of RF in this study suggests that, at least in the materials 

evaluated, a small number of loci with larger effect control the trait. This has implications for 

utilization of a drought tolerance breeding strategy focused on WSC accumulation. It may be that 

initial selection could be effective but, once the loci with larger effect are fixed, progress may 
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become slow. Further evaluation of a larger set of materials would be required to clarify long-

term feasibility of improving WSC accumulation as a breeding strategy in the K-State wheat 

breeding programs.  

Summary and Conclusions 

The environment is the main hurdle to make progress in plant breeding. Out of three 

years of planting, phenotypic data is available from less than half of the environments. 

Nevertheless, high heritability and high genetic variation provide the potential for selecting 

genotypes with higher water-soluble carbohydrates. Although lines are not advanced in the 

program based on WSC measurement, selection under drought may favor alleles for WSC 

accumulation if they are associated with greater drought tolerance. We identified significant 

QTL in 7D, but identification of other significant QTLs would be necessary to support a long-

term MAS strategy. Genomic selection to make predictions based on genomic estimated 

breeding values can be a great tool to implement in the breeding program. GS is less expensive 

and less labor intensive than direct phenotyping for WSC and has the potential for in-season 

predictions and may be a more useful strategy for improving WSC in breeding materials. 

Although, we have discussed the role of WSC in maintaining grain weight under drought 

stress, WSC can be a buffer to grain fill under any post flowering stress that limits 

photosynthesis. As wheat grain filling coincides with increasing temperatures, moisture decline, 

and high incidence of foliar diseases, WSC can play a critical role under all these conditions. 

Assimilate production to meet the sink demand might be limited under normal conditions, 

therefore having higher WSC can provide yield stability across variable environments. The 

higher correlation between the top WSC and bottom WSC enables either of these parts can be 
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used for WSC measurement. And NIRS spectroscopy can effectively use for rapid and non-

destructive measurement of WSC.   

 While WSC is an important trait under post anthesis drought stress, breeding strategies 

for highly variable areas like the Great Plains may well favor other mechanisms for drought 

tolerance, as WSC accumulation is likely not as effective for tolerating pre-anthesis stress. This 

was highlighted by the results obtained in 2018. Drought was experienced during vegetative 

growth, rather than during reproductive growth and WSC accumulation was decreased. In 

regions like the Great Plains, where weather patterns are very erratic, the timing and intensity of 

drought stress cannot be accurately anticipated within a given year, much less in a manner that 

would allow a breeding program to focus specifically on post-anthesis drought tolerance. Stress 

may occur post-anthesis one year, during the seedling the next and during the vegetative stage 

the next year. Effectively breeding for drought tolerance in the Great Plains requires 

development of varieties than can tolerate these various timings and intensities of stress to 

maintain higher yield across years. For that reason, WSC might not be effective as a tolerance 

strategy for the Great Plains compared to regions in the world where drought reliably occurs 

primarily during grain filling. Dehydration avoidance mechanisms of drought tolerance, such as 

osmotic adjustment and rooting characteristics, are likely to be more beneficial than a concerted 

effort to increase WSC reserves in the Great Plains. Such mechanisms also likely allow for 

higher yield in seasons when conditions are favorable. Some literature suggests that dehydration 

avoidance and WSC accumulation are negatively associated and may be diametrically opposed 

to one another. Dehydration avoidance mechanisms like early flowering, greater root depth, 

osmotic adjustment are reported to be more preferred than tolerance mechanism like WSC in 

some environments (Blum, 2011b). The presence of high levels of WSC concentration in well-
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adapted varieties does, however, indicated that this trait has relevance in the Great Plains and 

should not be ignored. Further understanding the compatibility of improving WSC accumulation 

while utilizing dehydration avoidance mechanisms is of critical importance to designing the most 

effective approach(es) to breeding climate resilient wheat varieties for the Great Plains. 
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Figure 3-1 Weather showing average of monthly maximum temperature (Tmax in oC), 

minimum temperature (Tmin in oC), sum of monthly precipitation (Pcp in mm), and 

normal monthly precipitation is from 1981 to 2010 in Colby (top) and Hays (bottom). 
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Figure 3-2 Standard curve to determine the sugar concentration in samples using glucose 

as a standard. Standard curve was prepared in each microplate and these three (a), (b), 

and (c) randomly chosen to display very low plate to plate variation among them. Each 

data point is an average of four readings in microplate from two technical replicates. 
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Figure 3-3 The correlation diagram between the predicted values of WSC from the model 

and actual values measured from the lab analysis in 2016. Each data point represents 

individual sample of diverse breeding lines or varieties grown under irrigated or water-

limited environments. 
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Figure 3-4 (a) Average WSC concentration on 400 diverse winter wheat genotypes and 30 

varieties evaluated from top (peduncle and top internode) and bottom (below top 

internode) from 1512 plots planted in 2016. (b) Relationship between bottom and top WSC 

concentration. The genotypes were harvested 15 days after mid-flowering period. Triple 

asterisks (***) indicates the significance at <0.001 level of probability. 
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Figure 3-5 Correlation scatterplot of Pearson Correlation between WSC calculated across 

seven different environments in three years 2016, 2017, and 2018.  From bottom right 2016 

Colby irrigated (16coi) and Colby water-limited (16cod), 2017 Colby irrigated (17coi) and 

hays rainfed (17hays), 2018 Colby irrigated (18coi), Colby water-limited (18cod), and Hays 

rainfed (18hays). Each point is an average of four replicates for that year and location. 

Correlation value is presented on the top and the bottom is the scatterplot with the fitted 

line. Single (*), double (**) or Triple asterisks (***) indicates the significance at 0.05, 0.01 

or <0.001 level of probability. 
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Figure 3-6 Relationship between WSC concentration on 400 diverse winter wheat 

genotypes and 30 varieties evaluated in irrigated and water-limited environment in 2016. 

The genotypes were harvested 15 days after mid-flowering period. Triple asterisks (***) 

indicates the significance at <0.001 level of probability. 
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Figure 3-7 Relationship between thousand kernel weight (TKW[g]), and water-soluble 

carbohydrates (WSC) concentration in (a) Hays 2017 and (b) Hays 2018; WSC 

content/stem in (c) Colby irrigated 2018 and (d) Colby water-limited 2018. The single (*), 

double (**) or Triple asterisks (***) indicates the significance at <0.05, <0.01 or <0.001 

level of probability, respectively. † indicates marginally significant (<0.1 level of 

probability). 
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Figure 3-8 Grain yield (tonnes ha-1) under control and terminal drought stress in 2018 (a) 

Colby irrigated, (b) Colby water-limited, and (c) Hays rainfed. The single (*), double (**) 

or Triple asterisks (***) indicates the significance at <0.05, <0.01 or <0.001 level of 

probability, respectively. The number preceding asterisks indicates average percent decline 

in yield for that genotype under desiccation treatment compared to control.  
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Figure 3-9 Thousand Kernel Weight (TKW [g]) under control and desiccation treatment in 

2018 (a) Colby irrigated, (b) Colby water-limited, and (c) Hays rainfed.  
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Figure 3-10 Test weight (kg) under control and desiccation treatment in 2018 (a) Colby 

irrigated, (b) Colby water-limited, and (c) Hays rainfed. 
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Figure 3-11 Protein (%) under control and desiccation treatment in 2018 (a) Colby 

irrigated, (b) Colby water-limited, and (c) Hays rainfed. 
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Figure 3-12 Role of WSC in maintaining grain yield in 2018 (a) COI (b) COD (c) Hays. Y-

axis represent average decline in grain weight (kg ha-1) under desiccation treatment and X-

axis is the average WSC concentration (mg/g). The single (*) and double asterisks (**) 

indicates the significance at <0.05 and <0.01 level of probability, respectively. 
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Figure 3-13 Relationship between stem number per m2 and individual stem weight (g) in 

varieties from location (a) COI (b) COD, and (c) Hays. The single (*), double (**) or Triple 

asterisks (***) indicates the significance at <0.05, <0.01 or <0.001 level of probability, 

respectively. 
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Figure 3-14 Relationship between average WSC concentration (mg/g) with (a) Plant height 

(cm) in Hays 2018, (b) Stand rating in Hays 2018, (c) Plant height (cm) in Hays 2017, and 

(d) Plant height (cm) of tallest 20 plants in Hays 2017. The single (*), double (**) or Triple 

asterisks (***) indicates the significance at <0.05, <0.01 or <0.001 level of probability, 

respectively. 
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Figure 3-15 SNP markers distribution across chromosome. The y-axis represent marker 

counts and X-axis represent the physical position in the wheat genome for 409 genotypes 

and 34,000 markers. 
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Figure 3-16 SNP density in each wheat chromosome. 
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Figure 3-17 Principal components analysis of a wheat association panel based on 34,000 

SNP markers tested on 2016. The black and red dot represent breeding lines from 

Manhattan and Hays wheat breeding program, and the green dots are the varieties. 
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Figure 3-18 Manhattan plot showing association from the results of average WSC 

concentration in the stem, WSC concentration in the top (Twsc), and bottom (Bwsc) part of 

the stem from diverse wheat breeding lines based on 34,000 SNP markers. The x-axis 

represents physical position of SNPs in the wheat genome and y-axis represents –log10 of P-

values. Top solid line at FDR 10%, and bottom dotted line at 0.0004 level of probability. 
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Figure 3-19 Combined Manhattan plot showing association results of average WSC 

concentration in the stem, WSC concentration in the top (Twsc), and bottom (Bwsc) part of 

the stem from diverse wheat breeding lines based on 34,000 SNP markers. The x-axis 

represents physical position of SNPs in the wheat genome and y-axis represents –log10 of P-

values. Top solid line represents FDR 10% and bottom dotted line at 0.0004 level of 

probability. 
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Figure 3-20 Haplotype analysis of QTL 7DS. (a) The five haplotype group and the number 

of genotypes without any missing SNPs at the region analyzed (b) Top WSC (TWSC) 

concentration, and (c) Bottom WSC (BWSC) concentration in genotypes having two most 

common haplotic group ACCCCG and GCTCCG. The double (**) or Triple asterisks 

(***) indicates the significant difference in WSC between two haplotype groups at <0.01 or 

<0.001 level of probability, respectively. 

 

0

20

40

60

80

100

ACCCCG ATCTGC GCTCCG GTCTGC GTTTGC

N
u

m
b

er
 o

f 
G

en
o

ty
p

e
s

Haplotype

(a)

0

50

100

150

200

ACCCCG GCTCCG

TW
SC

 c
o

n
ce

n
tr

at
io

n
 (

m
g

/g
) ***

0

50

100

150

200

250

300

ACCCCG GCTCCG

B
W

SC
 c

o
n

ce
n

tr
at

io
n

 (
m

g
/g

)

Haplotypes

**

(b)

(c)



105 

Figure 3-21 Prediction accuracies in diverse winter wheat genotypes using four genomic 

selection models: RRBLUP: Ridge regression best linear unbiased predictor, RF: Random 

Forest, PLSR: Partial Least Square Regression, ELNET: Elastic net, and AVE: average 

prediction across all four GS models. The model was randomly iterated 100 times. 
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Table 3-1 List of 30 winter wheat varieties planted in three wheat growing seasons 

2015/2016, 2016/2017 and 2017/2018 in western Kansas. Four varieties were different in the 

second two years because of not having enough seed. The different varieties in two years 

are marked in bold. 

2015/2016 2016/17 & 2017/18 

Antero Antero 

Armour Avery 

Bill Brown Bentley 

Billings SY Grit 

Brawl CL Brawl CL 

Byrd Byrd 

Clara CL Clara CL 

Danby Danby 

Everest Everest 

Fuller Fuller 

Gallagher Gallagher 

Iba Iba 

Joe Joe 

KanMark KanMark 

Tatanka Tatanka 

Larry Larry 

LCS Chrome LCS Chrome 

LCS Wizard LCS Wizard 

Santa Fe SY Sunrise 

SY Flint SY Flint 

SY Monument SY Monument 

SY Wolf SY Wolf 

T158 T158 

TAM 111 TAM 111 

TAM 112 TAM 112 

TAM 114 TAM 114 

Tiger Tiger 

WB 4458 WB 4458 

WB Grainfield WB Grainfield 

Zenda Zenda 
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Table 3-2 Planting and harvesting information of varieties where COD is Coly dry and 

COI is Colby Irrigated. COI* only 10 varieties were harvested from COI in 2017. 

 

 

Table 3-3 Timing and amount of irrigation application in Colby irrigated environment 

(COI) in three different wheat growing years. 

  2015/2016 2016/2017 2017/2018 

Fall    
Oct/Nov 38.1 38.1 25.4 

Spring    
Mar Na 38.1 25.4 

Apr Na 38.1 12.7 

May Na Na 50.8 

Total 38.1 114.3 114.3 

Na= Not applied 

 

 

  

Year Varieties Replications Environments 

planted 

Environments 

harvested 

(wsc) 

Environments 

harvested 

(yield) 

Plot 

dimensions 

2016 30 6 2 2 (COD and 

COI) 

None 3-row 

(0.84m x 

2.44m) 

2017 30 4 3 2 (Hays and 

COI*) 

3 (Hays, 

COD, and 

COI)  

6-row 

(1.68m x 

3.81m) 

2018 30 4 5 3 (COD, 

COI, and 

Hays) 

3 (COD, 

COI, and 

Hays) 

6-row 

(1.68m x 

3.81m) 
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Table 3-2 Minimum, maximum, and mean WSC concentration from actual values 

measured in the lab and predicted WSC concentration. AE is an average of absolute error 

in the lab measured and predicted samples, and P-value is from t-test on two groups 

predicted and actual measured. NS is non-significant at 0.05 level of probability. 

 

  Min Max Mean AE P-value 

Actual 62.44 496.78 218.77 -0.23 0.94NS 

Predicted 61.82 448.65 219.71     
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Table 3-3 Summary of water-soluble carbohydrate concentration (mg/g) in 30 varieties in 

six different environments from three years. The number preceding location code (COI-

Colby irrigated, COD-Colby Water-limited, and Hays) represents the data from that year. 

 

 18COD 18COI 18Hays 17Hays 16COD 16COI 

Minimum 142.4 124.2 175.8 258.9 131.0 151.7 

Maximum 219.8 204.5 258.4 363.6 301.4 340.6 

Mean 168.2 160.8 209.0 306.1 233.5 247.3 

 

 

Table 3-4 Summary of water-soluble carbohydrate (WSC) concentration (mg/g) in diverse 

winter wheat genotypes in 2016. 

 

 

 

  

      

   

Water-limited WSC 

COD (mg/g)     

 Irrigated WSC 

COI (mg/g)   

 Top Bottom Average Top  Bottom Average 

Minimum  41.9 67.2 63.0 45.6 51.9 51.9 

Maximum 352.1 523.1 417.4 389.0 555.7 411.1 

Mean  182.8 301.3 241.7 180.9 325.8 253.3 
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Table 3-5 Mean squares from the joint and individual year analysis on Top WSC, Bottom 

WSC, and average WSC in three different wheat growing years. Single (*), double (**), or 

Triple asterisks (***) indicates the significance at 0.05, 0.01, or <0.001 level of probability. 

 

Year 

Source of 

Variation 

Degrees 

of 

freedom Top WSC 

Bottom 

WSC WSC 

2015/2016 Genotype 29 14476.3*** 37502*** 22522.9*** 

 Env 1 1333.6 48570** 16842** 

 Block 5 3924** 44555*** 17180.4*** 

 Genotype:Env 29 1651* 3551 1832.3 

  Residuals 276 1036.1 4522 1911 

2016/2017 Genotype 29 2452.2*** 9366.3*** 4115.7*** 

 Block 3 3659.1** 12611.6*** 1414.1 

  Residuals 87 767.7 2042.5 1009.4 

2017/2018 Genotype 28 2334.1*** 6454*** 3542*** 

 Env 2 10249.6*** 199128*** 75059*** 

 Block 3 1552.1 1708* 1000 

 Genotype:Env 56 529.7 477 346 

  Residuals 243 601.2 591 397 

Combined Genotype 25 10212*** 35635*** 20014*** 

 Env 2 234072*** 87880*** 139654*** 

 Year 2 353345*** 1280200*** 656014*** 

 Block 5 3031** 27902*** 10911*** 

 Env:Year 1 678 67209*** 21617*** 

 Genotype:Year 50 3574*** 5552*** 3271*** 

 Env:Year:Block 17 2753*** 25497*** 8082*** 

 Genotype:Env:Year 75 952 1625 836 

  Residuals 520 792 2031 1029 
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Table 3-8 (a) Pearson correlation between tillering (Stems/m2) and Thousand Kernel 

Weight (b) Pearson correlation between WSC (mg/g) with Stems/m2, yield/m2, and 

grains/m2. 

(a) 

Locations r 

Hays -0.13 

COD -0.13 

COI -0.17 
 

(b) 

Locations Stems/m2 Yield/m2 Grains/m2 

Hays 0.27 0.11 0.22 

COD 0.15 0.05 -0.03 

COI -0.19 -0.19 -0.27 

 

 

Table 3-9 Results from Pearson correlation between stem number per m2, individual stem 

weight (g), and WSC (Top, Bottom, and average) concentration (mg/g) in two different 

environments in Colby 2018. Correlation from Colby water-limited (COD) environment is 

presented in the lower triangle, and Colby irrigated (COI) environment is presented in the 

upper triangle. The bold number indicates significant at 0.05 level of probability. 

 

  Stems/m2 Stem wt Twsc Bwsc WSC 

Stems/m2  -0.58 -0.33 0.05 -0.19 

Stem wt -0.31  0.33 0.15 0.30 

Twsc 0.12 0.11  0.45 0.86 

Bwsc 0.12 0.10 0.41  0.85 

WSC 0.15 0.12 0.85 0.83  
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Table 3-10 Pearson correlations between stand rating (0-4), height (cm), stems number per 

m2, individual stem weight (g), and average WSC concentration (mg/g) from the location 

hays in 2018 (lower triangle) and 2017 (upper triangle). The bold number indicates 

significant at 0.05 level of probability.  

 

  Standrating Height Heading Stems/m2 Stem wt WSC 

Standrating  NA NA NA NA NA 

Height -0.32  0.25 NA NA -0.04 

Heading -0.04 0.21  NA NA 0.00 

Stems/m2 -0.17 0.05 0.24  NA NA 

Stem wt 0.29 0.48 0.13 -0.29  NA 

WSC 0.47 -0.26 0.22 0.26 0.25  
 

 

Table 3-6 Details of the single nucleotide polymorphism (SNPs) significantly associated 

with the WSC accumulation in the stem as detected by the enhanced mixed linear model at 

FDR of 10%. 

 

SNP Chromosome Position MAF %variation 

S7D_PART1_71569531 7D 71569531 0.462 5% 

S7D_PART1_59538630 7D 59538630 0.274 5% 

S7D_PART1_71628885 7D 71628885 0.455 4% 

S7D_PART1_59538604 7D 59538604 0.265 4% 

S7D_PART1_59538617 7D 59538617 0.265 4% 

S7D_PART1_59538610 7D 59538610 0.265 4% 

S1B_PART1_399534182 1B 4E+08 0.088 5% 

MAF = minor allele frequency, %variation is the variation explained by each marker 
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Chapter 4 - Application of aerial imaging to study genotypic 

response in diverse winter wheat genotypes 

Introduction 

With the current trends of population rise, high demand for food and energy, and limited 

availability of land, water, and other resources, agriculture production needs to be increased 

relative to the current rate (Alexandratos, 2009; Ray et al., 2013; Reynolds et al., 2009a). The 

genetic gain in most of the cultivated crops has been below 1%, which is lower than what is 

needed to meet the projected demand (Ray et al., 2013; Rife, 2016; Tester and Langridge, 2010). 

Further, extremities in temperature and variability in precipitation due to global climate change 

are likely to complicate the process, presenting a key challenge for the new generation of 

researchers addressing food security.  

The triumph of “next generation” sequencing and genotyping technologies are rapidly 

reducing the cost of genotyping but it’s applicability is constrained with limited phenotyping 

capability (Poland, 2015). Conventional phenotyping methods are mostly destructive, time 

consuming, subjective, and labor intensive, as a result, they can be acquired only a few times 

during the growing season. Some phenotyping progress has been made in controlled 

environment conditions, however huge variability in the field due to weather, topography, and 

soil, makes it harder to extrapolate the field phenotype from the response in the controlled 

environment (Araus and Cairns, 2014; Dhondt et al., 2013; Fiorani and Schurr, 2013; Yang et al., 

2007). Therefore, field based phenotyping is the only way to capture this variation and link the 

phenotype with the genotype (Araus and Cairns, 2014; White et al., 2012).  

Realizing the importance and need of field based phenotyping, an increasing number of 

scientists are turning to the use of different remote sensing platforms for plant phenotyping such 
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as satellite imagery, imagery captured using manned or unmanned aircrafts, ground based 

phenotyping platforms and so on. These platforms are becoming helpful to identify yield, 

biomass, height, insect and disease infestation, crop stress signals, and many more. Satellite 

imagery could be an important resource as images are freely available. However, they suffer 

from issues with resolution, cloudiness, timeliness, and readiness in availability (Rango et al., 

2009). Imagery using manned aircrafts can be up to date and generate higher resolution data, but 

the cost per acre is higher and might not be accessible for every location or breeding program. 

One way to accommodate these shortcomings is by using a ground based phenotyping platform, 

as they can provide higher resolution, multiple angles and can be operated at various time points 

(Gago et al., 2015). However, there are disadvantages of ground-based phenotyping including 

the longer time for data collection, lower temporal resolution, appropriate sensor requirement, 

portability and associated vehicle cost, increased human intervention, inability to phenotype wet 

fields, and potential crop damage due to vehicles running in the field. Therefore, unmanned air 

vehicles (UAVs) are preferred as they can mitigate the limitations from satellite and ground 

based phenotyping and have distinct advantages relative to satellite imaging (Poland, 2015; 

Tattaris et al., 2016). In general, UAVs are practical, accessible and come in different size and 

cost ranges, so the user can choose the platform based on resources available (Gago et al., 2015; 

Myers et al., 2015; Poland, 2015). 

UAV based platform uses proximal sensors with higher spatial and temporal resolution. 

They can be fully or partially automated and can be operated with little or no human 

involvement. These platforms have been successfully implemented in predicting yield, biomass 

and/or plant height (Haghigharttalab et al., 2016; Wang, 2017). They have also been used for 

fertilizer recommendations (Lorence and Asebedo, 2017), weed management (Rasmussen et al., 
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2013), plant protection (Garcia-Ruiz et al., 2013) species monitoring in ecological and 

conservational studies (Lu and He, 2017), rangeland ecosystem management (Rango et al., 2009) 

and studying soil properties (Acevo-Herrera et al., 2009). The height of the flight can be adjusted 

depending on the need as the distance between the sensor and the target is negatively correlated 

with the spatial resolution. The flight at higher altitude provides a wider view where the flights at 

lower altitude can provide greater resolution. The payload of the aircraft can range from different 

spectral range from RGB, NIR bands to thermal, infrared and microwave bands. Temporal 

resolution can be maximized on demand. Therefore, the UAV can be of critical importance in 

breeding programs by providing accurate and timely measurement and capturing real time field 

variation in the form of images. 

UAVs can be an efficient phenotyping platform to assist the breeder in making decisions 

for selection, however, obtaining meaningful information out of myriad data points is a 

challenge. The evaluation of hundreds or thousands of genotypes every year in the breeding 

program demands a more efficient phenotyping platform as opposed to traditional phenotyping 

methods. At the same time, phenotyping should be at the canopy level to predict plant 

performance based on efficiency of capturing resources and mobilizing them to produce yield 

(Reynolds et al., 2012, 2009b). Yield is the main trait for selection in wheat breeding program.  

Lodging is another important traits for selection in the wheat breeding program. The 

displacement of plant from its vertical position results lodging which can happen due to failure 

of root anchorage, or by weak stem strength. Lodging resistant varieties can tolerate higher plant 

densities and get more responsive to nitrogen fertilizer for obtaining higher yield. Ideal 

genotypes should be able to maximize partitioning to the grain while maintaining stalk or root 

strength (Foulkes et al., 2011; Piñera-Chavez et al., 2016). Lodging can have a negative effect in 
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yield and quality and can decrease up to 80% of the harvestable yield in wheat (Berry et al., 

2004; Berry and Spink, 2012; Reynolds et al., 2012). Therefore, increased harvest index to 

maximize yield should take lodging into account (Austin et al., 1980; Foulkes et al., 2011; 

Reynolds et al., 2012). 

The main purpose of this study was to implement aerial imaging as a plant breeding tool 

to detect genotypic response and assist breeders in making selection of genotypes in Kansas State 

winter wheat breeding program. This study was based on images captured in VIS-NIR region. 

The canopy light properties in the VIS and NIR region can define the plant photosynthetic 

characteristics. NDVI, along with other indices measuring the reflected light in these regions, has 

been proposed as a method of estimating plant performance in terms of chlorophyll content, leaf 

area index, biomass accumulation, yield in wheat (Babar et al., 2006a, 2006c, 2006b; Haboudane 

et al., 2004; Royo et al., 2003; Wright Jr et al., 2005). Chlorophyll and associated pigments (such 

as carotenoid and xanthophyll) in leaves absorb light in the VIS region (400-700nm), whereas 

the light in the NIR (700-1300) range gets scattered by the leaf tissues. Therefore, the healthy 

leaf reflects more in the near infrared region whereas the stressed leaf will have a lower 

reflectance in the NIR region and relatively higher reflectance in the VIS region. These 

mechanisms can be captured in the form of vegetative indices (VIs). Using basic physiology in 

plants, we present an affordable approach to identify the genotypic response at different stages in 

wheat. The objective of this study was to examine the suitability of aerial imaging to detect 

genotypic response and help breeders in selection, examine how the response changes with stage 

of crop growth, and study the relationship of vegetative index to yield and lodging in different 

stages of wheat growth. 
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Materials and Methods  

 Experimental details 

The experiment material consisted of four hundred diverse winter wheat experimental 

lines from Manhattan and Hays wheat breeding program at Kansas State University and 30 

released winter wheat varieties from Great Plains (Table 4-1). Two hundred experimental lines 

from preliminary yield nursery (PYN) or advance yield nursery (AYN) from each of the two K-

State breeding programs were evaluated.  

The experimental lines and varieties were planted in 2015/2016 and 2016/2017 growing 

seasons in Colby, Kansas under two moisture regimes (well irrigated and limited irrigation). All 

management factors (fertilizers, pesticide, fungicide, tillage, etc.) in the two environments were 

similar, except irrigation, in both years. A total of three supplementary irrigations of 114.3 mm 

was supplied 2017 (38 mm in the fall and 76.2 mm in the spring) and only one supplementary 

irrigation 38 mm was supplied in the fall of 2016 in well irrigated environments on top of 

seasonal rainfall (Figure 4-1). A pre-germination irrigation of 25.4 mm was supplied in both 

environments to ensure uniform germination and plant stand. The soil type in both environments 

was a Keith silt loam, buried soil phase, fine-silty, mixed, superactive, mesic Aridic Argiustolls.  

The experimental lines were planted in type II modified augmented design, where ‘WB 

Grainfield’ was used as a central check, and ‘Joe’ and ‘SY Monument’ were used as sub-plot 

checks. These three winter wheat varieties are commonly planted varieties in western Kansas and 

are also included in broader set of varieties tested. The layout for augmented design is presented 

in Figure 4-2. The varieties were planted in a randomized complete block design (RCBD) 

embedded with the experimental lines in 2016 and separate blocks in 2017 (Figure 4-3). Four 

varieties used in 2016 were not available in 2017 and were replaced (Table 4-1). The plots were 
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planted in three row paired plots (two adjacent plots together) in 2016 and changed to six rows in 

2017. Detail about planting is presented in Table 4-2. 

 Image acquisition 

A commercially available Canon S100 (S/N 322030001417) camera was modified by 

LDP LLC, Carlstadt, NJ 07072, USA, (www.MaxMax.com) was used for image capture. A filter 

was removed from the camera, a modification resulting in output of green-red- near-infrared 

image layers (8 byte) in the 490-760 nm range, effectively replacing the blue band was a near 

infrared band. The CMOS (complementary metal oxide semiconductor) sensor dimensions were 

7.44 mm x 5.58 mm. The camera was mounted on a DJI S900 hexacopter (DJI® Science and 

Technology, Co., Ltd. Shenzhen, China) with two axis gimbal (GAUI, Crane III) to maintain a 

nadir orientation during the flight for capturing images. The camera focal length was set to an 

equivalence to 28 mm (relative to a 35mm frame) and exposure time of 1/1600; images were 

acquired at ~2 s acquisition intervals. Autonomous flight control was established by DJI Ground 

Station, datalink (LK900) communications with PC, and a Wookong ‘M’ avionics controller. 

The images were captured between 9:00 to 15:00 CST and stored as raw and jpeg formats.  

With weather permitting, date of imaging was planned to capture crop growth at 

approximately two-week intervals throughout the spring growing season, though the dates of 

image acquisition in 2016 and 2017 were different.  

 Ground control points  

Ground control points (GCPs) were established at the corners of study areas. The light 

almond and dark green 5.08 cm × 10.16 cm boards were used as GCPs as well as reflectance 

calibration standards. UTM coordinates were measured for each board in the field.  

http://www.maxmax.com/
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 Image preprocessing 

Image pre-processing followed similar steps outlined in An et al. (2016). The steps, 

including color correction and optical distortion adjustment, were conducted by the K-State 

NWREC Crops Research Program (Aiken, pers comm.). A hyperspectral radiometer (GER 1500, 

Spectral Vista Corporation, NY) was used to obtain reflectance spectra in red, green, and near-

infrared wavebands. A reflectance calibration procedure was developed to relate these spectra to 

digital number (DN, 0-255) values obtained from the modified S100 digital camera.  

 Orthomosaic generation 

The images captured in three bands (red, green, and near infrared) were merged using 

Agisoft Photoscan package to output single orthomosaic image.  

 Field plot extraction 

 The plots were manually extracted in arcGIS ArcMap 10.5 following a field map-based 

plot extraction, where a polygon was manually drawn inside the plot (Figure 4-4). A set of 

manually drawn plots were geo-referenced for the same blocks at subsequent dates using 

‘georeference’ tool in ArcGIS for geo-referenced orthomosaics. Once geo-referenced, the plot 

location for each plot at one date could be used for the same block for rest of the dates in that 

year. All polygon were monitored before processing to make sure that they align properly inside 

the plots.  

The vegetative index for analysis was calculated as a normalized difference vegetative 

index (NDVI). NDVI is a measure of the the ratio of the difference of pixel brightness value in 

near-infrared and red to the sum of the values in near infrared and red (NDVI = NIR-

RED/NIR+RED). We used zonal statistics plugin in ArcGIS to calculate NDVI. Early stage 

images were confounded with soil layer in between the rows, so we classified the NDVI into two 
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groups “vegetation group” and “non-vegetation group”. The index based classification was also 

adopted in earlier studies (An et al., 2016; Haghighattalab et al., 2016). First, the threshold that 

separates these two groups were identified based on the NDVI values measured in representative 

sample pixels inside the plot. The threshold ranged from 0.2-0.3 depending on the crop stage. 

The pixels covered with wheat plants (NDVI > (0.2-0.3) classified as Vegetation group, and soil 

between the rows classified as non-vegetation group (NDVI < (0.2-0.3). Using this threshold, a 

clause in ArcGIS was added using ‘set null’ tool which removed the pixel with NDVI equal to or 

below the threshold value, such that only pixels classified as vegetation were included in the 

analysis. The NDVI was then calculated from the resulting raster, which contained pixels from 

the vegetative group only. This was found to be more helpful when the canopy coverage is not 

established during early growth stages or when the soil was exposed due to lodging. 

For every plot, we calculated plot area, pixel count, minimum, maximum, range, mean, 

standard deviation, and the the sum of NDVI for vegetative pixel, where we used mean NDVI 

value for additional comparison and analysis. The data was exported and merged to respective 

plot id, entry number, row, and range number in R (R core team, 2018). 

 Visual observation for lodging and canopy greenness 

The lodging was scored during heading and mid-grain filling stages in 60 plots of 

irrigated blocks. The score was assigned as 0%, 50%, or 90% lodged indicating upright plants, 

partial lodging, or 90% plants in the plot lying on the ground. One additional visual assessment 

was carried out during mid-grain filling for either lodged or not-lodged indicating more than 

50% upright plants or more than 50% of the plots lying on the ground, respectively. Canopy 

greenness was calculated as percentage of green leaves from visual observation during mid-grain 

filling stage. 
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 Statistical analysis 

 Experimental design 

The experimental lines were planted in type II modified augmented design (Figure 4-2). 

The augmented design is used mostly in breeding programs due to the need of evaluation of a 

large number of lines, limited land availability, and limited seed supply per line. The random 

arrangement of checks in the design may not be adequate to describe soil/field variability, so, Lin 

and Pouchinsky (1985) proposed the type II modified augmented design for rectangular plots 

with the systematic placement of control plots. The design is structured in the split plot, within 

the whole plot arranged in rows and columns. The subplots inside the whole plots are designed in 

odd numbers (5,7, or 9), so the central plot is always the check plot. The check plot in the center 

of the whole plot is used to adjust for the soil heterogeneity and obtain the measure of 

experimental error for genotype comparisons in subplots. To estimate the subplot error, two 

secondary check varieties are assigned in randomly selected whole plots, and the remaining 

subplots are assigned to test genotypes. The trial was designed in Agrobase Generation II 

(Agronomix software Inc., Winnipeg, Canada). 

The number of rows, columns, and whole plots were different in the two years, but the 

subplots within in the whole plots were seven in both years. The six subplots were assigned to 

test genotypes or secondary checks (Joe and SY Monument), and the central subplot was always 

the primary check (WB Grainfield). 

 Experimental analysis 

To determine the method of adjustment, we performed Analysis of variance on the 

control plot NDVI data to know row and column variation and method of adjustment using SAS 

9.3 (SAS Institute, Cary NC). Row, column, and row-column interaction (whole plot error) effect 
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were calculated from whole plot controls.  Subplot error was calculated from the subplot controls 

and whole plot control from the whole plots containing subplot checks. The degrees of freedom 

for subplot error was (3-1) m, where m is the number of subplots. No adjustment was needed if 

the source of variation row, column or row column interaction was not significant, suggesting 

homogenous spatial variation. However, adjustment is required if any of the sources of variation 

are significant. The method of adjustment depends on the direction of heterogeneity.  

Three methods (1, 2, or 3) are proposed for adjusting the soil variation, but based on the 

lower efficiency reported by Lin and Pouschinsky (1985) and Lin and Voldeng (1989) on 

Method 2, we only compared method 1 and method 3.  

Method 1 uses the design structure (row and column correction factors) and disregards 

the presence of secondary checks whereas method 3 uses the regression analysis between 

primary and secondary checks (Lin and Poushinsky, 1985; Snijders, 2002). 

Method 1: Adjusted Yijk = Yij(k)- Ri – Cj 

Where, 𝑅𝑖 = 𝑥𝑖.̅̅̅ − 𝑥..̅ and 𝐶𝑗 = 𝑥.𝑗̅̅ ̅ − 𝑥..̅ 

 

Method 3: Adjusted 𝑌𝑖𝑗𝑘 = 𝑌𝑖𝑗(𝑘) − 𝑏(𝑥𝑖𝑗 − 𝑥..̅) 

Where b = slope of primary and average of secondary checks 

 

Examples of adjustment of one the genotype present in 2nd row 3rd column or wholeplot 

(WP) 4: 

Method 1: Adjusted_G1
Row(R)2 Column(C)3 

= RawG1
R2C3

 – (Check1
AvgR2

 – Check
Avg

) - 

(Check1
AvgC3

 – Check1
Avg

)  
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Method 3: Adjusted_G1
WholePlot(wp)4 

= RawG1
wp4

 – slope*(Check1
wp4

 – Check1
Avg

) 

where the slope is the regression line slope of check1 and average of two secondary 

checks.  

If the spatial heterogeneity is in one or both directions (row, column, or both), the 

additive model can describe the variation and method 1 can be used. However, if the interaction 

term is significant, the non-additive model is required to explain the variation, and thus, method 

3 is used for adjustment. Both adjustments were carried out using a custom script in R (R Core 

Team, 2018).  

Results and Discussions 

 Weather Conditions 

The daily mean minimum and maximum temperatures during the growing season (Oct-

June) in western Kansas were -8/33 oC in 2016 and -12/32 oC in 2017 (Fig. 4-1). The 

precipitation was higher than normal precipitation in both years 2016 and 2017. The total 

precipitation was 390 mm in 2016 (2015 Oct- 2016 Jun) and 388 mm in 2017 (2016 Oct- 2017 

June), whereas the normal rainfall in this area is 321 mm only. The rainfall was uniformly 

distributed in 2016 compared to 2017, where more than half of the precipitation was on May, 

2017. The rainfall in both years were compounded with strong winds. The higher incidence of 

precipitation, along with hail, and heavy winds caused severe lodging mostly in genotypes that 

had weak straw strength. Because of this reason, the breeding lines couldn’t be harvested in both 

2016 and 2017, and only the varieties were harvested in 2017.  

 Image processing data 

To evaluate the potential use of aerial imaging in detecting genotypic differences in 

wheat, we analyzed images captured by a consumer grade camera mounted on a low-cost UAV 
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platform in two environments, well irrigated and limited irrigation (Figure 4-3). The camera 

captured images in the VIS-NIR region, and VI was calculated as NDVI from the red and near 

infrared bands. Plot data were extracted separately for each block (Figure 4-4) from orthmosaic 

generated at multiple time points. The date of image capture was different in 2016 and 2017 for 

both experimental lines and varieties. However, in both years, dates of image capture were 

frequent during vegetative and reproductive stages. The NDVI values are expressed on the basis 

of date of image capture, displayed as days of the year and year. The dates and the general stage 

of crop development are presented in the Table 4-3.  

 NDVI adjustment for experimental lines based on the control plots 

Uniformity is reasonably the exception, rather than the rule, in field research. Therefore 

the observation of experimental lines needs to be adjusted based on the spatial variation. In this 

case, the checks in the augmented design were used to correct for spatial variability. First, we ran 

an ANOVA to test if there was a significant effect of the row, column, and interaction. The 

ANOVA result showed significant row column interaction in all analyses, therefore method 3 

was used for adjustment, as suggested by Lin and Pouschinsky (1985). Method 3 uses all 

available primary and secondary check values for adjustment, as given in equation in method 

section. It can account for variation in large and small scale as opposed to method 1 which can 

only account for smaller scale variation. Snijders (2002) also observed higher relative efficiency 

with method 3 adjustment compared to method 1. The control plots of WB Grainfield and 

subplot control plots of Joe and SY Monument data were used to adjust for spatial heterogeneity 

and obtain a measure of experimental error for NDVI.  
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 NDVI over the years 

The correlation analysis showed mixed result; positive, negative, and no relation between 

the NDVI values calculated at different time points in both years. Table 4-4 includes correlation 

coefficients of NDVI captured at multiple time points in 2016 for 400 experimental lines and 30 

varieties in rainfed or irrigated environment. The correlation of experimental lines from 2017 are 

displayed in Table 4-5. The time points are expressed as days of the year of 2016 and 2017 for 

winter wheat growing seasons 2015/2016 and 2016/2017. The correlation ranged from -0.6 to 

0.6. Overall, we saw higher correlation among the dates in 2017 compared to 2016 in both 

environments. The correlation was higher among closely spaced dates (144 and 159 days in 2017 

and 104 and 116 days in 2016), as opposed to NDVI calculated over a large interval (like 67 and 

162 days in 2016 and 73 and 159 days in 2017). Therefore, NDVI at an earlier vegetative stage 

might not be a good predictor of NDVI at the reproductive, which is also in agreement with 

Crain (2015).  

The fractional canopy cover (calculated from the ratio of the pixels classified as 

vegetation group to total pixels (vegetation + non-vegetation group) in each plot) was not well 

established at the earlier vegetative stage. It ranged from 80-100% at earlier vegetative stage 

images depending on the genotype. Along with the genotype differences, plant physiology 

during the reproductive stage is impacted by several environmental factors. Plant height can be 

another confounding factor, as it can directly impact lodging if the straw strength is not strong 

enough to support during rain and wind. 

 The relationship between the NDVI, yield, and factors impacting yield 

To get the relationship between yield and NDVI calculated from aerial imaging, we ran a 

correlation analysis on average yield, test weight and NDVI from images captured on 047, 061, 
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073, 110, 123, 144, 159, and 179th day of the year 2017 (Figure 4-5). The yield data were 

available only in varieties in 2017 as the breeding lines from both years and varieties from 2016 

couldn’t be harvested due to adverse weather in both years. The dates are presented as NDVI 

followed by the DOY, and the first three dates are vegetative stages followed by the reproductive 

stages. We saw significant correlation of NDVI with yield across the growing season with a 

maximum positive correlation of 0.83 at 159th day (June 9th), followed by the 144th day (May 

24th) with a correlation of 0.72 (Figure 4-5). The 144th and 159th day correspond to the late 

flowering and grain filling stages of winter wheat in western Kansas (Table 4-3). The higher 

correlation during grain filling is consistent with previous studies (Babar et al., 2006a; Crain, 

2016; Reynolds et al., 2012; Royo et al., 2003). Along with yield, earlier studies showed that the 

biomass also increased to maximum in grain filling stage, with maximum correlation with NDVI 

(Babar et al., 2006a). The positive correlation with biomass and yield is likely the main reason 

behind the significant positive correlation of NDVI with yield, however we couldn’t test the 

relation on our study. The yield was negatively correlated with NDVI measured at the early 

green up stage (047th, 061st, 073rd day of 2017), suggesting that varieties that greened up earlier 

in the season yielded less than late season varieties.  

The trend of negative correlation with yield earlier in the season holds true of varieties 

grown under both irrigated and limited water environments. However, the trend was stronger in 

rainfed, compared to the irrigated environment (Figure 4-6). The genotypes that broke dormancy 

earlier in the season possibly used up available moisture on early season growth, as the weather 

in early 2017 was relatively dry (Figure 4-1). This may have negatively affected their growth 

later in the season as they may have sloughed tillers early in season due to moisture stress 

created by excessive early growth. A similar pattern in NDVI measurement was observed for 
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experimental lines where the NDVI at earlier dates were negatively correlated to NDVI 

measured later in the growing season (Table 4-4 and 4-5).  

The negative relationship between NDVI and yield during early green up stage under 

both environments implies that the relationship isn’t solely based on early season water status. 

Some other factors must simultaneously impact this relationship. The minimum daily 

temperature for winter wheat growth is 5oC but it should be around 15-20oC for optimum growth 

and tillering (Porter and Gawith, 1999). Occasional cold snaps during the Spring of 2017 could 

have damaged plants that broke dormancy earlier. Spring frost or chilling weather can have a 

more negative impact on the actively growing crop in early spring, compared to the one during 

the winter. Along with spring frost, the data could have been compounded with some disease 

pressure and severe lodging due to heavy rainfall and a late-season snowstorm later in the crop 

cycle (Figure 4-1). 

The lower correlation with yield at 179th day (Figure 4-5 and 4-6) was due to the 

differential rate of senescence, leading to the variable rate of loss of chlorophyll, decline in 

photosynthetic activity, and remobilization of the assimilate to the grains (Vijayalakshmi et al., 

2010). Plant phenology changes greatly from the vegetative stage to reproductive, therefore, 

early vegetative stage and late senescence might not be able to explain the relationship of NDVI 

and yield. Lopes and Reynolds (2007) also suggested measuring stay green to predict yield 

during mid grain filling stage. 

 The relationship of lodging with NDVI and yield 

Lodging was more severe in irrigated blocks compared to rainfed, therefore, we scored 

60 plots of irrigated blocks as 0%, 50%, or 90% lodged indicating upright plants, partial lodging, 

or 90% plants in the plot lying flat in the ground a week after the first snowstorm in May of 
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2017. Also, we took another visual assessment of lodging during mid grain filling (DOY 153), 

where the observer rated the plot as lodged or not lodged, irrespective of the genotype. Lodging 

was also reflected in the images captured later in the season (DOY 144, 159, and 179), where 

99% of the plots marked as lodged from the visual observation matched with the plots identified 

as lodged from the image (data not shown). Because of the heavier rainfall throughout the 

heading, flowering, and grain filling period (Figure 4-1, precipitation bar for 2017- May, June, 

and July), 12% of the plots marked as upright during heading stage were marked as lodged 

during grain filling period. Loss from lodging can be greater on those plots where lodging occurs 

after flowering (Berry and Spink, 2012). Higher wind, heavy rain coupled with timely irrigation 

in irrigated blocks might have weaken plant anchorage in the soil leading to severe lodging in the 

irrigated blocks compared to the water-limited. 

Yield was significantly lower in lodged plots compared to upright, non-lodged plots, 

irrespective of the genotype (Figure 4-7 (a)). Lodging during heading stage was able to explain 

more than 50% variation in grain yield (Figure 4-8 (a)). Similar effect of lodging was also 

observed in the studies by Berry and Spink (2012), where they observed 54% yield loss due to 

lodging. A similar relationship between lodging and yield was observed in NDVI measurements 

(Figure 4-7 (b) and figure 4-8 (b)). NDVI was calculated from the images captured from the top 

of the canopy, which was able to get the signal from the displacement of the plant on the ground 

due to lodging. Plant position might have changed flag leaf orientation, which greatly impacts 

light interception (Inoue et al., 2004). Flag leaf is a predominant light receptor and can contribute 

up to 50% of the photosynthesis in wheat (Al-Tahir, 2014). The study by Al-Tahir (2014) 

showed a high correlation of grain yield with flag leaf area, fresh weight of flag leaf and total 

chlorophyll content. Because of the plant position on the ground due to lodging, the original top 
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canopy (top canopy before lodging) may not be exposed in an orientation for maximum solar 

radiation interception. Lower leaves, bottom stems, or plant parts that are not as efficient in 

capturing solar radiation would likely have contributed signficantly to the reflectance 

measurement, resulting in lower NDVI and yield in lodged plants.   

 Visual observation of canopy greenness vs UAV measured NDVI 

NDVI as a measure of stay green can be regarded as a stress adaptive trait under abiotic 

or biotic stress (Joshi et al., 2007; Lopes and Reynolds, 2012). Some stripe rust pressure was 

present in 2017, therefore the greenness was confounded not just by the genotypic character, but 

by the foliar disease infection. Visual scores were recorded as the percentage of green leaves in 

plants and ranged from 0-100%, where 0 means no any green leaves and 100 means all leaves 

are green. Visual observation was conducted in an irrigated environment during the grain filling 

period (DOY 160; June 9, 2017) and imaging was captured within the same week. As expected, 

the visual observation is subjective and ranged from 0-95%, where the NDVI range was within a 

10% range.  

There was a significant positive relationship between visually scored greenness and 

NDVI calculated from images (Figure 4-9). More importantly, the NDVI calculated from images 

explained more variation in yield (53%) compared to the visually scored greenness (27%), as 

presented in Figure 4-10. The NDVI value is continuous as opposed to visual screening and is 

more sensitive to small change in the top canopy. The visual assessment is impacted by the 

observer’s view of the lower canopy which plays a smaller role in light interception. Image 

capture more information from the top canopy, area of light interception and yield is the function 

of light interception, radiation use efficiency and harvest index (Reynolds et al., 2012, 2009b), 

resulting in higher correlation with the sensor measurement than the visual assessment. Also, 
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hyperspectral imaging can capture spike photosynthesis, which is very difficult to measure, and 

this could have resulted higher correlation between yield and NDVI measurement after spike 

emergence (Tambussi et al., 2007). This suggests that physiological criteria like NDVI can be 

used as an indirect breeding approach to predict grain yield which has also been reported in 

earlier studies (Babar et al., 2006a; Lopes and Reynolds, 2012; Prasad et al., 2007). Indirect 

breeding approach or indirect selection becomes more important when the trait under evaluation 

is difficult to measure, like yield (Falconer and Mackay, 1996). 

Lopes and Reynolds (2012) showed that NDVI could explain 30% of the variation in 

yield, and also can give an additional insight about plant health. NDVI can also be used as a 

potential tool to differentiate genotypes for yield growing under irrigated and water limited 

environments (Reynolds et al., 2012; You et al., 2013). This suggests it can be used to identify 

stress tolerance in genotypes. In our study, we saw a strong relationship between NDVI and yield 

in the water-limited water environment compared to the irrigated environment, which has also 

been reported by You et al. (2013) and Reynolds et al. (2013). However, the reason for lower 

correlation in their study might be different than our study, as our limited water environment, 

was not severely moisture deprived. The limited water environment received 390 and 388 mm of 

water from rainfall during the wheat growing season (Oct-Jun) in 2016 and 2017 respectively, 

whereas the normal rainfall in this area is 321 mm only based on 30 years average. In 2017, the 

precipitation was more towards the reproductive development stages with snow and hail later in 

the spring, whereas in 2016 it was throughout the wheat growth period. Notably, they were not 

moisture limited during critical growth stages as most of the rainfall occurred after heading 

(Figure 4-1).  
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The 2016 growing year was favorable for wheat production, producing double the 

average yield across the state, while 2017 was drier earlier in the season, followed by heavy 

moisture after the heading stage, leading to higher disease pressure. This disease response could 

have been reflected in the NDVI measurement, as reported in the study by Joshi et al. (2007).  

 Genetic Analysis of NDVI 

Genome wide association studies (GWAS) on NDVI calculated during early vegetative, 

heading, and mid-grain filling stage did not find any marker significantly associated with the 

NDVI. It could be that the effect is controlled by many genes with small effect and we didn’t 

have enough power to detect them. Nevertheless, accurate phenotyping using aerial imaging in 

conjunction with genomic selection (GS) might be able to predict grain yield more accurately. 

Accurate phenotyping is a very important aspect for linking genotype with the phenotype as 

demonstrated in a modelling study by Lamsal et al. (2018). Unlike GWAS, GS uses the effect of 

all markers to calculate Genomic Estimated Breeding Values. The integration of HTP and GS 

has the potential to increase the rate of genetic gain by increasing accuracy of selection and 

reducing time per breeding cycle. This may be accomplished by providing more accurate yield 

estimates and increasing confidence in the breeding value of a line allowing elite genotypes to be 

identified earlier in the breeding cycle and this, in turn, allows for more rapid cycling of the 

breeding material compared to conventional approaches. 

Summary and Conclusions  

The genetic gain in winter wheat is around 1%, much lower than the required gain to 

sustain the current trend of genetic population growth. We showed that the aerial phenotyping 

can have the capacity to detect genotypic differences in yield, lodging and canopy greenness and 

can be more effective than manual selection. Phenotyping for traits in the breeding program 
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mainly includes field scouting, which is very time consuming, labor intensive, and subjective, 

therefore, the application of aerial imaging can be helpful in increasing the efficiency, accuracy, 

and precision in selecting genotypes.  

Aerial phenotyping provides broader insight to breeders for selection compared to 

conventional methods of selection. Human error can be minimized and the likelihood of 

identifying genetically superior individuals can be improved in the context of the breeding 

program. This is expected to be beneficial especially in earlier stages of the selection process 

where a large number of genotypes are to be considered and should allow the breeder to focus on 

the stronger candidates for future release.  

While the UAV platform is efficient in capturing variation in the canopy, the main 

limitation is payload and flight time associated with the batteries used in the system. At the same 

time, the requirement of sensor calibration and image processing are still limitations for taking 

full advantage of this platform. User-friendly software, as well as efficient and standardized 

procedures to process images for a given crop are needed to be addressed as areas of future 

research. 

  



133 

References 

Acevo-Herrera, R., Aguasca, A., Bosch-Lluis, X., Camps, A., 2009. On the use of compact L-

band dicke radiometer (ARIEL) and UAV for soil moisture and salinity map retrieval: 

2008/2009 field experiments, in: Geoscience and Remote Sensing Symposium, 2009 

IEEE International, IGARSS 2009. IEEE, pp. IV–729. 

Alexandratos, N., 2009. World food and agriculture to 2030/50: Highlights and views from mid-

2009. FAO, in: Economic and Social Development Dept., Expert Meeting on How to 

Feed the World. 

Al-Tahir, F.M., 2014. Flag leaf characteristics and relationship with grain yield and grain protein 

percentage for three cereals. J. Med. Plants Stud. 2, 01–07. 

An, N., Palmer, C.M., Baker, R.L., Markelz, R.J.C., Ta, J., Covington, M.F., Maloof, J.N., 

Welch, S.M., Weinig, C., 2016. Plant high-throughput phenotyping using 

photogrammetry and imaging techniques to measure leaf length and rosette area. 

Comput. Electron. Agric. 127, 376–394. https://doi.org/10.1016/j.compag.2016.04.002 

Araus, J.L., Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop breeding 

frontier. Trends Plant Sci. 19, 52–61. 

Austin, R.B., Bingham, J., Blackwell, R.D., Evans, L.T., Ford, M.A., Morgan, C.L., Taylor, M., 

1980. Genetic improvements in winter wheat yields since 1900 and associated 

physiological changes. J. Agric. Sci. 94, 675–689. 

Babar, M.A., Reynolds, M.P., Van Ginkel, M., Klatt, A.R., Raun, W.R., Stone, M.L., 2006a. 

Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, 

and canopy temperature in wheat. Crop Sci. 46, 1046–1057. 

Babar, M.A., Reynolds, M.P., Van Ginkel, M., Klatt, A.R., Raun, W.R., Stone, M.L., 2006b. 

Spectral reflectance indices as a potential indirect selection criteria for wheat yield under 

irrigation. Crop Sci. 46, 578–588. 

Babar, M.A., Van Ginkel, M., Klatt, A.R., Prasad, B., Reynolds, M.P., 2006c. The potential of 

using spectral reflectance indices to estimate yield in wheat grown under reduced 

irrigation. Euphytica 150, 155–172. 

Berry, P. M., & Spink, J. 2012. Predicting yield losses caused by lodging in wheat. Field Crops 

Research, 137, 19-26. 

Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J., ... & 

Ennos, A. R. 2004. Understanding and reducing lodging in cereals. Advances in 

Agronomy, 84(04), 215-269. 

 



134 

Crain, J.L., 2016. Leveraging the genomics revolution with high-throughput phenotyping for 

crop improvement of abiotic stresses (PhD Thesis). Kansas State University. 

Dhondt, S., Wuyts, N., Inzé, D., 2013. Cell to whole-plant phenotyping: the best is yet to come. 

Trends Plant Sci. 18, 428–439. https://doi.org/10.1016/j.tplants.2013.04.008 

Falconer, D.S., Mackay, T.F., 1996. Introd. Quant. Genet. 

Fiorani, F., Schurr, U., 2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64, 

267–291. https://doi.org/10.1146/annurev-arplant-050312-120137 

Foulkes, M.J., Slafer, G.A., Davies, W.J., Berry, P.M., Sylvester-Bradley, R., Martre, P., 

Calderini, D.F., Griffiths, S., Reynolds, M.P., 2011. Raising yield potential of wheat. III. 

Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62, 

469–486. 

Gago, J., Douthe, C., Coopman, Re., Gallego, Pp., Ribas-Carbo, M., Flexas, J., Escalona, J., 

Medrano, H., 2015. UAVs challenge to assess water stress for sustainable agriculture. 

Agric. Water Manag. 153, 9–19. 

Garcia-Ruiz, F., Sankaran, S., Maja, J.M., Lee, W.S., Rasmussen, J., Ehsani, R., 2013. 

Comparison of two aerial imaging platforms for identification of Huanglongbing-infected 

citrus trees. Comput. Electron. Agric. 91, 106–115. 

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral 

vegetation indices and novel algorithms for predicting green LAI of crop canopies: 

Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 

90, 337–352. https://doi.org/10.1016/j.rse.2003.12.013 

Haghighattalab, A., González Pérez, L., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., 

Ortiz-Monasterio, I., Singh, R.P., Goodin, D., Poland, J., 2016. Application of unmanned 

aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant 

Methods 12, 35. https://doi.org/10.1186/s13007-016-0134-6 

Inoue, T., Inanaga, S., Sugimoto, Y., An, P., Eneji, A.E., 2004. Effect of drought on ear and flag 

leaf photosynthesis of two wheat cultivars differing in drought resistance. 

Photosynthetica 42, 559–565. 

Joshi, A.K., Kumari, M., Singh, V.P., Reddy, C.M., Kumar, S., Rane, J., Chand, R., 2007. Stay 

green trait: variation, inheritance and its association with spot blotch resistance in spring 

wheat (Triticum aestivum L.). Euphytica 153, 59–71. 

Lamsal, A., Welch, S.M., White, J.W., Thorp, K.R., Bello, N.M., 2018. Estimating parametric 

phenotypes that determine anthesis date in Zea mays: Challenges in combining 

ecophysiological models with genetics. PLOS ONE 13, e0195841. 

https://doi.org/10.1371/journal.pone.0195841 



135 

Lin, C.-S., Poushinsky, G., 1985. A modified augmented design (type 2) for rectangular plots. 

Can. J. Plant Sci. 65, 743–749. 

Lin, C.S., Voldeng, H.D., 1989. Efficiency of type 2 modified augmented designs in soybean 

variety trials. Agron. J. 81, 512–517. 

Lopes, M.S., Reynolds, M.P., 2012. Stay-green in spring wheat can be determined by spectral 

reflectance measurements (normalized difference vegetation index) independently from 

phenology. J. Exp. Bot. 63, 3789–3798. 

Lorence, A., Asebedo, A., 2017. Evaluation of optical sensor technologies to optimize winter 

wheat (Triticum aestivum L.) management (PhD Thesis). Kansas State University. 

Lu, B., He, Y., 2017. Species classification using Unmanned Aerial Vehicle (UAV)-acquired 

high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogramm. 

Remote Sens. 128, 73–85. 

Myers, D., Ross, C.M., Liu, B., 2015. A review of unmanned aircraft system (UAS) applications 

for agriculture, in: 2015 ASABE Annual International Meeting. American Society of 

Agricultural and Biological Engineers, p. 1. 

Poland, J., 2015. Breeding-assisted genomics. Current opinion in plant biology, 24, pp.119-124. 

 

Poland, J.A., Rife, T.W., 2012. Genotyping-by-Sequencing for Plant Breeding and Genetics. 

Plant Genome 5, 92–102. https://doi.org/10.3835/plantgenome2012.05.0005 

Porter, J.R., Gawith, M., 1999. Temperatures and the growth and development of wheat: a 

review. Eur. J. Agron. 10, 23–36. 

Prasad, B., Carver, B.F., Stone, M.L., Babar, M.A., Raun, W.R., Klatt, A.R., 2007. Potential use 

of spectral reflectance indices as a selection tool for grain yield in winter wheat under 

great plains conditions. Crop Sci. 47, 1426–1440. 

Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., Browning, D., 2009. 

Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, 

and management. J. Appl. Remote Sens. 3, 033542. 

Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., Streibig, J.C., 2013. Potential uses of 

small unmanned aircraft systems (UAS) in weed research. Weed Res. 53, 242–248. 

Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield trends are insufficient to double 

global crop production by 2050. PloS One 8, e66428. 

Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M., Slafer, G., 

2012. Achieving yield gains in wheat. Plant Cell Environ. 35, 1799–1823. 

Reynolds, M., Foulkes, M.J., Slafer, G.A., Berry, P., Parry, M.A., Snape, J.W., Angus, W.J., 

2009a. Raising yield potential in wheat. J. Exp. Bot. 60, 1899–1918. 



136 

Reynolds, M., Manes, Y., Izanloo, A., Langridge, P., 2009b. Phenotyping approaches for 

physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155, 309–320. 

Rife, T.W., 2016. Utilizing a historical wheat collection to develop new tools for modern plant 

breeding (PhD Thesis). Kansas State University. 

Royo, C., Aparicio, N., Villegas, D., Casadesus, J., Monneveux, P., Araus, J.L., 2003. 

Usefulness of spectral reflectance indices as durum wheat yield predictors under 

contrasting Mediterranean conditions. Int. J. Remote Sens. 24, 4403–4419. 

Snijders, C.H.A., 2002. Field evaluation of type 2 modified augmented designs for non-

replicated yield trials in the early stages of a wheat breeding program. na. 

Tambussi, E.A., Bort, J., Guiamet, J.J., Nogués, S., Araus, J.L., 2007. The photosynthetic role of 

ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit. 

Rev. Plant Sci. 26, 1–16. 

Tattaris, M., Reynolds, M.P., Chapman, S.C., 2016. A direct comparison of remote sensing 

approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci. 7, 1131. 

Tester, M., Langridge, P., 2010. Breeding technologies to increase crop production in a changing 

world. Science 327, 818–822. 

Vijayalakshmi, K., Fritz, A.K., Paulsen, G.M., Bai, G., Pandravada, S., Gill, B.S., 2010. 

Modeling and mapping QTL for senescence-related traits in winter wheat under high 

temperature. Mol. Breed. 26, 163–175. 

Wang, H., 2017. Crop assessment and monitoring using optical sensors (PhD Thesis). Kansas 

State University. 

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., 

... & Jenks, M. A. 2012. Field-based phenomics for plant genetics research. Field Crops 

Research, 133, 101-112. 

Wright Jr, D.L., Rasmussen Jr, V.P., Ramsey, R.D., 2005. Comparing the use of remote sensing 

with traditional techniques to detect nitrogen stress in wheat. Geocarto Int. 20, 63–68. 

Yang, D.-L., Jing, R.-L., Chang, X.-P., Li, W., 2007. Identification of quantitative trait loci and 

environmental interactions for accumulation and remobilization of water-soluble 

carbohydrates in wheat (Triticum aestivum L.) stems. Genetics. 

You, X., Meng, J., Zhang, M., Dong, T., 2013. Remote sensing based detection of crop 

phenology for agricultural zones in China using a new threshold method. Remote Sens. 5, 

3190–3211. 

 

  



137 

Figure 4-1 Weather during 2015/2016 and 2016/2017 wheat growing season. The green bar 

is the sum of monthly precipitation and the dot with the bar is normal precipitation from 

1988 to 2015 for that month. Red and blue lines are the average maximum and minimum 

temperature, respectively. 
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Figure 4-2 Type II modified augmented design layout where the field is divided into row 

and columns. The row and column combination is a whole plot (WP). Each whole plot has 

seven subplots, and the center one is always a control check. Subplot checks are randomly 

assigned in selected whole plots. 
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Figure 4-3 Field layout around a central pivot in 2016/2017 (top) and 2015/2016 (bottom) 

from the aerial image taken on April 20, 2017, and Nov 10, 2015, respectively. The varieties 

are labeled as V and Experimental lines as L. The number after the letter corresponds to 

the block number and irrigated environment are denoted in bold. The labels are oriented 

in planting direction from bottom left of each block. 
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Figure 4-4(a) Raw image of B1 captured in the 073rd day of 2017 by a UAV. The white 

rectangular box represents individual plot boundaries. Ground plot dimension is 4.5’ x 

12.5’ (b) NDVI of B1 in the 073rd day of 2017.  
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Figure 4-5 Correlation scatterplot of Pearson Correlation between Test weight (Tstwght), 

Yield (lb A-1) and NDVI measured at different days of 2017, 47th day (NDVI047), 61st day 

(NDVI061), 73rd day (NDVI073), 110th day (NDVI110), 123rd day (NDVI123), 144th day 

(NDVI144), 159th day (NDVI159) of 2017. Correlation value is presented on the top half 

and the bottom is the scatterplot with a red fitted line. Single (*), double (**), or Triple 

asterisks (***) indicates the significance at 0.05, 0.01 or <0.001 level of probability. 
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Figure 4-6 Correlation scatterplot of Pearson Correlation between Test weight (Tstwght), 

Yield (lb A-1) and NDVI measured at different days of 2017, 47th day (NDVI047), 61st day 

(NDVI061), 73rd day (NDVI073), 110th day (NDVI110), 123rd day (NDVI123), 144th day 

(NDVI144), 159th day (NDVI159) of 2017 for an (a) Irrigated environment and (b) water-

limited environment. Correlation value is presented on the top half and the bottom is the 

scatterplot with a red fitted line. Single (*), double (**), or Triple asterisks (***) indicates 

the significance at 0.05, 0.01 or <0.001 level of probability. 

 

(a) 
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(b)  
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Figure 4-7 Yield (lb A-1) and (b) NDVI between lodged and not lodged plots, lodging was 

assessed during mid grain filling period as severely lodged and standing upright plants in 

30 varieties in western Kansas. Triple asterisks (***) indicates the differences at the <0.001 

level of probability. 
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Figure 4-8 Correlation between Yield and NDVI with lodging in western Kansas. (a) 

Relationship between yield (lb A-1) and % lodging scored after first snowstorm/ rainfall (b) 

Relationship between NDVI measured during grain filling and % lodging scored after the 

first week of a snowstorm/heavy rainfall. Triple asterisks (***) indicates the significance at 

the <0.001 level of probability. 
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Figure 4-9 Relationship between stay green calculated from the image as NDVI and 

manually scored stay green (percentage of green leaves) during mid-grain filling. Triple 

asterisks (***) indicates the significance at the <0.001 level of probability. 
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Figure 4-10 Correlation between Yield and stay green calculated as NDVI from the image 

and visual scoring (a) Relationship between yield (lb A-1) and NDVI measured during the 

mid-grain filling period on June 8, 2017 (b) Relationship between yield (lb A-1)  and 

manually scored percentage of green leaves during the mid-grain filling period. Triple 

asterisks (***) indicates the significance at the <0.001 level of probability. 
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Table 4-1  List of 30 winter wheat varieties planted in 2015/2016 and 2016/2017 wheat 

growing season in western Kansas. Four varieties were different in two years because of the 

lack of seed. The different varieties in two years are marked in bold. 

2015/2016 2016/2017 

Antero Antero 

Armour Avery 

Bill Brown Bentley 

Billings SY Grit 

Brawl CL Brawl CL 

Byrd Byrd 

Clara CL Clara CL 

Danby Danby 

Everest Everest 

Fuller Fuller 

Gallagher Gallagher 

Iba Iba 

Joe Joe 

KanMark KanMark 

Tatanka Tatanka 

Larry Larry 

LCS Chrome LCS Chrome 

LCS Wizard LCS Wizard 

Santa Fe SY Sunrise 

SY Flint SY Flint 

SY Monument SY Monument 

SY Wolf SY Wolf 

T158 T158 

TAM 111 TAM 111 

TAM 112 TAM 112 

TAM 114 TAM 114 

Tiger Tiger 

WB 4458 WB 4458 

WB Grainfield WB Grainfield 

Zenda Zenda 
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Table 4-2 Planting details of experimental lines and varieties. 

 

 

 

 

 

 

 

 

Table 4-3 Images date available and general crop stages in western Kansas. 

 

  2017     2016   

DOY Date Crop stage DOY Date Crop stage 

47 16-Feb Prejointing    

61 2-Mar Prejointing    

73 14-Mar Jointing 67 7-Mar Jointing 

110 20-Apr Early green up 99 8-Apr Early green up 

123 3-May Early heading 104 13-Apr Early green up 

144 24-May Late heading 116 25-Apr Preheading  

159 8-Jun Mid-grainfill 153 1-Jun Mid-grainfill 

179 28-Jun Senescence 162 10-Jun Late grainfill 

 

  

Year Experimental 

lines 

Varieties Environments Varieties 

Replications 

Plot size 

2016 400 (paired 

plots) 

30 (paired 

plots) 

2 6 3-row (0.84m 

x 2.44m) 

2017 400 30 (paired 

plots) 

2 4  6-row (1.68m 

x 3.81m) 
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Table 4-4 Pearson correlation between NDVI measured at different days of year 2016 in 

400 diverse wheat breeding lines and 30 released varieties. Correlation of water-limited 

environment are presented in the lower triangle and irrigated environment are in the 

upper triangle. Numbers in bold are statistically significant at 0.05 level of probability. 

 

DOY 67 99 104 116 153 162 

67  0.036 NA -0.25 -0.11 -0.2 

99 NA  NA NA 0.33 0.28 

104 -0.28 NA   NA NA 

116 -0.21 NA 0.44  0.36 0.27 

153 0.01 NA 0.14 0.32  0.29 

162 -0.19 NA 0.15 0.021 0.19   

 

Table 4-5 Pearson correlation between NDVI measured at different days of year 2017 in 

400 diverse wheat breeding lines. Correlation of water-limited environment are presented 

in the lower triangle and irrigated environment are in the upper triangle. 

 

DOY 73 110 144 159 

73  -0.13423 -0.52324 -0.16027 

110 -0.68355  0.563366 0.308146 

144 -0.56351 0.64809  0.412388 

159 -0.26494 0.271934 0.362714   
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